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Abstract. In this paper we consider a structured linear system represented by means of a
directed graph. We present a graph theoretic method to compute the generic number of invariant
zeros of the corresponding Rosenbrock matrix. The method is based on a fundamental decomposition
of the directed graph representing the structured system. The generic number of invariant zeros is
important in generic versions of problems involving controllability and pole placement.
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1. Introduction. This paper deals with a method to compute the generic num-
ber of invariant zeros of a structured system. This number of zeros has already
been studied in various papers (see, for instance, [10], [11]) and also in the book [7].
However, in none of the cited references was the most general case treated or was
a complete solution given. In this paper we aim for the most general case and we
present a graph theoretic method to compute the generic number of invariant zeros of
a general structured linear system. Fundamental in our approach is a decomposition
of the directed graph representing the structured system into a number of structured
subsystems.

The material in this paper on separators and (separator-based) decompositions
is largely based on results in [5] on M-decompositions. In [5] M-decompositions are
developed in order to hierarchically decompose a (large) set of (algebraic) equations
into a number of smaller sets of equations such that the solvability of the original
set of equations can be investigated by checking the solvability of the smaller sets of
equations individually and by using their hierarchical ordering.

In this paper we use only a simplified version of the M-decomposition and we
apply it on linear structured systems described by differential equations. We show
that after applying the simplified M-like decomposition, we obtain in principle three
essentially different linear structured subsystems that each have their own specific
properties. These properties can be used to compute the generic number of invariant
zeros of each of the subsystems individually. By combining the obtained results for
the subsystems we get the generic number of invariant zeros of the original system. In
[16] the subsystems with their specific properties are used to investigate the generic
solvability of the disturbance decoupling problem with pole placement for structured
systems.

For the sake of completeness and the readers’ interest, we have included some
illustrative results on separators and separator-based decompositions. Also we present
a simple and straightforward algorithm for the decomposition used in this paper.
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We want to also point out that we can apply a general version of the M-decom-
position on linear structured systems described by differential equations. In principle,
this will yield a minimal inconsistent part, a number of consistent parts, and a max-
imal inconsistent part (see [5]). Two of the three subsystems mentioned above can
be obtained directly from the minimal part and the maximal inconsistent part, re-
spectively. The third subsystem is obtained by aggregating all the components of the
consistent parts.

The main goal of our paper is the presentation of the three different subsystems
with their specific properties and their use for computing the generic number of invari-
ant zeros of a structured linear system. Since the subsystems can already be obtained
by means of our simplified version of the M-decomposition, we have refrained from
using a more general version of this decomposition. For more details on a general
version of the M-decomposition, we refer to [5].

The outline of this paper is as follows. In section 2 we give the mathematical
formulation of the problem of the paper. In section 3 we explain how a structured
system can be represented by means of a directed graph. In section 4 we present
some simplifying assumptions that in the context of this paper can be made without
harming the generality and we present the decomposition of a graph on which this
paper is based. In section 5 we present results that are crucial for this paper. These
results are combined to yield our main result: a graph theoretic method for computing
the generic number of invariant zeros of a general structured system. In section 6 we
illustrate the method by means of an elementary example. In section 7 we present
some conclusions and remarks. We give (sketches of) proofs of some of the results of
this paper in the appendix.

2. Problem formulation.

2.1. Systems and number of zeros. In this paper we study the following
linear time-invariant system:

Σ :

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp. The matrices A, B,
C, and D are real and have dimensions n× n, n×m, p× n, and p×m, respectively.
With In the n × n identity matrix, we write the system pencil of system (1) as (see
[8])

P (s) =

(
A− sIn B

C D

)
.

From the next subsection on we assume that system (1) is structured in the sense
that only the zero/nonzero structure of the matrices A, B, C, and D is known. How-
ever, here we still assume that system (1) is numerically specified. Then, regarding
P (s) as a rational matrix, we call its rank the normal-rank and we denote this normal-
rank by n-rank P (s). For a particular complex value ŝ, we denote the rank of the
constant (complex) matrix P (ŝ) by rank P (ŝ). It is well known that if n-rank P (s)
= q, then rank P (ŝ) = q for almost all values ŝ ∈ C and max

ŝ∈C rank P (ŝ) = q (see [13]).
Given that n-rank P (s) = q, there may exist numbers ŝ ∈ C such that rank P (ŝ) < q.
We call such numbers the invariant zeros of the system (see [1]). Formally, if n-rank
P (s) = q, we have the following definition.
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Definition 2.1. The number s0 ∈ C is an invariant zero of system (1) if rank
P (s0) < q.

For certain applications, for instance, applications involving pole placement, the
number of invariant zeros of system (1) is important (see [8]), where the number of
zeros is counted with multiplicity. See also [16] for an application of the results of this
paper.

In this paper we study methods to compute the number of invariant zeros. Our
goal is to compute the number of invariant zeros for structured systems. For nu-
merically specified (nonstructured) systems, we have various methods available to
compute the number of invariant zeros. In the following we review some cases that
will illustrate the approach followed in this paper:

Special Cases.
1. We begin by considering the case when p = m. Then P (s) is square with

dimensions (n + p) × (n + p). If in addition n-rank P (s) = n + p, then P (s) is
invertible as a rational matrix. The number of invariant zeros of system (1) then
equals the degree of the determinant of P (s).

2. Next we consider the case when p < m. If in addition n-rank P (s) = n + p,
then P (s) has a right inverse, seen as a rational matrix. Now if s0 is an invariant
zero of (1), then rank P (s0) < n + p. Hence, any (n + p) × (n + p) submatrix of
P (s0) has zero determinant. Therefore, s0 is a zero of any (n + p)th order minor of
P (s), implying that s0 is a zero of the greatest common divisor of all these minors.
Conversely, if s0 is a zero of the greatest common divisor of all (n+p)th order minors
of P (s), then any (n+p)× (n+p) submatrix of P (s) has zero determinant for s = s0,
implying that rank P (s0) < n+ p and that s0 is an invariant zero of (1). Therefore,
if p < m and n-rank P (s) = n + p, then the number of invariant zeros of system (1)
is equal to the degree of the greatest common divisor of all (n+ p)th order minors of
P (s).

3. Similarly as above, we can treat the case when m < p with n-rank P (s) =
n+m.

4. We now consider the case that by row and column permutations the system
pencil P (s) is transformed into P̃ (s) given by

P̃ (s) =

(
P̃1(s) Q̃12(s)

0 P̃2(s)

)
,

with
• P̃i(s) system pencils like P (s) of dimensions ai × bi for i = 1, 2,
• n-rank P̃1(s) = a1,
• n-rank P̃2(s) = b2.

Hence, seen as rational matrices, we have that P̃1(s) has full row rank and P̃2(s)
has full column rank. Then using some basic calculus for rational matrices we can
show that n-rank P (s) = n-rank P̃ (s) = q with q = a1 + b2. The a1 × b2 polynomial
matrix Q̃12(s) is not relevant in this context. By simple reasoning it is easy to prove
that any invariant zero of P̃ (s) is an invariant zero of P̃1(s) and/or P̃2(s), and also
the converse is true. Any invariant zero of P̃1(s) and/or P̃2(s) is also an invariant
zero of P̃ (s). Moreover, counting the zeros with multiplicities it can be shown that
the number of invariant zeros of P̃ (s) is equal to the sum of the number of invariant
zeros of P̃1(s) and the number of invariant zeros of P̃2(s). Therefore, to compute the
number of invariant zeros of P̃ (s), we can compute the number of invariant zeros of
the smaller matrices P̃1(s) and P̃2(s) and add them together. Since row and column
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permutations are of no influence, we then also have obtained the number of invariant
zeros of P (s).

2.2. Structured systems and generic number of zeros. In the previous
subsection we considered systems that are numerically specified. However, in this
paper we mainly treat systems (1) that are not numerically specified. Indeed, in the
rest of this paper we assume that we know only the zero/nonzero structure of the
matrices A, B, C, and D. This means that of each entry in these matrices we know
only whether its value is fixed to zero, in which case we call it a fixed zero, or that it
has an unknown real value, in which case we call the entry a free parameter. We say
that a system (1) is structured if only the zero/nonzero structure of the matrices A,
B, C, and D is given.

In a structured system (1) with l nonzero entries in the matrices A, B, C, and
D, we can parametrize these entries by a scalar real parameters λi, i = 1, 2, . . . , l,
together forming a parameter vector λ = (λ1, λ2, . . . , λl)

> ∈ Rl, where > means
transpose.

We denote the matrices obtained by replacing the nonzeros in A, B, C, and D by
the corresponding parameters λi, i = 1, 2, . . . , l, by Aλ, Bλ, Cλ, and Dλ, respectively.
Following this notation we also write

Pλ(s) =

(
Aλ − sIn Bλ

Cλ Dλ

)
.

For each value of λ ∈ Rl, we have a numerically specified system with system
pencil Pλ(s) of which we can compute the n-rank and the number of invariant zeros.
It turns out that the n-rank of Pλ(s) will have the same value for almost all parameter
values λ ∈ Rl (see [7], [14]). This is the so-called generic n-rank of P (s) and will be
denoted by g-n-rank P (s).

If the g-n-rank of P (s) is equal to q, it can be shown that the degree of each qth
order minor of P (s) individually will have the same value for almost all parameter
values (see [7]). The same applies to the degree of the greatest common divisor of
the qth order minors of P (s). This means that for almost all parameter values the
number of invariant zeros of P (s) is the same. Therefore, we can refer to this number
as the generic number of invariant zeros of P (s).

Above, each of the expressions “for almost all” is to be understood as “for all
except for those in some proper algebraic variety in Rl” (see [12]).

2.3. Approach followed in this paper. In this paper we develop a method to
determine the generic number of invariant zeros of a structured system (1). Basically,
the method consists of two steps.

In the first step the system pencil of a structured system

P (s) =

(
A− sIn B

C D

)
is transformed using row and column permutations into the next form

P (s) =

 P1(s) Q12(s) Q13(s)
0 P2(s) Q23(s)
0 0 P3(s)

 ,

in which Pi(s), i = 1, 2, 3, are system pencils like P (s), such that
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• P1(s) generically has full row rank (even after deleting an arbitrary column;
see in the later sections),
• P2(s) is generically invertible, and
• P3(s) generically has full column rank (even after deleting an arbitrary row;

see in the later sections).
In the second step, as in subsection 2.1, we determine the generic number of

invariant zeros of the structured system (1) by adding the generic number of invariant
zeros of the structured subsystems characterized by the system pencils P1(s), P2(s),
and P3(s).

The generic number of invariant zeros of the structured subsystem character-
ized by P2(s) is simply the generic degree of the determinant of P2(s). The generic
number of invariant zeros of the structured subsystem characterized by P1(s) equals
the generic degree of the greatest common divisor of all maximum order minors of
P1(s). Similarly, the generic number of invariant zeros of the structured subsystem is
characterized by P3(s).

Using graph theory we are able to determine row and column permutations such
that P (s) is transformed into the above triangular form. In addition to obtaining the
above triangular form, the permutations are such that P1(s) has special properties
that enable us to determine the generic degree of the greatest common divisor of all
maximum order minors of P1(s) in a straightforward way. This also holds for the
generic degree of the greatest common divisor of all maximum order minors of P3(s).

3. Graph representation of structured systems.

3.1. Graphs, paths, linkings, and cycles families. We introduce the graph
G = (V,E) of a structured system of the form (1). The vertex set V of the graph is
given by U∪X∪Y with U = {u1, . . . , um} the set of input vertices, X = {x1, . . . , xn}
the set of state vertices, Y = {y1, . . . , yp} the set of output vertices. Hence, V consists
of n+m+ p vertices. The indices n, m, and p come from system (1) and denote the
dimension of the state space, the input space, and the output space, respectively.
Denoting (v, v′) for a directed edge from the vertex v ∈ V to the vertex v′ ∈ V , the
edge set E of the graph is described by EA∪EB ∪EC ∪ED with EA = {(xj , xi)|Aij 6=
0}, EB = {(uj , xi)|Bij 6= 0}, EC = {(xj , yi)|Cij 6= 0}, ED = {(uj , yi)|Dij 6= 0}. In
the latter, for instance, Aij 6= 0 means that the (i, j)th entry of the matrix A is a free
parameter (a nonzero). An example of a graph is given in section 6.

Let W,W ′ be two nonempty subsets of the vertex set V of the graph G. We
say that there exists a path from W to W ′, if there is an integer t and there are
vertices w0, w1, . . . , wt ∈ V such that w0 ∈ W , wt ∈ W ′, and (wi−1, wi) ∈ E for
i = 1, 2, . . . t. We call the vertex w0 the begin vertex of the path and wt the end
vertex. We say that the path consists of the vertices w0, w1, . . . , wt, where it may
happen that some of the vertices occur more than once. We also say that each of
the vertices in w0, w1, . . . , wt is contained in the path. We call the path simple if
every vertex on the path occurs only once. Occasionally, we denote a path by the
sequence of directed edges it consists of, i.e., by (w0, w1), (w1, w2), . . . , (wt−1, wt). If
(w0, w1), . . . , (wi−1, wi), (wi, wi+1), . . . , (wj−1, wj), (wj , wj+1), . . . , (wt−1, wt) is a
path from the vertex w0 to the vertex wt, first along the vertex wi and then along
the vertex wj , the part from the vertex wi to the vertex wj is called a subpath of the
original path.

We say that two paths from W to W ′ are disjoint if they consist of disjoint sets
of vertices. We call l paths from W to W ′ disjoint if they are mutually disjoint, i.e.,
each of the two of them are disjoint. We call a set of l disjoint and simple paths from
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W to W ′ a linking from W to W ′ of size l. Since there are only a finite number of
linkings, there obviously exist linkings consisting of a maximum number of disjoint
paths. We call such linkings maximum (size) linkings.

We call a simple path a U -rooted path if the path has its begin vertex in U . We
call a number of mutually disjoint U -rooted paths a U -rooted path family.

We call a closed and simple path a cycle, i.e., a cycle is a path of the form
(w0, w1), (w1, w2), . . . , (wt−1, w0), consisting of distinct vertices w0, w1, . . . , wt−1. We
call two cycles disjoint if they consist of disjoint sets of vertices. We say that l cycles
are disjoint if they are mutually disjoint. We call such a set of l disjoint cycles a cycle
family of size l.

We say that the union of a linking, a U -rooted path family and a cycle family is
disjoint if they mutually have no vertices in common.

3.2. Separators, essential vertices, and subgraphs. Given the graph G =
(V,E) we call a set of vertices S ⊆ V a separator between the sets U and Y if every
path from U to Y contains at least one vertex in S. The number of vertices in a
separator is called the size of the separator. Since there are only a finite number of
separators between U and Y , there clearly exist such separators having the smallest
size. We call such separators minimum (size) separators between U and Y . We denote
the family of all minimum separators between U and Y by S.

The following theorem is now well known (see [5]).
Theorem 3.1 (Menger). The size of a maximum linking from U to Y is equal

to the size of a minimum separator between U and Y .
Next we assume that the maximum size of a linking from U to Y is equal to k

and we concentrate on linkings of size k from U to Y . We define the set of so-called
essential vertices as follows.

Definition 3.2. Vess = {v ∈ V | v is included in every linking of size k from U
to Y }.

We have the following property which is proved in the report version of this paper
[15].

Proposition 3.3. Vess = ∪{S|S ∈ S}.
Thus, Vess consists of all vertices that are present in minimum size separators

between U and Y . The following observations are immediate.
Corollary 3.4.
• S ⊆ Vess for all S ∈ S,
• Vess is a separator between U and Y .

We now introduce subgraphs of the original graph G. However, before doing this
we observe that input vertices (vertices in U) can be seen as vertices from which only
edges are coming out and to which no edges are going into. Similarly, output vertices
(vertices in Y ) can be seen as vertices from which no edges are coming out and to
which only edges are going into.

Introducing a class of subgraphs we occasionally want to change the role of ver-
tices. For instance, we may want to think of a state vertex x ∈ X as an input vertex.
To do so, we simply ignore the edges that are going into x and concentrate on the
edges that are coming out of x. Similarly, if we want to think of x as an output vertex,
we simply ignore the edges that are coming out of x and concentrate on the edges
that are going into x. In the same manner we can think of an output vertex y ∈ Y as
an input vertex by ignoring the edges that are going into y, yielding a vertex y that
is isolated (to which no edges are going into or from which no edges are coming out).
Similarly, an input vertex u ∈ U can be thought of as an output vertex by ignoring
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the edges that are coming out of u, yielding a vertex u that is isolated. We discuss
these isolated vertices in some more detail later.

Now we let W and W̃ be two nonempty subsets of the vertex set V and we
concentrate on all so-called IO-paths in G from W to W̃ . Here, an IO-path from W to
W̃ is a path from W to W̃ where we think of the vertices in W as input vertices (only
outgoing edges) and of the vertices in W̃ as output vertices (only incoming edges).
Hence, we have the following definition.

Definition 3.5. An IO-path in G from W to W̃ is a path from W to W̃ that only
has one vertex in W (the begin vertex) and only one vertex in W̃ (the end vertex).

Given the sets W and W̃ we collect the vertices on all IO-paths from W to W̃
in the set V ′ and we collect all the edges in E between vertices in V ′ in the set E′.
The combination of V ′ and E′ then defines the subgraph G′, i.e., G′ = (V ′, E′). To
indicate that the subgraph G′ is obtained by concentrating on all IO-paths in G from
W to W̃ we write G′ = H(G;W, W̃ ). We note that we do not require that the sets W
and W̃ have an empty intersection. If v ∈ W ∩ W̃ , then the vertex v is at the same
time seen as an input vertex and an output vertex. As we explained above, all the
edges that are coming out of v and all the edges that are going into v, respectively,
are then ignored in G′. Hence, the vertex v in G′ is an isolated vertex.

Given two pairs of subsets (W1, W̃1) and (W2, W̃2) in V , we can compare (partially
order) the associated subgraphs Gi = H(G;Wi, W̃i), i = 1, 2, in the following way.

Definition 3.6. Given two pairs of subsets (W1, W̃1) and (W2, W̃2) in V, defining
two subgraphs Gi = H(G;Wi, W̃i), i = 1, 2, of the graph G. Then G1 � G2 if any
IO-path from W2 to W̃2 contains a subpath that is an IO-path from W1 to W̃1.

Put differently, G1 � G2 if and only if any IO-path from W1 to W̃1 can be
extended (in both directions if necessary) to an IO-path from W2 to W̃2. With this
ordering of subgraphs we have the following important result. For a proof we refer to
[15].

Theorem 3.7. There exist two uniquely determined minimum separators between
U and Y , denoted as S∗ and S∗, such that

• H(G;U, S∗) � H(G;U, S) for all S ∈ S,
• H(G;S∗, Y ) � H(G;S, Y ) for all S ∈ S.

To give some intuition for the minimum separators S∗ and S∗, we consider a
simple path P from u ∈ U to y ∈ Y and a minimum separator S ∈ S. Clearly, the
path must contain a vertex in S, say, s. Next we think of the first part of the path
from u to s as an IO-path in H(G;U, S). According to the above theorem there is a
begin part of this IO-path that can be seen as an IO-path in H(G;U, S∗), say, from u
to s∗ ∈ S∗. As S∗ is the “smallest” with respect to the ordering � introduced above,
the previous means that when following any path from U to Y the first vertex in a
minimum separator must be a vertex in S∗. Similarly, the last vertex on any path P
from U to Y in a minimum separator must be a vertex in S∗.

As S∗ ∈ S and Vess = ∪{S|S ∈ S} it follows that S∗ ⊆ Vess. It also follows that
any path from U to Vess has to end in some S ∈ S and has to pass through S∗. Thus,
any IO-path from U to Vess is in fact an IO-path from U to S∗. The latter implies
the following corollary.

Corollary 3.8.

• H(G;U, Vess) = H(G;U, S∗),
• H(G;Vess, Y ) = H(G;S∗, Y ).

Hence, we can compute S∗ by considering the set of output vertices of the sub-
graph H(G;U, Vess), where vertices of Vess in U are also considered as output vertices
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for the moment. Similarly, we can compute S∗ by considering the set of input ver-
tices of the subgraph H(G;Vess, Y ). The subset Vess can be computed beforehand
by applying algorithms based on the computation of the maximum flow through an
associated network.

4. Simplifying assumptions and graph decomposition.

4.1. Simplifying assumptions and basic result. We consider a structured
system of the type (1) with the graph G = (V,E) with V = U ∪X∪Y . In the context
of this paper we can make the following assumptions on the graph G without harming
the generality. We recall that U , X, and Y denote the set of input, state, and output
vertices, respectively.

Assumption 4.1.
• Every vertex in U is the begin vertex of an edge that ends in a vertex in X∪Y ,
• Every vertex in Y is the end vertex of an edge that begins in a vertex in U∪X,
• Every vertex in X is contained in a path (not necessarily simple) from U to
Y .

We can motivate the assumptions as follows. Following the definition of the graph
we see that there is no edge from input vertex uj to a state or output vertex if and

only if the jth column of the compound matrix (
B
D

) consists of fixed zeros only. In case

of such a zero column the jth input has no effect at all on the system and therefore
can be ignored without loss of generality.

Similarly, we see that there is no edge that ends in the output vertex yi and
that starts in a state or input vertex if and only if the ith row of the compound
matrix

(
C D

)
consists of only zeros. In case of such a zero row the ith output

has no information at all on the system and therefore can be ignored without loss of
generality. This explains the two first assumptions.

Now we come to the third assumption. The next proposition is well known (see
[2], [4], [9]).

Proposition 4.2. Every state vertex x ∈ X is the end vertex of some U -rooted
path if and only if the pair (A,B) is not reducible, where we say that the pair (A,B)
is reducible if there is a permutation matrix Q such that

QAQ−1 =

(
A11 0
A21 A22

)
, QB =

(
0
B2

)
,

with A11, A22, and B2 are matrices of dimensions n1 × n1, n2 × n2, and n2 × m,
respectively, with n1 + n2 = n and n1 > 0.

Proposition 4.2 states that if there is a state vertex x ∈ X that is not the end
vertex of a U -rooted path, there is a permutation matrix Q such that the system
pencil P (s) transforms into A11 − sIn1 0 0

A21 A22 − sIn2
B2

C1 C2 D

 ,

where CQ−1 = (C1 C2). From the latter we immediately see that every eigenvalue
of A11 is an invariant zero of the original P (s). This means that the generic number
of invariant zeros of P (s) is equal to n1 plus the generic number of invariant zeros of(

A22 − sIn2
B2

C2 D

)
.
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Therefore, as far as the generic number of invariant zeros of P (s) is concerned we
may assume without loss of generality that we have split off the “reducible part” and
that we may concentrate on the “nonreducible remainder.” Inspired by Proposition
4.2 and the above decomposition this means that we just may concentrate on those
structured subsystems of which all state vertices are end vertices of U -rooted paths.

Similarly, if there are state vertices that are not begin vertices of paths ending in
Y , we can reorder the state vertices in the graph and split off the vertices that are not
begin vertices of paths ending in Y . Similarly as before with n1, only the number of
those vertices is relevant for the generic number of invariant zeros. Once this number
is known the associated vertices can be ignored. We therefore may concentrate on
those structured subsystems of which all state vertices are begin vertices of paths
ending in Y .

Thus, we can say that without loss of generality we may focus on graphs of which
the state vertices are end vertices of paths beginning in U as well as begin vertices of
paths ending in Y . Put differently, we may focus on those graphs of which the state
vertices are contained in a path from U to Y , which is our third assumption.

To conclude this subsection we recall a well known result (see [13] for a similar
result for systems without D matrix). The results relates the g-n-rank of the system
pencil with the existence of a maximum size linking from U to Y . See also [15] for a
proof.

Theorem 4.3. Let P (s) be the system pencil of the structured system (1). Then
the n-rank of P (s) is generically equal to n plus the maximum size of a linking from
U to Y .

4.2. Separator-based decomposition. In this subsection we present a decom-
position of the graph G = (V,E) based on a minimum separator between U and Y .
We assume that the maximum size of a linking from U to Y is equal to k. Further, we
let S be a minimum separator between U and Y . According to the theorem of Menger
we know that the set S has to consist of k vertices. Finally, we assume Assumption
4.1 to be valid.

First we consider the subgraph H(G;U, S) of the graph G. As we want to think
of the vertices in S as new output vertices, the vertices in U ∩ S have to play a
double role, i.e., at the same time they have be both input and output vertices. These
vertices then have an unclear system theoretic interpretation and have to be treated
specially. We do this by first considering only the IO-paths from U to S that have
positive length. In this way we first ignore the vertices in U ∩ S.

We collect all the vertices on the positive length IO-paths from U to S in the set
Vα. To distinguish the various vertices in Vα we adopt the following general notation:
if K,L are sets then K\L denotes the set of elements in K that are not in L, i.e., K\L
= {v ∈ K|v 6∈ L}. With this notation we now define the next new input, output, and
state vertex sets

Uα = Vα ∩ U, Yα = Vα ∩ S, Xα = Vα\(Uα ∪ Yα).

Due to Assumption 4.1 every vertex in U is the begin vertex of a path from U
to Y . Hence, we have that every vertex in U is the begin vertex of an IO-path from
U to S. Moreover, since we exclude IO-paths of zero length, it follows that Uα =
U\S. Furthermore, since S is a separator of minimum size, every vertex of S is the
end vertex of at least one IO-path from U to S. Concentrating on positive length
IO-paths only we obtain that Yα = S\U = S ∩ (X ∪ Y ). Therefore

Uα = U\S, Yα = S\U = S ∩ (X ∪ Y ), Xα = Vα\(Uα ∪ Yα).
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By construction Xα ∩ Uα = ∅ and Xα ∩ Yα = ∅. From the above it follows directly
that also Uα ∩Yα = ∅. Hence, the collection {Uα, Yα, Xα} forms a partitioning of Vα,
meaning that the union of the subsets in the collection is Vα and that the intersection
of any two subsets in the collection is empty.

In the above we thought of the vertices in S as new output vertices. However, we
can also think of these vertices as new input vertices. Then the vertices in S ∩Y have
to be treated in a special way. In view of the above we collect all vertices on positive
length IO-paths from S to Y into the set Vβ . Then we can define new output, input,
and state vertex sets as follows:

Yβ = Vβ ∩ Y, Uβ = Vβ ∩ S, Xβ = Vβ\(Uβ ∪ Yβ).

Due to Assumption 4.1 every vertex in Y is the end vertex of a path from U to
Y . Similarly as above it follows that

Yβ = Y \S, Uβ = S\Y = S ∩ (X ∪ U), Xβ = Vβ\(Uβ ∪ Yβ).

The collection {Uβ , Yβ , Xβ} forms a partitioning of Vβ .
We now consider both Vα and Vβ simultaneously. Hence, we have the graph G =

(V,E) with V = U ∪X ∪ Y and we consider the subgraphs Gα = (Vα, Eα) and Gβ
= (Vβ , Eβ), where Vα and Vβ are defined as above and the edge sets Eα and Eβ are
obtained by restricting the edge set E to Vα and Vβ , respectively.

It easily follows that U ⊆ Uα ∪ Uβ and Y ⊆ Yα ∪ Yβ . We next observe that the
intersection of Vα and Vβ must be contained in S, i.e., Vα ∩ Vβ ⊆ S. Indeed, suppose
that v ∈ Vα ∩ Vβ , but that v 6∈ S. Because v ∈ Vα, the vertex v is contained in an
IO-path from U to S. Since v 6∈ S the part from U to v of such an IO-path does not
contain any vertex in S. Similarly, since v ∈ Vβ , there is a part of an IO-path from S
to Y forming a path from v to Y that does not contain any vertex in S. Combining
these two subpaths results in a path from U to Y along v that does not contain any
vertex in S. However, this is in contradiction with the fact that S is a separator
between U and Y and, consequently, must contain at least one vertex of any path
from U to Y . Thus, we have proved that

Vα ∩ Vβ ⊆ S.
Intersecting both sides with Vα∩Vβ we obtain that Vα∩Vβ = S∩(Vα∩Vβ) = (S∩Vα)
∩ (S ∩ Vβ) = Yα ∩ Uβ . This implies that Vα ∩ Vβ = (S\U) ∩ (S\Y ) = S\(U ∪ Y ) =
S ∩X.

To come to a complete partitioning of the vertex set V we define

Xδ = V \(Vα ∪ Vβ).

The notation suggests that Xδ ⊆X. As U ⊆ Uα∪Uβ and Y ⊆ Yα∪Yβ it is obvious that
this is indeed true. From above it now immediately follows that the next collection
of subsets forms a partitioning of V

{Xα, Xβ , Xδ, Uα, Yβ , S ∩X,S ∩ U, S ∩ Y }.
Indeed, by construction {Vα∪Vβ , Xδ} is a partitioning of V . Observe further that

Yα = S\U = (S ∩X) ∪ (S ∩ Y ) and Uβ = S\Y = (S ∩X) ∪ (S ∩ U), where clearly
{S∩X,S∩Y } is a partitioning of Yα and {S∩X,S∩U} is a partitioning of Uβ . This
implies that {Xα, Uα, S ∩X,S ∩ Y } is a partitioning of Vα, {Xβ , Yβ , S ∩X,S ∩U} is
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a partitioning of Vβ , and because Vα ∩ Vβ = S ∩X that {Xα, Xβ , Uα, Yβ , S ∩X,S ∩
U, S ∩ Y } is a partitioning of Vα ∪ Vβ .

Moreover, it is easy to see that the collection {Xα, Xβ , Xδ, Uα, Uβ} is a partition-
ing of X ∪ U and {Xα, Xβ , Xδ, Yα, Yβ} is a partitioning of X ∪ Y .

4.3. Properties of separator-based decomposition. Given the above par-
titioning of V into the subsets {Xα, Xβ , Xδ, Uα, Yβ , S ∩X, S ∩ U , S ∩ Y } we can
prove the following result of which a proof can be found in the appendix.

Proposition 4.4. Let S be a minimum separator between U and Y and let V =
U ∪X ∪ Y be partitioned as above. Then there are no edges

• from Xα ∪ Uα to Xβ ∪ Yβ ,
• from Xα ∪ Uα to Xδ,
• from Xδ to Xβ ∪ Yβ .

The partitioning of the vertex sets X ∪U and X ∪Y induces a partitioning of the
system matrix P (s). To see this, we first consider the matrix P (s) for s = 0,(

A B
C D

)
,

and think of it to act on the vector (
x
u

) to yield the vector (
ẋ
y

). Next, we reorder the

components of these vectors in accordance to the partitionings {Xα, Uα, Xδ, Xβ ,Uβ }
and {Xα, Yα, Xδ, Xβ , Yβ}, respectively, to obtain

xα
uα
xδ
xβ
uβ

 and


ẋα
yα
ẋδ
ẋβ
yβ

 , respectively.

For instance, the vector xα contains all components of the vector x in Xα. Similarly
for the other subvectors. Since there is no edge from Xα ∪ Uα to Xδ ∪Xβ ∪ Yβ and
no edge from Xα ∪Uα ∪Xδ to Xβ ∪ Yβ , there are row and column permutations that

transform the matrix (
A B
C D

) into the upper block triangular matrix


Aα Bα ∗ ∗ ∗
Cα Dα ∗ ∗ ∗
0 0 Aδ ∗ ∗
0 0 0 Aβ Bβ
0 0 0 Cβ Dβ

 ,

where all matrices have suitable dimensions and with the ∗’s denoting matrices that
are not relevant in the present context.

For the matrix P (s), the above triangular matrix means that using a suitable row
and column permutation P (s) can be transformed into

Aα − sInα Bα ∗ ∗ ∗
Cα Dα ∗ ∗ ∗
0 0 Aδ − sInδ ∗ ∗
0 0 0 Aβ − sInβ Bβ
0 0 0 Cβ Dβ

 ,
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where all matrices are as before and ni denotes the number of vertices inXi, i = α, δ, β.

Given the above block triangular form of the matrix P (s) we can prove the fol-
lowing result. For a proof, we refer to the appendix.

Proposition 4.5. Let the system pencil P (s) be transformed into the upper block
triangular form as given above. Then the following hold:

• The subsystem pencil

Pα(s) =

(
Aα − sInα Bα

Cα Dα

)
generically has full row rank.
• The subsystem pencil Aδ − sInδ ∗ ∗

0 Aβ − sInβ Bβ
0 Cβ Dβ


generically has full column rank.
• If in the above S = S∗, the subsystem pencil Pα(s) generically has full row

rank, even after deleting an arbitrary column.

5. Main results. In this section we present the main results of this paper.

5.1. Fundamental results for special cases. In this subsection we first con-
sider a square structured system of type (1) that is generically invertible. The follow-
ing theorem indicates how the number of invariant zeros can be computed.

Theorem 5.1. Assume that m = p, and let P (s) be generically invertible. Then
the degree of the determinant of P (s) is generically equal to n+p minus the minimum
number of edges in a maximum size (size p) linking from U to Y .

A proof of Theorem 5.1 is given in the appendix where it is related to one of the
results in [14].

Next we assume that m > p and that P (s) generically has full row rank, even after
the deletion of an arbitrary column. Then we have the following important result.

Theorem 5.2. Let P (s) generically have full row n-rank, even after the deletion
of an arbitrary column. Then the greatest common divisor of all the (n + p)th order
minors of P (s) generically is a monomial in s with a degree equal to n+ p minus the
maximum number of edges in the disjoint union of a

• linking of size p from U to Y ,
• a U -rooted path family,
• a cycle family in X.

A sketch of a proof of Theorem 5.2 will be given in the appendix. A full proof
can be found in [15]. Theorem 5.2 is an extension of one of the main results in [3].
Theorems 5.1 and 5.2 will be illustrated in the next section.

5.2. Partitioning of a structured system. In this subsection we consider a
structured system of the type (1) and we assume that Assumption 4.1 is satisfied. The
next result states how in general a structured system can be seen as the combination
of three smaller subsystems each having properties that are useful for computing the
generic number of invariant zeros.

Theorem 5.3. There exist row and column permutations such that the system
pencil P (s) of a structured system (1) with matrices A, B, C, and D can be trans-
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formed into the block triangular form,


A1 − sIn1 B1 ∗ ∗ ∗ ∗

C1 D1 ∗ ∗ ∗ ∗
0 0 A2 − sIn2

B2 ∗ ∗
0 0 C2 D2 ∗ ∗
0 0 0 0 A3 − sIn3

B3

0 0 0 0 C3 D3

 ,

with Ai, Bi, Ci, and Di structured matrices of dimensions ni × ni, ni ×mi, pi × ni,
and pi ×mi, respectively, i = 1, 2, 3, such that, if present

• (A1−sIn1
C1

B1

D1
) generically has full row n-rank, even after the deletion of an

arbitrary column;
• (A2−sIn2

C2

B2

D2
) generically is invertible (as a rational matrix);

• (A3−sIn3
C3

B3

D3
) generically has full column n-rank, even after the deletion of

an arbitrary row.

In the above block triangular form the ∗’s denote matrices (matrix pencils) that
are not relevant in the context of this paper. A sketch of a proof of Theorem 5.3 is
given in the appendix. It is based on Propositions 4.4 and 4.5, combined with the
minimum separators S∗ and S∗.

5.3. Algorithm. In this subsection we present an algorithm to compute the
generic number of invariant zeros of a structured system. The algorithm consists of
a first part in which the graph of the system is split into smaller subgraphs for which
the generic number of invariant zeros can be computed by Theorems 5.1 and 5.2. This
is done in the second part of the algorithm. The results are then taken together and
yield the generic number of invariant zeros of the original system.

Algorithm 5.4.

• Make a directed graph of the structured system as explained in subsection 3.1.
• Check if the assumptions in subsection 4.1 are valid. If not, do preliminary

computations as explained in subsection 4.1 that result in a smaller structured
system for which the assumptions in subsection 4.1 are valid.

• Using, for instance, Menger’s theorem determine the set of essential vertices
Vess and the sets S∗ and S∗ using the subgraphs H(G;U, Vess) and H(G;Vess,
Y ), respectively.
• Construct the subgraphs G1 and G3 by considering all IO-paths with positive

length from U to S∗ and from S∗ to Y , respectively. Let the subgraph G2 be
determined by considering the vertices in S∗ as input vertices, the vertices in
S∗ as output vertices, and all the remaining vertices of V that are not present
in G1 or G3.

• Using Theorems 5.1, 5.2, and the dual of Theorem 5.2 compute the generic
number of invariant zeros of the subsystems corresponding to the obtained
partitioning.
• Add the obtained generic numbers to get the generic number of invariant zeros

of the original structured system.
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Fig. 6.1. The graph G with the vertices in Vess already encircled.

6. Example. We consider the structured system of type (1) as depicted in Figure
6.1. We can parametrize the matrices of the structured system by a parameter λ ∈ R27

as follows.

Aλ =



λ1 0 λ3 0 0 λ4 0 0
λ5 λ7 0 0 0 0 0 0
0 λ10 λ9 0 0 0 λ11 0
0 0 λ12 λ15 0 λ14 0 0
0 λ16 0 0 0 0 0 λ18

0 0 0 λ19 0 0 λ20 0
0 0 0 0 λ23 0 0 0
0 0 0 0 λ24 0 0 0


, Bλ =



λ2 0 0
0 λ6 λ8

0 0 0
0 0 λ13

0 0 λ17

0 0 0
0 0 0
0 0 0


,

Cλ =

 0 0 0 λ22 0 λ21 0 0
0 0 0 0 λ25 0 0 0
0 0 0 0 λ28 0 λ26 λ27

 , Dλ =

 0 0 0
0 0 0
0 0 0

 .

By Figure 6.1 it can be easily verified that Assumption 4.1 is valid. Hence, we are in
the position to directly apply our main result and we do not need to perform some
preliminary computations. From Figure 6.1 we can conclude that the maximum size
of a linking from U to Y is 2. To see this, we note that the following two paths
from U to Y are disjoint: (u2, x2),(x2, x5),(x5, y2) and (u3, x4),(x4, y1). Furthermore,
we note that paths from u1 to Y and paths from u2 to Y always contain x2, and,
therefore, never can be disjoint. As there are only three input vertices it follows that
the maximum size of a linking from U to Y has to be 2.

Further, from the above two paths we know already that the vertices u1, x1, x3,
x6, x7, x8, and y3 are not contained in Vess. In fact, it is easy to see that Vess is given
by {u3, x2, x4, x5, y1}. In Figure 6.1 we have already encircled the vertices in Vess.

Next we concentrate on the subgraphs H(G;U, Vess) = H(G;U, S∗) and
H(G;Vess , Y ) = H(G;S∗, Y ); see Corollary 3.8. From Figure 6.1 it is easy to see
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that S∗ = {u3, x2} and S∗ = {x5, y1}, respectively. In Figures 6.2a and 6.2b we have
depicted the subgraphs G1 and G3, respectively. We have obtained the subgraph G1

by concentrating on all IO-paths from U to Vess (or S∗) that have a positive length or,
alternatively, by just deleting from H(G;U, Vess) all isolated vertices. The subgraph
G3 is obtained in a similar way from H(G;Vess, Y ). Finally, we collect all vertices on
IO-paths in G from S∗ to S∗ in the subgraph G2. We have depicted G2 in Figure 6.3.

As a consequence of the above we can conclude that with a suitable row and
column permutation the system matrix of system (1) can be transformed into the
next form



−s+ λ1 λ2 0 | λ3 0 λ4 0 0 | 0 0 0
λ5 0 λ6 | 0 0 0 −s+ λ7 λ8 | 0 0 0
− − − + − − − − − + − − −
0 0 0 | −s+ λ9 0 0 λ10 0 | λ11 0 0
0 0 0 | λ12 −s+ λ15 λ14 0 λ13 | 0 0 0
0 0 0 | 0 λ19 −s 0 0 | λ20 0 0
0 0 0 | 0 0 0 λ16 λ17 | 0 λ18 −s
0 0 0 | 0 λ22 λ21 0 0 | 0 0 0
− − − + − − − − − + − − −
0 0 0 | 0 0 0 0 0 | −s 0 λ23

0 0 0 | 0 0 0 0 0 | 0 −s λ24

0 0 0 | 0 0 0 0 0 | 0 0 λ25

0 0 0 | 0 0 0 0 0 | λ26 λ27 λ28



.

In this block triangular form we can distinguish the three subsystems correspond-
ing to the three subgraphs G1, G2, and G3, respectively. These subgraphs G1, G2,
and G3 correspond to the following system pencils:

P1(s) =

(
A1 − sIn1 B1

C1 D1

)
=

( −s+ λ1 λ2 0
λ5 0 λ6

)

with n1 = 1,m1 = 2, p1 = 1,

P2(s) =

(
A2 − sIn2

B2

C2 D2

)
=


−s+ λ9 0 0 λ10 0
λ12 −s+ λ15 λ14 0 λ13

0 λ19 −s 0 0
0 0 0 λ16 λ17

0 λ22 λ21 0 0
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Fig. 6.3. G2

with n2 = 3,m2 = 2, p2 = 2, and

P3(s) =

(
A3 − sIn3 B3

C3 D3

)
=


−s 0 λ23

0 −s λ24

0 0 λ25

λ26 λ27 λ28


with n3 = 2,m3 = 1, p3 = 2, respectively.

Applying Theorem 5.1 on graph G2 it follows that the generic number of invariant
zeros is equal to 2, namely, n2 + p2 minus the minimum number of edges in a size p2

linking from U2 (= {x2, u3}) to Y2 (= {x5, y1}) in G2. Since n2 = 3, p2 = 2 and any
size 2 linking from U2 to Y2 in G2 contains at least 3 edges, the generic number of
invariant zeros of the subsystem corresponding to the graph G2 equals 3 + 2− 3 = 2.

For the graph G1, the application of Theorem 5.2 yields that the generic number
of invariant zeros is equal to 0, being n1 + p1 minus the maximum number of edges
in the disjoint union of a linking of size p1 from U1 (= {u1, u2}) to Y1 (= {x2}), a
U1-rooted path family, and a cycle family in X1 (= {x1}). Here n1 = 1, p1 = 1,
and it is easy to see that the number of edges in a disjoint union just described is at
most 2. For instance, the disjoint union of the size 1 linking from U1 to Y1 given by
the edge (u2, x2) and the U1-rooted path family given by the edge (u1, x1) contains
2 edges. The same applies to all other such unions. Using Theorem 5.2 it, therefore,
follows that the generic number of invariant zeros of the subsystem corresponding to
the graph G1 equals 1 + 1− 2 = 0.

For the graph G3, the application of Theorem 5.2 in transposed form yields that
the generic number of invariant zeros is equal to 3− 2 = 1. This is left to the reader.

Combining the above we can now conclude that the generic number of invariant
zeros of the original structured system (1) is 0 + 2 + 1 = 3.

7. Conclusions. In this paper we studied structured systems and we presented
a graph theoretical method to compute the generic number of invariant zeros of such
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systems. The method uses elementary and efficient network algorithms. We think that
the results in the paper are of an elementary and basic nature, and we believe that
they are important in the many areas of systems theory that involve pole placement
issues when only the zero/nonzero structure is known.

Appendix. In this appendix we give the proofs of some of the results of this
paper.

Proof of Proposition 4.4. To prove the first part of the proposition, we take
v ∈ Xα ∪ Uα and w ∈ Xβ ∪ Yβ and we assume that there is an edge from v to w,
i.e., (v, w) ∈ E. From the definition of Xα and Uα it is clear that v 6∈ S. Similarly, it
follows from the definitions of Xβ and Yβ that w 6∈ S. Since v ∈ Vα and v 6∈ S, there
is an IO-path from U to v that does not contain any vertex in S. Similarly, because
w ∈ Vβ and w 6∈ S there is an IO-path from w to Y that does not contain any vertex
in S. Connecting these two paths by the edge between v and w, i.e., by (v, w), we
obtain a path from U to Y that does not contain any vertex in S. However, this is in
contradiction with the fact that S is a separator between U and Y . Thus, we must
conclude that there does not exists an edge from v to w, implying that there can not
be an edge from Xα ∪ Uα to Xβ ∪ Yβ .

To prove the second part of the proposition, we again take a vertex v ∈ Xα ∪Uα.
But we now consider a vertex w ∈ Xδ and we assume that there is an edge from v
to w, i.e., (v, w) ∈ E. From the proof of the first part of the proposition we know
that there exists a path, say, P1, from U to v that does not contain any vertex in S.
Since we assume that every state vertex is contained in a path from U to Y , there is
a simple path from U to Y that contains the vertex w ∈ Xδ. We denote this path by
P and we denote the part of P from w to Y by P2. Now there are two possibilities.

• P2 does not contain any vertex in S,
• P2 does contain a vertex in S.

In the first case the combination of the path P1, the edge (v, w), and the path P2 yields
a path from U to Y that does not contain any vertex in S. This is in contradiction
with the fact that S is a separator between U and Y . In the second case denote
the first vertex on P2 starting from w that is contained in S by w′ and denote the
part of P2 from w to w′ by P ′2. Recall that w ∈ Xδ. Now consider the combination
of the path P1, the edge (v, w) and the path P ′2. This combination establishes an
IO-path from U to S. Indeed, only the end vertex w′ is in S. Since w is contained
in the combined path made up of the path P1, the edge (v, w) and the path P ′2 it
follows by construction that w ∈ Vα. This is not possible since Vα and Xδ have empty
intersection.

Since both cases are not possible, we must conclude that there does not exist an
edge from v to w, implying that there can not be an edge from Xα ∪ Uα to Xδ.

The third part of the proposition can be proved analogously to the second part.
This concludes the proof of Proposition 4.4.
Proof of Proposition 4.5. We recall that the number of vertices in a minimum

separator S is k. We denote kU , kX , and kY for the number of vertices in the sets
S ∩ U , S ∩X and S ∩ Y , respectively, so that kU + kX + kY = k. The number of
vertices in Vα is given by the sum of the number of vertices in Xα, Uα = U\S, and
Yα = S\U . The number of vertices in Vα is therefore given by the expression nα +
(m− kU ) + (k − kU ).

We observe that a linking of size k from U to Y in G induces a linking of size
(k−kU ) from Uα to Yα. Indeed, restrict the paths of the linking to the subpaths that
begin in U and end in S, and of these subpaths take the (k− kU ) subpaths that have
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a positive length. According to Theorem 4.3 it follows now that the generic rank of
the system pencil (

Aα − sInα Bα
Cα Dα

)
is equal to nα + (k−kU ), implying that the pencil generically has full row rank. This
completes the proof of the first statement of Proposition 4.5.

In the same way we can prove that the pencil(
Aβ − sInβ Bβ

Cβ Dβ

)
generically has full column rank equal to nβ + (k− kY ). As (Aδ − sInδ) (generically)
has full rank the second statement of Proposition 4.5 easily follows.

If S = S∗, we have that H(G;U, S) = H(G;U, Vess); see Corollary 3.8. Concen-
trating on H(G;U, Vess) we have that in this subgraph there is a linking of size k
from U to Vess. We recall that Gα = (Vα, Eα) can be obtained from H(G;U, Vess)
by just ignoring the isolated vertices in U ∩ Vess. As by definition vertices in Xα and
Uα are therefore not contained in Vess, they are not essential and each of them can
be deleted without decreasing the maximum size of a linking from U to Vess. Also
in Gα the deletion of a single vertex from Uα or Xα does not decrease the maximum
size of a linking from Uα to Yα. We note that instead of the deletion of vertices and
incident edges we can also delete the outgoing edges from these vertices alone.

Deletion of vertex ui in Uα corresponds to the deletion of the column nα + i from
Pα(s). Deletion of the outgoing edges of vertex xi corresponds to the deletion of the
column i from Pα(s). As in both cases a linking of size (k − kU ) from Uα to Yα still
is possible, it follows that the generic rank of Pα(s) is nα + (k − kU ) even after the
deletion of an arbitrary column from Pα(s). This completes the proof of the third
statement of Proposition 4.5.

Proof of Theorem 5.1. In the case of the matrix D = 0, i.e, D consists of fixed
zeros only, Theorem 5.1 is formulated and proved in [14] as Theorem 6.2. For general
D a proof of Theorem 5.1 can be given by a straightforward modification of the proof
in [14]. This is left for the reader. To conclude this proof we note that in Theorem 5.1
the number of edges is counted, while in Theorem 6.2 in [14] state vertices are counted.
This explains the difference in formulation of Theorem 5.1 here and Theorem 6.2 in
[14]. This concludes the proof of Theorem 5.1.

Sketch of proof of Theorem 5.2. A full proof can be found in [15]. Here we have
divided the proof into a number of steps.

1. Assuming that g-n-rank P (s) = n+ p, we first indicate that the rank of P (s)
for s = 0 generically is equal n+ p if and only if there is a disjoint union of

• a linking of size p from U to Y,
• a U -rooted path family,
• a cycle family in X

that contains n+ p (the largest possible number) edges.
2. Next we prove that under the conditions of Theorem 5.2 the greatest common

divisor of all the (n + p)th order minors of P (s) generically is a monomial in s (a
single power in s). See also [5], Lemma 14.5, or Proposition A.1 in [17].

3. Then we may follow the line of thought in [3] and we define

µ = min

{
s|∃i1, i2, . . . , is :

(
A B
C D

)(i1,i2,... ,is)

(i1,i2,... ,is)

generically has full row rank

}
,
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where we assume that 1 ≤ i1 < i2 < · · · < is ≤ n, and where we have written(
A B
C D

)(i1,i2,... ,is)

(i1,i2,... ,is)

for the matrix obtained from (
A B
C D

) by deleting all rows and all columns with

index in {i1, i2, . . . , is}. We note that (
A B
C D

)
(i1,i2,... ,is)
(i1,i2,... ,is)

itself defines a system with

an n− s dimensional state. The input vector remains m dimensional and the output
vector p dimensional.

In the spirit of [3] we can prove that every (n+ p)th order minor of P (s) can be
divided by sµ. Furthermore, we can indicate that at least one (n+ p)th order minor
can be found by specifying the values of the nonzeros in P (s) that contains a term of
the form asµ with a 6= 0. The existence of such a minor can be proved in the same
way as a similar result is proved in [3].

Finally, combining Steps 2 and 3 we obtain that
• the greatest common divisor of all the (n + p)th order minors of P (s) is

generically a monomial in s;
• every (n + p)th order minor of P (s) can be divided by sµ, while there is an

(n+ p)th order minor of P (s) that can not be divided by sµ+1.
Hence, the greatest common divisor of all the (n + p)th order minors of P (s) is
generically of the form asµ with a 6= 0. Combining the definition of µ with Step 1,
we obtain that µ is the minimal number of vertices that have to be deleted from the
graph G such that in the remaining graph there exists a disjoint union of a linking
of size p from U to Y , a U -rooted path family, and a cycle family in X that contains
(n− µ) + p edges.

Instead of trying to take µ minimal we can try to take (n − µ) + p maximal.
Suppose that the maximal number of edges in a disjoint union as above is ρ. Then
ρ = (n − µ) + p or µ = (n + p) − ρ, and we can conclude that the greatest common
divisor of all the (n + p)th order minors of P (s) is generically a monomial with a
degree equal to (n+ p) minus the maximal number of edges in a disjoint union of

• a linking of size p from U to Y,
• a U -rooted path family,
• a cycle family in X,

which completes the proof of Theorem 5.2.
Proof of Theorem 5.3. Theorem 5.3 is in fact a consequence of the combination

of Propositions 4.4 and 4.5 and the sets S∗ and S∗. Below a sketch of the proof of
Theorem 5.3 is given.

First the decomposition of subsection 4.2 is considered for S = S∗. This decom-
position is based on H(G;U, Vess) and yields a subgraph G1 = (V1, E1) of G, where V1

denotes the set of all vertices contained in IO-paths from U to S∗ that have a positive
length. Note that we use the index 1 instead of the index α as in subsection 4.2. The
vertex set can be partitioned as V1 = U1 ∪X1 ∪ Y1, where

U1 = U\S∗, Y1 = S∗\U, X1 = V1\(U1 ∪ Y1).

In the spirit of sections 4.2 and 4.3 define V̄ as the set of all vertices contained in
IO-paths from S∗ to Y that have a positive length. (In terms of subsection 4.2 this
means that V̄ = Vβ .) Furthermore, we define

Ũ = S∗\Y, Ỹ = Y \S∗, X̃ = (V̄ \(Ũ ∪ Ỹ )) ∪ (V \(V1 ∪ V̄ )), Ṽ = Ũ ∪ X̃ ∪ Ỹ .
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Then according to the results of subsections 4.2 and 4.3 there are row and column
permutations such that the system pencil P (s) can be transformed into(

P1(s) ∗
0 P̃ (s)

)
,

with P1(s) a subsystem pencil of the form(
A1 − sIn1 B1

C1 D1

)
,

generically having full row rank, even after deleting an arbitrary column, and with
P̃ (s) a subsystem pencil of the form(

Ã− sIñ B̃

C̃ D̃

)
,

generically having full column rank.
In terms of the decomposition of subsection 4.2 with S = S∗, we have that P1(s)

in fact equals (
Aα − sInα Bα

Cα Dα

)
and that P̃ (s) equals  Aδ − sInδ ∗ ∗

0 Aβ − sInβ Bβ
0 Cβ Dβ

 .

Next we use the set S∗ to decompose the subsystem pencil P̃ (s). For instance,
it can be shown that S∗ ⊆ Ṽ ∪ S∗ and that S∗\(Y ∩ S∗) is the “largest” minimum
separator between Ũ and Ỹ in G̃ (see [15]). This implies that we can apply the
decomposition of section 4.2 in a dual way on P̃ (s). We then obtain row and column
permutations such that P̃ (s) is transformed into

A2 − sIn2
B2 ∗ ∗

C2 D2 ∗ ∗
0 0 A3 − sIn3 B3

0 0 C3 D3

 ,

with P2(s) a subsystem pencil of the form(
A2 − sIn2 B2

C2 D2

)
,

generically having full row rank and with P3(s) a subsystem pencil of the form

P3(s) =

(
A3 − sIn3

B3

C3 D3

)
,

generically having full column rank, even after deleting an arbitrary row. As P̃ (s)
generically has full column rank, it immediately follows that P2(s) is square and
generically invertible.

Combining the previous two decompositions we have shown that there are row
and column permutations such that the system pencil P (s) transforms into the block
triangular form described in Theorem 5.3.
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DESIGN OF HOMOGENEOUS TIME-VARYING STABILIZING
CONTROL LAWS FOR DRIFTLESS CONTROLLABLE SYSTEMS
VIA OSCILLATORY APPROXIMATION OF LIE BRACKETS IN

CLOSED LOOP∗
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Abstract. A constructive method for time-varying stabilization of smooth driftless controllable
systems is developed. It provides time-varying homogeneous feedback laws that are continuous and
smooth away from the origin. These feedbacks make the closed-loop system globally exponentially
asymptotically stable if the control system is homogeneous with respect to a family of dilations
and, using local homogeneous approximation of control systems, locally exponentially asymptotically
stable otherwise.

The method uses some known algorithms that construct oscillatory control inputs to approximate
motion in the direction of iterated Lie brackets that we adapt to the closed-loop context.

Key words. nonlinear control, stabilization, time-varying stabilization, controllability, Lie
brackets

AMS subject classifications. 93D15, 34C29, 93B52
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1. Introduction.

1.1. Related work and contribution. Stabilization by continuous time-vary-
ing feedback laws of nonlinear systems that cannot be stabilized by time-invariant
continuous feedback laws has been an ongoing subject of research in the past few
years.

The fact that for many controllable systems no continuous stabilizing feedback
exists was first pointed out by Sussmann [23]. A simple necessary condition was given
by Brockett [1], since known as “Brockett’s condition.” It allows us to identify a wide
class of controllable systems for which no continuous stabilizing feedback exists; these
include most controllable driftless systems. More recently, Coron gave a stronger
necessary condition [2].

A possible way of stabilizing systems for which these necessary conditions are
violated is to use discontinuous (time-invariant) control laws. This has been explored
in the literature, but the present work does not go in this direction at all.

The possibility of stabilizing nonlinear controllable systems via continuous time-
varying feedback control laws was first noticed in the very detailed study of stabiliza-
tion of one-dimensional systems by Sontag and Sussmann [21]. More recently, smooth
stabilizing control laws for some nonholonomic mechanical systems were given by
Samson [18]; this was the starting point of a systematic study of time-varying stabi-
lization. Coron [3] proved that all controllable driftless systems may be stabilized by
continuous (and even smooth) time-varying feedback and that “most” controllable sys-
tems (even with drift) can also be stabilized by continuous time-varying feedback [4].
Pomet deals with a less general class of controllable driftless systems [15].
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From here on, only driftless systems are considered in this paper. After the
general existence result given in [3], studies on the subject have focused on methods to
construct continuous time-varying stabilizing feedback laws and on obtaining feedback
laws that provide sufficiently fast convergence.

As far as the constructiveness aspect is concerned, for simplicity let us divide
the construction methods into two kinds. The first kind of method applies to rather
large classes of controllable driftless systems, such as the work of Coron [3] (general
controllable driftless systems; the paper is not oriented toward construction of the
control, but a method can be extracted from the proofs), Pomet [15] (controllable
driftless systems for which the control Lie algebra is generated by a specific set of
vector fields), or of M’Closkey and Murray [12] (same conditions as in [15]). These
studies all share the following feature: they use the solution of a linear PDE, or the
expression of the flow of a vector field, to construct the control law. This solution, or
this flow, has to be calculated beforehand, either analytically or numerically, and this
introduces, especially when no analytical solution is available, a degree of complication
which may not be necessary. The second kind of method found in the literature
provides explicit expressions. Its drawback is that it applies only to specific subclasses
of driftless systems, such as models of mobile robots or systems in the “chain form”
or “power-form,” like the work of Samson [18], Teel, Murray, and Walsh [27], and
Sépulchre, Campion, and Vertz [20], among others.

Alternatively, a need to improve the speed of convergence came out of the slow
convergence associated with the smooth control laws that were first proposed. This
concern motivated several studies, starting with the work by M’Closkey and Murray
[11], yielding continuous control laws which are not smooth, or even Lipschitz every-
where, but are homogeneous with respect to some dilation, and thus exponentially
stabilizing, not in the standard sense but with respect to some homogeneous norm
(this notion was introduced by Kawski [7]). See, for instance, further work by the au-
thors of this paper [16, 14] or by M’Closkey and Murray [12], who have also proposed
recently a procedure that transforms a given smooth stabilizing control law into a
homogeneous one [13]. Except for this last reference, which requires that a smooth
stabilizing control law has been designed beforehand, the construction of homoge-
neous exponentially stabilizing control laws in the literature is restricted to specific
subclasses of driftless systems.

The design method described in the present paper has the advantage of being
totally explicit, in the sense that it requires only ordinary differentiation and lin-
ear algebraic operations, while it applies to general controllable systems and pro-
vides exponential stability. This method gives homogeneous feedbacks, which ensure
global stability if the control vector fields are homogeneous and local stability oth-
erwise. The fact that it relates controllability with the construction of a stabilizing
control law in a more direct way than previous designs also makes it conceptually
appealing, all the more so as it may be viewed as converting the open-loop control
techniques reported by Liu and Sussmann in [25] and Liu [9] into closed-loop tech-
niques.

However, the generality of the method also has a price. When applied to particular
systems for which explicit solutions have long been available, the present method often
yields solutions which are significantly more complicated. This comes partly from the
complexity of the approximation algorithm proposed in [25, 9], which we use. This is
also a consequence of the modifications that we have made to adapt this algorithm
to our feedback control objective.
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1.2. Outline of the method. Nonlinear controllability results were first de-
rived for driftless systems; see, for instance, the work by Lobry [10], where it is shown
that such systems are controllable if and only if any direction in the state space can be
obtained as a linear combination of iterated Lie brackets of the control vector fields,
at least in real-analytic cases. It was also shown very early on by Haynes and Hermes
[5] that, under this same condition, any curve in the state-space can be approached by
open-loop solutions of the controlled system. (Note that this property is not shared
by all controllable systems, but rather is specific to driftless systems.) In these stud-
ies the key element is that, in addition to the directions of motion corresponding to
the control vector fields, motion along other directions corresponding to iterated Lie
brackets is also possible by quickly switching motions along the original control vector
fields. Take, for example, a system with two controls

ẋ = u1 b1(x) + u2 b2(x)(1.1)

with state x in R5, and assume that at each point x the vectors

b1(x) , b2(x) , [b1, b2](x) , [b1, [b1, b2]](x) , [b2, [b1, b2]](x)(1.2)

are linearly independent, and thus span R5. The idea in [5] is the following: first, it is
clear that any (e.g., differentiable) parameterized curve t 7→ γ(t) is a possible solution
of the “extended” system with five controls:

ẋ = v1 b1(x) + v2 b2(x) + v3 [b1, b2](x)(1.3)

+ v4 [b1, [b1, b2]](x) + v5 [b2, [b1, b2]](x)

(simply decompose γ̇(t) on the basis (1.2) to obtain the controls). Then it is proved
in [5] that there exists a sequence of (oscillatory) controls u1(ε, t, v1, v2, v3, v4, v5) and
u2(ε, t, v1, v2, v3, v4, v5) such that the system (1.1) “converges to” the system (1.3)
when ε → 0 in the sense that the solutions of (1.1) with these controls uk converge
uniformly on finite time intervals to the solutions of (1.3). The proof in [5] does
not give a process to build these sequences of approximating sequence of oscillatory
control, and although the case of a simple bracket (approximating [b1, b2] by switching
between b1 and b2) is elementary and well known, the case above of brackets of order
3 is more complex. The more recent work by Liu [9] and Sussmann and Liu [25] gives
an explicit construction of the approximating sequence. The process of building this
sequence is amazingly intricate compared to the simplicity of the existence proof in
[5]. Of course, the controls uk are not defined for ε = 0, and both their frequency and
their amplitude tend to infinity when ε goes to zero.

Being aware of these results, and faced with the problem of proving that any
controllable driftless system may be stabilized by means of a periodic feedback, the
most natural idea is probably the following, which we illustrate for (1.1) (5 states, 2
controls):

(a) Stabilize the extended system (1.3) by a control law vi(x). This is very easy,
and ẋ may even be assigned to be any desired function, for instance, −x.

(b) Use the approximation results and build the controls uk(ε, t, v1(x), v2(x),
v3(x), v4(x), v5(x)), according to the process given in [25, 9] so that when ε
tends to zero, the system (1.1) controlled with these controls “tends to” the
extended system (1.3) controlled with the controls vi(x).
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(c) Since the limit system is asymptotically stable (for instance, ẋ = −x), and
asymptotic stability is somehow robust, the constructed control laws are, it
is to be hoped, stabilizing for ε nonzero but small enough. For instance, one
may take ‖x‖2 as a Lyapunov function for the limit system, its time-derivative
along the limit system is −2‖x‖2, and it is tempting to believe that its time-
derivative along the original system controlled by uk(ε, t, v1(x), v2(x), v3(x),
v4(x), v5(x)) is no larger than −‖x‖2 for ε small enough.

Unfortunately, these arguments, which would have been somewhat simpler than those
in [3], are not rigorous as they stand. The meaning of “tends to” in point (b) is very
imprecise. In [5], and in [25, 9], only uniform convergence of the trajectories on finite-
time intervals are considered. This is not adequate for asymptotic stabilization. The
Lyapunov function-based argument in point (c) does not work because, in general,
when ε tends to zero, the time derivative of a given function along the system (1.1)
in feedback with the controls uk from point (b) does not tend to the time-derivative
of this function along the “limit” system (1.3). In addition, the fact that feedback
controls are considered instead of open-loop controls complicates the proofs because
the controls depend on the state and therefore may have a very high derivative with
respect to time not only through the high frequencies and amplitudes built into the
approximation process but also through their dependence on the state, whose speed
is proportional to these high amplitudes.

However, we show in the present paper that the above sketch is basically correct,
provided that homogeneous controls associated with a homogeneous Lyapunov func-
tion are used and that the construction of the approximating sequence is modified to
take into account the closed-loop nature of the controls. An argument of the type
of point (c) is possible based on a notion of approximation that is not in terms of
uniform convergence of trajectories, but in terms of the differential operator defined
by derivation along the system.

This paper is organized as follows. After a brief recall of technical material in
section 2, we state in section 3 the control objective, make homogeneity assumptions,
and explain how they will yield local results for general controllable systems. The
design method is developed in section 4 through four steps: choice of the “useful”
Lie brackets, construction of the stabilizing controls for the extended system (system
(1.3) in the above example), construction of the “state dependent” amplitudes for
the feedback law, and construction of the oscillatory controls by the method exposed
in [9]; the material from these steps is then gathered to give the control law, and
the stabilization result is stated. We present in this section all that is needed for
the construction of the control law, but the proofs of some properties needed at each
steps, and of the theorem, are given separately in section 7. Section 6 is devoted to
a convergence result needed in the proof of the stability theorem; it is a translation
in terms of differential operators (instead of trajectories) of the averaging results
presented in [25, 9, 26] and in [8]. An illustrative example is given in section 5.

2. Background on homogeneous vector fields. For any λ > 0, the “dilation
operator” δλ associated with a “weight vector” r = (r1, . . . , rn) (ri > 0) is defined on
Rn by

δλ(x1, . . . , xn) = (λr1x1, . . . , λ
rnxn).

A function f ∈ C o(Rn;R) is said to be homogeneous of degree τ with respect to the
family of dilations (δλ) if

∀λ > 0, f(δλ(x)) = λτf(x) .
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A homogeneous norm is any proper continuous positive function that is homogeneous
of degree 1.

A continuous vector field X on Rn is said to be homogeneous of degree σ with
respect to the family of dilations (δλ) if one of the following equivalent properties is
satisfied:

(1) For any i = 1, . . . , n, its ith component, i.e., the function x 7→ Xi(x), is
homogeneous of degree ri + σ.

(2) For any function h homogeneous of degree τ > 0 with respect to the same
dilation, the function LXh (its Lie derivative along X) is homogeneous of
degree σ + τ .

(3) For all positive constant λ, the vector field ((δλ)∗X), conjugate of X by the
diffeomorphism δλ —away from the origin— satisfies ((δλ)∗X) (x) = λ−σX(x)
for x 6= 0.

The previous definitions of homogeneity can be extended to time-varying functions
and vector fields by considering an “extended dilation”:

δλ(x1, . . . , xn, t) = (λr1x1, . . . , λ
rnxn, t).

Finally, let f ∈ C 0(Rn × R;Rn), with f(x, .) T -periodic, defining a homogeneous
vector field of degree zero with respect to a family of dilations (δλ). Then, the two
following properties are equivalent (see [7] for the autonomous case):

(i) the origin x = 0 of the system ẋ = f(x, t) is locally asymptotically stable.
(ii) x = 0 is globally ρ-exponentially asymptotically stable, i.e., for any homoge-

neous norm ρ, there exist K, γ > 0 such that, for any solution x(.) of the
system,

ρ(x(t)) ≤ Kρ(x(0))e−γt.

In what follows, when using the expression exponentially asymptotically stable, we will
refer to the ρ-exponential asymptotic stability defined above.

3. Problem statement. Consider a smooth driftless controllable system

ẋ =

m∑
i=1

uifi(x).(3.1)

In general, there does not exist a dilation with respect to which the control vector fields
are homogeneous. However, controllability implies that after some adequate change
of coordinates, there exist a dilation and a controllable homogeneous approximation
[6, 7]—with respect to this dilation—of the system (3.1) around the origin. Different
methods exist to find such a change of coordinates and dilation. For instance, a
constructive method (i.e., requiring only algebraic computations and derivations) is
given in [22]. Using this method, one obtains a driftless control system with control
vector fields homogeneous of degree −1. Moreover, any homogeneous feedback law
that asymptotically stabilizes this system also locally asymptotically stabilizes the
original system.

The present work constructs a homogeneous feedback that ensures global expo-
nential stabilization for homogeneous systems. Applied to the homogeneous approxi-
mation of a general system (3.1), it provides local exponential stabilization of (3.1).

Throughout this paper, we always consider a system

ẋ =

m∑
i=1

uibi(x),(3.2)
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where the bi’s are smooth vector fields and the system of coordinates is such that
there exist some integers (r1, . . . , rn) such that

(1) each vector field bi is homogeneous of degree −1 with respect to the family
of dilations δλ with weights (r1, . . . , rn);

(2) the rank at the origin of the Lie algebra generated by the bi’s is n:

Rank(Lie{b1, . . . , bm}(0) ) = n.(3.3)

The integer valued weights r1, . . . , rn are now fixed, and we denote

P = Max {ri; i = 1, . . . , n}.(3.4)

Our objective is to design feedback laws u = (u1, . . . , um) ∈ C 0(R×Rn;Rm) such
that the origin x = 0 of the closed-loop system (3.2) is exponentially asymptotically
stable.

Remark 3.1. We require only full rank control Lie algebra at the origin, but con-
trollability follows, because homogeneity allows us to deduce the same rank condition
everywhere.

Remark 3.2. We assume that the degrees are all equal to −1. These are the
degrees given by the construction of a homogeneous approximation in [22]. If a system
is naturally homogeneous, but the degrees are not all equal (if they are equal, a simple
scaling makes them all equal to −1), it might be better to use this natural homogeneity
than to construct a different homogeneous approximation that will have all the degrees
equal to −1. The present method can be adapted to the case when the degrees of
homogeneity are not all equal; this requires only a modification of the first step (see
Remark 4.3).

4. Controller design. The control design consists of four steps described below.
Step 1 (selection of Lie brackets).
In this step, we select some vector fields b̃j (j = 1, . . . , N), obtained as Lie brackets

of the control vector fields b1, . . . , bm. The b̃j are chosen recursively as follows. For
any p = 1, . . . , P (with P defined by (3.4)),

(1) compute all brackets of length p made from the control vector fields bi (i =
1, . . . ,m);

(2) select among the vector fields so obtained a maximal number of vector fields
independent1 over R. These vector fields are the b̃j (mp−1 + 1 ≤ j ≤ mp).
(We set m0 = 0 so that all the integers mp (p = 0, . . . , P ) are defined, with
N = mP .)

It follows from this construction that with each vector field b̃j we can associate a
Lie bracket of some bi’s, i.e.,

b̃j = Cj(bτ1
j
, . . . , b

τ
`(j)
j

) ,(4.1)

with
• Cj a formal bracket and bτ1

j
, . . . , b

τ
`(j)
j

the elements that are bracketed (listed

in the order they appear in the bracket);
• `(j) the number of vector fields that are bracketed in (4.1), i.e.,

`(j) = p ⇔ mp−1 + 1 ≤ j ≤ mp.

1Recall that some vector fields X1, · · · , Xr are said to be linearly independent over R if and only
if for any (λ1, . . . , λr) in Rr, the vector field λ1X1 + · · · + λrXr is identically zero on Rn only if
λ1 = · · · = λr = 0.
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For instance, if we choose a vector field b̃6 = [[b2, b1], [b1, [b1, b2]]], then we encode
this as (4.1) with `(6) = 5, τ2

6 = τ3
6 = τ4

6 = 1, τ1
6 = τ5

6 = 2, and the symbol C6
defined by C6(z1, z2, z3, z4, z5) = [[z1, z2], [z3, [z4, z5]]]. This notation is sloppy but
avoids using formal Lie brackets and the evaluation operator (see [24]) from a free
Lie algebra to vector fields, which would make the exposition uselessly heavy. Of
course, the decomposition (4.1) is not unique in general. From now on, we consider
that one decomposition has been chosen and that the Cj ’s and τkj ’s have been defined
accordingly.

Remark 4.1. (1) In Step 1 above, we do not need to compute all brackets of length
p. More precisely, let F denote the free Lie algebra generated by some indeterminates
s1, . . . , sm. Then, one can select a basis B of this Lie algebra (for instance a P. Hall
basis, as used by Sussmann and Liu [25, 26] and Liu [9]). If Bp denotes the elements
of B of order p, then it is clearly sufficient to consider Lie brackets of the bi obtained
by evaluating (in the sense of [24]) the elements of Bp at si = bi (i = 1, . . . ,m). One
usually takes this into account when checking controllability.

(2) Since the vector fields bi (i = 1, . . . ,m) are homogeneous of degree −1, each
bracket of length p of these vector fields is homogeneous of degree −p. Moreover, the
weights of the dilation being integers, any smooth vector field homogeneous of integer
degree is, in fact, polynomial. Using a (finite) basis of the polynomials homogeneous
of degree k (k ∈ {0, . . . , P − 1}), selecting Lie brackets of a given length consists only
of computing a basis of a finite dimensional vector space.

(3) We do not need to consider brackets of order larger than P because they
are identically zero; indeed, all components of these vector fields are homogeneous of
negative degree and, therefore, they would tend to infinity at the origin if they were
not identically zero.

Example. Let us illustrate this step on the following academic example:

ẋ1 = u1,

ẋ2 = x2
3(u1 + u2),

ẋ3 = u3,

which is of the form (3.2) with m = 3 and

b1 =
∂

∂x1
+ x 2

3

∂

∂x2
, b2 = x 2

3

∂

∂x2
, b3 =

∂

∂x3
.

The control vector fields are homogeneous of degree −1 with respect to the dilation
with weights r1 = 1, r2 = 3, and r3 = 1.

For the brackets of length 1, i.e., the control vector fields, b1 and b3 are indepen-
dent at the origin while b2 is zero at the origin but independent from b1 and b3 away
from x3 = 0. Hence m1 = 3, and one can take b̃1 = b1 = C1(b1), b̃2 = b2 = C2(b2),
and b̃3 = b3 = C3(b3).

At length 2 all the brackets vanish at the origin, but they are not identically zero:
[b2, b3] = −2x3

∂
∂x2

, and [b3, b1] = −[b2, b3]. Since [b1, b2] = 0, we have m2 = 4. We

define, for instance, b̃4 = [b2, b3] = C4(b2, b3).
Finally, since [b3, [b2, b3]] = −2 ∂

∂x2
, m3 = 5 with, for instance, b̃5 = [b3, [b2, b3]] =

C5(b3, b2, b3). Note that here, due to the origin being a singular point for the distri-
butions spanned by the control vector fields and by the brackets of order at most 2,
N is strictly larger than n.

With this general construction, we have the following proposition.
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Proposition 4.2. For any family (b̃j)j=1,...,N defined as above, we have the
following:

(a) Let j1, . . . , jn be such that Span{b̃j1(0), . . . , b̃jn(0)} = Rn. Then

∀x ∈ Rn, Span{b̃j1(x), . . . , b̃jn(x)} = Rn .

(b) Any vector field b that can be written as a Lie bracket of order p of some bi’s
is a linear combination of the b̃j’s with `(j) = p, i.e.,

b =

mp∑
j=mp−1+1

λj b̃j =
∑
`(j)=p

λj b̃j

for some real numbers λj ∈ R.

(c) The vector fields {b̃j}j=1,...,N are linearly independent over R.
(The proof is in section 7.1.)
Remark 4.3. If the degrees of the vector fields bi are not all equal, the above

construction has to be modified. More precisely, in the recursive construction of the
family (b̃j)j=1,...,N , we have to consider an induction on the degree of homogeneity
instead of an induction on the length of the Lie brackets. (Note that this is just a
generalization of the above construction, since for vector fields of the same degree −1
the set of Lie brackets of length p is the same as the set of Lie brackets of degree −p.)
This means that at each step, we have to compute the set of Lie brackets of a certain
degree and select from among them a finite number of vector fields that form a basis
of this set.

Step 2 (stabilization of the extended system).
Let a be a smooth vector field, homogeneous of degree zero with respect to the

family of dilations (δλ), and such that the origin x = 0 of the system ẋ = a(x) is
asymptotically stable. One may take, for instance, a(x) = −x. In view of Proposition
4.2(a), the n × n matrix whose columns are b̃j1(x), . . . , b̃jn(x) is invertible for all x.
Define the functions ũj (j = 1, . . . , N) by

•

 ũj1(x)
...
ũjn(x)

 =
(
b̃j1(x), . . . , b̃jn(x)

)−1

a(x),

• ũj = 0 ∀j /∈ {j1, . . . , jn}.

(4.2)

These functions are obviously such that

a =

N∑
j=1

ũj b̃j ,(4.3)

and furthermore, we may state this proposition.
Proposition 4.4. For any j = 1, . . . , N , the above-constructed function ũj is in

C∞(Rn − {0};R) ∩ C 0(Rn;R) and is homogeneous of degree `(j).
Proof. Continuity and smoothness away from the origin are inherited from the

vector fields b̃j and the vector field a. Each ũjk is homogeneous of degree `(jk) because
the lth component of the vector field a is homogeneous of degree rl and the element
(k, l) of the matrix (b̃j1(x), . . . , b̃jn(x))−1 is homogeneous of degree `(jk) − rl. This
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last statement is true because the element (k, l) of the matrix (b̃j1(x), . . . , b̃jn(x)) is

homogeneous of degree rl − `(jk) for the vector field; b̃jk is an iterated Lie bracket
of `(jk) homogeneous vector fields of degree −1 and hence is homogeneous of degree
−`(jk).

Step 3 (construction of the state-dependent amplitudes).
This step consists of finding some functions vkj ∈ C∞(Rn−{0};R)∩C 0(Rn;R) (j =

1, . . . , N, k = 1, . . . `(j)) homogeneous of degree one and such that

N∑
j=1

ũj Cj(bτ1
j
, . . . , b

τ
`(j)
j

) =

N∑
j=1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ).(4.4)

Recall that the Cj ’s, defined in Step 1, are the brackets associated with the b̃j ’s, i.e.,

b̃j = Cj(bτ1
j
, . . . , b

τ
`(j)
j

) .(4.5)

The construction of the functions vkj is based on the following lemma.
Lemma 4.5. Let C(bi1 , . . . , bip) (ik ∈ {1, . . . ,m}) be any Lie bracket of some vector

fields bik (ik ∈ {1, . . . ,m}), and vk ∈ C∞(Rn−{0};R)∩C 0(Rn;R) (k = 1, . . . , p) some
functions homogeneous of degree 1. Then,

(i) C(bi1v1, . . . , bipvp) = v1 . . . vp C(bi1 , . . . , bip)−
mp−1∑
j=1

hj b̃j ;

(ii) for any j = 1, . . . ,mp−1, hj ∈ C∞(Rn −{0};R)∩C 0(Rn;R) is homogeneous
of degree `(j).

The proof of this lemma, left to the reader, follows from Proposition 4.2(b) by a
direct induction on the length p of the bracket C(bi1v1, . . . , bipvp). It is a generalization
of the fact that for two functions v1 and v2, and vector fields bi1 and bi2 , [v1bi1 , v2bi2 ] =
v1v2[bi1 , bi2 ]− v2(Lbi2 v1)bi1 + v1(Lbi1 v2)bi2 .

Note that the functions hj in Lemma 4.5 can be explicitly computed by expressing

brackets of order not larger than p− 1 as linear combinations of b̃1, . . . , b̃mp−1
.

Based on Lemma 4.5, the functions vkj can be constructed recursively as follows.
Step p = P : For any j ∈ {mP−1 + 1, . . . ,mP }, we define

vPj =
ũj
ρP−1

and vkj = ρ (k = 1, . . . , P − 1) ,(4.6)

with ρ any homogeneous norm in C∞(Rn − {0};R) ∩ C 0(Rn;R) (for instance, one

may take ρ(x) = (
∑ |xi| qri )

1
q with q = 2

∏n
i=1 ri).

In view of (4.5), (4.6), and Lemma 4.5, we have

mP∑
j=mP−1+1

Cj(bτ1
j
v1
j , . . . , bτPj v

P
j ) =

mP∑
j=mP−1+1

ũj b̃j −
mP−1∑
j=1

hPj b̃j(4.7)

with hPj (j = 1, . . . ,mP−1) obtained by expanding the brackets in the left-hand side

of (4.7) with respect to the variables vkj and their derivatives.

Step 1 ≤ p < P : Assume that the functions vkj (j = mp + 1, . . . ,mP , k =

1, . . . , `(j)) and hkj (j = mp + 1, . . . ,mP , k = p + 1, . . . , P ) have been computed in
Steps P to p+ 1 and satisfy the induction assumption

N∑
j=mp+1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) =

N∑
j=mp+1

ũj b̃j −
mp∑
j=1

hp+1
j b̃j .(4.8)
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We define, for any j ∈ {mp−1 + 1, . . . ,mp},

vpj =
1

ρp−1
(ũj + hp+1

j ) and vkj = ρ (k = 1, . . . , p− 1) .(4.9)

In view of (4.5), (4.9), and Lemma 4.5, we have

mp∑
j=mp−1+1

Cj(bτ1
j
v1
j , . . . , bτpj v

p
j ) =

mp∑
j=mp−1+1

(ũj + hp+1
j )b̃j +

mp−1∑
j=1

(hp+1
j − hpj )b̃j(4.10)

for an adequate choice of the hpj (j = mp−1 + 1, . . . ,mp) obtained again by expanding

the brackets in the left-hand side of (4.7) with respect to the variables vkj and their
derivatives. In view of (4.8) and (4.10), we have

N∑
j=mp−1+1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) =

N∑
j=mp−1+1

ũj b̃j −
mp−1∑
j=1

hpj b̃j(4.11)

so that the induction assumption (4.8) on Steps P to p+ 1 is also true for Steps P to
p.

The computation of the functions vkj and hkj ends after Step p = 1 has been
performed. Let us remark that in the last step (p = 1), there is no function hpj to
compute. With this construction, we have the next proposition.

Proposition 4.6. Consider the functions vkj defined above. Then

(a) each vkj (j = 1, . . . , N , k = 1, . . . , `(j)) belongs to C∞(Rn − {0};R) ∩
C 0(Rn;R) and is homogeneous of degree 1;

(b) (4.4) is satisfied.
Proof. Point (b) is a direct consequence of (4.11) with p = 1. Point (a) is an easy

consequence of Proposition 4.4, equations (4.6) and (4.9), and Lemma 4.5.
Step 4 (oscillatory approximation of Lie brackets).
The last step of our construction relies on the work of Liu [9] and Sussmann and

Liu [25, 26]. More precisely, consider a control system

ẋ =

A∑
α=1

uαXα(x)(4.12)

with X1, . . . , XA some smooth vector fields on a smooth n-dimensional manifold, a
“Lie bracket extended” system

ẋ =
B∑
β=1

wβXβ(x) (B ≥ A),(4.13)

where the A first vector fields are the same as in (4.12), and the other vector fields
are Lie brackets of X1, . . . , XA. In [9], an algorithm is given that builds, for any set
of integrable functions of time wβ (β = 1, . . . , B), some “highly oscillatory” functions
of time uεα such that the trajectories of (4.12), with uα = uεα, approximate those of
(4.13).

We do not describe this algorithm here, though we use the notation

uεα = F (α , ε , (wβ)1≤β≤B) ,(4.14)
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where F is a function described algorithmically in [9]. It depends only on which Lie
brackets have to be performed to obtain the vector fields XA+1, . . . , XB from the
vector fields X1, . . . , XA. It is of the form

uεα(t) = ηα,0(t) + ε−
1
2

∑
ω∈Ω(2,α)

ηω,α(t)eiωt/ε +
N∑
n=3

ε
n−1
n

∑
ω∈Ω(n,α)

ηω(t)eiωt/ε,(4.15)

with N the length of the higher order bracket Xβ in (4.13), ηα,0, ηω,α, and ηω some
functions, and Ω2,α, Ωn,α some finite subsets of R, that are all built precisely in [9].
In particular, the construction of the “approximating inputs” uεα given in [9] implies
the following.

Theorem 4.7 (see [9]). For any T (0 < T < +∞) and any family wβ (β =
1, . . . , B) of integrable functions on [0, T ], the functions uεα (α = 1, . . . , A) given
by (4.14), where F symbolizes the algorithm described in [9], are integrable and are
such that the trajectories of (4.12)–(4.15) converge to the trajectories of (4.13) in the
following sense: For any p ∈ Rn, if the system (4.13) with x(0) = p has a unique
solution x∞ defined on [0, T ] and if xε is a maximal solution of system (4.12)–(4.15)
with x(0) = p, then xε is defined on [0, T ] for ε small enough and converges uniformly
to x∞ on [0, T ] as ε→ 0.

Remark 4.8. (1) The functions uεα in (4.15) are real-valued because each Ωn,α
(n = 2, . . . , N) is symmetric (ω ∈ Ωn,α ⇒ −ω ∈ Ωn,α), η−ω = ηω, and η−ω,α = ηω,α.

(2) If the functions wβ in (4.13) are constant, the functions ηα,0, ηω,α, and ηω are
also constant.

Consider now the following two systems:

ẋ =
N∑
j=1

`(j)∑
s=1

uj,sbτs
j
vsj ,(4.16)

ẋ =

N∑
j=1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) .(4.17)

Systems (4.16) and (4.17) are of the same form as (4.12) and (4.13), respectively, with
the vector fields Xα being the bτs

j
vsj ’s (with α a double index (j, s)), the vector fields

Xβ being these plus the brackets in (4.17), i.e., Cj(Xj,1, . . . , Xj,`(j)), 1 ≤ j ≤ N , and
each wβ in (4.13) being constant: 0 in front of theXβ ’s that are alsoXα’s and 1 in front
of the added brackets. Note that since each original vector field from (3.2) appears
many times in the brackets selected in Step 1, we consider here as independent control
vector fields in (4.12) some vector fields that are in fact “multiples” of each other: for
instance if the vector field b1 appears more than one time, we have τsj = τ s′j′ = 1 for
some (j, x) 6= (j′, s′), and vsj b1 and vs′j′b1 are distinct control vector fields Xα in (4.12).

Following Liu’s algorithm, we construct some functions

uεj,s = F ((j, s), ε, (0, . . . , 0, 1, . . . , 1)) ,

where F is the notation introduced in (4.14), such that the trajectories of (4.16)–(4.18)
(which exist on any time interval because the system is degree zero homogeneous)
converge uniformly on any time interval [0, T ] to those of (4.17), as ε tends to zero.
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Recall (see (4.15)) that they are of the form

uεj,s(t) = ηj,s,0 + ε−
1
2

∑
ω∈Ω(2,j,s)

ηω,j,se
iωt/ε +

P∑
n=3

ε
n−1
n

∑
ω∈Ω(n,j,s)

ηωe
iωt/ε .(4.18)

Note that the functions η in (4.18) are constant in view of Remark 4.8 above. We
rewrite system (4.16)–(4.18) as

ẋ =

m∑
i=1

( ∑
(j,s):τs

j
=i

uεj,s(t)v
s
j (x)

)
bi(x) .(4.19)

Our final control laws are defined by

uεi (x, t) =
∑

(j,s):τs
j

=i

uεj,s(t)v
s
j (x) .(4.20)

As stated in the following theorem, they ensure asymptotic stability of system (3.2)
for “sufficiently large” frequencies.

Theorem 4.9. Let the controls uεi be these described above. Then, the vector
field in the right-hand side of the time-varying closed-loop system

ẋ =

m∑
i=1

uεi (x, t) bi(x)(4.21)

is homogeneous of degree zero and, for ε > 0 sufficiently small, the origin is exponen-
tially uniformly asymptotically stable. (See the proof in section 7.3.)

Remark 4.10. Our construction a priori implies uniform convergence of the tra-
jectories of (4.21) to those of (4.17), the origin of which is asymptotically stable from
(4.3) to (4.5). However, this is not enough to infer asymptotic stability of (4.21).
In the proofs, and in section 6, we introduce a stronger kind of convergence (DO-
convergence), sufficient to infer asymptotic stability of (4.21). However, we quote
uniform convergence here (instead of the DO-convergence, which we really need) be-
cause we base our construction on [9]. It makes the present construction clearer. (To
construct the controls, one needs only to follow the algorithm in [9]; the kind of con-
vergence does not matter.) Also, using the convergence result from [9] (Theorem 4.7)
provides a shortcut in the proof on DO-convergence. This may make the paper less
self-contained, but it avoids reproducing some difficult calculations made in [9].

5. An illustrative example. We now illustrate the control design method
shown in section 4. Let us consider the following system in R4:

ẋ = b1u1 + b2u2 ,(5.1)

with b1 = ∂
∂x1

+x3
∂
∂x2

+x4
∂
∂x3

and b2 = ∂
∂x4

, which can be used to model the kinematic
equations of a car-like mobile robot. One easily verifies that the vector fields b1 and
b2 are homogeneous of degree −1 with respect to the family of dilations of weight
r = (1, 3, 2, 1), and that this system is controllable. We follow this example with the
four steps of our control design procedure.

Step 1. Since [b1, b2] = − ∂
∂x3

, [b1, [b1, b2]] = ∂
∂x2

, and [b2, [b2, b1]] = 0, the family

(b̃j) is directly given by

(b̃j) = (b̃1, b̃2, b̃3, b̃4) = (b1, b2, [b1, b2], [b1, [b1, b2]])

= (C1(bτ1
1
), C2(bτ1

2
), C3(bτ1

3
, bτ2

3
), C4(bτ1

4
, bτ2

4
, bτ3

4
)).

(5.2)
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This implies that τ1
1 = 1, τ1

2 = 2, τ1
3 = 1, τ2

3 = 2, τ1
4 = τ2

4 = 1, τ3
4 = 2, and that

m1 = 2, m2 = 3, and m3 = N = 4.
Step 2. Let us, for instance, define the vector field a by a(x) = −x. (The origin

x = 0 of ẋ = a(x) is obviously asymptotically stable.) Then the integers jk are simply
defined by jk = k (k = 1, . . . , 4). By a direct computation, one obtains the following
expression for the functions ũj :

(ũ1, ũ2, ũ3, ũ4)T (x) = (b̃1, b̃2, b̃3, b̃4)−1(x) a(x)

= (−x1,−x4,−x1x4 + x3, x1x3 − x2)T .
(5.3)

Step 3. From Step 1, the brackets Ck are defined by

C1(x1) = x1, C2(x2) = x2, C3(x1, x2) = [x1, x2], C4(x1, x1, x2) = [x1, [x1, x2]] .

We now follow the procedure exposed in section 4.
Step p = P = 3: The functions v1

4 , v
2
4 , and v3

4 are given, in view of (4.6), by

v1
4 = v2

4 = ρ, v3
4 =

ũ4

ρ2
,(5.4)

with ρ ∈ C∞(R4−{0};R)∩C 0(R4;R) a homogeneous norm. (For instance, one may

take ρ(x) = (x12
1 + x4

2 + x6
3 + x12

4 )
1
12 .)

We also compute the functions hPj involved in (4.7). A tedious but simple calcu-
lation gives

h3
1 = v2

4v
3
4L[b1,b2]v

1
4 + v2

4Lb1v
3
4Lb2v

1
4 + v1

4Lb1(v3
4Lb2v

2
4)− v3

4Lb1v
1
4Lb2v

2
4 ,

h3
2 = −v1

4Lb1(v2
4Lb1v

3
4) ,

h3
3 = −v1

4Lb1v
2
4v

3
4 − v1

4v
2
4Lb1v

3
4 .

(5.5)

Step p = 2: The functions v1
3 and v2

3 are given, in view of (4.9), by

v1
3 = ρ, v2

3 =
(ũ3 + h3

3)

ρ
.(5.6)

The functions h2
1 and h2

2 defined by (4.10) can be computed using (5.6):

h2
1 = h3

1 + v2
3Lb2v

1
3 ,

h2
2 = h3

2 − v1
3Lb1v

2
3 .

(5.7)

Step p = 1: Finally, the functions v1
1 and v1

2 are defined, from (4.9) again, by

v1
1 = ũ1 + h2

1, v1
2 = ũ2 + h2

2 .(5.8)

Step 4. First, we need to find functions uj,s (j = 1, . . . , 4 , s = 1, . . . , `(j)) such
that the trajectories of the system

ẋ =

4∑
j=1

`(j)∑
s=1

uj,sbτs
j
vsj(5.9)

converge uniformly to those of the system

ẋ =

4∑
j=1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) .(5.10)
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We remark that, in view of (5.2), (5.4), and (5.6), the vector fields bτ1
3
v1

3 , bτ1
4
v1

4 , and

bτ2
4
v2

4 are in fact identical. As a consequence, there are only 5—not 7 (the number

of terms in the sum (5.9))—different vector fields in (5.9) or (5.10). Therefore, the
system (5.9) can be rewritten as

ẋ =

5∑
i=1

uiXi(5.11)

with X1 = b1v
1
1 , X2 = b2v

1
2 , X3 = b1v

1
3 = b1v

1
4 = b1v

2
4 , X4 = b2v

2
3 , and X5 = b2v

3
4 , and

u1, u2, u3, u4, u5 standing, respectively, for u1,1, u2,1, u3,1 +u4,1 +u4,2, u3,2, and u4,3,
and the system (5.10) can then be rewritten as

ẋ = X1 +X2 + [X3, X4] + [X3, [X3, X5]] .(5.12)

We choose some candidate functions ui, for the approximation of trajectories of (5.12)
by solutions of (5.11), of the following form:

u1(t) = η1,0 ,

u2(t) = η2,0 ,

u3(t) = ε−
1
2 ηω1,1

cosω1,1t/ε+ ε−
2
3

(
ηω2,1

cosω2,1t/ε + ηω2,2
cosω2,2t/ε

)
,

u4(t) = ε−
1
2 ηω1,2

sinω1,2t/ε,

u5(t) = ε−
2
3 ηω2,3

cosω2,3t/ε

(5.13)

with ωk,j defined for instance by

Ω1 = {ω1,1, ω1,2} = {7
2 ,− 7

2}
and Ω2 = {ω2,1, ω2,2, ω2,3} = {2, 3,−5}.

Note in particular that each set Ωk is “minimally cancelling” (MC) in the sense of
[9, 25, 26]. Using [9, Theorem 5.1] (see also [9, section 8]), where a very similar example
is treated), one can show that the trajectories of system (5.11)–(5.13) converge to those
of the system

ẋ = η1,0X1 + η2,0X2 −
ηω1,1

ηω1,2

2ω1,1
[X3, X4]− ηω2,1

ηω2,2
ηω2,3

4ω2,1ω2,2
[X3, [X3, X5]] .(5.14)

In order to identify system (5.12) with system (5.14), one can, for instance, define

η1,0 = η2,0 = ηω1,1 = ηω2,1 = ηω2,2 = 1

and

ηω1,2
= −2ω1,1, ηω2,3

= −4ω2,1ω2,2 .

Expressing the right-hand term of (5.11) as a function of the control vector fields b1
and b2, we finally obtain the expression of our stabilizing feedbacks:{

uε1(x, t) = u1(t/ε)v1
1(x) + u3(t/ε)v1

3(x),

uε2(x, t) = u2(t/ε)v1
2(x) + u4(t/ε)v2

3(x) + u5(t/ε)v3
4(x)

(5.15)

with the ui’s defined by (5.13) and the vsj ’s defined by (5.4), (5.6), and (5.8).
Although the above expression of the control laws appears quite simple, it is, in

fact, quite involved due to the terms contained in the vsj ’s, and in particular due to the
functions hpj defined by (5.5) and (5.7). This is a negative aspect of our construction:
solving the equation (4.4) in the vsj ’s leads to heavy computations.
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6. Convergence of highly oscillatory vector fields as differential oper-
ators. As explained in the introduction (section 1.2), the convergence results which
are implicitly contained in [5], and explicitly in [25, 9] or [8], in terms of uniform con-
vergence of solutions on finite time intervals, are not sufficient here. In this section,
we state separately the convergence result that is used to prove Theorem 4.9. The
word convergence is perhaps a bit farfetched since there is no notion of limit in the
topological sense; the convergence is more of an algebraic nature: we simply decom-
pose the operator as the sum of a nonoscillating term (the “limit”) and a term which
is a differential operator—of order higher than 1—whose coefficients are, when ε goes
to zero and x remains in a compact set, O(εγ), with γ > 0. However, this result will
prove to be sufficient for our needs. It is also sufficient to recover the uniform conver-
gence stated in [5, 8, 25, 9]. In what follows, T denotes any time interval (possibly
infinite).

Definition 6.1. Let F ε (ε ∈ (0, ε0] ε0 > 0) and F 0 be vector fields on R1+n,
defined by F ε(t, x) = ∂

∂t + f(ε, t, x) and F 0(t, x) = ∂
∂t + f0(t, x) with f ∈ C0((0, ε0]×

T ×Rn;Rn) ∩ C∞((0, ε0]× T × (Rn − {0});Rn), and f0 ∈ C0(T ×Rn;Rn) ∩ C∞(T ×
(Rn − {0});Rn).

We say that F ε converges as a differential operator of order one on functions of
t and x, in brief “DO-converges,” to F 0, as ε −→ 0, if

F ε = F 0 + εγ1

(
F εDε

1 − Dε
1

∂

∂t

)
+ εγ2 Dε

2 .(6.1)

The above equality is understood as an equality of differential operators. γ1 and γ2

are strictly positive reals, and Dε
1 and Dε

2 are differential operators whose coefficients
are continuous, smooth outside the origin, and locally uniformly bounded when ε→ 0,
i.e., there exists ε0 > 0 such that for all compact subset K of Rn, each component of
these differential operators is bounded for (ε, t, x) ∈ (0, ε0]× T ×K.

This kind of convergence carries with it two important properties.
Proposition 6.2. Suppose that a vector field F ε DO-converges, as ε −→ 0, to a

vector field F 0 on a time interval T . Then we have the following.
(1) The trajectories of ẋ = f(ε, t, x) converge uniformly to those of ẋ = f0(t, x)

on finite time intervals. More precisely, let [0, T ] ⊂ T , and let x0 be the
(unique) solution of

ẋ = f0(t, x),

x(0) = x0 .
(6.2)

Then, for ε small enough, the unique solution xε of

ẋ = f(ε, t, x),

x(0) = x0

(6.3)

is defined on [0, T ], and xε(t) converges to x0(t) uniformly on [0, T ].
(2) If T = [0,+∞), and if all vector fields in (6.1) are homogeneous of degree

zero and f0 is autonomous, then, if the origin of

ẋ = f0(x)(6.4)

is asymptotically stable, the origin of

ẋ = f(ε, t, x)(6.5)

is (exponentially) asymptotically stable too for ε > 0 sufficiently small.
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Proof. We prove (1). First, we rewrite (6.1) as

F ε(I − εγ1Dε
1) = F 0 − εγ1 Dε

1

∂

∂t
+ εγ2 Dε

2 .

This is an equality between differential operators. We apply each side to the coor-
dinate functions xi. Dε

1xi and Dε
2xi are simply the coefficients in front of ∂

∂xi
in

the expression of the differential operator Dε
1 or Dε

2. This implies (coordinate by
coordinate) that the differential equation (6.3) can be rewritten

d

dt
(x − εγ1d1(ε, t, x)) = f0(t, x) + εγ2d2(ε, t, x),(6.6)

where di(ε, t, x) (i ∈ {1, 2}) is the vector whose jth component is the coefficient of
∂
∂xj

in Dε
i . This implies that the difference between x0(t)− xε(t) satisfies

‖xε(t)− x0(t)‖ ≤ εγ1‖d1(ε, t, x0(t))‖ + εγ1‖d1(ε, t, x0)‖

+

∫ t

0

‖f0(τ, xε(τ))− f0(τ, x0(τ))‖dτ + εγ2

∫ t

0

‖d2(ε, τ, xε(τ))‖dτ.

The standard Gronwall lemma then yields, ∀ ε ∈ (0, ε0] and ∀ t ∈ [0, T ] such that xε

remains in the interior of a certain compact neighborhood K of the trajectory x0, the
estimate ‖xε(t)− x0(t)‖ ≤ (2εγ1 + Tεγ2)Meλt, where λ is a Lipschitz constant (with
respect to x) of F on [0, T ] ×K and M is an upperbound on (0, ε0] × [0, T ] ×K for
both ‖d1‖ and ‖d2‖. This proves (1).

Let us prove (2). Since the right-hand side of (6.4) is homogeneous of degree
zero, there exists [17] a homogeneous and autonomous Lyapunov function V , positive
definite, whose derivative along (6.4) is given by

V̇(6.4) = F 0V = −W.(6.7)

Here X V , for X a vector field, denotes the Lie derivative of V along X with W
homogeneous positive definite of the same degree as V , i.e.,

W (x) ≥ c V (x).(6.8)

Let us now compute the derivative of V along system (6.5). From (6.1) and (6.7),

V̇(6.5) = F εV = −W + εγ1 F εDε
1V − εγ1 Dε

1

∂V

∂t
+ εγ2 Dε

2V,

which can be rewritten, since V is autonomous, as

F εVε = −W + εγ2 Dε
2V,(6.9)

with

Vε = V − εγ1 Dε
1V.(6.10)

Since, by assumption, the operators Dε
1 and Dε

2 are homogeneous of degree zero, and
locally uniformly bounded with respect to ε > 0, one has, since V is positive definite,

|Dε
1V | ≤ k V, |Dε

2V | ≤ k V
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∀ ε > 0. Hence, for ε sufficiently small, Vε is arbitrarily close to V and hence positive
definite, and also

V̇ε = F ε Vε ≤ − c
2
V.(6.11)

Therefore, for ε small enough, Vε is a strict Lyapunov function for system (6.5). This
ends the proof of 2 via Lyapunov’s first method.

Before stating our convergence result, we recall two definitions introduced in
[25, 9].

Definition 6.3 (see [25, 9]). Let Ω be a finite subset of R and |Ω| denote the
number of elements of Ω. The set Ω is said to be MC if and only if

(i)
∑
ω∈Ω ω = 0;

(ii) this is the only zero sum with at most |Ω| terms taken in Ω with possible
repetitions: ∑

ω∈Ω

λωω = 0

(λω)ω∈Ω ∈ Z|Ω|∑
ω∈Ω

|λω| ≤ |Ω|


=⇒


(λω)ω∈Ω = (0, . . . , 0),

or (1, . . . , 1),

or (−1, . . . ,−1).

(6.12)

For example, a set {ω1, ω2} is MC if and only if ω2 = −ω1 with ω1 6= 0, a set
{ω1, ω2, ω3} is MC if and only if ω3 = −ω1 − ω2 with ω1 6= 0, ω2 6= 0, ω1 + ω2 6= 0,
ω1 − ω2 6= 0, ω1 + 2ω2 6= 0, 2ω1 + ω2 6= 0, ω1 − 2ω2 6= 0, 2ω1 − ω2 6= 0. . . .

Definition 6.4 (see [25, 9]). Let (Ωα)α∈I be a finite family of finite subsets Ωα
of R. The family (Ωα)α∈I is said to be “independent with respect to p” if and only if

•
∑
α∈I

∑
ω∈Ωα

λωω = 0

• (λω)ω∈Ωα,α∈I ∈ ZΣ|Ωα|

•
∑
α∈I

∑
ω∈Ω

|λω| ≤ p


=⇒

∑
ω∈Ωα

λωω = 0 ∀α ∈ I.(6.13)

For example, the sets ({ω1, ω2, ω3}, {ω4, ω5}) are both MC and independent with
respect to 2 if and only if ω3 = −ω1 − ω2 and ω5 = −ω4 with ω1 6= 0, ω2 6= 0,
ω1 + ω2 6= 0, ω1 − ω2 6= 0, ω1 + 2ω2 6= 0, 2ω1 + ω2 6= 0, ω1 − 2ω2 6= 0, 2ω1 − ω2 6= 0,
ω4 6= 0 (this is MC), and ω1 + ω4 6= 0, ω1 − ω4 6= 0, ω2 + ω4 6= 0, ω2 − ω4 6= 0,
ω1 + ω2 + ω4 6= 0, ω1 + ω2 − ω4 6= 0 (this is independence).

We are now ready to state our convergence result.
Theorem 6.5. Let N be a positive integer and consider, for j = 1, . . . , N ,
• some vector fields Xs

j ∈ C∞(Rn − {0};Rn) ∩ C 0(Rn;Rn) (s = 1, . . . , `(j)),
• some smooth complex valued functions of time ηsj (s = 1, . . . , `(j)) such that,

for some M, ∣∣ηsj (t)∣∣ ≤M and
∣∣η̇sj (t)∣∣ ≤M ∀t ∈ T ,(6.14)

• some sets Ωj = {ω1
j , . . . , ω

`(j)
j } of real numbers such that ωsj = 0 if `(j) = 1,

Ωj is MC if `(j) ≥ 2, and the family (Ωj) (`(j) ≥ 2) is independent with

respect to P
∆
= Maxj`(j).
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Then the vector field

F ε =
∂

∂t
+

N∑
j=1

`(j)∑
s=1

αsj,εX
s
j ,(6.15)

with

αsj,ε(t) = 2ε−
`(j)−1
`(j) <

(
ηsj (t) e

iωsj t/ε
)
,(6.16)

DO-converges, as ε→ 0, to the vector field

F 0 =
∂

∂t
+

N∑
j=1

2

`(j)
<
(
η1
j · · · η`(j)j

i`(j)−1

)
Bj(6.17)

with Bj =
∑

σ∈S(`(j))

[X
σ(1)
j , [X

σ(2)
j , [. . . , X

σ(`(j))
j ] . . .]]

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) . . . (ω

σ(1)
j + . . .+ ω

σ(`(j)−1)
j )

.

Furthermore, if all the vector fields Xs
j are homogeneous of degree zero, then all the

differential operators in (6.1) are homogeneous of degree zero also.
Remark 6.6. This result is very much related to the theory of “normal forms” for

time-varying differential equations, as shown, for instance, in [19, Chapter 6]. Let us
recall (see [19] for details) that a vector field ∂

∂t + εf0(t, x) ∂
∂x is said to be in normal

form if and only if [ ∂∂t , f
0 ∂
∂x ] = 0, i.e., if f0 does not depend on t. For a system

(Σε) ẋ = f(ε, t, x),

finding a normal form means finding a change of coordinates x 7→ y = x+α(ε, x) that
transforms (Σε) into

(Σ0) ẏ = εf0(y).

In general, deciding whether a normal form exists for a system, and then possibly
finding this normal form, is a difficult problem and there are no systematic tools
available.

Let us, however, rephrase Theorem 6.5 in the terms of [19]. By a time-scaling
t 7→ εt, the system ẋ = f(ε, x, t), where f is defined by F ε = ∂

∂t + f ∂
∂x , with F ε given

by (6.15), is rewritten as

(Σ′ε) ẋ = εf1(t, x) + ε1/2f2(t, x) + · · · + ε1/P fP (t, x).

In the context of “normal forms,” Theorem 6.5 states that (Σ0), with f0 defined by
F 0 = ∂

∂t + f0 ∂
∂x and F 0 given by (6.17), is a normal form for (Σ′), up to terms of

higher order in ε.

7. Proofs.

7.1. Proof of Proposition 4.2 (section 4). Point (b) is strictly a consequence
of the construction. Point (c) follows from the fact that if a linear combination of all
the vector fields b̃j with constant real coefficients is identically zero, then homogene-
ity implies that each linear combination where only the terms corresponding to the
brackets of same length must also be zero, and since by construction all the brackets
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b̃j of same length are linearly independent over R, this implies that all the coefficients
are zero.

Let us prove point (a). Recall that any Lie bracket of length p > P made with the
vector fields bi is identically zero (see Remark 4.1). From this fact, the controllability
assumption (3.3), and the construction itself, there clearly exist integers j1, . . . , jn ∈
{1, . . . , N} such that {b̃j1(0), . . . , b̃jn(0)} is a basis of Rn. Hence {b̃j1(x), . . . , b̃jn(x)}
is a basis of Rn for x in some neighborhood W of the origin. Let us show that this is
true for any x in Rn. Let x be outside W . There exist λ > 0 such that x̄ = δλ(x) is
in W and hence {b̃j1(x̄), . . . , b̃jn(x̄)} is a basis of Rn. This implies, since δλ is a local
diffeomorphism from a neighborhood of x to a neighborhood of x̄, that{(

(δ−1
λ )∗b̃j1

)
(x), . . . ,

(
(δ−1
λ )∗b̃jn

)
(x)
}

is also a basis of Rn. Now, from the homogeneity, (δ−1
λ )∗b̃jk = λ−`(jk)b̃jk . This proves

point (a).

7.2. Proof of Theorem 6.5. In [5, 8, 25, 9], the main ingredient of the proof
was iterated integrations by parts. Here we mimic these integrations by parts but at
the level of products of differential operators instead of integrals along the solutions.
The closed-loop vector field F ε can be rewritten as

F ε =
∂

∂t
+
∑

1≤j≤N
`(j)=1

2η1
jX

1
j(7.1)

+
∑

1≤j≤N
`(j)≥2

`(j)∑
s=1

ε−
`(j)−1
`(j)

(
ηsje

iωsj t/ε + ηsje
−iωsj t/ε

)
Xs
j .

Let us make some conventions and definitions, used only in the present proof. We
define the sets of indices

J = {j ∈ {1, . . . , N}, `(j) ≥ 2} = {m1 + 1, . . . , N},(7.2)

Jl = {j ∈ {1, . . . , N}, `(j) = l} = {ml−1 + 1, . . . ,ml},(7.3)

Kj = {−`(j),−`(j)− 1, . . . ,−1, 1, 2, . . . `(j)}(7.4)

and the sets of pairs of indices

I = {(j, s), j ∈ J, s ∈ Kj} =
⋃
j∈J
{j} ×Kj ,(7.5)

Il = {(j, s) ∈ I, `(j) = l} =
⋃
j∈Jl
{j} ×Kj .(7.6)

We call F1 the vector field

F1 =
∑

1≤j≤N
`(j)=1

2η1
jX

1
j =

∑
(j,s)∈I1

2ηsjX
s
j .(7.7)

Clearly, if we define, for s < 0, the real numbers ωsj , the complex numbers ηsj ,
and the vector fields Xs

j by

ω−sj = −ωsj
η−sj = ηsj

X−sj = Xs
j

 for j ∈ J , s ∈ Kj , s > 0,(7.8)
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the vector field F ε from (7.1) may be rewritten as

F ε =
∂

∂t
+ F1 +

∑
(j,s)∈I

ε−
`(j)−1
`(j) ηsje

iωsj t/εXs
j(7.9)

=
∂

∂t
+ F1 + ε−

1
2 F ε2 + ε−

2
3 F ε3 + · · · + ε−

P−1
P F εP ,(7.10)

where

F εl =
∑

(j,s)∈Il
ηsje

iωsj t/εXs
j .(7.11)

Note that the interest of (7.10) is that the negative powers of ε are written apart,
and the vector fields F εj have the “boundedness” property that their coefficients are
continuous functions of x and t, smooth outside x = 0, indexed by ε > 0, and locally
uniformly bounded with respect to ε > 0. (It is not the case of F ε itself because
of the negative powers of ε.) In the remainder of the proof, we shall always write
the negative powers of ε apart so that all the differential operators written as capital
letters never contain coefficients that are unbounded when ε goes to zero.

We now define a certain number of differential operators F εp1,p2,...,pd
of order d for

d between 1 and P , and for all d-tuple (p1, p2, . . . , pd) of integers such that

1 ≤ pk ≤ P for 1 ≤ k ≤ d,
1
p1

+ · · ·+ 1
pd−1

≤ 1,

(p1, p2) 6= (2, 2),

(p1, p2, p3) 6= (3, 3, 3),
...

(p1, . . . , pd−1) 6= (d− 1, . . . , d− 1).

(7.12)

We define F εp1,p2,...,pd
to be equal to

∑
( (j1,s1) ,... , (jd,sd) ) ∈ Id(p1,...,pd)

ηs1j1 η
s2
j2
· · · ηsdjd e

i(ω
s1
j1

+···+ωsd
jd

) tε Xsd
jd
X
sd−1

jd−1
. . . Xs1

j1

i(d−1)ωs1j1 (ωs1j1 + ωs2j2 ) · · · (ωs1j1 + · · ·+ ω
sd−1

jd−1
)

,(7.13)

where Id(p1, . . . , pd) is the set of d-tuples of indices ((j1, s1), . . . , (jd, sd)) such that
`(jk) = pk, and which are neither a collection of d

2 pairs of the form (j, s), (j,−s) nor
such that, for some (even) k, 2 ≤ k ≤ d, ((j1, s1), . . . , (jk, sk)) would be a collection
of k

2 pairs of the form (j, s), (j,−s). More precisely, Id(p1, . . . , pd) may be defined
recursively by I1(p) = I1 and

((j1, s1), . . . , (jd, sd)) ∈ Id(p1, . . . , pd)

⇔


• (jk, sk) ∈ Ipk ∀ k,
• ((j1, s1), . . . , (jd−1, sd−1)) ∈ Id−1(p1, . . . , pd−1) ,

• there exists no permutation τ ∈ S(d)
such that (jτ(k), sτ(k)) = (jk,−sk).

(7.14)
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With the above definition of the sets of indices Id(p1, . . . , pd), the denominators
in (7.13) cannot be zero because of the following lemma.

Lemma 7.1. Let ((j1, s1), . . . , (jd, sd)) ∈ Id (see the definition of I in (7.5)) be
such that ωs1j1 + · · ·+ ωsdjd = 0. Then
• either (`(j1), . . . , `(jd)) = (d, . . . , d) and there exists a permutation σ ∈ S(d)

such that the p-tuple ((j1, s1), . . . , (jd, sd)) is exactly equal to ((j, σ(1)), . . . , (j, σ(p)))
or ((j,−σ(1)), . . . , (j,−σ(p))) (with j1 = · · · = jd = j),
• or 1

`(j1) + · · ·+ 1
`(jd) > 1,

• or there exists a permutation τ ∈ S(d) such that (jτ(k), sτ(k)) = (jk,−sk) ∀ k.
Proof. The equality ωs1j1 + · · ·+ ωsdjd = 0 may be rewritten as

∑
j∈{1,...,N}
`(j)≥2

`(j)∑
s=1

λsjω
s
j = 0,(7.15)

where the integer λsj is equal to the number of times that (j, s) appears in ((j1, s1), . . . ,
(jd, sd)) minus the number of times (j,−s) appears. Of course, (7.15) may be rewritten
as ∑

j∈J

∑
ω∈Ωj

λωω = 0

with λωs
j

= λsj . Note that ∑
ω

|λw| =
∑
j,s

|λsj | ≤ d ≤ P.

Hence, from the assumption that the sequences of frequencies are mutually “indepen-

dent with respect to P” and are all MC (see (6.12)–(6.13)), each (λ1
j , . . . , λ

`(j)
j ) is equal

to either (0, . . . , 0), (1, . . . , 1), or (−1, . . . ,−1). If it is different from (0, . . . , 0) for at
least one j, then all the couples (j, 1), . . . , (j, `(j)) or all the couples (j,−1), . . . , (j,−`(j))
appear in ((j1, s1), . . . , (jd, sd)). If d = `(j) for this j, i.e., if ((j1, s1), . . . , (jd, sd)) is
a reordering of ((j, 1), . . . , (j, `(j))), or of ((j,−1), . . . , (j,−`(j))), then we are in the
first case of the lemma; if d > `(j), then there is at least another couple (j′, s′)
in ((j1, s1), . . . , (jd, sd)) and hence the sum 1

`(j1) + · · · + 1
`(jd) can be no less than

1 + 1
`(j′) and we are in the second case of the lemma. Let us now examine the

case where all the (λ1
j , . . . , λ

`(s)
j )’s are equal to (0, . . . , 0). This means that for all

j, s, the couple (j, s) and the couple (j,−s) appear the same number of times in
((j1, s1), . . . , (jd, sd)). This allows one to build the permutation having the property
required in the third point of the lemma: it is the one that exchanges 1 with the first
k1 such that (jk1 , sk1) = (j1,−s1), 2 (3 if k1 = 2) with the first k2 6= k1 such that
(jk2

, sk2
) = (j2,−s2), and so on.

We shall now prove the following two facts.
Fact 1. For all q, 1 ≤ q ≤ P , there exist γ1,q and γ2,q strictly positive such that

F ε =
∂

∂t
+ F1 +

q∑
p=2

(−1)p−1F εp, p, . . . , p︸ ︷︷ ︸
p times

(7.16)

+ εγ1,q

(
F εDε

1,q − Dε
1,q

∂

∂t

)
+ εγ2,q Dε

2,q
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+
∑

(p1,...,pq)∈{2,...,P}q,
1
p1

+···+ 1
pq
≤1,

(p1,...,pq)6=(q,...,q)

(−1)q−1ε
−
(

1− 1
p1
−···− 1

pq

)
F εp1,...,pq

Fact 2. For all p, 1 ≤ p ≤ P , there exist γ′1,p and γ′2,p strictly positive such that

F εp, p, . . . , p︸ ︷︷ ︸
p times

= 2
(−1)p−1

p

∑
j∈Jp
<
(
η1
j · · · ηpj
i(p−1)

)
Bj(7.17)

+ εγ
′
1,p

(
F εD′ε1,p − D′ε1,p

∂

∂t

)
+ εγ

′
2,p D′ε2,p

with

Bj =
∑

σ∈S(`(j))

[X
σ(1)
j , [X

σ(2)
j , [. . . , X

σ(`(j))
j ] . . .]]

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(`(j)−1)
j )

.(7.18)

These two facts imply Theorem 6.5. Indeed, for q = P , the last sum in (7.16) is
empty since 1

p1
+ · · · + 1

pP
≤ 1 with all the integers pj no larger that P implies

(p1, . . . , pP ) = (P, . . . , P ). Hence for q = P , (7.16) reads

F ε =
∂

∂t
+ F1 +

P∑
p=2

(−1)p−1F εp, p, . . . , p︸ ︷︷ ︸
p times

(7.19)

+ εγ1,P

(
F εDε

1,P − Dε
1

∂

∂t

)
+ εγ2,P Dε

2,P .

Substituting in the above the expression of F εp,...,p given by (7.17), one clearly gets (6.1)
with the appropriate differential operators Dε

1 and Dε
2 and the appropriate positive

real numbers γ1 and γ2.
Proof of Fact 1. We prove (7.16) by induction on q, from q = 1 to q = P .
For q = 1, the sum on the first line of (7.16) is empty, one may take Dε

1,1, D
ε
1,

and Dε
2,1 to be zero, and (7.16) is simply (7.10).

Let us now suppose that (7.16) holds for a certain q ≥ 1 and let us prove it for
q+ 1. This is done through a manipulation on differential operators that more or less
mimics an integration by parts. Since we shall use it elsewhere, let us explain it on a
“general” differential operator Y before applying it.

Consider a differential operator of order d on functions of t and x that does not
contain derivations with respect to t:

Y =
∑

multi-indices I of length d

ηI(t)aI(t, x)
∂|I|

∂xI
.(7.20)

Define Y [−1] and Y [1] to be

Y [−1] =
∑

multi-indices I of length d

ηI(t)

(∫ t

∗
aI(τ, x)dτ

)
∂|I|

∂xI
,(7.21)

Y [1] =
∑

multi-indices I of length d

dηI
dt

(t)

(∫ t

∗
aI(τ, x)dτ

)
∂|I|

∂xI
.(7.22)
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Note that these are defined up to a function of x (through the initial time in the
integrals) and that Y [1] is zero if the η’s are constants. The derivative with respect
to t of Y [−1] is Y + Y [1] in the following sense:

Y + Y [1] =

[
∂

∂t
, Y [−1]

]
=

∂

∂t
Y [−1] − Y [−1] ∂

∂t
.(7.23)

Indeed it is obvious that for any smooth function h of x and t, one has

Y.h (t, x) + Y [1].h (t, x) =
∂

∂t

(
Y [−1].h (t, x)

)
− Y [−1].

∂h

∂t
(t, x),(7.24)

simply because ∂
∂t commutes with ∂

∂|I|xI
. Then we rewrite (7.23) in the following way:

Y =

[
∂

∂t
, Y [−1]

]
− Y [1]

= F ε Y [−1] −
(

P∑
r=1

ε−
r−1
r F εr

)
Y [−1] − Y [−1] ∂

∂t
− Y [1].(7.25)

In order to prove that if (7.16) holds for q, it also holds for q + 1, we apply the
identity (7.25) with

Y = F εp1,...,pq ,

Y [−1] = εGεp1,...,pq ,

Y [1] = εHε
p1,...,pq ,

for

(p1, . . . , pq) 6= (q, . . . , q) and
1

p1
+ · · ·+ 1

pq
≤ 1,(7.26)

where Gεp1,...,pq and Hε
p1,...,pq are given by

Gεp1,...,pq=
∑

((j1,s1),...,(jq,sq)) ∈ Iq(p1,...,pq)

ηs1j1 · · · η
sq
jq
e
i(ω

s1
j1

+···+ωsq
jq

)t/ε
X
sq
jq
X
sq−1

jq−1
. . . Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sq
jq

)
(7.27)

Hε
p1,...,pq=

∑
((j1,s1),...,(jq,sq))∈Iq(p1,...,pq)

(
d
dt

(
ηs1j1 · · · η

sq
jq

))
e
i(ω

s1
j1

+···+ωsq
jq

)t/ε
X
sq
jq
X
sq−1

jq−1
. . . Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sq
jq

)
.(7.28)

Note that the denominators are nonzero because, from Lemma 7.1, the definition
(7.14) of the set of indices Iq(p1, . . . , pq) precisely removes the terms where the de-
nominators would be zero.

Then (7.25) with the above expressions for Y , Y [1], and Y [−1] yields

F εp1,...,pq = −
P∑
r=1

ε
1
rF εrG

ε
p1,...,pq + ε F εGεp1,...,pq − εGεp1,...,pq

∂

∂t
− εHε

p1,...,pq .(7.29)

From (7.27) and (7.11) we have

F εrG
ε
p1,...,pq

=
∑

( (j1, s1) , . . . , (jq, sq) ) ∈ Iq(p1, . . . , pq)
(jq+1, sq+1) ∈ Ir

ηs1j1 · · · η
sq+1

jq+1
e
i(ω

s1
j1

+···+ωsq+1
jq+1

)t/ε
X
sq+1

jq+1
X
sq
jq
. . . Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sq
jq

)
.
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From (7.14), the (q+1)-tuples ((j1, s1), . . . , (jq+1, sq+1)), which are in Iq(p1, . . . , pq)×
Ir but not in Iq+1(p1, . . . , pq, r), are such that there exists a permutation τ of the set
of integers {1, . . . , q + 1} for which

((jτ(1), sτ(1)), (jτ(2), sτ(2)), . . . , (jτ(q+1), sτ(q+1)))

= ((j1,−s1), (j2,−s2), . . . , (jq+1,−sq+1)),
(7.30)

and this is possible only if q is odd. Equations (7.8) (for X and ω, not for η) and
(7.30) imply that the term corresponding to ((j1,−s1), (j2,−s2), . . . , (jq+1,−sq+1)) is
equal to

η
sτ(1)

jτ(1)
· · · ηsτ(q+1)

jτ(q+1)
e
i(ω

sτ(1)
jτ(1)

+···+ωsτ(q+1)
jτ(q+1)

)t/ε
X
sq+1

jq+1
X
sq
jq
· · ·Xs1

j1

iq(−ωs1j1 )(−ωs1j1 − ωs2j2 ) . . . (−ωs1j1 − · · · − ω
sq
jq

)

which, since q must be odd (if not, there is no such term), is equal to

−
(∏q+1

k=1 η
sτ(k)

jτ(k)

)
e
i(ω

s1
j1

+···+ωsq+1
jq+1

)t/ε
X
sq+1

jq+1
X
sq
jq
· · ·Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) · · · (ωs1j1 + · · ·+ ω
sq
jq

)

and τ gives the change of index in the product allowing us to say that this is the oppo-
site of the term corresponding to ((j1, s1), (j2, s2), . . . , (jq+1, sq+1)). Hence these terms
sum to zero in the above sum. From (7.14), this implies F εrG

ε
p1,...,pq = F εp1,...,pq,r.

Substituting this in (7.29) yields (we rename r as pq+1)

F εp1,...,pq = −
P∑

pq+1=1

ε
1

pq+1 F εp1,...,pq,pq+1
+ ε F εGεp1,...,pq − εGεp1,...,pq

∂

∂t
− εHε

p1,...,pq .

Hence (7.16) yields

F ε =
∂

∂t
+ F1 +

q∑
p=2

(−1)p−1F εp, p, . . . , p︸ ︷︷ ︸
p times

(7.31)

+ εγ1,q

(
F εDε

1,q − Dε
1

∂

∂t

)
+ εγ2,q Dε

2,q

+ (−1)q
∑

(p1, . . . , pq) ∈ {2, . . . , P}q
1
p1

+ · · ·+ 1
pq
≤ 1

(p1, . . . , pq) 6= (q, . . . , q)
pq+1 ∈ {1, . . . , P}

ε
−
(

1− 1
p1
−···− 1

pq+1

)
F εp1,...,pq,pq+1

+ (−1)q−1
∑

(p1, . . . , pq) ∈ {2, . . . , P}q,
1
p1

+ · · ·+ 1
pq
≤ 1

(p1, . . . , pq) 6= (q, . . . , q)

ε
1
p1

+···+ 1
pq

(
F εGεp1,...,pq − Gεp1,...,pq

∂

∂t
− Hε

p1,...,pq

)
.

The term corresponding to (p1, . . . , pq+1) = (q+ 1, . . . , q+ 1) in the sum on the third
line is (−1)qF εq+1,...,q+1, it adds to the sum on the first line and this yields the first

line of (7.16) for q + 1. The other terms in this sum such that 1
p1

+ · · · + 1
pq+1

≤ 1

yield exactly the third line of (7.16) for q + 1, and the terms in this sum such that
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1
p1

+ · · · + 1
pq+1

> 1, as well as all the last sum, add up with the second line to give

the second line (the “small” terms) of (7.16) for q + 1. This proves (7.16) for q + 1
and ends the proof by induction of Fact 1.

Proof of Fact 2. From the definition (7.13) of F εp1,p2,...,pd
, we have

(7.32)

F εp, . . . , p︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp

= 0

ηs1j1 η
s2
j2
· · · ηspjp X

sp
jp
X
sp−1

jp−1
. . . Xs1

j1

i(p−1)ωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp−1

jp−1
)

+
∑

( (j1, s1) , . . . , (jp, sp) ) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

ηs1j1 η
s2
j2
· · · ηspjp e

i(ω
s1
j1

+···+ωsp
jp

)t/ε
X
sp
jp
X
sp−1

jp−1
. . . Xs1

j1

i(p−1)ωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp−1

jp−1
)

.

Now, apply (7.20), (7.21), (7.22), and (7.25) with Y equal to the second sum, and
therefore

Y [−1] = εGεp,...,p, Y [1] = εHε
p,...,p,

with

(7.33)

Gεp, . . . , p︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

ηs1j1 · · · η
sp
jp
e
i(ω

s1
j1

+···+ωsp
jp

)t/ε
X
sp
jp
X
sp−1

jp−1
· · ·Xs1

j1

ipωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp
jp

)
;

(7.34)

Hε
p, . . . , p︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p . . . p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

(
d
dt

(
ηs1j1 · · · η

sp
jp

))
e
i(ω

s1
j1

+···+ωsp
jp

)t/ε
X
sp
jp
X
sp−1

jp−1
· · ·Xs1

j1

ipωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp
jp

)
.

This allows us to rewrite the second sum in (7.32) as

ε F εGεp,...,p − εGεp,...,p
∂

∂t
− εHε

p,...,p −
P∑
r=1

ε
1
rF εp,...,p,r

with
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(7.35)

F εp, . . . , p, r︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

(jp+1, sp+1) ∈ Ir

ηs1j1 · · · η
sp+1

jp+1
e
i(ω

s1
j1

+···+ωsp+1
jp+1

)t/ε
X
sp+1

jp+1
X
sp
jp
. . . Xs1

j1

ipωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp
jp

)
.

Let us now consider the first sum in (7.32). From Lemma 7.1 and the fact
that, from (7.14), a p-tuple that is in Ip(p, . . . , p) cannot be of the type described
in the third item of this lemma, all the p-tuples ((j1, s1), . . . , (jp, sp)) in Ip(p, . . . , p)
such that ωs1j1 + · · · + ω

sp
jp

= 0 are exactly of the form ((j, σ(1)), . . . , (j, σ(p))) or

((j,−σ(1)), . . . , (j,−σ(p))) with `(j) = p and σ ∈ S(p). Hence the first sum may be
rewritten (recall that X−sj = Xs

j ) as

2
∑
j∈Jp
<
(
η1
j · · · ηpj
ip−1

)
Cj

with

Cj =
∑

σ∈S(p)

X
σ(p)
j X

σ(p−1)
j · · ·Xσ(1)

j

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

.(7.36)

If one replaces in the above sum σ by σ ◦ τ, where τ is the permutation that sends
(1, 2, . . . , p) on (p, p− 1, . . . , 1) (change of indices in the summation), one gets

Cj =
∑

σ∈S(p)

X
σ(1)
j X

σ(2)
j · · ·Xσ(p)

j

(ω
σ(p)
j + · · ·+ ω

σ(2)
j )(ω

σ(p)
j + · · ·+ ω

σ(3)
j ) · · · (ωσ(p)

j + ω
σ(p−1)
j )ω

σ(p)
j

.

Since ω1
j + · · ·+ ωpj = 0, the denominator may be transformed:

Cj = (−1)p−1
∑

σ∈S(p)

X
σ(1)
j X

σ(2)
j . . . X

σ(p)
j

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

.

Finally, a combinatorial computation in the free Lie algebra (see [8], or [9] in which
this identity is also obtained but in a less computational way) gives

∑
σ∈S(p)

X
σ(1)
j X

σ(2)
j . . . X

σ(p)
j

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

=
1

p

∑
σ∈S(p)

[X
σ(1)
j , [X

σ(2)
j , [· · · , Xσ(p)

j ] · · ·]]
ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

.
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Hence Cj = (−1)p−1

p Bj with Bj given by (7.18). Substituting the above in (7.32)
yields

F εp, . . . , p︸ ︷︷ ︸
p times

=
2 (−1)p−1

p

∑
j∈Jp

<
(
η1
j · · · ηpj
ip−1

)
Bj(7.37)

+ ε

F εGεp, . . . , p︸ ︷︷ ︸
p times

−Gεp, . . . , p︸ ︷︷ ︸
p times

∂

∂t

 − εHε
p,...,p −

P∑
r=1

ε
1
rF εp, . . . , p, r︸ ︷︷ ︸

p times

.

This clearly yields (7.17), ends the proof of Fact 2, and hence ends the proof of
Theorem 6.5.

7.3. Proof of Theorem 4.9. Let F ε = ∂
∂t + fε with fε the vector field asso-

ciated with the right-hand side of (4.21), and let G = ∂
∂t + g with g the vector field

associated with the right-hand side of (4.17). First, we show that F ε DO-converges
(see Definition 6.1) to G as ε tends to zero.

Since (4.21) is the same as (4.16) with uj,s = uεj,s given by (4.18), F ε can be
expressed in the form (6.15), with all Xs

j ’s homogeneous of degree zero because each
Xs
j corresponds to one of the bτs

j
vsj ’s and, from Proposition 4.6, all vector fields bτs

j
vsj

are homogeneous of degree zero. We can apply Theorem 6.5 because the sets Ωn,α (n =
2, . . . , N) in the construction of Theorem 4.7 are MC and linearly independent with
respect to P (see [9, section 5]). It implies that F ε DO-converges, as ε tends to
zero, to a vector field F 0 = ∂

∂t + f0 of the form (6.17), and in the definition (6.1)
of DO-convergence, all differential operators are homogeneous of degree zero. We
claim that G = F 0. Indeed, from Proposition 6.2, the property of DO-convergence
implies the uniform convergence of the trajectories on finite time intervals. Therefore,
the trajectories of (4.21) converge to those of ẋ = f0(t, x); however, from Theorem
4.7 (recall that (4.21) is the same as (4.16)–(4.18)), they converge to the trajectories
of (4.17). This implies that the systems ẋ = g(t, x) and ẋ = f0(t, x) are the same
because they have the same trajectories. Hence, F 0 = G.

Finally, since F ε DO-converges to G = ∂
∂t + g (with g autonomous) and since all

differential operators in the definition of DO-convergence are homogeneous of degree
zero, the asymptotic stability of the origin of (4.21), for ε > 0 small enough, will
follow from Proposition 6.2 if we can show that the origin of (4.17) is asymptotically
stable. This is a direct consequence of (4.3) to (4.5).
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Abstract. We analyze the sensitivity of parameterized variational inequalities for convex poly-
hedric sets in reflexive Banach spaces. We compute a generalized derivative of the solution mapping
where the formula for the derivative is given in terms of the solutions to an auxiliary variational
inequality. These results are distinguished from other work in this area by the fact that they do not
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1. Introduction. Variational inequalities have been studied widely in infinite-
dimensional optimization, particularly because they can represent solutions or solution-
multiplier pairs associated with optimal control problems. In this paper, we analyze
the sensitivity of solutions x in a reflexive Banach space X to variational inequalities
of the form

〈v − F (x, u), c− x〉 ≤ 0 ∀ c ∈ C,(1.1)

where v is a parameter in the dual space X∗, u is a parameter in a Banach space U ,
F : X × U → X∗ is a (single-valued) mapping, and C ⊆ X is a closed, nonempty,
convex polyhedric set.

Definition 1.1. A subset C of a Banach space is called polyhedric at x̄ ∈ C for
x∗ ∈ X∗ if the identity holds that

(x∗)⊥
⋂
∪λ>0λ(C − x̄) = (x∗)⊥

⋂
∪λ>0λ(C − x̄),

where the overbar denotes the strong closure of the set.
Polyhedric sets are an infinite-dimensional generalization of finite-dimensional

polyhedral sets; sets that are polyhedric at all their points were first studied in a
Hilbert space setting [10], [4], where projections onto these sets were shown to be
semidifferentiable. It is a fact that the point x is the projection of G(u) onto the
set C if and only if the variational inequality 〈G(u) − x, c − x〉 ≤ 0 for all c ∈ C
is satisfied. The authors in [10] and [4] used this fact to apply their results about
projections to analyze the sensitivity of variational inequalities (1.1) of the special
form where F (x, u) = G(u) − x, U = R, and v = 0. Notice that this form of
variational inequality automatically has a unique solution x(u) for each u, since the
projection of G(u) onto the convex set C is a unique point. From their results about
the semidifferentiability of projections, these authors showed that the solution function
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x(u) is semidifferentiable with respect to u. In [14] and [8], the results in [4] and
[10] were applied to the sensitivity analysis of solutions and solution-multiplier pairs
associated with parameterized optimization problems on Hilbert spaces. This work
is complemented by [9], where the sensitivity of variational inequalities associated
with convex polyhedric cones C was analyzed under a “strong regularity” assumption
which involves unique and Lipschitz continuous solutions to a linearized version of the
variational inequality. All of these papers include examples of polyhedric sets arising
in variational inequalities associated with optimal control problems. The main result
of the present paper complements these results by quantifying the sensitivity of the
solutions to (1.1) without relying on some of the strong conditions found in the works
of previous authors.

Theorem 1.1. Consider fixed parameters v̄ ∈ X∗ and ū ∈ U together with a
solution x̄ to the variational inequality (1.1) corresponding to these parameters. If C
is a convex set that is polyhedric at x̄ ∈ C for v̄−F (x̄, ū) and F is semidifferentiable at
(x̄, ū) (with derivative mapping DF (x̄, ū) : X × U → X∗), then the solution mapping

S(u, v) :=
{
x ∈ C : 〈v − F (x, u), c− x〉 ≤ 0 ∀ c ∈ C}

is protodifferentiable at (ū, v̄) for x̄ with protoderivative mapping DS(ū, v̄|x̄) : U ×
X∗ →→ X given by

DS(ū, v̄|x̄)(u, v) =
{
x ∈ C ′ : 〈v −DF (x̄, ū)(x, u), c′ − x〉 ≤ 0 ∀ c′ ∈ C ′},

where C ′ ⊆ X is defined by

C ′ := (v̄ − F (x̄, ū))⊥
⋂
∪λ>0λ(C − x̄).

Theorem 1.1 is distinguished from previous work in this area in that it involves no
explicit assumptions about the uniqueness (or even existence) of the solutions to the
variational inequality. This is representative of a fundamental shift in how sensitivity
analysis can be approached: By utilizing a generalized derivative like the protoderiva-
tive, we can focus on differential properties of solutions without having to simulta-
neously consider properties like uniqueness and continuity. These other important
properties can then be studied separately and the results combined when a combina-
tion of the properties is desired. Our approach is fruitful since the protoderivative
gives important sensitivity information even when uniqueness and continuity are not
present. In particular, we show that the images of the protoderivative mapping are
the sets of “directional derivatives” obtained by considering different curves tangen-
tial to a direction. Moreover, nothing is lost with this approach as we show that the
protoderivative is the same as the usual directional derivative for continuous functions
(here called the “semiderivative”).

As a precursor to our main result, we analyze the second-order properties of
convex polyhedric sets C by considering their associated “indicator functions” δC :
X → R ∪ {∞} defined by

δC(x) =

{
0 if x ∈ C,
∞ otherwise.

We show that δC is “twice Mosco epi-differentiable at x̄ for x∗” with second-order
epi-derivative equal to the indicator function associated with the set

(x∗)⊥
⋂
∪λ>0λ(C − x̄),
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but the second-order directional derivative along a fixed direction is the indicator
function associated with the set

(x∗)⊥
⋂
∪λ>0λ(C − x̄).

These results are interesting in their own right, since they quantify the “straightness”
of the boundaries of polyhedric sets in a way that distinguishes them from finite-
dimensional polyhedral sets.

In the final two sections, we apply our results to abstract constrained optimization
problems and we obtain results that complement those in [14] and [8]. Because our
sensitivity analysis does not depend on the uniqueness of solutions, we avoid some of
the strong conditions needed in [14] and [8]. Of course, the stronger conditions used
by other authors give stronger consequences too. (For example, in [8] the existence,
uniqueness, and Lipschitz continuity of solutions is obtained.) The abstract models
that we study cover many important problems in infinite-dimensional optimization,
including problems in parameterized optimal control.

2. Second-order analysis of convex polyhedric sets. The results in this
section hold when X is any Banach space (not necessarily reflexive). To analyze the
second-order properties of a closed, nonempty, convex polyhedric set C ⊆ X at a
point x̄ ∈ C, we fix a point x∗ in the dual space X∗ and construct the second-order
difference quotient functions ∆2

t (x̄|x∗) : X → R ∪ {∞} as follows:

∆2
t (x̄|x∗)(x) :=

δC(x̄+ tx)− δC(x̄)− t〈x∗, x〉
t2/2

.

Notice that the term δC(x̄) contributes nothing since the point x̄ is in the set C;
however, we include this term so that the difference quotient will look familiar. The
generalized second-order derivatives that we employ in this paper are defined as the
Mosco epi-limits of the difference quotients ∆2

t (x̄|x∗). Recall from [2] that a family
of functions ∆t : X → R ∪ {∞} Mosco epi-converges as t ↓0 to ∆ : X → R ∪ {∞} if
for every sequence of scalars tn ↓0, and every element x ∈ X, the two conditions hold
that

∆(x) ≤ inf
xn

w→x lim infn ∆tn(xn),

∆(x) ≥ inf
xn

s→x lim supn ∆tn(xn),

where the superscripts w and s indicate weak and strong convergence, respectively.
We say that the indicator function δC : X → R∪{∞} is twice Mosco epi-differentiable
at x̄ for x∗ with second-order epi-derivative function δ′′C(x̄|x∗) : X → R ∪ {∞} if the
second-order difference quotients ∆2

t (x̄|x∗) Mosco epi-converge as t ↓0 to δ′′C(x̄|x∗)
with δ′′C(x̄|x∗)(0) = 0. The second-order epi-derivative detects the curvature of the
set C, as the following finite-dimensional example from [12] illustrates.

Example. Consider the half-disk in R2

C = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 2, x1 − x2 ≤ 0}
and its corner point x̄ = (1, 1). If we consider the point x∗ = (2, 2) which solves
the variational inequality 〈x∗, c − x̄〉 ≤ 0 for all c ∈ C, we see that the second-order
epi-derivative at x̄ for x∗ is

δ′′C(x̄|x∗)(x) = (x2
1 + x2

2) + δ{λ(−1,1):λ≥0}(x).
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The (x2
1 + x2

2) term is evidence that the second-order epi-derivative for the vector
x∗ in this case detects the curving on the semicircular boundary of C. In contrast,
consider instead the point x∗ = (2,−2) which also solves the variational inequality
〈x∗, c− x̄〉 ≤ 0 for all c ∈ C. In this case, the second-order epi-derivative at x̄ for x∗

is

δ′′C(x̄|x∗)(x) = δ{λ(−1,−1):λ≥0}(x).

The second-order epi-derivative for this vector x∗ detects only the straight side of C.
Recall that a convex set C in Rn is called polyhedral if it can be specified by

finitely many linear constraints. The boundaries of such sets thus consist of finitely
many straight pieces. It can be deduced from [12, Exercise 13.17] that for any convex
polyhedral set C ⊆ Rn, the indicator function δC is twice (Mosco) epi-differentiable at
any point x̄ ∈ C for any point x∗ ∈ X∗ solving the variational inequality 〈x∗, c−x〉 ≤ 0
for all c ∈ C. Moreover, the second-order epi-derivative in this case is the indicator
function associated with the set

(x∗)⊥
⋂
∪λ>0λ(C − x̄),

so the second-order epi-derivative in this case detects the (lack of) curvature of the
set C. The following theorem shows that this property extends to polyhedric sets on
Banach spaces, a result which supports the claim that polyhedric sets are a reasonable
generalization of polyhedral sets.

Theorem 2.1. Consider a closed, nonempty, convex set C in a Banach space X
that is polyhedric at x̄ ∈ C and a point x∗ ∈ X∗ satisfying 〈x∗, c−x̄〉 ≤ 0 for all c ∈ C.
Then the indicator function δC : X → R ∪ {∞} is twice Mosco epi-differentiable at x̄
for x∗ and the second-order epi-derivative δ′′C(x̄|x∗) satisfies

δ′′C(x̄|x∗)(x) =

{
0 if x ∈ (x∗)⊥

⋂ ∪λ>0λ(C − x̄),
∞ otherwise.

Proof. To prove this result, we need to verify that for any tn ↓0 and any xn
w→ x,

the difference quotient functions ∆2
t (x̄|x∗) satisfy

lim inf
n

∆2
tn(x̄|x∗)(xn) ≥

{
0 if x ∈ (x∗)⊥

⋂ ∪λ>0λ(C − x̄),
∞ otherwise.

(2.1)

From the definition of the difference quotient functions, it is clear that ∆2
tn(x̄|x∗)(xn)

equals infinity unless x̄+ tnxn ∈ C, so if there is no sequence {xn} weakly converging
to x and satisfying x̄ + tnxn ∈ C, then the limit inferior in (2.1) is infinity for all

weakly converging sequences xn
w→ x, and the inequality (2.1) is verified. We thus

assume that there exists a sequence xn
w→ x with x̄+tnxn ∈ C. In this case, according

to the assumption about the point x∗, the inner product 〈x∗, tnxn〉 is nonpositive. It
follows that the value of the difference quotient for tn evaluated at xn always satisfies

∆2
tn(x̄|x∗)(xn) ≥ 0.(2.2)

Thus, the only part of inequality (2.1) that needs to be verified is that the limit

inferior of ∆2
tn(x̄|x∗)(xn) equals infinity when x 6∈ (x∗)⊥

⋂ ∪λ>0λ(C − x̄). Since

C is polyhedric at x̄ for x∗, the set (x∗)⊥
⋂ ∪λ>0λ(C − x̄) is the same as the set
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(x∗)⊥
⋂ ∪λ>0λ(C − x̄), so to verify the inequality (2.1) in this case, we assume either

that x is not perpendicular to x∗ or that x is not an element of the set ∪λ>0λ(C − x̄).
We show first that this latter case cannot occur.

Case. x 6∈ ∪λ>0λ(C − x̄) cannot occur. Since we have assumed throughout that

x̄ + tnxn ∈ C with xn
w→ x, it follows that xn ∈ ∪λ>0λ(C − x̄) so that x is in the

weak closure of the set ∪λ>0λ(C− x̄). However, the set ∪λ>0λ(C− x̄) is convex (since
C is convex) so its weak closure is the same as its strong closure ∪λ>0λ(C − x̄). We
conclude that x ∈ ∪λ>0λ(C − x̄).

Case. 〈x∗, x〉 6= 0. Since x̄+ tnxn ∈ C, the difference quotient for tn evaluated at
xn satisfies

∆2
tn(x̄|x∗)(xn) =

−tn〈x∗, xn〉
t2n/2

.(2.3)

However, since the term 〈x∗, xn〉 converges to 〈x∗, x〉 which is nonzero in this case,
it follows from (2.3) and the inequality (2.2) that the limit inferior of the difference
quotient for tn evaluated at xn is infinity.

This establishes the inequality (2.1), so we will be finished if we can also verify

that for any tn ↓0, there exists xn
s→ x satisfying the inequality

lim sup
n

∆2
tn(x̄|x∗)(xn) ≤

{
0 if x ∈ (x∗)⊥

⋂ ∪λ>0λ(C − x̄),
∞ otherwise.

(2.4)

It follows immediately that we need only consider the case

x ∈ (x∗)⊥
⋂
∪λ>0λ(C − x̄),

which implies that there exists a sequence ξn
s→ x satisfying 〈x∗, ξn〉 = 0 and with

ξn ∈ λn(C − x̄) for some positive scalars λn. For any t ∈ [0, 1/λn], we can write

x̄+ tξn = (1− tλn)x̄+ tλn(x̄+ ξn/λn),

which is a convex combination of elements in C. From the convexity of C, we conclude
that any such points x̄+ tξn are contained in C. We construct a sequence of points xn
from the sequence {ξn} in the following manner. We set x1 = ξ1, x2 = ξ1,. . . ,xn = ξ1
for all n until tn is smaller than 1/λ2, at which point we begin setting xn = ξ2 for
all n until tn is less than 1/λ3 and continue this process ad infinitum. The resulting
sequence {xn} converges strongly to x, satisfies 〈x∗, xn〉 = 0, and has x̄ + tnxn ∈ C
for all n larger than the one where we began using ξ2. It follows that the difference
quotient for tn evaluated at these xn equals zero, so that its limit superior satisfies
the inequality (2.4).

The second-order epi-derivative proposed in this case equals zero when evaluated
at zero, so the proof is complete.

In order to see how the second-order epi-derivative compares to a more classical
notion of second-order directional derivative, we consider a point x̄ ∈ C and a point
x∗ ∈ X∗ satisfying 〈x∗, c − x̄〉 ≤ 0 for all c ∈ C, and take the limit as t ↓0 of the
difference quotient functions ∆2

t (x̄|x∗) in a fixed direction x:

lim
t ↓ 0

δC(x̄+ tx)− δC(x̄)− t〈x∗, x〉
t2/2

.(2.5)
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Proposition 2.1. Consider a closed, nonempty, convex set C in the Banach
space X, a point x̄ ∈ C and a point x∗ ∈ X∗ satisfying 〈x∗, c− x̄〉 ≤ 0 for all c ∈ C.
Then the second-order directional derivative along any fixed direction x ∈ X satisfies

lim
t ↓ 0

δC(x̄+ tx)− δC(x̄)− t〈x∗, x〉
t2/2

=

{
0 if x ∈ (x∗)⊥

⋂ ∪λ>0λ(C − x̄),
∞ otherwise.

Proof. Just as in the proof of Theorem 2.1, if x ∈ λ(C − x̄), then we know that
x̄ + tx ∈ C for all t ∈ [0, 1/λ]. It follows that if x is an element of the intersection
(x∗)⊥

⋂ ∪λ>0λ(C − x̄), then the limit (2.5) is equal to zero. Moreover, the difference
quotient in (2.5) is always nonnegative (again according to an argument similar to
the one in the proof of Theorem 2.1), so if x is not perpendicular to x∗, then the limit
(2.5) is infinite. Finally, if x is not in the set ∪λ>0λ(C − x̄) it follows that the term
δC(x̄+ tx) is infinite for all t > 0, so the limit (2.5) is infinite too.

It follows from Theorem 2.1 and Proposition 2.1 that the second-order epi-
derivative is the same as the second-order directional derivative along a fixed
direction if and only if the set (x∗)⊥

⋂ ∪λ>0λ(C − x̄) is closed. This always
occurs when C is a polyhedral set in Rn, so that the two second-order derivatives
agree in the case of polyhedral C. However, this is not necessarily true for polyhedric
sets in Banach spaces, as the following example shows.

Example. Consider the Banach space X of continuous functions on the interval
[−1, 1] under the supremum norm

‖ x ‖:= sup
τ∈[−1,1]

|x(τ)|,

the set C = {x ∈ X : x(τ) ≤ 0 for all τ ∈ [−1, 1]}, and the function x̄ ∈ C defined
by x̄(τ) = −τ4. This set C is trivially polyhedric at x̄ for x∗ = 0 ∈ X∗ (any set is
polyhedric at all of its points for x∗ = 0). Now consider the function x ∈ X defined
by x(τ) = τ2. In order for x to be an element of the set ∪λ>0λ(C − x̄), there must
be some λ > 0 with τ2 ≤ λτ4 for all τ ∈ [−1, 1]. Since no such λ exists, we conclude
that x is not in the set ∪λ>0λ(C − x̄). However, if we define the continuous functions
xn on [−1, 1] by

xn(τ) :=

 nτ4 for τ ∈
[
−
√

1
n ,
√

1
n

]
,

τ2 for τ < −
√

1
n or τ >

√
1
n ,

then these converge to x as n → ∞ and satisfy xn ∈ n(C − x̄). Therefore, x is
contained in ∪λ>0λ(C − x̄). It follows that the second-order epi-derivative satisfies
δ′′C(x̄|x∗)(x) = 0, while the second-order directional derivative along the fixed direction
x (2.5) is infinite.

This example highlights the fact that polyhedric sets in Banach spaces have prop-
erties distinct from polyhedral sets in Rn. In particular, polyhedric sets C in Ba-
nach spaces have “straight” boundaries as detected by the second-order epi-derivative
δ′′C(x̄|x∗). However, this straightness is not the same as it is for polyhedral sets whose
boundary “straightness” is also detected by the second-order directional derivative
along fixed directions (2.5).

3. Protoderivatives of solutions to variational inequalities. It is conve-
nient to represent the solutions to the variational inequality (1.1) as the values of the
multifunction S : U ×X∗ →→ X defined by

S(u, v) := {x : v − F (x, u) ∈ NC(x)},(3.1)
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where the normal cone mapping NC : X →→ X∗ associated with the set C is defined
for x ∈ X by

NC(x) :=

{ {x∗ : 〈x∗, c− x〉 ≤ 0 for all c ∈ C} if x ∈ C,
∅ otherwise.

(3.2)

“Protoderivatives” of these kinds of solution multifunctions have been studied in [6],
where they are shown to depend on the protodifferentiability of the normal cone
mapping NC . The protoderivative of any multifunction S : Z →→ Y between two
Banach spaces can be defined in terms of the contingent cone to the graph of S at
(z̄, ȳ) ∈ gphS:

TgphS(z̄, ȳ) := lim sup
t ↓ 0

gphS − (z̄, ȳ)

t
,

defined in terms of “lim supt ↓ 0” denoting the outer set limit as t ↓0, which is the set of
all points obtained as limits of points in the sets

(
gphS−(z̄, ȳ)

)
/tn for some sequence

tn ↓0. The multifunction S : Z →→ Y is protodifferentiable at z̄ for ȳ if every element
in the contingent cone TgphS(z̄, ȳ) can actually be obtained as a limit

lim
t ↓ 0

ξ(t)− (z̄, ȳ)

t
(3.3)

for some selection mapping ξ : [0, ε]→ gphS with ε > 0. Under these circumstances,
the protoderivative of S at z̄ for ȳ is the multifunction DS(z̄|ȳ) : Z →→ Y whose graph
is the contingent cone TgphS(z̄, ȳ). The following is a consequence of the second-order
Mosco epi-differentiability demonstrated in Theorem 2.1.

Theorem 3.1. Consider a closed, nonempty, convex set C in a reflexive Banach
space X that is polyhedric at x̄ ∈ C and a point x∗ ∈ X∗ satisfying 〈x∗, c− x̄〉 ≤ 0 for
all c ∈ C. Then the normal cone mapping NC : X →→ X∗ is protodifferentiable at x̄
for x∗ with protoderivative equal to the normal cone mapping associated with the set

C ′ := (x∗)⊥
⋂
∪λ>0λ(C − x̄).

Proof. This follows from Theorem 2.1 and [11, Theorem 5] since the normal cone
mapping associated with a convex set is the convex subdifferential of the indicator
function.

Remark. The result [11, Theorem 5] used in the proof of Theorem 3.1 is based
on Attouch’s theorem [1], which connects the epi-convergence of convex functions on
reflexive Banach spaces with the graphical convergence of their subgradient mappings.
Because of this connection, Theorem 3.1 itself must be stated in terms of reflexive
Banach spaces instead of the more general Banach spaces considered in section 2.
Our main result, Theorem 1.1, follows immediately from results now obtained.

Proof of Theorem 1.1. This follows immediately from Theorem 3.1 and [6, Theo-
rem 4.1]. The latter result gave the protodifferentiability of general solution mappings
of the form

S(u, v) := {x : v − F (x, u) ∈M(x, u)}

as long as F is semidifferentiable and the set-valued mapping M is protodifferentiable.
According to Theorem 3.1, the normal cone mapping NC studied here is one example
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of a protodifferentiable set-valued mapping M , so the protodifferentiability of the
solution mapping (3.1) follows from [6, Theorem 4.1]. Moreover, a formula was given
in [6, Theorem 4.1] for the protoderivative of the general solution mapping, and this
formula specializes in the case of (3.1) to the formula claimed in the statement of
Theorem 1.1.

Remark. Note that it is important that the parameter v ∈ X∗ appear in the
variational inequality (1.1) if we are to deduce protodifferentiability from [6, Theorem
4.1]. If the solution mapping (3.1) does not depend explicitly on v, we can obtain
estimates for related generalized derivatives called “outer graphical derivatives” via
[5].

Protoderivatives for multifunctions between two Euclidean spaces have been stud-
ied widely (see [12] for a survey), where they have been shown to have many use-
ful properties. In the case when S is a (single-valued) continuous function, the
protoderivative is related closely to the “semiderivative.” A continuous function
S : Z → Y between two Banach spaces is semidifferentiable at z̄ with semideriva-
tive DS(z̄) : Z → Y if for every φ : R+ → Z for which (φ(t)− z̄)/t converges to some
point z ∈ Z, the limit exists

DS(z̄)(z) = lim
t ↓ 0

S(φ(t))− S(z̄)

t
.

(See [13] for a discussion of equivalent definitions of this derivative which the author
calls the “Hadamard” directional derivative.) It was shown in [7] that a locally Lip-
schitzian mapping S : Rn → Rm is protodifferentiable at z̄ for ȳ = S(z̄) if and only
if it is semidifferentiable at z̄. (An equivalent derivative called the “B-derivative”
was used in [7].) The following proposition clarifies the relationship between the
protoderivative and the semiderivative in the case of continuous functions between
two Banach spaces.

Proposition 3.1. (i) If the continuous function S : Z → Y is semidifferentiable
at z̄, then S is protodifferentiable at z̄ for ȳ = S(z̄) with protoderivative DS(z̄|ȳ) equal
to the semiderivative DS(z̄).

(ii) If the multifunction S : Z → Y is protodifferentiable at z̄ for ȳ = S(z̄), then
for any φ : R+ → Z with (φ(t) − z̄)/t → z and

(
S(φ(t)) − S(z̄)

)
/t → y as t ↓0, the

limit y is in the image of the protoderivative DS(z̄|ȳ)(z).
Proof. (i) We consider any pair (z, y) in the contingent cone to the graph of S at

(z̄, ȳ). Then there exist sequences tn ↓0 and (zn, yn)→ (z, y) which satisfy

yn ∈ S(z̄ + tnzn)− ȳ
tn

.

Since S is semidifferentiable at z̄, it follows that y must be equal to the semideriva-
tive evaluated in the direction z, so the protoderivative (if it exists) is equal to the
semiderivative. Moreover, if we define the selection mapping ξ(t) := (z̄+tz, S(z̄+tz)),
the limit (3.3) satisfies

lim
t ↓ 0

ξ(t)− (z̄, S(z̄))

t
=

(
z, lim

t ↓ 0

S(z̄ + tz)− S(z̄)

t

)
= (z, y),

so S is protodifferentiable at z̄ for ȳ = S(z̄).
(ii) For any sequence tn ↓0, the sequences zn := (φ(tn)−z̄)/tn and yn :=

(
S(φ(tn)−

S(z̄)
)
/tn satisfy

(zn, yn) ∈ gphS − (z̄, ȳ)

tn
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and converge to z and y, respectively. It follows that the pair (z, y) is in the contin-
gent cone to gphS at (z̄, ȳ), which is the same as the graph of the protoderivative
DS(z̄|ȳ).

According to the definition of the protoderivative, each element in the set
DS(z̄|ȳ)(z) can be obtained as the limit of

(
S(φ(t)) − z̄

)
/t for some φ as in (ii)

of Theorem 3.1. This fact together with part (ii) of Theorem 3.1 shows that the im-
age of the protoderivative DS(z̄|ȳ)(z) is precisely the set of “directional derivatives”
obtained by considering different curves φ tangential to the direction z.

4. Sensitivity of stationary points. We consider the optimization problem

min g0(x, u)− 〈v, x〉 over all x ∈ C,(4.1)

where C is a closed, nonempty, convex set in a reflexive Banach space X, and the
functional g0 : X × U → R is continuously differentiable with respect to x. The
stationary points associated with this problem for parameters u ∈ U and v ∈ X∗ are
the solutions to the variational inequality

v −∇xg0(x, u) ∈ NC(x),

this being a first-order necessary condition for optimality in (4.1).
Theorem 4.1. Consider the parameters v̄ ∈ X∗ and ū ∈ U together with a

stationary point x̄ ∈ C satisfying v̄ − ∇xg0(x̄, ū) ∈ NC(x̄). If the gradient mapping
∇xg0 is semidifferentiable at (x̄, ū) and the set C is polyhedric at x̄ for v̄−∇xg0(x̄, ū),
then the stationary point mapping

S(u, v) := {x ∈ C : v −∇xg0(x, u) ∈ NC(x)}
is protodifferentiable at (ū, v̄) for x̄ with protoderivative mapping DS(ū, v̄|x̄) : U ×
X∗ →→ X given by

DS(ū, v̄|x̄)(u, v) =
{
x ∈ C ′ : v −D(∇xg0

)
(x̄, ū)(x, u) ∈ NC′(x)

}
,

where C ′ ⊆ X is defined by

C ′ := (v̄ −∇xg0(x̄, ū))⊥
⋂
∪λ>0λ(C − x̄).

Proof. This follows immediately from Theorem 1.1.
Theorem 4.1 compares to [14, Theorem 2], where an abstract optimal control

problem is shown to have semidifferentiable solutions. In contrast to Theorem 4.1,
however, strong second-order conditions were needed in [14, Theorem 2] to ensure
unique solutions to the variational inequality.

5. Sensitivity of Karush–Kuhn–Tucker pairs. Our results also apply to
solution-multiplier pairs associated with optimization problems like

min g0(x, u)− 〈v1, x〉 over all x ∈ C(u, v2),(5.1)

where the constraint set C(u, v2) is defined for parameters u ∈ U and v2 ∈ Y ∗ by

C(u, v2) := {x ∈ C : v2 + g(x, u) ∈ K}
for a mapping g : X ×U → Y ∗ that is continuously differentiable with respect to x, a
closed, nonempty, convex set C in a reflexive Banach space X and a closed, nonempty,
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convex cone K (with vertex at the origin) in a reflexive Banach space Y . For such an
optimization problem, we can construct the Lagrangian

L(x, u, y) := g0(x, u) + 〈y, g(x, u)〉,

in terms of which we can represent the Karush–Kuhn–Tucker (KKT) pairs (x, y) ∈
C ×K∗ (where K∗ is polar cone to K, containing the elements y∗ ∈ Y ∗ which satisfy
〈y∗, y〉 ≤ 0 for all y ∈ K) for the problem (5.1) which satisfy

v1 −∇xL(x, u, y) ∈ NC(x), v2 + g(x, u) ∈ NK∗(y).(5.2)

The set of KKT pairs satisfying (5.2) for parameters (u, v1, v2) is the same as the
image of the mapping

S(u, v1, v2) := {(x, y) ∈ C ×K∗ : (v1, v2)(5.3)

− (∇xL(x, u, y),−g(x, u)
) ∈ NC×K∗(x, y)

}
.

This follows since the product set NC(x)×NK∗(y) is the same as the normal cone of
the product C ×K∗ at the point (x, y).

Theorem 5.1. Consider the parameters v̄ = (v̄1, v̄2) ∈ V := X∗ × Y ∗ and
ū ∈ U together with a KKT pair (x̄, ȳ) ∈ C × K∗. If the gradient mapping ∇xL
is semidifferentiable at (x̄, ū, ȳ), the mapping g is semidifferentiable at (x̄, ū), and
the set C × K∗ is polyhedric at (x̄, ȳ) for v̄ − (∇xL(x̄, ū, ȳ),−g(x̄, ū)

)
, then the

KKT-pair mapping (5.3) is protodifferentiable at (ū, v̄) for (x̄, ȳ) with protoderivative
DS(ū, v̄|x̄, ȳ) : U × V →→ X × Y given by

DS(ū, v̄|x̄, ȳ)(u, v)

=
{

(x, y) ∈ C ′ : v −
(
D
(∇xL)(x̄, ū, ȳ)(x, u, y),−Dg(x̄, ū)(x, u)

)
∈ NC′(x, y)

}
,

where C ′ ⊆ X × Y is defined by

C ′ :=
(
v̄ − (∇xL(x̄, ū, ȳ),−g(x̄, ū)

))⊥ ⋂ ∪λ>0λ
(
C ×K∗ − (x̄, y)

)
.

Proof. This follows from Theorem 1.1 since under our assumptions, the mapping

(x, u, y) 7→ (∇xL(x, u, y),−g(x, u)
)

is semidifferentiable at (x̄, ū, ȳ) with semiderivative(
D
(∇xL)(x̄, ū, ȳ)(x, u, y),−Dg(x̄, ū)(x, u)

)
.

This result compares to results in [8] and [9], where second-order conditions and
regularity conditions were used to guarantee unique KKT pairs that are Lipschitz
continuous and semidifferentiable. Related results are given in [3], where similar
but weaker conditions were used to study the directional stability of nearly optimal
solution selections.
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Abstract. In this paper we study existence of solutions to the Bellman equation corresponding
to risk-sensitive ergodic control of discrete-time Markov processes using three different approaches.
Also, for particular classes of systems, asymptotics for vanishing risk factor is investigated, showing
that in the limit the optimal value for an average cost per unit time is obtained.
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rion, Bellman equation
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1. Introduction. On a probability space (Ω,F , P ) consider a controlled Markov
process X = (xn) taking values on a complete separable metric state space E endowed
with the Borel σ-algebra E . Assume that xn has a controlled transition operator
P an(xn, ·), where an is the control at time n taking values on a compact metric space
U and adapted to the σ-algebra σ{x0, x1, . . . , xn}.

Let c : E × U → R+ be a continuous and bounded function. Our aim is to
minimize the following exponential ergodic performance criterion:

Jx
(
(an)

)
= lim

n→∞ sup
1

n
logEx

{
exp

{
n−1∑
i=0

c(xi, ai)

}}
.(1.1)

Consider the following assumption:

(B1) ∀f ∈ C(E) the mapping E × U 3 (x, a) 7→ P af(x) is continuous.

In (B1) and in what follows we shall denote by C(E) the space of continuous bounded
real valued functions on E endowed with the uniform norm || · ||.

The following result that is proved in [10, Theorem 2.1] for countable state space
can be easily extended to our general state space model.

Proposition 1.1. If there exists a function w ∈ C(E) and a constant λ such
that for x ∈ E,

ew(x)+λ = inf
a∈U

[
ec(x,a)

∫
E

ew(y)P a(x, dy)

]
,(1.2)

then under (B1)

λ = inf
(an)

Jx
(
(an)

)
= Jx

(
u(xn)

)
,(1.3)
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where u : E → U is a Borel function for which the inf in (1.2) is attained.
Infinite horizon risk-sensitive problems were studied for linear diffusions with

exponential quadratic cost in a series of papers (see, e.g., [15], [8], [13], and references
therein). General diffusion models were studied in [11] and [7]. Risk-sensitive control
of Markov processes with cost criterion (1.1) was studied only in [9] and [6].

Our work was motivated by [9], where the existence of solutions to the Bellman
equation (1.2) is proved for countable state space under the assumption of the exis-
tence of a uniformly (with respect to all stationary Markov controls and initial states)
positive recurrent state.

In this paper we show the existence of solutions to the Bellman equation under
different assumptions and using different approaches. In particular, in section 2 we
show the existence of a unique solution using a certain span-norm contraction. In sec-
tion 3 we study the discounted exponential cost criterion and prove the convergence
of the solution to the discounted Bellman equation to the solution of (1.2) when the
discount factor approaches 1. In section 4 we show the existence of solutions to the
Bellman equation using the so-called stochastic discounted game approach. We then
complete the paper studying in section 5 the asymptotic behavior for vanishing risk
factor and showing that the limit corresponds to the average cost per unit time prob-
lem. Although we formulate our results for general states, the assumptions imposed
in this paper seem to be rather restrictive if the state space is not compact. We also
assume that the cost function c(x, a) is bounded, similarly as in the span approach
to risk neutral problems in section 3.3 of [10]. Nevertheless we think that this paper
could motivate further research on extending the results under weaker assumptions.

2. Span contraction approach. Notice first that due to Lemma 3.3 in [9] or
Proposition 2.3 in [3], (1.2) can be written in the following equivalent form:

w(x) + λ = inf
a∈U

sup
µ∈P(E)

[
c(x, a) +

∫
E

w(y)µ(dy)− I
(
µ, P a(x, ·))] ,(2.1)

where P(E) is the space of probability measures on E and I(µ, ν), called mutual
entropy of µ and ν is defined as follows:

I(µ, ν) =



∫
E

log dµ
dν µ (dx) when µ is absolutely continuous with respect to ν,

+∞ otherwise.

Moreover, the sup in (2.1) is attained for

µ∗(dz) =
ew(z)P a(x, dz)∫
E
ew(y)P a(x, dy)

.

Remark 2.1. The function w in (2.1) corresponds to the upper value in a two
person stochastic dynamic game when the first player (minimizer) chooses at each step
a control parameter a while the second player chooses the system dynamics, given by
the measure µ, so as to maximize the reward function

lim
n→∞ supn−1Ex

{
n−1∑
i=0

(
c(xi, ai)− I

(
µi, P

ai(xi, ·)
))}

(2.2)

(see [9], where a similar discounted game was considered).
The following assumption (A1) is frequently imposed for studying average cost

per unit time problems (see, e.g., [10]):
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(A1) ∃δ<1 such that ∀x,x′∈E , ∀a,a′∈U , ∀B∈E

P a(x,B)− P a′(x′, B) ≤ δ.

For g ∈ C(E) define the operator

Tg(x) = inf
a∈U

[
c(x, a) + log

∫
E

eg(y)P a(x, dy)

]
(2.3)

which, by Lemma 3.3 in [9] or Proposition 2.3 in [3], takes the equivalent form

Tg(x) = inf
a∈U

sup
µ∈P(E)

[
c(x, a) +

∫
E

g(y)µ(dy)− I
(
µ, P a(x, ·))] .(2.4)

The sup in (2.4) is attained for

µ∗(B) =

∫
B
eg(z)P a(x, dz)∫

E
eg(z)P a(x, dz)

.(2.5)

Proposition 2.2. Under (A1) and (B1) the operator T is a local contraction in
C(E) endowed with the span norm ||g||sp = supx∈E g(x) − infx∈E g(x); namely, for
each M > 0, there exists a constant α(M) < 1 such that for each g1, g2 ∈ C(E) with
||g1||sp ≤M and ||g2||sp ≤M we have

||Tg1 − Tg2||sp ≤ α(M)||g1 − g2||sp.(2.6)

Proof. Because of assumption (B1) formula (2.3) shows that T transforms C(E)
into itself and the inf is attained.

For given functions g1, g2 in C(E) and x1, x2 ∈ E, let a1, a2 be such that

Tgi(xi) = sup
µ∈P(E)

{
c(xi, ai) +

∫
gi(y)µ(dy)− I

(
µ, P ai(xi, ·)

)}
.

Moreover, let

µ1(B) =

∫
B
eg2(z)P a1(x1, dz)∫

E
eg2(z)P a1(x1, dz)

,

µ2(B) =

∫
B
eg1(z)P a2(x2, dz)∫

E
eg1(z)P a2(x2, dz)

.
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Then

Tg1(x2)− Tg2(x2)−
(
Tg1(x1)− Tg2(x1)

)
≤ sup

µ∈P(E)

{
c(x2, a2) +

∫
E

g1(y)µ(dy)− I
(
µ, P a2(x2, ·)

)}

− sup
µ∈P(E)

{
c(x2, a2) +

∫
E

g2(y)µ(dy)− I
(
µ, P a2(x2, ·)

)}

− sup
µ∈P(E)

{
c(x1, a1) +

∫
E

g1(y)µ(dy)− I
(
µ, P a1(x1, ·)

)}

+ sup
µ∈P(E)

{
c(x1, a1) +

∫
E

g2(y)µ(dy)− I
(
µ, P a1(x1, ·)

)}

≤ c(x2, a2) +

∫
E

g1(y)µ2(dy)− I
(
µ2, P

a2(x2, ·)
)

−c(x2, a2)−
∫
E

g2(y)µ2(dy) + I
(
µ2, P

a2(x2, ·)
)

−c(x1, a1)−
∫
E

g1(y)µ1(dy) + I
(
µ1, P

a1(x1, ·)
)

+c(x1, a1) +

∫
E

g2(y)µ1(dy)− I
(
µ1, P

a1(x1, ·)
)

=

∫
E

(
g1(y)− g2(y)

)
(µ2 − µ1)(dy) ≤ sup

y∈E

(
g1(y)− g2(y)

)
(µ2 − µ1)(Γ)

+ inf
y∈E

(
g1(y)− g2(y)

)
(µ2 − µ1)(Γ

c) = ||g1 − g2||sp(µ2 − µ1)(Γ),

(2.7)

where the set Γ comes from the Hahn–Jordan decomposition of µ2 − µ1.
Consequently, taking sup over x1, x2 ∈ E in (2.7) we have

||Tg1 − Tg2||sp ≤ ||g1 − g2||sp sup
B∈E

sup
x,x′∈E

sup
a,a′∈U

(µxag1 − µx′a′g2)(B),(2.8)

where

µxag(B) =

∫
B
eg(z)P a(x, dz)∫

E
eg(z)P a(x, dz)

.

To complete the proof it then remains to show that

sup
g1,g2;||g1||sp,||g2||sp≤M

sup
B∈E

sup
x,x′∈E

sup
a,a′∈U

(µxag1 − µx′a′g2)(B) = α(M) < 1.(2.9)

Suppose (2.9) does not hold. Then there exist sequences (g1n), (g2n) with ||g1n||sp,
||g2n||sp ≤M , (Bn), Bn ∈ E , (xn), (x′n) and (an), (a′n) such that(

µxnang1n − µx′na′ng2n
)
(Bn) → 1 as n→∞.

Therefore

µxnang1n(Bn) → 1

and

µx′na′ng2n(Bn) → 0 as n→∞.
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Since

e−||g||spP a(x,B) ≤ µxag(B),

we have

P a′n(x′n, Bn) → 0 and P an(xn, B
c
n) → 0.

Consequently

lim
n→∞P an(xn, Bn)− P a′n(x′n, Bn) = 1,

which contradicts assumption (A1).
We get immediately the following corollary.
Corollary 2.3. Under (A1) and (B1) there exists at most one (up to an additive

constant) function w ∈ C(E) and a unique constant λ for which the Bellman equation
(1.2) is satisfied.

The following assumption (A2) will be shown to guarantee that in a suitable
subset of C(E) the operator T is in fact a global contraction.

(A2) There exists η ∈ P(E) and a Borel function E ×E ×A 3 (x, y, a) 7→ p(x, y, a)
such that ∀x∈E , ∀a∈U , ∀B∈E ,

P a(x,B) =

∫
B

p(x, y, a)η(dy)

and

sup
x,x′∈E

sup
y∈E

sup
a∈U

p(x, y, a)

p(x′, y, a)
= K <∞.(2.10)

Remark 2.4. If in addition to the existence of a density p(x, y, a) with respect to
a probability measure η we have that

(B2) E × U 3 (x, a) 7→ p(x, ·, a) ∈ L1(η) is continuous,

then

(B3) the mapping E × U 3 (x, a) 7→ P a(x, ·) is continuous in the variation norm of
P(E) and, in particular, (B1) also holds.

Furthermore, if

(A3) p(x, y, a) in (A2) satisfies the stronger form of (2.10), namely,

sup
x,x′∈E

sup
y∈E

sup
a,a′∈U

p(x, y, a)

p(x′, y, a′)
< +∞,

then (A1) holds.
Remark 2.5. The assumptions (A2) and (A3) require mutual equivalence of

transition probabilities for different values of initial states and controls and existence
of a uniformly bounded away from 0 their Radon–Nikodým derivatives. These kinds
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of assumption restrict the class of models in locally compact state space; however,
they appear acceptable in the case of compact or countable state spaces.

Theorem 2.6. Under (B1), (A1), and (A2) the operator T defined in (2.3) and
(2.4) maps C(E) into CL(E), where CL(E) ⊂ C(E) is the set of continuous functions
with span norm bounded by L = logK + ||c||, and consequently there is a unique (up
to an additive constant) function w ∈ C(E) which is in fact in CL(E) and a constant
λ such that Bellman equation (1.2) is satisfied.

Proof. Notice that for g ∈ C(E) we have

Tg(x)− Tg(x′) ≤ sup
a∈U

[
c(x, a)− c(x′, a) + log

∫
E
eg(y)P a(x, dy)∫

E
eg(y)P a(x′, dy)

]

≤ ||c||+ sup
a∈U

log

∫
E
eg(y) p(x,y,a)p(x′,y,a)p(x

′, y, a)η(dy)∫
E
eg(y)p(x′, y, a)η(dy)

≤ ||c||+ logK.

Therefore ||Tg||sp ≤ L and T is a global contraction in the span norm in CL(E), so
that it has a fixed point w in CL(E) and w, which is (up to an additive constant)
unique, and the constant λ = w − Tw are solutions to (1.2).

Let bB(E) denote the set of bounded Borel measurable functions on E, and let
U = {u : E → U , Borel measurable}.

Given u ∈ U , for g ∈ bB(E) define

Tug(x) = c
(
x, u(x)

)
+ log

∫
E

eg(y)Pu(x)(x, dy)(2.11)

or in its equivalent form (see [9, Lemma 3.3] or [2, Proposition 2.3])

Tug(x) = sup
µ∈P(E)

[
c
(
x, u(x)

)
+

∫
E

g(y)µ(dy)− I
(
µ, Pu(x)(x, ·))] ,(2.12)

where the sup is attained for

µ∗u(B) =

∫
B
eg(y)Pu(x)(x, dy)∫

E
eg(y)Pu(x)(x, dy)

.

Proposition 2.7. Under (A1) and (A2) for any u ∈ U the operator Tu in
(2.11) and (2.12) transforms bB(E) into bBL(E), where bBL(E) ⊂ bB(E) consists of
functions with span norm bounded by L = logK + ||c||. Furthermore Tu is a global
contraction in bBL(E), and consequently there exists a unique (up to an additive
constant) function wu ∈ bBL(E) and a unique constant λu such that

wu(x) + λu =

[
c
(
x, u(x)

)
+ log

∫
E

ewu(y)Pu(x)(x, dy)

]
.(2.13)

Proof. Let g1, g2 ∈ bB(E), x1, x2 ∈ E. Then

Tug1(x2)− Tug2(x2)−
(
Tug1(x1)− Tug2(x1)

)
= sup

µ∈P(E)

[∫
E

g1(y)µ(dy)− I
(
µ, Pu(x2)(x2, ·)

)]

− sup
µ∈P(E)

[∫
E

g2(y)µ(dy)− I
(
µ, Pu(x2)(x2, ·)

)]
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− sup
µ∈P(E)

[∫
E

g1(y)µ(dy)− I
(
µ, Pu(x1)(x1, ·)

)]

+ sup
µ∈P(E)

[∫
E

g2(y)µ(dy)− I
(
µ, Pu(x1)(x1, ·)

)]

≤
∫
E

(g1 − g2)(y)
(
µx2u(x2)g1 − µx1u(x1)g2

)
(dy)

≤ ||g1 − g2||sp sup
B∈E

(
µx2u(x2)g1 − µx1u(x1)g2

)
(B),

where µxu(x)g is as defined below (2.8).
Similarly to what has been done in the proof of Proposition 2.2, it is possible to

show that

sup
x1,x2∈E

sup
B∈E

(
µx2u(x2)g1 − µx1u(x1)g2

)
(B) ≤ α(M) < 1

provided that ||g1||sp, ||g2||sp ≤M .
Furthermore, by arguments similar to those used in the proof of Theorem 2.6,

it is easily seen that under (A2) the operator Tu transforms bB(E) into bBL(E) and
consequently Tu is a global contraction in the space bBL(E). Existence and uniqueness
of the solution to (2.13) then follow as in Theorem 2.6.

Two important consequences of Proposition 2.7 are given below.
Corollary 2.8. Under (A1) and (A2) for each ε > 0 there exists a positive

integer n0 such that for n ≥ n0

sup
x∈E

sup
u∈U

∣∣∣∣∣n−1 logEx

{
exp

{
n−1∑
i=0

c
(
xi, u(xi)

)}}− λu

∣∣∣∣∣ < ε.(2.14)

Proof. Recalling that by Proposition 2.7, ||wu||sp ≤ L, and iterating (2.13),
namely,

ewu(x) = Ex

{
exp

{
n−1∑
i=0

(
c
(
xi, u(xi)

)− λu

)}
ewu(xn)

}
,

we obtain

e−L ≤ e−||wu||sp ≤ Ex

{
exp

{
n−1∑
i=0

(
c
(
xi, u(xi)

)− λu

)}}
≤ e||wu||sp ≤ eL

and therefore

−L
n
≤ n−1 logEx

{
exp

{
n−1∑
i=0

c
(
xi, u(xi)

)}}− λu ≤ L

n

from which the result follows.
Corollary 2.9. If E and U are finite, under (A1) and (A2) the policy iteration

algorithm works and can be performed through the following steps:
(1) Fix z ∈ E and take any u ∈ U .
(2) Solve (2.13) with wu(z) = 0.
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(3) If for a point x ∈ E we have

wu(x) + λu > inf
a∈U

[
c(x, a) + log

∫
E

ewu(y)P a(x, dy)

]
,(2.15)

where the inf is attained at a, then put u(x) = a, u(x) = u(x) for x 6= x, and go
to point 2 with u = u. If ∀x ∈ E (2.15) holds as an equality, then u is an optimal
control.

Proof. It follows from the fact that for E and U finite the class U is also finite,
taking into account that by (2.13) and (2.15) we have ∀x ∈ E

wu(x) + λu ≥ c
(
x, u(x)

)
+ log

∫
ewu(y)Pu(x)(x, dy)

from which by interation we obtain

wu(x) + nλu ≥ logEx

{
exp

{
n−1∑
i=0

c
(
xi, u(xi)

)}
ewu(xn)

}

and consequently λu ≤ λu.
Remark 2.10. The previous corollaries provide us with two feasible methods to

solve risk-sensitive ergodic problems. In particular, Corollary 2.8 suggests a finite
horizon approximation, which is uniform in the class of stationary Markov controls
U , for general state and control spaces.

On the other hand, for finite state and control spaces, Corollary 2.9 provides a
version of the well-known Howard improvement algorithm (see, e.g., [10]), which in a
finite number of steps leads to an optimal control.

3. Discounted cost asymptotics. For β ∈ (0, 1) and γ ∈ [0, d] consider the
exponential discounted cost criterion (see, e.g., [2])

Jβx,γ
(
(an)

)
= Ex

{
exp

{
γ

∞∑
i=0

βic(xi, ai)

}}
.(3.1)

Let wβ(x, γ) be the corresponding value function

wβ(x, γ) = inf
(an)

Ex

{
exp

{
γ

∞∑
i=0

βic(xi, ai)

}}
.(3.2)

Proposition 3.1. Under (B1) there exists a unique wβ ∈ C(E× [0, d]) such that
the equation

wβ(x, γ) = inf
a∈U

[
eγc(x,a)

∫
E

wβ(y, γβ)P a(x, dy)

]
(3.3)

with boundary condition

lim
γ→0

sup
x∈E

|wβ(x, γ)− 1| = 0(3.4)

holds.
Moreover wβ(x, γ) is the optimal value for the cost function (3.1) defined in (3.2).
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Proof. We split the proof into several steps.
Step 1. Let for g ∈ C(E × [0, d])

Tβg(x, γ) = inf
a∈U

[
eγc(x,a)

∫
E

g(y, γβ)P a(x, dy)

]
.(3.5)

Notice that by (B1) Tβ transforms C(E× [0, d]) into itself. Furthermore, if g satisfies
the boundary condition

lim
γ→0

sup
x∈E

|g(x, γ)− 1| = 0,(3.6)

then (3.6) holds also for Tβg(x, γ) since

|Tβg(x, γ)− 1| ≤ sup
a∈U

[
|eγc(x,a) − 1|

∫
E

|g(y, γβ)|P a(x, dy)

]

+ sup
a∈U

[∫
E

|g(y, γβ)− 1|P a(x, dy)

]
→ 0

uniformly in x as γ → 0.
Step 2. Notice that Tβ preserves the order in the sense that if ∀x∈E , ∀γ∈[0,d]

g1(x, γ) ≥ g2(x, γ), then Tβg1(x, γ) ≥ Tβg2(x, γ).
Therefore since for g(x, γ) ≡ 1, Tβg(x, γ) ≥ 1 ≡ g(x, γ) we have that Tnβ g(x, γ) is

an increasing sequence. On the other hand, since for g(x, γ) = e
γ||c||
1−β

Tβg(x, γ) = inf
a∈U

[
eγc(x,a)eγβ

||c||
1−β
]
≤ eγ

||c||
1−β = g(x, γ),

we have that Tnβ g(x, γ) is a decreasing sequence and

1 ≤ Tnβ g(x, γ) ≤ Tnβ g(x, γ) ≤ eγ
||c||
1−β .(3.7)

Step 3. For g ∈ C(E× [0, d]) we have the representation formula for n = 1, 2, . . . ,

Tnβ g(x, γ) = inf
(an)

Ex

{
exp

{
γ
n−1∑
i=0

βic(xi, ai)

}
g(xn, γβ

n)

}
,(3.8)

and therefore uniformly in x ∈ E and γ ∈ [0, d]

|Tnβ g(x, γ)− Tnβ g(x, γ)|
≤ sup

(an)

Ex

{
eγ
∑n−1

i=0
βic(xi,ai)

∣∣∣e γβn||c||1−β − 1
∣∣∣}→ 0

as n→∞.
Thus there exists a function wβ(x, γ) which is a uniform (in x ∈ E and γ ∈ [0, d])

limit of Tnβ g(x, γ) and Tnβ g(x, γ). Consequently wβ(x, γ) ∈ C(E × [0, d]) and is a so-
lution to (3.3) with boundary condition (3.4) (using Step 1). The uniqueness is guar-
anteed by the representation (3.8) together with the boundary condition (3.4).

Remark 3.2. An optimal strategy (an) for the cost functional Jβx,γ in (3.1) is of
the form an = u(xn, γβ

n), where u : E × [0, d] → U is a function for which the inf
in (3.3) is attained. Notice that the above strategy is not a stationary one since it
depends on time n through the power n of β.

We shall need the following assumption.



70 G. B. DI MASI AND L. STETTNER

(A4) There exists η ∈ P(E) and a positive integer N such that for any Markov
strategy V = (an), where an = un(xn) with un ∈ U and for any x ∈ E
the measures PV

x {xN ∈ ·} are absolutely continuous with respect to η with
densities pVN (x, y) satisfying

sup
V

sup
x,x′∈E

sup
y∈E

pVN (x, y)

pVN (x′, y)
≤ K <∞.

Clearly (A2) implies (A4) with N = 1.
Define for fixed z ∈ E

hβ(x, γ) =
wβ(x, γ)

wβ(z, γ)
;

then we have the following theorem.
Theorem 3.3. Under (A1), (A4), and (B3), there exists a unique constant λ and

for fixed z ∈ E a unique function w ∈ C(E) with w(z) = 0 which satisfy the Bellman
equation

w(x) + λ = inf
a

[
γc(x, a) + log

∫
E

ew(y)P a(x, dy)

]
.(3.9)

Furthermore, for each x ∈ E and each γ ∈ [0, d],

lim
β↑1

wβ(x, γ)

wβ(x, γβ)
= eλ,

lim
β↑1

hβ(x, γ) = ew(x),

where the last convergence is uniform on compact sets of E.
Proof. For the optimal Markov strategy V = (an) with an = un(xn, γβ

n) (see
Remark 2.10) we obtain using (A4)

wβ(x, γ)

wβ(z, γ)
=
EV
x

{
exp

{
γ
∑N−1

i=0 c(xi, ai)β
i
}
wβ(xN , γβ

N )
}

EV
z

{
exp

{
γ
∑N−1

i=0 c(xi, ai)βi
}
wβ(xN , γβN )

}

≤ eγN ||c||
∫
E
wβ(y, γβN )pVN (z, y)

pVN (x,y)

pV
N

(z,y)
η(dy)∫

E
wβ(y, γβN )pVN (z, y)η(dy)

≤ KeγN ||c||.
Similarly

wβ(x, γ)

wβ(z, γ)
≥ K−1

e−γN ||c||

so that

K−1
e−γN ||c|| ≤ hβ(x, γ) ≤ KeγN ||c||.(3.10)

By (3.3) we then have

hβ(x, γ) · wβ(z, γ)

wβ(z, γβ)
= inf

a∈U

[
eγc(x,a)

∫
E

hβ(y, γβ)P a(x, dy)

]
.(3.11)
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Using (3.10), we obtain from (3.11)

1 ≤ wβ(x, γ)

wβ(x, γβ)
≤ eγ||c||

||hβ(·, γβ)||
hβ(x, γβ)

≤ eγ||c||K2
e2γβN ||c|| ≤ K2

eγ||c||(2N+1).

By (B3) and (3.10), for each γ ∈ [0, d] and any positive integer m, Tβhβ(x, γβm)
is continuous in x, uniformly in β, and is bounded.

For a fixed γ, using a diagonal procedure, by the Ascoli–Arzelà theorem [12,
Theorem 8.33] one can find a sequence βn ↑ 1, constants λm, and functions wm(x, γ)
such that for m = 0, 1, 2, . . . ,

wβn(z, γβmn )

wβn(z, γβm+1
n )

→ eλm(3.12)

and

Tβnhβn(x, γβmn ) → ewm(x,γ)+λm(3.13)

uniformly in x on compact subsets of E.
By (3.11) we then have for m = 0, 1, 2, . . . ,

lim
n→∞hβn(x, γβm+1

n ) = ewm(x,γ)(3.14)

uniformly in x on compact subsets of E.
Furthermore, from (3.10) and (3.14),

− logK −Nγ||c|| ≤ wm(x, γ) ≤ logK +Nγ||c||.(3.15)

Consequently, from (3.13) and (3.14), we have

ewm(x,γ)eλm = lim
n→∞

{
inf
a∈U

[
eγβ

m
n c(x,a)

∫
E

hβn(y, γβm+1
n )P a(x, dy)

]}

= inf
a∈U

[
eγc(x,a)

∫
E

ewm(y,γ)P a(x, dy)

]
.(3.16)

Notice that wm(z, γ) = 0 and ||wm(·, γ)||sp ≤ 2(logK +Nγ||c||).
Let, for g ∈ C(E × [0, d]),

Tg(x, γ) = inf
a∈U

[
γc(x, a) + log

∫
E

eg(y,γ)P a(x, dy)

]
.

From (3.16) it is clear that Twm = wm + λm.
Since wm(z, γ) = wm+1(z, γ) = 0 by Corollary 2.3, we have wm(z, γ) = w(z, γ)

for m = 0, 1, 2, . . . , and consequently λ0 = λ1 = · · · = λm = λ.
Since by Corollary 2.3, adapting the procedure described above, from any se-

quence βn ↑ 1 one can choose a further subsequence βnk (to simplify notation denoted
again by βn) such that

lim
n→∞ log

wβn(z, γ)

wβn(z, γβn)
= λ
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and

lim
n→∞ log hβn(x, γ) = w(x),

where λ and w(x) are unique solutions of the Bellman equation (3.9), then the above
convergences hold for any sequence β ↑ 1.

Finally, since λ is unique (see Corollary 2.3), it does not depend on the choice of
the initial point z as stated in the theorem.

Remark 3.4. Following the proof of Theorem 3.3, notice that we can obtain
the existence of a constant λ and w ∈ C(E) for which (3.9) is satisfied using only
assumptions (A4) and (B3). From Proposition 1.1, λ is then the optimal cost of the
risk-sensitive problem (see (1.3)) and is therefore unique.

4. Discounted game approach. For β ∈ (0, 1) consider the following equation:

ewβ(x) = inf
a∈U

{
ec(x,a)

∫
E

eβwβ(y)P a(x, dy)

}
.(4.1)

The function wβ in (4.1) can be interpreted as the upper value of a certain discounted
stochastic dynamic game (see [9] for details). We have the following proposition.

Proposition 4.1. Under (B1), for β ∈ (0, 1) there exists a unique wβ ∈ C(E)
for which the equation is satisfied. Moreover

0 ≤ wβ(x) ≤ ||c||
1− β

.(4.2)

Proof. Notice that under (B1) the operator

T βg(x) = inf
a∈U

[
c(x, a) + log

∫
E

eβg(y)P a(x, dy)

]
(4.3)

transforms C(E) into itself. Furthermore, for g1, g2 ∈ C(E),

T βg1(x)− T βg2(x) ≤ sup
a∈U

[
log

∫
E
eβg1(y)P a(x, dy)∫

E
eβg2(y)P a(x, dy)

]

≤ sup
a∈U

[
log

∫
E
eβ||g1−g2||+βg2(y)P a(x, dy)∫

E
eβg2(y)P a(x, dy)

]
≤ β||g1 − g2||

and changing the role of g1 and g2 we obtain that

||T βg1 − T βg2|| ≤ β||g1 − g2||,
which means that T β is a contraction in C(E). In addition for g(x) ≡ 0 and g(x) =
||c||
1−β we have T βg ≥ g and T βg ≤ g so that by the contraction principle, analogous

to what has been done in Proposition 3.1, (T β)ng and (T β)ng approximate wβ from
below and from above, respectively, from which (4.2) follows.

Fix z ∈ E and let kβ(x) = wβ(x)− wβ(z).
From (4.1) we then have

kβ(x) + (1− β)wβ(z) = T βkβ(x)(4.4)

with the operator Tβ defined in (4.3).
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Theorem 4.2. Under (A2) and (B3) there exist a function w ∈ C(E) and a
unique constant λ for which (1.2) holds. Moreover

lim
β↑1

(1− β)wβ(x) = λ.(4.5)

Assuming additionally that (A1) holds, we have then that w is the unique function in
C(E) such that w(z) = 0 for which (1.2) holds and furthermore

lim
β↑1

kβ(x) = w(x)(4.6)

uniformly on compact subsets of E.
Proof. Let us notice first that similar to the proof of Theorem 2.6, under (A2) and

(B3) the operator T β transforms C(E) into CL(E). Consequently, since wβ = Tβwβ
we have that ||kβ || ≤ L. Furthermore, by (B3) the function T βkβ(x) is uniformly in
β ∈ (0, 1) continuous and bounded.

Therefore, taking into account (4.2), there exist λ ∈ R and w ∈ C(E) and a
sequence βn ↑ 1 such that

lim
n→∞(1− βn)wβn(z) = λ

and

lim
n→∞T βnkβn(x) = w(x) + λ

uniformly in x from compact subsets of E.
Then from (4.4)

lim
n→∞ kβn(x) = w(x)

uniformly on compact subsets of E and consequently from (4.3) and (2.3)

lim
n→∞T βnkβn(x) = Tw(x)

so that, letting βn ↑ 1 in (4.4) we have that w(x) and λ satisfy (1.2).
The uniqueness of λ as well as the convergence (4.5) for all x ∈ E is guaranteed by

Proposition 1.1. The uniqueness of w(x) is guaranteed by Corollary 2.3 and therefore
we have (4.6).

5. Risk-sensitive asymptotics. In this section we shall study the asymptotics
of the value functions corresponding to the cost functionals

Jx,γ
(
(an)

)
= γ−1 lim sup

n→∞
n−1 log

(
Ex

{
exp

{
n−1∑
i=0

γc(xi, ai)

}})
(5.1)

as the risk factor γ ↓ 0, assuming that E is a locally compact separable metric space.
Notice that by the Jensen inequality we have

Jx,γ
(
(an)

) ≥ lim sup
n→∞

n−1Ex

{
n−1∑
i=0

c(xi, ai)

}
:= Jx

(
(an)

)
.(5.2)

Furthermore, again by the Jensen inequality, for γ1 ≤ γ2 we have

Jx,γ1

(
(an)

) ≤ Jx,γ2

(
(an)

)
,(5.3)
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which means that the optimal values of the cost Jx,γ are decreasing as γ → 0 and
greater than the optimal value of Jx. We shall in fact show that the latter value is
reached in the limit.

We impose the following assumption.

(A5) There exists η ∈ P(E) such that for x ∈ E, a ∈ U , B ∈ E

P a(x,B) =

∫
B

p(x, y, a)η(dy),

where p(x, y, a) > 0, the mapping (x, y, a) → p(x, y, a) is continuous and (A3)
holds, i.e.,

sup
x,x′∈E

sup
y∈E

sup
a,a′∈U

p(x, y, a)

p(x′, y, a′)
= K̃ < +∞.

For the proof of the main theorem we shall need the following result.
Lemma 5.1. Under (A5) we have that

λ = inf
u∈Uc

Jx
(
u(xn)

)
,(5.4)

where Uc is the subclass of U consisting of continuous functions u : E → U , and
λ = inf(an) Jx

(
(an)

)
.

Proof. Since E is locally compact there is an increasing sequence of compact sets
Km such that

⋃∞
m=1Km = E. We can also require that η(∂Km) = 0. Consider now a

sequence of partitions (Em
1 , E

m
2 , . . . , E

m
dm

), m = 1, 2, . . . , of E with representative ele-

ments {em1 , em2 , . . . , emdm} such that E =
⋃dm
i=1E

m
i , E

m
i ∩Em

j = ∅ for i 6= j, η(∂Em
i ) = 0

the diameter of Em
i is not greater than 1

m for i = 1, 2, . . . , dm − 1, Em
dm

= E \ Km;

furthermore {Em+1
1 , Em+1

2 , . . . , Em+1
dm+1

} is a partition finer than {Em
1 , E

m
2 , . . . , E

m
dm
}

and {em1 , em2 , . . . , emdm} ⊂ {em+1
1 , . . . , em+1

dm+1
}.

Let P a
m(x, ·) = P a(eml , ·), for x ∈ Em

l , l = 1, 2, . . . , dm,m = 1, 2, . . .
Consider a Markov process Xm = (xmn ) with transition kernel P a

m(x, ·). For u ∈ U
define

λum = lim sup
n→∞

n−1Eu
x

{
n−1∑
i=0

c((xmi ), u(xmi ))

}
.

Similarly for a Markov process X = (xn) with transition kernel P a(x, ·) let

λu = lim sup
n→∞

n−1Eu
x

{
n−1∑
i=0

c((xi), u(xi))

}
.

By (A5), using the ergodicity results of section 3.3 of [10] we obtain that there
are a positive integer N and a constant M such that for n ≥ N and m = 1, 2, . . . we
have

sup
u

sup
x∈E

∣∣∣∣∣λum − n−1Eu
x

{
n−1∑
i=0

c((xmi ), u(xmi ))

}∣∣∣∣∣ ≤ M

n
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and

sup
u

sup
x∈E

∣∣∣∣∣λu − n−1Eu
x

{
n−1∑
i=0

c((xi), u(xi))

}∣∣∣∣∣ ≤ M

n
(5.5)

with supremum taken over all u ∈ U .
Since

sup
a∈U

||P a
m(x, ·)− P a(x, ·)||var → 0

as m → ∞ uniformly in x on compact subsets, where || ||var stands for variation
norm, we have that

sup
u
|λum − λu| → 0

as m→∞.
For each controlled Markov process Xm piecewise constant controls (i.e., the

controls constant on each set of the partition Em
1 , . . . , E

m
dm

) are optimal. Therefore the
class of piecewise constant controls is also nearly optimal for the controlled Markov
process X. Consequently to complete the proof of Lemma 5.1 it remains to show
that each piecewise constant (on our partition) function u can be approximated by
continuous functions ul : E → U in the sense that

|λul − λu| → 0.

Choose a sequence ul of continuous functions from E into U such that

η({z ∈ E : ul(z) 6= u(z)}) → 0

as l→∞.
Therefore

η{z ∈ E : ∃y∈E p(z, y, ul(z)) 6= p(z, y, u(z))} → 0

as l→∞, or in other words,

η{z ∈ E : ||Pul(z)(z, ·)− Pu(z)(z, ·)||var > 0} → 0

as l→∞.
Consequently for each n∣∣∣∣∣Eul

x

{
n−1∑
i=0

c(xi, ul(xi))

}
− Eu

x

{
n−1∑
i=0

c(xi, u(xi))

}∣∣∣∣∣→ 0

as l→∞ for η almost all x ∈ E.
By (5.5) (as above) we obtain then that |λul−λu| → 0, as l→∞, which completes

the proof.
The main result of this section can be stated as follows.
Theorem 5.2. Under (A5) we have

lim
γ↓0

inf
(an)

sup
x∈E

Jx,γ
(
(an)

)
= λ.(5.6)
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Proof. Notice first that by (5.2), for γ > 0,

inf
(an)

sup
x∈E

Jx,γ
(
(an)

) ≥ λ

so that, using also the monotonicity property (5.3),

lim
γ↓0

inf
(an)

sup
x∈E

Jx,γ
(
(an)

) ≥ λ.(5.7)

By Theorem 6.9 and Corollary 7.21 of [14] we have that for u ∈ Uc

lim
n→∞ sup

x∈E
1

n

1

γ
logE

{
exp

{
n−1∑
i=0

γc
(
xi, u(xi)

)}}

(5.8)

≤ sup
ν∈P(E)

[∫
E

c
(
z, u(z)

)
ν(dz)− 1

γ
Iu(ν)

]
,

where

Iu(ν) = − inf
h∈H

∫
E

log
Puh(x)

h(x)
ν(dx),

Puh(x) =
∫
h(y)Pu(x)(x, dy), and H is the set of all bounded functions h : E → R+

such that 1
h(x) is also bounded.

Since Iu is lower semicontinuous, if E is compact there is for each γ a νγ ∈ P(E)
such that

sup
ν∈P(E)

[∫
E

c
(
z, u(z)

)
ν(dz)− 1

γ
Iu(ν)

]
(5.9)

=

∫
E

c
(
z, u(z)

)
νγ(dz)− 1

γ
Iu(νγ).

If E is compact, there is a sequence γm → 0 and a measure ν ∈ P (E) such that
νγm → ν weakly. Since

1

n

1

γ

∣∣∣∣∣logE

{
exp

{
n−1∑
i=0

γc
(
xi, u(xi)

)}}∣∣∣∣∣ ≤ ||c||,

by (5.8) and (5.9) we have that lim supm→∞ Iu(νγm) = 0.
By lower semicontinuity of Iu we then have that lim infm→∞ Iu(νγm) ≥ Iu(ν)

and therefore Iu(ν) = 0.
By Lemma 2.5 of [4], Iu(ν) = 0 if and only if ν = πu, the unique invariant measure

corresponding to the transition operator Pu(x)(x, dy).
Consequently

lim
m→∞

[∫
E

c
(
z, u(z)

)
νγm(dz)− 1

γm
Iu(νγm)

]

≤
∫
E

c
(
z, u(z)

)
πu(dz) = Jx

(
u(xn)

)
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and taking into account (5.2) and (5.8) we have that

lim
m→∞ lim

n→∞ sup
x∈E

1

n

1

γm
logE

{
exp

{
n−1∑
i=0

γmc
(
xi, u(xi)

)}}

(5.10)

= lim
m→∞

[∫
E

c
(
z, u(z)

)
νγm(dz)− 1

γm
Iu(νγm)

]
= Jx

(
u(xn)

)
.

Since from any sequence γm ↓ 0 one can choose a further subsequence γmk
↓ 0 such

that we have the convergence result (5.10) with γm replaced by γmk
, we finally have

lim
m→∞ lim

n→∞ sup
x∈E

1

n

1

γm
logE

{
exp

{
n−1∑
i=0

γmc
(
xi, u(xi)

)}}
= Jx

(
u(xn)

)

from which, by (5.7) and (5.8), we obtain (5.6) in the case of compact E.
In the case when E is only locally compact we construct a continuous function

ψ : E → R, ψ(x) ≥ 1 for x ∈ E such that the mapping

E 3 x 7→
∫
E

ψ(y)Pu(x)(x, dy)

is bounded on compact subsets of E and for each m > 0 the set

Ku
m =

{
x ∈ E :

ψ(x)∫
E
ψ(y)Pu(x)(x, dy)

≤ m

}

is compact.
Indeed, by local compactness of E for fixed x ∈ E and a ∈ U one can find an

increasing sequence of compact subsets Kn ⊂ Kn+1, ∂Kn ⊂ IntKn+1 such that

∫
Kc
n

p(x, y, a)η(dy) ≤ 1

(n+ 1)3

and a continuous function ψ taking values from the interval [n, n+ 1], for x ∈ Kn+1 \
Kn. Then by (A5) for x ∈ E and u ∈ U we have

0 <
1

K̃E
a
x{ψ(xq)} ≤ Eu

x{ψ(x1)}

≤ K̃Ea
x{ψ(x1)} ≤ K̃

∞∑
n=1

(n+ 1)
1

(n+ 1)3
<∞

and therefore Ku
m is a compact set.

Consequently, by Lemma 4.2 of [5], for each m > 0 the set

Cu
m = {ν ∈ P(E) : Iu(ν) ≤ m}

is compact in P(E) and we can adapt the proof of the case when E is compact.
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SAMPLE-PATH OPTIMALITY AND VARIANCE-MINIMIZATION
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Abstract. This paper studies several average-cost criteria for Markov control processes on
Borel spaces with possibly unbounded costs. Under suitable hypotheses we show (i) the existence
of a sample-path average cost (SPAC-) optimal stationary policy; (ii) a stationary policy is SPAC-
optimal if and only if it is expected average cost (EAC-) optimal; and (iii) within the class of stationary
SPAC-optimal (equivalently, EAC-optimal) policies there exists one with a minimal limiting average
variance.

Key words. (discrete-time) Markov control processes, average cost criteria, sample-path average
cost, expected average cost, canonical policies, average variance

AMS subject classifications. 93E20, 90C40

PII. S0363012998340673

1. Introduction. We study several average cost (AC) criteria for Markov con-
trol processes on Borel spaces with possibly unbounded costs. Under suitable hypothe-
ses, we show (i) the existence of a sample-path average cost (SPAC-) optimal stationary
policy; (ii) a stationary policy is SPAC-optimal if and only if it is expected average
cost (EAC-) optimal; (iii) within the class of stationary SPAC-optimal policies there
exists one with minimal limiting average variance.

Discrete-time Markov control processes (MCPs) with AC criteria are among the
most widely studied stochastic control problems. However, as can be seen in [1, 2,
4, 7, 8, 15, 16, 23, 32, 33, 34] and their extensive bibliographies, most of the related
literature is concentrated on the EAC criterion, especially for MCPs with denumerable
state space and/or bounded costs. In contrast, for the SPAC case there are a lot fewer
works. For instance, for finite state MCPs, we should mention the pioneering works
by Mandl [28, 29, 30]; see also [23, pp. 161–162]. For the countable state case, see
[3, 4, 5], whereas for MCPs on Borel spaces we know only of [1, Theorem 6.3(v), (vi)]
for bounded costs and [26, 35, 36] for unbounded costs. Finally, to the best of our
knowledge, for the variance minimization the only previous works are those by Mandl
[28, 29, 30] for finite state MCPs and by Kurano [24] for the Borel case with bounded
costs. The reader should be warned, however, that several authors have studied a
“variance minimization problem” for a quantity which is not the “real” variance—see,
for instance, [21] and [32, p. 408]. Here, our definition (12) [see also (45)] of limiting
average variance is the one used in the central limit theorem for Markov chains, as in
[7, Corollaire 7.III.2] or [31, Theorem 17.0.1].
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To obtain the results (i), (ii), (iii) mentioned in the first paragraph, we introduce
hypotheses (Assumptions 3.1, 3.2, 3.4) already used in [18]—see also [36]—to study
several undiscounted cost criteria, including EAC-optimality. It turns out that the
results (i), (ii), (iii)—stated precisely in Theorems 3.7 and 3.8—can be obtained by
adding a mild “second order” condition, Assumption 3.6. This setting combines several
tools and proof techniques of common use in stochastic control and probability theory.
For example, the “Lyapunov condition” in Assumption 3.2(b) is a suitable variant of
conditions previously used by many authors, for instance, [5, 6, 7, 9, 12, 13, 17, 18,
19, 20, 22, 23, 25, 31]. Moreover, the “Lyapunov function” W in Assumptions 3.1
and 3.2 is also required to act as a “weight” (or “bounding”) function, which allows
us to introduce appropriate weighted norms for functions and measures, as in (14)
and (58). The use of weight functions in stochastic control problems goes back (at
least) to the 1970s—for earlier references see, for example, [6, 12, 13, 16, 17, 20].
On the other hand, a key step in our proof of SPAC-optimality (see Lemma 4.4)
uses the law of large numbers for martingales, also known as the martingale stability
theorem [7, 14, 23, 27], which is in the spirit of the proof in [1, Theorem 6.3; 24, 28,
29, 30]. This is different from the “tightness” approach followed by other authors, in
which an important intermediate step is to give conditions for a certain set, say M, of
occupation (or empirical) measures to be tight. To make sure that M is tight, one can,
for instance, compactify the underlying space(s), as in [3, 4] (see also [5]) or impose
conditions on the cost function, as in [26, 35, 36]. This has also been done in other
works for different kinds of control problems—see, for example, the references in [10,
11, 16, p. 122], where the tightness approach is referred to as the “direct approach.”

The remainder of the paper is organized as follows. In section 2 we introduce
the Markov control model and the AC criteria we are interested in. In section 3 we
introduce our hypotheses and state our main results, Theorems 3.7 and 3.8, which
are proved in section 4 and section 5, respectively. We close in section 6 with some
important remarks. In particular, in Remark 6.1 we mention hypotheses that can be
used in lieu of the “stability” Assumptions 3.2 and 3.4.

2. The Markov control processes. The material in this section is quite stan-
dard—see [1, 4, 8, 15, 16, 32, 33, 34].

We shall consider the usual discrete-time, stationary, Markov control model (X,A,
{A(x) : x ∈ X}, Q,C) with state space X and control (or action) set A, both as-
sumed to be Borel spaces with σ-algebras B(X) and B(A), respectively. For each
state x ∈ X, A(x) ∈ B(A) is the (nonempty) set of feasible control actions in x. We
assume that the set

K :={(x, a) : x ∈ X, a ∈ A(x)}
of feasible state-action pairs is a Borel subset of X×A. Finally, Q [or Q(B|x, a) for
B ∈ B(X) and (x, a) ∈ K] denotes the transition law, and C : K→ R is a measurable
function that stands for the cost-per-stage function.

The class of measurable functions f : X→ A such that f(x) is in A(x) for every
x ∈ X is denoted by F, and we suppose that it is nonempty.

Control policies. Let H0 := X and Hn := Kn ×X for n = 1, 2, . . . . A control
policy is a sequence π = {πn} of stochastic kernels on A given Hn satisfying the
constraint πn(A(xn)|hn) = 1 for every “history” hn = (x0, a0, . . . , xn−1, an−1, xn) in
Hn, and n = 0, 1, . . . . The class of all policies is denoted by Π.

A policy π = {πn} is said to be a (deterministic) stationary policy if there exists
f ∈ F such that πn(·|hn) is concentrated at f(xn) for each history hn ∈ Hn and n =
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0, 1, . . . . Following a standard convention, we identify F with the class of stationary
policies.

For notational ease, for a stationary policy f ∈ F we write

Cf (x) := C(x, f(x)) and Qf (·|x) := Q(·|x, f(x)) ∀x ∈ X.(1)

Let (Ω,F) be the (canonical) measurable space consisting of the sample space
Ω := (X × A)∞ and its product σ-algebra F . Then, for each policy π and “initial
state” x ∈ X, a stochastic process {(xn, an)} and a probability measure Pπx are defined
on (Ω,F) in a canonical way, where xn and an represent the state and control at time
n, n = 0, 1, . . . . The expectation operator with respect to Pπx is denoted by Eπx .

AC criteria. For each n = 1, 2, . . . , let

J0
n(π, x) :=

n−1∑
t=0

C(xt, at)(2)

be the n-stage sample-path cost when using the policy π, given the initial state x ∈ X.
The long-run SPAC is then defined as

J0(π, x) := lim sup
n→∞

1

n
J0
n(π, x).(3)

Definition 2.1. A policy π∗ ∈ Π is said to be SPAC-optimal if there exists a
constant ρ̂ such that

J0(π∗, x) = ρ̂ Pπ
∗

x − a.s. ∀x ∈ X,

and

J0(π, x) ≥ ρ̂ Pπx − a.s. ∀π ∈ Π, x ∈ X.

The constant ρ̂ is called the optimal SPAC.
The “expected” analogs of (2) and (3) are, respectively, the n-stage expected cost

Jn(π, x) := Eπx

n−1∑
t=0

C(xt, at)

and the long-run EAC

J(π, x) := lim sup
n→∞

1

n
Jn(π, x).(4)

Among the EAC-related optimality concepts we are interested in are the following.
Definition 2.2. (a) A policy π∗ ∈ Π is said to be EAC-optimal if

J(π∗, x) = J∗(x) ∀x ∈ X,(5)

where

J∗(x) := inf
π∈Π

J(π, x) for x ∈ X(6)

is the optimal expected average cost.
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(b) A stationary policy f∗ ∈ F is called canonical (or, more explicitly, EAC-
canonical) if there exist a constant ρ∗ and a measurable function h∗ : X → R such
that

ρ∗ + h∗(x) = min
a∈A(x)

[
C(x, a) +

∫
X

h∗(y)Q(dy|x, a)

]
∀x ∈ X,(7)

and f∗(x) ∈ A(x) attains the minimum on the right-hand side of (7) for every x ∈ X,
that is (using the notation (1)),

ρ∗ + h∗(x) = Cf∗(x) +

∫
X

h∗(y)Qf∗(dy|x) ∀x ∈ X.(8)

If (7) and (8) are satisfied, it is then said that (ρ∗, h∗, f∗) is a canonical triplet,
a concept introduced by Yushkevich [37] (see also [1, 8, 12, 16, 18]). The connection
between parts (a) and (b) in Definition 2.2 is that if (ρ∗, h∗, f∗) is a canonical triplet
and, in addition, h∗ satisfies that

lim
n→∞

1

n
Eπxh∗(xn) = 0 ∀π ∈ Π, x ∈ X,(9)

then f∗ is EAC-optimal and ρ∗ is the optimal expected average cost, i.e.,

J(f∗, x) = J∗(x) = ρ∗ ∀x ∈ X.(10)

Thus, in this case we have

Fcp ⊂ Feac,(11)

where Fcp is the class of canonical policies and Feac ⊂ F is the class of stationary
EAC-optimal policies.

In the following sections we show, among other things, the existence of stationary
policies that are optimal in the sense of Definitions 2.1 and 2.2, and, moreover, the
existence of a stationary policy that minimizes the limiting average variance in the
class Feac. In other words, for each f ∈ F and x ∈ X, consider the n-stage variance

Vn(f, x) := var
[
J0
n(f, x)

]
= Efx

[
J0
n(f, x)− Jn(f, x)

]2
and the limiting average variance

V (f, x) := lim sup
n→∞

1

n
Vn(f, x).(12)

Then we shall prove that there exists a stationary policy f̂ such that f̂ is EAC-optimal
and

V (f̂ , x) = inf
f∈Feac

V (f, x) ∀x ∈ X.(13)

3. Main results. We first require two sets of hypotheses. The first one, As-
sumption 3.1, is a combination of the usual continuity/compactness requirements (to
ensure, for instance, the existence of “measurable minimizers”) together with a growth
condition on the one-step cost C.

Assumption 3.1. For each state x ∈ X,
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(a) A(x) is a compact subset of A;
(b) C(x, ·) is lower semicontinuous on A(x);
(c)
∫
X
u(y)Q(dy|x, ·) is continuous on A(x) for every bounded measurable function

u on X;
(d) there exists a measurable function W ≥ 1 on X and a constant r1 such that
(d1) |C(x, a)| ≤ r1W (x) ∀(x, a) ∈ K and
(d2)

∫
X
W (y)Q(dy|x, ·) is continuous on A(x).

The second set of hypotheses we need is to guarantee that the MCP has a nice
“stable” behavior uniformly in F. Here, to fix ideas we shall impose Assumptions 3.2
and 3.4 below, which are an adaptation to MCPs of a Lyapunov-like condition used
in Markov chain theory—see [9] or [31, p. 367]. However, the reader should keep in
mind that, as noted in Remark 6.1, there are other hypotheses that yield the same
stable behavior.

Assumption 3.2. For each stationary policy f ∈ F,
(a) there exists positive constants Bf < 1 and bf <∞, and a petite subset Kf of

X such that (using the notation (1))∫
X

W (y)Qf (dy|x) ≤ BfW (x) + bfIKf (x) ∀x ∈ X,

where W ≥ 1 is the function in Assumption 3.1(d), and IK(·) denotes the
indicator function of K;

(b) the state processes {xn}—which under f ∈ F is a Markov chain with transi-
tion kernel Qf [16, Proposition 2.3.5]—is ϕ-irreducible and aperiodic for some
σ-finite measure ϕ on X.

To state some consequences of Assumption 3.2, let us first introduce the following
notation: BW (X) denotes the normed linear space of measurable functions u on X
with a finite W -norm ||u||W , which is defined as

||u||W := sup
x∈X
|u(x)|/W (x).(14)

We shall write
∫
X
u(y)µ(dy) as µ(u), i.e.,

µ(u) :=

∫
X

u(y)µ(dy).

Remark 3.3 (see [31, Theorem 16.0.1]). Under Assumption 3.2, for each sta-
tionary policy f ∈ F we have the following:

(a) The Markov chain {xn} induced by f is positive Harris-recurrent, and, more-
over, its unique invariant probability measure µf satisfies that µf (W ) <∞;

(b) {xn} is W -geometrically ergodic; that is, there exist positive constants γ < 1
and Mf <∞ such that∣∣∣∣∫

X

u(y)Qnf (dy|x)− µf (u)

∣∣∣∣ ≤ ||u||WMfγ
n
fW (x)(15)

for each u ∈ BW (X), x ∈ X, and n = 0, 1, . . ..
The next assumption concerns the constants Mf and γf in (15).
Assumption 3.4. M := supf Mf and γ := supf γf are such that M < ∞ and

γ < 1.
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Assumptions 3.1, 3.2, and 3.4 have been used in [18] and [36] to study several
undiscounted cost criteria, such as overtaking optimality, bias optimality, and others.
In particular, the following result was established.

Remark 3.5 (see [18, Theorem 3.5], [36, Theorem 4.5.3]). Under Assumptions
3.1, 3.2, and 3.4, there exists a canonical triplet (ρ∗, h∗, f∗), where h∗ is a function in
BW (X) that satisfies (9); hence (10) holds.

In others words, we already have a canonical policy f∗ ∈ Fcp ⊂ Feac [see (11)]. It
turns out that by suitably strengthening Assumption 3.1 we can also obtain SPAC-
optimal policies with minimal average variance in Feac. Thus, consider the following.

Assumption 3.6. There exists a constant r2 such that

C2(x, a) ≤ r2W (x) ∀(x, a) ∈ K.(16)

We can now state our first main result, which is proved in section 4.
Theorem 3.7. Suppose that Assumptions 3.1, 3.2, 3.4, and 3.6 are satisfied, and

let ρ∗ be as in (10). Then
(a) for each π ∈ Π and x ∈ X

J0(π, x) ≥ lim inf
n→∞

1

n
J0
n(π, x) ≥ ρ∗ Pπx − a.s.;(17)

(b) a stationary policy is EAC-optimal if and only if it is SPAC-optimal; hence
(by (17) and Remark 3.5) there exists a SPAC-optimal policy f∗ ∈ F, and
ρ∗ is the optimal sample path average cost. That is, ρ∗ = ρ̂ where ρ̂ is the
constant in Definition 2.1.

It is worth noting that Theorem 3.7(b) and the second inequality in (17) state
that f∗ ∈ F is in fact strong SPAC-optimal, where “strong” means that f∗ = π∗

satisfies Definition 2.1 (with ρ̂ = ρ∗) when the “lim-sup” SPAC in (3) is replaced by
lim-inf SPAC

J0(π, x) := lim inf
n→∞

1

n
J0
n(π, x).(18)

On the other hand, denoting by Fspac ⊂ F the class of SPAC-optimal stationary
policies, we may rewrite the first statement in Theorem 3.7(b) as

Feac = Fspac.(19)

The reader should note that a priori neither one of the relations Feac ⊂ Fspac and
Feac ⊃ Fspac is obvious!

To state our second main result we need some notation: For each x ∈ X, let
A∗(x) ⊂ A(x) the set of control actions a ∈ A(x) that attain the minimum in (7), i.e.,

A∗(x) :=

{
a ∈ A(x) : ρ∗ + h∗(x) = C(x, a) +

∫
X

h∗(y)Q(dy|x, a)

}
.(20)

Observe that, by (8), a policy f ∈ F is canonical (f ∈ Fcp) if and only if f(x) ∈ A∗(x)
∀ x ∈ X. Moreover, consider the function Φ on K defined as

Φ(x, a) :=

∫
X

h2
∗(y)Q(dy|x, a)−

[∫
X

h∗(y)Q(dy|x, a)

]2

.(21)

As in (1), for f ∈ F and x ∈ X we write

Φf (x) := Φ(x, f(x)).
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With this notation we can state our variance-minimization result as follows. (The
proof is given in section 5.)

Theorem 3.8. Suppose that Assumptions 3.1, 3.2, 3.4, and 3.6 are satisfied.
Then there exists a constant σ2

∗ ≥ 0, a canonical policy f∗ ∈ Fcp, and a function
V ∗(·) in BW (X) such that, for each x ∈ X,

σ2
∗ + V ∗(x) = min

a∈A∗(x)

[
Φ(x, a) +

∫
X
V ∗(y)Q(dy|x, a)

]
= Φf∗(x) +

∫
X
V ∗(y)Qf∗(dy|x).

(22)

Furthermore, f∗ satisfies (13) and V (f∗, ·) = σ2
∗; in fact,

V (f∗, x) = µf∗(Φf∗) = σ2
∗ ∀x ∈ X(23)

and

σ2
∗ ≤ V (f, x) ∀f ∈ Feac, x ∈ X.(24)

Note the similarity between (22) and (7)–(8). This similarity is crucial in the
proof of Theorem 3.8 (see section 5).

4. Proof of Theorem 3.7. The assumptions of Theorem 3.7 are supposed to
hold throughout the following.

The proof of Theorem 3.7 requires some preliminary results, stated in the following
lemmas. Let us first note that by Assumption 3.1(d1), the function Cf in (1) is in
BW (X) for every f ∈ F. Hence, as µf (W ) <∞ (Remark 3.3(a)), the (finite) constants

Jf := µf (Cf ) for f ∈ F

are well defined.
Lemma 4.1. Let f ∈ F be an arbitrary stationary policy. Then for each x ∈ X

J(f, x) = lim
n→∞

1

n
Jn(f, x) = Jf(25)

and also

J0(f, x) = lim
n→∞

1

n
J0
n(f, x) = Jf P fx − a.s.(26)

Moreover, the function

hf (x) := Efx

∞∑
t=0

[Cf (xt)− Jf ](27)

belongs to BW (X) and is such that the pair (Jf , hf ) satisfies the Poisson equation

Jf + hf (x) = Cf (x) +

∫
X

hf (y)Qf (dy|x) ∀x ∈ X.(28)

Proof. In (15) replace u(·) with Cf (·). Then (15) and Assumption 3.4 yield∣∣EfxCf (xn)− Jf
∣∣ ≤ r1MγnW (x) ∀x ∈ X, n = 0, 1, . . . ,(29)
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where r1 is the constant in Assumption 3.1(d1), and clearly (25) follows from (29)
and the definition (4) of the long-run EAC. Observe, on the other hand, that (29)
yields

|hf (x)| ≤ r1M(1− γ)−1W (x) ∀x ∈ X,

so that hf is indeed in BW (X), whereas writing (27) as

hf (x) = Cf (x)− Jf + Efx

∞∑
t=1

[Cf (xt)− Jf ]

and then using the Markov property, we obtain (28).
Finally, (26) is a consequence of Remark 3.3(a) and the strong law of large num-

bers for Markov chains—see, for instance, [31, p. 411].
Let us now consider the function w(x) := W (x)1/2. By Jensen’s inequality and

Assumption 3.2(a),∫
X

w(y)Qf (dy|x) ≤ B′fw(x) + b
′
fIKf (x) ∀f ∈ F, x ∈ X,(30)

with B
′
f := B

1/2
f < 1 and b

′
f := b

1/2
f <∞. Therefore, by Assumptions 3.2 and 3.4, we

see the following from Remark 3.3(b).
Lemma 4.2. For each stationary policy f ∈ F,
(a) {xn} is w-geometrically ergodic; that is,∣∣∣∣∫

X

u(y)Qnf (dy|x)− µf (u)

∣∣∣∣ ≤ ||u||wMγnw(x)(31)

for each x ∈ X, n = 0, 1, . . . , and u ∈ Bw(X), where Bw(X) is the normed linear
space of measurable functions u on X such that

||u||w := sup
x∈X
|u(x)|/w(x) <∞;

(b) the function hf in (27) belongs to Bw(X) (since (16) yields the w-analogue

of Assumption 3.1(d1) : |C(x, a)| ≤ r1/2
2 w(x) ∀ (x, a) ∈ K).

The next two lemmas are crucial for the proof of (17).
Lemma 4.3. For each policy π ∈ Π and initial state x ∈ X we have
(a) Eπx

∑∞
t=1 t

−2W (xt) <∞;
hence the following statements hold Pπx− a.s.:
(b)

∑∞
t=1 t

−2W (xt) <∞;
(c) t−2W (xt)→ 0;
(d) t−1w(xt)→ 0.
Proof. As W ≥ w ≥ 1, it is evident that (a)⇒ (b)⇒ (c)⇒ (d). Thus, it suffices

to prove (a).
To prove (a), let us note that by Assumption 3.1 and a well-known measurable

selection theorem (see, for instance, [16, Proposition D.5, p. 182]), there exists g ∈ F
such that

sup
a∈A(x)

∫
X

W (y)Q(dy|x, a) =

∫
X

W (y)Qg(dy|x) ∀x ∈ X,
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which together with Assumption 3.2(a) yields∫
X

W (y)Q(dy|x, a) ≤ BgW (x) + bgIKg (x) ∀(x, a) ∈ K.(32)

Now let π ∈ Π and x0 = x ∈ X be arbitrary, and let Ft be the σ−algebra generated
by the state and control variables up to time t, that is,

Ft := σ{x0, a0, · · · , xt, at} for t = 0, 1, . . . .(33)

Then, by the properties of the induced probability measure Pπx [15, p. 4], [16, p. 16]

Eπx [W (xt+1)|Ft] =
∫
X
W (y)Q(dy|xt, at)

≤ BgW (xt) + bg [by (32)].
(34)

This implies

EπxW (xt+1) ≤ BgEπxW (xt) + bg ∀t = 0, 1, . . . .

Therefore

EπxW (xt) ≤ BtgW (x) + bg/(1−Bg) ∀t = 0, 1, . . . ,(35)

and (a) follows.
As in the previous proof, let π ∈ Π and x0 = x ∈ X be arbitrary, and let Ft be

the σ-algebra in (33). Moreover, let h∗ be the function in Remark 3.5 (see (7)), and
define the random variables

Yt(π, x) := h∗(xt)− Eπx [h∗(xt)|Ft−1] for t = 1, 2, . . .(36)

and

Mn(π, x) :=

n∑
t=1

Yt(π, x) for t = 1, 2, . . . .(37)

Lemma 4.4. For each policy π ∈ Π and each initial state x0 = x ∈ X, the
sequence {Mn(π, x)} is a Pπx -martingale with respect to the filtration {Fn}, and

lim
n→∞

1

n
Mn(π, x) = 0 Pπx − a.s.(38)

Proof. Choose an arbitrary policy π ∈ Π and an arbitrary initial state x. Now
note that (ρ∗, h∗) is a solution to the Poisson equation (8) (cf. (28)), so that, by
Lemma 4.2(b),

h∗ is in Bw(X); that is, |h∗(·)| ≤ ||h∗||ww(·).(39)

Then, by (36),

|Yt(π, x)| ≤ |h∗(xt)|+ Eπx [|h∗(xt)| |Ft−1 ]

≤ ||h∗||w {w(xt) + Eπx [w(xt) | Ft−1]} ,
(40)
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and it follows that

Eπx |Yt(π, x)| ≤ 2||h∗||wEπxw(xt).

This inequality and (35) show that Mn(π, x) is Pπx -integrable for every n. On the
other hand, it is clear that Mn(π, x) is Fn-measurable and that

Eπx [Mn+1(π, x)−Mn(π, x) | Fn] = 0 Pπx − a.s., ∀n;

therefore, {Mn(π, x)} is a martingale.
Thus, (38) will follow from the law of large numbers for martingales (or martingale

stability theorem) [14, Theorem 2.18, p. 35], [23, p. 161], [27, p. 53] provided that

∞∑
t=1

t−2Eπx
[|Yt(π, x)|2 | Ft−1

]
<∞ Pπx − a.s.(41)

To prove (41), first we use the elementary inequality

(a+ b)2 ≤ 2(a2 + b2) ∀a, b ∈ R
and the fact that w2 := W to see that (40) yields

|Yt(π, x)|2 ≤ 2||h∗||2w {W (xt) + Eπx [W (xt) | Ft−1]}
so that

Eπx
[|Yt(π, x)|2 | Ft−1

] ≤ 4||h∗||2wEπx [W (xt) | Ft−1] .

Thus, by (34),

Eπx
[|Yt(π, x)|2 | Ft−1

] ≤ 4||h∗||2w(Bg + bg)W (xt−1).

This inequality and Lemma 4.3(b) yield (41) because

∞∑
t=1

t−2W (xt) ≤W (x0) +
∞∑
t=2

(t− 1)−2W (xt−1) <∞ Pπx − a.s.

This completes the proof of Lemma 4.4.
We are now ready to prove Theorem 3.7 itself.
Proof of Theorem 3.7. (a). Fix π ∈ Π and x0 = x ∈ X arbitrary, and consider

Mandl’s [30] discrepancy function D : K→ R defined as

D(x, a) := C(x, a) +

∫
X

h∗(y)Q(dy|x, a)− h∗(x)− ρ∗.

By Remark 3.5 and (7), D is nonnegative. On the other hand, rewriting (36) as

Yt(π, x) = h∗(xt)−
∫

X

h∗(y)Q(dy|xt−1, at−1),

we see that (37) becomes

Mn(π, x) = h∗(xn)− h∗(x0)−
n−1∑
t=0

D(xt, at) + J0
n(π, x)− nρ∗,
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and so

J0
n(π, x) ≥ nρ∗ +Mn(π, x)− h∗(xn) + h∗(x0).(42)

Finally, multiply both sides of (42) by 1/n and then take lim inf as n→∞ to obtain the
second inequality in (17) [from (38), (39), and Lemma 4.3(d)]. As the first inequality
in (17) is obvious, (a) follows.

(b) Suppose that f ∈ F is EAC-optimal. Then from (26) we get

J0(f, x) = ρ∗ P fx − a.s. ∀x ∈ X,

which together with (17) yields that f is SPAC-optimal. (In other words, Feac ⊂
Fspac—see (19).)

Conversely, suppose that f ∈ F is SPAC-optimal. That is,

J0(f, x) = Jf P fx − a.s. ∀x ∈ X

and

J0(π, x) ≥ Jf Pπx − a.s. ∀π ∈ Π, x ∈ X.

In particular, the latter inequality and (26) yield

Jg ≥ Jf ∀g ∈ F.

Hence, by Remark 3.5, Jf = ρ∗; that is, f is EAC-optimal. (In other words, Fspac ⊂
Feac.)

5. Proof of Theorem 3.8. We shall first state some preliminary facts.
By Lemma 4.2(b), the function hf is in Bw(X) for each f ∈ F, and so the function

Ψf (x) :=

∫
X

h2
f (y)Qf (dy|x)−

[∫
X

hf (y)Qf (dy|x)

]2

for x ∈ X(43)

belongs to BW (X). Thus, as µf (W ) <∞ (Remark 3.3(a)), the (finite) constants

σ2
f := µf (Ψf ) for f ∈ F(44)

are well defined, and they coincide with the limiting average variance in (12). More
explicitly, by the central limit theorem for Markov chains we have the following (see,
for instance, [7, p. 302]; [31, pp. 411, 436]).

Lemma 5.1. For each f ∈ F

V (f, x) = lim
n→∞

1

n
Efx

n−1∑
t=0

Ψf (xt) = σ2
f ∀x ∈ X.(45)

On the other hand, if f ∈ F is a canonical policy, then the corresponding solution
(Jf , hf ) = (ρ∗, hf ) to the Poisson equation (28) is such that hf coincides with h∗
except perhaps for an additive constant, that is [18, 36],

hf (·) = h∗(·) + kf ∀f ∈ Fcp(46)

for some constant kf . Therefore, comparing (43) and (21), we obtain

Φf (·) = Ψf (·) ∀f ∈ Fcp.(47)
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We will next prove, in particular, that (46) and (47) hold µf -a.e. for all stationary
EAC-optimal policies f ∈ Feac. (Recall (11).)

Lemma 5.2. Let f be a stationary policy in Feac\Fcp. Then
(a) hf (·) = h∗(·) + kf µf -a.e. for some constant kf ;

(b) there exists a canonical policy f̂ ∈ Fcp such that µ
f̂

= µf , and

V (f̂ , x) = V (f, x) = σ2
f ∀x ∈ X,(48)

where σ2
f is the constant in (44), (45).

Proof. (a) From the so-called average cost optimality equation (7), we have

ρ∗ + h∗(x) ≤ Cf (x) +

∫
X

h∗(y)Qf (dy|x) ∀x ∈ X.(49)

On the other hand, we also have Jf = ρ∗ because f is EAC-optimal, and so the
Poisson equation (28) for f becomes

ρ∗ + hf (x) = Cf (x) +

∫
X

hf (y)Qf (dy|x) ∀x ∈ X.(50)

From (49) and (50), it follows that the function u(·) = hf (·)−h∗(·) is super-harmonic
with respect to Qf , i.e.,

u(x) ≥
∫

X

u(y)Qf (dy|x) ∀x ∈ X.

Iterating this inequality, we see that

u(x) ≥
∫

X

u(y)Qnf (dy|x) ∀x ∈ X, n = 0, 1, . . . ,

and if we let n→∞, (31) yields

u(x) ≥
∫

X

u(y)µf (dy) ∀x ∈ X.(51)

Now let kf := infx∈X u(x). Then, by (51),
∫
X
u(y)µf (dy) = kf , which implies

u(·) = kf µf -a.e.

Thus, as u := hf − h∗, (a) follows with kf = infx∈X u(x) =
∫
X
u(y)µf (dy).

(b) By (a), there exists a Borel set N ∈ B(X) such that µf (N) = 0 and

hf (x) = h∗(x) + kf ∀x ∈ N c := X\N.(52)

Now let g ∈ Fcp be a canonical policy (whose existence is ensured by Remark 3.5),

and define a new policy f̂ as f̂ := g on N and f̂ := f on N c. Then, f̂ is canonical,
and Qf (·|x) = Q

f̂
(·|x) on N c, that is,

Qf (·|x) = Q
f̂
(·|x) µf − a.e.(53)

Hence, on the one hand, (53) yields

µf (·) = µ
f̂
(·),(54)
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and, on the other hand, (53) and (52) give (from (43) and (21))

Ψf (·) = Φf (·) µf -a.e.(55)

Therefore, (48) follows from (44)–(45) and (54)–(55).
We are now ready for the proof of Theorem 3.8.
Proof of Theorem 3.8. Let A∗(x) and Φ(x, a) be as in (20) and (21), respectively,

and consider the new Markov control model

(X,A, {A∗(x) : x ∈ X}, Q, Ĉ)

with Ĉ(x, a) := Φ(x, a). It is easy to check that this control model satisfies Assump-

tions 3.1, 3.2, and 3.4, replacing C and A(·) with Ĉ and A∗(·), respectively. Conse-
quently, by Remark 3.5, there exists a constant σ2

∗ ≥ 0, a function V ∗(·) in BW (X),
and a canonical policy f∗ ∈ Fcp that satisfy (22). Then, by standard arguments it
follows that

σ2
∗ = µf∗(Φf∗) = V (f∗, x) ∀x ∈ X(56)

and

σ2
∗ ≤ µf (Φf ) = V (f, x) ∀f ∈ Fcp, x ∈ X,(57)

where the last equality in (56) and (57) follows from (47) and (45). Finally, from (57)
and Lemma 5.2(b) we conclude that

σ2
∗ ≤ σ2

f = V (f, x) ∀f ∈ Feac, x ∈ X.

This completes the proof of Theorem 3.8.

6. Additional comments. In this section we briefly discuss alternative forms
of the stability Assumptions 3.2 and 3.4, as well as examples related to our main
results.

In addition to the space of functions BW (X) with the W -norm (14), where W ≥ 1
is the “weight” function in Assumption 3.1(d), we shall consider the normed linear
space MW (X) of the finite signed measures with a finite W -norm

||µ||W :=

∫
X

W (y)|µ|(dy),(58)

where |µ| := µ+ + µ− denotes the total variation of µ.
Remark 6.1. Suppose that Assumption 3.1 holds. Then from the proofs in [18,

Theorem 3.5] and [36, Theorem 4.5.3] one can see that the result mentioned in Remark
3.5 holds provided that

(I) the W -geometric ergodicity (15) holds, with constants Mf and γf that satisfy
Assumption 3.4; and

(II) The transition kernel Qf is ϕ-irreducible for each f ∈ F, where ϕ is a σ-finite
measure on X independent of f ∈ F.

These two conditions were obtained in section 3 from Assumptions 3.2 and 3.4.
However, there are other ways of getting I. For example, Assumptions 3.2 and 3.4
may be replaced by the following hypotheses used in [12, 13].

(a) For each stationary policy f ∈ F the kernel Qf (in (1)) admits a unique
invariant probability measure µf .
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(b) There exists a probability measure ν in MW (X) and positive constants α <∞
and β < 1 for which the following holds: for each f ∈ F there exists a measurable
function 0 ≤ lf ≤ 1 such that

(b1) Qf (B|x) ≥ lf (x)ν(B) ∀x ∈ X, B ∈ B(X);

(b2) ν(lf ) ≥ α, and ν(W ) = ||ν||W <∞;

(b3)
∫
X
W (y)Qf (dy|x) ≤ βW (x) + lf (x)ν(W ) ∀x ∈ X.

These conditions, (a) and (b), are an adaptation to MCPs of ideas used by Kar-
tashov [22] to obtain the W-geometric ergodicity in (15). In fact, under (a) and (b),
our present Assumption 3.4 is satisfied and one can also obtain estimates of the con-
stants M and γ—see [22, Theorem 3.6] and [12, Lemmas 3.3 and 3.4]—in Assumption
3.4.

Similarly, instead of (a) and (b), one could adapt to MCPs the “contraction”
property in [22, Corollary 2.1], which in our notation would be of the form ||θQf ||W ≤
ρ||θ||W for every signed measure θ in MW (X) with θ(X) = 0, for some positive
constant ρ < 1. On the other hand, as was already noted in [18, Remark 2.10], if the
cost function C(x, a) is bounded, then the “weight” function W ≥ 1 may be bounded
and (15) can be obtained from Doeblin’s condition—see [31, Theorem 16.0.2].

To conclude, we should mention that the examples in [13] and [18] (see also [36,
Chapter 4]) also hold in our present case. For instance, the example in [18, section 6],
consists of an inventory system with state space X := [0,∞) and a compact control
set A ⊂ R, in which the one-step cost C(x, a) is piecewise-linear in x ∈ X and a ∈ A.
Therefore, as the weight function is exponential, say

W (x) := k exp(rx) ∀x ∈ X,

with k, r > 0, our Assumption 3.6 will trivially hold for some r2 > 0 sufficiently large.
A similar comment holds for the queueing system in [13, section 5], except that this
reference uses the conditions (a) and (b) in Remark 6.1 in lieu of Assumptions 3.2
and 3.4.
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Abstract. Algorithms for learning the optimal policy of a Markov decision process (MDP)
based on simulated transitions are formulated and analyzed. These are variants of the well-known
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1. Introduction. Recently there has been a lot of interest in simulation-based
algorithms for MDPs. In these, one takes as the starting point one of the classical
iterative algorithms for computing the value function: the value iteration or policy
iteration. The conditional expectation term in these is then replaced by its integrand
evaluated at an actual simulated transition. The algorithm is expected to “see” the
conditional expectation through an averaging effect achieved by using stochastic ap-
proximationlike step sizes. These schemes are very useful when the exact dynamics is
unknown or complicated but simulation is “easy.” An instance would be a large com-
munication network where an exact analytic model is hard to derive but simulating
a typical transition using local dynamics is easy.

The simulation-based scheme derived from value iteration is called Q-learning
and has been extensively analyzed [26, 24, 1, 2]. The scheme derived from policy
iteration is called adaptive critic [3] and has eluded a satisfactory convergence anal-
ysis (see [27]). This is because policy iteration involves two loops. The inner loop
computes the “value function” for a stationary policy and the outer one updates the
latter. If both are done recursively, ideally the outer update should wait for the con-
vergence of the inner loop. The aim of this paper is to propose several variants of the
adaptive critic method where the above difficulty is circumvented by a two time scale
stochastic approximation. That is, we use different step size schedules for different
components of the iteration. Recall that the traditional stochastic approximation al-
gorithm asymptotically tracks an associated ODE [17]. The two time scale algorithm
correspondingly tracks a singular ODE. As in the case of singular ODEs, the fast com-
ponent sees the slow component as quasi-constant, while the slow component sees the
fast one as essentially equilibrated. Thus operating the outer loop of our algorithm
on a slower (virtual) time scale than the inner loop achieves the desired effect. These
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qualitative remarks will be made precise later. Another important feature of our work
is the distributed, asynchronous iterations typical in applications. (Unfortunately, we
have to stick to the synchronous iterations for one of the time scales in the case of
the average cost problems, due to some technical difficulties; see [11].)

The reader is referred to [6, 14] for extensive accounts of earlier work on simulation-
based algorithms. Two time scale stochastic approximations are studied in [8]. Our
approach to asynchronous algorithms follows [9].

The paper is organized as follows. The next section proposes and analyzes a
prototypical algorithm without any reference to MDPs. All the algorithms we propose
will be variants of this. Section 3 introduces the MDP framework and the associated
algorithms. These are analyzed in sections 5 and 6 for discounted and average cost,
respectively, following some preliminaries in section 4. The last section concludes with
some relevant remarks. Algorithm 2 was also presented in [10]. It is included here for
the sake of completeness.

2. General algorithm.

2.1. Notation. Let l, m ≥ 1, I = {1, . . . , l}, I ′ = {1, . . . ,m}. Let ei denote a
unit l-vector whose ith component is one. Let I1, I2, . . . , IK be a partition of I, and let

G1, G2, . . . , GK be closed convex subsets of Rl such that Gi ⊂ Hi
∆
= span{ek|k ∈ Ii}

and G = {∑i xi : xj ∈ Gj ∀j} is compact. Let πi : Rl → Hi denote the projection
map; let Pi : Hi → Gi and P : Rl → G denote the projections given by Pi(x) = y
subject to y ∈ Gi, ‖y − x‖ = infz∈Gi ‖z − x‖, P (x) = y s.t. ‖y − x‖ = infz∈G ‖z − x‖.
It is then easy to see the following:

(1) For each x ∈ Rl, x =
∑K
k=1 πk(x).

(2) For each i = 1, 2, . . . ,K,Gi = πi(G).

For each x ∈ Rl, P (x) =
∑K
i=1 Pi(πi(x)). We further assume that {Gi} are of the

form

Gi = {x ∈ Hi : qij(πi(x)) ≤ 0, 1 ≤ j ≤ Ki

for some continuously differentiable functions {qij(·)}.
Let f : G × Rm → Rm, g : G × Rm → Rl be prescribed Lipschitz maps such

that for each x ∈ G, f(x, y) = 0 has a unique solution y = λ(x). Assume that λ(·) is
Lipschitz. Define

P̄x(g(x, λ(x))) = lim
∆↓0

P (x+ ∆g(x, λ(x)))− x
∆

.

The algorithm proposed below aims to find the solution of P̄x(g(x, λ(x))) = 0 based
on noisy samples. We describe this next.

Let {X̄n, Ȳn} be set-valued random processes taking values in the subsets of I,
I ′, respectively, and set

ν1(i, n) =
n−1∑
k=0

I{i ∈ X̄k}, ν1(i, 0) = 0, 1 ≤ i ≤ l,

ν2(j, n) =
n−1∑
k=0

I{j ∈ Ȳk}, ν2(j, 0) = 0, 1 ≤ j ≤ m.

Let {a(n)} be positive sequences satisfying

(2.1)
∑
n

a(n) =
∑
n

b(n) =∞,
∑
n

a(n)2 <∞,
∑
n

b(n)2 <∞.
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Then the algorithm is as follows: For 1 ≤ k ≤ K, 1 ≤ i ≤ m,
(2.2)

πk(X(n+ 1))

= Pk

πk(X(n)) +
∑
j∈Ik

a(ν1(j, n))(gj(X̃
j(n), Ỹ j(n)) +Mj(n))I{j ∈ X̄n}ej

 ,

(2.3) Yi(n+ 1) = Yi(n) + b(ν2(i, n))(fi(X̂
i(n), Ŷ i(n)) +M ′i(n))I{i ∈ Ȳn}.

Here {M(n)}, {M ′(n)} are vector martingale difference sequences and

X̃j(n) = [X1(n− τj1(n)), . . . , Xl(n− τjl(n))]T ,

Ỹ j(n) = [Y1(n− τ̄j1(n)), . . . , Ym(n− τ̄jm(n))]T ,

X̂i(n) = [X1(n− ρi1(n)), . . . , Xl(n− ρil(n))]T ,

Ŷ i(n) = [Y1(n− ρ̄i1(n)), . . . , Ym(n− ρ̄im(n))]T ,

for nonnegative random “delays” {τij(·)}, {τ̄ij(·)}, {ρij(·)}, {ρ̄ij(·)}.
The interpretation is as follows: Ȳn is the set of indices i such that Yi(n) gets

updated at time n. Similarly, X̄n is the set of indices j such that the noisy sample
(gj(X̃

j(n), Ỹ j(n)) + Mj(n)) is used to update X(n). Each component of X(·), Y (·)
is assigned to a unique processor which receives the outputs of other processors with
some random delays and updates all the components assigned to it. Each component
of Y (·) is assigned to a separate processor. Two components Xi, Xj of X(·) are
assigned to the same processor and experience the same communication delays if
there exists 1 ≤ k ≤ K such that i, j ∈ Ik. {M(n)}, {M ′(n)} are martingale
difference sequences (with respect to the “natural” σ-fields generated by processes
under consideration) representing measurement noise. ν1(i, n) (respectively, ν2(i, n))
is the number of times the ith component of X(·) (respectively, Y (·)) was updated up
to time n. These are known to the respective processors who need not know n (the
global “clock”). See [9] for a further discussion of this paradigm.

2.2. Assumptions. We shall make the following assumptions:
(A1) Ideal step size. Letting c(n) stand for either a(n) or b(n), we assume, in

addition to (2.1), that c(n) is eventually decreasing and the following hold:
1. a(n) = o(b(n)).
2. For x ∈ (0, 1),

(2.4) sup
n
c([xn])/c(n) <∞,

where [· · ·] stands for the integer part of “. . .”.
3. For x ∈ (0, 1) and A(n) =

∑n
i=0 c(i),

(2.5) A([yn])/A(n)→ 1

uniformly in y ∈ [x, 1].
Examples are c(n) = 1

n , 1
n logn for n ≥ 2 with suitable modifications for n = 0, 1.

(A2) Boundedness of iterates. supn ‖Y (n)‖ <∞.
(A3) ODE stability. For each x ∈ G, the ODE

ẏ(t) = f(x, y(t)), y(0) = y,
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has a unique globally asymptotically stable equilibrium point λ(x), where λ(·) is
Lipschitz. (Note that this means that the ODE ẋ(t) = 0, ẏ(t) = f(x(t), y(t)) has

graph(λ)
∆
= {(x, λ(x)) : x ∈ G} as the globally asymptotically stable set.) Also, the

ODE

ẋ(t) = P̄x(t)(g(x(t), λ(x(t)))), x(0) = x,

has a strict Liapunov function, i.e., a twice continuously differentiable function L(·) :
G→ R such that

∇L(x) · P̄x(g(x, λ(x))) < 0

whenever P̄x(g(x, λ(x))) 6= 0.
(A4) Ideal noise. {M(n)}, {M ′(n)} are square integrable and satisfy

sup
n
‖M(n)‖, sup

n
‖M ′(n)‖ <∞ almost surely,

E[M(n)|Fn] = E[M ′(n)|Fn] = 0 a.s.,

sup
n

E[‖M(n)‖2|Fn], sup
n

E[‖M ′(n)‖2|Fn] <∞ a.s.,

where Fn = σ(X(k), Y (k), {τij(k)}, {τ̄ij(k)}, {ρij(k)}, {ρ̄ij(k)}, k ≤ n, M(k), M ′(k),
k < n), n ≥ 0.

(A5) Bounded delays. All interprocessor delays are bounded by a common deter-
ministic constant D.

(A6) Frequent updates. X̄n, Ȳn 6= ∅ ∀n and there exists an η̄ > 0 such that

lim inf
n→∞

ν1(i, n)

n
≥ η̄,

lim inf
n→∞

ν2(j, n)

n
≥ η̄

a.s. ∀i, j.
Furthermore, if, for ā(·), b̄(·) defined as in section 4.2 below,

N(n, x) = min

{
m > n :

m∑
i=n+1

ā(i) ≥ x
}
,

N ′(n, x) = min

{
m > n :

m∑
i=n+1

b̄(i) ≥ x
}
,

for x > 0, then the limits

(2.6) lim
n→∞

∑ν1(i,N(n,x))
j=ν1(i,n) a(j)∑ν1(k,N(n,x))
j=ν1(k,n) a(j)

,

(2.7) lim
n→∞

∑ν2(i,N ′(n,x))
j=ν2(i,n) b(j)∑ν2(k,N ′(n,x))
j=ν2(k,n) b(j)

exist a.s. (Together, these conditions imply that the components are updated “compa-
rably often” in an “evenly spread” manner.) In section 6 where we consider learning
algorithms for the average cost problems, we strengthen this to ν2(j, n) = n, i.e.,
Ȳn = I ′.
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3. Algorithms for MDPs.

3.1. MDPs. We shall consider MDPs on a finite state space S = {1, 2, . . . , s}
with a finite action space A = {a0, . . . , ar}. P(A) will denote the set of probability
vectors on A. Also given is a transition function p : S × S ×A→ [0, 1] satisfying∑

j

p(i, j, a) = 1 ∀i, a.

The MDP is an S-valued process {Xn} satisfying a.s.

P (Xn+1 = j|Xk, Zk, k ≤ n) = p(Xn, j, Zn), n ≥ 0,

where {Zn} is an A-valued “control” process. If Zn = v(Xn) ∀n for some v : S → A,
call {Zn} or, by abuse of terminology, the map v itself, a stationary policy. More
generally, if for each n, Zn is conditionally independent of {Xm, Zm,m < n}, givenXn,
and Zn has the same conditional law given Xn for each n, then we call it a stationary
randomized policy and identify it with the map ϕ : S → P(A) which gives the
conditional law of Zn given Xn. For i ∈ S, a ∈ A, let π(i, a) denote the ath component
of ϕ(i). Under a stationary policy v (respectively, a stationary randomized policy ϕ),
{Xn} is a time-homogeneous Markov chain with transition probabilities [[p(i, j, v(i))]]
(respectively, [[q(i, j, ϕ(i))]] where q(i, j, ϕ(i)) =

∑
a p(i, j, a)π(i, a)). By a further

abuse of terminology, we identify the stationary randomized policy ϕ with the vector
π = [π(i, a)], where the elements are ordered lexicographically. Let k : S × A → R
be a prescribed “running cost” function and α ∈ (0, 1) a “discount factor.” The two
control problems we consider follow in sections 3.2 and 3.3.

3.2. The infinite horizon discounted cost problem. Here the aim is to
minimize over all admissible {Zn} the quantity E[

∑∞
n=0 α

nk(Xn, Zn)]. Define the
value function Vα : S → R by

Vα(i) = inf E

[ ∞∑
n=0

αnk(Xn, Zn)|X0 = i

]
,

where the infimum is over all admissible {Zn}. Then Vα(·) is the unique solution to
the equation

(3.1) Vα(i) = min
a

k(i, a) + α
∑
j

p(i, j, a)Vα(j)

 , i ∈ S,

and {Zn} is optimal if and only if Zn ∈ Arg min(k(Xn, ·) + α
∑
j p(Xn, j, ·)Vα(j))

a.s. ∀n. In particular, a stationary policy v (respectively, stationary randomized policy
ϕ) is optimal if and only if v(i) ∈ Arg min(k(i, ·) + α

∑
j p(i, j, ·)Vα(j)) (respectively,

support(ϕ(i)) ⊂ Arg min(k(i, ·)+α
∑
j p(i, j, ·)Vα(j))) ∀i that are visited with positive

probability. Thus the existence of a stationary policy v(·) follows, as well as a recipe
for finding it, viz., by minimizing the right-hand side (RHS) of (3.1) to find v(i); see
[21] for this and related results.

For future reference, we also associate with a stationary randomized policy ϕ =
[[π(i, a)]] a “stationary value function” Vπ : S → R defined by

Vπ(i) = E

[ ∞∑
n=0

αnk(Xn, Zn)|X0 = i

]
, i ∈ S,
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where {Zn} ≈ ϕ. This is easily seen to be the unique solution of the linear equation

(3.2) Vπ(i) =
∑
a

π(i, a)

k(i, a) + α
∑
j

p(i, j, a)Vπ(j)

 , i ∈ S.

3.3. Average expected cost problem. Here the aim is to minimize

lim sup
N→∞

1

N
E

[
N−1∑
n=0

k(Xn, Zn)

]

over all admissible {Zn}. We assume that {Xn} is an irreducible Markov chain under
every stationary policy. Under this condition, it can be shown that there exists a pair
(h(·), λ∗), h : S → R, λ∗ ∈ R, satisfying

(3.3) λ∗ + h(i) = min
a

k(i, a) +
∑
j

p(i, j, a)h(j)

 .
Furthermore, λ∗ is uniquely specified as the optimal cost, equal to the cost of an opti-
mal stationary policy guaranteed to exist and characterized by v(i) ∈ Arg min(k(i, ·)+∑
j p(i, j, ·)h(j)). A stationary randomized policy ϕ is optimal if and only if support

of ϕ(i) lies in the above Argmin. The vector h is unique up to an additive constant;
i.e., if h, h′ satisfy (3.3), then h(i) − h′(i) is independent of i. We shall denote by
h∗ the unique solution satisfying h∗(i0) = λ∗ for a prescribed i0 ∈ S. For future
reference, we also associate with a stationary randomized policy ϕ = [[π(i, a)]] the
corresponding cost λπ and the function hπ : S → R uniquely specified by hπ(i0) = λπ
and

λπ + hπ(i) =
∑
a

π(i, a)

k(i, a) +
∑
j

p(i, j, a)hπ(j)

 , i ∈ S.

3.4. Policy iteration. A popular iterative scheme for solving (3.1) or (3.3) is
policy iteration, known to converge to the desired solution in finitely many steps
[21]. Consider (3.1). One starts with an initial guess for optimal stationary policy,
say, v0(·). At nth iteration, one performs the following two steps: Given current
candidate vn(·) for the stationary optimal policy,

Step 1. Compute the stationary value function Vn
∆
= Vvn .

Step 2. Pick vn+1(i) ∈ Argmin(k(i, ·) + α
∑
j p(i, j, ·)Vn(j)).

Step 1 involves solution of a linear system. We may replace it by an “inner loop”
that computes Vn iteratively via a “stationary value iteration”: Step 1′: V m+1

n (i) =
k(i, vn(i)) + α

∑
j p(i, j, vn(i))V mn (j) for m = 0, 1, 2, . . . .

This entails that Step 2 wait till the inner loop iterations converge. Among other
things, the algorithms we propose work around this difficulty by using two time scales.

The policy iteration for the average expected cost reads exactly the same except
that the linear system in question now is

hn(i) + hn(i0) = k(i, vn(i)) +
∑
j

p(i, j, vn(i))hn(j), i ∈ S,
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to be solved for hn(·). An iterative scheme for this, replacing Step 1 above, is

hm+1
n (i) = k(i, vn(i)) +

∑
j

p(i, j, vn(i))hmn (j)− hmn (i0),

where i0 ∈ S is a prescribed state as before. Step 2 is as before with α = 1. This is
the “relative value iteration” scheme [21]. It is known to converge to h∗.

3.5. Learning algorithms for MDPs. In this section, we introduce simulation-
based learning algorithms based on policy iteration. As already mentioned, the key
point in simulation-based algorithms is that the transition probabilities p(i, ·, a) are
not available, but it is possible to simulate a transition according to any of these prob-
abilities. Thus one replaces the conditional average of candidate V (or h, as the case
may be) with respect to a given transition probability by an evaluation of the same
function at the state reached by a simulated transition as per the said probability.
Nevertheless, in order for the algorithm to mimic the classical iterative algorithms of
the previous subsection, it must “see” the appropriate conditional average through
an averaging effect. This is achieved by using a stochastic approximationlike step size
schedule.

The “learning” variants of policy iteration were introduced by Barto, Sutton, and
Anderson [3] and dubbed “adaptive critic” algorithms. Our formulations differ in that
we explicitly use two time scales to simulate the two (i.e., inner and outer) loops of
iterations. The outer loop operates on a slower scale and thus sees the inner loop as
essentially equilibrated, while the inner (fast) loop sees the outer one as quasi-static.
In addition, we allow for a distributed asynchronous implementation, as is usually
the case in practice. All in all, our algorithms will fit the framework of the “general
algorithm” discussed in the last section.

We shall denote by Vn(·), πn(·, ·) the current estimate for the value function
and optimal stationary randomized policy, respectively. Let I1, I2 be a collection of
nonempty subsets of S, S × (A\{a0}), respectively. Let {Yn}, {Zn} be I1, I2-valued
random processes, respectively, with the interpretation that Yn = the set of i ∈ S for
which Vn(i) gets updated at time n, Zn = the set of (i, a) ∈ S × (A\{a0}) for which
πn(i, a) gets updated at time n. (Note that πn(i, a0) = 1 −∑a6=a0

πn(i, a).) Define
ν1(i, n), ν2(i, a, n) by

ν1(i, 0) = 0, ν1(i, n) =
n−1∑
m=0

I{i ∈ Ym}, n > 0,

ν(i, a, 0) = 0, ν2(i, a, n) =
n−1∑
m=0

I{(i, a) ∈ Zm}, n > 0.

We assume the following throughout the counterpart of (A6). For a deterministic
∆ > 0,

lim inf
n→∞

ν1(i, n)

n
≥ ∆, a.s. ∀i ∈ S,

lim inf
n→∞

ν2(i, a, n)

n
≥ ∆, a.s. ∀i ∈ S, a ∈ A.

Also, the appropriate analogues of (2.6), (2.7) are assumed to hold.
Introduce delays τn(i, j), τ̄n(i, j), τ̂n(i). The processor updating Vn(i) receives at

time n, Vn−τn(i,j)(j) instead of Vn(j) and πn−τ̂n(i)(i, a) instead of πn(i, a). Similarly
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the processor updating πn(i, ·) at time n receives Vn−τ̄n(i,j)(j) instead of Vn(j). These
delays are assumed to be bounded a.s. by a deterministic T > 0. No messages are
lost. Thus, for example, for j 6= i, each {Vm(j)} is received by the processor that
updated Vm(i), albeit with a delay of at most T and not necessarily in the order
sent. Let {ξn(i, a)}, {ηn(i, a)}, i ∈ S, a ∈ A, be independent families of indepen-
dently and identically distributed (i.i.d.) random variables with law p(i, ·, a). Let

ϕn(i) be an A-valued random variable whose conditional law given Fn ∆
= σ(Vm(·),

πm(·), ξn(·, ·), ηm(·, ·), τm(·, ·), τ̄m(·, ·), τ̂m(·), m ≤ n) is πn−τ̂n(i)(i, ·). (Note that this
is available to the processor updating Vn(i) at time n.)

Let PS ⊂ Rr be the simplex defined by

PS =

{
(x1, . . . , xr) : xi ≥ 0;∀i = 1, . . . , r and

r∑
i=1

xi ≤ 1

}
.

Let P be the projection from Rr to PS. A stationary randomized policy π can be
identified with a π̂ ∈ PSs with π̂ = [[π(i, a)]], i ∈ S, a ∈ A\{a0} (because π(i, a0)
gets automatically specified ∀i). In particular π ≈ π̂ is thus an element in (PS)s. We
shall use π̂(i) and π̂(i, ·) interchangeably. The algorithms update π̂ rather than π. In
what follows, {a(n)}, {b(n)} are as in the preceding section. The updating scheme
for Vn is the same in Algorithms 1–3 and therefore is mentioned only once.

3.6. Algorithm 1.

Vn+1(i) = Vn(i) + b(ν1(i, n))[k(i, ϕn(i)) + αVn−τn(i,ξn(i,ϕn(i)))(ξn(i, ϕn(i)))

− Vn(i)]I{i ∈ Yn},

π̂n+1(i) = P

(
π̂n(i) +

r∑
l=1

a(ν2(i, al, n))[k(i, a0)− k(i, al) + α(Vn−τ̄(i,ηn(i,a0))(ηn(i, a0))

− Vn−τ̄(i,ηn(i,al))(ηn(i, al)))]I{(i, al) ∈ Zn}el
)
,

where el is the unit vector in lth coordinate direction.

3.7. Algorithm 2. Let {ψil(n)}i∈S,al∈A denote zero mean i.i.d. noise satisfying

the following: ForMn(i, l)
∆
= απn(i, al)(

∑
k p(i, k, al)Vn(k)−Vn−τ̄(i,ηn(i,al))(ηn(i, al))),

the following holds:

inf
θ∈Rr,‖θ‖=1

E

[
max

(
0,

〈
θ,
∑
l

(Mn(i, l) + ψil(n))el

〉)]
> 0.

This condition is difficult to verify. Crudely speaking, it requires that the noise
intensity uniformly dominate the effect of the “error” term Mn(·, ·) in all directions.
In simulations, simple ad hoc “noise” schemes seem to work well. We shall have more
to say on this in the following section. The algorithm is as follows: {Vn} is updated
as above and

π̂n+1(i) = P

(
π̂n(i) +

r∑
l=1

a(ν2(i, al, n))[(Vn−τ̄n(i,i)(i)− k(i, al)

− αVn−τ̄n(i,ηn(i,al))(ηn(i, al)))π̂n(i, al) + ψil(n)]I{(i, al) ∈ Zn}el
)
.
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3.8. Algorithm 3. In this, we parametrize π(·, ·) by parameters β(·, ·) according
to

πβ(i, a) =
exp(β(i, a))∑
a′ exp(β(i, a′))

, i ∈ S, a ∈ A.

Each β(i, a) is updated by a separate processor. The setup is as before except that
the conditional distribution of ϕn(i) now is

exp(βn−τ̂n(i)(i, ·))∑
a exp(βn−τ̂n(i)(i, a))

and Zn is an S ×A-valued process.
The algorithm is as follows: {Vn} is updated as above and

βn+1(i, a) = Pβ0
(βn(i, a) + a(ν2(i, a, n))[Vn−τ̄(i,i)(i)− k(i, a)

− αVn−τ̄(i,ηn(i,a))(ηn(i, a))]I{(i, a) ∈ Zn}),

where Pβ0
: R→ R, β0 > 0 is defined by

(3.4) Pβ0
(x) =


−β0 for x ≤ −β0,

x for −β0 < x < β0,

β0 otherwise.

The next three algorithms deal with the average expected cost problem and are
exact counterparts of the above. The delays are defined as before, with hn replacing
Vn. Because of some technical difficulties that will become apparent later in section
5, we require all components of {hn} to sit on the same processor and get updated
synchronously. The algorithms are as follows.

3.9. Algorithm 4.

(3.5) hn+1(i) = hn(i) + b(n)[k(i, ϕn(i)) + hn(ξn(i, ϕn(i)))− hn(i)− hn(i0)],

π̂n+1(i) = P

(
π̂n(i) +

r∑
l=1

a(ν2(i, al, n))[k(i, a0)− k(i, al) + (hn−τ̄(i,ηn(i,a0))(ηn(i, a0))

− hn−τ̄(i,ηn(i,al))(ηn(i, al)))]I{(i, al) ∈ Zn}el
)
.

3.10. Algorithm 5. {hn} is updated as above and

π̂n+1(i) = P

(
π̂n(i) +

r∑
l=1

a(ν2(i, al, n))[(hn−τ̄n(i,i0)(i0) + hn−τ̄(i,i)(i)− k(i, al)

− hn−τ̄(i,ηn(i,al))(ηn(i, al)))π̂n(i, al) + ψil(n)]I{(i, al) ∈ Zn}el
)
.
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3.11. Algorithm 6. Here π is parameterized by β(·, ·) as before. {hn} is up-
dated as above and

βn+1(i, a) = Pβ0
(βn(i, a) + a(ν2(i, a, n))[hn(i0) + hn−τ̄(i,i)(i)− k(i, a)

− hn−τ̄(i,ηn(i,a))(ηn(i, a))]I{(i, a) ∈ Zn}).

We now briefly describe the intuition behind the three schemes for updating π̂(·).
Note that ideally π̂ should concentrate on Argmin of the quantity in square brackets
in (3.1), which we call the “Q-value.” This suggests that π̂ should be incrementally
adjusted in the direction of lowering the average Q-value with respect to π̂. This
is achieved by comparing Q-values of, say, (i, a) with that of (i, a0) and using the
difference as the “reinforcement signal” for adjusting π̂(i, a) in the appropriate direc-
tion. (Note that π̂(i, a0) gets automatically adjusted.) This is the philosophy behind
Algorithms 1 and 4.

In Algorithms 2 and 5, on the other hand, we take as reinforcement signal the
offset between value function and the Q-value, keeping in mind that the former should
ideally be the minimum of the latter over a. The additional multiplication by π̂(i, a)
on the RHS ensures that the iterates “sort of” remain within the desired simplex.
(They do exactly so in an asymptotic sense.)

Algorithms 3 and 6 are different in a crucial way. They parametrize π̂ by hypoth-
esizing a Gibbsian form parametrized by a parameter vector and update the latter
rather than π̂ itself. This search is on a restricted subdomain of the simplex; thus
only near optimality can be hoped for. But this parametric form leads to simple algo-
rithms with the possibility of alleviating the “curse of dimensionality” by interfacing
with low-dimensional parametrizations.

4. Convergence analysis for the general algorithm.

4.1. Preliminary lemmas. This section sets forth some key technical results
underlying the convergence analysis to follow. To start with, consider the ODE

(4.1) ẋ = h(x(t), t), t ≥ 0,

with h : Rd × [0,∞)→ Rd measurable and the set J
∆
= {x : h(x, t) = 0} compact and

independent of t. A continuously differentiable function V : Rd → R is said to be a
strict Liapunov function for (4.1) if

1. V (x)→∞ as ‖x‖ → ∞, uniformly in ‖x‖;
2. H(x, t)

∆
= ∇V (x) · h(x, t) ≤ 0 ∀x, t with equality holding only when x ∈ J .

Define Jε = {x : ‖x − y‖ < ε for some y ∈ J}, ε > 0. We further assume that
inft≥0,x 6∈B |H(x, t)| is nonzero for every open set B containing J .

Definition 4.1. Given T , δ > 0, a (T, δ)-perturbation of ODE (4.1) is a bounded
measurable function y : [0,∞) → Rd such that there exist 0 = T0 < T1 < · · ·Tn ↑ ∞
and solutions xj(t), t ∈ [T ′j , T

′
j+1], j ≥ 0, of (4.1) such that T ′j+1−T ′j = Tj+1−Tj ≥ T

for j ≥ 0 and ‖y(t)− xj(T ′j + t− Tj)‖ < δ, Tj ≤ t ≤ Tj+1, j ≥ 0.
The following is a small extension of [13, Theorem 1, p. 339].
Lemma 4.2. For any T , ε > 0, there exists a δ0 = δ0(T, ε) > 0 such that for any

δ ∈ (0, δ0), any (T, δ)-perturbation of (4.1) will converge to Jε.
Proof. Let y(·) be a (T, δ)-perturbation of (4.1). For η > 0, define

B(η) = {x : |V (x)− V (y)| < η for some y ∈ J}.
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Let B be a ball large enough so that it contains both {y(t), t ≥ 0} and B(η) for some
η chosen so that B(η) ⊂ Jε. Define K, ∆ by

K = sup
x∈B̄
‖∇V (x)‖, ∆ = inf

t≥0
inf

x∈B̄\B(η)
|H(x, t)|.

Call the restriction of y(·) to [Tj , Tj+1] the jth patch of y(·). Let δ < ∆T
4K . It is easily

seen that V (y(Tj))− V (y(Tj+1)) + 2δK ≥ V (xj(T ′j))− V (xj(T ′j+1)) ≥ ∆T whenever

xj(t), t ∈ [T ′j , T
′
j+1], does not intersect B(η). But then

(4.2) V (y(Tj))− V (y(Tj+1)) ≥ ∆T/2.

This can occur for at most finitely many consecutive j’s because V (·) is bounded
from below. Also, if the jth patch of y(·) does not intersect B(η + δK), xj(·) cannot
intersect B(η). We conclude that eventually xj(·) and the jth patch of y(·) must
intersect B(η), B(η + δK), respectively. Now, for all j,

V (xj(t)) ≤ V (xj(s)) ∀s, t ∈ [T ′j , T
′
j+1], t ≥ s.

So

V (y(t)) ≤ V (y(s)) + 2δK ∀s, t ∈ [Tj , Tj+1], t ≥ s.
Therefore, the patch of y(·) that intersects B(η + δK) remains in B(η + δK + 2δK)
after hitting B(η+ δK). Since 2δK < ∆T/2, (4.2) implies that the subsequent patch
must hit B(η + δK). It follows that y(·) remains in B(η + δK + 2δK) once it hits
B(η+δK). Pick η, δ sufficiently small so that B(η+δK+2δK) ⊂ Jε. This completes
the proof.

Corollary 4.3. For X(·) ∈ C([0,∞);Rd), 0 ≤ t(n) ↑ ∞, if {X(t(n) + ·)} is
conditionally compact in C([0,∞);Rd) and all the limit points of {X(t(n) + ·)} in
C([0,∞);Rd) as n→∞ satisfy (4.1), then X(t) converges to J as t→∞.

Proof. Let T > 0. Let δ > 0 be such that X(t(n) + ·) is not a (T, δ)-perturbation
of (4.1) for any n. Then there exists sequence n1, n2, . . . , ni ↑ ∞ such that

sup
t∈[0,t]

‖X(t(ni) + t)− z(t)‖ ≥ δ ∀i > 0,

for all z(·) satisfying ODE (4.1). This means that there cannot exist a subsequence
of {Xni(·)} that converges to a solution of ODE (4.1). Thus for all δ > 0, there exists
n sufficiently large such that X(t(n) + ·) is a (T, δ)-perturbation of (4.1). This, by
Lemma 4.2, implies that X(t) converges to J as t→∞.

Next define Ud as the space of [0, 1]d-valued trajectories µ̄ = {µt, t ≥ 0} with the

coarsest topology that renders continuous the maps µ̄ 7→ ∫ T
0
h(t)µt(i)dt for T > 0, 1 ≤

i ≤ d, h ∈ L2[0, T ]. Using the Banach–Alaoglu theorem, it is easily verified that Ud

is compact metrizable and, hence, Polish. For µ̄ ∈ Ud let M µ̄(t) denote the diagonal
matrix diag(µt(1), . . . , µt(d)), t ≥ 0. For µ ∈ [0, 1]d define Mµ = diag(µ(1), . . . , µ(d)).

Lemma 4.4. Let {Xn(·)} ⊂ C([0,∞);Rd) be uniformly bounded with Xn(·) →
X∞(·) and {µ̄n} ⊂ Ud such that µ̄n → µ̄∞. Then for every h ∈ C(Rd;Rd),

lim
n→∞

∫ t

0

M µ̄n(s)h(Xn(s))ds =

∫ t

0

M µ̄∞(s)h(X∞(s))ds.
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Proof. ∥∥∥∥∫ t

0

M µ̄∞(s)h(X∞(s))ds−
∫ t

0

M µ̄n(s)h(Xn(s))ds

∥∥∥∥
≤
∥∥∥∥∫ t

0

M µ̄n(s)(h(X∞(s))− h(Xn(s)))ds

∥∥∥∥
+

∥∥∥∥∫ t

0

M µ̄∞(s)h(X∞(s))ds−
∫ t

0

M µ̄n(s)h(X∞(s))ds

∥∥∥∥
≤
∫ t

0

‖h(X∞(s))− h(Xn(s))‖ds

+

∥∥∥∥∫ t

0

M µ̄∞(s)h(X∞(s))ds−
∫ t

0

M µ̄n(s)h(X∞(s))ds

∥∥∥∥ .
Given our hypotheses, it is easy to see that both terms on the right go to zero.

The last lemma of this subsection concerns the noise sequence.
Lemma 4.5.

∑
n a(ν1(i, n))Mi(n)I{i ∈ X̄n},

∑
n b(ν2(j, n))M ′j(n)I{j ∈ Ȳn} con-

verge a.s.
Proof. Note that in each case the partial sums form a square integrable {Fn}-

martingale. By (A4) and the fact that ∀i, j,∑
n

a(ν1(i, n))2I{i ∈ X̄n},
∑
n

b(ν2(j, n))2I{j ∈ Ȳn} <∞ a.s.,

it follows that the quadratic variation process for these martingales remain bounded
a.s. The claim now follows from [18, Proposition VII-3(c), pp. 149–150].

4.2. Convergence analysis. We shall proceed through a sequence of lemmas.
Define

b̄(n) = max
i∈Ȳn

b(ν2(i, n)),

ā(n) = max
j∈X̄n

a(ν1(j, n)).

Let t(0) = 0, t(n) =
∑n−1
k=0 b̄(k), n > 0 and define sequences {µ′n}, {µn} in [0, 1]m,

[0, 1]l by the following: For n ≥ 0,

µ′n(i) = b(ν2(i, n))I{i ∈ Ȳn}/b̄(n), 1 ≤ i ≤ m,
µn(j) = a(ν1(j, n))I{j ∈ X̄n}/ā(n)

for 1 ≤ j ≤ l. Then rewrite the algorithm (2.2)–(2.3) as

(4.3) X(n+ 1) = P (X(n) + ā(n)Mµn(W (n) +M(n))),

(4.4) Y (n+ 1) = Y (n) + b̄(n)Mµ′n(W ′(n) +M ′(n)),

where Wi(n) = gi(X̃
i(n), Ỹ i(n)), W ′j(n) = fj(X̂

j(n), Ŷ j(n)) for 1 ≤ i ≤ m, 1 ≤ j ≤ l.
Lemma 4.6. b̄(n), ā(n)→ 0 and ā(n) = o(b̄(n)) a.s.
Proof. By assumption (A1) â = supn supy∈[x,1] a([yn])/a(n) is finite ∀x ∈ (0, 1].

Let η̄ > ε > 0, where η̄ is as in (A6). By (A6), a.s., ν1(i, n)/n > η̄ − ε eventually.
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Setting x = η̄ − ε in the above, a(ν1(i, n))/a(n) ≤ â+ δ eventually a.s. for any δ > 0.
Since a(n)→ 0 it follows that ā(n)→ 0; b̄(n)→ 0 is proved similarly. Now, for large
n,

ā(n)

b̄(n)
≤ a([n(η̄ − ε)])

b(n)
≤ â a(n)

b(n)

by (A1).
Lemma 4.7. ‖g(X(n), Y (n))−W (n)‖, ‖f(X(n), Y (n))−W ′(n)‖ → 0 a.s.
Proof. Let C be a bound on the {gi(X̃i(n), Ỹ i(n))} (cf. (A2)). For D as in (A5)

and 1 ≤ i ≤ K, we have, for n ≥ D and suitable C1 > 0 depending on C,

‖X(n)− X̃i(n)‖ ≤ C1

n∑
k=n−D

ā(k) +

n∑
k=n−D

‖ā(k)M(k)‖

≤ (D + 1)

(
C1 sup

k≥n−D
ā(k) + sup

k≥n−D
‖ā(k)M(k)‖

)
.

Using Lemma 4.5 and (A4) we conclude that the r.h.s. above tends to zero a.s. Simi-
larly, one proves that a.s.

‖X̂i(n)−X(n)‖, ‖Ŷ i(n)− Y (n)‖, ‖Ỹ j(n)− Y (n)‖ → 0.

The claim follows from (A2) and continuity of f(·, ·), g(·, ·).
Define µ̄ ∈ Um by the following: µt = µ′n, t ∈ [t(n), t(n + 1)), n ≥ 0. Let

µ̄n = {µt+t(n), t ≥ 0}. In the following lemma, it is worth keeping in mind that the
convergence of µ̄n’s along a subsequence to µ∗ (say) is with respect to the topology
on Um defined above. That is, for each T > 0, f ∈ L2[0, T ], i ∈ S,∫ T

0

f(t)µnt (i)dt→
∫ T

0

f(t)µ∗t (i)dt.

Lemma 4.8. Almost surely, every limit point µ̄∗ of {µ̄n} in Um satisfies the
following: µ∗t (i) = c(t)/m almost every t (a.e.t) for some bounded measurable function
c(·) : [0,∞)→ [1,∞).

Proof. Let h(·) be an eventually decreasing smooth function [0,∞)→ [0,∞) such
that h(t(n)) = b(n) ∀n. Note that

lim
t→∞

∫ t
z
µs(j)ds∫ t

z
µs(i)ds

= lim
n→∞

∑ν1(j,n)
k=0 b(k)∑ν1(i,n)
k=0 b(k)

= lim
n→∞

∫ ν1(j,n)

0
h(s)ds∫ ν1(i,n)

0
h(s)ds

= lim
n→∞

∫ ν1(j,n)

0
h(s)ds∫ n

0
h(s)ds

∫ n
0
h(s)ds∫ ν1(i,n)

0
h(s)ds

= 1 a.s.,

uniformly in z for z ≤ C (say), by virtue of (A1)(3) and (A6). Then for x > 0,

lim
t→∞

∫ x
0

∫ t
0
µs+y(j)dsdy∫ x

0

∫ t
0
µs+y(i)dsdy

= lim
t→∞

∫ t
0

∫ x
0
µs+y(j)dyds∫ t

0

∫ x
0
µs+y(i)dyds

= 1 a.s.

By l’Hôpital’s rule,

lim
t→∞

∫ x
0
µt+y(j)dy∫ x

0
µt+y(i)dy

= 1 a.s.
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(That this limit is known to exist a priori follows from the second half of assumption
(A6).) Thus, a.s., any limit point µ̄∗ of {µ̄n} must satisfy∫ x

0
µ∗t (j)dt∫ x

0
µ∗t (i)dt

= 1 a.s.

Since x was arbitrary, we have µ∗t (j)/µ
∗
t (i) = 1 for a.e.t. This along with the fact that

m ≥∑i µt(i) ≥ 1 for all t implies the above claim.
The proofs of the next two lemmas are given in outline, as the details are lengthy

but routine.
Lemma 4.9. ‖λ(X(n))− Y (n)‖ → 0 a.s.
Proof (sketch). Fix a sample point outside the zero probability set where the

foregoing lemmas and assumptions fail. Rewrite the algorithm as

X(n+ 1) = X(n) + b̄(n)

(
ā(n)

b̄(n)

)
Mµn(W (n) +M(n))

+ b̄(n)

(
P (X(n) + ā(n)Mµn(W (n) +M(n)))−X(n)− ā(n)Mµn(W (n) +M(n))

b̄(n)

)
,

Y (n+ 1) = Y (n) + b̄(n)Mµ′n(f(X(n), Y (n)) + ((W ′(n)− f(X(n), Y (n))) +M ′(n))).

Using our definition of P (·), it follows that∥∥∥∥P (X(n) + ā(n)Mµn(W (n) +M(n)))−X(n)− ā(n)Mµn(W (n) +M(n))

b̄(n)

∥∥∥∥
≤
(
ā(n)

b̄(n)

)
‖W (n) +M(n)‖.

Since ‖W (n) +M(n)‖ remains bounded, we have, by Lemma 4.6,

X(n+ 1) = X(n) + b̄(n)Z(n),

where Z(n) is o(1). Define X̃(·) : [0,∞) → Rl, Ỹ (·) : [0,∞) → Rm by X̃(t(n)) =
X(n), Ỹ (t(n)) = Y (n), with linear interpolation on [t(n), t(n+ 1)], n ≥ 0. In view of
Lemmas 4.4–4.8, a standard argument using the discrete Gronwall inequality shows
that for any T , δ > 0, X̃(t(n) + ·), Ỹ (t(n) + ·) is, for sufficiently large n, (see, e.g., [9,
p. 847]) a (T, δ)-perturbation of the ODE (for a suitable c : R+ → [1,∞))

ẋ(t) = 0, ẏ(t) =
c(t)

m
f(x(t), y(t)).

By Lemma 4.2, (X(n), Y (n))→ graph(λ). The claim follows from the uniform conti-
nuity of λ(x).

Now define the sequence s(n) ↑ ∞ by s(0) = 0, s(n) =
∑n−1
k=0 ā(k), n > 0.

Redefine µ̄ ∈ U l by µt = µn, t ∈ [s(n), s(n+ 1)), n ≥ 0.
Lemma 4.10. (X(n), Y (n))→ {(x, y) : P̄x(g(x, λ(x))) = 0 and y = λ(x)} a.s.
Proof (sketch). Fix ω outside a zero probability set where any of the foregoing

assumptions and lemmas fail. Note that

(4.5)

X(n+ 1) = X(n) + ā(n)Mµn(g(X(n), λ(X(n))) +M(n)

+ ([g(X(n), Y (n))− g(X(n), λ(X(n)))]

+ [W (n)− g(X(n), Y (n))])) + r(n),
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where

r(n) = P (X(n) + ā(n)Mµn(W (n) +M(n)))− (X(n) + ā(n)Mµn(W (n) +M(n))).

Let µ̃n = {µs(n)+t, t ≥ 0}, n ≥ 0. It is easily verified that Lemma 4.8 applies to {µ̃n}
as well. Define X̃(·) : [0,∞) → Rl by X̃(s(n)) = X(n), with linear interpolation
on [s(n), s(n + 1)], n ≥ 0. A standard argument along the lines of [16, 17] using
Lemmas 4.4–4.9 and Corollary 4.3 shows that for any T , δ > 0, X̃(s(n) + ·) is a
(T, δ)-perturbation of the ODE

ẋ(t) =
c(t)

l
P̄x(t)(g(x(t), λ(x(t))))

for sufficiently large n, where c(·) is a scalar measurable function on [0,∞) satisfying
c(t) ≥ 1 ∀t. (The only differences from [9] are the following: (i) the nonautonomous
term c(t) arising from the asymptotics of {µs(n)+·}, which is handled as in the pre-
ceding lemma (see [9] for details of this limiting argument); (ii) the additional “error”
terms in the square brackets in (4.5), whose contribution is asymptotically negligible
in view of the foregoing lemmas; and (iii) the term r(n) due to projection operator
which can be handled along the lines of [17, section 5.3]—see [16] for details.) Now
invoke Lemma 4.2 to conclude.

5. Convergence analysis for discounted cost.

5.1. Preliminaries. The convergence analysis of this and the next section rests
on verifying that the algorithms in question fit the general model of section 2. For
this purpose, we start with the following minor variant of a result from [24]. Consider
the following iterations in Rd for computing X(n), n ≥ 0, X(·) = [X1(·), . . . Xd(·)]T :
For 1 ≤ i ≤ d,

Xi(n+ 1) = Xi(n) + ai(n)(Fni (X̃i(n))−Xi(n) + wi(n)),

where X̃i(n) is a d-vector whose jth component is Xj(n − τij(n)) for some random
delays {τij(·)} and {wi(n)} is a stochastic process. We make the following assump-
tions.

1. For 1 ≤ i ≤ d, {ai(n)} ⊂ [0,∞) are random with
∑
n ai(n) = ∞ a.s.,∑

n ai(n)2 ≤ C̄ a.s. for a finite constant C̄ > 0.
2. {ai(n)}, {wi(n − 1)}, {τij(n)}, {Xi(n)} are {Fn}-adapted for an increasing

family of σ-fields {Fn} with

E[wi(n)|Fn] = 0, E[w2
i (n)|Fn] ≤ A+Bmax

j
max
k≤n
|Xj(k)|2 ∀i,

a.s. for suitable A, B > 0.
3. ‖Fn(x)‖∞ ≤ β‖x‖∞ +D ∀x, for suitable β ∈ (0, 1), D > 0 and

‖Fn(x)− Fn(y)‖∞ ≤ β̄‖x− y‖∞∀x, y

for some β̄ ∈ (0, 1).
Lemma 5.1. Under the above hypotheses, supn ‖X(n)‖ <∞ a.s.
This is precisely [24, Theorem 2.1] with one small modification that does not

affect its proof: [24] has a fixed F (·) in place of {Fn(·)}.
Corollary 5.2. In Algorithms 1–3, {Vn} is bounded a.s.
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Proof. Make the following correspondence with the above lemma:

ai(n) = b(ν1(i, n))I{i ∈ Yn},
Fn = σ(ξm(i, a), ηm(i, a), ϕm(i),m < n, i ∈ S, a ∈ A,

Ym, Zm, Vm, πm, τm(i, j), τ̄m(i, j), τ̂m(i),m ≤ n, i, j ∈ S, a ∈ A),

Fni (V ) =
∑
a

πn−τ̂n(i)(i, a)

k(i, a) + α
∑
j

p(i, j, a)V (j)

 ,
wi(n) = [k(i, ϕn(i)) + αVn−τn(i,ξn(i,ϕn(i)))(ξn(i, ϕn(i)))− Vn(i)]

− E[[k(i, ϕn(i)) + αVn−τn(i,ξn(i,ϕn(i)))(ξn(i, ϕn(i)))− Vn(i)]|Fn].

Note that w(n) corresponds to “M(n)” in (A4). The claim follows easily.
This verifies (A2). Assumptions (A1), (A5), and (A6) are already built in. As-

sumption (A4) follows easily from the a.s. boundedness of {Vn(·)}. We now verify
(A3). Consider the ODE

(5.1) V̇ (t) = F (π, V (t))− V (t),

where F (·, ·) = [F1(·, ·), . . . , Fs(·, ·)]T is defined by

Fi(π, x) =
∑
a

π(i, a)k(i, a) + α
∑
aj

π(i, a)p(i, j, a)xj

for π = [[π(i, a)]], i ∈ S, a ∈ A with π(i, ·) ∈ P(A) ∀i, x = [x1, . . . , xs] ∈ Rs. Note
that π is a fixed parameter in (5.1).

Lemma 5.3. Vπ is the unique asymptotically stable equilibrium point for (5.1).
Proof. Direct verification shows that the ODE in question is an asymptotically

stable linear system of the form

ẋ(t) = Ax(t) +B

with the desired equilibrium point as its unique globally asymptotically stable equi-
librium.

Note that Vπ for given π = [[π(i, a)]] is obtained by solving a linear system.
Writing it explicitly using Cramer’s rule, one verifies that it is a C1 function of
[[π(i, a)]], in particular Lipschitz. This verifies the first part of (A3). The second
part is specific to each algorithm and will be verified separately.

In what follows, we shall say that Ĝ(·) is a vector field on (PS)s when it is so with
the latter viewed as a compact manifold with boundary (i.e., when the corresponding
integral curves do not leave (PS)s). Such a Ĝ(·) will also define a unique vector field
G(·) on (P(A))s given by

Gia(π) = Ĝia(π̂) ∀i ∈ S, a ∈ A\{a0},

Gia0
(π) = −

∑
a6=a0

Ĝia(π).

Define vectors Gi = [Gi.], Ĝi = [Ĝi.] in Rr+1, Rr, respectively. Define K : (P(A))s →
Rs×(r+1) by K(π) = [[Kia(π)]] for i ∈ S, a ∈ A, where

Kia(π) = k(i, a) + α
∑
j

p(i, j, a)Vπ(j)− Vπ(i).
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Note that

(5.2)
∑
a

Kia(π)π(i, a) = 0 ∀i ∈ S.

Define K̂ : (PS)s → Rs×r as

K̂ia(π̂) = Kia(π)−Kia0(π), i ∈ S, a ∈ A\{a0}

and the vectors corresponding to K: Ki = [Ki.], K̂i = [K̂i.].
Lemma 5.4. If G satisfies

(5.3) Gi(π) ·Ki(π) ≤ 0 ∀i ∈ S,

then

DGVπ(i) ≤ Gi(π) ·Ki(π) ≤ 0 ∀i ∈ S,

where DG represents the directional derivative along G.
Proof. Define the operator Tπ : Rs → Rs by Tπ(·) = F (π, ·). From the geometry

of P(A)s, it is clear that if G is a vector field on P(A)s, then for every π ∈ int(P(A)s)
there exists δ0(π) such that for all 0 ≤ δ ≤ δ0(π), π + δG ∈ P(A)s. Pick δ > 0
so that π + δG ∈ (P(A))s. Simple algebra, using the facts that TπVπ = Vπ and∑
aGia(π) = 0, leads to

Tπ+δGVπ(i)− Vπ(i) = δ
∑
a

Kia(π)Gia(π) ≤ 0.

Iterating, Tnπ+δGVπ ≤ Tn−1
π+δGVπ ≤ · · · ≤ Vπ. Also

(Tnπ+δGVπ)(i)− Vπ(i)

δ
≤
∑
a

Kia(π)Gia(π) for n > 1.

Since Tnπ′V0 → Vπ′ ,∀π′, V0, by the contraction mapping principle, we may let n→∞
in the above inequality to obtain

Vπ+δG(i)− Vπ(i)

δ
≤
∑
a

Kia(π)Gia(π).

For π on the boundary of P(A)s, the claim follows by continuity. To conclude, we let
δ ↓ 0.

The lemma can be equivalently stated as follows: if Ĝ satisfies

Ĝi(π̂) · K̂i(π̂) ≤ 0 ∀i ∈ S,

then

∇Vπ(i) · Ĝ(π̂) ≤ Ĝi(π̂) · K̂i(π̂) ≤ 0 ∀i ∈ S.

Corollary 5.5. If in addition, Ĝi(π̂) · K̂i(π̂) = 0 for all i ∈ S only if Ĝ(π̂) = 0
(i.e., only on equilibrium points of the vector field), then

∑
i∈S Vπ(i) serves as a strict

Liapunov function for ODE ˙̂π(t) = G(π̂(t)).
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5.2. Convergence of Algorithm 1. We start with Algorithm 1. The key step
is to verify that it fits the format of the “general algorithm” with (π̂n, Vn) replacing
(X(n), Y (n)). Thus corresponding g is g = [[gia]] with

gia(π̂, V ) = k(i, a0)− k(i, a) +α
∑
j

(p(i, j, a0)− p(i, j, a))V (j), i ∈ S, a ∈ A\{a0},

with M(n),M ′(n) appropriately defined. (Note that this does not depend on π.) To
verify the rest of (A3), consider the ODE

(5.4) ˙̂π(i) = P̄π̂(gi(π̂, Vπ)), i ∈ S,
with

gi(π̂, Vπ) = [gi.(π̂, Vπn)],

P̄π̂(gi(π̂i, Vπ)) = lim
∆↓0

P (π̂(i) + ∆gi(π̂, Vπ))− π̂(i)

∆
,

where P is the projection into PS. Write K, K̂ for K(π), K̂(π̂), respectively, for the
sake of simplicity.

Lemma 5.6.
∑
i∈S Vπ(i) is a strict Liapunov functions for ODE (5.4).

Proof. Make the correspondence Ĝi = P̄π̂(gi(π̂, Vπ)) = gi(π̂, Vπ) + ri(π̂) ∀i, where
ri(·) is the correction term at boundary due to projection. Note that ‖gi(π̂, Vπ)‖ ≥
‖ri(π̂)‖ ∀i with equality holding only when gi(π̂, Vπ) = −ri(π̂). Also gi(π̂, Vπ) =
−K̂i(π̂) by definition. Thus ∀i,

Ĝi · K̂i = gi · K̂i + ri · K̂i

= −‖K̂i‖2 + ri · K̂i

≤ −‖K̂i‖2 + ‖ri‖ ‖K̂i‖
≤ 0

with equality if and only if gi = −ri. This means that DGVπ(i) = 0 for all i ∈ S only
on equilibrium points of (5.4). The claim follows (cf. Corollary 5.5).

Lemma 5.7. If π̂ is an equilibrium point of (5.4), then Vπ = Vα.
Proof. Fix i ∈ S. Let KT (i) denote {π̂ ∈ PSs : gi(π̂, Vπ) = −ri(π̂)} (the “Kuhn–

Tucker points”) and ea ∈ Rr the unit vector whose elements are indexed by elements
of A\{a0} and are zero, except for the one with index a. Since on the boundary of
PS, ri is normal to the active constraints among constraints defining PS and directed
toward the interior, we have

ri =
∑
a6=a0

λaea − λa0

∑
a6=a0

ea,

for some λa ≥ 0, such that λa is zero when π(i, a) > 0. Thus, a π̂ ∈ KT (i) will satisfy

K̂i =
∑
a6=a0

λaea − λa0

∑
a6=a0

ea, λa ≥ 0,

with λa = 0 when π(i, a) > 0. To start with, let λa0
= 0; then K̂i =

∑
a6=a0

λaea.

Thus for a 6= a0 and π(i, a) > 0, K̂ia = 0, i.e.,

k(i, a0) + α
∑
j

p(i, j, a0)Vπ(j) = k(i, a) + α
∑
j

p(i, j, a)Vπ(j).
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Also, for a 6= a0 and π(i, a) = 0, K̂ia = λa ≥ 0, i.e.,

k(i, a0) + α
∑
j

p(i, j, a0)Vπ(j) ≤ k(i, a) + α
∑
j

p(i, j, a)Vπ(j).

Therefore,

Vπ(i) =
∑
a

π(i, a)

k(i, a) + α
∑
j

p(i, j, a)Vπ(j)


=

k(i, a0) + α
∑
j

p(i, j, a0)Vπ(j)


= min

a

k(i, a) + α
∑
j

p(i, j, a)Vπ(j)

 .
Now suppose λa0

6= 0. Then π(i, a0) = 0. Note that

(5.5) Vπ(i) = min
a

k(i, a) + α
∑
j

p(i, j, a)Vπ(j)


would also follow if we show that

π(i, a) = 0⇒ Kia ≥ 0,

π(i, a) > 0⇒ Kia = 0.

For a 6= a0 and π(i, a) > 0, K̂ia = −λa0 , i.e., Kia = Kia0
− λa0

. For a 6= a0,
π(i, a) = 0, we have Kia = Kia0

− λa0
+ λa. Using π(i, a0) = 0 and (5.2), we have∑

a6=a0

Kiaπ(i, a) = Kia0
− λa0

= 0,

implying Kia0
≥ 0. For a 6= a0, π(i, a) = 0, we then have

Kia = Kia0
− λa0

+ λa = λa ≥ 0

and for a 6= a0 and π(i, a) > 0 we have

Kia = Kia0 − λa0 = 0.

Thus (5.5) holds. The set of equilibria is precisely KT = ∩i∈SKT (i), which therefore
contains only optimal π̂.

The following then is a consequence of the results of section 2.
Theorem 5.8. (π̂n, Vn)→ {(π̂, Vπ) : Vπ = Vα} a.s.

5.3. Convergence of Algorithm 2. For Algorithm 2, consider (5.4) with g
redefined by

gia(π̂, V ) = π(i, a)

V (i)− k(i, a)− α
∑
j

p(i, j, a)V (j)

 , i ∈ S, a ∈ A\{a0}.



LEARNING ALGORITHMS FOR MDP 113

Note that gia(π̂, Vπ) = −π(i, a)Kia and P̄π̂(gi(π̂, Vπ)) = gi(π̂, Vπ), so P̄π̂(·) can be
dropped in (5.4). The equilibrium points of (5.4) are now characterized by

π(i, a)

V (i)− k(i, a)− α
∑
j

p(i, j, a)V (j)

 = 0 ∀i, a.

(Note that this does depend on π.) It is easy to see that the stable equilibria are
precisely those for which Vπ = Vα.

Theorem 5.9. (π̂n, Vn) converges to {(π̂, Vπ) : Vπ = Vα} a.s.
Proof. Setting

Gia(π) = gia(π, Vπ) = −π(i, a)Kia,

we have Gi ·Ki = −∑a π(i, a)K2
ia ≤ 0 with equality only at equilibria of (5.4). Thus∑

i Vπ(i) serves as a strict Liapunov function as before, implying asymptotic stability
of {π : G(π) = 0}. To claim that the convergence is in fact to the stable equilibrium
a.s., argue as in [19], which is possible due to our assumptions on the external noise
{ψij(n)}. Unlike the isolated unstable equilibria of [19], we now have unstable faces,
but essentially the same argument as [19] goes through.

Remark. The condition on {ψ(n)} is rather awkward, since it seems to imply that
a “large” noise input is required in order to avoid unstable equilibria. In simulation
studies, however, simple ad hoc schemes such as adding a small noise only at the
boundary to push the process into the interior of (PS)s seemed to do quite well.

5.4. Convergence of Algorithm 3. Here we work with {βn} instead of {πn}.
Redefine g as

gia(β, V ) = V (i)− k(i, a)− α
∑
j

p(i, j, a)V (j), i ∈ S, a ∈ A\{a0}.

(Note that this does not depend on π.) It is easy to see that gia(β, Vπβ ) = −Kia(πβ).
(5.4) gets replaced by

(5.6)
˙̂
β(i, a) = P̄β0(gia(β, Vπβ )), i ∈ S, a ∈ A,

with

P̄β0
(gia(β, Vπβ )) = lim

∆↓0
Pβ0(β(i, a) + ∆gia(β, Vπβ ))− β(i, a)

∆

and Pβ0
is as before.

Lemma 5.10.
∑
i∈S Vπβ (i) are strict Liapunov functions for (5.6).

Proof. By explicit differentiation, we get

Gia(πβ)
∆
= π̇β(i, a)

=
exp(β(i, a))β̇(i, a)∑

a′ exp(β(i, a′))
− exp(β(i, a))

∑
a′ β̇(i, a′) exp(β(i, a′))

(
∑
a′ exp(β(i, a′)))2

= πβ(i, a)P̄β0
(gia(β, Vπβ ))− πβ(i, a)

∑
a′
πβ(i, a′)P̄β0

(gia′(β, Vπβ )).
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Let

γia(β) =


0 if β(i, a) = β0 and Kia(πβ) ≤ 0,

or β(i, a) = −β0 and Kia(πβ) ≥ 0,

1 otherwise.

Then P̄β0
(gia(β, Vπβ )) = −Kia(πβ)γia(β) and a simple computation using (5.2) leads

to ∑
a

Kia(πβ)Gia(πβ) = −
∑
a

πβ(i, a)Kia(πβ)2γia(β) ≤ 0

with equality only at equilibrium points of (5.6). The claim follows.
Since πβ always remains in a proper subset of P(A)s, the algorithm may not

converge to optimal policies. Nevertheless, the following results show that we can
get an ε-optimal solution for any ε > 0 by choosing β0 sufficiently large. Define the
operator Tα : Rs → Rs by

[Tα(x)]i = min
a

k(i, a) + α
∑
j

p(i, j, a)xj

 , x = [x1, . . . , xs] ∈ Rs, 1 ≤ i ≤ s.

Lemma 5.11. ‖V − Vα‖∞ ≤ (1− α)−1‖TαV − V ‖∞.
Proof Consider

‖V − Vα‖∞ ≤ ‖V − TαV ‖∞ + ‖TαV − Vα‖∞
= ‖V − TαV ‖∞ + ‖TαV − TαVα‖∞
≤ ‖V − TαV ‖∞ + α‖V − Vα‖∞.

The claim follows.
Lemma 5.12. For any ε > 0 there exists sufficiently large β̄ such that for all

β0 ≥ β̄ the following holds true: If β is an equilibrium point of (5.6), then Vα(i) ≤
Vπβ (i) ≤ Vα(i) + ε ∀i ∈ S

Proof. Let K−ia(π) = max(0,−Kia(π)),K+
ia(π) = max(0,Kia(π)). Note that

(5.7) ‖TαVπ − Vπ‖∞ = max
i,a

K−ia(π).

If β is an equilibrium point of (5.6), one has

−β0 < β(i, a) < β0 ⇒ Kia(πβ) = 0

β(i, a) = −β0 ⇒ Kia(πβ) ≥ 0,

β(i, a) = β0 ⇒ Kia(πβ) ≤ 0.

Thus

πβ(i, a)Kia(πβ) =
exp(−β0)K+

ia(πβ)− exp(β0)K−ia(πβ)∑
a expβ(i, a)

,

which, with (5.2), leads to

(5.8)
∑
a

K−ia(πβ) = exp(−2β0)
∑
a

K+
ia(πβ).
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Let K = ‖k(·, ·)‖∞. Then ‖Vπ‖∞ ≤ K(1− α)−1 ∀π. Hence

|Kia(π)| ≤ |k(i, a)|+ α
∑
j

p(i, j, a)|Vπ(j)|+ |Vπ(i)|

≤ K +
αK

1− α +
K

1− α

= K

(
2 + α

1− α
)
.

With (5.7), (5.8), this leads to

‖TαVπβ − Vπβ‖∞ ≤ (r + 1)K exp(−2β0)

(
2 + α

1− α
)
.

Choose β0 such that

(r + 1)K exp(−2β0)

(
1 + α

(1− α)2

)
≤ ε.

The claim follows.
Theorem 5.13. For any ε > 0 there exists β̄ = β̄(ε) such that for all β0 ≥ β̄,

(βn, Vn) converges to the set {(β, Vπβ ) : Vα(i) ≤ Vπβ (i) ≤ Vα(i) + ε ∀i ∈ S} a.s.

6. Convergence analysis for average cost.

6.1. Preliminaries. Recall that in addition to all the assumptions underlying
the preceding section, we also assume now that S is irreducible under every stationary
randomized policy. As in section 4, we begin with verification of (A2), (A3). First
we verify the first half of (A2) and (A3), as they are common for all the algorithms.
Because the rest are algorithm specific, we deal with them individually. Our approach
to verification of boundedness of hn follows [7]. Define span seminorm ‖ · ‖s on Rs by

‖x‖s = max
i
xi −min

i
xi.

Then ‖x‖s = 0 if and only if x is a multiple of [1, . . . , 1] ∈ Rs. Rewrite (3.5) as

(6.1) hn+1(i) = hn(i)(1− b(n)) + b(n)[k(i, ϕn(i)) + hn(ξn(i, ϕn(i)))− hn(i0)].

Let {h′n}, {h′′n} denote iterates of (6.1) with identical {(ψn, ϕn, ξn)} but with different
initial conditions.

Lemma 6.1. supn ‖h′n − h′′n‖s <∞.
Proof. Let A(n) = maxm≤n ‖h′m−h′′m‖s. From (6.1), one has A(n+1) ≤ A(n) ∀n.

The claim follows.
Corollary 6.2. If the iterates of (6.1) remain bounded for one initial condition,

they do so for all initial conditions (sample pathwise).
Proof. From Lemma 6.1, it follows that ‖hn‖s remains bounded for all initial con-

ditions if ‖hn‖∞ (and hence ‖hn‖s) does so for one initial condition. Then it suffices
to verify that one component of {hn} remains bounded. Letting K1 = supn ‖hn‖s,
K2 = maxi,a |k(i, a)|, we have

hn+1(i0) = hn(i0)(1− b(n)) + b(n)[k(i0, ϕn(i0)) + hn(ξn(i0, ϕn(i0)))− hn(i0)].
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Thus

|hn+1(i0)| ≤ |hn(i0)|(1− b(n)) + b(n)(K1 +K2).

It follows by induction that supn |hn(i0)| <∞.
Next, consider the ODE in Rs:

(6.2) ẋ(t) = Fπ(x(t))− x(t),

where Fπ(·) = [Fπ1 (·), . . . , Fπs (·)]T : Rs → Rs is defined by

Fπi (x) =
∑
a

π(i, a)k(i, a) +
∑
a,j

π(i, a)p(i, j, a)xj − xi0 , i ∈ S

for x = [x1, . . . , xs]
T .

Lemma 6.3. hπ is the unique globally asymptotically stable equilibrium point of
(6.2).

Proof. Direct verification shows that the ODE in question is an asymptotically
stable linear system of the form

ẋ(t) = Ax(t) +B

with the desired equilibrium points as its unique globally asymptotically stable equi-
librium.

Remark. Note that asymptotic stability implies the existence of a smooth strict
Liapunov function [28]. See [12] for related results.

This verifies the first half of (A3). We still need to complete our verification
of (A2). For this purpose, note that hπ, being the unique solution of a well-posed
linear system whose coefficients depend smoothly on π, varies continuously with π,
which varies over a compact set. Thus the set Q of hπ as π varies over stationary
randomized policies is compact. Take a ball B ⊂ Rs large enough so that it contains
the ε-neighborhood of Q (for a prescribed ε > 0) in its interior. Let {hn} denote our
original iterates and {h′n} modified iterates obtained by resetting to hπn every time
it exits from B, otherwise it is identical, i.e., driven by the same random sequences.

Lemma 6.4. {hn} remains bounded a.s.
Proof (sketch). Note that {h′n} is bounded a.s. by construction. Writing its

iteration between two consecutive resets in the standard form

h′n+1 = h′n + b(n)(G(h′n) +Mn + e(n))

for an appropriately defined G(·), an “error” term e(n), and a martingale difference
term Mn, one verifies that {e(n)}, {Mn} are a.s. bounded because {h′n} is. Thus
the appropriate piecewise linear interpolation of {h′n} between two consecutive resets
becomes a better and better approximation of trajectories of (6.2) as n → ∞. Now
argue as in the proof of Lemma 4.2 to conclude that with probability one, eventually
the reset trajectory of {h′n} will not exit the ε-neighborhood of Q, and therefore the
number of resets is a.s. finite. The claim now follows from Corollary 6.2.

The remaining assumptions are straightforward, except for the second half of
(A3), which is to be verified separately for each algorithm as before.

Next, we set up the counterpart of the results of the preceding section for the
average cost problem. For this purpose, redefine K : P(A)s → Rs×(r+1) as K(π) =
[[Kia(π)‖, where

Kia(π) = k(i, a) +
∑
j

p(i, j, a)hπ(j),
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and K̂ : (PS)s → Rs×r by

K̂ia(π̂) = Kia0
∀a 6= a0, i.

Define vectors Ki = [Ki.], K̂i = [K̂i.] correspondingly. Let G denote a vector field on
P(A)s.

Lemma 6.5. If G satisfies

(6.3) Gi(π) ·Ki(π) ≤ 0 ∀i ∈ S,
then

DGλπ ≤ 0.

Furthermore, equality holds if and only if it does so in the former inequality for all i.
Proof. Consider δ0 > 0 small enough so that π′ = π + δG ∈ P(A)s ∀δ ∈ (0, δ0).

Let {Xn}, {X ′n} be the chains controlled by stationary randomized policies π, π′,
respectively, and {Z ′n} the control process corresponding to the latter. Then

E[hπ(X ′n)|X ′n−1] =
∑
a

∑
j

π′(X ′n−1, a)p(X ′n−1, j, a)hπ(j)

= δ
∑
a

∑
j

GX′
n−1

a(π)p(X ′n−1, j, a)hπ(j)

+
∑
a

∑
j

π(X ′n−1, a)p(X ′n−1, j, a)hπ(j)

= δ
∑
a

∑
j

GX′
n−1

a(π)p(X ′n−1, j, a)hπ(j)

+ λπ + hπ(X ′n−1)−
∑
a

π(X ′n−1, a)k(X ′n−1, a)

= δ
∑
a

GX′
n−1

a(π)

k(X ′n−1, a) +
∑
j

p(X ′n−1, j, a)hπ(j)


+ λπ + hπ(X ′n−1)−

∑
a

π′(X ′n−1, a)k(X ′n−1, a).

Therefore,

1

N

N∑
n=1

E[(h(X ′n)− h(X ′n−1))|X ′n−1]− λπ +
1

N

N∑
n=1

E[k(X ′n−1, Z
′
n−1)|X ′n−1]

= δ
1

N

N−1∑
n=0

∑
a

GX′
n−1

a(π)

k(X ′n−1, a) +
∑
j

p(X ′n−1, j, a)hπ(X ′n−1)

 .
Take expectations on both sides and let N →∞ to obtain

λπ′ − λπ
δ

= lim
N→∞

1

N

N−1∑
n=0

E[KX′n(π) ·GX′n(π)]

= E[KX̃n
(π) ·GX̃n(π)],
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where {X̃n} is the stationary process under π′. Now let δ → 0 and use continuous
dependence of stationary distribution on π to obtain

DGλπ = E[KX̂n
(π) ·GX̂n(π)],

where {X̂n} is the stationary process under π. Recall that stationary distribu-
tion under π assigns strictly positive probability to each state in S. The rest is
easy.

In terms of K̂, Ĝ, the above can be recast as follows: If Ĝ satisfies

(6.4) Ĝi(π̂) · K̂i(π̂) ≤ 0 ∀i ∈ S,

then

∇λπ · Ĝ(π̂) ≤ 0

with equality in the latter if and only if equality holds in the former inequality for all
i.

Corollary 6.6. If (6.3) (respectively, (6.4)) holds with equality if and only if
G(π) = 0 (respectively, Ĝ(π̂) = 0), then λπ is a strict Liapunov function for the ODE

π̇(t) = G(π(t)),

(respectively , ˙̂π(t) = Ĝ(π̂(t))).

The treatment of Algorithms 4–6 closely parallels that of algorithms 1–3, so we
shall only outline the essentials.

6.2. Convergence analysis of Algorithm 4. For this, define the correspond-
ing “g” by

gia(π̂, h) = k(i, a0)− k(i, a) +
∑
j

(p(i, j, a0)− p(i, j, a))h(j)

for i ∈ S, a 6= a0. Consider, for π̂i(·) ∆
= [π̂ia(·)]a6=a0 ,

(6.5) ˙̂πi(t) = P̄π̂(t)(gi.(π̂(t), hπ(t))), i ∈ S,

gi(π̂, hπ) = [gi(π̂, hπ)],

P̄ (gi(π̂, hπ)) = lim
∆↓0

P (π̂(i) + ∆gi(π̂, hπ))− π̂(i)

∆
,

and P is the projection into PS. Note that gi(π̂, hπ) = −K̂i(π̂). Now argue as for
Algorithm 1 to conclude.

Theorem 6.7. λπ is a strict Liapunov function for (6.5), whose equilibrium
points correspond to optimal π (i.e., such that λπ = λ∗).

Corollary 6.8. (π̂n, hn)→ {(π̂, hπ) : λπ = λ∗} a.s.
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6.3. Convergence analysis of Algorithm 5. Change g to

gia(π̂, h) = π(i, a)

h(i0) + h(i)− k(i, a)−
∑
j

p(i, j, a)h(j)


for i ∈ S, a 6= a0. The corresponding ODE is

˙̂πi = P̄π̂(gi(π̂, hπ))

= gi(π̂(t), hπ(t)).

Then it is easily checked that

Gi(π) ·Ki(π) = −
∑
a

π(i, a)(λπ + hπ(i)−Kia(π))2.

Thus we have the following analogues of the results for Algorithm 2.
Theorem 6.9. λπ is a strict Liapunov function for (6.6), whose stable equilibrium

points satisfy λπ = λ∗.
Corollary 6.10. (π̂n, hn)→ {(π̂, hπ) : λπ = λ∗} a.s.

6.4. Convergence analysis of Algorithm 6. Define πβ as before and

gia(β, h) = h(i0) + h(i)− k(i, a)−
∑
j

p(i, j, a)h(j)

for i ∈ S, a ∈ A. Consider the ODE

(6.6) β̇(i, a) = P̄β0
(gia(β, hπβ )),

where

P̄β0
(gia(β, hπβ )) = lim

∆↓0
Pβ0

(β(i, a) + ∆gia(β, hπβ ))− β(i, a)

∆

and Pβ0
is as before.

Lemma 6.11. λπβ is a strict Liapunov function for (6.6).
Proof Define G(·) = [[Gia(·)]] by

Gia(πβ) = π̇β(i, a)

= πβ(i, a)P̄β0
(gia(β, hπβ ))− πβ(i, a)

∑
a′
πβ(i, a′)P̄β0

(gia′(β, hπβ )).

Note that P̄β0
(gia(β, hπβ )) = (λπβ + hπβ (i)−Kia(πβ))γia(β), where

γia(β) =


0 if β(i, a) = β0 and Kia(πβ) ≤ λπβ + hπβ (i),

or β(i, a) = −β0 and Kia(πβ) ≥ λπβ + hπβ (i),

1 otherwise.

One verifies that

Gi(πβ) ·Ki(πβ) =
∑
a

Kia(πβ)Gia(πβ)

= −
∑
a

πβ(i, a)γia(β)(λπβ + hπβ (i)−Kia(πβ))2

≤ 0.
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Since πβ(i, a) > 0 always, equality holds for all i ∈ S only at equilibrium points of
(6.6). The rest is routine.

The following results characterize the equilibrium points of (6.6). As before, let
e = [1, . . . , 1]T and define the operator T : Rs → Rs by

(Tu)(i) = min
a

k(i, a) +
∑
j

p(i, j, a)u(j)

 .
Lemma 6.12. If a stationary randomized policy π satisfies ‖Thπ−hπ−λπe‖∞ ≤ ε

for some ε > 0, then λ∗ ≤ λπ ≤ λ∗ + ε.
Proof. Let {Xn}, {Zn} denote, respectively, the state and control processes under

some stationary randomized policy µ. Define the vector r ∈ Rs by

r(i) = λπ + hπ(i)−min
a

k(i, a) +
∑
j

p(i, j, a)hπ(j)


. By hypothesis ε ≥ r(i) ≥ 0 ∀i. Also,

E[hπ(Xn+1)|Xn, Zn] =
∑
j

p(Xn, j, Zn)hπ(j)

=

k(Xn, Zn) +
∑
j

p(Xn, j, Zn)hπ(j)

− k(Xn, Zn)

≥ min
a

k(Xn, a) +
∑
j

p(Xn, j, a)hπ(j)

− k(Xn, Zn)

= λπ + hπ(Xn)− r(Xn)− k(Xn, Zn).

Hence

1

N

N−1∑
n=0

E[(hπ(Xn+1)− hπ(Xn))|Xn, Zn] ≥ λπ − 1

N

N−1∑
n=0

r(Xn)− 1

N

N−1∑
n=0

k(Xn, Zn).

Take expectations on both sides and let N →∞ to obtain

λπ ≤ λµ + lim
N→∞

1

N

N−1∑
n=0

E[r(Xn)].

Since µ was arbitrary and ‖r‖∞ ≤ ε, the claim follows.
Lemma 6.13. For any ε > 0 there exists β̄ = β̄(ε) such that for all β0 ≥ β̄, every

equilibrium point β of (6.6) satisfies λ∗ ≤ λπβ ≤ λ∗ + ε.
Proof. From continuous dependence of solutions of well-posed linear equations

on data, we have π 7→ hπ continuous. Thus {hπ} remains bounded. The rest of the
proof closely mimics the proof of Lemma 5.12.

Theorem 6.14. For any ε > 0 there exists β̄ > 0 such that for β0 ≥ β̄, (βn, hn)→
{(β, hπβ ) : λ∗ ≤ λπβ ≤ λ∗ + ε} a.s.
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7. Conclusions. The techniques used in this paper are quite general and can be
used to derive the corresponding learning algorithm, given a policy iteration algorithm.
In particular, learning algorithms for the stochastic shortest path (SSP) problem
based on its policy iteration (see [5]) can be easily derived. The connection shown
by Bertsekas [4] between SSP and average cost problem can be exploited to change
our update of hn in the algorithms for average cost problems, so that our algorithms
become three time scale asynchronous algorithms, which allow general delays as in
the discounted case.

There are many other interesting directions that need to be explored.
Average cost problems. In our analysis of these, we were obliged to make a part

of the iterations synchronous, because Lemma 5.1 fails otherwise. Our analysis does,
however, show that in the asynchronous case, one would have the desired convergence
a.s. on the set of sample paths for which the iterates remain bounded. Thus the
missing link is precisely a proof of a.s. boundedness for the general asynchronous
case. It is our pleasure to note that while this paper was under review, this issue was
settled by a novel stability test developed by Borkar and Meyn [11].

Approximation issues. Tsitsiklis and Van Roy [25] consider several approximation
schemes based on compact representations in Q-learning. The idea is to directly
approximate Vn(·) by a function belonging to a parametrized family and update the
parameter in question rather than updating Vn(·) directly. In the actor-critic scheme,
however, there is an additional iteration for πn(·, ·). One can conceivably write a
function approximation scheme for π(·, ·) using a parametrized family (such as a neural
network, e.g., see [22]) and update the probabilities recursively. These possibilities
need to be explored.

Feedback implementations. The algorithms we consider in this work are “off-
line”; i.e., they are based on a simulation run rather than an actual system being
controlled in real time. One can convert these into on-line (or feedback) adaptive
control algorithms for a controlled Markov chain Xn, n ≥ 0, by setting Yn = {Xn},
Zn = {(Xn, ϕn(Xn))} ∀n and letting ϕn(Xn) be the actual randomized control law
being implemented.

A natural question then is whether the scheme is asymptotically optimal. (For
the appropriate concept of “asymptotically optimal” in the discounted framework,
see [23].) Recall that the convergence of the algorithm to desired limits requires
that all state-action pairs be tried sufficiently often. For states, this may happen
automatically if suitable irreducibility conditions are met, even in the feedback case.
But if the πn(·, ·) converge rapidly (to the desired limit or otherwise) all the state-
action pairs may not get updated frequently enough. A simple way out of this conflict
is to modify the feedback law to a convex combination of ϕn(·) and the uniform
distribution on A so as to ensure a minimum probability ε > 0 of each a ∈ A being
picked. For ε > 0 sufficiently small, the scheme will be nearly optimal within a
prescribed tolerance. However, too small an ε may slow down convergence. Thus
there is a trade-off involved. A potentially promising scheme is to start with a large
ε ∈ (0, 1/r] (to ensure all state-action pairs being tried frequently) and then reduce it
“slowly” enough to ensure optimality. (Recall the simulated annealing algorithm for
global optimization.) It is, however, a nontrivial task to capture the optimal rate of
decrease of ε in a precise manner. These issues need further study. One should also add
that presence of interprocessor communication delays causes nontrivial complications
in the feedback case.

Rate of convergence. We have not provided any theoretical analysis of convergence
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rate. Since a stochastic approximation algorithm eventually tracks the associated
ODE, the convergence of its interpolated version to a given neighborhood of the
asymptotically stable limit of the ODE (assuming one exists) will closely mimic that
of the ODE itself. The rate of the latter could be gauged from the Liapunov function
approach. One must invert the time scaling n→ t(n) to get the convergence behavior
of the original algorithm.

Even this may be worthless if “eventually” is in too distant a future. There are
problems, too: The ODE captures the averaging affect of the algorithm akin to the law
of large numbers. But there can be fluctuations around the average behavior of the
“central limit theorem” variety. For a two time scale algorithm, the time scales should
be separated enough so that the slow one does not get swamped by the fluctuations
of the fast one.

A related issue is the generally high variance of the stochastic approximation
algorithms. An additional averaging can reduce this; see, e.g., [20]. This and other
issues pertaining to improving the performance of the algorithms need careful study.

Constant ratio step sizes. We have a(n)/b(n) → 0 in order to simulate the “sin-
gular ODE” effect. However Theorem 3.4, p. 516, in [15] suggests that there exists
ε∗ > 0 such that for all ε ∈ (0, ε∗)a(n) = εb(n) suffices for convergence of our algo-
rithms. It would be interesting to obtain lower bounds on ε∗ and see if there are any
situations in which ε∗ > 1. The latter situation may arise when, among the limiting
coupled ODEs, the rate of convergence to equilibrium for one is naturally much faster
than the other without the crutches of separated time scales.

Acknowledgments. The authors are grateful to an anonymous referee for an
outstanding job of refereeing, which uncovered subtle errors that had escaped our
notice.
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Abstract. This paper deals with upper Lipschitzian continuity of the optimal solution to
parametrized convex programs with linear equality and inequality constraints and with a convex
nondifferentiable objective function. Under quadratic growth conditions for the objective function,
some accurate bound for the rate of the upper Lipschitzian continuity is provided.
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1. Introduction. Consider some elementary convex mathematical program of
the following form:

min f(x), x ∈ Rn,
subject to (s.t.)Ax ∈ y +K,

where the function f is convex and continuous but possibly nondifferentiable, the
operator A is linear from Rn into Rm, and the set K is some polyhedral convex cone
of Rm. The parameter is denoted by y (as in [14]) and will also be called perturbation.
Does the strong convexity of the objective function f imply the Lipschitz-type stability
of the optimal solution?

The local Lipschitz dependence, with respect to parameters, of the optimal solu-
tion to minimization problems has been studied much. When the function f is twice
differentiable, the answer for the question is positive; when the function f is nondif-
ferentiable, the answer for the question may be negative. It was shown in [3] that a
necessary condition for upper Lipschitzian continuity of the optimal solution is that
the linearized problem has some optimal solution. By upper Lipschitzian continuity
we mean there is some constant k such that ‖ x(y) − x(yo) ‖ ≤ k ‖ y − yo || for any
perturbation y. Here we denote by ‖ x ‖ the euclidean norm of the vector x, the norm
for the linear operator A is defined by ‖ A ‖= sup‖x‖=1 ‖ Ax ‖. If in addition to the
above condition some condition denoted by (A) in [18] is assumed, then the upper
Lipschitzian stability of the optimal solution holds.

The purpose of the present paper is to show how the nonsmoothness of the
objective function steps into the loss of Lipschitzian stability by means of subgra-
dients and Lagrange–Kuhn and Tucker multipliers and to give some accurate bound
for the rate of upper Lipschitzian continuity. For the sake of a clear result, the mini-
mization program has been taken as simple as possible.

In the present paper the elements of Rp are represented by column vectors, the
linear mappings are represented by their associate matrix in the canonical basis, the
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superscript T means transposition, and the subspace E⊥ is the orthogonal complement
of the subspace E. The polyhedral convex cone K we consider here has the form

K = {y ∈ Rm : yi = 0(1 ≤ i ≤ r), yi ≥ 0(r + 1 ≤ i ≤ m)},

and we assume that the so-called Mangasarian–Fromovitz regularity condition (MFC)
holds at the optimal solution xo for the parameter yo = 0:

(MFC)

 (i) the rows Ai (1 ≤ i ≤ r) of the matrix A are linearly independent;
(ii) there exists some vector z ∈ Rn such that
Aiz = 0 (1 ≤ i ≤ r), Aiz > 0 (i ∈ I(xo)),

where I(x) = {i : r + 1 ≤ i ≤ m , Aix = 0}. The regularity condition MFC is a
particular case of Robinson’s condition [15]. On the other hand, assume that the
independence of the family Ai(i = 1, 2, . . . ,m, Aixo = 0) is a particular case of the
MFC. Assuming that xo is some optimal solution and the MFC holds at the point xo,
then there exists some multiplier vector λ ∈ K+ = {λ ∈ Rm : λTu ≥ 0, u ∈ K} such
that

0 ∈ ∂f(xo) −ATλ and λTAxo = 0;(1)

that is,

λi ≥ 0, i ∈ I(xo),
m∑
i=1

λiA
iT ∈ ∂f(xo), and λiA

ixo = 0 (1 ≤ i ≤ m).(2)

Here we denote by ∂f(xo) the subdifferential of the convex function f at the point
xo, the elements of the subdifferential of the function f at the point xo are called
subgradients of f . The directional derivative and the subdifferential of the function
f at the point xo are related by the relationship

Df(x; y) = lim
t↘0

1

t
[f(x+ ty)− f(x)] ≥ ξT .y ∀ξ ∈ ∂f(x),

and if we assume the function f is continuous at the point x then we have

Df(x; y) = max
ξ∈∂f(x)

ξT y.(3)

In the study of asymptotic properties of the optimal solution, the first approach,
to our knowledge, has been based upon implicit function theorems applied to the
system of m+ n equations with m+ n unknowns

m∑
i=1

λiA
i −∇f(xo) = 0,

Aix = yi (1 ≤ i ≤ r),
λi(A

ix− yi) = 0 (r + 1 ≤ i ≤ m).

For smooth functions, assuming the independence of the gradients of binding con-
straints and nonzero Lagrange–Kuhn and Tucker multipliers corresponding to binding
inequality constraints (λi > 0 for i ∈ I(xo), strict complementarity condition) Pallu
de la Barrière [13, Thm. 6, p. 296] and Fiacco and McCormick [6] presented the
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differentiability of the optimal solution with respect to the parameter y; Jittorntrum
[12] obtained directional derivatives without strict complementarity condition.

For a more general constraint set, Robinson [16] presented some generalized im-
plicit function theorem and got the Lipschitzian stability of the solution of the gen-
eralized equation:

0 ∈ g(ξ, y) + ∂ΩF (ξ),(4)

where ΩF (.) is the indicator function of the closed constraints set F and g is differ-
entiable with respect to the variable ξ and Lipschitz continuous with respect to the
variable y; similar results are presented in [1], [17], [5], [11]. The problem we con-
sider here may be reformulated in the framework of generalized equations; define, for
ξ = (x, λ), the Lagrangian function of the program:

L(ξ, y) = L(x, λ, y) = f(x)−
m∑
i=1

λi(A
ix− yi), λi ≥ 0 (r + 1 ≤ i ≤ m).(5)

Then, assuming the MFC is satisfied, the above conditions, necessary for optimality,
are formulated by the following generalized equations:{

0 ∈ ∂xL(ξ, y) = ∂f(x)−
∑

λiA
i,

0 ∈ ∂λL(ξ, y) = −Ax+ y + Kλ,
(6)

where Kλ = {z ∈ K+ : λT .z = 0}. Since the program is convex (6) are also sufficient
for the point x to be optimal; the relationship with (4) is clear with

g(ξ, y) = g(x, λ, y) =

(
∂f(x)−

∑
λiA

i

−Ax+ y

)

and with the feasible set

F = {ξ = (x, λ) ∈ Rn×Rm : λi ≥ 0 i = r + 1, r + 2, . . . ,m} .

Because in the present paper the function f is not smooth, then the function g is
possibly multivalued and cannot be differentiable with respect to the variable ξ =
(x, λ). Therefore, the above method does not apply.

In recent years a different method has given important improvements in sensitivity
analysis and in the study of the asymptotic expansion of the optimal solution. The
method is very common in the study of partial differential equations to obtain a priori
bounds for the solution u of the variational equation

a(u, v) = 〈h, v〉, v ∈ V,

where V is some Hilbert space, a is some real functional on V × V , and h is some
element of the dual V ′; for v ∈ V , the number h(v) is denoted by 〈h, v〉 and satisfies
the inequality | 〈h, v〉 |≤‖ h ‖V ′ . ‖ v ‖V (∀v ∈ V,∀h ∈ V ′) .

Assume that the functional a is coercive, i.e., there is some positive number c
such that

a(v, v) ≥ c ‖ v ‖|2V (∀v ∈ V ),



LIPSCHITZ-TYPE STABILITY IN NONSMOOTH CONVEX PROGRAMS 127

and assume u ∈ V is some solution of the problem. Then

c ‖ u ‖2V≤‖ h ‖V ′‖ u ‖V and ‖ u ‖V≤ 1

c
‖ h ‖V ′ .(7)

The inequality (7) then gives some upper bound for the rate of Lipschitzian continuity
for the solution u with respect to the parameter h.

The above method has been introduced into sensitivity analysis independently by
Shapiro [19] and by Gauvin and Janin [7], [8]: the coercivity condition is related to
second-order sufficient optimality condition, and the inequality of pairing is related
to upper estimates on the optimal value function. This idea is then developed partic-
ularly in [2], [20], [18], [3], and for nonisolated minima in [4]. We follow this method
in our paper.

Authors [19], [1], [7], [2], [20], [3], [4] have generally related the Lipschitzian
continuity of the optimal solution to the only second-order derivative (in classical or
generalized sense) of the Lagrangian function (5) of the program . In reference [10], we
have considered the most simple case where constraints are equalities Ax = y; we have
shown that, for nonsmooth function f , the rate of upper Lipschitzian continuity, when
it holds, is also related to some part of the subdifferential of the objective function at
the optimal point, namely the set∑

= {σ ∈ ∂f(xo) : σTA#y > λT y for any λ satisfying (2)}.

For any full row ranked matrix A we denote by A# = AT (AAT )−1 the least square
sense inverse of A. If the MFC is satisfied, then the matrix A is not full row ranked
but convenient full row ranked submatrices will be characterized.

2. Illustrative example. For ε ≥ 0 consider the program

min f(x1, x2) = min | x2 − εx1 | + 1
2 (x2

1 + x2
2)

s.t. x2 = y.

Here n = 2,m = 1, K = {0} with K+ = R, A = [0 1] with A# =
[

0
1

]
.

For any ε and for y = 0, the optimal solution is

xo =

[
0
0

]
.

For ε > 0, the first-order optimality condition (2) is satisfied with the unique
multiplier λ = 0:[

0
1

]
[0] =

[
0
0

]
∈ ∂f(0, 0) =

{
(1− 2t)

[
ε
−1

]
: 0 ≤ t ≤ 1

}
.

Then, for y > 0, we have∑
= {σ ∈ ∂f(0, 0) : σTA#y > 0} =

{
(1− 2t)

[
ε
−1

]
: t ∈

]
1

2
, 1

]}
.

The result obtained in [10] is the following:

‖ x(y)− xo ‖≤
√
‖ A# ‖2 + sup

σ∈Σ

‖ (σ − σo)TA# ‖2
‖ (1−A#A)(σ − σo) ‖2 y =

√
1 +

1

ε2
y.
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For −ε2 ≤ y ≤ ε2, we have the optimal solution: x(y) =
[
y/ε
y

]
, for which the

rate of Lipschitz continuity is exactly the number given by the above formula.
On the other hand, for ε = 0, the first-order optimality condition is satisfied with

any λ ∈ [−1,+1]: [
0
1

]
[λ] =

[
0
λ

]
∈ ∂f(0, 0) = {0} × [−1,+1] .

Here we have Σ = ∅; the result, given in [7], becomes

‖ x(y)− xo ‖≤‖ A# ‖ | y |=| y | .

For this case, the optimal solution is
[

0
y

]
, and the rate of Lipschitz continuity is

again the number given in the above formula.
Our aim is now to extend the results of [10] for the more general case of equality

and inequality constraints.

3. Assumptions. The objective function f : Rn → R is assumed to be convex
and finite, and we denote by xo the optimal solution corresponding to the parameter
y = 0 and we assume the MFC holds at the point xo. We assume moreover that the
following local conditions are satisfied.

1. Superquadratic growth condition: there is ρ > 0 such that
f(x) ≥ f(xo) +Df(xo;x− xo) + ρ

2 ‖ x− xo ‖2, x ∈ xo +B.
2. Subquadratic growth condition: there is Γ ≥ ρ such that
f(x) ≤ f(xo) +Df(xo;x− xo) + Γ

2 ‖ x− xo ‖2, x ∈ xo +B,
where the set B is some compact convex neighborhood of 0.

Remark 1. Let γ be some univariate convex increasing function and consider
the program

min γ[f(x)], x ∈ Rn,
s.t. Ax ∈ y +K.

The value function v(y) = infAx∈y+K f(x) becomes γ[v(y)] but the optimal solution
remains the same. Therefore the above conditions 1 and 2 may not be satisfied for
a given f but satisfied by γ[f ] for a convenient function γ. By example the function

f(x1, x2) = (x2
1 + x2

2)
3
4 does not satisfy condition 2, but for γ(t) = t

4
3 it is clear that

both conditions hold for the function

γ[f ](x1, x2) = f(x1, x2)
4
3 = x2

1 + x2
2.

Remark 2. As remarked by one of the referees of this article, the subquadratic
growth condition does correspond to the upper estimate of the value function and
it has to be compared with conditions which deal with upper estimates of the value
function. The parametric optimization problem considered here can be formulated in
the following form:

min
(x,α)∈Rn×R

α s.t. G((x, α), y) ∈ C,(8)

where G((x, α), y) = ((x, α), Ax− y), C = (epi f)×K, and epi f = {(x, α) ∈ Rn×R :
α ≥ f(x)}. In such a formulation the nonsmoothness of the objective function has



LIPSCHITZ-TYPE STABILITY IN NONSMOOTH CONVEX PROGRAMS 129

been removed and it is hidden now in the convex set C. Consider the “linearized”
problem, here the problem

min
h

Df(xo;h) s.t. Ah− δy ∈ TK(Axo)

and in the other formulation

min
(h,δα)∈Rn×R

δα

s.t. G((h, δα), δy) ∈ TC((xo, f(xo)), 0) = Tepif (xo, f(xo))× TK(Axo),

where TC(z) is the contingent cone to the set C at the point zo. The assumption (A)
in [18] which gives the upper estimate consists mainly in the following: there exists
some optimal solution (ξ, β) of the linearized problem such that

dist{G((xo + tξ, f(xo) + tβ), tδy), C} = O(t2).

It is clear that β = Df(xo, ξ) and that the assumption (A) of [18] becomes

f(xo + tξ) = f(xo) + tDf(xo, ξ) +O(t2).

That is precisely, for only one direction, our subquadratic growth condition. Some
subquadratic-growth-type condition can be also identified in [3] each time the condition
T 2
C(ξ, β) 6= ∅ holds, as in Proposition 2.2 of [3]. Here (ξ, β) are as above, β =
Df(xo; ξ), and

T 2
C(z, d) =

{
k : dist

{
z + td+

t2

2
k,C

}
= o(t2)

}
.

The condition T 2
C(ξ, β) 6= ∅ is slightly stronger than the assumption (A) in [18] because

of o(t2) instead of O(t2).
Remark 3. On the other hand the superquadratic growth condition corresponds to

the lower estimate obtained by means of second-order sufficient optimality conditions
(assumption (B) of [18]). The formulation (8) is not convenient for assumption (B)
in [18] since the second-order derivatives of the objective function cancel.

4. Second-order marginal analysis result. The optimal value function v(.)
is convex and the subgradients at the point zero are optimal solutions of the dual
program; thus the subgradients of the value function v are precisely the Lagrange–
Kuhn and Tucker multipliers of the program and the following first-order marginal
result holds under the MFC [14, Thm. 29.1, p. 298]:

∂v(0) =

{
λ ∈ Rm : λi ≥ 0 (i ∈ I(xo)),

m∑
i=1

λiA
iT ∈ ∂f(xo), λ

TAxo = 0

}
.(9)

We are interested here with the second-order term of the power series of the value
function v(.) near the point y = 0. Denote by X(y) the set of optimal solutions for
the value y of the perturbation; the following lemma states precisely the continuity
of X(.) at y = 0.

Lemma 4.1. Assume that the superquadratic growth condition and the MFC are
satisfied. Then the multivalued mapping

y −→ X(y)
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is continuous at the point y = 0.
Proof. If the MFC is satisfied, then there exists some vector ξ ∈ Rn such that

AiT ξ = 0 (1 ≤ i ≤ r),
AiT ξ > 0 (r + 1 ≤ i ≤ m,AiTxo = 0).

The family of linear forms Ai(1 ≤ i ≤ r) is linearly independent; there is then
some linear mapping A\ from Rr into Rn such that AiTA\z = zi(1 ≤ i ≤ r).

Denote by yr the projection of the vector y ∈ Rm onto the subspace Rr×{0}m−r,
and define the continuous mapping ξ(y) = xo + A\yr + k ‖y‖ ξ, where k is some
constant to be determined in order for the point ξ(y) to be a feasible solution for any
perturbation y. We prove now that such a number k exists.

Since AiTA\yr = yi and AiT ξ = 0 (1 ≤ i ≤ r),

AiT ξ(y) = yi(1 ≤ i ≤ r).

On the other hand, for r + 1 ≤ i ≤ m such that AiTxo = 0, we have

AiT ξ(y)− yi = AiTA\yr − yi + k ‖y‖AiT ξ;

since there exists some positive number li such that AiTA\yr − yi ≥ −li ‖y‖ and
AiT ξ > 0, there exists a number ki such that

AiT ξ(y)− yi ≥ −li ‖y‖+ ki ‖y‖AiT ξ ≥ 0 for any perturbation y,

taking k as the maximum of the numbers ki( r+1 ≤ i ≤ m , AiTxo = 0), the point ξ(y)
is some feasible solution for any perturbation y close to zero. Since limy→O ξ(y) = xo,
there exists then some neighborhood V of the null perturbation such that

∀y ∈ V =⇒ ξ(y) ∈ B,

which shows that for any y ∈ V the program has feasible solutions in the set B.
Consider the extended value function

fB(x) = f(x) for x ∈ B,
fB(x) = +∞ for x /∈ B.

Denote by XB(y) the set of optimal solutions of the program where f has been
replaced by fB ; for any y ∈ V , and for any x ∈ XB(y), we have

f(x) = fB(x) ≤ fB(ξ(y)) = f(ξ(y)) < +∞.

Denote by x(y) some selection of XB(y). Consider now some cluster point
∼
x of

x(.) as the perturbation y tends to zero, taking some subsequence xi = x(yi) tending

to
∼
x we have the following:

f(
∼
x) = lim

i
f(x(yi)) ≤ lim

yi→0
f(ξ(yi)) = .f(xo).

Since
∼
x ∈ B and is some feasible solution for the null perturbation, f(

∼
x) = f(xo), and

because of superquadratic growth condition, the point xo is the only optimal solution

for the null perturbation. Then we have
∼
x = xo.
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Since xo is the only cluster point of x(y) as y tends to zero, we have

lim
y→0

XB(y) = xo.

That is to say, for any open subset Ω containing xo there exists some neighborhood
W of the perturbation 0 such that

y ∈W =⇒ XB(y) ⊂ Ω;

taking for Ω the interior of B denoted by int(B), there exists some neighborhood W
of zero such that

XB(y) ⊂ int(B) (∀y ∈W ).

We show now that, for any y ∈W, the convex compact set XB(y) is the set X(y)
of optimal solutions for the original program with the objective function f. Consider
some feasible solution x such that x /∈ XB(y) and

f(x) ≤ f(x′) for any x′ ∈ XB(y).

Consider the point xt = (1− t)x′ + tx for 0 ≤ t ≤ 1; there exist two positive numbers
t1 and t2 such that xt ∈ B and xt /∈ XB(y) for t1 ≤ t ≤ t2, but by the inequality of
convexity fB(xt) ≤ fB(x′) which cannot hold because x′ ∈ XB(y) and xt /∈ XB(y).
Such a feasible solution x cannot exist and X(y) = XB(y); then limy→0X(y) = xo.

Lemma 4.2. Suppose the assumption of subquadratic growth condition holds and
the MFC is satisfied; then there is some ε > 0 such that, for ‖ y ‖≤ ε, the optimal
value v(y) satisfies

v(y) ≤ v(0) + min
Aξ∈y+Ko

Df(xo; ξ) +
Γ

2
‖ ξ ‖2,

where Ko = {y ∈ Rm : yi = 0(1 ≤ i ≤ r), yi ≥ 0 (i ∈ I(xo))}.
Proof. Let δ > 0 be some positive number to be chosen later but such that the

ball Bδ with radius δ is contained in the neighborhood where subquadratic growth
condition holds; because of the continuous dependence of the optimal solutions at
the point 0, there exists ε1 > 0 such that for ‖y‖ < ε1, any optimal solution x(y) is
contained in xo +Bδ and v(y) is attained by some point in xo +Bδ.

Because of the subquadratic growth condition, for any ξ ∈ Bδ such that A(xo +
ξ) ∈ y +K, we have the following:

v(y) ≤ f(xo + ξ) ≤ f(xo) +Df(xo; ξ) +
Γ

2
‖ξ‖2.

Minimizing now with respect to ξ we get

v(y)− v(0) ≤ min
ξ∈Bδ , A(xo+ξ)∈y+K

Df(xo; ξ) +
Γ

2
‖ξ‖2.

Now we choose the radius δ such that

{x : Ax ∈ y +Ko, x ∈ xo +Bδ} = {x : Ax ∈ y +K,x ∈ xo +Bδ}.
The second set is a priori contained in the first set; we show now the converse.
The number α = mini/∈I(xo)A

iTxo is positive. Take ε2 = α
3 and r such that

| AiT (x− xo) |< α
3 for any i /∈ I(xo) and for any x such that ‖ x− xo ‖< δ .
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Consider some perturbation y with ‖ y ‖< ε2 and some x with ‖ x− xo ‖< δ and
Ax ∈ y +Ko; then for i /∈ I(xo)

AiTx− yi = AiTxo − yi +AiT (x− xo) ≥ α− α

3
− α

3
> 0.

We then have

Ax ∈ y +K.

Take ε3 = min{ε1, ε2}; then, for ‖y‖ ≤ ε3, we have

v(y)− v(0) ≤ min
ξ∈Bδ,A(xo+ξ)∈y+Ko

Df(xo; ξ) +
Γ

2
‖ξ‖2.

Since −Axo ∈ Ko, −Axo +Ko = Ko, and the following holds:

v(y)− v(0) ≤ min
ξ∈Bδ,Aξ∈y+Ko

Df(xo; ξ) +
Γ

2
‖ξ‖2.

Since the optimal ξ(y) in the minimization of the right-hand side is continuous
with respect to y at the point y = 0, and since limy→0 ξ(y) = 0, there exists ε4 > 0
such that ‖ξ(y)‖ < δ for ‖y‖ < ε4. The result follows.

The next lemma refines the result of the above lemma.
Lemma 4.3. Suppose the assumptions of superquadratic and subquadratic growth

conditions hold and the MFC is satisfied; then there exists ε > 0 such that for all
perturbation y ∈ Rmwith ‖ y ‖≤ ε, the optimal value v(y) satisfies the following:

v(y) ≤ v(0) + max
σ∈∂f(xo)

min
Aξ∈y+Ko

Γ

2

(∥∥∥ξ +
σ

Γ

∥∥∥2

−
∥∥∥σ

Γ

∥∥∥2
)
.(10)

Proof. The function f is continuous at the point xo; then by (3)

v(y) ≤ v(0) + min
Aξ∈y+Ko

max
σ∈∂f(xo)

(
σT ξ +

Γ

2
‖ ξ ‖2

)
.

The function ξ → σT ξ + Γ
2 ‖ ξ ‖2 is convex and tends to +∞ as ‖ ξ ‖ tends to +∞;

on the other hand the function σ → σT ξ + Γ
2 ‖ ξ ‖2 is concave on the compact set

∂f(xo). By the saddle point theorem, Theorem VII 4.3.1, in [9] we have

v(y) ≤ v(0) + max
σ∈∂f(xo)

min
Aξ∈y+Ko

(
σT ξ +

Γ

2
‖ ξ ‖2

)
;

since we have

σT ξ +
Γ

2
‖ ξ ‖2=

Γ

2

(∥∥∥ξ +
σ

Γ

∥∥∥2

−
∥∥∥σ

Γ

∥∥∥2
)
,

the assertion holds.
The following result gives some precision about the second-order term of the power

series of the marginal function v(y).
Theorem 4.4. Suppose the assumptions of superquadratic and subquadratic

growth conditions hold and the MFC is satisfied, then there exists ε > 0 such that
for all perturbation y ∈ Rm with ‖ y ‖≤ ε, there exist σo ∈ ∂f(xo) and λ ∈ Rs, λi ≥ 0
(i ∈ I(xo)), and some full row ranked submatrix AL such that
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1. rank(AL) = rank(A), ATLλ = σo, λ
TALxo = 0, and Dv(0; y) = λT y =

σTo A
#
L y,

2. if Σ = {σ ∈ ∂f(xo) : σTA#
L y > Dv(0; y)} then the following alternative holds:

either Σ = ∅, in which case

v(y)− v(0) ≤ Dv(0; y) +
Γ

2
‖ A#

L y ‖2,

or Σ 6= ∅, in which case

v(y)− v(0) ≤ Dv(0; y) +
Γ

2

(
‖ A#

L y ‖2 + sup
σ∈Σ

| (σ − σo)TA#
L y |2

‖ (1−A#
LAL)(σ − σo) ‖2

)
.

Proof. Following [9] we have

Dv(0; y) = max{λT y : λ satisfies (2)}
= max{λT y : ATλ = σ, σ ∈ ∂f(xo), λ

i ≥ 0 (i ∈ I(xo))}.

There exists σo ∈ ∂f(xo) such that

Dv(0; y) = max{λT y : ATλ = σo, λ
i ≥ 0 (i ∈ I(xo))}.

The right-hand-side maximization is a linear program which is feasible and bounded
above. The dual program

Min σTo ξ

s.t.

{
Aiξ = yi (1 ≤ i ≤ r),
Aiξ ≥ yi (i ∈ I(xo))

also has optimal solutions. The set S of feasible solutions is polyhedral convex and
closed. It may be written

S = S ∩ F + kerA,

where F is some complement of kerA; take, for example, F = range(AT ) = ker(A)⊥.
The function to be minimized is linear, then there is at least one minimizer, denoted by
ξo, in S∩F , which is an extremal point of S∩F . The point ξo satisfies s = rank(AT ) =
rank(A) independent constraints. Denote by AL the corresponding submatrix of the
matrix A; then

ξo = A#
L y and A#

L y + kerA ⊂ {ξ : Aξ ∈ y +Ko}.

Following (10) we have

v(y) ≤ v(0) + max
σ∈∂f(xo)

min
ξ∈A#

L
y+kerA

Γ

2

(∥∥∥ξ +
σ

Γ

∥∥∥2

−
∥∥∥σ

Γ

∥∥∥2
)
.

The optimal ξ in the right-hand side is the projection of −σΓ on A#
L y + kerA,

ξ = −σ
Γ

+A#
LAL

σ

Γ
+A#

L y,
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and by Pythagoras’s theorem

v(y)− v(0) ≤ max
σ∈∂f(xo)

Γ

2
‖ A#

L y ‖2 +σTA#
L y −

1

2Γ
‖ (1−A#

LAL)σ ‖2 .(11)

The subgradient σo which has been characterized above is such that

Dv(0; y) = σTo A
#
L y,

and since σo ∈ range(ATL) = ker(AL)⊥ we have (1−A#
LAL)σo = 0

A#
LALσo = σo.

The inequality (11) then gives

v(y)− v(0) ≤ σTo A#
L y +

Γ

2
‖ A#

L y ‖2

+ max
σ∈∂f(xo)

(σT − σTo )A#
L y −

1

2Γ
‖ (1−A#

LAL)(σ − σo) ‖2 .(12)

Consider the expression

E = max
σ∈∂f(xo)

(σT − σTo )A#
L y −

1

2Γ
‖ (1−A#

LAL)(σ − σo) ‖2 .

The maximum with respect to σ ∈ ∂f(xo) is certainly lower than the sup extended
to the cone σo + R+(∂f(xo)− σo):

E ≤ supσ∈∂f(xo) sups≥0{s(σ − σo)TA#
L y − s2

2Γ ‖ (1−A#
LAL)(σ − σo) ‖2}

≤
 0 if (σ − σo)TA#

L y ≤ 0,
Γ
2

|(σ−σo)TA#
L
y|2

‖(1−A#
L
AL)(σ−σo)‖2 otherwise.

This, in (12), completes the proof.

Remark 4. The operator 1−A#
LAL is the orthogonal projection on kerAL; then

we have (1− A#
LAL)σ = 0 if and only if σ ∈ range(A#

L ) = range(ATL). On the other
hand, following optimality conditions (2), any σ ∈ Σ which is an element of ∂f(xo)

cannot be an element of range(ATL). Then (1−A#
LAL)(σ − σo) = (1−A#

LAL)σ 6= 0
for any σ ∈ Σ.

5. Lipschitz-type stability of the optimal solution. We are now ready for
the main result.

Theorem 5.1. Suppose the assumptions of superquadratic and subquadratic
growth conditions hold and the MFC is satisfied. Then there exists ε > 0 such that for
all perturbations y ∈ Rm, ‖ y ‖≤ ε, there exist σo ∈ ∂f(xo) and some full row ranked
submatrix AL such that the following holds:

1. rank(AL) = rank(A), σo ∈ range(AL), and Dv(0; y) = σTo A
#
L y,

2. if Σ = {σ ∈ ∂f(xo) : σTA#
L y > Dv(0; y)}, then for any optimal solution x(y),

the following alternative holds: either Σ = ∅, in which case

‖ x(y)− x(0) ‖≤
√

Γ

ρ
‖ A#

L ‖‖ y ‖,
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or Σ 6= ∅, in which case

‖ x(y)− x(0) ‖≤
√√√√Γ

ρ

(
‖ A#

L ‖2 + sup
σ∈Σ

‖ (σ − σo)TA#
L ‖2

‖ (1−A#
LAL)(σ − σo) ‖2

)
‖ y ‖ .

Proof. For any σ ∈ ∂f(xo), by the superquadratic growth condition

ρ

2
‖ x(y)− xo ‖2≤ f(x(y))− f(xo)− σT (x(y)− xo).

By (9), σ may be chosen such that σ = ATλ, where λ ∈ ∂v(0); taking into account
that f(x(y)) = v(y) and f(xo) = v(0)

ρ

2
‖ x(y)− xo ‖2≤ v(y)− v(0)− λTA(x(y)− xo).

The multiplier λ and some submatrix AL may be chosen as in Theorem 4.4; then

ρ

2
‖ x(y)− xo ‖2≤ v(y)− v(0)−Dv(0; y)

≤


Γ
2 ‖ A#

L ‖2‖ y ‖2 if Σ = ∅,
Γ
2 (‖ A#

L ‖2 + supσ∈Σ
‖(σ−σo)TA#

L
‖2

‖(1−A#
L
AL)(σ−σo)‖2 ) ‖ y ‖2 otherwise.

This completes the proof.
Remark 5. The submatrix AL is not known a priori, but the index set L includes

{1, 2, . . . , r} and indices of binding constraints such that λi > 0 (r + 1 ≤ i ≤ m), for
some λ such that λT y = Dv(0; y). In the following classical smooth case, the matrix
A is known. Suppose that the assumptions of superquadratic and subquadratic growth
conditions hold, assume the function f is differentiable at the point xo, and assume
that the so-called independence condition holds. The family Ai(1 ≤ i ≤ m, Aixo = 0)
is linearly independent; then any optimal solution x(y) is upper Lipschitz continuous
with respect to the parameter y at the point yo = 0, with the rate

‖ x(y)− xo ‖ ≤
√

Γ

ρ
‖ A# ‖‖ y ‖,

where A is the matrix corresponding to active constraints. If the function f is twice
continuously differentiable, then Γ and ρ are related to the highest and the lowest
eigenvalues of the Hessian matrix of the function f.

Corollary 5.2. Suppose the assumptions of superquadratic and subquadratic
growth conditions hold and the MFC is satisfied; assume f = max1≤j≤p fj, where
the functions fj are differentiable, and assume that the independence condition holds;
then the optimal solution is upper Lipschitz continuous with respect to the parameter
y at the point 0 with the rate, in case Σ = ∅:

‖ x(y)− xo ‖ ≤
√

Γ

ρ
‖ A# ‖‖ y ‖

and with the rate, in case Σ 6= ∅ :

‖ x(y)− xo ‖ ≤
√

Γ

ρ

(
‖ A# ‖2 + max

σ∈Σ

‖ (σ − σo)TA# ‖2
‖ (1−A#A)σ ‖2

)
|| y || .

Here A denotes the matrix corresponding to active constraints.
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5.1. Examples. Now we will answer two questions by examples.
1. In the case Σ 6= ∅ the upper bound may be +∞; does there then exist any

program with no upper Lipschitz continuity at the point 0?
2. Is it possible to relax the subquadratic growth assumption in the case where

the function f is assumed to be differentiable?
We will answer both questions with the help of the following example in R2. We

denote

w(x1, x2) = x1 +
√
x2

1 + x2
2.

The subdifferential of w at that point (0, 0) is the closed disc C with center at
(0, 1) and with radius 1.

For α ≥ 1, consider the program

min f(x1, x2) = w(x1, x2)α +
1

2
(x2

1 + x2
2) s.t. x2 = y.

The objective function f is differentiable for α > 1 and ∂f(0, 0) = C for α = 1. On
the other hand the quadratic growth conditions hold for α = 1 but the subquadratic
growth condition vanishes for 2 > α > 1. For y = 0, the optimal solution is (0, 0) and
the unique subgradient which takes part in the optimality conditions is

σo =

[
0
0

]
.

1. For the case where α = 1, y > 0 we have

sup
σ∈Σ

‖ σ − σo ‖
‖ (1−A#A)σ ‖ = +∞

because the sup is taken on the upper half disc. Optimal solutions are easily
built by geometrical argument. Optimality holds at (x1, x2) 6= (0, 0) as the
gradient of f

∇f(x1, x2) =

 1 + x1 + x1√
x2

1+x2
2

x2 + x2√
x2

1+x2
2


is normal to the line {x2 = y}; therefore

1 + x1 +
x1√
x2

1 + x2
2

= 0

or else, with polar coordinates by taking x1 = ρ cos θ and x2 = ρ sin θ, we
have the following:

ρ = −1− 1

cos θ
.

The unique optimal solution for the perturbation y stands at the intersection
with the line {x2 = y}. Since the curve is tangent to the half line {x2 = 0,
x1 < 0} for θ = π, it is clear that the optimal solution cannot be upper
Lipschitz continuous at y = 0. This example answers the first question in
showing that the bound +∞ is reached.
We can also remark that the linearized program has no optimal solution and
by [3] we know that upper Lipschitzian continuity cannot hold.
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2. For the case where α = 3
2 the optimal solutions stand at the crossing of the

line {x2 = y} and the curve

ρ =
9

4

(1 + cos θ)2

cos2 θ

(
−π

2
< θ <

3π

2

)
.

Once again the optimal solution stands on the curve which is tangent at (0, 0)
to the first axis, there is then no upper Lipschitz continuity at {y = 0}. This
shows that the subquadratic growth condition cannot be relaxed, which was
the second question.

Acknowledgments. We are thankful to both referees for their helpful comments
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Abstract. An optimal control problem for a coupled system of a semilinear elliptic equation
and an obstacle variational inequality is considered. Existence and optimality conditions of optimal
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1. Introduction. In this paper, we investigate an optimal control problem in
which the state y is governed by a controlled semilinear elliptic obstacle variational
inequality,

(1.1)


y ∈ H2(Ω) ∩H1

0 (Ω),
Ay ≥ f(x, y, u) in Ω,
y ≥ ϕ in Ω,

(Ay − f)(y − ϕ) = 0 in Ω,

where the obstacle ϕ solves another semilinear elliptic equation with distributed con-
trol,

(1.2)

{
Aϕ = g(x, ϕ, u) in Ω,
ϕ|∂Ω = 0,

and the cost functional is given by

(1.3) J(y, ϕ, u) =

∫
Ω

L(x, y(x), ϕ(x), u(x))dx,

where (y, ϕ, u) is a triple of state and control satisfying (1.1) and (1.2). Hence, the
control problem is

(1.4) minimize J(y, ϕ, u) subject to (1.1), (1.2) and u(x) ∈ U a.e. in Ω.

Optimal control problems for variational inequalities have been discussed by many
authors in different aspects. See [2], [3], [4], [8], [9], [13], [15], [17], and [19] for exam-
ples. Some standard results for variational inequalities can be found in [7], [12], [16],
and [18].
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Recently, the obstacle control problem has been studied in [1], where the obstacle
is taken to be the control and the solution to the obstacle problem is taken to be
the state; existence, uniqueness, and some characterizations of the optimal pairs were
established based on the properties of the homogeneous state equation.

In our problem, if f does not explicitly depend on u, the action of control is
indirect in the following sense: the control u acts upon the state y by means of the
obstacle ϕ, the solution of controlled equation (1.2). This amounts to a design of
the shape of the string by choosing a suitable “curvature” of the obstacle, if the
one-dimensional obstacle problem of the string is considered. Although our prob-
lem setting is mathematically presented, our state system (1.1)–(1.2) is meaningful
in practice. For instance, some free boundary problems such as the problem of the
filtration of water through a homogeneous porous dam and the stationary water cone
problem arising in the production of oil from a reservoir with bottom water, etc., after
a Baiocchi-type transformation, can be reformulated in terms of the elliptic variational
unilateral problem (cf. [16] and [20]). Also, a parabolic counterpart of (1.1)–(1.2) may
appear in the studying of mathematical finance (such as the pricing of interest rate
derivatives, etc.; cf. [11]).

The plan of this paper is as follows. In section 2, we state the main hypotheses
and results, establish a W 2,p-estimate of state, and prove the continuity of the state
with respect to the control variable. Section 3 is devoted to the existence of optimal
triples. We study the approximate problems in section 4 and derive the optimality
conditions (in the form of Pontryagin’s principle) in section 5. Finally, section 6 is
concerned with the case in which the control domain is convex.

2. State equation.

2.1. Main hypotheses and results. First, we introduce the following assump-
tions.

(H1) Ω ⊂ Rn is a bounded region with C1,1 boundary ∂Ω, U is a Polish space
(a separable complete metric space), and

(2.1) U = {u: Ω→ U |u(·) is measurable}.
(H2) Operator A is defined by

(2.2) Ay(x) = −
n∑

i,j=1

Dj(aij(x)Diy(x))

with aij ∈ C1(Ω), aij = aji, 1 ≤ i, j ≤ n, and for some λ > 0,

(2.3)

n∑
i,j=1

aij(x)ξiξj ≥ λ
n∑
i=1

|ξi|2 ∀x ∈ Ω, (ξ1, ξ2, . . . , ξn) ∈ Rn.

(H3) The functions f, g: Ω×R×U → R have the following properties:f(·, y, u),
g(·, ϕ, u) are measurable on Ω, and f(x, ·, u), g(x, ·, u) are in C1(R) with f(x, ·, ·),
fy(x, ·, ·), g(x, ·, ·), and gϕ(x, ·, ·) continuous on R × U . Moreover, there exists a con-
stant K > 0, such that

(2.4) −K ≤ fy, gϕ ≤ 0 on Ω× R× U
and

(2.5) |f(x, 0, u)|+ |g(x, 0, u)| ≤ K on Ω× U.
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(H4) The function L: Ω × R × R × U → R satisfies the following: L(·, y, ϕ, u)
is measurable on Ω, L(x, ·, ·, u) is in C1(R × R) with L(x, ·, ·, ·), Ly(x, ·, ·, ·), and
Lϕ(x, ·, ·, ·) continuous on R × R × U, and for any R > 0, there exists a constant
KR > 0, such that

(2.6) |L|+ |Ly|+ |Lϕ| ≤ KR on Ω× [−R,R]× [−R,R]× U.

Under (H2), the operator A is associated with a positive symmetric bilinear form
a(·, ·): H1

0 (Ω)×H1
0 (Ω)→ R

(2.7) a(y, z) =

n∑
i,j=1

∫
Ω

aij(x)Diy(x)Djz(x)dx.

The weak solution of obstacle problem (1.1) can be defined as follows.
Definition 2.1. Given u ∈ U and ϕ ∈ H1

0 (Ω), a function y ∈ H1
0 (Ω) is called a

weak solution of obstacle problem (1.1), if

(2.8)

{
y ∈ K(ϕ),
a(y, z − y) ≥ ∫

Ω
f(x, y(x), u(x))(z − y)dx ∀z ∈ K(ϕ),

where

(2.9) K(ϕ) = {z ∈ H1
0 (Ω)| z ≥ ϕ a.e. in Ω}

is a convex and closed subset of H1
0 (Ω).

Any element u ∈ U is referred to as a control. Any triple (y, ϕ, u) ∈ H1
0 (Ω) ×

H1
0 (Ω)×U satisfying (2.8) and (1.2) is called a feasible triple, and the corresponding

(y, ϕ) and u will be referred to as a feasible state and a feasible control, respectively.
The set of all feasible triples is denoted by A. Clearly, under (H1)–(H4), U coincides
with the set of all feasible controls, and for each u ∈ U , there corresponds a unique
feasible state (y, ϕ), and the cost functional (1.3) is well defined. Hereafter, we always
assume (H1)–(H4). Thus, we can write J(y, ϕ, u) as J(u) without any ambiguity, and
we will use J(u) for convenience. Also we restate the control problem (1.4) as follows.

Problem (C). Find a feasible control u ∈ U , such that

(2.10) J(u) = inf
u∈U

J(u).

If such a u exists, we call it an optimal control. Accordingly, the corresponding
state (y, ϕ) and the feasible triple (y, ϕ, u) ∈ A will be called an optimal state and
triple, respectively.

Our main results on Problem (C) are the following two (see also Theorem 3.4 and
Theorem 5.2).

Existence theorem. In addition to (H1)–(H4), we let the so-called Cesari
property (see section 3 for details) hold. Then Problem (C) admits an optimal control
u ∈ U .

Pontryagin’s principle. Let (H1)–(H4) hold and (y, ϕ, u) ∈ A be an optimal
triple for Problem (C). Then there exist p, q ∈ H1

0 (Ω) and µ ∈ H−1(Ω)∩M(Ω), such
that

suppµ ⊂ { x ∈ Ω| y(x) = ϕ(x) },
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Aq − gϕ(x, ϕ, u)q = Lϕ(x, y, ϕ, u) + µ in Ω,
p|∂Ω = 0, q|∂Ω = 0,

and

H(x, y(x), ϕ(x), u(x), p(x), q(x)) = min
u∈U

H(x, y(x), ϕ(x), u, p(x), q(x)) a.e. x ∈ Ω,

where M(Ω) is the set of all regular signed measures on Ω, and

H(x, y, ϕ, u, p, q) = pf(x, y, u) + qg(x, ϕ, u) + L(x, y, ϕ, u)

for any (x, y, ϕ, u, p, q) ∈ Ω× R× R× U × R× R.

2.2. W 2,p-estimate of state. Let us start with a W 2,p-estimate of state, which
is useful in what follows.

Proposition 2.2. Let (y, ϕ, u) ∈ A. Then for any p ≥ 2,

(2.11) ‖y‖W 2,p(Ω) ≤ Cp,

(2.12) ‖ϕ‖W 2,p(Ω) ≤ Cp,
where Cp is a constant independent of the control variable u.

Proof. Under (H1)–(H3), (2.12) is easily obtained from the standard Lp-estimate
of elliptic equations (cf. [10]).

To prove (2.11), we define

(2.13) β(r) =

 0, 0 ≤ r < +∞,
−r2, − 1

2 ≤ r < 0,
r + 1

4 , −∞ < r < −1
2 ,

and we introduce a family of approximation of state equation (2.8):

(2.14)ε

{
Ayε + 1

εβ(yε − ϕ) = f(x, yε, u) in Ω,
yε|∂Ω = 0,

where ϕ solves (1.2).
It is seen that, for any given u ∈ U , ϕ ∈ W 1,p

0 (Ω), and ε > 0, (2.14)ε is uniquely
solvable in W 2,p(Ω) ∩W 1,p

0 (Ω). The set of all triples (yε, ϕ, u) ∈ H1
0 (Ω)×H1

0 (Ω)× U
satisfying (2.14)ε and (1.2) will be denoted by Aε.

The estimate (2.11) results from the following two lemmas.
Lemma 2.3. Let (yε, ϕ, u) ∈ Aε. Then for any p ≥ 2,

(2.15) ‖β(yε − ϕ)‖Lp(Ω) ≤ εCp,
and consequently,

(2.16) ‖yε‖W 2,p(Ω) ≤ Cp,
where Cp is a constant independent of ε > 0 and u ∈ U .

Proof. Define, for r ∈ R, B(r) = |β(r)|p−2β(r). Then we have

(2.17) B(r) ≤ 0 inR and B(r) = 0 in R+,
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(2.18) B′(r) = (p− 1)|β(r)|p−2β′(r) ≥ 0,

and, as p ≥ 2, β(0) = 0, and yε, ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω),

(2.19) B(yε − ϕ) ∈W 1,p
0 (Ω) ↪→W 1,p′

0 (Ω),

where p′ = p
p−1 ≤ p is the conjugate number of p.

Multiplying (2.14)ε by εB(yε − ϕ) and integrating by parts, we obtain

(2.20) εa(yε, B(yε − ϕ)) +

∫
Ω

|β(yε − ϕ)|pdx = ε

∫
Ω

f(x, yε, u)B(yε − ϕ)dx.

From (2.3), (2.17), (2.18), and the monotony of f(x, ·, u), we see that

(2.21)

∫
Ω

f(x, yε, u)B(yε − ϕ)dx ≤
∫

Ω

f(x, ϕ, u)B(yε − ϕ)dx

and

(2.22) a(yε − ϕ,B(yε − ϕ)) ≥ 0.

Then, by (1.2), (2.20)–(2.22), and Hölder’s inequality, we have

(2.23)

‖β(yε − ϕ)‖pLp(Ω)

≤ ε
{∫

Ω

f(x, ϕ, u)B(yε − ϕ)dx− a(ϕ,B(yε − ϕ))

}
= ε

∫
Ω

[f(x, ϕ, u)− g(x, ϕ, u)]B(yε − ϕ)dx

≤ ε‖f(·, ϕ(·), u(·))− g(·, ϕ(·), u(·))‖Lp(Ω)‖β(yε − ϕ)‖p−1
Lp(Ω).

Thus, using (2.12) and (H3), we get the desired estimate (2.15) with

Cp = ‖f(·, ϕ(·), u(·))− g(·, ϕ(·), u(·))‖Lp(Ω),

which is independent of ε > 0 and u ∈ U .
Estimate (2.16) follows immediately from (2.15) and the elliptic Lp−

estimate.
Lemma 2.4. Let (yε, ϕ, u) ∈ Aε and (y, ϕ, u) ∈ A. Then, as ε→ 0,

yε → y weakly inW 2,p(Ω) and strongly inW 1,p
0 (Ω).

The proof of Lemma 2.4 is similar to that in [1, Proposition 2.2(i)] with some
suitable modifications.

2.3. Continuous dependence of state on control. In the control set U , we
define the distance, called Ekeland’s distance, as

(2.24) d(u, v) = m({x ∈ Ω|u(x) 6= v(x)}) ∀u, v ∈ U ,
where m denotes the Lebesgue measure. We can show that (U , d) is a complete metric
space (cf. [13]).

The following result is concerned with the continuity of the state (y, ϕ) with
respect to the control u under the above metric.
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Proposition 2.5. Let (y, ϕ, u), (yk, ϕk, uk) ∈ A (k = 1, 2, . . .). If d(uk, u) → 0,
then for any p ≥ 2,

(2.25) ‖yk − y‖W 1,p(Ω) → 0

and

(2.26) ‖ϕk − ϕ‖W 1,p(Ω) → 0.

Proof. The convergence (2.26) is a known result in [13]. Here, we give a sketch of
the proof for the reader’s convenience.

Since the difference ϕk − ϕ satisfies

(2.27)

{
A(ϕk − ϕ) + ak(x)(ϕk − ϕ) = g(x, ϕ, uk)− g(x, ϕ, u),
(ϕk − ϕ)|∂Ω = 0,

where

ak(x) = −
∫ 1

0

gϕ(x, ϕ(x) + τ(ϕk(x)− ϕ(x)), uk(x))dτ,

satisfying (by (H3))

(2.28) 0 ≤ ak(x) ≤ K ∀k,
we obtain, from the Lp-estimate for elliptic equations of divergence form,

(2.29) ‖ϕk − ϕ‖W 1,p(Ω) ≤ C‖g(·, ϕ(·), uk(·))− g(·, ϕ(·), u(·))‖W−1,p(Ω).

By Sobolev embedding and the duality, we have

(2.30)

{
L

np
n+p (Ω) ↪→W−1,p(Ω) for p > n

n−1 ,

Lq(Ω) ↪→W−1,p(Ω) for p = n
n−1 .

Then, (2.29), together with (2.30), (2.12), and (H3), gives

(2.31) ‖ϕk − ϕ‖W 1,p(Ω) ≤
{

Cpd(uk, u)
n+p
np if p > n

n−1 ,

Cp,qd(uk, u)
1
q ∀q > 0 if p = n

n−1 ,

where the constants Cp and Cp,q are independent of u and uk(k = 1, 2, . . .). This
proves (2.26).

From Proposition 2.2, we know that, for some subsequence,

yk → y∗ weakly inW 2,p(Ω), strongly inW 1,p
0 (Ω).

Clearly,

(2.32) y∗(x) ≥ ϕ(x) a.e. x ∈ Ω.

Now, for any z ∈ K(ϕ), let zk = z ∨ ϕk; we have zk ∈ K(ϕk) and zk → z strongly in
H1

0 (Ω). Note that

‖f(·, yk(·), uk(·))− f(·, y∗(·), u(·))‖L2(Ω)

≤ ‖f(·, yk(·), uk(·))− f(·, yk(·), u(·))‖L2(Ω) + ‖f(·, yk(·), u(·))− f(·, y∗(·), u(·))‖L2(Ω)

≤ C{d(uk, u)
1
2 + ‖yk − y∗‖L2(Ω)} → 0.
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Passing to the limit in (2.8), in which u, y, and z are replaced by uk, yk, and zk,
respectively, we obtain

a(y∗, z − y∗) ≥
∫

Ω

f(x, y∗(x), u(x))(z − y∗)dx.

This, combined with (2.32), means that y∗ is a solution of (2.8). By the uniqueness,
we must have that y∗ = y, and the whole sequence {yk} converges to y strongly in
W 1,p

0 (Ω).
Corollary 2.6. J(u) is continuous on (U , d).

3. Existence.

3.1. Cesari property and measurable selection theorem. Let us first recall
the following.

Definition 3.1 (see [5], [13]). Let Y be a Banach space and Z be a metric space.
Let Λ:Z → 2Y be a multifunction. We say that Λ possesses the Cesari property at
z ∈ Z if

(3.1) ∩δ>0coΛ(Oδ(z)) = Λ(z),

where coE stands for the closed convex hull of the set E and Oδ(z) is the δ-neighborhood
of the point z. If Λ has the Cesari property at every point z ∈ Z, we simply say that
Λ has the Cesari property on Z.

Definition 3.2. Let Ω ⊂ Rn be some Lebesgue measurable set and U be a Polish
space. Let Γ: Ω → 2U be a multifunction. Function u: Ω → U is called a selection of
Γ(·) if

(3.2) u(x) ∈ Γ(x) a.e. x ∈ Ω.

If such a u is measurable, then u is called a measurable selection of Γ(·).
The following gives the existence of measurable selections.
Theorem 3.3. Let Γ: Ω→ 2U be measurable, taking closed set values. Then Γ(·)

admits a measurable selection.
We refer the readers to [13, pp. 100–101] for the proof of Theorem 3.3.

3.2. Existence of optimal controls. To establish the existence for problem
(C), we first introduce the following set:
(3.3)

Λ(x, y, ϕ) = {(ξ, η, ζ) ∈ R3| ξ ≥ L(x, y, ϕ, u), η = f(x, y, u), ζ = g(x, ϕ, u), u ∈ U}.
We make the following assumption:

(H5) For almost all x ∈ Ω, the mapping (y, ϕ) 7→ Λ(x, y, ϕ) has the Cesari
property on R2.

Theorem 3.4. Let (H1)–(H5) hold. Then Problem (C) admits at least one optimal
control u ∈ U .

Proof. Let {uk} ⊂ U be a minimizing sequence satisfying

(3.4) J(uk) ≤ inf
u∈U

J(u) +
1

k
.

Take p > max{n2 , 2}. By Proposition 2.2, we know that the corresponding state
(yk, ϕk) satisfies

(3.5) ‖yk‖W 2,p(Ω) + ‖ϕk‖W 2,p(Ω) ≤ Cp,
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with Cp being independent of k. Thus, we may let, extracting some subsequence if
necessary,

(3.6)

{
yk → y,
ϕk → ϕ,

weakly in W 2,p(Ω), strongly in W 1,p
0 (Ω), and Cα(Ω) for some α ∈ (0, 1) and some

(y, ϕ) ∈ [W 2,p(Ω) ∩W 1,p
0 (Ω)]2. By (3.5) and (H3), the functions f(·, yk(·), uk(·)) and

g(·, ϕk(·), uk(·)) are uniformly bounded. Hence, we may further assume

(3.7)

{
f(·, yk(·), uk(·))→ f(·) weakly in Lp(Ω),
g(·, ϕk(·), uk(·))→ g(·) weakly in Lp(Ω)

for some f, g ∈ L∞(Ω). Then, by the Mazur theorem, we can find αij ≥ 0,
∑
i≥1 αij =

1∀j, such that

(3.8)

{
ηj(·) =

∑
i≥1 αijf(·, yi+j(·), ui+j(·))→ f(·) strongly in Lp(Ω),

ζj(·) =
∑
i≥1 αijg(·, ϕi+j(·), ui+j(·))→ g(·) strongly in Lp(Ω).

Set

(3.9) ξj(·) =
∑
i≥1

αijL(·, yi+j(·), ϕi+j(·), ui+j(·))

and

(3.10) L(x) = limj→∞ξj(x) a.e. x ∈ Ω.

The convergence (3.6) implies that, for any δ > 0, there exists a j0 such that for
j ≥ j0,
(3.11) (ξj(x), ηj(x), ζj(x)) ∈ coΛ(x,Oδ((y(x), ϕ(x)))) a.e. x ∈ Ω.

Thus, for any δ > 0, we have

(3.12) (L(x), f(x), g(x)) ∈ coΛ(x,Oδ((y(x), ϕ(x)))) a.e. x ∈ Ω,

and then, by (H5),

(3.13) (L(x), f(x), g(x)) ∈ Λ(x, y(x), ϕ(x)) a.e. x ∈ Ω.

Now, making use of Theorem 3.3, we can find a u ∈ U such that

(3.14)

 L(x) ≥ L(x, y(x), ϕ(x), u(x))

f(x) = f(x, y(x), u(x)) a.e. x ∈ Ω.
g(x) = g(x, ϕ(x), u(x))

We claim that (y(x), ϕ(x)) is the state corresponding to u, i.e.,

(3.15) (y, ϕ, u) ∈ A.
In fact, since (yk, ϕk, uk) ∈ A, from the convergence (3.6), (3.7), and (3.14), we have

(3.16)

{
Aϕ = g(x, ϕ, u) in Ω,
ϕ|∂Ω = 0
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and

(3.17) y(x) ≥ ϕ(x) a.e. x ∈ Ω.

For any z ∈ K(ϕ), we have z ∨ ϕk ∈ K(ϕk) and

(3.18) z ∨ ϕk → z strongly in H1
0 (Ω).

Then, the feasibility of (yk, ϕk, uk) gives

(3.19) a(yk, z ∨ ϕk − yk) ≥
∫

Ω

f(x, yk, uk)(z ∨ ϕk − yk)dx ∀k,

and the convergence (3.6), (3.7), (3.14), and (3.18) yields

(3.20) a(y, z − y) ≥
∫

Ω

f(x, y, u)(z − y)dx.

Thus, by (3.16), (3.17), and (3.20), the feasibility (3.15) is verified.
Finally, we can deduce from (3.14), (3.10), (3.9), (3.4), and Fatou’s lemma that

J(u) =

∫
Ω

L(x, y(x), ϕ(x), u(x))dx

≤
∫

Ω

L(x)dx =

∫
Ω

limj→∞ξj(x)dx

≤ limj→∞

∫
Ω

ξj(x)dx = limj→∞
∑
i≥1

αijJ(ui+j)

≤ limj→∞
∑
i≥1

αij( inf
u∈U

J(u) +
1

j
) = limj→∞( inf

u∈U
J(u) +

1

j
)

= infu∈U J(u).

Hence u is an optimal control of Problem (C).

4. Analysis of approximate problems.

4.1. Approximate functional. Let us introduce a family of approximate func-
tional

(4.1) Jε(u) = J(yε, ϕ, u) =

∫
Ω

L(x, yε(x), ϕ(x), u(x))dx,

where (yε, ϕ, u) ∈ Aε.
Proposition 4.1.

(4.2)
(i) For any fixed ε > 0, Jε(u)is continuous on (U , d);
(ii) For any given u ∈ U , limε→0 Jε(u) = J(u).

Proof. (i) It suffices to prove the continuous dependence of yε on u. Let (yε, ϕ, u),
(yε,k, ϕk, uk) ∈ Aε(k = 1, 2, . . .). Supposing d(uk, u) → 0, we have already had that,
for any p ≥ 2, ‖ϕk − ϕ‖W 1,p(Ω) → 0 (see (2.26)). Adapting the proof of (2.26) to
yε,k − yε, we can obtain
(4.3)

‖yε,k−yε‖W 1,p(Ω) ≤ C
{

1

ε
‖ϕk − ϕ‖Lp(Ω) + ‖f(·, yε(·), uk(·))− f(·, yε(·), u(·))‖W−1,p(Ω)

}
.
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Recalling (2.30), (2.16), and (H3), we see that

(4.4)

‖f(·, yε(·), uk(·))− f(·, yε(·), u(·))‖W−1,p(Ω)

≤
{

Cpd(uk, u)
n+p
np if p > n

n−1 ,

Cp,qd(uk, u)
1
q ∀q > 1 if p = n

n−1 .

Thus, we have

(4.5) ‖yε,k − yε‖W 1,p(Ω) → 0.

(ii) (4.2) is an immediate consequence of Lemma 2.4 and (H4).

4.2. Taylor expansion. We note that for each (yε, ϕ, u) ∈ Aε, (yε, ϕ) is the
solution of semilinear elliptic system (2.14)ε and (1.2). Using an argument similar to
that in [13], we can present a sort of “Taylor expansion” formula for (yε, ϕ) and the
approximate functional Jε(u).

Proposition 4.2. Let (yε, ϕ, u) ∈ Aε and v ∈ U be fixed. Then, for any ρ ∈ (0, 1),
there exists a measurable set Eρ ⊂ Ω with m(Eρ) = ρm(Ω), such that if uρ ∈ U is
defined by

(4.6) uρ(x) =

{
u(x) if x ∈ Ω \ Eρ,
v(x) if x ∈ Eρ

and (yρε , ϕ
ρ, uρ) ∈ Aε, then it holds that

(4.7)

{
yρε = yε + ρz + rρ,

limρ→0
1
ρ‖rρ‖W 1,p(Ω) = 0;

(4.8)

{
ϕρ = ϕ+ ρζ + ωρ,

limρ→0
1
ρ‖ωρ‖W 1,p(Ω) = 0;

(4.9)

{
Jε(u

ρ) = Jε(u) + ρj + eρ,
limρ→0

1
ρ |eρ| = 0;

where z, ζ, and j satisfy the following:
(4.10) Az − fy(x, yε, u)z + 1

εβ
′(yε − ϕ)(z − ζ) = f(x, yε, v)− f(x, yε, u) in Ω,

Aζ − gϕ(x, ϕ, u)ζ = g(x, ϕ, v)− g(x, ϕ, u) in Ω,
z|∂Ω = 0, ζ|∂Ω = 0

and

(4.11) j =

∫
Ω

[Ly(x, yε, ϕ, u)z + Lϕ(x, yε, ϕ, u)ζ + L(x, yε, ϕ, v)− L(x, yε, ϕ, u)]dx.

4.3. Convergence theorem. The main result of this section is the following
convergence theorem.

Theorem 4.3. Let Jε = infu∈U Jε(u) and J = infu∈U J(u). Then

(4.12) lim
ε→0

Jε = J.
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To prove Theorem 4.3, we need the following:
Lemma 4.4. Let {uε} ⊂ U be any sequence, (yε, ϕε, uε) ∈ Aε, and (yε, ϕε, uε) ∈

A. Then

(4.13) lim
ε→0
‖yε − yε‖H1

0 (Ω) = 0.

Proof. By Proposition 2.2 and Lemma 2.3, we have that, for any p ≥ 2,

(4.14) ‖yε‖W 2,p(Ω) + ‖ϕε‖W 2,p(Ω) + ‖yε‖W 2,p(Ω) ≤ Cp,

with Cp independent of ε > 0. Thus, we may assume that, for some subsequence,

(4.15)

{
yε → y strongly in H1

0 (Ω),
ϕε → ϕ strongly in H1

0 (Ω)

and

(4.16) ‖yε‖H1(Ω)∩L∞ (Ω) ≤ C withC independent of ε > 0.

For any η ∈ H1
0 (Ω) with η ≥ 0 a.e. in Ω, we have from (2.14)ε that

(4.17) 0 ≤ −
∫

Ω

β(yε − ϕε)ηdx = ε

{
a(yε, η)−

∫
Ω

f(x, yε, uε)ηdx

}
→ 0,

because the terms in { } are bounded. Then, by Fatou’s lemma,

(4.18)

∫
Ω

β(y − ϕ)ηdx = 0 ∀η ∈ H1
0 (Ω) with η ≥ 0 a.e. in Ω.

This implies that

(4.19) β(y − ϕ) = 0 a.e. in Ω,

and, by the definition of β(·),

(4.20) y ≥ ϕ a.e. in Ω.

Now, letting zε = yε ∨ ϕε, we have

(4.21) zε → y strongly in H1
0 (Ω),

and consequently,

(4.22) ‖zε − yε‖H1
0 (Ω) → 0.

Recalling that yε and yε solve (2.14)ε and (2.8), respectively, we have

(4.23)

a(yε, yε − yε)

= − 1
ε

∫
Ω

β(yε − ϕε)(yε − yε)dx+

∫
Ω

f(x, yε, uε)(yε − yε)dx
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and

(4.24) a(yε, zε − yε) ≥
∫

Ω

f(x, yε, uε)(zε − yε)dx.

By the monotonicity of f(x, ·, u) and β(·), we see that

(4.25)

∫
Ω

[f(x, yε, uε)− f(x, yε, uε)](yε − yε)dx ≤ 0

and

(4.26)

∫
Ω

β(yε − ϕε)(yε − yε)dx ≥ 0.

Here, we have used the fact that yε ≥ ϕε > yε when yε < ϕε. From (4.23)–(4.26), we
may deduce that

a(yε−yε, yε−yε) ≤ a(yε, zε−yε)−
∫

Ω

f(x, yε, uε)(zε−yε)dx ≤ C‖zε−yε‖H1(Ω) → 0,

where (4.16) and (4.22) have been used. This and (2.3) prove (4.13).

Remark. The above lemma can be strengthened. As a matter of fact, using Lions’s
interpolation theorem (cf. [14]), we can deduce from (4.13) and (4.14) that, for any
p ≥ 2,

(4.27) lim
ε→0
‖yε − yε‖W 1,p(Ω) = 0.

From Lemma 4.4 and (H4), we easily get the following corollary.

Corollary 4.5. For any sequence {uε} ⊂ U ,

(4.28) lim
ε→0

[Jε(uε)− J(uε)] = 0.

Proof of Theorem 4.3. For any ε > 0, one can find uε ∈ U , such that

(4.29) Jε(uε) < Jε + ε.

Then, by Corollary 4.5, we have
(4.30)

limε→0Jε ≥ limε→0Jε(uε) = limε→0[J(uε) + Jε(uε)− J(uε)] = limε→0J(uε) ≥ J.

On the other hand, let uδ ∈ U be such that

(4.31) J(uδ) < J + δ.

Then, using Corollary 4.5 again, we have
(4.32)

limδ→0Jδ ≤ limδ→0Jδ(uδ) = limδ→0[J(uδ) + Jδ(uδ)− J(uδ)] = limδ→0J(uδ) ≤ J.

Hence, (4.12) follows from (4.30) and (4.32).
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5. Optimality condition. In this section, we first recall Ekeland’s variational
principle and then use it to derive some necessary conditions for optimal controls of
Problem (C).

Theorem 5.1 (Ekeland’s variational principle; see [6]). Let (V, d) be a com-
plete metric space and J :V → (−∞, +∞] be a proper lower semicontinuous function
bounded from below. Let α > 0, v ∈ V such that

J(v) ≤ inf
v∈V

J(v) + α2.

Then there exists a vα ∈ V satisfying

(5.1) J(vα) ≤ J(v),

(5.2) d(vα, v) ≤ α,

(5.3) −αd(v, vα) ≤ J(v)− J(vα) ∀v ∈ V.

Theorem 5.2. Let (H1)–(H4) hold and (y, ϕ, u) ∈ A be an optimal triple for
Problem (C). Then there exist p, q ∈ H1

0 (Ω) and µ ∈ H−1(Ω) ∩M(Ω), such that

(5.4) suppµ ⊂ { x ∈ Ω| y(x) = ϕ(x) },

(5.5)

 Ap− fy(x, y, u)p = Ly(x, y, ϕ, u)− µ in Ω,
Aq − gϕ(x, ϕ, u)q = Lϕ(x, y, ϕ, u) + µ in Ω,
p|∂Ω = 0, q|∂Ω = 0,

and
(5.6)
H(x, y(x), ϕ(x), u(x), p(x), q(x)) = min

u∈U
H(x, y(x), ϕ(x), u, p(x), q(x)) a.e. x ∈ Ω,

where M(Ω) is the set of all regular signed measures on Ω, and

H(x, y, ϕ, u, p, q) = pf(x, y, u) + qg(x, ϕ, u) + L(x, y, ϕ, u)

for any (x, y, ϕ, u, p, q) ∈ Ω× R× R× U × R× R.
Condition (5.4) is understood as the following: For any η ∈ C(Ω) with supp η ⊂

Ω0,

〈µ, η〉M(Ω),C(Ω) = 0,

where

(5.7) Ω0 = { x ∈ Ω| y(x) > ϕ(x) }.
Proof. Given ε > 0 and

(5.8) αε = (Jε(u)− Jε + ε)1/2 > 0.

From (4.2) and (4.12), we see that (note J(u) = J)

(5.9) αε → 0.
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Since Jε(u) is continuous on (U , d) and

(5.10) Jε(u) ≤ Jε + α2
ε = inf

u∈U
Jε(u) + α2

ε

by Ekeland’s variational principle, there exists a uε ∈ U , such that

(5.11) d(uε, u) ≤ αε,

(5.12) −αεd(u, uε) ≤ Jε(u)− Jε(uε) ∀u ∈ U .
Let (yε, ϕε, uε) ∈ Aε and v ∈ U be fixed. By Proposition 4.2 we know that, for

any ρ ∈ (0, 1), there exists a measurable set Eρ ⊂ Ω with m(Eρ) = ρm(Ω), such that
if we define

(5.13) uρε(x) =

{
uε(x) if x ∈ Ω \ Eρ,
v(x) if x ∈ Eρ

and let (yρε , ϕ
ρ
ε , u

ρ
ε) ∈ Aε, then

(5.14)

 yρε = yε + ρzε + rρε ,
ϕρε = ϕε + ρζε + ωρε ,

Jε(u
ρ
ε) = Jε(uε) + ρjε + eρε ,

where zε, ζε, and jε satisfy the following:
(5.15) Azε − fy(x, yε, uε)zε + 1

εβ
′(yε − ϕε)(zε − ζε) = f(x, yε, v)− f(x, yε, uε) in Ω,

Aζε − gϕ(x, ϕε, uε)ζε = g(x, ϕε, v)− g(x, ϕε, uε) in Ω,
zε|∂Ω = 0, ζε|∂Ω = 0

and
(5.16)

jε =

∫
Ω

[Ly(x, yε, ϕε, uε)zε + Lϕ(x, yε, ϕε, uε)ζε + L(x, yε, ϕε, v)− L(x, yε, ϕε, uε)]dx,

with

(5.17) lim
ρ→0

1

ρ
‖rρε‖W 1,p(Ω) = lim

ρ→0

1

ρ
‖ωρε‖W 1,p(Ω) = lim

ρ→0

1

ρ
|eρε | = 0.

Now, we take u = uρε in (5.12). It follows that

(5.18) −αεm(Ω) ≤ 1

ρ
[Jε(u

ρ
ε)− Jε(uε)]→ jε (ρ→ 0).

Let (pε, qε) ∈ H1
0 (Ω)×H1

0 (Ω) be the unique solution of the following system:

(5.19)

 Apε + [ 1
εβ
′(yε − ϕε)− fy(x, yε, uε)]pε = Ly(x, yε, ϕε, uε) in Ω,

Aqε − gϕ(x, ϕε, uε)qε − 1
εβ
′(yε − ϕε)pε = Lϕ(x, yε, ϕε, uε) in Ω,

pε|∂Ω = 0, qε|∂Ω = 0.

Then, we may deduce from (5.16) and (5.18) that

(5.20)

∫
Ω

[H(x, yε, ϕε, v, pε, qε)−H(x, yε, ϕε, uε, pε, qε)]dx ≥ −αεm(Ω).
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In what follows, we are going to take the limits to get the final result.
Noting that β′ ≥ 0, fy ≤ 0, and gϕ ≤ 0, we can apply the standard elliptic

estimation to the system (5.19) and get

(5.21) ‖pε‖H1
0 (Ω) + ‖qε‖H1

0 (Ω) ≤ C.

Then, from (5.19), we further get

(5.22) ‖β′(yε − ϕε)pε‖H−1(Ω) ≤ Cε.

Moreover, let Sδ(r) ∈ C1(R) be a family of smooth approximation to sign r, satisfying
the following:

(5.23) S′δ(r) ≥ 0 ∀r ∈ R

and

(5.24) Sδ(r) =

 1 if r > δ,
0 if r = 0,
−1 if r < −δ.

Multiplying the first equation of (5.19) by εSδ(pε) and integrating it over Ω, we can
get

(5.25)

∫
Ω

β′(yε − ϕε)pεSδ(pε)dx ≤ Cε.

Letting δ → 0, we have

(5.26) ‖β′(yε − ϕε)pε‖L1(Ω) ≤ Cε.

In estimates (5.21), (5.22), and (5.26), the constant C is independent of ε > 0.
Hence we may let, extracting some subsequence if necessary,

pε → p weakly inH1
0 (Ω), strongly inL2(Ω),

qε → q weakly inH1
0 (Ω), strongly inL2(Ω),

1
εβ
′(yε − ϕε)pε → µ weakly star inH−1(Ω) ∩M(Ω).

Let (yε, ϕε, uε) ∈ A. By (5.9), (5.11), and Proposition 2.5, we have, for any p ≥ 2,

(5.27)

{ ‖yε − y‖W 1,p(Ω) → 0,
‖ϕε − ϕ‖W 1,p(Ω) → 0

and

(5.28) ‖yε − y‖W 1,p(Ω) → 0,

where the convergence ‖yε − yε‖W 1,p(Ω) → 0 (see (4.27)) has been utilized.

For any η ∈ C(Ω) with supp η ⊂ Ω0, the convergence (5.27)–(5.28), combined
with the compactness of supp η, ensures that, for some ε0 > 0,

yε(x)− ϕε(x) > 0 ∀x ∈ supp η, 0 < ε < ε0,
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which yields

〈µ, η〉M(Ω),C(Ω) = limε→0

∫
Ω

1

ε
β′(yε − ϕε)pεηdx

= limε→0

∫
supp η

1

ε
β′(yε − ϕε)pεηdx

= 0.

Thus, (5.4) holds.
Passing to the limit in (5.19) and (5.20), we obtain (5.5) and∫
Ω

[H(x, y(x), ϕ(x), v(x), p(x), q(x))−H(x, y(x), ϕ(x), u(x), p(x), q(x))]dx ≥ 0.

Finally, by the separability of U and the continuity of the Hamiltonian H in the
variable v, noting also that v ∈ U is arbitrary, we obtain the optimality condition
(5.6).

6. Convex case. In the previous sections, the control domain U is just a metric
space and does not necessarily have any algebraic structure. Thus we do not talk about
the convexity of U, and accordingly, we use spike perturbations in the derivation of
optimality conditions.

This section will be concerned with the case in which U = L2(Ω), and then the
convex variation can be performed, and a stronger regularity of optimal control can
be obtained.

6.1. Problem setting. Let all the assumptions in (H1) and (H2) be unchanged
except for U and U . In addition, we assume that

(H̃3) The function f : Ω × R → R, has the following properties: f(·, y) is mea-
surable on Ω, f(x, ·) is in C1(R), and there exists a constant K > 0, such that

(6.1) −K ≤ fy ≤ 0 on Ω× R,

(6.2) |f(x, 0)| ≤ K on Ω.

Given yd ∈ L2(Ω), we introduce the following quadratic cost functional which we
try to minimize on u ∈ L2(Ω):

(6.3) J(u) =
1

2

∫
Ω

[(y − yd)2 + u2]dx.

In (6.3), the state y is the solution of the following semilinear elliptic obstacle problem:

(6.4)

 y ∈ K(ϕ),

a(y, z − y) ≥
∫

Ω

f(x, y)(z − y)dx ∀z ∈ K(ϕ),

where K(ϕ) and a(·, ·) are defined as before (see (2.9) and (2.7)) and the obstacle ϕ
solves (1.2) with g(x, ϕ, u) = u, i.e.,

(6.5)

{
Aϕ = u in Ω,
ϕ|∂Ω = 0.
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Obviously, the cost functional (6.3) is well defined since, under (H1), (H2), and
(H̃3), (6.4) and (6.5) are uniquely solvable for any u ∈ L2(Ω).

The feasible set, denoted by Ã, consists of all triples (y, ϕ, u) ∈ H1
0 (Ω)×H1

0 (Ω)×
L2(Ω) satisfying (6.4) and (6.5). Any triple (y, ϕ, u) ∈ Ã is called a feasible triple,
and the corresponding (y, ϕ) and u are referred to as a feasible state and control,
respectively. Clearly, L2(Ω) coincides with the set of all feasible controls.

Now, we pose the following optimal control problem.
Problem (C̃). Find a u ∈ L2(Ω), such that

(6.6) J(u) = inf
u∈L2(Ω)

J(u).

Such a u ∈ L2(Ω), if it exists, is called an optimal control and the corresponding
triple (y, ϕ, u) ∈ Ã is called an optimal triple.

6.2. Compactness and existence.
Proposition 6.1.
(i) There is a unique triple (y, ϕ, u) ∈ Ã corresponding to each u ∈ L2(Ω), and

there exists a constant C > 0, independent of u, such that

(6.7) ‖ϕ‖H2(Ω) ≤ C‖u‖L2(Ω),

(6.8) ‖y‖H1
0 (Ω) ≤ C(1 + ‖u‖L2(Ω)).

(ii) The solution operator S:u 7→ (y, ϕ) of (6.4)–(6.5) is compact.
Proof. The proof of (i) is classic. For the proof of (ii), it suffices to show that if

uk → u weakly in L2(Ω), then

(6.9)

{
ϕk → ϕ strongly in H1

0 (Ω),
yk → y strongly in H1

0 (Ω),

where (y, ϕ, u), (yk, ϕk, uk) ∈ Ã (k = 1, 2, . . .).
In fact, by estimates (6.7) and (6.8) and the uniqueness of limit point, we have

the convergence (cf. the proof of Proposition 2.5):

(6.10) ϕk → ϕ strongly in H1
0 (Ω),

(6.11) yk → y weakly in H1
0 (Ω), strongly in L2(Ω).

To prove the strong convergency of yk in H1
0 (Ω), we note that zk = y ∨ ϕk ∈ K(ϕk),

and

(6.12) zk → y strongly in H1
0 (Ω).

Hence, by (6.4), convergence (6.11), and (6.12),

(6.13) a(zk − yk, zk − yk) ≤ a(zk, zk − yk)−
∫

Ω

f(x, yk)(zk − yk)dx → 0.

This implies ‖zk − yk‖H1
0 (Ω) → 0, and consequently,

(6.14) ‖yk − y‖H1
0 (Ω) → 0.

The existence of Problem (C̃) is readily obtained from the compactness of the
solution operator and the lower semicontinuity of the cost functional J(u).

Theorem 6.2. Let (H1), (H2), and (H̃3) hold. Then Problem (C̃) admits an
optimal control u ∈ L2(Ω).
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6.3. Approximate control problems. Let (y, ϕ, u) be a fixed optimal triple
of Problem (C̃).

In this subsection, we will introduce a family of approximate control problems.
First we define

(6.15) Jε(u) =
1

2

∫
Ω

[(yε − yd)2 + u2 + (u− u)2]dx,

where yε is the approximate state solving

(6.16)ε

{
Ayε + 1

εβ(yε − ϕ) = f(x, yε) in Ω,
yε|∂Ω = 0,

with ϕ being the solution of (6.5) and β(·) being given in (2.13).
The set of all triples (yε, ϕ, u) ∈ H1

0 (Ω) ×H1
0 (Ω) × L2(Ω) satisfying (6.16)ε and

(6.5) will be denoted by Ãε.
Our approximate control problems can be stated as follows.
Problem (C̃)ε. Find a uε ∈ L2(Ω), such that

(6.17) Jε(uε) = inf
u∈L2(Ω)

Jε(u).

It is easy to see the following.
Proposition 6.3. There exists an optimal triple (yε, ϕε, uε) ∈ Ãε to Problem

(C̃)ε.
Proposition 6.4. For any fixed ε > 0, the solution mapping Tε:u 7→ (yε, ϕ) of

(6.16)ε and (6.5) is differentiable in the following sense: Given u, h ∈ L2(Ω), there
exists a pair (ξ, η) ∈ H1

0 (Ω)×H1
0 (Ω), such that, as δ → 0,

1

δ
[Tε(u+ δh)− Tε(u)] → (ξ, η) weakly in H1

0 (Ω)×H1
0 (Ω).

Furthermore, (ξ, η) solves

(6.18)

 Aξ − fy(x, yε)ξ + 1
εβ
′(yε − ϕ)(ξ − η) = 0 in Ω,

Aη = h in Ω,
ξ|∂Ω = 0, η|∂Ω = 0.

From above proposition, we can derive the characterization of optimal triples of
the approximate Problem (C̃)ε.

Proposition 6.5. Let (yε, ϕε, uε) be an optimal triple of Problem (C̃)ε. Then
there exists an adjoint pair (pε, qε) ∈ H1

0 (Ω)×H1
0 (Ω), such that

(6.19)

 Apε + [ 1
εβ
′(yε − ϕε)− fy(x, yε)]pε = yε − yd in Ω,
Aqε − 1

εβ
′(yε − ϕε)pε = 0 in Ω,

pε|∂Ω = 0, qε|∂Ω = 0

and

(6.20) qε + 2uε − u = 0 a.e. in Ω.
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6.4. Necessary condition. In deriving the necessary conditions of the optimal
control for the original Problem (C̃), the following lemmas are crucial.

Lemma 6.6. Let (yε, ϕε, uε) ∈ Ãε. If uε → u weakly in L2(Ω), for some
u ∈ L2(Ω) (in particular, this is the case if uε = u), then

(6.21)

{
yε → y strongly in H1

0 (Ω),
ϕε → ϕ strongly in H1

0 (Ω)

with (y, ϕ, u) ∈ Ã.
Proof. The proof is quite similar to that of Proposition 6.1 (ii) with some minor

modifications.
Lemma 6.7. Let (y, ϕ, u) be an optimal triple of the original Problem (C̃) (given

at the beginning of subsection 6.3), and (yε, ϕε, uε) be optimal triples for (approximate)
Problem (C̃)ε. Then

(6.22) uε → u weakly in L2(Ω),

(6.23) yε → y strongly in H1
0 (Ω),

and

(6.24) ϕε → ϕ strongly in H1
0 (Ω).

Proof. First, we note that

(6.25) ‖uε‖2L2(Ω) ≤ 2Jε(uε) ≤ 2Jε(u) → 2J(u) (ε→ 0).

Thus, {uε} is bounded in L2(Ω). For some subsequence, still denoted by {uε}, we
have

(6.26) uε → u weakly in L2(Ω) for some u ∈ L2(Ω).

Then, by Lemma 6.6,

(6.27) yε → y strongly in H1
0 (Ω),

(6.28) ϕε → ϕ strongly in H1
0 (Ω)

with (y, ϕ, u) ∈ Ã.
Next, we have the following:

(6.29)

J(u) ≤ J(u)

= 1
2

∫
Ω

[(y − yd)2 + u2]dx

≤ 1
2

∫
Ω

[(y − yd)2 + u2 + (u− u)2]dx

≤ limε→0
1
2

∫
Ω

[(yε − yd)2 + u2
ε + (uε − u)2]dx

= limε→0Jε(uε)
≤ limε→0Jε(u) = J(u).
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Thus, all the equalities in (6.29) must hold. This means J(u) = J(u), and
∫

Ω
(u −

u)2dx = 0. Hence we obtain u = u and, by uniqueness, y = y and ϕ = ϕ. This
completes the proof.

Using an argument analogous to section 5, we may prove the following theorem.
Theorem 6.8. Let (y, ϕ, u) be an optimal triple of Problem (C̃). Then there

exists an adjoint pair (p, q) ∈ H1
0 (Ω)×H1

0 (Ω) and µ ∈ H−1(Ω) ∩M(Ω), such that

(6.30)

 Ap− fy(x, y)p = y − yd − µ in Ω,
Aq = µ in Ω,

p|∂Ω = 0, q|∂Ω = 0

and

(6.31) q + u = 0 a.e. in Ω.

Remark. From (6. 31), we see that any optimal control u must be an element
of H1

0 (Ω). Moreover, u is the strong limit point of the corresponding approximate
optimal controls uε in L2(Ω). More precisely, we can deduce from (6.20) and (6.31)
that

uε → u weakly in H1
0 (Ω) and strongly in L2(Ω).
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Abstract. We study the multidimensional Bellman equation of ergodic control for diffusion
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1. Introduction. We deal with the d-dimensional Bellman equation of the form

λ =
1

2
∆φ(x) + F (Dφ(x)) + h(x), x ∈ Rd,(1)

where

F (ξ) = min{|p|2 + (ξ, p) : |p| ≤ 1}

=

−|ξ|
2/4 if |ξ| ≤ 2,

−|ξ|+ 1 if |ξ| > 2,
(2)

and | · |, (, ), and D denote the norm, the inner product of vectors, and the gradient,
respectively. Now we are given a convex function h(x) with polynomial growth, and
the unknown is the pair of a constant λ and a C2-function φ(x) on Rd.

Generally speaking, the linear ergodic control problem has been investigated for
the stochastic differential systems with invariant measures [3], [5]. The corresponding
Bellman equation is given by

λ =
1

2
∆φ+ (Ax,Dφ) + F (Dφ) + h,

and the matrix A is assumed to satisfy a kind of Lyapunov-type stability condition
for the existence result of a unique solution.

Equation (1) is related to the study of ergodic control in the linear systems with-
out invariant measures such as manufacturing systems in the production planning
problems [14]. Also, this is an extension of [9] by means of direct calculations, and
[10] recently treated this from the point of view of reducing (1) to an equivalent
integral equation in the 1-dimensional case.

Our aim is to show that the Bellman equation (1) admits a unique solution (λ, φ) ∈
R×C2(Rd) in a certain class. To solve (1), we consider the Bellman equation for the
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control problem with discounted rate α > 0:

αuα(x) =
1

2
∆uα(x) + F (Duα(x)) + h(x), x ∈ Rd.(3)

We apply the technique of [4] to (1) with the Lipschitz continuous term F (ξ), and we
are focused on studying the limit of (3) as α→ 0. The solution (λ, φ) is given by the
limit

αminuα → λ,(4)

uα(x)−minuα → φ(x).(5)

It is known in [12] that (3) has a unique solution uα. However, the crucial point
for establishing (4), (5), and (1) is that uα becomes a convex function with polyno-
mial growth and we can obtain the gradient estimates of uα in the whole space Rd

uniformly in α.
Let us mention the works [4], [7] on the Bellman equation of ergodic control

without convex and polynomial growth hypotheses and the linear quadratic case, in
which F (ξ) is replaced by min{|p|2 + (ξ, p) : p ∈ Rd}. We refer to [13] for ergodic
control of reflected diffusions.

The content of this paper is as follows. In section 2 we show the existence of
a unique solution uα to Bellman equation (3) under the convexity assumption on
h(x). Further, in section 3, we study the limit of uα as |x| → ∞ and the polynomial
growth property. Section 4 is devoted to a priori estimates of uα − minuα for the
approximation problem. Section 5 deals with the existence of the unique solution of
(1). Finally, in section 6, we present an application of our results to an ergodic control
problem of linear stochastic differential systems without invariant measures.

2. Bellman equations of discounted cost control. We study the existence
of a unique solution uα with polynomial growth to the Bellman equation:

αuα(x) =
1

2
∆uα(x) + F (Duα(x)) + h(x), x ∈ Rd,(6)

where 0 < α < 1/2. We assume

h : nonnegative, convex on Rd,(7)

h satisfies the polynomial growth condition, i.e.,

∃C > 0, m ∈ N+; h(x) ≤ C(1 + |x|m), x ∈ Rd,(8)

h ∈ C1(Rd).(9)

To simplify the notation, we make use of the following quantity:

[f ]δ,Br = sup
x∈Br

|f(x)|+ sup
x,y∈Br, x 6=y

|f(x)− f(y)|
|x− y|δ ,

where f(x) is the bounded Hölder continuous function with exponent δ on a ball
Br = Br(0) of Rd. Let tn ∈ C∞c (Rd) be a sequence such that tn = 1 on Bn, 0
outside B2n and 0 ≤ tn ≤ 1, |Dtn| ≤ C/n, and set hn = tnh ∈ C1

c (Rd). It is clear
that hn → h and 0 ≤ hn ≤ h.

Now let us consider the Bellman equation

αun(x) =
1

2
∆un(x) + F (Dun(x)) + hn(x), x ∈ Rd.(10)
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Then we have Theorem 2.1.
Theorem 2.1. Under (7), (8), and (9), equation (10) admits a unique solution

un ∈ C0(Rd) ∩ C2(Rd), which satisfies

sup
n

[un]δ,Br <∞,(11)

sup
n

∑
i

[Diun]δ,Br <∞,(12)

sup
n

∑
i,j

[Dijun]δ,Br <∞(13)

for some 0 < δ < 1.
Proof. It is well known [2] that, for every n ∈ N+, (10) has a unique solution un

of the form

un(x) = inf

{
E

[∫ ∞
0

e−αt(hn(x(t)) + |p(t)|2)dt

]
: |p(t)| ≤ 1

}
(14)

in the class C0(Rd) of continuous functions vanishing at infinity, where x(t) is a
solution of the stochastic differential equation

dx(t) = p(t)dt+ dw(t), x(0) = x ∈ Rd,

defined on some probability space (Ω,F , P ; {Ft}) carrying a d-dimensional standard
Brownian motion w(t), and the infimum is taken over the class of all Ft-progressively
measurable processes p(t) with |p(t)| ≤ 1.

Since the similar proof of the assertions is needed later, we shall divide it into
several steps.

Step 1. We note un ≥ 0 by (14) and (7). Let ν ≥ 1 and we shall show that

2α

∫
uν+1
n Θdx+

∫
|Dun|2νuν−1

n Θdx ≤ 2

∫
(hn + 1)uνnΘdx,(15)

where Θ(x) = e−θ|x| for a positive constant θ chosen later. Multiplying both sides of
(10) by uνnΘ and integrating over Rd, we have

2α

∫
uν+1
n Θdx−

∫
∆unu

ν
nΘdx− 2

∫
F (Dun)uνnΘdx = 2

∫
hnu

ν
nΘdx.

The second term of the left-hand side can be rewritten as∫
(Dun, D(uνnΘ))dx =

∫ [
|Dun|2νuν−1

n Θ− θuνn
(
Dun,

x

|x|
)

Θ

]
dx

≥
∫

[|Dun|2νuν−1
n − θuνn|Dun|]Θdx.

Since |ξ|+ 1 ≥ −F (ξ) ≥ |ξ| − 1, we get (15) for a choice of θ with 0 < θ < 2.
Step 2. By Step 1, we have

α

∫
uν+1
n Θdx ≤

∫
(hn + 1)uνnΘdx

≤
∫

(|h|+ 1)uνnΘdx

≤
(∫

(|h|+ 1)ν+1Θdx

)1/(ν+1)(∫
(uνn)(ν+1)/νΘdx

)ν/(ν+1)
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from which

α

(∫
uν+1
n Θdx

)1/(ν+1)

≤
(∫

(|h|+ 1)ν+1Θdx

)1/(ν+1)

.

Step 3. Here we take ν = 1 in (15). Then

α

∫
(u2
n + |Dun|2)Θdx ≤

∫
(hn + 1)unΘdx

≤
(∫

(|h|+ 1)2Θdx

)1/2(∫
u2
nΘdx

)1/2

≤
(∫

(|h|+ 1)2Θdx

)1/2(∫
(u2
n + |Dun|2)Θdx

)1/2

.

Hence

sup
n

∫
(u2
n + |Dun|2)Θdx <∞,

and thus,

sup
n

(|un|L2(Br) + |Dun|L2(Br)) <∞ for each r > 0.

By the regularity result [11, Thm 8.8, p. 183], there exists C > 0 such that

|un|W 2,2(Br) ≤ C(|un|W 1,2(Br+1) + |∆un|L2(Br+1)).

Therefore, we get by (10)

sup
n
|un|W 2,2(Br) <∞.

Step 4. We show that

sup
n
|un|W 2,k(Br) <∞ for all k > d.(16)

Due to the Sobolev inequality [6, Thm IX.16, p. 169], (16) follows immediately in the
case of d = 1, 2. Further, assuming d > 2, we have

sup
n
|Dun|Lq(Br+1) ≤ sup

n
C|Dun|W 1,2(Br+1) <∞, 1

q
=

1

2
− 1

d
.

By Step 2 and (10)

sup
n
|∆un|Lq(Br+1) <∞.

Moreover, we know by [1] that

|un|W 2,q(Br) ≤ C(|un|W 1,q(Br+1) + |∆un|Lq(Br+1)).

Hence,

sup
n
|un|W 2,q(Br) <∞.

By a bootstrap argument, we can obtain (16).
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Step 5. Using the Sobolev inequality again, we have

sup
n
|un|L∞(Br) ≤ sup

n
C|un|W 1,k(Br) <∞.

Now, we apply the Morrey theorem [6, Thm IX.12, p. 166 or p. 169],

|un(x)− un(y)| ≤ C|un|W 1,k(Br)|x− y|δ ∀x, y ∈ Br, δ = 1− d/k,
to obtain (11). Similarly, by Step 4, we deduce (12).

Step 6. We can easily see by (9) that the derivative Diun satisfies

αDiun =
1

2
∆Diun + (DF (Dun), DDiun) +Dihn.

Since DF (ξ) is bounded, we have

sup
n
|∆Diun|Lk(Br) <∞,

and by virtue of [1]

sup
n
|Dun|W 2,k(Br) <∞.

Thus, by the same argument as Step 5, we deduce (13). The proof is complete.
To show the existence of uα of (6) with polynomial growth, we consider the

stochastic differential equation

dz(t) = G(z(t))dt+ dw(t), z(0) = x ∈ Rd,(17)

where

G(z) =

−z/|z| if z ∈ Rd\{0},

0 if z = 0.

Lemma 2.2. For each n ∈ N+, there exists C > 0 such that

αE

[∫ ∞
0

e−αt|z(t)|2ndt
]
≤ C(1 + |x|2n+2).(18)

Proof. By an application of Ito’s formula to e−αt|z|2n+2, we have

E[e−αt|z(t)|2n+2]− |x|2n+2 = E

[ ∫ t

0

e−αs{−α|z(s)|2n+2 + (2n+ 2)(G(z(s)), z(s))|z(s)|2n

+ (n+ 1)(2n+ d)|z(s)|2n}ds
]

≤ E
[ ∫ t

0

e−αs{−2(n+ 1)|z(s)|2n+1

+ (n+ 1)(2n+ d)|z(s)|2n}ds
]
.

Hence

E

[∫ ∞
0

e−αs g(z(s)) ds

]
≤ |x|2n+2,
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where g(z) = 2(n + 1)|z|2n+1 − (n + 1)(2n + d)|z|2n. We choose ζ > 0 such that
|z|2n ≤ g(z) for all |z| ≥ ζ. Then

E

[∫ ∞
0

e−αt|z(t)|2ndt
]

=

∫ ∞
0

e−αtE[|z(t)|2n1(|z(t)|<ζ) + |z(t)|2n1(|z(t)|≥ζ)]dt

≤
∫ ∞

0

e−αt{ζ2n + E[g(z(t))]}dt

≤ ζ2n/α+ |x|2n+2.

Thus we get (18) with C > 0 independent of α.

Theorem 2.3. Assume (7), (8), (9). Then there exists a unique solution uα ∈
C2(Rd) of equation (6) such that uα is convex and satisfies

0 ≤ αuα(x) ≤ C(1 + |x|m+3), x ∈ Rd,(19)

for some constant C > 0.

Proof. By Theorem 2.1, it is evident that the sequences {un}, {Dun}, and {∆un}
are uniformly bounded and equicontinuous on every Br. By the Ascoli–Arzelà theo-
rem, we have

un → uα ∈ C2(Rd),

Dun → Duα,

∆un → ∆uα uniformly on Br,

taking a subsequence if necessary. Passing to the limit in (10), we can obtain (6).

To prove (19), we recall (14). Hence, by (8) and Lemma 2.2,

0 ≤ αun(x) ≤ αE
[∫ ∞

0

e−αt(hn(z(t)) + |G(z(t))|2)dt

]
≤ C

(
1 + αE

[∫ ∞
0

e−αt(1 + |z(t)|m)dt

])
≤ C(1 + |x|m+3).

This implies that uα satisfies (19). Due to (19), we have

E[e−αtuα(x(t))] → 0 as t → ∞.

Hence, by Ito’s formula

uα(x) = inf

{
E

[∫ ∞
0

e−αt(h(x(t)) + |p(t)|2)dt

]
: |p(t)| ≤ 1

}
,(20)

where the infimum is attained by the feedback law ρ(Duα) with ρ(ξ) = arg minF (ξ).
Thus the convexity of uα follows (cf. [8, p. 204]). The proof is complete.

Remark. In the case of d = 1, the theorem is verified without (9), because h is
Lipschitz continuous and (12) implies (13).
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3. Limit at infinity and polynomial growth. We consider the limit of the
solution uα to Bellman equation (6) as |x| → ∞ and also the polynomial growth
property of uα −minuα, denoted by vα. We make the following assumption:

There exists C0 > 0 such that h(x) ≥ C0|x|.(21)

Our objective in this section is to prove the following result.
Theorem 3.1. We assume (7), (8), (9), (21). Then we have

uα(x) → ∞ as |x| → ∞ uniformly in α,(22)

vα(x) ≤ C(1 + |x|m+1)(23)

for some constant C > 0.
Lemma 3.2. If d = 1, then the assertions of Theorem 3.1 hold.
Proof. By (6), (2), and the convexity of uα ≥ 0, we have

h(x) ≤ αuα(x) + |u′α(x)|+ 1

≤ α(|u′α(x)||x|+ uα(0)) + |u′α(x)|+ 1.

Hence, by (21)

|u′α(x)| ≥ (h(x)− 1− αuα(0))/(|x|+ 1)

≥ C0/2 for sufficiently large x,

and then

uα(x) → ∞ as |x| → ∞.

Thus, by convexity, we can find C > 0 independent of α such that uα(x) ≥ C|x|−1/C.
This implies (22).

Now we can define γα ∈ R by uα(γα) = minx uα(x). Since u
′
α(γα) = 0, it is easy

to see that

h(γα) ≤ αuα(γα) ≤ αuα(0).

By (19) and (21), this yields that

sup
α
|γα| <∞.(24)

Moreover,

sup
α
αminuα <∞.

From (6) it follows that

αvα =
1

2
v
′′
α + F (v

′
α) + (h− αminuα),

and by (2),

0 ≤ v′′α − 2|v′α|+ 2(1 + h− αminuα).
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By (19) we note that limy→∞ e−2yvα(y) = 0.
Integrating over [x, y] and letting y →∞, we have

0 ≤ v′α(x) ≤
∫ ∞

0

2(1 + h(s+ x)− αminuα)e−2sds

≤ C(1 + |x|m) for x ≥ γα.
Hence

0 ≤ vα(x) ≤ C(1 + |x|m+1) for x ≥ γα.
By the same calculation as above over (−∞, γα], we deduce (23).

Proof of Theorem 3.1. We prove the theorem, comparing (6) with

αvi =
1

2
∆vi + Fi(Dvi) + hi, i = 1, 2,(25)

where

F1(ξ) =
d∑
j=1

min
|pj |≤1

(p2
j + pjξj), h1(x) =

d∑
j=1

η1|xj |,

F2(ξ) =
d∑
j=1

min
|pj |≤1/d

(p2
j + pjξj), h2(x) =

d∑
j=1

{η2(|xj |m + 1)− αminuα},

and each positive constant ηi will be chosen later. Here we note that the summation
of Fi can be interchanged with the minimization on pj . By virtue of Theorem 2.3,
each equation has a unique solution vi. Further, we can easily see that vi is of the
form

vi(x) =

d∑
j=1

w
(i)
j (xj)

for the solution w
(i)
j (xj) to (25) in the case d = 1. Hence, by Lemma 3.2, the following

relations are fulfilled:

v1(x) → ∞ as |x| → ∞ uniformly in α,

v2(x)−min v2 ≤
∑
j

(w
(2)
j (xj)−minw

(2)
j ) ≤ C(1 + |x|m+1)

for sufficiently large η2 > 0 with C0|x| ≤ h2. Along the same line as (20), we have

vα(x) = inf

{
E

[∫ ∞
0

e−αt(h(x(t))− αminuα + |p(t)|2)dt

]
: |p(t)| ≤ 1

}
,

v1(x) = inf

{
E

[∫ ∞
0

e−αt(h1(x(t)) + |p(t)|2)dt

]
: |pj(t)| ≤ 1

}
,

v2(x)−min v2 = inf

{
E

[∫ ∞
0

e−αt(h2(x(t))− αmin v2 + |p(t)|2)dt

]
: |pj(t)| ≤ 1/d

}
.

Since {p : |pj | ≤ 1/d} ⊂ {p : |p| ≤ 1} ⊂ {p : |pj | ≤ 1}, we can obtain

uα ≥ v1,

vα ≤ v2 −min v2

for a convenient choice of each ηi such that h1 ≤ h and h−αminuα ≤ h2−αmin v2.
Thus the theorem is established.
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4. A priori estimates for approximation. For the approximation problem
of (1), we consider here the gradient estimates of vα satisfying

αvα =
1

2
∆vα + F (Dvα) + (h− αminuα),(26)

which follows from (6).
Theorem 4.1. Assume (7), (8), (9), (21). Then there exists 0 < δ < 1 such that

sup
0<α<1/2

[vα]δ,Br <∞,(27)

sup
0<α<1/2

Σ
i

[Divα]δ,Br <∞,(28)

sup
0<α<1/2

Σ
i,j

[Dijvα]δ,Br <∞(29)

for every r > 0.
Proof. Multiplying both sides of (26) by vα(x)Θ(x) and integrating over Rd, we

have

2

∫
αv2

αΘdx−
∫

(∆vα)vαΘdx− 2

∫
F (Dvα)vαΘdx = 2

∫
(h− αminuα)vαΘdx,

where Θ is as in the proof of Theorem 2.1. The second term of the left-hand side can
be rewritten as∫

(Dvα, D(vαΘ))dx =

∫ [
|Dvα|2Θ− θvα

(
Dvα,

x

|x|
)

Θ

]
dx

≥
∫

[|Dvα|2 − θvα|Dvα|]Θdx.

By the choice of θ with 2 > θ > 0, we get∫
|Dvα|2Θdx ≤ 2

∫
(h− αminuα + 1)vαΘdx.

Since

vα(γ̄α)− vα(x) ≥ (Dvα(x), γ̄α − x) for γ̄α := arg min vα,

and {γ̄α} is bounded by analogy with (24), we have

0 ≤ vα(x) ≤ C|Dvα(x)|(|x|+ 1).(30)

Then by the Schwarz inequality∫
|Dvα|2Θdx ≤ 2C

(∫
(h− αminuα + 1)2(|x|+ 1)2Θdx

)1/2(∫
|Dvα|2Θdx

)1/2

.

Therefore, we deduce

sup
α

∫
|Dvα|2Θdx <∞.

Now we can find a constant C > 0 independent of α such that

|Dvα|L2(Br) ≤ C,
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and by (30)

|vα|L2(Br) ≤ C.

Along the same line as Step 3 of Theorem 2.1, we can obtain

sup
α
|vα|W 2,2(Br) <∞.

Finally, by the same bootstrap argument as Step 4 of Theorem 2.1,

sup
α
|vα|W 2,k(Br) <∞ for all k > d.

Further, repeating Steps 5 and 6 of Theorem 2.1, we can deduce (27), (28), (29).

5. Bellman equation of ergodic control.

5.1. Existence. In this section we shall show the existence of a unique solution
(λ, φ) ∈ R× C2(Rd) to the Bellman equation

λ =
1

2
∆φ(x) + F (Dφ(x)) + h(x), x ∈ Rd.(31)

Theorem 5.1. We assume (7), (8), (9), (21). Then there exists a subsequence
α→ 0 such that

αminuα → λ ∈ R+,(32)

vα(x) → φ(x) ∈ C2(Rd) uniformly on each Br.(33)

The limit (λ, φ) satisfies Bellman equation (31) and, furthermore,

φ : convex on Rd,(34)

φ(x) → ∞ as |x| → ∞,(35)

0 ≤ φ(x) ≤ C(1 + |x|m+1)(36)

for some constant C > 0.
Proof. From Theorem 4.1 it follows that {vα} and {Dvα} are uniformly bounded

and equicontinuous on each Br, and so is {D2vα}. By the Ascoli–Arzelà theorem, we
get

vα → φ,

Dvα → Dφ,

D2vα → D2φ uniformly on Br,

taking a subsequence if necessary. Moreover,

αvα(x) → 0, αminuα → λ,

since {αminuα} is bounded. Passing to the limit in (26), we deduce (31). The
assertions (34), (35), and (36) follow from Theorems 2.3 and 3.1 immediately.
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5.2. Uniqueness. Before going into the proof of uniqueness, we need the fol-
lowing property of the stochastic differential equation

dx∗(t) = ρ(Dφ(x∗(t)))dt+ dw(t), x∗(0) = x,(37)

where ρ(ξ) = arg min F (ξ), i.e.,

ρ(ξ) =

−ξ/2 if |ξ| ≤ 2,

−ξ/|ξ| if |ξ| > 2.
(38)

Lemma 5.2. For any n ∈ N+, there exists C > 0 such that

E[|x∗(t)|2n] ≤ C(1 + t).(39)

Proof. We remark by (31) and (21) that

−F (Dφ(x)) ≥ h(x)− λ → ∞,
and hence

|Dφ(x)| → ∞ as |x| → ∞.
Now, let us show that(

x,
Dφ(x)

|Dφ(x)|
)

→ ∞ as |x| → ∞.(40)

Suppose it were not true. Then there exists a sequence xk →∞ such that(
xk,

Dφ(xk)

|Dφ(xk)|
)
≤ C for some C > 0.

Define Sk = {x : φ(x) < φ(xk)}, and let Tk be the tangent plane of Sk at xk. Since
0 belongs to Sk, we can easily find yk ∈ Tk such that the vector yk coincides with
|yk|Dφ(xk)/|Dφ(xk)|. By the definition of Tk,

(yk − xk, Dφ(xk)) = 0.

Hence

|yk| ≤ C.
On the other hand, since Sk is convex, we have

φ(yk) ≥ φ(xk),

and hence

φ(yk) → ∞ as k → ∞.
This is a contradiction, and thus we get (40).

Next, we have by Ito’s formula

E[|x∗(t)|2n]− |x|2n = E

[ ∫ t

0

{2n|x∗(s)|2(n−1)(x∗(s),

ρ(Dφ(x∗(s))) + n(d+ 2(n− 1))|x∗(s)|2(n−1)}ds
]
.
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By (40), we can choose R > 0 such that

2(x, ρ(Dφ(x))) + d+ 2(n− 1) ≤ 0 for |x| ≥ R.
Therefore, we deduce (39). The proof is complete.

Theorem 5.3. We make the assumptions of Theorem 5.1. Let (λj , φj) ∈ R ×
C2(Rd), j = 1, 2, be two solutions of (31) satisfying (34), (35), (36). Then we have

λ1 = λ2,(41)

Dφ1 = Dφ2.(42)

Proof. We first show (41). By (31) and (38) we have

λ1 =
1

2
∆φ1 + |ρ(Dφ1)|2 + (ρ(Dφ1), Dφ1) + h,

λ2 ≤ 1

2
∆φ2 + |ρ(Dφ1)|2 + (ρ(Dφ1), Dφ2) + h.

Denoting φ̂ = φ1 − φ2, we get

1

2
∆φ̂+ (ρ(Dφ1), Dφ̂) ≤ λ1 − λ2.(43)

We apply Ito’s formula to the solution x̂(t) of (37) with φ1 replacing φ. Then

E[e−α(t∧σn)φ̂(x̂(t ∧ σn))] = φ̂(x) + E

[ ∫ t∧σn

0

{
− αe−αsφ̂(x̂(s))ds

+ e−αs(ρ(Dφ1), Dφ̂)(x̂(s)) + e−αs
1

2
∆φ̂(x̂(s))

}
ds

]
,

where {σn} is a sequence of localizing times for the local martingale. Note that

|x̂(t)| ≤ |x|+ t+ |w(t)|.(44)

Letting n→∞, we have by the dominated convergence theorem

E[e−αtφ̂(x̂(t))]− φ̂(x) ≤ E
[∫ t

0

e−αs{−αφ̂(x̂(s)) + (λ1 − λ2)}ds
]
.

Moreover, letting t→∞, we get

−φ̂(x) ≤ E
[∫ ∞

0

e−αs{−αφ̂(x̂(s))}ds
]

+ (λ1 − λ2)/α

or, equivalently,

λ1 − λ2 ≥ α
(
αE

[∫ ∞
0

e−αsφ̂(x̂(s))ds

]
− φ̂(x)

)
.

By (36) and Lemma 5.2 we have

|E[φ̂(x̂(t))]| ≤ C(1 + E[|x̂(t)|m+1])

≤ C(1 + (E[|x̂(t)|2(m+1)])1/2)(45)

≤ C(1 + (C(t+ 1))1/2).
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Hence∣∣∣∣α2E

[∫ ∞
0

e−αsφ̂(x̂(s))ds

]∣∣∣∣ ≤ C (α+ α2

∫ ∞
0

e−αss1/2ds

)
→ 0 as α→ 0.

Passing to the limit, we can deduce λ1 ≥ λ2, and thus (41).
Next, in order to prove (42), it is sufficient to show that φ admits a representation

φ(x)− φ(0) = lim
r→0+

inf

{
E

[∫ τr

0

((h(x(t)) + |p(t)|2)− λ)dt

]
: |p(t)| ≤ 1

}
,(46)

where τr = inf{t : x(t) ∈ Br} for the response x(t) to each control p(t). By (31) and
(37), it is obvious that

φ(x∗(t)) +

∫ t

0

(h(x∗(s)) + |p∗(s)|2 − λ)ds is a local martingale,

where p∗(t) = ρ(Dφ(x∗(t))). Taking into account (44), we see that

φ(x) = E

[∫ τr∧t

0

(h(x∗(s)) + |p∗(s)|2 − λ)ds+ φ(x∗(τr ∧ t))
]
.

Letting t→∞, we have by Fatou’s lemma

φ(x) ≥ E
[∫ τr

0

(h(x∗(s)) + |p∗(s)|2 − λ)ds+ φ(x∗(τr))
]
.

Here, we note that x∗(t) becomes a Brownian motion by the Girsanov transformation
of probability measure P . Then P (τr <∞) = 1 and hence P (|x∗(τr)| = r) = 1. Thus

φ(x)− inf
|x|=r

φ(x) ≥ E
[∫ τr

0

(h(x∗(s)) + |p∗(s)|2 − λ)ds

]
for |x| > r.(47)

Letting r → 0, we get (46) with ≥ replacing =.
On the other hand, by (26), it is easy to see that

e−αtvα(x(t)) +

∫ t

0

e−αs(h(x(s)) + |p(t)|2 − αminuα)ds is a submartingale.

Hence

vα(x) ≤ E
[∫ τr∧t

0

e−αs(h(x(s)) + |p(s)|2 − αminuα)ds+ e−α(τr∧t)vα(x(τr ∧ t))
]
,

from which

vα(x) ≤ E
[∫ τr

0

e−αs(h(x(s)) + |p(s)|2 − αminuα)ds+ e−ατrvα(x(τr))

]
.

Let (λ2, φ2) be the limit of (32) and (33). Tending α to 0, we get

φ2(x)− sup
|x|=r

φ2(x) ≤ E
[∫ τr

0

(h(x(s)) + |p(s)|2 − λ2)ds

]
.
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Thus we can obtain

φ2(x)− φ2(0) = lim
r→0+

inf

{
E

[∫ τr

0

((h(x(t)) + |p(t)|2)− λ2)dt

]
: |p(t)| ≤ 1

}
,

φ1(x)− φ1(0) ≥ φ2(x)− φ2(0),

taking φ = φ2 and φ = φ1 in (47), respectively.
Define φ̄(x) = φ1(x)− φ1(0)− (φ2(x)− φ2(0)) ≥ 0. Then, by (43)

1

2
∆φ̄+ (ρ(Dφ1), Dφ̄) ≤ 0.

By the maximal principle [11, Thm 3.5, p. 35], we have

φ̄ = 0 on BR ∀R,
since φ̄ achieves its minimum at x = 0. Therefore, we conclude (46), completing the
proof.

6. An application to ergodic control. We shall study the ergodic control
problem to minimize the cost

J(p) = lim sup
T→∞

1

T
E

[∫ T

0

{h(x(t)) + |p(t)|2}dt
]

(48)

over all P subject to the state equation

dx(t) = p(t)dt+ dw(t), x(0) = x,(49)

where P denotes the set of all progressively measurable Ft-adapted processes p(t)
such that

|p(t)| ≤ 1,

lim
T→∞

1

T
E[|x(t)|m+1] = 0 for the response x(t) to p(t) .(50)

Theorem 6.1. We assume (7), (8), (9), (21). Then the optimal control p∗(t) is
given by

p∗(t) = ρ(Dφ(x∗(t)))

and the value is given by

J(p∗) = λ,

where x∗(t) is defined by (37).
Proof. By (31) and Ito’s formula, we have

E[φ(x∗(T ))]− φ(x) = E

[∫ T

0

{
(Dφ(x∗(t)), ρ(Dφ(x∗(t)))) +

1

2
∆φ(x∗(t))

}
dt

]

= E

[∫ T

0

(
F (Dφ(x∗(t))) − |ρ(Dφ(x∗(t)))|2 +

1

2
∆φ(x∗(t))

)
dt

]

= E

[∫ T

0

(λ− h(x∗(t))− |ρ(Dφ(x∗(t)))|2) dt

]
.
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In view of Lemma 5.2 and (45),

lim
T→∞

1

T
E[φ(x∗(T ))] = 0,

and also p∗ belongs to P. Hence dividing both sides by T and letting T →∞, we get

J(p∗) = lim
T→∞

1

T
E

[∫ T

0

(h(x∗(t)) + |p∗(t)|2)dt

]
= λ.

Next, let p ∈ P be arbitrary. Along the same line as above, we have

E[φ(x(T ))]− φ(x) ≥ E
[∫ T

0

(λ− h(x(t))− |p(t)|2)dt

]
.

Also, by (36) and (50)

lim
T→∞

1

T
E[φ(x(T ))] = 0.

Thus, we deduce J(p) ≥ λ, which completes the proof.

7. Concluding remarks. In this paper we have analyzed the Bellman equation
of ergodic control problems for diffusion processes that may not possess invariant
measures. We have also showed that the gradient estimate of the solution to the
Bellman equation in discounted cost problems is bounded in discounted rates, and
the equation can be solved without the Lyapunov-type stability conditions discussed
in many other sources. It should be noted that the convexity and the polynomial
growth property inherited from h play important roles for the existence of a unique
solution to the Bellman equation and further for a synthesis of optimal control. We can
verify the optimality for the sake of preserving the moment of the optimal trajectory
less than the order of time t.

The present paper is a generalization completely covering the results of earlier
papers in the 1-dimensional case. The method gives some useful suggestions such that
the control problem will be solvable for the long-run average cost defined on a rather
wider class of admissible controls than what is known, for which the stochastic system
is made unstable, even if it contains the stabilizing matrix A. It is also applicable to
solve the Bellman equation with min{(x, p) : |p| ≤ 1} replacing F (ξ).

The result of this paper provides an answer for some applications to the ergodic
production planning problems in unstable manufacturing systems with sales returns,
constant demand, and no breakdown. However, the ergodic control of the hybrid
system requires the solution to the simultaneous equations with respect to the state
of random demands. We need to study the convexity and the polynomial growth
property of such Bellman equations.

Acknowledgments. We would like to thank anonymous referees for helpful com-
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H2 AND H∞ DESIGN OF SAMPLED-DATA SYSTEMS USING
LIFTING. PART I: GENERAL FRAMEWORK AND SOLUTIONS∗

LEONID MIRKIN† , HÉCTOR P. ROTSTEIN‡ , AND ZALMAN J. PALMOR†
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Abstract. This paper presents a complete solution to the H2 and H∞ problems for sampled-
data systems. As opposed to previous works in the area, it is assumed here that all or some of the
sampling function, the discrete-time controller, and the hold function are available for design.

The solution is obtained by transforming the problem to discrete time using the well-known
lifting technique. It is then shown that the desired components of the sampled-data controller can be
“peeled-off” from the inherently infinite-dimensional description in the lifted-domain. The procedure
for doing this last step is central to the approach in this paper.

Both new and revised solutions are presented in this paper. The solution to the H2 problems is
completely new. The solution to the H∞ problems is presented in a unifying framework and is more
transparent than the previous existing solutions in the literature. Transparency pays in the form of
clearer results. In particular, a separation structure is established between the design of (sub)optimal
hold and sampler.

Key words. sampled-data control, generalized sampler and hold, H2 optimization, H∞ opti-
mization, lifting technique

AMS subject classifications. 93C57, 49N10, 93B36

PII. S0363012997329603

1. Introduction. Since the early 90’s, much attention has been paid to H2

and H∞ optimal control of continuous-time systems using a sampled-data controller,
namely, a controller implemented by a digital computer connected to a plant via A/D
(sampler) and D/A (hold) converters. See [17, 4, 30, 8, 16, 27, 3, 25, 29] for an
introduction to the subject and pointers to relevant literature. In a great majority
of these works, only the discrete part of the sampled-data controller is designed; the
sampler and the hold, on the other hand, are selected without taking into consideration
the plant dynamics or the control objectives. In most cases, an approximate “ideal”
sampler is used to obtain the discrete-time measurements, while zero- or first-order
holds are the devices of choice for converting the output of the discrete part of the
controller to a continuous-time control signal. Having fixed sampler and hold has
several advantages: the behavior of these devices is fairly well understood and hence
can be incorporated (at least heuristically) in the controller design process, the design
of hardware is considerably simplified, and adequate simulation tools exist, etc. At the
same time, fixing the sampler and hold devices irrespective of control considerations
may limit the closed-loop performance, especially when the sampling rate is not “fast”
enough with respect to the plant dynamics.

Numerous attempts have been made to incorporate the sampler and, especially,
the hold into the design process specially by considering the discrete-time performance
[15, 1]. Loosely speaking, these designs are based on the open-loop compensation of
undesirable plant dynamics (e.g., nonminimum-phase zeros) and manage to achieve
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significant improvements of discrete-time performance, usually at the expense of a
poor intersampling behavior. As a consequence, these works give rise to criticism
[10, 7] and the suspicion that, for instance, a generalized hold device will generically
exhibit undesirable robustness properties. It becomes apparent that the design of
sampling and/or hold devices should take into account intersampling behavior, even
when sampling is fast.

The design of A/D and D/A converters on the basis of continuous-time perfor-
mance poses some serious technical difficulties. It is not surprising then that few
results in this direction are available in the literature. For instance, LQG design of
the hold function was discussed by Juan and Kabamba [14] (see also [12]) assuming
that the discrete-time part of the controller is fixed. The necessary conditions for
optimality of the hold function derived in [14] are quite involved and apply only when
rather restrictive constraints (fixed monodromy) on the hold function are imposed.
The design of the H∞ suboptimal hold function is considered by Başar [6] for the
state-feedback and by Sun, Nagpal, and Khargonekar [26] for the output feedback
cases. In a remarkable work, Tadmor [27] treated the sampled-data H∞ problem in
a general setting, including the design of sampling and/or hold functions. In a more
restrictive setting, [22] proposed a simple approach to the H∞ control when both sam-
pler and hold are design parameters. In all the H∞ results above, explicit formulae
for the suboptimal sampler and/or hold are obtained. Finally, Bamieh [2] proposed
an approximate solution to the `1 design of the sampling and hold functions.

An important breakthrough in the treatment of sampled-data systems was the
introduction of “lifting,” an operation that reduces the time-varying sampled data
problem into a time-invariant, albeit inherently infinite-dimensional, discrete-time
one. The idea is conceptually simple and involves three steps: (i) lift the problem
to the discrete time, (ii) solve the resulting formal discrete-time problem in the so-
called lifted domain, and (iii) “peel-off” the result back to continuous time. The
complexity of dealing with systems in the lifted domain thus far has prevented finding
a complete solution to the relevant design problems. The main contribution of the
current research is to show how the three design steps can effectively be carried out.
In order to do this, a better understanding of the lifted domain and its connection
with continuous time is required. In order to streamline the presentation, we have
divided the paper into two parts. In the first one, the framework is described and
the main solutions are presented, based on the technical results derived in the second
part. The second part presents some technical developments which are relevant for
the problems under consideration, but also have independent interest.1 For clarity,
we have tried to make the two parts as self-contained as possible. We believe that
with this structure we have achieved an adequate tradeoff between readability of the
material and completeness.

This paper is organized as follows. In section 2 the problems to be considered
throughout the paper are formulated. The next two sections are devoted to the solu-
tions of these problems in the lifted domain. In particular, in section 3 it is shown how
a wide class of sampled-data problems can be reduced to a unified “standard prob-
lem” in the lifted domain, while in section 4 the lifted solutions to the sampled-data
H2 (section 4.1) and H∞ (section 4.2) problems are presented and some interesting
properties of these solutions are discussed (section 4.3). The lifted solutions are then
“peeled-off” (based on the technical results obtained in the companion paper [23]) in

1This order reflects our personal taste; a reader needing all facts established before proceeding
forward may want to read Part II first.
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section 5, which contains complete solutions to the sampled-data H2 and H∞ prob-
lems, including the (sub)optimal sampling and hold. In section 6 various properties
and interpretations of the optimal sampling and hold functions are discussed. In sec-
tion 6.1 some qualitative conjectures concerning the control oriented design of the
D/A converters are also presented.

1.1. Notation. The notation throughout the paper is as follows. As usual, C−
and D stand for the open left half plane and the open unit disc, respectively. Rn
denotes the n-dimensional Euclidean space and L2

n[0, h] denotes the (Hilbert) space
of square integrable Rn-valued functions on the interval [0, h]. When the dimensions
are irrelevant the dimension index is dropped, by simply writing R and L2[0, h]. For
operators on R⊕L2[0, h], ‖·‖2 denotes the induced operator norm, while ‖·‖HS — the
Hilbert–Schmidt operator norm. M ′ means the transpose of a matrix M and O∗—
the adjoint of a Hilbert space operator O. The notations σ(M), ρ(M), and σ̄(M)
stand for the spectrum, the spectral radius, and the maximum singular value of a
square matrix M , respectively. O1/2 means the square root of O = O∗ ≥ 0.

A “bar” above a variable (ζ̄) denotes discrete-time signals in Rn, while “breve”

(ζ̆) denotes discrete-time signals in the lifted domain. Also, we put forward the
following operator notation which improves the readability of formulae when both
finite- and infinite-dimensional input/output spaces are involved: a bar indicates an
operator Ō with both input and output spaces finite dimensional; grave accent —
Ò, when the input space is finite-dimensional and the output infinite-dimensional
one; acute accent — Ó, when the input space is infinite-dimensional and the output
finite-dimensional one; and finally breve — Ŏ, when both input and output spaces are
infinite dimensional.

The compact block notation [
A B
C D

]
denotes (matrix- or operator-valued) transfer functions either in s or in z domain
in terms of their state–space realization. To distinguish linear time-invariant (LTI)
systems in the time domain from the corresponding transfer functions, the former are
denoted by script capital letters, so G(s) implies the transfer function of a continuous-
time LTI system G. The lower linear fractional transformation of K over P is denoted
as F`

(P,K). Finally, RicC− and RicD denote the continuous- and discrete-time Ric-
cati functions. These functions are not the standard ones usually found in the litera-
ture [32], but rather are defined over product spaces:

Ric S : R(2n+m)×(2n+m) × R(2n+m)×(2n+m) → Rn×n × Rm×n,

where S = C− or D. There are good reasons for considering these generalized forms;
see, for instance, [24, 13] and the Appendix in the companion paper [23] for definitions
and properties. The functions Ric S are not defined over the whole R(2n+m)×(2n+m)

but rather on a subset called domRic S. It is worth stressing that the function Ric S
has a one-to-one correspondence with the stabilizing solution of appropriate Riccati
equations.

2. Problem statement. Consider the single rate sampled-data control systems
illustrated in Figure 1, where Pc is a continuous-time generalized plant and w, z,
y, and u are (continuous-time) exogenous input, regulated output, measured output,
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Fig. 1. General sampled-data setup in time domain.

and control input, respectively. The sampled-data controller consists of a discrete-
time part K̄d, a sampler Sh, and a hold Hh, assumed to be synchronized and with a
sampling period h. Throughout this paper the generalized plant Pc is assumed to be
LTI with the following state–space realization:

Pc(s) =

 A B1 B2

C1 0 D12

C2 D21 0

.(1)

The matrices D11 and D22 are both taken to be zero; this assumption both simplifies
the derivations and leads to more transparent results. Moreover, for the H2 problem
the assumption D11 = 0 is also a necessary condition for the cost function to be finite.

The hold and sampler act on the output of the controller ū[k] and the measurement
y(t), respectively, to generate [15, 1](Hhū)(kh+ τ) = φH(τ)ū[k] ∀τ ∈ [0, h)(2a)

and

(Shy)[k] =

∫ h−

0

φS(τ)y(kh− − τ) dτ.(2b)

Here φH(τ) and φS(τ) are generalized hold and sampling functions, respectively, de-
fined on the interval [0, h). During the intersample, the hold function shapes the form
of the control signal while the sampling function is used to weight the measurements.
Note that the integration limit for Sh is chosen to be h− rather than h. This is
motivated by the fact that any implementable K̄d cannot process information instan-
taneously. As shown in [22], this assumption considerably simplifies the treatment of
sampled-data systems.

Depending on whether the sampler and hold devices are considered as design
variables or not, there are four possible classes of sampled-data control problems:

Ca: Both sampler and hold are free for design;
Cb: The sampler is fixed but the hold is to be designed;
Cc: The sampler is to be designed but the hold is fixed;
Cd: Both sampler and hold are fixed.

The last case has been extensively treated in the literature, especially when Sh is
the ideal sampler and Hh is the zero-order hold (see [8] and the references therein).
For the class Cd the solutions usually are based on conversions of the sampled-data
problem into an equivalent pure discrete one; the latter problem can then be solved
by using known techniques. Such an approach requires several intermediate steps and
does not give rise to closed-form solutions to the sampled-data H∞ problem. Hence,
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although this paper addresses basically cases Ca–c, which involve the design of the
sampling and/or hold functions, the results for Cd will also be presented.

The control problems to be dealt with in the paper are the H2 and H∞ optimiza-
tion problems. Under minor reasonable constraints on the functions φS and φH in (2)
and any LTI K̄d, the system in Figure 1 is h-periodic in continuous time. For such
systems the notions of the H2 and H∞ system norms can be introduced in a natural
manner [8]. Thus, the following optimization problems can be posed:
OPH2 : Find an LTI K̄d and, possibly, a sampling function φS(τ) and/or a hold func-

tion φH(τ) so that the resulting sampled-data controller internally stabilizes
the system in Figure 1 and minimizes the H2 norm of the closed-loop operator
from w to z.

OPH∞ : Given a scalar γ > 0, find (if they exist) an LTI K̄d and, possibly, a sampling
function φS(τ) and/or a hold function φH(τ) so that the resulting sampled-
data controller internally stabilizes the system in Figure 1 and makes the
H∞ norm of the closed-loop operator from w to z less than γ.

Remark 2.1. It is worth stressing that the discrete-time part K̄d of the sampled-
data controller is always a design parameter. This is in contrast to the approach
in [14, 12], where the generalized hold is designed for a fixed K̄d. Nevertheless, the
Hh and Sh resulting from the solution to OPH2 and OPH∞ are referred to as H2-
optimal and H∞-suboptimal hold and sampler, respectively. The H2-optimality of
Hh (Sh) here is understood as the ability to design K̄d and, possibly, Sh (Hh) so that
the H2 performance achieved by the sampled-data controller HhK̄dSh supersedes the
one achieved using any other hold (sampling) device. Similarly, H∞-suboptimal hold
(sampler) refers to the feasibility of designing K̄d and, possibly, Sh (Hh) so that the
overall sampled-data controller be γ-suboptimal.

3. Lifted “standard problem.” The treatment of OPH2 and OPH∞ is com-
plicated by their hybrid continuous/discrete nature and their inherent periodicity.
To circumvent these difficulties the so-called lifting technique of [31, 5, 3] (see also
[28, 27]) can be applied.

Th́e notion of lifting is based on a conversion of real valued signals in continuous
time into functional space valued sequences, that is, sequences that take values not
from R but rather from some general Banach space (L2[0, h] in this paper). Formally,

let `L2[0,h] be the space of sequences of the form {ξ̆[k]}, where each ξ̆[k] is a function
in L2[0, h], that is,

`L2[0,h] =
{
ξ̆ : ξ̆[k] ∈ L2[0, h] ∀k ∈ Z+

}
.

Then, given any h > 0, the lifting operatorWh : L2
e 7→ `L2[0,h] is defined [5, 3] through

ξ̆ =Whξ ⇐⇒ (
ξ̆[k]

)
(τ) = ξ(kh+ τ) ∀τ ∈ [0, h].

It is easy to see that the lifting operator is a linear bijection between L2
e and

`L2[0,h]. Moreover, if the domain of Wh is restricted to the Hilbert space L2, then the
lifting operator can be made an isometry by endowing `L2[0,h] with an appropriate
norm. Hence, treating a system ζ = Gω not as a mapping from ω to ζ but rather
as a mapping from ω̆ to ζ̆ gives essentially the same system (as an input–output
mapping). Indeed, since lifting preserves stability and induced norms, the system G
and its lifting,

Ğ .
=WhGW−1

h : `L2[0,h] 7→ `L2[0,h],
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Fig. 2. “Standard problem” in the lifted domain.

are equivalent. The advantage of treating systems in the lifting domain stems from
the fact that Ğ is time-invariant in discrete time even if G is h-periodic in continuous
time. Hence, any periodic problem in continuous time can be made time-invariant in
discrete time.

The application of this idea to the sampled-data setup in Figure 1 is straight-
forward. In order to convert this setup to a pure discrete time-invariant one, one
of the operators Pc, Sh, and Hh in Figure 1 should be lifted to P̆c .

= WhPcW−1
h ,

Śh .
= ShW−1

h , and H̀h .
= WhHh, respectively. The lifted plant P̆c is LTI and has a

state–space realization

P̆c(z) =

 Ā B́1 B́2

C̀1 D̆11 D̆12

C̀2 D̆21 D̆22

.(3)

Notice that although Ā is a square matrix with the same dimensions as A, the re-
maining entries in this state–space representation are operators acting from or/and
to infinite-dimensional spaces. The lifted hold H̀h is a memoryless gain with transfer
function

H̀h(z) = Φ̀H ,

while the lifted sampler includes a backward shift [22]:

Śh(z) = z−1Φ́S .

The expressions for the parameters of the plant P̆c, the hold H̀h, and the sampler
Śh can be derived using standard lifting arguments [3, 21]. They, however, are not
essential for the discussion in this section and hence are postponed to the companion
paper [23].

What is important in the discussion that follows is the fact that lifting puts all
blocks in Figure 1 on equal footing, making them discrete-time LTI systems. Con-
sequently, the four cases Ca–d of the sampled-data interconnection in Figure 1 with
generalized sampler and hold can be reduced to the standard setup of the linear op-
timal control in Figure 2, where the generalized plant P̆ is given, while the controller
K̃ is to be designed. The lifted sampler Śh and hold H̀h can be absorbed either into
the generalized plant or to the controller, depending on whether they are fixed or
treated as free design parameters. The only fixed part that will always be absorbed
into the controller is the backward shift z−1 of Śh. The reason for this is twofold:
first, the state–space dimension of P̆ is preserved, and second, the characterization
of K̃ is considerably simplified if the operator is strictly causal [22]. An optimization
problem can therefore always be formulated as a “standard problem,” with a strictly
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proper controller. More specifically, for the four cases considered above, one gets the
following:

Ca: Here, both Φ́S and Φ̀H are absorbed into the controller, giving

P̆ (z) = P̆c(z) and K̃(z) = K̆(z)
.
= z−1Φ̀HK̄d(z)Φ́S .

Any designed controller can always be factorized as follows:

K̆(z) =

[
ĀK B́K
C̀K 0

]
= Φ̀H

[
ĀK B̄K
C̄K 0

]
Φ́S ,

where Φ̀H and C̄K are any operators of appropriate dimensions such that
Φ̀HC̄K = C̀K and B̄K and Φ́S are such that B̄KΦ́S = B́K . This yields K̄d,
Hh, and Sh.

Cb: In this case Φ́S is absorbed into the lifted plant, but Φ̀H is absorbed into the
controller, giving

P̆ (z) =

 Ā B́1 B́2

C̀1 D̆11 D̆12

C̄2 D́21 D́22

 and K̃(z) = K̀(z)
.
= z−1Φ̀HK̄d(z),

where [
C̄2 D́21 D́22

] .
= Φ́S

[
C̀2 D̆21 D̆22

]
.

Any designed controller can always be factorized as follows:

K̀(z) =

[
ĀK B̄K
C̀K 0

]
= Φ̀H

[
ĀK B̄K
C̄K 0

]
,

where Φ̀H and C̄K are any operators of appropriate dimensions such that
Φ̀HC̄K = C̀K . This yields both K̄d and Hh.

Cc: Now Φ̀H is absorbed into the lifted plant, but Φ́S is absorbed into the con-
troller, giving

P̆ (z) =

 Ā B́1 B̄2

C̀1 D̆11 D̀12

C̀2 D̆21 D̀22

 and K̃(z) = Ḱ(z)
.
= z−1K̄d(z)Φ́S ,

where  B̄2

D̀12

D̀22

 .
=

 B́2

D̆12

D̆22

Φ̀H .

Any designed controller can always be factorized as follows:

Ḱ(z) =

[
ĀK B́K
C̄K 0

]
=

[
ĀK B̄K
C̄K 0

]
Φ́S ,

where B̄K and Φ́S are any operators of appropriate dimensions such that
B̄KΦ́S = B́K . This yields both K̄d and Sh.
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Cd: In this case, both Φ́S and Φ̀H are absorbed into the lifted plant, giving

P̆ (z) =

 Ā B́1 B̄2

C̀1 D̆11 D̀12

C̄2 D́21 D̄22

 and K̃(z) = K̄(z)
.
= z−1K̄d(z),

where

D̄22
.
= Φ́SD̆22Φ̀H .

Given a designed K̄, the discrete-time part of the controller is

K̄d(z) = zK̄(z).

Thus a designed K̃ now contains information not only about K̄d, but also possibly
about Φ̀H and/or Φ́S . If the hold function is the design parameter, then it is com-
pletely characterized by the “C”-part of the controller. Likewise, if the sampling
function is the design parameter, then it is completely characterized by the “B”-part
of the controller.

It is worth stressing that although for all the cases above the problem fits into
the unified framework in Figure 2, it is seen that some of the parameters of P̆ and K̃
might have either finite- or infinite-dimensional input and/or output spaces depending
on the situation. In this respect, it is assumed here that the generalized plant takes
the form

P̆ (z) =

 Ā B́1 B̃2

C̀1 D̆11 D̃12

C̃2 D̃21 D̃22

 =

[
Ā B́1 B̃2

C̀ D̆•1 D̃•2

]
=

 Ā B́

C̀1 D̆1•
C̃2 D̃2•

,(4)

while a designed controller is necessarily of the form

K̃(z) =

[
ĀK B̃K
C̃K 0

]
.

The tilde is used to highlight that the corresponding operators may have either finite
or infinite dimension depending on whether Sh and Hh are fixed or not.

4. Optimal design in the lifted domain. Having reduced the sampled-data
setup to the discrete-time LTI “standard problem” in Figure 2, the next step is to
reformulate and solve OPH∞ and OPH2 in terms of P̆ and K̃. This is the purpose of
this section.

Start by imposing the following assumptions on the generalized plant (4):
(A1): The operator

[
Ā− λI B̃2

]
is right invertible ∀ |λ| ≥ 1.

(A2): The operator [ Ā−λI
C̃2

] is left invertible ∀ |λ| ≥ 1.

(A3): The operator [ Ā−e
jθI

C̀1

B̃2

D̃12
] is left invertible ∀θ ∈ [0, 2π).

(A4): The operator [ Ā−e
jθI

C̃2

B́1

D̃21
] is right invertible ∀θ ∈ [0, 2π).

These assumptions are the counterparts of the standard assumptions imposed
on a discrete-time generalized plant, to guarantee input–output stabilizability and
nonsingularity of the H2 and H∞ problems. Furthermore, the following assumption
about P̆ has to be made:
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(A5): D̃21 is a bounded operator.

For the standard discrete-time systems with matrix valued parameters this as-
sumption is obviously redundant. For lifted systems, however, this is not always true
since sampling operations might be unbounded in the L2 sense [8, Theorem 9.3.1].
Thus the assumption (A5), together with the assumption D22 = 0, guarantees that Sh
operates over “proper” signals. Actually, it means that prefiltering by an anti-aliasing
filter is provided if necessary.

4.1. H2 optimization. The notion of the H2 system norm can be extended in
a natural manner to LTI systems in the lifted domain [4] (see also [17]) although it is
not an induced norm. More specifically, the H2 norm of an LTI system Ğ : `L2[0,h] 7→
`L2[0,h] is defined as follows:

‖Ğ‖2H2

.
=

1

h

∫ 2π

0

‖Ğ(ejθ)‖2HS dθ.

This definition is consistent with both the deterministic and the stochastic interpreta-
tions of the H2 system norm in the time domain, and reduces to the usual definition
when Ğ is the lifting of an LTI continuous-time system [4].

Thus, OPH2 can now be reformulated in the lifted domain as follows:

OPeqH2 : For the plant P̆ given in (4), find a strictly causal K̃ which internally stabilizes

P̆ and minimizes the performance index:

JH2
.
= ‖F`

(P̆, K̃)‖2H2 .

The solution to this H2 problem is presented next without a proof. This is
because, in principle, problem OPeqH2 is a discrete-time LTI H2 problem which can be
solved by using existing techniques [8, 30]. Detailed treatment of the H2 problem in
the lifted domain in the case when both sampler and hold are fixed and the controller
is not constrained to be strictly proper can be found in [20].

The solution of OPeqH2 requires the following two H2 DAREs:

X̄ = Ā′X̄Ā+ C̀∗1 C̀1(5a)

− (B̃∗2X̄Ā+ D̃∗12C̀1)∗(D̃∗12D̃12 + B̃∗2X̄B̃2)−1(B̃∗2X̄Ā+ D̃∗12C̀1)

and

Ȳ = ĀȲ Ā′ + B́1B́
∗
1(5b)

− (ĀȲ C̃∗2 + B́1D̃
∗
21)(D̃21D̃

∗
21 + C̃2Ȳ C̃

∗
2 )−1(ĀȲ C̃∗2 + B́1D̃

∗
21)∗.

Notice that for all the four cases described in section 3, both X̄ and Ȳ of (5) are square
matrices (e. g., finite dimensional) with the same dimensions as Ā. Also, observe that
the choice of the hold device affects only the control Riccati equation (5a), while the
choice of sampler affects only the filtering Riccati equation (5b).

The main result for the OPeqH2 can now be stated.

Theorem 1. Let (A1)–(A5) be satisfied. Then the DAREs (5) have the stabilizing
solutions X̄2 ≥ 0 and Ȳ2 ≥ 0, the optimal value of the performance index JH2 is

JoptH2 =
1

h

(
‖D̆11‖2HS + tr

{
X̄2B́1B́

∗
1 + C̀∗1 C̀1Ȳ2 + (Ā′X̄2Ā− X̄2)Ȳ2

})
,
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and the unique strictly proper controller which achieves the optimal cost JoptH2 has the
state–space representation

K̃2(z) =

[
Ā+ B̃2F̃2 + L̃2C̃2 + L̃2D̃22F̃2 −L̃2

F̃2 0

]
,

where

F̃2
.
= −(D̃∗12D̃12 + B̃∗2X̄2B̃2

)−1
(B̃∗2X̄2Ā+ D̃∗12C̀1),(6a)

L̃2
.
= −(ĀȲ2C̃

∗
2 + B́1D̃

∗
21)
(
D̃21D̃

∗
21 + C̃2Ȳ2C̃

∗
2

)−1
.(6b)

Note again that although the parameters of P̆ might be infinite dimensional,
the solutions to the Riccati equations as well as the “A” parameter of the optimal
controller are always finite-dimensional matrices. The state feedback F̃2 and the
output injection L̃2 “gains,” however, might operate over infinite-dimensional output
and input spaces, respectively. Consider, for instance, the operator F̃2. When Hh is
fixed (cases Cc and Cd), the operator compositions D̃∗12C̀1 = D̀∗12C̀1 and D̃∗12D̃12 =
D̀∗12D̀12, as well as the operator B̃2 = B̄2, are finite-dimensional matrices, which can
easily be computed [4, 21]. Yet when Hh is to be designed (cases Ca and Cb), both
(5a) and F̃2 involve quite complicated infinite-dimensional operators. The Riccati
equations, like (5a), can in principle be dealt with via the associated Hamiltonians
[9], that enables to circumvent some problems. Nevertheless, in order to obtain the
optimal state feedback “gain” one has to handle infinite-dimensional operators like
D̆∗12D̆12 + B́∗2X̄B́2. The techniques for performing such manipulations over the lifted
operators were developed recently in [21]. As shown in the companion paper [23], the
resulting F̀2 (and Ĺ2) can be obtained in an elegant form.

4.2. H∞ optimization. Since for continuous-time systems the H∞ norm is the
induced L2/L2 norm, the notion of the H∞ system norm can be extended to sampled-
data systems by defining it as the `2L2[0,h]/`

2
L2[0,h]-induced operator norm. As shown

in [3], the H∞ norm can be defined in the frequency domain as follows:

‖Ğ‖H∞ .
= max
θ∈[0,2π)

‖Ğ(ejθ)‖2.

Correspondingly, the lifted equivalent of OPH∞ for the setup in Figure 2 takes the
following form:
OPeqH∞ : For the plant P̆ given in (4) and a number γ > 0, find a strictly causal

internally stabilizing controller K̃ such that

‖F`
(P̆, K̃)‖H∞ < γ,

or show that no such controller exists.
Using the same reasoning as in the OPeqH2 case, the OPeqH∞ problem is a discrete-time
LTIH∞ problem [5], with the additional constraint that the controller must be strictly
proper. This type of problem was discussed in detail for the case of finite-dimensional
parameters in [19].

The solution of the OPeqH∞ requires the following two H∞ DAREs:

(7a) X̄ = Ā′X̄Ā+ C̀∗1 C̀1

− (D̆∗1•C̀1 + B́∗X̄Ā)∗(D̆∗1•D̆1• − γ2E11 + B́∗X̄B́)−1(D̆∗1•C̀1 + B́∗X̄Ā)
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and

(7b) Ȳ = ĀȲ Ā′ + B́1B́
∗
1

− (B́1D̆
∗
•1 + ĀȲ C̀∗)(D̆•1D̆∗•1 − γ2E11 + C̀Ȳ C̀∗)−1(B́1D̆

∗
•1 + ĀȲ C̀∗)∗,

where E11
.
=
[
I 0
0 0

]
. As in the H2 case, both X̄ and Ȳ solving the H∞ DAREs (7) are

square matrices of the same dimension as Ā. Also, the choices of Hh and Sh affect
only (7a) and (7b), respectively.

Using (7), necessary and sufficient conditions for the existence of a solution to
the OPH∞ as well as a particular solution may be established:

Theorem 2. Given plant (4) such that the assumptions (A1)–(A5) hold, then
the following statements are equivalent:
(i) There exists a controller K̃ which solves the OPeqH∞ .
(ii) The DAREs (7) have stabilizing solutions X̄γ ≥ 0 and Ȳγ ≥ 0 such that∥∥∥∥[ X̄1/2

γ 0
0 I

][
Ā B́1

C̀1 D̆11

][
Ȳ

1/2
γ 0
0 I

]∥∥∥∥
2

< γ.(8)

Given that the conditions of part (ii) hold, then the matrix Z̄γ
.
= (I − γ−2ȲγX̄γ)−1 is

well defined and one controller which solves OPeqH∞ is

K̃γ(z) =

[
Ā+ B́F̀γ + Z̄γL̃γ2(C̃2 + D̃2•F̀γ) −Z̄γL̃γ2

F̃γ2 0

]
,

where

F̀γ
.
= −(D̆∗1•D̆1• − γ2E11 + B́∗X̄γB́)−1(D̆∗1•C̀1 + B́∗X̄γĀ) =

[
F̀γ1

F̃γ2

]
,(9a)

Ĺγ
.
= −(B́1D̆

∗
•1 + ĀȲγC̀

∗)(D̆•1D̆∗•1 − γ2E11 + C̀ȲγC̀
∗)−1 =

[
Ĺγ1 L̃γ2

]
.(9b)

As seen, the direct solution to the H∞ problem involves infinite-dimensional op-
erators even when both sampling and hold functions are fixed (case Cd above). Never-
theless, as shown in the companion paper [23] the techniques developed in [21] enable
the reduction of all these operator compositions to finite-dimensional matrices, which
can be easily computed.

4.3. Discussion. Although the lifted solutions of Theorems 1 and 2 are not
readily implementable, some insight into the solutions to OPH2 and OPH∞ can be
gained already at this stage. This is shown by the following remarks.

Remark 4.1. As noted in section 3, if the hold (sampling) function is the design
parameter, then it is characterized by the “C” (“B”)-part of the lifted controller.
Hence, the H2-optimal hold is characterized by the operator F̃2, which becomes F̀2

in that case, while the H2-optimal sampler — by the operator L̃2 (Ĺ2). By inspecting
(6) and (5) one can see that F̃2 depends only on the subsystem from ũ to z̆, while L̃2 is
completely characterized by the properties of the subsystem from w̆ to ỹ. Therefore,
there is complete separation between the design of Hh and Sh in the H2 case. This
separation is reminiscent of that between the state feedback and the state estimation
in the standard H2 (LQG) design and thus is not a surprise.

Remark 4.2. More surprising is the fact that similar separation arguments apply
to the design of the H∞ suboptimal hold and sampler as well. This fact is worth
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stressing, given the coupling which exists between the full information and the output
estimation problems in the H∞ output feedback control [32]. Although the “B”-part
of the lifted H∞ suboptimal controller contains the coupling term Z̄γ , the latter is
finite dimensional and hence can always be absorbed into the discrete-time part of
the controller. Consequently, the H∞ suboptimal hold and sampler are characterized
by the operators F̃γ2 and L̃γ2, respectively. It is seen from (9) and (7) that these
operators are not completely independent, since both of them are affected by the
subsystem from w̆ to z̆. Nevertheless, F̃γ2 does not depend on the measurement ỹ

and L̃γ2 does not depend on the control ũ. Hence, both the hold and the sampling
functions can be designed independently from one another in the H∞ case also. This
is in contrast to previous works in the literature [28, 22], where the H∞ suboptimal
sampler depended on the hold and it is not clear how to recover the separation.

Remark 4.3. It is not difficult to verify that as γ →∞ the H∞ Riccati equations
(7) reduce to the corresponding H2 ones (5). Moreover, as γ →∞, the conditions of
statement (ii) of Theorem 2 hold automatically, Z̄γ = I (since both X̄γ and Ȳγ are
uniformly bounded),

lim
γ→∞ F̀γ =

[
0

F̃2

]
and lim

γ→∞ Ĺγ =
[

0 L̃2

]
.

Thus in the limit case γ →∞ the H∞-suboptimal controller K̃γ(z) approaches K̃2(z),
the H2-optimal one.

5. Main results. The solutions to the OPH2 and OPH∞ can now be presented.
Again, these solutions are strongly based on the technical machinery developed in
the companion paper, so that some readers may prefer to read the material there
before proceeding. To keep the presentation clear, it is assumed that a zero-order
hold is used in cases Cc and Cd, while an ideal sampler is used in cases Cb and
Cd. From Remarks 4.1 and 4.2 it follows that such simplifications do not affect the
results concerning the (sub)optimal sampler and hold. More general Sh and Hh can
be treated in a similar fashion. Also, as follows from Remark 4.3, the solution of
Theorem 2 approaches that of Theorem 1 as γ → ∞. For that reason, only the
H∞ results are presented below. The H2 results can be obtained from the H∞ ones
by the simple substitution γ−1 = 0. The only part of the H2 solution which needs
to be treated independently is the calculation of the optimal performance JoptH2 . See
section 5.5 for further details.

Let

ΓX
.
=

 −D′12C1 −B′2 −D′12D12

A γ−2B1B
′
1 B2

−C ′1C1 −A′ −C ′1D12

,
ΓY

.
=

 −D21B
′
1 −C2 −D21D

′
21

A′ γ−2C ′1C1 C ′2
−B1B

′
1 −A −B1D

′
21

,
and

Σ
.
= exp




0 −D′12C1 −B′2 −D′12D12

0 A γ−2B1B
′
1 B2

0 −C ′1C1 −A′ −C ′1D12

0 0 0 0

h
 =


I Σ12 Σ13 Σ14

0 Σ22 Σ23 Σ24

0 Σ32 Σ33 Σ34

0 0 0 I

.
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Define the matrices

ΣX
.
=

 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ32 Σ33 Σ34

,
ΣY

.
=

 0 C2 0
Σ′22 −γ−2Σ′32 Σ′22C

′
2

−γ2Σ′23 Σ′33 −γ2Σ′23C
′
2

,
and the matrix function of an argument ν ∈ Z+

Λν
.
=

 0 0 0
In 0 0
0 In 0

 ∈ R(ν+2n)×(2n+ν).

The following quantity is also required:

γ0
.
= ‖Pc,11‖L2[0,h],(10)

where Pc,11(s) = C1(sI − A)−1B1 (in other words, γ0 is the L2[0, h]-induced norm
of the subsystem from w to z). This quantity can be computed as described in [8,
Section 13.5] or [11]. Since γ0 = ‖D̆11‖2, it is clear that γ0 is the lower bound for the
achievable H∞ performance in sampled-data systems under any choice of Sh and Hh.
Hence it is natural to consider only the cases where γ > γ0.

Assumptions (A1)–(A5) are formulated in terms of the system description in the
lifted domain. Results in the companion paper [23] allow us to replace them with
more readily checkable conditions. In particular, when Hh is the design parameter,
assumptions (A1) and (A3) can be equivalently formulated as
(A1′): The pair (A,B2) is C−-stabilizable;
(A3′): The matrix [A−jωIC1

B2

D12
] is left invertible ∀ω ∈ R and D′12D12 > 0,

while when Hh is the zero-order hold (φH(τ) = I) they can be replaced with
(A1′′): The pair (Σ22,Σ24) is D-stabilizable for any γ > γ0;
(A3′′): The matrix  Σ12 Σ14

Σ22 − ejθI Σ24

Σ32 Σ34


is left invertible ∀θ ∈ [0, 2π) and any γ > γ0.

Analogously, when Sh is is the design parameter, assumptions (A2) and (A4) can
be equivalently expressed as
(A2′): The pair (C2, A) is C−-detectable;
(A4′): The matrix [A−jωIC2

B1

D21
] is right invertible ∀ω ∈ R and D21D

′
21 > 0

and (A5) is redundant, while when it is the ideal sampler (φS(τ) = δ(τ)), (A2) and
(A4) can be replaced with
(A2′′): The pair (C2,Σ22) is D-detectable for any γ > γ0;

(A4′′): The matrix [Σ22−ejθI
C2

γ2Σ23

0 ] is right invertible ∀θ ∈ [0, 2π) and any γ > γ0;
(A5′′): D21 = 0.

The following remarks are in order.
Remark 5.1. Although (A1′′) is equivalent to (A1) only when γ →∞, OPH∞ will

have no solutions whenever (A1′′) is violated. Hence, (A1) can be replaced by (A1′′)
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without loss of generality. Just note that unless γ = ∞, the violation of (A1′′) does
not necessarily imply that (Ā, B̄2) is not D-stabilizable. The same is true regarding
(A2′′) and the D-detectability of (C̄2, Ā).

Remark 5.2. Assumptions (A1′′)–(A4′′) are expressed in terms of the parameters
of the matrix exponential Σ. This, in principle, does not complicate the computations,
since Σ is required for the solution of OPH2 and OPH∞ in any case. In some cases,
however, it is possible to verify (A1)–(A4) directly in terms of the parameters of the
continuous-time plant P. In particular, if the sampling period h is nonpathological
with respect to the eigenvalues of A [8], then (A1) and (A2) are equivalent to (A1′)
and (A2′), respectively, even when Hh and Sh are fixed. Furthermore, it is shown in
[30, section 5] that

• if the continuous-time subsystem from u to z, P12, is left invertible and Hh is
the zero-order hold, then (A3′′) holds iff (C2, A) has no unobservable jω-axis
eigenvalues and 0 is not a zero of P12(s);
• if the continuous-time subsystem from w to y is right invertibe and Sh is

the ideal sampler, then (A4′′) holds iff (A,B2) has no unobservable jω-axis
eigenvalues.

It is worth stressing, however, that (A1) and/or (A2) may hold even if h is pathological
and (A3) ((A4)) may hold even if the continuous-time subsystem from u to z (from w
to y) is not left (right) invertible.

5.1. Both hold and sampler are free. In case Ca the solution to OPH∞ is as
follows.

Theorem 3 (Ca). Given plant (1) such that assumptions (A1′)–(A4′) hold, then
for any γ > γ0 the matrix Σ33 is nonsingular and the following statements are equiv-
alent:
(i) There exist K̄d, Hh, and Sh which solve OPH∞ .

(ii) (ΓX ,Λm) ∈ dom(RicC−) and (ΓY ,Λr) ∈ dom(RicC−) and the following condi-
tions hold:
(a) Xγ ≥ 0 and ρ(XγΣ23Σ−1

33 ) < 1,
(b) Yγ ≥ 0 and ρ(Σ−1

33 Σ32Yγ) < γ2,
(c) ρ

(
Yγ(Σ33 + γ−2Σ32Yγ)−1Xγ(Σ′33 − Σ′23Xγ)−1

)
< γ2,

where (Xγ , Fγ) = RicC−(ΓX ,Λm) and (Yγ , L
′
γ) = RicC−(ΓY ,Λr).

Furthermore, if the conditions of part (ii) hold, then Zγ
.
= (I − γ−2YγXγ)−1 is

well defined, and one possible choice for K̄d, Hh, and Sh is

K̄d(z) = z

[
ZγΘ12 + Θ22 Zγ

I 0

]
,

where[
Θ11 Θ12

0 Θ22

]
.
= exp

([
A+ γ−2YγC

′
1C1 + LγC2 Lγ(C2 + γ−2D21B

′
1Xγ)

0 A+ γ−2B1B
′
1Xγ +B2Fγ

]
h

)
and

φH(τ) = Fγ e
(A+γ−2B1B

′
1Xγ+B2Fγ)τ ,(11a)

φS(τ) = −e(A+γ−2YγC
′
1C1+LγC2)τ Lγ .(11b)

Proof (outline). Actually, it suffices to prove that the solution given in the theo-
rem is equivalent to the one in Theorem 2. To this end, note that by [23, Lemma 3]
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and its dual, the DAREs (7) have stabilizing solutions iff (ΓX ,Λm) ∈ dom(RicC−) and
(ΓY ,Λr) ∈ dom(RicC−). Then items (a)–(c) are equivalent to (8) by [23, Lemma 8].

Now consider the lifted controller K̃γ(z) (= K̆γ(z)) in Theorem 2. It is clear that

Φ̀H = F̀γ2 and Φ́S = Ĺγ2 can be chosen. Then (11) follow directly from [23, Lemma 3]
and its dual. It also follows from that lemma that

Ā+ B́F̀γ = Θ22 and Ĺ2(C̀2 + D̆2•F̀γ) = Θ12,

from which the formula for K̄d(z) follows.
Note that the H∞ problem for case Ca was already treated by Tadmor [27] (see

also [22]). The solution in Theorem 3, however, is simpler and has the intriguing
separation structure between Hh and Sh (the suboptimal sampler in [27] does depend
on the suboptimal hold).

5.2. Free hold and fixed sampler. In case Cb the solution to OPH∞ is as
follows.

Theorem 4 (Cb). Given plant (1) such that assumptions (A1′), (A2′′), (A3′),
(A4′′), (A5′′) hold and let the sampling function be φS(τ) = δ(τ). Then for any γ > γ0

the following statements are equivalent:
(i) There exist K̄d and Hh which solve OPH∞ .

(ii) (ΓX ,Λm) ∈ dom(RicC−) and (ΣY ,Λr) ∈ dom(RicD) and the following conditions
hold:
(a) Xγ ≥ 0 and ρ(XγΣ23Σ−1

33 ) < 1,
(b) Ȳγ ≥ 0 and ρ(Σ−1

33 Σ32Ȳγ) < γ2,
(c) ρ

(
Ȳγ(Σ33 + γ−2Σ32Ȳγ)−1Xγ(Σ′33 − Σ′23Xγ)−1

)
< γ2,

where (Xγ , Fγ) = RicC−(ΓX ,Λm) and (Ȳγ , L̄
′
γ) = RicD(ΣY ,Λr).

Furthermore, if the conditions of part (ii) hold, then Zγ
.
= (I − γ−2ȲγXγ)−1 is

well defined and one possible choice for K̄d and Hh is

K̄d(z) = z

[
(I + ZγL̄γC2)e(A+γ−2B1B

′
1Xγ+B2Fγ)h −ZγL̄γ

I 0

]
and φH(τ) as in (11a).

Proof (outline). The first part can be proven in a similar fashion as the first part
of Theorem 3, except that the DARE (7b) is solved by using [23, Lemma 7]. To get
K̄d(z) just note that if Sh is the ideal sampler and D21 = 0, then[

C̄2 D́2•
]

= C2

[
Ā B́

]
,(12)

which completes that proof.
The H∞ problem for case Cb was considered in [26], where the suboptimal hold

function has also the form (11a). Yet the Riccati equations there are nontrivially
coupled and the existence conditions are computationally more complicated than con-
ditions (a)–(c) in Theorem 4. In particular, the nonsingularity of a matrix function of
time t on the whole interval [0, h] should be verified in [26] for each γ. On the other
hand, a similar test in our case is to be performed only once, when γ0 is calculated
[8, section 13.5].

5.3. Fixed hold and free sampler. In case Cc, the solution to OPH∞ is as
follows.

Theorem 5 (Cc). Given plant (1) such that assumptions (A1′′), (A2′), (A3′′),
(A4′) hold and let the hold function be φH(τ) = I. Then for any γ > γ0 the following
statements are equivalent:
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(i) There exist K̄d and Sh which solve OPH∞ .
(ii) (ΣX ,Λm) ∈ dom(RicD) and (ΓY ,Λr) ∈ dom(RicC−) and the following conditions

hold:
(a) X̄γ ≥ 0 and ρ(X̄γΣ23Σ−1

33 ) < 1,
(b) Yγ ≥ 0 and ρ(Σ−1

33 Σ32Yγ) < γ2,
(c) ρ

(
Yγ(Σ33 + γ−2Σ32Yγ)−1X̄γ(Σ′33 − Σ′23X̄γ)−1

)
< γ2,

where (X̄γ , F̄γ) = RicD(ΣX ,Λm) and (Yγ , L
′
γ) = RicC−(ΓY ,Λr).

Furthermore, if the conditions of part (ii) hold, then Zγ
.
= (I − γ−2YγX̄γ)−1 is

well defined and one possible choice for K̄d and Sh is

K̄d(z) = z

[
Ψ11 + Ψ12F̄γZγ I

F̄γZγ 0

]
,

where[
Ψ11 Ψ12

0 I

]
.
= exp

([
A+ γ−2YγC

′
1C1 + LγC2 B2 + γ−2YγC

′
1D12

0 0

]
h

)
and φS(τ) as in (11b).

Proof (outline). The first part can be proven in a way similar to the first part
of Theorem 3, except that the DARE (7a) is solved by [23, Lemma 7]. In order to
obtain the formula for K̄d(z) it is more convenient to use the dual form of the H∞

suboptimal controller, i.e.,

K̃(z) =

[
Ā+ ĹγC̀ + (B̃2 + ĹγD̃•2)F̃γ2Z̄γ −L̃γ2

F̃γ2Z̄γ 0

]
(which becomes Ḱ(z) in this case). Then, using the dual result to [23, Lemma 3] one
can get that

Ā+ ĹγC̀ = Ψ11 and B̄2 + ĹγD̀•2 = Ψ12,

from which the formula for K̄d(z) follows.

5.4. Both hold and sampler are fixed. In case Cd the solution to OPH∞ is
as follows.

Theorem 6 (Cd). Given plant (1) such that assumptions (A1′′)–(A5′′) hold and
let the hold function be φH(τ) = I and the sampling function be φS(τ) = δ(τ). Then
for any γ > γ0 the following statements are equivalent:
(i) There exists K̄d which solves OPH∞ .
(ii) (ΣX ,Λm) ∈ dom(RicD) and (ΣY ,Λr) ∈ dom(RicD) and the following conditions

hold:
(a) X̄γ ≥ 0 and ρ(X̄γΣ23Σ−1

33 ) < 1,
(b) Ȳγ ≥ 0 and ρ(Σ−1

33 Σ32Ȳγ) < γ2,
(c) ρ

(
Ȳγ(Σ33 + γ−2Σ32Ȳγ)−1X̄γ(Σ′33 − Σ′23X̄γ)−1

)
< γ2,

where (X̄γ , F̄γ) = RicD(ΣX ,Λm) and (Ȳγ , L̄
′
γ) = RicD(ΣY ,Λr).

Furthermore, if the conditions of part (ii) hold, then Zγ
.
= (I − γ−2ȲγX̄γ)−1 is

well defined and one possible choice for K̄d is

K̄d(z) = z

[
(I + ZγL̄γC2)(Σ22 + Σ23X̄γ + Σ24F̄γ) −ZγL̄γ

F̄γ 0

]
.
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Proof (outline). The first part can be proven in a way similar to the first part of
Theorem 3, except that instead of [23, Lemma 3] one has to use [23, Lemma 7]. The
formula for K̄d(z) then follows by (12) and the equality

Ā+ B́F̀γ = Σ22 + Σ23X̄γ + Σ24F̄γ ,

which, in turn, follows from the fact that (X̄γ , F̄γ) = RicD(ΣX ,Λm).
Although this case has been extensively studied in the literature in both H2 and

H∞ cases (see the references in [8]), the conventional approach to the solution is based
on the following two-step procedure: first, a sampled-data problem is converted to
an equivalent discrete-time finite-dimensional one; and second, the latter problem is
solved for K̄d using standard discrete H2 or H∞ methods. The available solutions
thus are quite involved. Moreover, because of the presence of the intermediate step,
the effect of the original parameters of the continuous-time problem is difficult to
trace back.

To the best of our knowledge, Theorem 6 yields the first closed-form solution to
the sampled-data H∞ problem. It is worth stressing that from the computational
point of view the solutions to both H2 and H∞ sampled-data problems given in
Theorem 6 are compatible with those for pure discrete-time treatments.

5.5. The optimal H2 performance. In this subsection the formula for the
H2 optimal performance index JoptH2 given in Theorem 1, is expressed in terms of the
matrices A, B1, and C1. Such a formula can, in principle, be assembled from the
results in [4, p. 11]. The result below, however, is simpler in the sense that the matrix
exponential of smaller dimension is to be computed.

Form the matrix exponential

∆
.
= exp

 −A′ C ′1C1 0
0 A B1B

′
1

0 0 −A′

h
 =

 ∆11 ∆12 ∆13

0 ∆22 ∆23

0 0 ∆11

.
Then this lemma follows.

Lemma 1. Let X2 and Y2 be the stabilizing solutions to the Riccati equations (5),
then the optimal value of the performance index JH2 is

JoptH2 = 1
h tr
(
∆′22(∆13 +X2∆23 + ∆12Y2 +X2∆22Y2)−X2Y2

)
.

Proof. As follows from [23, Props. 8 and 9] (subject to (s.t.) Bγ = 0) and their
duals:

Ā = ∆22, B́1B́
∗
1 = ∆23∆′22, and C̀∗1 C̀1 = ∆′22∆12.

Then, using the integral expression for the Hilbert–Schmidt norm [4] one can write

‖D̆11‖2HS = tr

(∫ h

0

∫ t

0

C1e
A(t−s)B1B

′
1e
A′(t−s)C ′1ds dt

)

= tr

(
eA
′h
∫ h

0

e−A
′(h−t)C ′1

∫ t

0

C1e
A(t−s)B1B

′
1e
−A′sds dt

)
= tr

(
∆′22∆13

)
,
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where the latter equality follows from the fact that the second trace above is just the
trace of the impulse response of a continuous-time system with the following transfer
matrix: [ −A′ C ′

∆′22 0

][
A B
C 0

][ −A′ I
B′ 0

]
at t = h. This completes the proof.

6. Discussion. Theorems 3–5 give not only the discrete-time part K̄d of the
sampled-data controller, but also the H∞ suboptimal (or the H2 optimal) sampling
and/or hold functions2. The purpose of the present section is to present some generic
properties of the (sub)optimal sampler and hold functions, together with their inter-
pretation. The first property is the separation between the design of the sampler and
the hold, which has already been discussed in section 4.3. The separation property
has a clear explanation: both sampler and hold are, in a sense, open-loop devices.
Consequently, the design of the hold does not depend on the measurement y(t) and
the design of the sampler does not depend on the control action u(t). The remaining
properties refer to the Sh and Hh, which are discussed separately below.

6.1. Optimal hold. Consider the H∞ control CARE

(13) 0 = A′X +XA+ C ′1C1 + 1
γ2XB1B

′
1X

− (B′2X +D′12C1)′(D′12D12)−1(B′2X +D′12C1),

which reduces to the H2 one as γ →∞. The H∞ state feedback gain is then

F2
.
= −(D′12D12)−1(B′2X +D′12C1).

The following corollary can be derived from Theorems 3 and 4.
Corollary 1. Let X = X ′ ≥ 0 be the stabilizing solution to the CARE (13).

Then one possible H∞ suboptimal hold function is

φH(τ) = F2 e
(A+γ−2B1B

′
1X+B2F2)τ ∀τ ∈ [0, h),(14)

independent of the choice of the sampler and the measured output y(t). When γ−2 = 0,
this becomes the unique H2 optimal solution.

The following remarks are in order.
Remark 6.1. Notice that the optimal hold for the nonsingular H2 and H∞ prob-

lems is always “asymptotically stable,” in the sense that its “A” matrix is Hurwitz.
In other words, the continuation of the hold in (14) over the whole interval [0,∞)
belongs to L2. The “stability” property is intuitively reasonable: the generalized hold
being an “open-loop” device, it should prevent any source of instability during the
intersample.

Remark 6.2. As a curious corollary to the previous remark, the standard zero-
order hold (ZOH) can never appear as part of an optimal hold for nonsingular prob-
lems; this is because the “A” matrix of a ZOH is the zero-matrix. The ZOH does
appear as part of an optimal hold for singular H2 and H∞ problems, for which
A + γ−2B1B

′
1X + B2F2 has an eigenvalue at the origin. Such problems may arise

when integral control is required; see [32, section 17.3]. In the sampled-data case, the

2See Remark 2.1 for what is meant by optimal sampling and hold functions.
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integral control action is actually “redistributed” between the discrete-time part of
the controller K̄d and the hold Hh.

Remark 6.3. It is worth mentioning that the design of H2 and H∞ (sub)optimal
holds does not depend on the sampling period h. The optimal hold function remains
the same for all h and only the interval changes on which φH(τ) is defined. Also, it
can easily be verified that with the optimal Hh the system is stabilizable for all h. In
other words, if Hh is either H2 or H∞ optimal, then no sampling period can result
in a loss of controllability and hence there exists no pathological sampling.

The stability property discussed in Remarks 6.1 and 6.2 becomes particularly
interesting when compared with previous works on the design of generalized hold
functions. Indeed, for most hold devices designed in the literature from the discrete-
time performance point of view (see [1] and the references therein), the continuation of
φH on the whole R+ does not necessarily belong to L2 (and even L∞). For example,
if the hold function of the form φH(τ) = CHe

AHτBH is designed, then the typical
choice is AH = −A′, where A is the “A” matrix of a plant. Hence, the stability of
such a hold depends on the open-loop plant dynamics. In the face of the previous
remark, it is desirable to understand what is the underlying reason that rules out
the use of “unstable” hold functions. To this end, consider the continuous-time LQR
problem for the process

ẋ(t) = Ax(t) +B2u(t)

and the cost function

J =

∫ ∞
0

(
C1x(t) +D12u(t)

)′(
C1x(t) +D12u(t)

)
dt.

The solution to the problem of minimizing J is given by the feedback law [18] u(t) =
F2x(t), so that for a given tk and any τ > 0, the closed-loop state vector satisfies the
equation

x(tk + τ) = e(A+B2F2)τx(tk).

Substituting this equation into the formula for the control signal gives

u(tk + τ) = F2e
(A+B2F2)τx(tk).

On the other hand, it follows from (2a) and (14) that the H2 optimal hold produces
the control signal

u(kh+ τ) = F2e
(A+B2F2)τ ūk ∀τ ∈ [0, h).

The comparison of the latter two expressions prompts the following interpretation of
the H2 optimal hold.

Interpretation 1. The H2 optimal hold, given by (14) subject to γ−1 = 0,
attempts to “reconstruct” the LQR feedback control law, assuming that K̄d produces
at the kth sampling instant an estimation of state vector of the plant at t = kh.

Similarly to the H2 case, the interpretation of the H∞ suboptimal hold can be
obtained from the continuous-time H∞ state feedback problem as follows.

Interpretation 2. The H∞ suboptimal hold, given by (14), attempts to “recon-
struct” the H∞ suboptimal state feedback control law assuming that (i) K̄d produces at
the kth sampling instant an estimate of the state vector of the plant at t = kh; and (ii)
the disturbance w is the worst-case one (in an H∞ sense), i.e., w(t) = 1

γ2B
′
1X x(t).
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These interpretations explain the “stability” of the optimal hold. Indeed, opti-
mal continuous-time control must guarantee the internal stability of the closed-loop
system. Consequently, the reconstruction of the continuous-time control signal in an
open-loop fashion lead to the “stable dynamics” of the hold. When the integral con-
trol results from the continuous-time design, the “A” matrix of the hold function has
an eigenvalue at the origin. This is consistent with the discussion in Remark 6.2.

The main conclusion of the previous interpretations is that the optimal hold at-
tempts to reconstruct a “good” LTI continuous-time control law. Notice that this
differs from some previous approaches to the design of Hh, which seek to circum-
vent basic limitations of linear continuous-time control and attempt to outperform a
continuous-time controller. The results in this paper suggest that the design of the
hold should be based on the understanding that the optimal continuous-time control
is the “best” possible choice; consequently, the sampled-data controller should mimic
it as good as possible. We believe that this idea can be extended for designing con-
trollers in problems with no known analytic solution but with computable optimal
continuous-time controller. For example, the H2 or H∞ problems when Hh or Sh are
constrained to be scalar.

6.2. Optimal sampler. Consider now the H∞ filtering CARE

(15) 0 = AY + Y A′ +B1B
′
1 + 1

γ2Y C
′
1C1Y

− (Y C ′2 +B1D
′
21)(D21D

′
21)−1(Y C ′2 +B1D

′
21)′,

which again reduces to the H2 one when γ → ∞. The H∞ filter gain is then as
follows:

L2
.
= −(Y C ′2 +B1D

′
21)(D21D

′
21)−1.

The following corollary can be derived from Theorems 3 and 5.
Corollary 2. Let Y = Y ′ ≥ 0 be the stabilizing solution of the CARE (15).

Then one possible H∞ suboptimal sampling function is

φS(τ) = −e(A+γ−2Y C′1C1+L2C2)τ L2 ∀τ ∈ [0, h),(16)

independent of the choice of the hold and the control input u(t). When γ−2 = 0, this
becomes the unique H2 optimal solution.

The following remarks are in order.
Remark 6.4. Analogously to the optimal hold case, the optimal sampling function

(16) is asymptotically stable in the sense defined in Remark 6.1. Moreover, the design
of Sh does not depend on the sampling period and it produces a detectable system
for all h. In other words, if Sh is either H2 or H∞ optimal, then no sampling period
can lead to the loss of observability and hence there exists no pathological sampling.

Remark 6.5. Another interesting property of the optimal sampler is that is does
not require prefiltering of the measurement output y(t) by an anti-aliasing filter.
This is because, loosely speaking, the sampler itself serves as an anti-aliasing filter.
Mathematically, this means that the generalized sampler Sh with sampling function
(16) is bounded as an operator L2 7→ `2.

Remark 6.6. The anti-aliasing capability of the optimal sampler is actually a
consequence of the fact that the ideal sampler (the sampling function φS(τ) = δ(τ))
can never appear as a part of an optimal sampler for nonsingular H2 and H∞ prob-
lems. The crucial assumption here is the full row rank of the matrix D21. The latter
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means that all of the measurement channels are corrupted by noise. For such a y(t)
the instantaneous sampling is an illegal operation that accounts for the absence of
the impulse component in the optimal sampling function. In the case when an anti-
aliasing filter is present, the matrix D21 necessarily loses row rank and the problem
becomes singular. It can be shown that in such a case the optimal sampler is of the
form DSδ(τ) + CSe

ASτ for some AS , CS , and DS 6= 0 (but still, DSD21 = 0). This
result gives rise to an interesting observation. It is well known that if Sh contains the
ideal sampler, then the measured output must be prefiltered by an anti-aliasing filter.
The discussion above implies that the opposite is also true: whenever the measured
output is prefiltered by an anti-aliasing filter, an optimal sampler contains the ideal
sampler.

7. Concluding remarks. This paper proposes a framework for treating a rather
general class of sampled-data control problems. The cases considered were those in
which the sampler, the hold, or both the sampler and the hold are available for design.
For all these cases, necessary and sufficient conditions for the existence of controllers as
well as state–space formulas for all the blocks involved have been provided. Conditions
and the formulas for state–space matrices can be readily implemented in a computer.

The essence of this framework is to convert the hybrid periodically time-varying
problems to a unified discrete-time LTI “standard problem” via the lifting transfor-
mation. The solution of the problem is then found directly in the lifted domain. The
lifting procedure is then carried one step forward by peeling off the representations in
the lifted domain back to continuous, or more specifically sampled-data, time. The
sampled-data problems completely solved in this paper are the following:

• The sampled-data H2 problems when sampling and/or hold functions are
the design parameters. The solution to this problem is, to the best of our
knowledge, completely new.
• The sampled-data H∞ problems under similar conditions. These solutions,

although not new, are considerably more transparent than the ones previously
existing in the literature. In exchange for this transparency, we have found
out that: (a) a separation structure between the design of H∞ suboptimal
sampler and hold; and (b) a solution to the H∞ problem which, to the best
of our knowledge, is the first closed-form solution.

In the final section, several comments which reconcile and compare the present re-
sult with some previous approaches to the design of generalized hold functions are
discussed.

This paper is complemented with [23], where all the technical results required to
establish the main results in this paper are developed. The reader is therefore referred
to this work for details and interesting additional results concerning sampled-data
systems in the lifted domain.
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Abstract. An important class of sampled-data systems becomes time-invariant when the sys-
tems are “lifted” into an appropriate domain. The purpose of the present paper is to study some
basic properties of systems represented by state space equations in the lifted domain. Hidden modes,
invariant zeros, and Riccati equations are investigated, and the connection between representations
in continuous and lifted domains are clarified. The material treated here is important for solving
optimal control problems of generalized sampled-data systems.
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1. Introduction. In the companion paper [12], the authors presented a solution
to the H2 and H∞ problems for a general class of sampled-data systems, including the
cases of sampling and/or the hold functions available for design. The steps involved
in the solution were the following: (i) lift the problem to the “discrete-time” lifted
domain; (ii) find a formal solution to the resulting discrete-time problem; and (iii)
“peel-off” the result back to continuous time. Although this approach is conceptually
straightforward, it presents some technical difficulties, particularly when attempting
to perform the calculations involved in step (iii). For this reason, the approach has
rarely been followed in the literature, with the exception of [2] and [9], where sampled-
data H∞ analysis and H2 design problems were solved, respectively, both for the case
of fixed sampler and hold. Also note that Tadmor in [15, section 4] performed the
H∞ design directly for the lifted system, yet his solution was left in the lifted domain
and no hint was given of how to “peel-off” the resulting solution.

One of the reasons that make the third step problematic is numerous properties
that are well known for continuous and discrete-time systems have not been worked
out for the representation of continuous-time systems in the lifted domain. It is worth
mentioning that these properties are not directly inherited from the continuous-time
representations and that the connection between a continuous-time representation and
its lifted counterpart has not completely been clarified. The purpose of this paper is
to bridge this gap.

Let G, Hh, and Wh denote a linear time-invariant (LTI) continuous-time system,
a generalized hold with period h and the so-called LTI hold function of the form
φH(τ) = DHδ(τ) +CHe

AHτBH , and the lifting operator, respectively (see [12]). This
paper focuses on the LTI lifted systems Ğ .

= WhGW−1
h and G̀ .

= WhGHh; the aim is
to characterize the hidden modes and invariant zeros of the state-space realizations
obtained when lifting the continuous-time representations and to study the discrete
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algebraic Riccati equations (DAREs) associated with these systems. Corresponding
results for systems of the form Ǵ .

= ShGW−1
h , where Sh is a generalized sampler,

follow from those for G̀ by duality arguments. (To this end, Hh includes the impulse
action DHδ(τ); this enables one to cover corresponding results for the ideal sampler.)

Since the systems G and Ğ are equivalent in an input-output sense [1], one would
expect a close connection between the properties of their state-space realizations.
However, establishing these connections is far from straightforward, since the prop-
erties cannot always be characterized adequately in terms of input-output relations.
To illustrate the difficulties, recall that [10] establishes that a DARE associated with
Ğ may have more solutions than the corresponding continuous-time algebraic Ric-
cati equation (CARE) associated with G. This result suggests that the connections
between state-space properties of continuous-time LTI systems and their lifted coun-
terparts are indeed worth study. In spite of this remark, this paper shows that a
strong connection between state-space properties of G and Ğ does exist, much like the
connection between their poles. In particular, it will be shown that any hidden mode
(invariant zero) λi of G corresponds to the hidden mode (invariant zero) eλih of Ğ,
even when their state-space realizations are not minimal.

Contrary to Ğ, the operator G̀ has a finite rank. Consequently, hidden modes and
invariant zeros of G̀ can, in principle, be routinely characterized in terms of matrix-
valued parameters of the finite-dimensional operator G̀∗G̀ [3]. Such an approach fits
well into theH2 problem, since computations are based on precisely the same matrices.
Unfortunately, the same is not true for the sampled-data H∞ problem. For that
reason, in this paper a new characterization of singularities of G̀ is proposed in terms
of the H∞ data. Although the derivations in this case are more involved, the final
formulae are not more complicated than those based on the H2 data. As it turns out,
Riccati equations play an important role in the characterization of certain properties
of systems in the lifted-domain, and consequently they are also investigated. It will
be shown that the treatment of DAREs in terms of extended symplectic pairs (ESPs)
associated with a lifted system enables one to obtain surprisingly simple solutions.
In particular, the H∞ DARE associated with G̀ reduces to ESP, which is not more
complicated than the ESP associated with the H2 DARE.

The material considered here was originally intended for solving the optimization
problems presented in [12]; however, the results have independent interest since nu-
merous important properties of systems in the lifted-domain are studied. The reader
is referred to [12] for an introduction to lifting and additional motivation.

This paper consists of four sections and an appendix. Section 2 reviews the
representation for lifted systems introduced in [11]. Section 3 studies a continuous-
time system in the lifted domain, including the connection between the continuous-
time and the lifted domain descriptions. Section 4 studies the cascade of a continuous
time system and a generalized hold, also in the lifted-domain. Section 5 discusses the
meaning of the coupling condition for H∞. When studying the properties of systems
in the lifted domain, one is naturally led to considering the DARE. For completeness,
an appendix has been included, which reviews relevant results collected from various
sources.

1.1. Notation. The notation throughout the paper is consistent with that of
[12], with the following additions. The Redheffer star product [13] of two suitably
partitioned 2× 2 block operators O and P is denoted as

O ? P
.
=

[ F`
(
O,P22

)
O12(I − P22O22)−1P21

P12(I −O22P22)−1O21 F`
(
P,O22

) ]
.
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Continuous, discrete, or lifted LTI system G̃ will be represented by the transfer func-
tion

G̃(·) =

[
Ã B̃

C̃ D̃

]
,

such that Ã ∈ Rn×n, associated with a state-space realization. This realization is in
turn associated with the following pencils: the controllability pencil

CG̃(λ)
.
=
[
Ã− λI B̃

]
and the system pencil

SG̃(λ)
.
=

[
Ã− λI B̃

C̃ D̃

]
.

As is conventional, z ∈ C is said to be (a) an uncontrollable mode of Ã if rankCG̃(z) <

n and (b) an invariant zero of the realization of G̃ if rankSG̃(z) < normalrankSG̃(λ).

Finally, the special matrices E1
.
=
[
I
0

]
, E2

.
=
[

0
I

]
, E11

.
=
[
I
0

0
0

]
, and E22

.
=
[

0
0

0
I

]
are

used. (The block dimensions are always clear from the context.)

2. A representation of lifted systems. This section presents a brief expo-
sition of the results of [11] concerning the representation of the parameters of lifted
systems. This representation plays a central role in the reasonings that follow. Con-
ventionally [17, 2, 1, 3], the parameters of lifted systems are described by integral
operators over L2[0, h]. This representation follows naturally from the lifting pro-
cedure but unfortunately makes manipulations quite cumbersome. To remedy this
difficulty, [11] considered a different representation of the parameters of the lifted
systems, which considerably simplifies manipulations over these parameters. This
representation builds on three components: systems with two-point boundary condi-
tions (STPBC) operating on the time interval [0, h], the impulse operator Iθ, and the
sampling operator I∗θ .

(i) STPBC are linear continuous-time operators Ŏ : L2[0, h] 7→ L2[0, h], de-
scribed by the state equations [7, 4]:

Ŏ :

{
ẋ(t) = Ax(t) +Bω(t), Ωx(0) + Υx(h) = 0,
ζ(t) = Cx(t) +Dω(t),

(2.1)

where the square matrices Ω and Υ shape the boundary conditions of the state vector
x. The boundary conditions are said to be well-posed if det(Ω + ΥeAh) 6= 0 and in
this case the map ζ = Ŏω is well defined ∀ω ∈ L2[0, h], namely,

ζ(t) = Dω(t) + CeAt(Ω + ΥeAh)−1

(
Ω

∫ t

0

e−AsBω(s)ds−Υ

∫ h

t

eA(h−s)Bω(s)ds

)
.

In this paper, STPBC are denoted by using the compact block notation:

Ŏ =

(
A ΩΥ B
C D

)
.

The term STPBC is reserved for systems with well-posed boundary conditions only.
In the case when Ω = I and Υ = 0, the boundary condition window can be omitted

so that the notation becomes
(
A B
C D

)
. Notice that this case corresponds to a causal

STPBC.
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(ii) The impulse operator Iθ transforms a vector η ∈ Rn into a modulated δ-
impulse: (Iθη)(t) = δ(t− θ)η.

(iii) The sampling operator1 I∗θ transforms a function ζ ∈ Cn[0, h] into a vector
from Rn:

I∗θ ζ = ζ(θ).

With the aid of these operators, we now consider the representation of basic com-
ponents of sampled-data systems in the lifted domain. Let G be an LTI continuous-
time system with the transfer matrix

G(s) =

[
A B
C D

]
,(2.2)

Hh be a generalized zero-order hold of the form [12, eq. 2a] with the hold function

φH(τ) = DHδ(τ) + CHe
AHτBH ,(2.3)

and Sh be a generalized zero-order sampler of the form [12, eq. 2b] with the sampling
function

φS(τ) = DSδ(τ) + CSe
ASτBS .(2.4)

The systems Ğ .
= WhGW−1

h , H̀h .
= WhHh, and Śh .

= ShW−1
h are LTI with transfer

functions

Ğ(z) =

[
Ā B́

C̀ D̆

]
,

H̀h(z) =

[
0 0

0 Φ̀H

]
,

and

Śh(z) =

[
0 Φ́S
I 0

]
,

respectively, where[
Ā B́

C̀ D̆

]
=

[ I∗h 0
0 I

] A I B
I 0 0
C 0 D

[ I0 0
0 I

]
,

Φ̀H =

(
AH BH
CH DH

)
I0,

and

Φ́S = I∗h
(
AS BS
CS DS

)
.

1It is worth stressing that I∗θ is not the adjoint of Iθ. See [11] for a justification of this abuse of
notation.
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The representation via STPBC has several advantages. First, algebraic manipulations
over STPBC can be performed in state space, much like manipulations over standard
LTI systems. This fact is established in the next proposition.

Proposition 2.1 (see [11]). Let

Ŏi =

 Ai ΩiΥi Bi1 Bi2
Ci1 Di11 Di12

Ci2 Di21 Di22

, i = 1, 2.

Then

Ŏ1 ? Ŏ2 =

(
A? Ω?Υ? B?
C? D?

)
,

where

A?
.
=

[
A1 0

B22C12 A2

]
+

[
B12

B22D122

]
(I −D222D122)−1

[
D222

C12
C22

]
,

B?
.
=

[
B11

0
B22

D121
B21

]
+

[
B12

B22
D122

]
(I −D222

D122
)−1
[
D222D121 D221

]
,

C?
.
=

[
C11 0

D212
C12

C21

]
+

[
D112

D212
D122

]
(I −D222

D122
)−1
[
D222

C12
C22

]
,

D?
.
=

[
D111

0
D212D121 D211

]
+

[
D112

D212D122

]
(I −D222D122)−1

[
D222

D121
D221

]
,

Ω?
.
=

[
Ω1 0
0 Ω2

]
,

Υ?
.
=

[
Υ1 0
0 Υ2

]
,

and the star product exists iff det(I −D2,22D1,22) 6= 0 and det(Ω? + Υ?e
A?h) 6= 0.

Remark 2.1. Since addition, multiplication, inversion, and LFT operations are
just special cases of the star product, Proposition 2.1 covers a wide spectrum of manip-
ulations over STPBC. In particular, it follows from Proposition 2.1 that Ŏ1 + Ŏ2 and
Ŏ1Ŏ2 are well defined for every Ŏ1 and Ŏ2 of appropriate dimensions, and a square
STPBC given by (2.1) is invertible iff det(D) 6= 0 and det(Ω + Υe(A−BD−1C)h) 6= 0.

Second, the operators Iθ and I∗θ fit nicely into the state-space framework. In
particular, the adjoint of any composition of STPBC, Iθ and I∗θ can be computed
componentwise. For instance,

[
Ā B́

C̀ D̆

]∗
=

[ I∗0 0
0 I

] −A′ 0 I I C ′

−I 0 0
−B′ 0 D′

[ Ih 0
0 I

]
.

Moreover, the operators Iθ and I∗θ can be absorbed into STPBC in an elegant manner.

Proposition 2.2 (see [11]). Let

[
B́i
D̆i

]
.
=

[
I∗h 0
0 I

] A Bi
I 0
C Di

, i = 1, 2.
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Then for any appropriately dimensioned matrix M

D̆∗1D̆2 + B́∗1MB́2 =

 A
−C ′C

0
−A′

[
I 0
0 0

]

[

0 0
−M I

] B2

−C ′D2

D′1C B′1 D′1D2

.
Finally, the computations of matrices involving infinite-dimensional parameters

of lifted systems can be reduced to the computation of matrix exponentials.
Proposition 2.3 (see [11]).[ I∗h
I∗0

](
A ΩΥ B
C 0

)[ I0 Ih
]

=

[
CeAh

C

]
(Ω + ΥeAh)−1

[
ΩB −ΥB

]
,

where CB = 0 is assumed for the (2, 1) and the (1, 2) entries to guarantee well-
posedness.

3. System of the form WhGW−1
h . The system Ğ .

=WhGW−1
h has a natural

state space representation inherited from the state space representation of G. The
purpose of this section is to study the relationship between the uncontrollable modes
and invariant zeros of the two representations. It is clear that such a relationship must
exist. After all, G and Ğ are equivalent in an input-output sense, and the state vector
of Ğ is the sampled state vector of G. However, as shown next, some subtleties are
involved and the topic must be investigated with care. For the sake of completeness,
a result from [10] is also reviewed, stating that an H∞ DARE associated with Ğ and
an H∞ CARE associated with G are actually equivalent.

3.1. Preliminary results. For given matrices Aa, Ba, and Ca of appropriate
dimensions and a scalar h form the Hamiltonian matrix

Ha
.
=

[
Aa −BaB′a
−C ′aCa −A′a

]
=

[
Ha,11 Ha,12

Ha,21 Ha,22

]
and the symplectic matrix

Sa
.
= eHah =

[
Sa,11 Sa,12

Sa,21 Sa,22

]
.

The following two propositions will be useful later.
Proposition 3.1. The block Sa,22 verifies detSa,22 6= 0.
Proof. Consider the STPBC

Ŏa
.
=

(
Aa Ba
Ca 0

)
.

From here, the operator I + ŎaŎ
∗
a has the representation

I + ŎaŎ
∗
a =

 Aa
0
−BaB′a
−A′a

[
I 0
0 0

]

[

0 0
0 I

] 0
C ′a

Ca 0 I

,
and the STPBC in the right-hand side above is invertible iff the matrix

E11 + E22 exp

(([
Aa −BaB′a
0 −A′a

]
−
[

0
C ′a

][
Ca 0

])
h

)
=

[
I 0

Sa,21 Sa,22

]
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is nonsingular. On the other hand, the operator I+ŎaŎ
∗
a is invertible by construction.

This concludes the proof.
Proposition 3.2. The following two statements are equivalent:
(i) The pencil [Ha,11−sI

Ha,21
] has reduced column rank at s = λ+j 2π

h k for some k ∈ Z.

(ii) The pencil [Sa,11−zI
Sa,21

] has reduced column rank at z = eλh.

Proof. Let PH(s) and PS(z) denote the pencils in (i) and (ii), respectively.
(i)⇒ (ii): Assume that PH(λ) has reduced column rank. Then there exists a vector

η 6= 0 so that PH(λ)η = 0. It means that E1η is the eigenvector of Ha associated
with the eigenvalue λ. Hence, E1η is also the eigenvector of eHah associated with the
eigenvalue eλh, which in turn leads to PS(eλh)η = 0.

(ii)⇒ (i): Assume that PS(eλh) has reduced column rank. Then there exists a
vector η 6= 0 so that PS(eλh)η = 0. Since an eigenvector of eHah is not necessarily an
eigenvector of Ha [5, §2.11], one cannot now apply the same reasoning as in the first
part of the proof. Instead, the STPBC arguments are used below. To this end, we
introduce the following operators:

[
C̀a D̆a

] .
=

(
Aa I Ba
Ca 0 0

)[
I0 0
0 I

]
.

Then

C̀∗a(I + D̆aD̆
∗
a)−1C̀a =

[
I 0

]([ 0 C̀∗a
0 −D̆∗a

]
?

[
0 0

C̀a D̆a

])[
0
I

]
= I∗0

(
Ha E11E22 E1

E′2 0

)
I0 (by Proposition 2.1)

= −S−1
a,22Sa,21 (by Proposition 2.3)

and hence kerSa,21 = ker C̀a. Since η ∈ kerSa,21, then Cae
Aaτη ≡ 0. Therefore, η

belongs to the unobservable subspace of the pair (Ca, Aa). Now, it can be shown (e.g.,
by using the Kalman canonical decomposition of (Ca, Aa)) that there exists a k ∈ Z
so that PH(λ+ j 2π

h k)η = 0.

Now, assume that detD′D 6= 0, and associate with the systems G and Ğ the
following Hamiltonian matrices:

H
.
=

[
A 0
−C ′C −A′

]
−
[

B
−C ′D

]
(D′D)−1

[
D′C B′

]
=

[
H11 H12

H21 H22

]
(3.1a)

and

H̄
.
=

[
Ā 0

−C̀∗C̀ −Ā′
]
−
[

B́

−C̀∗D̆
]
(D̆∗D̆)−1

[
D̆∗C̀ B́∗

]
=

[
H̄11 H̄12

H̄21 H̄22

]
.(3.1b)

The next proposition establishes a relationship between H and H̄.
Proposition 3.3. If detD′D 6= 0, then the matrix H̄ is well defined and can be

expressed as

H̄ =

[
S11 S12

0 −I
][

I 0
S21 S22

]−1

=

[
I S12

0 S22

]−1[
S11 0
S21 −I

]
,

where Sij are the subblocks of the matrix S
.
= eHh.
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Proof. Consider the 2× 2 operator

Ŏ
.
=


A I B
I 0 0[
C
0

] [
0
0

] [
D
I

]
.

Then it is straightforward to verify that

H̄ =

[
I∗h 0
0 −I∗0

]
Ŏ ? Ŏ∗

[
I0 0
0 Ih

]
=

[
I∗h 0
0 −I∗0

](
H E11E22 I
I 0

)[
I0 0
0 −Ih

]
(by Proposition 2.1)

and the proof is now completed by applying Proposition 2.3.

3.2. Uncontrollable modes. From the input-output equivalence, a strong cor-
respondence exists between the poles of G and those of Ğ. This is clearly exhibited by
the fact that the “A” matrix of the realization of Ğ inherited from a corresponding
one of G is Ā = eAh. Consequently, eλh is a pole of the realization of Ğ iff either
of λ + j 2π

h k, k ∈ Z, is a pole of the realization of G. The lemma below establishes
that precisely the same relationship holds between the uncontrollable modes of the
realizations of G and Ğ.

Lemma 3.4. CĞ(eλh) is right invertible iff CG(λ+ j 2π
h k) is right invertible ∀k ∈

Z.
Proof. Without loss of generality, assume that C = 0 and D = I. Then in (3.1a)

H21 = S21 = 0 and then, for any µ

[
S11 − µI S12

]
= CĞ(µ)

[
I 0

0 B́∗

][
I 0
0 −S22

]
by Proposition 3.3. Together with Proposition 3.1, this leads to the equality

rankCĞ(µ) = rank
[
S11 − µI S12

]
.

The same arguments show that for any µ

rankCG(µ) = rank
[
H11 − µI H12

]
.

Thus, the lemma follows by applying Proposition 3.2 to Aa = A′, Ba = 0, and
Ca = B′.

The following two corollaries to Lemma 3.4 are of particular interest for the
solutions of the sampled-data H2 and H∞ problems with free hold or sampler, re-
spectively:

Corollary 3.5. The pair (Ā, B́) is D-stabilizable iff the pair (A,B) is C−-
stabilizable.

Corollary 3.6. The pair (C̀, Ā) is D-detectable iff the pair (C,A) is C−-
detectable.

3.3. Invariant zeros. The relationship between the invariant zeros of the real-
izations of G and Ğ is given in the next lemma.

Lemma 3.7. SĞ(eλh) is left invertible iff detD′D 6= 0 and SG(λ+ j 2π
h k) is left

invertible ∀k ∈ Z.
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Proof. First, note that the operator SĞ(z) is left invertible only if ŎD
.
= D̆∗D̆ +

B́∗B́ is invertible on L2[0, h]. It follows from Proposition 2.2 that

ŎD =

 A
−C ′C

0
−A′

[
I 0
0 0

]

[

0 0
−I I

] B
−C ′D

D′C B′ D′D

,
from which the necessity of D′D > 0 for the left invertibility of SĞ(z) is established.

If D is left invertible, then so is D̆ and for any z the equation H̄11 − zI ?
H̄21 ?

0 D̆∗D̆

 =

 I 0

0 C̀∗

0 D̆∗

SĞ(z)

[
I 0

−(D̆∗D̆)−1D̆∗C̀ I

]

holds. Therefore, taking into account the relationship between H̄ and S from Propo-
sition 3.3,

dim kerSĞ(z) = dim ker

[
H̄11 − zI
H̄21

]
= dim ker

[
S11 − zI
S21

]
.

Analogously, for any s ∈ C

dim kerSG(s) = dim ker

[
H11 − sI
H21

]
.

The proof is now completed by applying Proposition 3.2 to matrices Aa = A −
B(D′D)−1D′C, Ba = B(D′D)−1/2, and Ca = (I −D(D′D)−1D′)1/2C.

In the solution of the sampled-data H2 and H∞ problems one is concerned with
invariant zeros on the unit circle only. Consequently, the following two corollaries of
Lemma 3.7 are formulated.

Corollary 3.8. SĞ(ejθ) is left invertible ∀θ ∈ [0, 2π] iff detD′D 6= 0 and
SG(jω) is left invertible ∀ω ∈ R.

Corollary 3.9. SĞ(ejθ) is right invertible ∀θ ∈ [0, 2π] iff detDD′ 6= 0 and
SG(jω) is right invertible ∀ω ∈ R.

3.4. Riccati equation. The last topic of this section is to study the H∞ DARE
associated with Ğ. For that purpose, consider the operator

[
B́γ
D̆γ

]
.
=

[
I∗h 0
0 I

] A Bγ
I 0
C 0

,(3.2)

where Bγ is a given matrix of appropriate dimensions. Now, augment the “B” and

“D” parameters of Ğ as follows:

B́α
.
=
[
B́γ B́

]
and D̆α

.
=
[
D̆γ D̆

]
.

Consider the H∞ DARE:

(3.3)

X = Ā′XĀ+ C̀∗C̀ − (D̆∗αC̀ + B́∗αXĀ)∗(D̆∗αD̆α − E11 + B́∗αXB́α)−1(D̆∗αC̀ + B́∗αXĀ),
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where the partitioning of E11 corresponds to that of D̆∗αD̆α. It can be verified that,
if Bγ = 0, then (3.3) becomes the standard H2 DARE associated with Ğ. Define the
two matrices

Mγ
.
=

 −D′C −B′ −D′D
A BγB

′
γ B

−C ′C −A′ −C ′D


and

Nγ
.
=

 0 0 0
I 0 0
0 I 0

.
The relevant result can now be expressed as follows.

Lemma 3.10. The pair (Mγ , Nγ) is an extended Hamiltonian pair and the fol-
lowing statements are equivalent:

(i) The DARE (3.3) has a stabilizing solution X.
(ii) (Mγ , Nγ) ∈ dom(RicC−).

Moreover, if either of these conditions holds, then (X,F2) = RicC−(Mγ , Nγ),[
F̀1

F̀2

]
.
= −(D̆∗αD̆α − E11 + B́∗αXB́α)−1(D̆∗αC̀ + B́∗αXĀ)

=

 A+BγB
′
γX +BF2 I

B′γX 0
F2 0

I0,

and Ā+ B́γF̀1 + B́F̀2 = e(A+BγB
′
γX+BF2)h.

Proof. The proof is contained in [10].
Remark 3.1. It follows from Lemma A.2 that (X,F2) = RicC−(Mγ , Nγ) implies

that X is actually the stabilizing solution of the H∞ continuous-time algebraic Riccati
equation

A′X +XA+ C ′C +XBγB
′
γX − (D′C +BX)′(D′D)−1(D′C +BX) = 0

and F2 = −(D′D)−1(D′C +BX). Thus, the DARE (3.3) associated with the system
Ğ, augmented by B́γ and D̆γ is, in a sense, equivalent to the CARE associated with
G, augmented by Bγ .

4. System of the form WhGHh. This section is concerned with systems of
the form G̀ .

= WhGHh, where G and Hh are given by (2.2) and (2.3), respectively.
The transfer function of G̀ can be expressed as

G̀(z) =

[
Ā B̄

C̀ D̀

]
.

Here Ā and C̀ are the same as for Ğ, while B̄ = B́Φ̀H and D̀ = D̆Φ̀H . To ensure that
the operator D̀ is well defined as a mapping R 7→ L2[0, h], assume that

DDH = 0.

The purpose of this section is to study the singularities of SG̀(z) and CG̀(z) and the

H∞ DARE associated with G̀. In particular, it is shown that, under the assumption
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‖D̆γ‖2 < 1, both the invariant zeros of G̀ and the stabilizing solution of its associated
DARE can be characterized in terms of the matrices

Σ
.
= exp



−A′H −C ′HD′C −C ′HB′ −C ′HD′DCH

0 A BγB
′
γ BCH

0 −C ′C −A′ −C ′DCH
0 0 0 AH

h
(4.1)

=


Σ11 Σ12 Σ13 Σ14

0 Σ22 Σ23 Σ24

0 Σ32 Σ33 Σ34

0 0 0 Σ44

,
where Bγ is as defined in the previous section, and

MH
.
=

[
I BDH

0 BH

]
.

When Bγ is sufficiently “small,” including the case Bγ = 0, the uncontrollable modes

of G̀ can also be expressed in terms of these matrices.

4.1. Preliminary results on WhGHh. To study the properties of G̀, it is
convenient to develop some preliminary results.

Proposition 4.1. det Σ33 6= 0 for any Bγ such that ‖D̆γ‖2 < 1.
Proof. This is Theorem 13.5.1 in [3].
In order to formulate the next lemma, assume that ‖D̆γ‖2 < 1 and define the

matrices

MA
.
=
[

Σ22 Σ24

]− Σ23Σ−1
33

[
Σ32 Σ34

]
,(4.2a)

M12
.
= −

[
Σ33 0
Σ13 Σ11

]−1[
Σ32 Σ34

Σ12 Σ14

]
,(4.2b)

M21
.
= Σ23Σ−1

33 .(4.2c)

Proposition 4.2. If ‖D̆γ‖2 < 1, then[
Ā B̄

]
+ B́γD̆

∗
γ(I − D̆γD̆

∗
γ)−1

[
C̀ D̀

]
= MAMH ,[

C̀∗

D̀∗

]
(I − D̆γD̆

∗
γ)−1

[
C̀ D̀

]
= M ′HM12MH ,

and

B́γ(I − D̆∗γD̆γ)−1B́∗γ = M21.

Proof. Under the additional assumption that DH = 0, this lemma was established
in section IV of [11]. The same arguments used there can be applied to establish the
more general result.

As shown next, manipulations with subblocks are facilitated by the symplectic
structure of the matrix Σ.

Proposition 4.3. If ‖D̆γ‖2 < 1, then[
Σ−1

33 0
0 Σ14

]′
=

[
I 0
−Σ′34 Σ′44

]([
Σ22 Σ24

Σ12 Σ14

]
−
[

Σ23

Σ13

]
Σ−1

33

[
Σ32 Σ34

])[ I Σ′13

0 Σ′11

]
.
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Proof. From [18, section 21.3], two relevant properties hold for any symplectic
matrix

S =

[
S11 S12

S21 S22

]
such that detS22 6= 0: a) S11 = (S′22)−1 + S12S

−1
22 S21 and b) S−1

22 S21 is symmetric.
On the other hand, it is easy to see that the matrix

Σ22 Σ24 Σ23 0
0 Σ44 0 0

Σ32 Σ34 Σ33 0
Σ12 Σ14 Σ13 Σ11

 = exp




A BCH BγB
′
γ 0

0 AH 0 0
−C ′C −C ′DCH −A′ 0
−C ′HD′C −C ′HD′DCH −C ′HB′ −A′H

h


is symplectic. Then, from the nonsingularity of Σ33 and Σ11 = e−A
′
Hh, the formula

in the proposition can be derived from (a) and (b).
Proposition 4.4. If ‖D̆γ‖2 < 1, then

Υ
.
= −(Σ23Σ−1

33 )1/2Σ33

[
I 0

](−[ Σ33 0
Σ13 Σ11

]−1[
Σ32 Σ34

Σ12 Σ14

])1/2

is a contraction, i.e., σ̄(Υ) < 1.
Proof. The matrix Υ is a contraction iff

I −ΥΥ′ = I + (Σ23Σ−1
33 )1/2Σ32Σ′33(Σ23Σ−1

33 )1/2 > 0.

Without loss of generality, the pair (A,Bγ) can be assumed to be controllable. (Oth-
erwise the problem can be easily reduced to the one with controllable (A,Bγ) by an

appropriate change of basis [3, section 13.5].) Since B́γB́
∗
γ =

∫ h
0
eAτBγB

′
γe
A′τdτ , the

controllability of (A,Bγ) and Proposition 4.2 yield M21 > 0. Then

I −ΥΥ′ = M
−1/2
21 M21(I + Σ32Σ′23)M

−1/2
21

= M
−1/2
21 Σ22(Σ−1

22 Σ23)Σ′22M
−1/2
21 ,

where the latter equality is obtained by using I + Σ32Σ′23 = Σ33Σ′22, which, in turn,
follows from Proposition 4.3.

Now, to prove the proposition one needs to prove that det Σ23 6= 0. To this end,
introduce the operators

[
C̀a D̆a

] .
=

( −A′ I C ′

B′γ 0 0

)[
I∗0 0
0 I

]
.

By applying Proposition 4.2, one gets that C̀∗a(I − D̆aD̆
∗
a)−1C̀a = Σ−1

22 Σ23. Since

C̀∗aC̀a =
∫ h

0
e−AτBγB′γe

−A′τdτ , the controllability of (A,Bγ) yields I − ΥΥ′ >
0.

4.2. Uncontrollable modes. The pencil CG̀(z) is finite dimensional, and con-

sequently its singularities can be characterized by calculating the matrices Ā and B̄.
This calculation follows from a direct corollary to Proposition 4.2.

Lemma 4.5. If Bγ = 0, then the matrix CG̀(z) is right invertible iff [Σ22 − zI
zBDH + Σ24BH ] is right invertible.
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Lemma 4.5 gives a complete characterization of the uncontrollable modes of G̀
by calculating Σ under the assumption Bγ = 0. It turns out that this assumption is
associated with the solution of an H2 optimization, while the solution of the a corre-
sponding H∞ is based on Σ for a nonzero Bγ . Hence, the verification of stabilizability
(and observability) of the system of interest in the H∞ case might require additional
computations. It is then of interest to characterize the stabilizability of (Ā, B̄) in
terms of Σ for a Bγ 6= 0. To this end, for a given matrix F define the system

ĞF .
=

[
Ā+ B̄F B́γ
C̀ + D̀F D̆γ

]
.

Lemma 4.6. Whenever Bγ is such that ‖D̆γ‖2 < 1, the matrix CG̀(z) is right

invertible ∀|z| ≥ 1 and there exists a matrix F such that ‖ĞF ‖H∞ < 1 only if the
matrix

[
Σ22 − zI zBDH + Σ24BH

]
is right invertible ∀|z| ≥ 1.

Proof. Denote by Ssc the set of all (discrete-time with either finite- or infinite-
dimensional input-output spaces) systems, which are internally stable and have H∞

norm < 1. Standard loop shifting and orthogonal projection arguments [1] give

ĞF ∈ Ssc ⇐⇒ F`
(
Θ̆γ , ĞF

) ∈ Ssc ⇐⇒ ḠF ∈ Ssc,
where the unitary operator

Θ̆γ
.
=

[ −D̆γ (I − D̆γD̆
∗
γ)1/2

(I − D̆∗γD̆γ)1/2 D̆∗γ

]
= (Θ̆∗γ)−1

is well defined and

ḠF .
=

[
MAMHMF M

1/2
21

M
1/2
12 MHMF 0

]
,

where MF
.
=
[
I
F

]
. Since the matrix Υ defined in Proposition 4.4 is a contraction,

there always exists a unitary dilation of Υ, say

Θ̄
.
=

[
? ?
? Υ

]
= (Θ̄′)−1.

Then,

ḠF ∈ Ssc ⇐⇒ F`
(
Θ̄, ḠF

) ∈ Ssc.
The corresponding “A”-matrix of F`

(
Θ̄, ḠF

)
is just

[
Σ22 Σ24

]
MHMF = Σ22 +

[
Σ22 Σ24

][ BDH

BH

]
F,

which implies that (Ā, B̄) is stabilizable and there exists F such that ‖ĞF ‖H∞ < 1 only
if the pair (Σ22,Σ22BDH + Σ24BH) is stabilizable. The latter, in turn, is equivalent
to the right invertibility of the matrix pencil[

Σ22 − zI Σ22BDH + Σ24BH
]

=
[

Σ22 − zI zBDH + Σ24BH
][ I BDH

0 I

]
∀|z| ≥ 1, which proves the lemma.
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Lemma 4.6 actually establishes that the absence of the generalized eigenvalues
outside the open unit disk of the pencil

[
Σ22 − zI zBDH + Σ24BH

]
is necessary

to solve the (state feedback) H∞ problem for the system Ā B́γ B̄

C̀ D̆γ D̀
I 0 0

.
Since the solvability of the latter problem is necessary for the solvability of the cor-
responding H∞ output feedback problem with a strictly proper controller, the D-
stabilizability of (Ā, B̄) can be replaced with the condition above without loss of
generality. Note also that the pencil above has exactly the same form as the corre-
sponding pencil in Lemma 4.5. Thus, as Bγ → 0 the condition of Lemma 4.6 becomes
sufficient.

4.3. Invariant zeros. In principle, the invariant zeros of the natural realization
of G̀ can be characterized by noting that

kerSG̀(z) = ker

 Ā− zI B̄

C̀∗C̀ C̀∗D̀
D̀∗C̀ D̀∗D̀

.
The matrices Ā, B̄, C̀∗C̀, C̀∗D̀, and D̀∗D̀ are given by Proposition 4.2 when Bγ = 0.
These matrices are precisely the same calculated for the solution of the sampled-data
H2 problems. Unfortunately, as noticed in the discussion after Lemma 4.5, such an
approach does not fit well into H∞ optimization, since the matrices above are not re-
quired for the solution. Consequently, it is of interest to express singularities of SG̀(z)
in terms of the H∞ data, i.e., in terms of Σ when Bγ 6= 0. Although incorporating
a nonzero Bγ into the computations makes the derivations more involved, the final
formulae are not more complicated than those obtained in the H2 case. Moreover,
when Bγ = 0 the formulae reduce to the H2 ones.

Lemma 4.7. Whenever Bγ is such that ‖D̆γ‖2 < 1, the operator SG̀(z) is left
invertible iff the matrix  Σ22 − zI zBDH + Σ24BH

B′HΣ′44Σ12 B′HΣ′44Σ14BH
Σ32 Σ34BH


is left invertible.

Proof. It is clear that if ‖D̆γ‖2 < 1 then SG̀(z) is left invertible iff the matrix I B́γD̆γ

0 C̀∗

0 D̀

[ I 0

0 (I − D̆γD̆
∗
γ)−1

][
Ā− zI B̄

C̀ D̀

]
=

[
MAMH − z

[
I 0

]
M ′HM12MH

]

is left invertible. Using (4.2) one can verify that the latter matrix is just the Schur
complement of Σ33 in

Me
.
=


Σ22 − zI Σ22BDH + Σ24BH ?

0 0 I
−B′HΣ′44Σ12 −B′HΣ′44Σ12BDH −B′HΣ′44Σ14BH ?

Σ32 Σ32BDH + Σ34BH Σ33

,
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where ? denotes irrelevant blocks. Therefore, and as det Σ33 6= 0, the left invertibility
of the operator of interest is equivalent to the left invertibility of Me. The latter, in
turn, is equivalent to the left invertibility of the Schur complement of the identity I
in Me, i.e.,  Σ22 − zI zBDH + Σ24BH

−B′HΣ′44Σ12 −B′HΣ′44Σ14BH
Σ32 Σ34BH

[ I BDH

0 I

]
.

This completes the proof.
Remark 4.1. The test in Lemma 4.7 can be simplified if additional assumptions

are made about the hold function φH . In particular, when BH is square and invertible
and DH = 0, the pencil reduces to Σ22 − zI Σ24

Σ12 Σ14

Σ32 Σ34

,
while, when BH = 0 and DH = I, the pencil becomes[

Σ22 − zI zB
Σ32 0

]
.

4.4. Riccati equation. The final derivations of the section are again devoted
to the Riccati equation associated with the system. Consider the DARE

X = Ā′XĀ+ C̀∗C̀
− (D̆∗βC̀ + B́∗βXĀ)∗(D̆∗βD̆β − E11 + B́∗βXB́β)−1(D̆∗βC̀ + B́∗βXĀ),(4.3)

where B́β
.
=
[
B́γ B̄

]
and D̆β

.
=
[
D̆γ D̀

]
. This DARE appears when treating the

H∞ problem with fixed hold. Although the equation can be made finite dimensional
by computing an LU-decomposition of the operator D̆∗βD̆β−E11 + B́∗βXB́β , the inter-
mediate steps involved in the calculations severely limit any further analysis. Instead,
(4.3) can be replaced by an extended symplectic matrix pair, with the advantage that
the stabilizing solution can be characterized in terms of the subblocks of the matrix
Σ. Moreover, this approach allows the derivation of the formula for the “gain”

F̀
.
= −(D̆∗βD̆β − E11 + B́∗βXB́β)−1(D̆∗βC̀ + B́∗βXĀ) =

[
F̀1

F̄2

]
,

required for the lifted solution in [12].
To this end we define the following two matrices:

Mγ
.
=

 B′HΣ′44Σ12 B′HΣ′44Σ13 B′HΣ′44Σ14

Σ22 Σ23 Σ24

Σ32 Σ33 Σ34

 I 0 BDH

0 I 0
0 0 BH

−
 0 D′HB

′ 0
0 0 0
0 0 0


and

Nγ
.
=

 0 0 0
I 0 0
0 I 0

.
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The main results concerning the DARE (4.3) can now be stated.
Lemma 4.8. Whenever Bγ is such that ‖D̆γ‖2 < 1, the pair (Mγ , Nγ) is an

extended symplectic pair, and the following statements are equivalent:
(i) The DARE (4.3) has a stabilizing solution X.
(ii) (Mγ , Nγ) ∈ dom(RicD).

Moreover, if either of these conditions holds, then (X, F̄2) = RicD(Mγ , Nγ),

F̀1 =


A BγB

′
γ BCH I +BDH F̄2

−C ′C −A′ −C ′DCH X
0 0 AH BH F̄2

0 B′γ 0 0

I0,(4.4)

and Ā+ B́γF̀1 + B̄F̄2 = Σ22 + Σ23X + (Σ22BDH + Σ24BH)F̄2.
Proof. As follows from Lemma A.1, the solvability of the DARE (4.3) is equivalent

to the condition (Ma, Na) ∈ dom(RicD), where

Ma
.
=

 Ā+ B́γD̆
∗
γ(I − D̆γD̆

∗
γ)−1C̀ 0 B̄ + B́γD̆

∗
γ(I − D̆γD̆

∗
γ)−1D̀

C̀∗(I − D̆γD̆
∗
γ)−1C̀ −I C̀∗(I − D̆γD̆

∗
γ)−1D̀

D̀∗(I − D̆γD̆
∗
γ)−1C̀ 0 D̀∗(I − D̆γD̆

∗
γ)−1D̀


and

Na
.
=

 I −B́γ(I − D̆∗γD̆γ)−1B́∗γ 0

0 −(Ā+ B́γD̆
∗
γ(I − D̆γD̆

∗
γ)−1C̀)′ 0

0 −(B̄ + B́γD̆
∗
γ(I − D̆γD̆

∗
γ)−1D̀)′ 0

.
Denote by (Mb, Nb) the matrix pair obtained by the permutation of the second and
the third columns of (Ma, Na). Then, using Proposition 4.2, we have that

(Mb, Nb) =

([
MAMH 0

M ′HM12MH −E1

]
,

[
E′1 −M21

0 −M ′HM ′A

])
.

Furthermore, using Proposition 4.3,

M ′A =

[
I

−Σ−1
11 Σ13

]
Σ−1

33 .

Then, taking into account (4.2) and the fact that Σ−1
11 = Σ′44, one verifies

MA − Σ23E
′
1M12 =

[
Σ22 Σ24

]
,

M21 − Σ23E
′
1M
′
A = 0,

MM ′HM12 = −
[
I 0
0 B′HΣ′44

][
Σ32 Σ34

Σ12 Σ14

]
,

and

MM ′HM
′
A = E1,

where

M
.
=

[
Σ33 0

B′HΣ′44Σ13 I

][
I 0

−D′HB′ I

]
.
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With these formulae, the equivalence of RicD(Ma, Na) and RicD(Mγ , Nγ) follows

by premultiplying the pair (Mb, Nb) by the (nonsingular) matrix
[ I −Σ23E′1

0 −M
]

and

permuting the second and the third block columns of the resulting pair.

Consider now the operator F̀1 which, by Lemma A.1 in the appendix, is given by

F̀1 =
(
I − D̆∗γD̆γ − B́∗γXB́γ

)−1(
D̆∗γC̀ + B́∗γXĀ+ (D̆∗γD̀ + B̀∗γXB̄)F̄2

)
,

where the operator to be inverted is nonsingular. Note, that B̄ = B́Φ̀H and D̀ = D̆Φ̀H
and introduce the following two operators:

Ŏ1
.
= D̆∗γD̆γ + B́∗γXB́γ ,

Ŏ2
.
= D̆∗γ

[
C̀ D̆

]
+ B́∗γX

[
Ā B́

]
.

Applying Proposition 2.2 to these operators,

Ŏ1 =

 A
−C ′C

0
−A′

[
I 0
0 0

]

[

0 0
−X I

] Bγ
0

0 B′γ 0

,
Ŏ2 =

 A
−C ′C

0
−A′

[
I 0
0 0

]

[

0 0
−X I

] I
0

B
−C ′D

0 B′γ 0 0

[ I0 0
0 I

]

and then, according to Proposition 2.1,

(I − Ŏ1)−1Ŏ2 =

 A
−C ′C

BγB
′
γ

−A′
[
I 0
0 0

]

[

0 0
−X I

] I
0

B
−C ′D

0 B′γ 0 0

[ I0 0
0 I

]

and the nonsingularity of I − Ŏ1 is equivalent to the nonsingularity of Σ33 −XΣ23.
Since [ I0 0

0 I

][
I

Φ̀H F̄2

]
=

 AH BH F̄2

0 I
CH DH F̄2

I0

and DDH = 0, one gets

F̀1 =


A
−C ′C

0

BγB
′
γ

−A′
0

BCH
−C ′DCH

AH

[
I 0 0

0 0 0

0 0 I

]

[

0 0 0

−X I 0

0 0 0

] I +BDH F̄2

0
BH F̄2

0 B′γ 0 0

 I0.

Now (4.4) follows from

X = −(Σ33 −XΣ23)−1
(
(Σ32 −XΣ22)(I +BDH F̄2) + (Σ34 −XΣ24)BH F̄2

)
,

which, in turn, can easily be derived form the fact that Im
[
I X F̄ ′2

]′
is the stable

deflating subspace of the pencil Mγ − λNγ . The latter fact also leads to the equality

for Ā+ B́βF̀ .
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Remark 4.2. As in the cases of the uncontrollable modes and invariant zeros,
additional assumptions on the hold function φH may substantially simplify the form
of the matrix Mγ . In the case where DH = 0 and BH = I it becomes

Mγ =

 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ32 Σ33 Σ34

,
while for DH = I and BH = 0

Mγ =

 0 B′ 0
Σ22 Σ23 Σ22B
Σ32 Σ33 Σ32B

.
5. Coupling condition. Consider the inequality∥∥∥∥[ X1/2 0

0 I

][
Ā B́γ
C̀ D̆γ

][
Y 1/2 0

0 I

]∥∥∥∥
2

< 1,(5.1)

where X = X ′ ≥ 0 and Y = Y ′ ≥ 0 are given matrices and[
Ā B́γ
C̀ D̆γ

]
=

[ I∗h 0
0 I

] A I Bγ
I 0 0
C 0 0

[ I0 0
0 I

]
.

This is actually the coupling condition for the solutions X and Y of the H∞ DAREs,
which appears in the solution of the sampled-data H∞ problem (see [12, Theorem 2]).
The purpose of this section is to express inequality (5.1) in terms of the matrix[

Σ22 Σ23

Σ32 Σ33

]
,

defined by (4.1), which can be readily computed.
Lemma 5.1. Whenever Bγ is such that ‖D̆γ‖2 < 1, inequality (5.1) holds iff the

following three inequalities hold:
(a) ρ(X Σ23Σ−1

33 ) < 1;
(b) ρ(Σ−1

33 Σ32Y ) < 1;
(c) ρ(Y (Σ33 + Σ32Y )−1X(Σ′33 − Σ′23X)−1) < 1.
Proof. Consider the following two operators: ÓX

.
= X1/2B́γ(I − D̆∗γD̆γ)−1/2 and

ÒY
.
= (I − D̆γD̆

∗
γ)−1/2C̀Y 1/2. By standard dilation theory [18, section 2.11], the

inequality (5.1) holds iff the matrix

Ma
.
= (I − ÓXÓ∗X)−1/2(X1/2ĀY 1/2 + ÓXD̆

∗
γÒY )(I − Ò∗Y ÒY )−1/2

is well defined and a contraction, i.e., σ̄(Ma) < 1. By Proposition 4.2,

ÓXÓ
∗
X = X1/2Σ23Σ−1

33 X
1/2 and Ò∗Y ÒY = −Y 1/2Σ−1

33 Σ32Y
1/2.

Consequently, Ma is well defined iff conditions (a) and (b) hold. Using Propositions 4.2
and 4.3 one gets

X1/2ĀY 1/2 + ÓXD̆
∗
γÒY = X1/2(Σ′33)−1Y 1/2.

Then, since for any matrices M1 and M2 of appropriate dimensions ρ(M1M2) =
ρ(M2M1) and the matrix Σ23Σ−1

33 is symmetric,

ρ(MaM
′
a) = ρ

(
Y (Σ33 + Σ32Y )−1X(Σ′33 − Σ′23X)−1

)
.

The equality σ̄(Ma) = ρ(MaM
′
a) concludes the proof.
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6. Conclusions. In this paper, several properties of systems represented in the
lifted domain have been presented. The material considered was originally worked out
for solving H2 and H∞ optimization problems for sampled-data systems. Eventually,
it evolved to include results about systems in the lifted domain of independent general
interest.

Appendix. The Riccati operators. The role of extended symplectic and
Hamiltonian matrix pairs for solving algebraic Riccati equations has been extensively
considered in the literature. See, for instance, [16, 14, 6]. The purpose of this appendix
is to present a brief introduction to the results used in the paper.

Recall that the ordered pair of (2n + m) × (2n + m) matrices (M,N) is called
an extended symplectic matrix pair (ESMP) if the associated matrix pencil M − λN
verifies the following:

(a) det(M − λN) 6≡ 0.
(b) If λ 6∈ {0,∞} is a generalized eigenvalue of M − λN of multiplicity r, then so

is 1
λ .

(c) If 0 is an eigenvalue of M of multiplicity r, then it is an eigenvalue of N of
multiplicity r +m.
An ESMP is said to be dichotomic if the associated matrix pencil has no generalized
eigenvalues on the unit circle. If an ESMP (M,N) is dichotomic, then the pencil
M − λN has n eigenvalues in D. Consider the n-dimensional deflating subspace
XD(M,N) corresponding to eigenvalues in D. It is obvious that

XD(M,N) = Im

 X1

X2

X3

 ,
where X1, X2 ∈ Rn×n, X3 ∈ Rm×n, and

M

 X1

X2

X3

 = N

 X1

X2

X3

Ast, σ(Ast) ∈ D.

A dichotomic ESMP is said to be disconjugate if the matrix X1 is nonsingular.
When an ESMP is disconjugate, it is possible to set X

.
= X2X

−1
1 and F

.
= X3X

−1
1 .

Since X and F can be uniquely determined from (M,N), it is possible to define the
function RicD : (M,N) → (X,F ), and set (X,F ) = RicD(M,N). The domain of
RicD, denoted dom(RicD), then consists of all disconjugate ESMP.

Consider now the following DARE, associated with the state feedback H∞ (or
H2, when γ =∞) control problem:

X = A′XA+ C ′C − (D′C +B′XA)′Rγ(X)−1(D′C +B′XA),(A.1)

where B
.
=
[
B1 B2

]
and D

.
=
[
D1 D2

]
, and

Rγ(X)
.
= D′D − γ2E11 +B′XB.

A solution Xγ of (A.1) is said to be stabilizing if Xγ = X ′γ , the matrix Rγ(Xγ) is
nonsingular, and the matrix A+BFγ is Schur, where

Fγ
.
= −Rγ(Xγ)−1(D′C +B′XγA) =

[
Fγ1

Fγ2

]
.
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The next lemma, borrowed from [8], establishes a strong equivalence between the
stabilizing solution of the DARE (A.1) and an associated ESMP.

Lemma A.1. Assume that σ̄(D1) < γ and form the matrix pair

(Mγ , Nγ)
.
=

 Aγ 0 Bγ
C ′RγC −I C ′RγD2

D′2RγC 0 D′2RγD2

 ,
 I −B1R̃γB

′
1 0

0 −A′γ 0
0 −B′γ 0

 ,

where Rγ
.
= (I − γ−2D1D

′
1)−1, R̃γ

.
= (γ2I −D′1D1)−1, and[

Aγ Bγ
] .

=
[
A B2

]
+ γ−2B1D

′
1Rγ

[
C D2

]
.

Then (Mγ , Nγ) is ESMP and the following two statements are equivalent:
(i) (Mγ , Nγ) ∈ dom(RicD).
(ii) The DARE (A.1) has a (unique) stabilizing solution Xγ .

Moreover, if either of these conditions holds, then det(γ2I −D′1D1 −B′1XγB1) 6= 0,

(Xγ , Fγ2) = RicD(Mγ , Nγ),

and

Fγ1 = (γ2I −D′1D1 −B′1XγB1)−1
(
D′1C +B′1XγA+ (D′1D2 +B′1XγB2)Fγ2

)
.

The ordered pair of (2n + m) × (2n + m) matrices (M,N) is called an extended
Hamiltonian matrix pair (EHMP) if the associated matrix pencil M −λN verifies the
following.

(a) det(M − λN) 6≡ 0.
(b) If λ 6= ∞ is a generalized eigenvalue of M − λN of multiplicity r, then so is

−λ.
(c) 0 is an eigenvalue of N of multiplicity m.

By an analogy with ESMP, an EHMP is said to be dichotomic if the associated matrix
pencil has no generalized eigenvalues on the imaginary axis. When the EHMP (M,N)
is dichotomic, the pencil M−λN has n eigenvalues in C−. Consider the n-dimensional
deflating subspace XC−(M,N) corresponding to eigenvalues in C−, and write

XC−(M,N) = Im

 X1

X2

X3

 ,
where X1, X2 ∈ Rn×n, X3 ∈ Rm×n, and

M

 X1

X2

X3

 = N

 X1

X2

X3

Ast, σ(Ast) ∈ C−.

A dichotomic EHMP is said to be disconjugate if the matrix X1 is nonsingular. For
a disconjugate EHMP, set X

.
= X2X

−1
1 and F

.
= X3X

−1
1 , and define the function

RicC− : (M,N) → (X,F ); thus (X,F ) = RicC−(M,N). The domain of RicC− ,
denoted dom(RicC−), then consists of all disconjugate EHMP.

Hamiltonian pairs play a role in the analysis of CAREs similar to the one ESMPs
play in the analysis of DAREs. Consider a CARE in general form:

A′X +XA+ C ′C − (B′X +D′C)′
(
D′D − γ2E11

)−1
(B′X +D′C) = 0,(A.2)
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where, again, B
.
=
[
B1 B2

]
and D

.
=
[
D1 D2

]
. For finite γ this equation is

the so-called H∞ CARE, while as γ → ∞ (A.2) becomes the H2 CARE, associated
with the state feedback problems. A solution Xγ of (A.2) is said to be stabilizing if
Xγ = X ′γ , and the matrix A+BFγ is Hurwitz, where

Fγ
.
= −(D′D − γ2E11

)−1
(D′C +B′Xγ) =

[
Fγ1

Fγ2

]
.

The following lemma, which establishes a strong equivalence between the stabilizing
solution of the CARE (A.2) and an associated EHMP, can be formulated.

Lemma A.2. Assume that σ̄(D1) < γ and form the matrix pair

(Mγ , Nγ)
.
=

 Aγ B1R̃γB
′
1 Bγ

−C ′RγC −A′γ −C ′RγD2

−D′2RγC −B′γ −D′2RγD2

 ,
 I 0 0

0 I 0
0 0 0

 ,

where Rγ
.
= (I − γ−2D1D

′
1)−1, R̃γ

.
= (γ2I −D′1D1)−1, and[

Aγ Bγ
] .

=
[
A B2

]
+ γ−2B1D

′
1Rγ

[
C D2

]
.

Then (Mγ , Nγ) is EHMP and the following two statements are equivalent:
(i) (Mγ , Nγ) ∈ dom(RicC−).
(ii) D2 has full column rank and the CARE (A.2) has a (unique) stabilizing solu-

tion Xγ .
Moreover, if either of these conditions holds, then

(Xγ , Fγ2) = RicC−(Mγ , Nγ)

and

Fγ1 = (γ2I −D′1D1)−1
(
D′1(C +D2Fγ2) +B′1Xγ

)
.

REFERENCES

[1] B. Bamieh and J. B. Pearson, A general framework for linear periodic systems with applica-
tions to H∞ sampled-data control, IEEE Trans. Automat. Control, 37 (1992), pp. 418–435.

[2] B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, A lifting technique for
linear periodic systems with applications to sampled-data control, Systems Control Lett.,
17 (1991), pp. 79–88.

[3] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Springer-Verlag, Lon-
don, 1995.

[4] I. Gohberg and M. A. Kaashoek, Time varying linear systems with boundary conditions and
integral operators, I. The transfer operator and its properties, Integral Equations Operator
Theory, 7 (1984), pp. 325–391.

[5] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applica-
tions, John Wiley & Sons, NY, 1986.

[6] V. Ionescu and M. Weiss, Continuous and discrete-time Riccati theory: A Popov-function
approach, Linear Algebra Appl., 193 (1993), pp. 173–209.

[7] A. J. Krener, Boundary value linear systems, Astérisque, 75/76 (1980), pp. 149–165.
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A key role in this paper is played by two geometric concepts: the limiting proximal normal cone and
a generalization of the contingent cone.

Key words. weak sharp minimizer of order m, normal cone, contingent cone, directional
derivative, subdifferential, exact penalty function
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1. Introduction. This paper is devoted to the study of a special type of mini-
mizer for the mathematical program

min{f(x) | x ∈ C},(1.1)

where f : Rn → R := [−∞,+∞] and C is a nonempty subset of Rn.
Definition 1.1 (see [7]). Let ‖·‖ be the Euclidean norm on Rn. Suppose that f

is finite and constant on the set S ⊂ Rn, and let x̄ ∈ S ∩ C and m ≥ 1. For x ∈ Rn,
let

distm(x, S) := inf
{ ‖y − x‖m | y ∈ S}.

(a) We say that x̄ is a weak sharp minimizer of order m for (1.1) if there exists
β > 0 such that

f(x)− f(x̄) ≥ β distm(x, S) ∀x ∈ C.(1.2)

(b) For ε > 0, let B(x, ε) := {y ∈ Rn | ‖y − x‖ ≤ ε}. We say that x̄ is a weak
sharp local minimizer of order m for (1.1) if there exist β > 0 and ε > 0 such that

f(x)− f(x̄) ≥ β distm(x, S) ∀x ∈ C ∩B(x̄, ε).(1.3)

As an illustration of Definition 1.1, consider f : R2 → R defined by f(x, y) = |x|m
for m ≥ 1. Let C = R2 and S = {(0, y) | y ∈ R}. Then each element of S is a weak
sharp minimizer of order m for (1.1).

Weak sharp minima occur in many optimization problems. For example, every
minimizer of a linear program is a weak sharp minimizer of order one. Burke and
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Ferris [7] have shown that solutions of certain convex quadratic programs and linear
complementarity problems are weak sharp minima of order one and that many op-
timization algorithms exhibit finite termination at weak sharp minima. Weak sharp
minima of higher order are of great interest in sensitivity analysis in nonlinear pro-
gramming [4], [5], [14], [15], [23], [24]; in particular, the presence of weak sharp minima
in a parametric nonlinear program leads to Hölder continuity properties of the solution
set multifunction [15].

In the case where S is the singleton {x̄}, Definition 1.1 reduces to a familiar
concept (see [2], [17], [26], [27], [28], and references therein). In this case, we will call
x̄ a strict minimizer of order m. When m = 2, such minimizers are also called strong
minimizers, and when m = 1, they are called sharp minimizers or strongly unique
minimizers.

How can weak sharp minima be identified? It is well known that standard suf-
ficient conditions for minimality (e.g., [10, Theorem 4] for m = 2) are sufficient for
strict minimality of order m; in fact, they often characterize strict minimality of order
m in the presence of a constraint qualification [3], [25], [28]. For the more difficult
case of nonisolated minima, this question has been the focus of much recent atten-
tion. Burke and Ferris [7] have developed general necessary conditions for weak sharp
minima of order one and have shown that those conditions provide characterizations
of weak sharp minimality of order one when f , C, and S are convex. Bonnans and
Ioffe [4], [5] have derived sufficient conditions and characterizations for weak sharp
minimality of order two in the case where f is a pointwise maximum of C2 functions.
In addition, Ward [28] has given some necessary conditions for weak sharp minimality
of order m.

In this paper, we present sufficient conditions and characterizations for weak sharp
minimality of order m in nonsmooth programming, continuing a line of research begun
in [26] and [28]. As in those papers, we start by giving a characterization of weak
sharp minimality that requires no differentiability assumptions. We then go on to
consider simpler sufficient conditions and to apply our general results in important
special cases.

An outline of this paper is as follows. We begin in section 2 by deriving a gen-
eral characterization of weak sharp minimality of order m in the unconstrained case
(C = Rn in (1.1)). Since our characterization is rather complicated, we then give a
simpler sufficient condition for weak sharp minimality and discuss situations in which
this sufficient condition provides a characterization. Both the characterization and
sufficient condition involve the normal cone of Mordukhovich [18] to the set S at x̄,
a geometric object that seems to arise naturally in attempts to formulate conditions
sufficient for weak sharp minimality. The sufficient condition also involves a special
variant of the contingent epiderivative of f [1], a directional derivative that plays a
key role in sufficient conditions for strict minimality.

In section 3, we apply the results of section 2 to produce sufficient conditions
for weak sharp minimality of orders one and two in constrained problems. We pay
particular attention to problems with inequality and/or equality constraints and give a
special result for the case of linear constraints. We again mention situations in which
sufficient conditions give actual characterizations. In section 4, we show that our
sufficient optimality conditions for inequality-constrained problems are also sufficient
for exactness of a standard l1 penalty function. Finally in section 5, we adapt an
idea of Auslender [2] to establish another set of sufficient conditions for weak sharp
minimality of order one. We then compare these sufficient conditions, which involve



WEAK SHARP MINIMA 221

the subdifferential of Mordukhovich [18], [19], [20], [21] rather than a contingent-type
epiderivative, with the corresponding conditions from sections 2 and 3.

We conclude this section with a compilation of some notation and definitions that
will be useful throughout the paper. For a set S ⊂ Rn, we denote the closure of S
by clS, the interior of S by intS, and the boundary of S by bdS. The indicator
function of S is the function iS defined by iS(x) = 0 for x ∈ S and iS(x) = +∞ for
x ∈ Rn\S.

Let 〈·, ·〉 denote the usual inner product on Rn. For a cone S ⊂ Rn, the polar of
S is the closed convex cone defined by

S0 :=
{
y ∈ Rn | 〈x, y〉 ≤ 0 ∀x ∈ S}.

For a function f : Rn → R, the epigraph of f is the set

epi f :=
{

(x, r) | f(x) ≤ r}.
We say that f is proper if epi f is nonempty and f never takes on the value −∞, and
that f is lower semicontinuous (l.s.c.) if epi f is closed. If f is finite at x, we say that
f is strictly differentiable at x [7] if there exists a linear mapping ∇f(x) : Rn → R
such that ∀y ∈ Rn,

lim
(v,w,t)→(x,y,0+)

(
f(w + tv)− f(w)

)
/t = 〈∇f(x), y〉 .

For i = 1, 2, we say that f is Ci at x if f is i times differentiable on a neighborhood
of x and the i th derivative function is continuous at x. We will say that f is C1,1 at
x if f is C1 at x and the derivative function ∇f is Lipschitzian near x.

2. The unconstrained case. We begin our study of weak sharp minima by
examining the case where C = Rn in (1.1). In this case, we will refer to a weak sharp
local minimizer of order m for (1.1) as a weak sharp local minimizer of order m for f .

The following concept of normal cone will play a major role in our optimality
conditions.

Definition 2.1. Let S ⊂ Rn be nonempty.
(a) For x ∈ Rn , call

P (S, x) :=
{
w ∈ clS | ‖x− w‖ = dist(x, S)

}
.

(b) Let x̄ ∈ clS. The normal cone to S at x̄ is defined by

N(S, x̄) :=
{
y | ∃{yj} → y, {xj} → x̄, {tj} ⊂ (0,+∞), {sj} ⊂ Rn

with sj ∈ P (S, xj) and yj = (xj − sj)/tj
}
.

The normal cone N(S, x̄) is often called the Mordukhovich normal cone or limiting
proximal normal cone. For information on its properties, see [13], [19], [20], [21], and
references therein. In terms of N(S, x̄), we can obtain a general characterization of
weak sharp local minimality of order m.

Theorem 2.2. Let f : Rn → R be finite and constant on a closed set S ⊂ Rn,
and let x̄ ∈ S and m ≥ 1. The following are equivalent:

(a) x̄ is a weak sharp local minimizer of order m for f .
(b) ∀y ∈ N(S, x̄) with ‖y‖ = 1, ∀ sequences {xj} → x̄, {sj} with sj ∈ P (S, xj),

{(xj − sj)/ ‖xj − sj‖} → y and

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m−1 ≤ 0,
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we have

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m > 0.

(c) ∀y ∈ N(S, x̄) with ‖y‖ = 1, ∀ sequences {xj} → x̄, {sj} with sj ∈ P (S, xj)
and {(xj − sj)/ ‖xj − sj‖} → y, we have

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m > 0.

Proof. (a)⇒ (c). Suppose that (a) holds. Let y ∈ N(S, x̄) with ‖y‖ = 1, and let
{xj} → x̄, {sj} with {(xj − sj)/ ‖xj − sj‖} → y and sj ∈ P (S, xj). Since S is closed,
each sj ∈ S. By (a), there exists β > 0 such that for j large enough,

f(xj)− f(sj) = f(xj)− f(x̄) ≥ β distm(xj , S) = β ‖xj − sj‖m .
Thus

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m ≥ β,

and (c) holds.
(c)⇒ (b). This implication is obvious.
(b)⇒ (a) (by contraposition). Suppose that x̄ is not a weak sharp local minimizer

of order m for f . Then there exists a sequence {xj} → x̄ such that

f(xj)− f(x̄) < distm(xj , S)/j.

For each j, let sj ∈ P (S, xj). Since S is closed, each sj ∈ S; and since ‖xj − sj‖ ≤
‖xj − x̄‖, we have ‖xj − sj‖ → 0. Taking a subsequence if necessary, we may assume
without loss of generality that the sequence {(xj − sj)/ ‖xj − sj‖} converges to some
y. Then y ∈ N(S, x̄), ‖y‖ = 1, and

f(xj)− f(sj) = f(xj)− f(x̄) < distm(xj , S)/j = ‖xj − sj‖m /j.
Hence

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m−1 ≤ 0

and

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m ≤ 0.

Therefore (b) does not hold, and the proof is complete.
Theorem 2.2 gives very general, albeit rather complicated, characterizations of

weak sharp local minima of order m for f . Are there simpler conditions that imply
Theorem 2.2(c) and still provide a characterization in a wide variety of circumstances?
Next we propose one answer to this question based on the following concept of direc-
tional derivative.

Definition 2.3. Let S be a nonempty closed subset of Rn, and let f : Rn → R
be finite on bdS. For x ∈ bdS and y ∈ Rn, define

dmS f(x; y) := lim inf
s→bdSx

(t,v)→(0+,y)

(
f(s+ tv)− f(s)

)
/tm,
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where “s→bdS x” means that s→ x with each s ∈ bdS. (In particular, (x, y) is an
allowable choice of (s, v).)

Definition 2.3 gives a sort of generalization of the directional derivative

dmf(x; y) := lim inf
(t,v)→(0+,y)

(
f(x+ tv)− f(x)

)
/tm,

which was used to study strict local minima of order m in [26], [28]. Observe that
when S = {x}, then dmS f(x; y) reduces to dmf(x; y). It is also worth noting that
dmS f(x; y) and dmf(x; y) may coincide if f is sufficiently smooth.

Lemma 2.4. Let f : Rn → R be finite on bdS, and let x ∈ bdS.
(a) If f is strictly differentiable at x with derivative ∇f(x), then ∀y ∈ Rn,

d1
Sf(x; y) = 〈∇f(x), y〉 = d1f(x; y).

(b) If f is C2 at x and there exists ε > 0 with ∇f(s) = 0 ∀s ∈ bdS ∩ B(x, ε),
then ∀y ∈ Rn,

d2
Sf(x; y) = ∇2f(x)(y, y)/2 = d2f(x; y).

Proof. Part (a) follows easily from the definition of strict differentiability. To
prove part (b), note that if f is C2 at x with ∇f(s) = 0 ∀s ∈ bdS ∩ B(x, ε), then
∀y ∈ Rn, we have by Taylor’s formula that

d2
Sf(x; y) = lim inf

s→bdSx
(t,v)→(0+,y)

(
f(s+ tv)− f(s)

)
/t2

= lim inf
s→bdSx

(t,v)→(0+,y)

∇2f(s)(v, v)/2 = ∇2f(x)(y, y)/2.

Similarly, ∇2f(x)(y, y)/2 = d2f(x; y), and so part (b) is true.
The directional derivative dmS f(x; ·) has a number of properties in common with

dmf(x; ·). In particular, dmS f(x; ·) is l.s.c. as a function of the direction y. From the
definition of dmS f(x; ·), it follows easily that if dmS f(x; y) > −∞ and dmS g(x; y) > −∞,
then

dmS (f + g)(x; y) ≥ dmS f(x; y) + dmS g(x; y);(2.1)

and if in addition there exist c ∈ R and δ > 0 such that

f(z) = g(z) = c ∀z ∈ bdS ∩B(x̄, δ),

then for h(x) := max{f(x), g(x)},

dmS h(x̄; y) ≥ max
{
dmS f(x̄; y), dmS g(x̄; y)

}
.(2.2)

We will take advantage of these properties later in this paper.
Making use of Theorem 2.2, we can deduce sufficient conditions for weak sharp

minimality in terms of our new directional derivatives.
Theorem 2.5. Let f : Rn → R be finite and constant on a closed set S ⊂ Rn,

and let x̄ ∈ bdS. If m ≥ 1 and

dmS f(x̄; y) > 0 ∀y ∈ N(S, x̄)\{0},(2.3)
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then x̄ is a weak sharp local minimizer of order m for f .
Proof. Let m ≥ 1, and let y ∈ N(S, x̄) with ‖y‖ = 1. Let {xj} → x̄, {sj} with

sj ∈ P (S, xj) and {(xj − sj)/ ‖xj − sj‖} → y. Then xj 6∈ S, and so sj ∈ bdS. Define
tj := ‖xj − sj‖ and yj := (xj−sj)/tj . As noted in the proof of Theorem 2.2, tj → 0+.
By (2.3), it follows that

lim inf
j→∞

(
f(xj)− f(sj)

)
/ ‖xj − sj‖m

= lim inf
j→∞

(
f(sj + tjyj)− f(sj)

)
/tmj ≥ dmS f(x̄; y) > 0.

Hence x̄ is a weak sharp minimizer of order m for f by Theorem 2.2.
Condition (2.3) is not a general characterization of weak sharp minimality, mainly

because Definition 2.3 does not specify that s ∈ P (S, s + tv). (In the proof that
(a) ⇒ (c) in Theorem 2.2, the fact that sj ∈ P (S, xj) plays an essential role.) The
following example illustrates that the sufficient conditions of Theorem 2.5 are not
always necessary conditions.

Example 2.1. Define f : R2 →R by

f(x, y) :=

{
xm if x ≥ 0, 0 ≤ y ≤ 1,

+∞ otherwise,

and let S = {(0, y) | 0 ≤ y ≤ 1}. Then each element of S is a weak sharp minimizer
of order m for f . When 0 < y < 1, N(S, (0, y)) = {(z, 0) | z ∈ R}. Since

dmS f
(
(0, y); (z, 0)

)
=

{
zm if z ≥ 0,

+∞ if z < 0,

(2.3) is satisfied at x̄ = (0, y), 0 < y < 1.
However, N(S, (0, 0)) = {(x, y) | y ≤ 0} and dmS f((0, 0); (0,−1)) = 0, so (2.3)

does not hold at x̄ = (0, 0). Similarly, N(S, (0, 1)) = {(x, y) | y ≥ 0} and dmS
f((0, 1); (0, 1)) = 0, so (2.3) is not satisfied at x̄ = (0, 1). In general, (2.3) will not
hold in situations where S is a convex set that contains more than one point but has
empty interior and x̄ is not in the relative interior of S.

It is interesting to compare Theorem 2.5 with the necessary conditions for weak
sharp minima that were derived in [7], [28]. These necessary conditions are stated in
terms of dmf(x̄; ·) and the contingent cone, which is defined for C ⊂ Rn and x̄ ∈ C by

K(C, x) :=
{
y ∈ Rn | ∃(tj , yj)→ (0+, y) with x+ tjyj ∈ C

}
.

In particular, Theorem 2.6 below is a special case of [28, Theorem 4.1] (or, for m = 1,
[7, Theorem 2.2]).

Theorem 2.6 (see [28]). Let f : Rn → R be finite and constant on S ⊂ Rn, and
let x̄ ∈ S be a weak sharp local minimizer of order m for f . Then there exists β > 0
such that

dmf(x̄; y) ≥ β distm
(
y,K(S, x̄)

) ∀y ∈ Rn.(2.4)

By comparing Theorems 2.5 and 2.6, we can determine assumptions under which
condition (2.3) characterizes weak sharp minima.

Theorem 2.7. Let f : Rn → R be finite and constant on a closed set S ⊂ Rn,
and let x̄ ∈ bdS. If K(S, x̄) ∩N(S, x̄) = {0} and

dmf(x̄; y) = dmS f(x̄; y) ∀y ∈ N(S, x̄)\{0},(2.5)
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then x̄ is a weak sharp local minimizer of order m for f if and only if (2.3) holds.
Proof. Suppose that x̄ is a weak sharp minimizer of order m for f , K(S, x̄) ∩

N(S, x̄) = {0}, and dmf(x̄; y) = dmS f(x̄; y) ∀y ∈ N(S, x̄)\{0}. Let y ∈ N(S, x̄)\{0}.
Then y 6∈ K(S, x̄), and by (2.4), dmf(x̄; y) > 0. Hence dmS f(x̄; y) > 0 and so (2.3)
holds. On the other hand, (2.3) implies that x̄ is a weak sharp minimizer of order m
for f by Theorem 2.5.

Remark 2.1. (a) The assumption

K(S, x̄) ∩N(S, x̄) = {0}(2.6)

in Theorem 2.7 holds, in particular, if S is convex. Indeed, if S is convex, then
N(S, x̄) = K(S, x̄)0 [13], [19], [20], so that if y ∈ K(S, x̄) ∩ N(S, x̄), it follows that
〈y, y〉 ≤ 0. If S is the set of all global minimizers of f , then S will be convex, for
example, whenever f is quasi-convex.

However, (2.6) may not hold if S is not convex. For example, if S = {(x, y) | y =
−|x|} and x̄ = (0, 0), then S ⊂ K(S, x̄) ∩N(S, x̄).

(b) In Example 2.1, we saw that (2.3) does not hold at the points (0, 0) and (0, 1).
Observe that (2.5) is not satisfied at these points since

dmS f
(
(0, 0); (0,−1)

)
= dmS f

(
(0, 1); (0, 1)

)
= 0,

while

dmf
(
(0, 0); (0,−1)

)
= dmf

(
(0, 1); (0, 1)

)
= +∞.

3. Optimality conditions for constrained problems. In this section, we
apply the results of section 2 to deduce optimality conditions for problems with in-
equality, equality, and abstract set constraints, concentrating on sufficient conditions
for weak sharp minima of orders one and two. In stating these conditions, we will use
a variation of the contingent cone that takes the set S into account. For C ⊂ Rn and
x ∈ C, we define this new tangent cone by

KS(C, x) :=
{
y | ∃(tj , yj)→ (0+, y), ∃xj →bdS x with xj + tjyj ∈ C

}
.

Observe that when S = {x}, then KS(C, x) = K(C, x). It is also easy to see that
KS(C, x) is defined precisely so that if S is closed and x̄ ∈ bdS, then

dmS iC(x̄; ·) = iKS(C,x̄)(·) ∀m ≥ 1.(3.1)

We can use Theorem 2.5 and our new tangent cone to derive sufficient conditions for
weak sharp minimality in (1.1).

Theorem 3.1. Let C ⊂ Rn, and let f : Rn → R be finite and constant on a
closed set S with x̄ ∈ bdS ∩ C. If dmS f(x̄; ·) is proper and

dmS f(x̄; y) > 0 ∀y ∈ (N(S, x̄) ∩KS(C, x̄)
)\{0},(3.2)

then x̄ is a weak sharp local minimizer of order m for (1.1).
Proof. Suppose that (3.2) holds, and let y ∈ N(S, x̄)\{0}. Then by (3.1) and

(3.2), we have

dmS (f + iC)(x̄; y) ≥ dmS f(x̄; y) + iKS(C,x̄)(y) > 0;(3.3)
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and so by Theorem 2.5, x̄ is a weak sharp local minimizer of order m for f+iC . Hence
x̄ is a weak sharp local minimizer of order m for (1.1).

We next present sufficient conditions for weak sharp minimality of order one in
the problem

min
{
f(x) | gi(x) ≤ 0, i ∈ J, hi(x) = 0, i ∈ L, x ∈ Ω

}
,(3.4)

where Ω is a nonempty subset of Rn, J := {1, . . . , p}, L := {1, . . . , q}, gi : Rn → R,
i ∈ J , and hi : Rn → R, i ∈ L. In (3.4), we define

C :=
{
x ∈ Rn | gi(x) ≤ 0, i ∈ J, hi(x) = 0, i ∈ L, x ∈ Ω

}
and let Γ be a closed subset of C on which f is finite and constant, with f(x) = α
∀x ∈ Γ. For x ∈ C, we single out the set of indices

I(x) :=
{
i ∈ J | gi(x) = 0

}
;

and for x̄ ∈ Γ, we define

I∗(x̄) :=
{
i ∈ I(x̄) | ∃δ > 0 with i ∈ I(y) ∀y ∈ B(x̄, δ) ∩ Γ

}
and

S(x̄) :=
{
x | gi(x) = 0, i ∈ I∗(x̄), hi(x) = 0, i ∈ L, f(x) = α

}
.

Our sufficient conditions can now be stated as follows.
Theorem 3.2. Let x̄ ∈ Γ, and let S ⊂ S(x̄) be closed with x̄ ∈ bdS. Suppose

that hi is strictly differentiable at x̄ for each i ∈ L. If d1
Sf(x̄; ·) is proper and

d1
Sf(x̄; y) > 0 ∀y ∈ (N(S, x̄) ∩KS(Ω, x̄)

) \ {0} with(3.5)

d1
Sgi(x̄; y) ≤ 0 ∀i ∈ I∗(x̄), 〈∇hi(x̄), y〉 = 0 ∀i ∈ L,

then x̄ is a weak sharp local minimizer of order one for (3.4)).
Proof. The result will follow directly from Theorem 3.1 and the inclusion

KS(C, x̄) ⊂ {y ∈ KS(Ω, x̄) | d1
Sgi(x̄; y) ≤ 0 ∀i ∈ I∗(x̄), 〈∇hi(x̄), y〉 = 0 ∀i ∈ L}.

To verify this inclusion, let y ∈ KS(C, x̄). Then there exist sequences {xj} ⊂ bdS
with {xj} → x̄, {tj} → 0+, and {yj} → y such that xj + tjyj ∈ C. In particular,
xj + tjyj ∈ Ω, and so y ∈ KS(Ω, x̄). For i ∈ L, hi(xj + tjyj) = 0 and hi(xj) = 0
since S ⊂ S(x̄), and because hi is strictly differentiable at x̄, we have 〈∇hi(x̄), y〉 =
0. Finally, for i ∈ I∗(x̄), gi(xj) = 0 and gi(xj + tjyj) ≤ 0 ∀j, so that d1

Sgi(x̄; y)
≤ 0.

Our next example illustrates Theorem 3.2, highlighting the importance of the
choice of S in condition (3.5).

Example 3.1. In problem (3.4), let n = 2, Ω = R2, J = {1, 2}, L = ∅, and define
f(x, y) = x, g1(x, y) = −x, g2(x, y) = −y. Then each element of S = {(0, y) | y ≥ 0}
is a weak sharp minimizer of order one for (3.4).

For y > 0 and x̄ = (0, y), N(S, x̄) = {(z, 0) | z ∈ R}, I(x̄) = I∗(x̄) = {1}, and d1
S

g1(x̄; (z, 0)) ≤ 0 for z ≥ 0. Since

d1
Sf
(
x̄; (z, 0)

)
= z > 0 ∀z > 0,
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(3.5) holds for x̄ = (0, y), y > 0. However, for x̄ = (0, 0), N(S, x̄) = {(x, y) | y ≤ 0},
while I(x̄) = {1, 2} and I∗(x̄) = {1}. Since (0,−1) ∈ N(S, x̄) and d1

S g1(x̄; (0,−1)) =
0, while d1

S f(x̄; (0,−1)) = 0, (3.5) is not satisfied at x̄.
On the other hand, if we let S := {0} × R, then (3.5) holds with x̄ = (0, y) for

any y ≥ 0.
One can also prove sufficient conditions for weak sharp local minima of order two

in terms of Lagrangian functions. In the remainder of this section, we present such
conditions.

We first set some notation. For λi ≥ 0, i ∈ J , µi ∈ R, i ∈ L, we define the
Lagrangian function

L(x) := f(x) +
∑
i∈J

λigi(x) +
∑
i∈L

µihi(x)

and single out a set of directions

D∗(x̄) :=
{
v | 〈∇f(x̄), v〉 ≤ 0, 〈∇gi(x̄), v〉 ≤ 0 ∀i ∈ I∗(x̄), 〈∇hi(x̄), v〉 = 0 ∀i ∈ L}

and a set of multipliers

Λ∗(x̄) :=
{

(λ, µ) ∈ Rp × Rq | ∇L(x̄) = 0, λi ≥ 0, i ∈ J, λi = 0 ∀i /∈ I∗(x̄)
}
.

In terms of these concepts, we can derive second-order sufficient conditions for problem
(3.4) with Ω = Rn.

Theorem 3.3. In problem (3.4), let Ω = Rn. Let S ⊂ Γ be closed, and suppose
that f, gi, i ∈ J , and hi, i ∈ L, are strictly differentiable at x̄ ∈ bdS. If there exists
(λ, µ) ∈ Λ(x̄) with

d2
SL(x̄; y) > 0 ∀y ∈ (N(S, x̄) ∩D∗(x̄)

)\{0},(3.6)

then x̄ is a weak sharp local minimizer of order two for (3.4).
Proof. We prove the contrapositive. If x̄ is not a weak sharp local minimizer of

order two for (3.4), there exists a sequence {xj} →C x̄ such that

f(xj)− f(x̄) < dist2(xj , S)/j.

Then each xj /∈ S, so there exists sj ∈ bdS with sj ∈ P (S, xj). Call tj := ‖xj − sj‖
and yj := (xj − sj)/tj . As in the proof of Theorem 2.2, {tj} → 0+; and we may
assume, taking a subsequence if necessary, that {yj} → y for some y 6= 0. Then
y ∈ N(S, x̄)\{0}. For j large enough, we have(

gi(xj)− gi(sj)
)
/tj ≤ 0 ∀i ∈ I∗(x̄),(

hi(xj)− hi(sj)
)
/tj = 0 ∀i ∈ L,

and (
f(xj)− f(sj)

)
/tj < tj/j.

Thus y ∈ D∗(x̄). Now let λ ∈ Λ∗(x̄). Then for j large enough,(
L(xj)− L(sj)

)
/t2j ≤

(
f(xj)− f(sj)

)
/t2j ≤ 1/j.
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Therefore

d2
SL(x̄; y) ≤ lim inf

j→∞
(
L(xj)− L(sj)

)
/t2j ≤ 0.

By comparing Theorem 3.3 with the necessary conditions given in [28, section 4],
we can formulate a characterization of weak sharp local minimality of order two. To
do so, we first define the set of multipliers

Λ(x̄) :=
{

(λ, µ) ∈ Rp × Rq | ∇L(x̄) = 0, λi ≥ 0, λigi(x̄) = 0 ∀i ∈ J};

and for (λ, µ) ∈ Λ(x̄) we single out the sets of indices

M(x̄) :=
{
i ∈ I(x̄) | λi > 0

}
and

N(x̄) :=
{
i ∈ I(x̄) | λi = 0

}
,

and define the set of directions

D(x̄) :=
{
v | 〈∇gi(x̄), v〉 = 0 ∀i ∈M(x̄),

〈∇gi(x̄), v〉 ≤ 0 ∀i ∈ N(x̄), 〈∇hi(x̄), v〉 = 0 ∀i ∈ L}.
Our characterization involves the following constraint qualification.

Definition 3.4. Let f, gi, i ∈ J , hi, i ∈ L, be C1 at x̄, and suppose that
(λ, µ) ∈ Λ(x̄). We say that the strict Mangasarian–Fromovitz constraint qualification
(SMFCQ) is satisfied at (x̄, λ, µ) if

(i) ∇gi(x̄), i ∈M(x̄), ∇hi(x̄), i ∈ L, are linearly independent;
(ii) there exists z ∈ Rn such that

〈∇gi(x̄), z〉 < 0, i ∈ N(x̄); 〈∇gi(x̄), z〉 = 0, i ∈M(x̄); 〈∇hi(x̄), z〉 = 0, i ∈ L.

Observe that if I(x̄) = M(x̄), then condition SMFCQ coincides with the familiar
linear independence constraint qualification. Kyparisis [16] has shown that SMFCQ is
necessary and sufficient for Λ(x̄) to be a singleton. In [28], Ward used this constraint
qualification in developing necessary conditions for weak sharp minimality of order
two. In particular, Proposition 3.5 below is a special case of [28, Corollary 4.2] (taking
into account [28, Lemma 3.1(i)]).

Proposition 3.5. Let Ω = Rn in (3.4), let S ⊂ Γ be closed, and let x̄ ∈ bdS
be a weak sharp local minimizer of order two for (3.4). Suppose that f, gi, i ∈ J , and
hi, i ∈ L, are C1,1 at x̄, and assume that SMFCQ is satisfied at (x̄, λ, µ). Then there
exists β > 0 such that

d2L(x̄; y) ≥ β dist2
(
y,K(S, x̄)

) ∀y ∈ D(x̄).(3.7)

Theorem 3.3 and Proposition 3.5 yield the following characterization of local weak
sharp minimality of order two for a program with C1,1 data.

Theorem 3.6. In problem (3.4), let Ω = Rn, let S ⊂ Γ be closed, and suppose
that f, gi, i ∈ J , and hi, i ∈ L, are C1,1 at x̄ ∈ bdS. Assume that K(S, x̄) ∩
N(S, x̄) = {0}, D(x̄) = D∗(x̄), SMFCQ is satisfied at (x̄, λ, µ) with (λ, µ) ∈ Λ∗(x̄),
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and d2
SL(x̄; ·) = d2L(x̄; ·). Then x̄ is a weak sharp local minimizer of order two for

(3.4) if and only if

d2L(x̄; y) > 0 ∀y ∈ (N(S, x̄) ∩D(x̄)
)\{0}.(3.8)

Proof. By our assumptions and Theorem 3.3, (3.8) implies that x̄ is a weak
sharp local minimizer of order two . On the other hand, suppose that x̄ is a weak
sharp local minimizer of order two for (3.4), and let y ∈ (N(S, x̄) ∩D(x̄))\{0}. Since
N(S, x̄) ∩K(S, x̄) = {0}, y 6∈ K(S, x̄), and by (3.7), d2L(x̄; y) > 0. Therefore (3.8)
holds.

In the case in which f, gi, and hi are C2, Theorem 3.6 reduces to a slightly simpler
result.

Corollary 3.7. In problem (3.4), let Ω = Rn. Let S ⊂ Γ be closed, and suppose
that f, gi, i ∈ J , and hi, i ∈ L, are C2 at x̄ ∈ bdS. Assume that K(S, x̄)∩N(S, x̄) =
{0}, D(x̄) = D∗(x̄), SMFCQ is satisfied at (x̄, λ, µ) with (λ, µ) ∈ Λ∗(x̄), and there
exists δ > 0 such that ∇L(s) = 0 ∀s ∈ bdS ∩ B(x̄, δ). Then x̄ is a weak sharp local
minimizer of order two for (3.4) if and only if

∇2L(x̄)(y, y) > 0 ∀y ∈ (N(S, x̄) ∩D(x̄)
)\{0}.(3.9)

Proof. This result follows immediately from Theorem 3.6 and Lemma 2.4(b).
Remark 3.1. In Theorem 3.6 and Corollary 3.7, one condition under which

D(x̄) = D∗(x̄) and Λ(x̄) = Λ∗(x̄) is the assumption that I(x̄) = I∗(x̄), since

D(x̄) =
{
v | 〈∇f(x̄), v〉 ≤ 0, 〈∇gi(x̄), v〉 ≤ 0 ∀i ∈ I(x̄), 〈∇hi(x̄), v〉 = 0 ∀i ∈ L}

by [11, Theorem 3.5].
We conclude this section with a discussion of an interesting special case of The-

orem 3.2. In problem (3.4), let Ω = Rn, gi(x) = 〈ai, x〉 − bi, i ∈ J , and hi(x) =
〈ci, x〉 − di, i ∈ L, where each ai, ci ∈ Rn, bi, di ∈ R; and suppose that f is constant
on the set

S =
{
x ∈ Rn | 〈ai, x〉 = bi, i ∈ J1, 〈ci, x〉 = di, i ∈ L}(3.10)

for some J1 ⊂ J . In this case of linear constraints, we have the following result.
Proposition 3.8. In problem (3.4), define C as above and suppose f is constant

on the set S in (3.10). Let x̄ ∈ Γ = S ∩ C be such that I∗(x̄) = J1, and assume that
ai, i ∈ J1, ci, i ∈ L, are linearly independent. Suppose that f is strictly differentiable
at x̄ and there exists λ ∈ Λ(x̄) such that M(x̄) = J1. Then x̄ is a weak sharp local
minimizer of order one for (3.4).

Proof. Let y ∈ N(S, x̄) be such that d1
Sf(x̄; y) ≤ 0, d1

Sgi(x̄; y) ≤ 0 ∀i ∈ J1, and
〈∇hi(x̄), y〉 = 0 ∀i ∈ L. Since there exists λ ∈ Λ(x̄) with M(x̄) = J1, it follows (in
view of Lemma 2.4) that 〈ai, y〉 = 0 ∀i ∈ J1 and 〈ci, y〉 = 0 ∀i ∈ L. Let A be a matrix
whose rows are ai, i ∈ J1, and ci, i ∈ L. Then Ay = 0. In addition, it is easy to
calculate that N(S, x̄) = RangeAT , and so y = ATw for some w. Hence

0 = Ay = AATw,

and since A has linearly independent rows, we conclude that w = 0. Therefore y = 0,
and (3.5) holds. By Theorem 3.2, x̄ is a weak sharp local minimizer of order one for
(3.4).

We illustrate Proposition 3.8 with an example.
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Example 3.2. Consider the problem

min
{
x2 − 2y − 3z | x+ 2y + 3z ≤ 6, x ≥ 0, y ≥ 0, z ≥ 0

}
.

Here the objective function is clearly constant on the set

S =
{

(x, y, z) | x+ 2y + 3z = 6, x = 0
}
.

Let x̄ = (0, y, z) be an element of S ∩ C. It is easy to verify that (1, 1, 0, 0) ∈ Λ(x̄),
giving M(x̄) = J1 = {1, 2}. Since

A =

[
1 2 3
−1 0 0

]
has independent rows, the hypotheses of Proposition 3.8 are satisfied, and we conclude
that x̄ is a weak sharp local minimizer of order one for this problem.

4. Sufficient conditions and exactness of penalties. One way to approach
the solution of constrained optimization problems is via associated unconstrained
problems. For example, under fairly general conditions, a minimizer of

min{f(x) | gi(x) ≤ 0, i ∈ J, x ∈ Ω}(4.1)

will also be a minimizer of the problem

min

{
f(x) + p

∑
i∈J

max(gi(x), 0) | x ∈ Ω

}
(4.2)

for sufficiently large values of p > 0. (See [6], [9], [11], and references therein.) When
minimizers of (4.1) and (4.2) are related in this way, the penalty function

θp(x) := f(x) + p
∑
i∈J

max
(
gi(x), 0

)
is said to be exact.

One type of hypothesis that often guarantees exactness of θp is a sufficient con-
dition for strict local minimality of order m. (See, for instance, [6], [11], [12], [22],
[27].) In this section, we prove similar results for weak sharp minimality. First, we
generalize [27, Theorem 4.1] for m = 1 and the penalty function θp by showing that
condition (3.5) of Theorem 3.2 (in the case L = ∅) implies exactness of θp.

In this section, we let L = ∅ in (3.4) and let S ⊂ Γ be closed. To state our main
result, we introduce notation similar to that of [22] and [27], defining

K∗(x̄) :=
{
y ∈ N(S, x̄) ∩KS(Ω, x̄) | ‖y‖ = 1, d1

Sf(x̄; y) ≤ 0
}
,

b(x̄) := min
{
d1
Sf(x̄; y) | ‖y‖ = 1, y ∈ N(S, x̄) ∩KS(Ω, x̄)

}
,

and

a(x̄) := min

{ ∑
I∗ (x̄)

max
(
0, d1

Sgi(x̄; y)
) | y ∈ K∗(x̄)

}
.

We note that since d1
S f(x̄; ·) is l.s.c., the set K∗(x̄) is compact, although possibly

empty. It follows that the minima in the definitions of b(x̄) and a(x̄) are attained if
the constraint sets in those definitions are nonempty.
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We can now prove a result on exactness of θp.
Theorem 4.1. Let x̄ ∈ bdS, and suppose that d1

Sgi(x̄; ·) is proper for each
i ∈ I(x̄). Define

ρ0 :=

{
−b(x̄)/a(x̄) if K∗(x̄) 6= ∅,
0 else.

Suppose that d1
Sf(x̄; ·) is proper and

d1
Sf(x̄; y) > 0 ∀y ∈ (N(S, x̄) ∩KS(Ω, x̄)

)\{0} with d1
Sgi(x̄; y) ≤ 0 ∀i ∈ I∗(x̄).(4.3)

Then ∀p > ρ0, x̄ is a weak sharp local minimizer of order one for (4.2).
Proof. We first observe that if (4.3) is satisfied and K∗(x̄) 6= ∅, then a(x̄) > 0

and b(x̄) ≤ 0, so that ρ0 is well defined and nonnegative. To prove our assertion, let
p > ρ0, and let y ∈ (N(S, x̄) ∩ KS(Ω, x̄))\{0}. By Theorem 3.1, it suffices to show
that d1

Sθp(x̄; y) > 0. Without loss of generality, we may assume that ‖y‖ = 1. Since
d1
Sf(x̄; ·) and d1

Sgi(x̄; ·), i ∈ I(x̄), are proper and

d1
S max{gi, 0}(x̄; y) ≥ 0 ∀i ∈ I(x̄)\I∗(x̄),

it follows from (2.1) and (2.2) that

d1
Sθp(x̄; y) ≥ d1

Sf(x̄; y) + p
∑
I∗(x̄)

max
(
0, d1

Sgi(x̄; y)
)
.(4.4)

If K∗(x̄) = ∅, it follows from (4.4) that d1
Sθp(x̄; y) > 0. If K∗(x̄) 6= ∅, then if

d1
Sf(x̄; y) > 0, we again have d1

S θ p(x̄; y) > 0; while if y ∈ K∗(x̄), the definition of ρ0

implies that

p
∑
I∗(x̄)

max
(
0, d1

Sgi(x̄; y)
)
> −b(x̄),

and hence

d1
Sθp(x̄; y) > d1

Sf(x̄; y)− b(x̄) ≥ 0.

Therefore x̄ is a weak sharp local minimizer of order 1 for (4.2).
Theorem 4.1 generalizes part of [27, Theorem 4.1] to cover the case where S is

not necessarily a singleton. We illustrate Theorem 4.1 with an example in which [27,
Theorem 4.1] is not applicable.

Example 4.1. In problem (4.1), let n = 2, Ω = R2, J = {1}, and define f(x, y) =
x, g1(x, y) = −x + 1. Then each element of S = {(1, y) | y ∈ R} is a weak sharp
minimizer of order 1 for (4.1). For x̄ ∈ S, N(S, x̄) = {(z, 0) | z ∈ R}, I(x̄) =
I∗(x̄) = {1}, and d1

Sg1(x̄; (z, 0)) ≤ 0 for z ≥ 0. Since d1
Sf(x̄; (z, 0)) = z ∀z > 0, (4.3)

holds. It is easy to calculate that K∗(x̄) = {(−1, 0)}, b(x̄) = −1, and a(x̄) = 1, so
by Theorem 4.1, each x̄ ∈ S is a weak sharp local minimizer of order one for (4.2)
whenever p > 1.

Analogues of Theorem 4.1 can be formulated for other nonsmooth penalty func-
tions of the class considered in [27]. Moreover, it is possible to accommodate equality
constraints in Theorem 4.1 by treating them as pairs of inequality constraints.

The second-order sufficient conditions of Theorem 3.3 also imply exactness of θp.
We now demonstrate this for problem (4.1) with Ω = Rn.
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Theorem 4.2. In problem (4.1), let Ω = Rn. Let S ⊂ Γ be closed, and suppose
that f and gi, i ∈ J , are strictly differentiable at x̄ ∈ bdS and λ ∈ Λ∗(x̄). If

d2
SL(x̄; y) > 0 ∀y ∈ (N(S, x̄) ∩D∗(x̄)

)\{0},(4.5)

then x̄ is a weak sharp local minimizer of order two for θp ∀p > maxi∈J λi.
Proof. Let p > maxi∈J λi and y ∈ N(S, x̄)\{0}. By Theorem 2.5, it suffices

to show that d2
Sθp(x̄; y) > 0. Since d2

Sθp(x̄; y) ≥ d1
Sθp(x̄; y), we may assume that

d1
Sθp(x̄; y) ≤ 0. Then, as in (4.4), we have

0 ≥ d1
Sθp(x̄; y) ≥ 〈∇f(x̄), y〉+ p

∑
I∗(x̄)

max
(
0, 〈∇gi(x̄), y〉 ),

and so 〈∇f(x̄), y〉 ≤ 0. Since ∇L(x̄) = 0, it follows that∑
I∗(x̄)

λi 〈∇gi(x̄), y〉 ≥ p
∑
I∗(x̄)

max
(
0, 〈∇gi(x̄), y〉 ).(4.6)

Observe that (4.6) and the fact that p > maxi∈J λi imply that y ∈ D∗(x̄). By (4.5),
d2
SL(x̄; y) > 0. Finally, note that since λ ∈ Λ∗(x̄), we have L(s) = θp(s) = f(x̄) for
s ∈ bdS sufficiently close to x̄. Hence

d2
Sθp(x̄; y) ≥ d2

SL(x̄; y) > 0,

and the proof is complete.
Theorem 4.2 is a weak sharp analogue of results for strict local minima of order

two like [6, Theorem 4.7] and the related theorems cited on page 986 of [6].

5. More sufficient conditions for weak sharp minima of order one. In
this section, we present sufficient conditions for weak sharp minimality of order one
which are different from those of sections 2 and 3. These conditions involve the Mor-
dukhovich subdifferential [18], [19], [20], [21], [13] instead of the directional derivative
d1
Sf(x; ·). We begin by reviewing some essential definitions.

Definition 5.1. Let f : Rn → R be finite at x ∈ Rn.
(a) The Mordukhovich subdifferential (or approximate subdifferential) of f at x

is the set

∂f(x) :=
{
x∗ ∈ Rn | (x∗,−1) ∈ N( epi f, (x, f(x))

)}
.

(b) The singular Mordukhovich subdifferential of f at x is the set

∂∞f(x) :=
{
x∗ ∈ Rn | (x∗, 0) ∈ N( epi f, (x, f(x))

)}
.

Much information about ∂f and ∂∞f is given in [18], [19], [20], [21], [13], and
references therein. We mention here that if f is convex, then ∂f coincides with
the subdifferential of convex analysis, and if f is strictly differentiable at x, then
∂f(x) = {∇f(x)}. The singular subdifferential ∂∞f is used to describe conditions
under which calculus rules for ∂f are valid; an important thing to remember about
∂∞f is that ∂∞f(x) = {0} if and only if f is Lipschitzian near x.

We now give sufficient conditions for weak sharp minimality of order one in the
unconstrained case. Our proof makes use of a technique of [2, Theorem 1.1].
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Theorem 5.2. Let f : Rn → R be continuous, and let x̄ ∈ Rn. Suppose that
there exists δ > 0 such that f(x̄) ≤ f(x) ∀x ∈ B(x̄, δ). Define S := {x ∈ B(x̄, δ) |
f(x) = f(x̄)}. Suppose that there exists c > 0 such that

‖z‖ ≥ c ∀z ∈ ∂f(x), ∀x ∈ B(x̄, δ)\S.(5.1)

Then there exists µ ∈ (0, δ) such that

f(x) ≥ f(x̄) + cdist(x, S) ∀x ∈ B(x̄, µ).(5.2)

Proof. Let F (x) := f(x)− f(x̄). For ρ ∈ [0, δ], define

h(ρ) := max{F (x) | x ∈ B(x̄, ρ)}/c.

Since F is continuous, there exists ρ∗ ∈ (0, δ) such that

F (x) ≤ F (x̄) + cδ/2 ∀x ∈ B(x̄, ρ∗),

and so

h(ρ) ≤ δ/2 ∀ρ ∈ [0, ρ∗].(5.3)

We claim that (5.2) is true with µ := ρ∗/4. Indeed, if (5.2) does not hold with
µ := ρ∗/4, there exists u ∈ B(x̄, ρ∗/4) such that

dist(u, S) > F (u)/c,

and so for some t ∈ (1, 1.5),

dist(u, S) > γ := tF (u)/c.

Since F (u) ≥ 0, we have dist(u, S) > 0, and it follows that u /∈ S. Hence γ > 0.
Moreover, (5.3) and the definition of h imply that

γ ≤ th(ρ∗/4) ≤ tδ/2 < .75δ.(5.4)

Now since γc/t = F (u) and F (x) ≥ 0 ∀x ∈ B(x̄, δ), we have

F (u) ≤ inf{F (x) | x ∈ B(x̄, δ)}+ γc/t.

Applying Ekeland’s variational principle [8, Theorem 7.5.1] to the l.s.c. function F
with V := B(x̄, δ), ε := γc/t and λ := γ, we deduce that there exists uγ ∈ B(x̄, δ)
such that

‖u− uγ‖ ≤ γ,(5.5)

F (w) + c ‖w − uγ‖ /t > F (uγ) ∀w ∈ V \{uγ}.(5.6)

By (5.6), uγ minimizes the function ψ(w) := F (w) + c ‖w − uγ‖ /t on V . Condi-
tions (5.4) and (5.5) imply that

‖uγ − x̄‖ ≤ ‖uγ − u‖+ ‖u− x̄‖ ≤ .75δ + .25ρ∗ < δ,
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which means that uγ lies in the interior of V , and so uγ is a local minimizer for ψ.
By the sum formula for subdifferentials (e.g., [20, Corollary 4.6]),

0 ∈ ∂ψ(uγ) ⊂ ∂F (uγ) +
c

t
∂(‖· − uγ‖)(uγ).

Hence there exists zγ ∈ ∂f(uγ) such that zγ = cyγ/t for some yγ with ‖yγ‖ ≤ 1.
Finally, since dist(u, S) > γ, (5.5) implies that uγ /∈ S. Thus by (5.1),

c ≤ ‖zγ‖ = c ‖yγ‖ /t ≤ c/t < c,

which is a contradiction.
We observe that any subdifferential with a calculus rule like [20, Corollary 4.6]

could be used in place of ∂f in (5.1). One reason to choose the Mordukhovich subd-
ifferential in (5.1) is that ∂f is the smallest possible subdifferential having a sum rule
and some other desirable properties [13].

We illustrate Theorem 5.2 with a simple example.
Example 5.1. Define f : R2 → R by f(x, y) := |y|, and let x̄ := (0, 0) and δ > 0.

Then S = {(0, y) | −δ ≤ y ≤ δ} and ‖z‖ = 1 ∀z ∈ ∂f(x, y) with (x, y) ∈ B(x̄, δ)\S.
Hence (5.1) holds with c = 1, and x̄ is a weak sharp minimum of order one for f .

The following example shows that (5.1) is not necessary for weak sharp minimality
of order one. It also shows that (2.3) may hold even when (5.1) is not satisfied.

Example 5.2. Define f : R→ R by

f(x) :=


0 if x ≤ 0,

2−n if 2−n−1 ≤ x ≤ 2−n, n an odd integer,

3x− 2−n if 2−n−1 ≤ x ≤ 2−n, n an even integer,

and let x̄ = 0. The function f is continuous (Lipschitzian, in fact), and for δ > 0,
S = {x | −δ ≤ x ≤ 0}. Since f(x) ≥ x ∀x ≥ 0, (5.2) holds with c = 1 and any
µ ∈ (0, δ). However, 0 ∈ ∂f(x) for x = 3/22n+1, n = 0, 1, 2, . . . , so (5.1) does not hold
for any c > 0.

On the other hand, N(S, x̄) = {y | y ≥ 0} and

d1
Sf(x̄; y) = d1f(x̄; y) = y ∀y ≥ 0,

so (2.3) holds at x̄ = 0. In this example, condition (2.3) identifies a weak sharp
minimizer of order one that is not detected by (5.1).

Since Theorem 5.2 specifies that f be continuous, it is not possible to use indicator
functions, as in section 3, to derive further optimality conditions for constrained
problems. However, other standard techniques can be used to extend Theorem 5.2 to
the constrained case. We illustrate one such technique for an inequality-constrained
problem in Corollary 5.3.

Corollary 5.3. Let gi : Rn → R, i = 0, 1, . . . ,m, be continuous, and define
C := {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}. Suppose that x̄ ∈ C and g0(x̄) ≤ g0(x)
∀x ∈ C ∩ B(x̄, δ). Call S := {x ∈ C ∩ B(x̄, δ) | g0(x) = g0(x̄)}. Assume that the
following conditions are satisfied ∀x ∈ B(x̄, δ)\S:

(i) If x∗i ∈ ∂∞gi(x), i ∈ {0} ∪ I(x), and
∑
x∗i = 0, then x∗i = 0 ∀i.

(ii) There exists c > 0 such that

⋃{ ∑
i∈0∪I(x)

λi ◦ ∂gi(x) | λi ≥ 0,
∑

λi = 1

}
∩ intB(0, c) = ∅,
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where we define λ ◦ ∂g(x) to be λ∂g(x) for λ > 0 and ∂∞g(x) for λ = 0.
Then there exists µ ∈ (0, δ) such that

g0(x) ≥ g0(x̄) + cdist(x, S) ∀x ∈ B(x̄, µ) ∩ C.(5.7)

Proof. Define f(x) := max{g0(x) − g0(x̄), g1(x), . . . , gm(x)}. Then S = {x ∈
B(x̄, δ) | f(x) = f(x̄)}. Since (i) is satisfied, Theorem 7.5 of [21] implies that

∂f(x) ⊂
⋃{ ∑

i∈0∪I(x)

λi ◦ ∂gi(x) | λi ≥ 0,
∑

λi = 1

}

∀x ∈ B(x̄, δ)\S. Condition (ii) then guarantees that (5.1) holds. By Theorem 5.2, we
conclude that (5.7) holds.

It is possible for Corollary 5.3 to identify weak sharp minima of order one that
are not recognized by Theorem 3.2. We revisit Example 3.1 to demonstrate this fact.

Example 5.3. Let n = 2, m = 2 in Corollary 5.3. For (x, y) ∈ R2, define
g0(x, y) = x, g1(x, y) = −x, g2(x, y) = −y. As noted in Example 3.1, each element
of S = {(0, y) | y ≥ 0} is a weak sharp minimizer of order one for this problem,
but (0, 0) is not identified by Theorem 3.2. We observe that (i) of Corollary 5.3 is
satisfied ∀(x, y) ∈ R2 since each gi is Lipschitzian. For x̄ = (0, y) and y > 0, I(z) = ∅
∀z ∈ R2\S near x̄, and (ii) is satisfied with c = 1 since ∂g0(z) = {(1, 0)}. For x̄ = (0, 0)
and z ∈ R2\S near x̄, either I(z) = ∅ or I(z) = {2}. In either case, (ii) is satisfied.
Hence Corollary 5.3 identifies each element of S as a weak sharp local minimizer of
order one.

Examples 5.2 and 5.3 show that the optimality conditions of Theorem 5.2 and
Corollary 5.3 are, in general, neither weaker nor stronger than the corresponding parts
of Theorems 2.5 and 3.2.

6. Conclusion. In this paper, we have developed a number of sufficient condi-
tions and characterizations of weak sharp minimality in nonsmooth programming, in
many cases generalizing known results for strict minimality. Several questions merit
further investigation. For example, can more be said about the relationship between
dmS f(x; ·) and dmf(x; ·)? Can our results be applied fruitfully to the study of sensitiv-
ity analysis in nonlinear programming? We hope to address such questions in future
work.
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[2] A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J.

Control Optim., 22 (1984), pp. 239–254.
[3] A. Ben-Tal, Second-order and related extremality conditions in nonlinear programming, J.

Optim. Theory Appl., 31 (1980), pp. 143–165.
[4] J. F. Bonnans and A. Ioffe, Second-order sufficiency and quadratic growth for nonisolated

minima, Math. Oper. Res., 20 (1995), pp. 801–817.
[5] J. F. Bonnans and A. Ioffe, Quadratic growth and stability in convex programming problems

with multiple solutions, J. Convex Anal., 2 (1995), pp. 41–57.
[6] J. V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control

Optim., 29 (1991), pp. 968–998.
[7] J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming, SIAM J.

Control Optim., 31 (1993), pp. 1340–1359.
[8] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[9] G. Di Pillo and F. Facchinei, Exact barrier function methods for Lipschitz programs, Appl.

Math. Optim., 32 (1995), pp. 1–31.



236 MARCIN STUDNIARSKI AND DOUG E. WARD

[10] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Wiley, New York, 1968.

[11] S.-P. Han and O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math.
Programming, 17 (1979), pp. 251–269.

[12] S. Howe, New conditions for exactness of a simple penalty function, SIAM J. Control, 11
(1973), pp. 378–381.

[13] A. D. Ioffe, Approximate subdifferentials and applications I: The finite-dimensional theory,
Trans. Amer. Math. Soc., 281 (1984), pp. 389–416.

[14] A. D. Ioffe, On sensitivity analysis of nonlinear programs in Banach spaces: The approach
via composite unconstrained optimization, SIAM J. Optim., 4 (1994), pp. 1–43.

[15] D. Klatte, On quantitative stability for non-isolated minima, Control Cybernet., 23 (1994),
pp. 183–200.

[16] J. Kyparisis, On uniqueness of Kuhn–Tucker multipliers in nonlinear programing, Math. Pro-
graming, 32 (1985), pp. 242–246.

[17] E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, Conditions of high order for a local
minimum in problems with constraints, Russian Math. Surveys, 33 (1978), pp. 97–168.

[18] B. S. Mordukhovich, Maximum principle in the problem of time optimal response with non-
smooth constraints, J. Appl. Math. Mech., 40 (1976), pp. 960–969.

[19] B. S. Mordukhovich, Complete characterization of openness, metri regularity, and Lips-
chitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), pp. 1–35.

[20] B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued map-
pings, J. Math. Anal. Appl., 183 (1994), pp. 250–288.

[21] B. S. Mordukhovich and Yongheng Shao, Nonsmooth sequential analysis in Asplund spaces,
Trans. Amer. Math. Soc., 348 (1996), pp. 1235–1280.

[22] E. Rosenberg, Exact penalty functions and stability in locally Lipschitz programming, Math.
Programming, 30 (1984), pp. 340–356.

[23] A. Shapiro, Perturbation theory of nonlinear programs when the set of solutions is not a
singleton, Appl. Math. Optim., 18 (1988), pp. 215–229.

[24] A. Shapiro, Perturbation analysis of optimization problems in Banach spaces, Numer. Funct.
Anal. Optim., 13 (1992), pp. 97–116.

[25] G. Still and M. Streng, Optimality conditions in smooth nonlinear programming, J. Optim.
Theory Appl., 90 (1996), pp. 483–515.

[26] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth
functions, SIAM J. Control Optim., 24 (1986), pp. 1044–1049.

[27] D. E. Ward, Exact penalties and sufficient conditions for optimality in nonsmooth optimiza-
tion, J. Optim. Theory Appl., 57 (1988), pp. 485–499.

[28] D. E. Ward, Characterizations of strict local minima and necessary conditions for weak sharp
minima, J. Optim. Theory Appl., 80 (1994), pp. 551–571.



ON THE MINIMUM PROBLEM FOR A CLASS OF NONCOERCIVE
NONCONVEX FUNCTIONALS∗

GRAZIANO CRASTA†

SIAM J. CONTROL OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 38, No. 1, pp. 237–253

Abstract. We are concerned with the problem of existence of solutions to the variational
problem

min

{∫ R

0

g(t, v′(t)) dt; v ∈ AC([0, R]), v(R) = 0

}
,

with only one fixed endpoint prescribed. The map g : [0, R]×R→ R is a normal integrand, for which
neither convexity nor superlinear growth conditions are assumed.

As an application, we give an existence result for the radially symmetric variational problem

min
u∈W1,1

0
(BR)

∫
BR

[f (|x| , |∇u(x)|) + a(|x|)u(x)] dx,

where BR is the ball of Rn centered at the origin and with radius R > 0, the map f : [0, R]×[0,+∞[→
R is a normal integrand, and a ∈ L1(0, R). Again, neither convexity nor superlinear growth conditions
are made on f .

These kinds of problems, with nonconvex Lagrangians with respect to ∇u, arise in different fields
of mathematical physics such as optimal design and nonlinear elasticity.

Key words. calculus of variations, existence, radially symmetric solutions, nonconvex problems,
noncoercive problems
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1. Introduction. We study the existence of solutions to the variational problem

min
v∈V

Γ(v), Γ(v)
.
=

∫ R

0

g(t, v′(t)) dt,(1)

where V
.
= {v ∈ AC([0, R]); v(R) = 0}. The map g : [0, R] × R → R is a normal

integrand for which neither convexity nor superlinear growth conditions are assumed.
Furthermore, we remark that only one fixed endpoint is prescribed.

As customary, we consider the relaxed problem associated with (1), namely,

min
v∈V

Γ(v), Γ(v)
.
=

∫ R

0

g∗∗(t, v′(t)) dt,(2)

where g∗∗(t, ·) is the bipolar of the map ξ 7→ g(t, ξ).
If g is assumed to be superlinear, then a solution to (2) can be found using the

direct method of the calculus of variations (see, for example, [14]). From the properties
of this solution, one can often deduce the existence (or nonexistence) of a solution to
the nonconvex problem (1).
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In our case we follow a different approach based on the indirect method described
below. As a first step we prove that there exists a nonempty closed interval J ⊆ R
such that the fixed endpoints variational problem

min
v∈V (α)

Γ(v), V (α)
.
= {v ∈ V ; v(0) = −α} ,(3)

has a solution for every α ∈ J . Next, we show that the extended real-valued function
φ(α)

.
= inf

{
Γ(v); v ∈ V (α)

}
attains its minimum in a point a ∈ J . Using the proper-

ties of the set of integrals of a decomposable family of integrable functions, we prove
that the map φ(α)

.
= inf {Γ(v); v ∈ V (α)} coincides with φ, and that the nonconvex

fixed endpoints variational problem

min
v∈V (α)

Γ(v)(4)

has a solution for α = a (see section 2 for the definition of decomposable family and
Theorem 2.1 for the properties of the set of integrals of such a family). Finally, from
the analysis above, we conclude that problem (1) has a solution.

The issue of the existence of solutions to fixed endpoints variational problems,
either with nonconvex or noncoercive integrands, was also considered in [11, 12, 13,
15, 18, 19, 20].

As an application, we prove that there exists a solution to the radially symmetric
variational problem

min
u∈W 1,1

0 (BR)

∫
BR

[f (|x| , |∇u(x)|) + a(|x|)u(x)] dx,(5)

where BR is the ball of Rn centered at the origin and with radius R > 0, the map
f : [0, R]× [0,+∞[→ R is a normal integrand, and a ∈ L1(0, R). We emphasize again
the fact that f is not required to be convex nor superlinear with respect to ∇u.
Nonconvex radially symmetric functionals were considered in [7] for a more general
framework on the integrand, assuming superlinear growth with respect to ∇u. For
related results we mention also [6, 24].

These kinds of problems arise in different fields of mathematical physics. Among
others, we cite [16, 17] and [2, 3, 21, 24], respectively, for problems of optimal design
and nonlinear elasticity.

The plan of the paper is the following. In section 3 we state the main result
concerning problem (1), and we give some examples. Then, in sections 4 and 6,
respectively, we give applications to the existence of solutions to problem (5) and to
a minimization problem involving the Laplacian. The proofs of the results stated in
sections 3 and 4 are given, respectively, in sections 7 and 5.

2. Preliminaries. We shall denote by intA, A, coA, coA, respectively, the
interior, the closure, the convex hull, and the closure of the convex hull of a set
A. Given a function ψ : X → R .

=] − ∞,+∞], we denote by epiψ and graphψ,
respectively, its epigraph and its graph, and by ψ∗ and ψ∗∗, respectively, its polar and
bipolar functions. If ψ admits an affine minorant, then we have that epiψ∗∗ = co epiψ
(see [14, Prop. 3.2]).

We say that φ : [0, R] × R → R is a normal integrand if φ(t, ·) is lower semicon-

tinuous for almost every (a.e.) t ∈ [0, R], and there exists a Borel function φ̂ : [0, R]×
[0,+∞[→ R such that φ̂(t, ·) = φ(t, ·) for a.e. t ∈ [0, R] (see [14, Def. VIII.1.1]). We
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shall denote by φ∗ and φ∗∗, respectively, the polar and the bipolar of the function
φ(t, ·).

A convex function ψ : R → R is proper if its essential domain Domψ
.
= {ξ ∈

R; ψ(ξ) < +∞} is not empty. As customary, the subgradient of ψ at ξ will be
denoted by ∂ψ(ξ). For the definition and the main properties of the subgradient we
refer to [14, 22]. We recall that, if ξ ∈ Domψ, then ∂ψ(ξ) = [ψ′−(ξ), ψ′+(ξ)], where
ψ′−(ξ) and ψ′+(ξ) denote, respectively, the left and right derivatives of ψ at ξ. If we
extend ψ′± beyond the interval Domψ by setting both +∞ for points lying to the
right of Domψ and both −∞ for points lying to the left, then ψ′± are monotone
nondecreasing functions on R, finite in int Domψ, and for every ξ one has

lim
η↘ξ

ψ′+(η) = ψ′+(ξ), lim
η↗ξ

ψ′+(η) = ψ′−(ξ),

lim
η↘ξ

ψ′−(η) = ψ′+(ξ), lim
η↗ξ

ψ′−(η) = ψ′−(ξ)
(6)

(see [22, Thm. 24.1]). For notational convenience, if ψ depends on two variables (t, ξ),
we denote by ∂ψ(t, ξ) the subgradient of the function ξ 7→ ψ(t, ξ) at (t, ξ).

We say that a convex function ψ is strictly convex at infinity if Domψ = R
and its graph contains no halflines. It is easy to check that ψ is strictly convex at
infinity if and only if for every r1 > 0 there exists r2 > 0 such that, for all p ∈ R,
∂ψ∗(p) ∩ Br1 6= ∅ implies ∂ψ∗(p) ⊆ Br2 (see [10, Def. 2.1]). We recall that, if φ is
any function such that φ∗∗ is strictly convex at infinity, then the convex hull of the
epigraph of φ is closed (see [13, Thm. 3.6]). As a consequence, φ∗∗ coincides with the
convexification of φ, that is, φ∗∗ = sup {ψ ≤ φ; ψ convex}.

Another result which will be used in the following concerns the set of integrals
of a decomposable family of integrable functions. More precisely, given a set K ⊂
L1([0, R],Rm), we shall denote by I(K) the set of integrals of the elements of K, that
is,

I(K)
.
=

{∫ R

0

w(t)dt; w ∈ K
}
.(7)

We say that K is decomposable if, for every measurable set E ⊂ [0, R] and all u, v ∈ K,
one has u · χE + v · χ[0,R]\E ∈ K, where χE denotes the characteristic function of the
set E.

Now we recall an extension of the classical Lyapunov theorem on the range of
nonatomic vector-valued measures (see [19, Thm. 3]).

Theorem 2.1. If K ⊂ L1([0, R],Rm) is decomposable, then I(K) is convex and
I(K) = I(coK). If, in addition, K is strongly closed in the L1 topology, then I(K)
contains the compact extremal faces of I(K).

3. The main result. In this section we state the main theorem of the paper,
and we give some examples. The proof will be postponed to section 7.

We collect here the hypotheses that will be used in the rest of the paper. Con-
ditions (G1)–(G3) will be enough to prove the existence of a solution to the convex
problem (2). In order to obtain a solution to (1) we also need the hypotheses (G4)
and (G5).

(G1) The map g : [0, R]× [0,+∞[→ R is a normal integrand, and Dom g∗∗(t, ·) = R
for a.e. t ∈ [0, R].

(G2) The map t 7→ g∗∗(t, 0) is integrable on [0, R].
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(G3) There exist a positive constant m and a function b ∈ L1(0, R) such that

g∗∗(t, ξ) ≥ m|ξ| − b(t) a.e. t ∈ [0, R] ∀ξ ∈ R.(8)

(G4) For every r1 > 0 there exists r2 > 0 such that, for a.e. t ∈ [0, R] and every
p ∈ R, if ∂g∗(t, p) ∩Br1 6= ∅ then ∂g∗(t, p) ⊆ Br2 .

(G5) The map t 7→ g(t, ξ) is integrable on [0, R] for every ξ ∈ R.
Remark 3.1. 1. It is easy to prove that, if (G2) holds, then (G3) is equivalent to

(G3′) There exists a positive constant m such that g∗(·, p) ∈ L1(0, R) for every
p ∈ [−m,m].

Indeed, let us assume that (G3) holds, and let p ∈ [−m,m]. From (G3) and the
definition of g∗ we deduce that

−g∗∗(t, 0) ≤ g∗(t, p) ≤ b(t) a.e. t ∈ [0, R];(9)

hence, from (G2), we conclude that g∗(·, p) ∈ L1(0, R). Conversely, assume that
the condition (G3′) holds. Then it is easy to check that (G3) holds with b(t)

.
=

max {g∗(t,m), g∗(t,−m)}.
2. Assumption (G3) looks similar to other growth conditions found in literature,

suitable to minimize fixed endpoint variational problems (see, for example, [8, §10.4,
§11.1]). The main difference is that these conditions require that for every m ∈ R
(and not only for a fixed one) there exists an integrable function b = bm such that (8)
holds. For example, let us consider a function g satisfying the bounds a1|ξ| − a2 ≤
g(t, ξ) ≤ c1|ξ| + c2 for some positive constants aj , cj , j = 1, 2. It is clear that (G3)
holds with m = a1, whereas (8) cannot hold if m > c1. It should be noted that the
weaker growth condition (G3) is sufficient since only one fixed endpoint is prescribed.

3. It is easy to see that, if (G4) holds, then g∗∗(t, ξ) is strictly convex at infinity
with respect to ξ for almost every fixed t ∈ [0, R]. Furthermore, from Proposition 2.2
in [10], we have that (G4) holds if, for example, the function g∗∗(t, ξ) is continuous
on [0, R]×R and strictly convex at infinity with respect to ξ for every fixed t ∈ [0, R].

4. If g is coercive, that is, if g(t, ξ) ≥ ψ(|ξ|) where ψ : [0,+∞[→ R is a continuous
increasing function satisfying lims→+∞ ψ(s)/s = +∞, then g satisfies (G3) and (G4).

5. From (G3) it follows that the functional Γ defined in (2) is bounded from
below.

6. It is worth rewriting conditions (G1)–(G5) when g ≡ g(ξ) does not depend
on t. It is easy to see that assumptions (G1)–(G3) and (G4)–(G5) can be replaced,
respectively, by (g1)–(g2) and (g3) below.

(g1) g : R→ R is a lower semicontinuous function, and Dom g∗∗ = R.
(g2) There exist positive constants m and b such that g∗∗(ξ) ≥ m|ξ| − b for every

ξ ∈ R.
(g3) g∗∗ is strictly convex at infinity, and g(ξ) ∈ R for every ξ ∈ R.
Theorem 3.2. Assume that (G1)–(G3) hold. Then the convex problem (2) admits

a solution v̄ ∈ V satisfying the Euler–Lagrange inclusion

0 ∈ ∂g∗∗(t, v̄′(t)) a.e. t ∈ [0, R].(10)

If, in addition, (G4) and (G5) hold, then v̄ satisfies

g(t, v̄′(t)) = g∗∗(t, v̄′(t)) a.e. t ∈ [0, R],(11)

thus providing a solution to the nonconvex problem (1).
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Remark 3.3. Notice that, if assumption (G5) holds, then for every α ∈ R the set{
v ∈ V (α); Γ(v) < +∞} is not empty (we recall that V (α) is the set defined in (4)).

Hence, if (G1)–(G3) and (G5) hold, from Corollary 1 in [23] we can infer that v̄ is a
solution to problem (2) if and only if it satisfies the Euler–Lagrange inclusion (10).

Example 3.4. Let n = 1, and consider the function g(t, ξ)
.
= g0(|ξ|)− t ξ, where

g0(s)
.
=

{
s−√s if s > 1/4,

−1/4 if 0 ≤ s ≤ 1/4.

It is easy to show that the assumptions (G1), (G2), (G4), and (G5) are satisfied,
whereas (G3) is satisfied if and only if R < 1 (it is enough to choose m = 1−R).

We are going to show that, if R ≥ 1, then the variational problem (1) has no
solution. Let R ≥ 1, and assume by contradiction that u ∈ V is a solution to (1). It
is easy to check that ξ 7→ g0(|ξ|) is continuously differentiable and g′0(s) = 1−s−1/2/2
if s > 1/4, while g′0(s) = 0 if 0 ≤ s ≤ 1/4. From the Euler–Lagrange necessary
conditions (10) we deduce that g′0(|u′(t)|) signu′(t) = t for a.e. t ∈ [0, R]. Since
|g′0(s)| < 1 for every s, this relation cannot be satisfied a.e. if R > 1. In the case

R = 1 we deduce that u′(t) =
[
4(1− t)2

]−1
for a.e. t ∈ [0, 1]. But now u′ 6∈ L1(0, 1),

giving a contradiction.
Example 3.5. Let n = 1, g(t, ξ)

.
=
√

1 + ξ2 − t ξ. Again, (G1), (G2), (G4), and
(G5) are satisfied, whereas (G3) holds if and only if R < 1, choosing m = 1−R. It is
easy to see that, in this case, for every R > 1 problem (1) does not have a solution.
Indeed, if u is a solution, then from the Euler–Lagrange necessary conditions (10) we
have that u′(t)/

√
1 + u′(t)2 = t for a.e. t ∈ [0, R]. Since the left-hand side is strictly

less than 1 for every t, this condition cannot be satisfied if R > 1.

4. Application to radially symmetric problems. In this section we give an
application of Theorem 3.2 to radially symmetric variational problems of the form (5).

We collect here the assumptions on f and a. Conditions (H1)–(H4) will be enough
to prove the existence of a solution to the relaxed problem

min
u∈W 1,1

0 (BR)

∫
BR

[f∗∗ (|x| , |∇u(x)|) + a(|x|)u(x)] dx.(12)

In order to obtain a solution to the nonconvex problem (5) we also need the hypothe-
ses (H5) and (H6).

(H1) The map f : [0, R]×[0,+∞[→ R is a normal integrand, and Dom f∗∗(t, ·) = R
for a.e. t ∈ [0, R].

(H2) The map x 7→ f∗∗(|x|, 0) is integrable on BR; that is, t 7→ tn−1f∗∗(t, 0) is
integrable on [0, R].

(H3) The function A : [0, R]→ R defined by A(0)
.
= 0, A(t)

.
= t1−n

∫ t
0
sn−1a(s) ds,

t ∈]0, R], belongs to L∞(0, R).
(H4) There exists a constant M > ‖A‖L∞ such that for every ρ ∈ [0,M [ there

exists a function cρ ∈ L1(0, R) such that

f∗∗(t, ξ) ≥ ρ |ξ| − t1−ncρ(t) a.e. t ∈ [0, R], ξ ∈ R.

(H5) For every r1 > 0 there exists r2 > 0 such that, for every (t, p) ∈ [0, T ]× R, if
∂f∗(t, p) ∩Br1 6= ∅, then ∂f∗(t, p) ⊆ Br2 .

(H6) The map t 7→ tn−1f(t, s) is integrable on [0, R] for every s ∈ [0,+∞[.
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Remark 4.1. From (H4) we deduce that M ≤ ess inft∈[0,R]M(t), where M(t)
.
=

lims→+∞ f∗∗(t, s)/s.
We are now in a position to state the main theorem concerning radially symmetric

problems. The proof will be postponed to section 5.
Theorem 4.2. Assume that (H1)–(H4) hold. Then the convex problem (12) has

at least one radially symmetric solution ũ(x) = ū(|x|), and ū satisfies the Euler–
Lagrange inclusion

ū′(t) ∈ ∂f∗(t, A(t)) a.e. t ∈ [0, R].(13)

Furthermore, if either a(t) > 0 (resp., < 0) for a.e. t ∈ [0, R] or f∗∗(t, ·) has a strict
minimum at 0 for a.e. t ∈ [0, R], then every solution to (12) is radially symmetric.

If, in addition, (H5) and (H6) hold, then ũ satisfies

f(|x|, |∇ũ(x)|) = f∗∗(|x|, |∇ũ(x)|) for a.e. x ∈ BR,(14)

thus providing a solution to the nonconvex problem (5).
For the reader’s convenience, we state Theorem 4.2 in the case f = f(|ξ|) does

not depend explicitly on x.
Theorem 4.3. Assume the following:
(i) f : [0,+∞[→ R is a lower semicontinuous function, and Dom f∗∗ = R;
(ii) M

.
= lims→+∞ f∗∗(s)/s > 0;

(iii) a ∈ L1(0, R) and supt∈]0,R]

∣∣∣t1−n ∫ t0 sn−1 a(s) ds
∣∣∣ < M .

Then the variational problem

min
u∈W 1,1

0 (BR)

∫
BR

[f∗∗ (|∇u(x)|) + a(|x|)u(x)] dx(15)

has a radially symmetric solution. If, in addition,
(iv) f∗∗ is strictly convex at infinity,

then the nonconvex problem

min
u∈W 1,1

0 (BR)

∫
BR

[f (|∇u(x)|) + a(|x|)u(x)] dx(16)

has a radially symmetric solution.
Remark 4.4. In the particular case a(t) ≡ 1, condition (iii) becomes

(iii′) R < nM .
In this case the bound R < nM is optimal, in the sense explained in Example 3.4.

Example 4.5. We discuss here an example treated in [5, 25, 4] without the
symmetry assumption on the domain. Let a(t) ≡ 1, and let f : [0,+∞[→ R be a
lower semicontinuous function satisfying f(L) = 0 for some L > 0, and

f(s) ≥ max {0, λ(s− L)} ∀s ≥ 0

for some λ > 0. It easy to see that f∗∗(ξ) = 0 if |ξ| ≤ L, while f∗∗(ξ) ≥ λ(|ξ| − L) if
|ξ| ≥ L, so that M ≥ λ.

Now we want to apply Theorem 4.3. Conditions (i) and (ii) are satisfied by f∗∗,
while (iii′) is certainly satisfied if R < nλ. Thus, if R < nλ, there exists a solution
ũ(x) = ū(|x|) to (15), and ū(t) satisfies (13), that is,

t

n
∈ ∂f∗∗(ū′(t)) a.e. t ∈ [0, R].(17)
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This implies that ū′(t) ≥ 0 for a.e. t. It is easy to check that

∂f∗∗(s)


= {0} if 0 ≤ s < L,

⊇ [0, λ] if s = L,

⊆ [λ,+∞[ if s > L.

(18)

Furthermore, the condition R < nλ implies that 0 < t/n < λ for every t ∈]0, R], so
that from (17) and (18) we necessarily have ū′(t) = L a.e. t ∈ [0, R]; that is, ū(t) =
−L(R − t), t ∈ [0, R]. Thus a solution ũ to (15) is given by ũ(x)

.
= −Ldist(x, ∂BR).

Since f∗∗(L) = f(L), ũ provides a solution to (16) even if f is not convex. In [5, 25]
it was proved that there exists a solution whenever R ≤ nλ.

5. Proof of Theorem 4.2. We collect here some results that will be used in
order to reduce (12) to a one-dimensional problem (see [7, Thms. 1 and 2]).

Proposition 5.1. Problem (12) has a solution if and only if it admits at least
one radially symmetric solution. Furthermore, if either a(t) > 0 (resp., < 0) for
a.e. t ∈ [0, R] or f∗∗(t, ·) has a strict minimum at 0 for a.e. t ∈ [0, R], then every
solution to (12) is radially symmetric.

Proposition 5.1 implies that problem (12) is equivalent to

min
u∈W

∫ R

0

tn−1 [f∗∗(t, u′(t)) + a(t)u(t)] dt,(19)

where

W
.
=
{
u ∈ ACloc(]0, R]); u(R) = 0, t 7→ tn−1u′(t) ∈ L1(0, R)

}
,(20)

in the sense that (12) has a solution if and only if (19) has a solution.
In order to treat problem (19), we need a further reduction. We begin by proving

an integration-by-parts lemma involving functions in the set W defined in (20).
Lemma 5.2. Let a ∈ L1(0, R), u ∈ W . Then the maps t 7→ tn−1a(t)u(t) and

t 7→ B(t)u′(t), B(t)
.
=
∫ t

0
sn−1a(s) ds, are integrable on [0, R], and the following

integration-by-parts formula holds:∫ R

0

tn−1a(t)u(t) dt = −
∫ R

0

B(t)u′(t) dt.(21)

Proof. Since u ∈ W , there exists k ∈ L1(0, R) such that u′(t) = t1−nk(t) a.e. t ∈
[0, R]; that is, u(t) = − ∫ R

t
s1−nk(s) ds. Clearly we have

|u(t)| ≤ t1−n ‖k‖L1 a.e. t ∈ [0, R],(22)

so that |tn−1 a(t)u(t)| ≤ ‖k‖L1 |a(t)| ∈ L1(0, R). Furthermore, from the trivial esti-
mate

|B(t)| ≤ tn−1

∫ t

0

|a(s)| ds, t ∈ [0, R],(23)

we deduce that |B(t)u′(t)| ≤ ‖a‖L1 |k(t)| ∈ L1(0, R). In order to prove (21), from the
properties of the Lebesgue integral it suffices to show that

lim
ε→0+

∫ R

ε

tn−1a(t)u(t) dt = − lim
ε→0+

∫ R

ε

B(t)u′(t) dt.
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Integrating by parts we have that∫ R

ε

tn−1a(t)u(t) dt = −B(ε)u(ε)−
∫ R

ε

B(t)u′(t) dt.

It remains to prove that limε→0+B(ε)u(ε) = 0. From (22) and (23) we infer that
|B(ε)u(ε)| ≤ ‖k‖L1

∫ ε
0
|a(s)| ds, and from the absolute continuity of the integral the

last term tends to zero as ε→ 0+.
Using Lemma 5.2, we can integrate by parts the term a(t)u(t) in (19), so that

the integral in (19) is equal to
∫ R

0
tn−1 [f∗∗(t, u′(t))−A(t)u′(t)] dt, where A is the

function defined in (H3). With every u ∈ W we associate a function v ∈ V in the
following way:

v(t)
.
= −

∫ R

t

sn−1u′(s) ds.

It is easy to see that the map u ∈ W 7→ v ∈ V is a bijection; hence problem (19) is
equivalent to problem (2), with

g(t, ξ)
.
= tn−1f

(
t,
|ξ|
tn−1

)
−A(t) ξ,(24)

in the sense that (19) has a solution if and only if (2) has a solution.
It remains to prove that the assumptions of Theorem 3.2 are satisfied. Clearly,

(G1), (G2), and (G4), respectively, are equivalent to (H1), (H2), and (H5). It is also
easy to verify that (H3) and (H6) imply (G5). Furthermore, from (H3) and (H4) we
deduce that for every ρ ∈ [0,M [ there exists cρ ∈ L1(0, R) such that

g∗∗(t, ξ) ≥ ρ|ξ| − cρ(t)−A(t)ξ a.e. t ∈ [0, R] ∀ξ ∈ R.
Now, from (H4), it is clear that (G3) holds choosing m ∈]0,M − ‖A‖L∞ [.

6. A minimization problem involving the Laplacian. Consider the mini-
mization problem

min
u∈W∗

∫
BR

[f(|x|,4u(x)) + a(|x|)u(x)] dx,(25)

where W∗
.
= {u ∈ W 2,1(BR) ∩W 1,1

0 (BR); ∂u
∂n = 0 on ∂BR}. This kind of problem

was considered in [6] for superlinear Lagrangians. In that paper it was proved that
the corresponding relaxed problem

min
u∈W∗

∫
BR

[f∗∗(|x|,4u(x)) + a(|x|)u(x)] dx(26)

has a solution if and only if it admits at least one radially symmetric solution.
We recall that, if ũ ∈ W∗ is radially symmetric, that is, ũ(x) = ū(|x|) for some

ū ∈WS
.
= {u ∈W 2,1

loc (]0, R]); ∃v ∈W∗ s.t. u(|x|) = v(x)}, then, for x 6= 0, one has

4ũ(x) = |x|1−n d
dt

[
tn−1ū′(t)

]
t=|x| .(27)

Let us define V∗
.
=
{
w ∈W 2,1([0, R]); w(R) = 0, w′(R) = 0

}
. To every u ∈ WS we

can associate a w ∈ V∗ by setting w′(t) = tn−1u′(t), t ∈]0, R].
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Now, let B(t)
.
=
∫ t

0
sn−1a(s) ds, A(t)

.
= − ∫ t

0
s1−nB(s) ds, t ∈ [0, R]. Let u ∈

WS , and let w be the corresponding function in V∗. Integrating twice by parts (see
Lemma 5.2) we deduce that∫ R

0

tn−1a(t)u(t) dt = −
∫ R

0

B(t)u′(t) dt

= −
∫ R

0

t1−nw′(t)B(t) dt = −
∫ R

0

A(t)w′′(t) dt.

Recalling (27), this implies that (26) is equivalent to

min
w∈V∗

∫ R

0

[
tn−1f∗∗(t, t1−nw′′(t))−A(t)w′′(t)

]
dt,(28)

in the sense that (26) has a solution if and only if (28) has a solution.
We can make a further reduction, associating with every w ∈ V∗ a function v ∈ V

such that w′ = v, obtaining the minimization problem (2). Thus we can conclude
that the following existence theorem for (25) holds.

Theorem 6.1. Assume that (H1) and (H2) hold, that the function

A(t)
.
=

∫ t

0

s1−n
(∫ s

0

σn−1a(σ) dσ

)
ds, t ∈ [0, R],

belongs to L∞(0, R), and (H4) is satisfied. Then problem (26) has at least one ra-
dially symmetric solution. If, in addition, (H5) and (H6) hold, then the nonconvex
problem (25) has a radially symmetric solution.

7. Proof of Theorem 3.2. In the first part of this section we shall study the
convex problem (2), so that only conditions (G1)–(G3) will be assumed to hold.
Finally, starting from Lemma 7.13 below, we shall prove that, under the additional
conditions (G4) and (G5), the nonconvex problem (1) has a solution.

Lemma 7.1. Assume that (G1)–(G3) hold. Then the set

H
.
=
{
p ∈ R : g∗(·, p) ∈ L1(0, R)

}
(29)

is an interval, and [−m,m] ⊆ H.
Proof. Let p, q ∈ H and define pλ

.
= λp+ (1− λ)q, λ ∈ [0, 1]. From (G2) and the

inequality

−g∗∗(t, 0) ≤ g∗(t, pλ) ≤ λg∗(t, p) + (1− λ)g∗(t, q) a.e. t ∈ [0, R] ∀λ ∈ [0, 1],

it follows that pλ ∈ H for every λ ∈ [0, 1], and this proves that H is an interval. The
inclusion [−m,m] ⊆ H follows from (G3′).

Lemma 7.2. Assume that (G1)–(G3) hold. Then, for every p ∈]−m,m[, the set S
of all measurable selections of the multifunction t 7→ ∂g∗(t, p) is integrably bounded.

Proof. Choose ε > 0 such that Bε(p) ⊂]−m,m[. Let h ∈ S. From the inequality

g∗(t, q)− g∗(t, p) ≥ h(t)(q − p) ∀q ∈ R a.e. t ∈ [0, R],

we get

−ε−1 [g∗(t, p− ε)− g∗(t, p)] ≤ h(t) ≤ ε−1 [g∗(t, p+ ε)− g∗(t, p)] ,
and the conclusion now follows from Lemma 7.1.
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The first part of Theorem 3.2 can be already proved at this stage.
Theorem 7.3. Assume that (G1)–(G3) hold. Then problem (2) has a solution.

More precisely, if ξ is a measurable selection of ∂g∗(·, 0), then the function v̄(t)
.
=

− ∫ R
t
ξ(s) ds provides a solution to (2).

Proof. Since 0 ∈] −m,m[, from Lemma 7.2 we have that ξ ∈ L1(0, R), so that

the function v̄(t)
.
= − ∫ R

t
ξ(s) ds, t ∈]0, R], belongs to V . It is easy to see that v̄

is a solution to (2). Indeed, since 0 ∈ ∂g∗∗(t, v̄′(t)) a.e. t ∈ [0, R], we have that
Γ(v)− Γ(v̄) ≥ 0 for every v ∈ V .

In order to proceed with the analysis of problem (1), we need a further reduction.
More precisely, for every α ∈ R let us consider the functions

φ(α)
.
= inf
v∈V (α)

Γ(v), φ(α)
.
= inf
v∈V (α)

Γ(v),(30)

where V (α) is the set defined in (3), with the convention inf ∅ = +∞ (we recall that,
at this stage, we are not assuming (G5), so that the maps φ and φ may well assume
the value +∞ at some point). Now it is easy to see that (1) has a solution if and only
if there exists a ∈ R such that φ(a) = minα φ(α), and the fixed endpoints variational
problem (4) has a solution for α = a. The same conclusion holds for the functional Γ
and the associated function φ.

First we shall prove that the problem (3) has a solution for every α ∈ J , where
J is a nonempty (possibly unbounded) closed interval of R. Then we shall prove that
φ attains its minimum in a point a ∈ J , so that (2) has a solution. In order to prove
that (1) has a solution, we shall show that φ ≡ φ, and that (4) has a solution for α = a.
For the analysis of noncoercive nonconvex problems like (4) see also [11, 12]. Necessary
and sufficient conditions for the existence of solutions to the convex problem (3) can
be found in [18], in the case g∗∗(t, ·) continuously differentiable for a.e. t.

We recall a weak form of the Euler–Lagrange inclusion that will be used in the
sequel (see [1, Thm. 3.1]).

Theorem 7.4. If v is a solution to (3), then there exists p ∈ R such that

p ∈ ∂g∗∗(t, v′(t)) a.e. t ∈ [0, R].(31)

Remark 7.5. If h ∈ L1(0, R) is an integrable selection of ∂g∗(·, p) for some p, then

the function v(t)
.
= − ∫ R

t
h(s) ds solves (2) for α =

∫ R
0
h(s) ds. Namely,

Γ(w)− Γ(v) =

∫ R

0

[g∗∗(t, w′(t))− g∗∗(t, v′(t))] dt ≥ p
∫ R

0

[w′(t)− v′(t)] dt = 0

for every w ∈ V (α).
Let h1, h2 : [0, R]→ [−∞,+∞] be the measurable functions defined by

h1(t)
.
= lim
p→−m+

(g∗)′−(t, p), h2(t)
.
= lim
p→m−(g∗)′+(t, p).(32)

We remark that these limits exist, finite or infinite, for every t ∈ [0, R], since the maps

p 7→ (g∗)′±(t, p) are monotone nondecreasing. Let us define αj
.
=
∫ R

0
hj(t) dt, j = 1, 2.

Clearly α1 ≤ α2, and, by Lemma 7.2, α1 ∈ [−∞,+∞[, α2 ∈]−∞,+∞]. Let us define
the closed interval

J
.
= {α ∈ R; α1 ≤ α ≤ α2} .(33)
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Remark 7.6. If α1 ∈ R, then by definition h1 ∈ L1(0, R). Furthermore, from (6),
h1(t) = (g∗)′+(t,−m) for a.e. t ∈ [0, R]. Now, from Remark 7.5, we can conclude that
problem (3) has a solution for α = α1. The same argument works for α2 if α2 ∈ R.

Theorem 7.7. Assume that (G1)–(G3) hold. Then problem (3) has a solution
for every α ∈ J .

Proof. If αj ∈ R for some j ∈ {1, 2} and α = αj , then the proof follows from
Remark 7.6. Now let us assume that α ∈]α1, α2[. The maps I± : ]−m,m[→ R,

I±(p)
.
=

∫ R

0

(g∗)′±(t, p) dt,

are monotone nondecreasing and I−(p) ≤ I+(p) for every p ∈]−m,m[. Furthermore,
from the monotone convergence theorem and the fact that

lim
p→−m+

(g∗)′−(t, p) = lim
p→−m+

(g∗)′+(t, p),

lim
p→m−(g∗)′−(t, p) = lim

p→m−(g∗)′+(t, p),

one gets

lim
p→−m+

I±(p) = α1, lim
p→m− I

±(p) = α2.

Hence there exists p ∈] − m,m[ such that I−(p) ≤ α ≤ I+(p). Let S be the set
of all measurable selections of ∂g∗(·, p). Since p ∈] − m,m[, from Lemma 7.2 S is
integrably bounded; hence by Aumann’s theorem (see [9, Thm. 7.2.1]) we obtain

{∫ R
0
h(t) dt; h ∈ S} = [I−(p), I+(p)]. Thus we can conclude that there exists h ∈ S

such that
∫ R

0
h(t) dt = α, so that, recalling Remark 7.5, the proof is complete.

Now we prove some properties of the maps φ and φ defined in (30). We recall
that, from Remark 3.1(5), these maps are bounded from below.

Lemma 7.8. The maps φ and φ are convex.
Proof. Let us define

K1
.
=
{

(u, v) ∈ L1(0, R)× L1(0, R); v(t) ≥ g∗∗(t, u(t)) a.e. t
}
,(34)

K2
.
=
{

(u, v) ∈ L1(0, R)× L1(0, R); v(t) ≥ g(t, u(t)) a.e. t
}
.(35)

Since the sets Kj are decomposable, from Theorem 2.1 we deduce that the sets I(Kj),
j = 1, 2, defined in (7), are convex subsets of R2. From the very definition of φ and
φ we infer that

I(K1) ⊆ epiφ ⊆ I(K1), I(K2) ⊆ epiφ ⊆ I(K2),

epiφ \ graphφ ⊂ I(K1), epiφ \ graphφ ⊂ I(K2).
(36)

Let us prove that φ is convex. Assume by contradiction that there exist α, β ∈ R,
λ ∈]0, 1[, and ε > 0 such that φ(λα + (1 − λ)β) = λφ(α) + (1 − λ)φ(β) + 2ε. Since
(α, φ(α) + ε), (β, φ(β) + ε) ∈ I(K1), from the convexity of I(K1) we deduce that
(λα+ (1− λ)β, λφ(α) + (1− λ)φ(β) + ε) ∈ I(K1). By the definition of I(K1) and φ,
this implies that φ(λα + (1 − λ)β) ≤ λφ(α) + (1 − λ)φ(β) + ε, a contradiction. The
convexity of φ can be proved in the same way.

Lemma 7.9. There exists a constant c ∈ R such that φ(α) ≥ m|α| − c for every
α ∈ R. In particular

lim
|α|→+∞

φ(α) = +∞.(37)
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Proof. Let us define c
.
= ‖b‖L1 + 1, where b ∈ L1(0, R) is the function given

in (G3). By the very definition of φ we have that, for every fixed α ∈ Domφ, there
exists v ∈ V (α) such that Γ(v) ≤ φ(α) + 1; hence, from (G3),

φ(α) ≥ Γ(v)− 1 ≥ m ‖v′‖L1 − c ≥ m
∣∣∣∣∣
∫ R

0

v′(t) dt

∣∣∣∣∣− c = m|α| − c.(38)

Since this inequality is trivially satisfied if α 6∈ Domφ, the lemma is proved.
Remark 7.10. If (G5) holds, then from Lemma 7.8 we deduce that φ and φ are

finite convex maps on R; hence they are continuous on R. In general, Domφ and
Domφ can be proper subsets of R.

Lemma 7.11. The map φ is continuous relative to J .
Proof. Since φ is a convex function and, by Theorem 7.7, J ⊆ Domφ, we have

that φ is upper semicontinuous relative to J (see [22, Thm. 10.2]); hence it is enough
to prove that it is lower semicontinuous relative to the same interval.

Let (ak)k ⊂ Domφ, limk ak = α ∈ J . From Theorem 7.7 there exist v ∈ V (α),
vk ∈ V (ak), k ∈ N, such that Γ(v) = φ(α), Γ(vk) ≤ φ(ak) + 1/k, k ∈ N. From
Theorem 7.4 there exists p ∈ R such that p ∈ ∂g∗∗(t, v′(t)) a.e. t ∈ [0, R] so that, for
every k ∈ N,

g∗∗(t, v′k(t))− g∗∗(t, v(t)) ≥ p(v′k(t)− v′(t)) a.e. t ∈ [0, R].

Integrating this inequality we get, for every k ∈ N,

φ(ak)− φ(α) +
1

k
≥ Γ(vk)− Γ(v) ≥ p

∫ R

0

[v′k(t)− v′(t)] dt = p(ak − α).

Taking the lim inf for k → +∞ we obtain φ(α) ≤ lim infk φ(ak), which concludes the
proof.

Proposition 7.12. The map φ attains its minimum in J ; that is,

inf
α∈R

φ(α) = min
α∈J

φ(α).(39)

Proof. Let us assume that α1 ∈ R. Let v(t)
.
= − ∫ R

t
h1(s) ds, t ∈ [0, R], where

h1 is the function defined in (32). From Remark 7.6 we easily infer that v ∈ V (α1),
Γ(v) = φ(α1), and h1(t) ∈ ∂g∗(t,−m) for a.e. t ∈ [0, R].

Let us fix α ∈ Domφ. For every ε > 0 there exists vε ∈ V (α) such that Γ(vε) ≤
φ(α) + ε; hence, recalling that v′(t) = h1(t) ∈ ∂g∗(t,−m),

φ(α)− φ(α1) ≥ Γ(vε)− Γ(v)− ε

≥ −m
∫ R

0

[v′ε(t)− v′(t)] dt− ε = −m(α− α1)− ε.

Since ε > 0 is arbitrary we deduce that

φ(α)− φ(α1) ≥ −m(α− α1) ∀α ∈ R;(40)

hence

φ(α)− φ(α1) ≥ 0 ∀α ≤ α1.(41)
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Similarly, if α2 ∈ R, with the same argument given above one can prove that

φ(α)− φ(α2) ≥ m(α− α2) ∀α ∈ R;(42)

hence

φ(α)− φ(α2) ≥ 0 ∀α ≥ α2.(43)

Now (39) follows from (41), (43) and Lemmas 7.9 and 7.11.
Notice that the analysis above provides an alternative proof of Theorem 7.3.

Indeed, from Proposition 7.12, φ reaches its minimum value in a point a ∈ J . Let
v̄ ∈ V (a) be such that Γ(v̄) = φ(a). For every v ∈ V , setting α = −v(0), we have
that Γ(v̄) = φ(a) ≤ φ(α) ≤ Γ(v); hence v̄ provides a solution to (2).

Now we start studying the nonconvex problem (1). In the following technical

lemmas we shall denote by G the functional defined by G(u)
.
=
∫ R

0
g∗∗(t, u(t)) dt,

u ∈ L1(0, R).
Lemma 7.13. Assume that (G1)–(G3) hold. Let u ∈ L1(0, R), and assume that

G(u) < +∞. Then for every ε > 0 there exists uε ∈ L∞(0, R) such that

‖uε − u‖L1 < ε, |G(uε)−G(u)| < ε.

Proof. For every k ∈ N let us define the truncated function uk
.
= (u ∧ k) ∨

(−k). Since u ∈ L1(0, R), from the dominated convergence theorem we deduce that
limk ‖uk − u‖L1 = 0. Furthermore, from (G3) it follows that the convex map ξ 7→
g∗∗(t, ξ) + b(t) is nonnegative for a.e. t ∈ [0, R]; hence, for every k ∈ N,

0 ≤ g∗∗(t, uk(t)) + b(t) ≤ g∗∗(t, u(t)) + g∗∗(t, 0) + 2 b(t) a.e. t ∈ [0, R].(44)

From (G2) and the facts that G(u) < +∞ and b ∈ L1(0, R), we deduce that
the right-hand side of (44) is an integrable function on [0, R]. Hence, from the
dominated convergence theorem, we conclude that limkG(uk) = G(u), completing
the proof.

Lemma 7.14. Assume that (G1) and (G4) hold. Then for every u0 ∈ L∞(0, R)
there exist u1, u2 ∈ L∞(0, R) and a measurable function λ : [0, R]→ [0, 1] such that

u0(t) = λ(t)u1(t) + (1− λ(t))u2(t) a.e. t ∈ [0, R],(45)

g∗∗(t, u0(t)) = λ(t)g(t, u1(t)) + (1− λ(t))g(t, u2(t)) a.e. t ∈ [0, R].(46)

Proof. From (G4) and Corollary 3.8 in [13] we have that there exist measurable
functions u1, u2, and λ satisfying (45) and (46). It remains to prove that u1, u2 ∈
L∞(0, R).

From (45) and (46) we have that, for a.e. t ∈ [0, R], the points uj(t), j = 0, 1, 2,
belong to the same face of epi g∗∗(t, ·). In particular, for a.e. t ∈ [0, R] there exists
p = p(t) ∈ R such that

uj(t) ∈ ∂g∗(t, p), j = 0, 1, 2.(47)

Choosing r1 = ‖u0‖L∞ , from (47) and (G4) there exists r2 > 0 such that ‖uj‖L∞ ≤ r2,
j = 1, 2, concluding the proof.

Proposition 7.15. Assume that (G1)–(G5) hold. Then φ = φ, and I(K1) =
I(K2).



250 GRAZIANO CRASTA

Proof. The second part of the theorem is a direct consequence of the first one.
Since g ≥ g∗∗ we have the trivial inequality φ ≥ φ. Assume by contradiction that
there exists a point α ∈ R such that φ(α) > φ(α). Since, from (G5), φ and φ are
continuous on R, there exists ε > 0 such that

φ(x) ≥ φ(α) + 3ε ∀x ∈ [α− ε, α+ ε].(48)

From the very definition of φ there exists u ∈ L1(0, R) such that
∫ R

0
u(t) dt = α,

and G(u) ≤ φ(α) + ε. From Lemma 7.13 there exists u0 ∈ L∞(0, R) such that, if

x
.
=
∫ R

0
u0(t) dt, then |x− α| < ε and

G(u0) ≤ G(u) + ε ≤ φ(α) + 2ε.(49)

From Lemma 7.14 there exist functions u1, u2 ∈ L∞(0, R) and a measurable map
λ : [0, R] → [0, 1] such that (45) and (46) hold. Since uj ∈ L∞(0, R), j = 0, 1, 2, it is
easy to check that (G3) and (G5) imply that the maps t 7→ g∗∗(t, uj(t)), j = 0, 1, 2,
belong to L1(0, R). Furthermore, from (46) we deduce that g(t, uj(t)) = g∗∗(t, uj(t)),
j = 1, 2, for a.e. t ∈ [0, R]; hence the maps t 7→ g(t, uj(t)), j = 1, 2, belong to L1(0, R)
too.

From Lyapunov’s theorem on the range of nonatomic vector-valued measures (see,
for example, [8, Thm. 16.1.v]), there exists a measurable set E ⊆ [0, R] such that,
denoting EC

.
= [0, R] \ E,∫ R

0

[λ(t)u1(t) + (1− λ(t))u2(t)] dt =

∫
E

u1(t) dt+

∫
EC

u2(t) dt,(50) ∫ R

0

[λ(t)g(t, u1(t)) + (1− λ(t))g(t, u2(t))] dt

=

∫
E

g(t, u1(t)) dt+

∫
EC

g(t, u2(t)) dt.

(51)

Let us define ũ
.
= u1χE + u2χEC . From (45) and (50) we have that∫ R

0

ũ(t) dt =

∫ R

0

u0(t) dt = x,(52)

while from (51), (46), and (49) we deduce that∫ R

0

g(t, ũ(t)) dt =

∫ R

0

g∗∗(t, u0(t)) dt = G(u0) ≤ φ(α) + 2ε.(53)

From (52) and (53) we thus conclude that φ(x) ≤ φ(α) + 2ε. Since |x − α| < ε, this
is in contradiction with (48).

We are now in a position to conclude the proof of Theorem 3.2. Let us assume that
(G1)–(G5) hold. Since K2 is decomposable and strongly closed in the L1 topology,
from Theorem 2.1 it follows that I(K2) is a convex subset of R2 that contains every
extremal compact face of I(K2). From Propositions 7.12 and 7.15 there exists a point
a ∈ J where φ attains its minimum value. Furthermore, from Lemma 7.9 we have that
lim|α|→∞ φ(α) = +∞, so that the point (a, φ(a)) must belong to a compact extremal

face of epiφ = I(K2). Henceforth (a, φ(a)) ∈ I(K2); that is, there exists v̄ ∈ V (a)
such that Γ(v̄) = φ(a), and v̄ provides a solution to (1). Finally, the relation (11)
follows from the equality Γ(v̄) = Γ(v̄).
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Remark 7.16. The necessity of the approximation process developed in Lem-
mas 7.13 and 7.14, and used in Proposition 7.15, depends on the fact that, given
u0 ∈ L1(0, R), conditions (G1)–(G5) are not sufficient to provide the existence of
integrable functions u1 and u2 satisfying (45) and (46).

Indeed, we shall give below an example of a function g : R → R satisfying (G1)–
(G5) for which the following holds: There exists a function u0 ∈ L1(0, 1) such that,
for every choice of functions u1, u2 satisfying (45) and (46), then at least one of these
functions is not integrable on [0, 1].

Let us define a0 = 0, ak = 2k
2

/k2 (k = 1, 2, . . . ), and let (bk)k be the sequence
defined by the recurrence relations b0 = 0, bk+1 = bk + [1 − 1/(k + 1)](ak+1 − ak),
k = 0, 1, . . . . It is easy to verify that (ak)k is a strictly monotone increasing sequence,
and limk ak = +∞. Let g : R → R be a continuous function satisfying the following
properties: g(−ξ) = g(ξ) for every ξ, g(ak) = bk for every k ∈ N, and

g(λak + (1− λ)ak+1) > λbk + (1− λ)bk+1 ∀λ ∈]0, 1[ ∀k ∈ N.(54)

It is easy to show that g∗∗ is a piecewise affine function such that

∂g∗∗(ξ) =



{
1− 1

k

}
if |ξ| ∈]ak−1, ak[, k ∈ N,[

1− 1

k
, 1− 1

k + 1

]
if |ξ| = ak, k = 1, 2, . . . ,

{0} if ξ = 0,

and, from (54),

g∗∗(ξ) = g(ξ) if and only if |ξ| = ak for some k ∈ N.(55)

Furthermore, g satisfies (G1)–(G5): concerning (G3), it is enough to choose m = 1/2
and b = 1.

Since ak+1 > ak for every k ∈ N and limk(ak+1 − ak) = +∞, there exists ε > 0
such that ak + ε < ak+1 for all k ∈ N. Let us define the function

u0
.
=

∞∑
k=0

(ak + ε)χIk , Ik
.
=
]
2−(k+1)2

, 2−k
2
]
.

We claim that u0 ∈ L1(0, 1). Indeed, u0 ≥ 0, and∫ 1

0

u0(t) dt =

∞∑
k=0

(ak + ε)meas(Ik)

=

∞∑
k=0

(
2k

2

k2
+ ε

)[
2−k

2 − 2−(k+1)2
]
< +∞.

Furthermore, 0 ≤ g(ξ) ≤ |ξ|, so that G(u0) < +∞. Now let u1 and u2 be two
functions satisfying (45) and (46). Since u0(t) ∈]ak, ak+1[ for every t ∈ Ik, from (55)
we deduce that, for a.e. t ∈ Ik, either u1(t) = ak, u2(t) = ak+1 or u1(t) = ak+1,
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u2(t) = ak. Hence∫ 1

0

[u1(t) + u2(t)] dt =
∞∑
k=0

(ak + ak+1) meas(Ik) ≥
∞∑
k=0

ak+1meas(Ik)

=
∞∑
k=0

2(k+1)2

(k + 1)2

[
2−k

2 − 2−(k+1)2
]

=
∞∑
k=0

22k+1 − 1

(k + 1)2
= +∞.

Thus we can conclude that at least one of the functions u1, u2 is not integrable on
[0, 1].
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MINIMAX CONTROL OF PARABOLIC SYSTEMS WITH STATE
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Abstract. In this paper we study a minimax control problem for parabolic equations in the
presence of pointwise state constraints. The terminology minimax here refers to a cost functional
defined with a L∞-norm. The directional derivatives of the L∞-norm are elements of (L∞)′. There-
fore, the adjoint equation may involve finitely additive measures in place of Radon measures. To
overcome this difficulty, we introduce a compactification (of Stone–C̆ech type). We prove necessary
optimality conditions which are new, both in the case with no state constraints and in the case with
state constraints. Under some convexity conditions, these optimality conditions are also sufficient.

Key words. control problems, minimax, supremum norm, pointwise state constraints, com-
pactification

AMS subject classifications. 49K35, 49K20

PII. S0363012998341411

1. Introduction. In this paper, we consider an optimal control problem with a
cost functional of the form

J(y, u) = ||F (y, u)||∞,Q = ess-sup(x,t)∈Q|F (y(x, t), u(x, t))|.

The pair (y, u) ∈ C(Q)×L∞(Q) (the state and control variables) satisfies a semilinear
parabolic equation

∂y

∂t
+Ay+ Φ(·, y, u) = 0 in Q, y = Ψ|Σ on Σ, y(0) = Ψ|Ω×{0} in Ω,(1)

where Ω is a bounded domain in RN , Q = Ω×]0, T [, Σ = Γ×]0, T [, Γ is the boundary
of Ω, T > 0, A is a second-order elliptic operator, Ψ ∈ C(Σ∪ (Ω×{0})). The set Uad
of admissible controls is a convex subset of L∞(Q). Pointwise constraints of the form

g(x, t, y(x, t)) ≤ 0 for all (x, t) ∈ Q(2)

are imposed on the state variable. In this setting g is a function from Q× R into R.
The paper is concerned with the following control problem:

(P) inf{J(y, u) | (y, u) ∈ C(Q)× Uad, (y, u) satisfies (1) and (2)}.

As in [5], [13], we here use the terminology minimax because the cost functional is
defined by an L∞-norm. Let us mention that the same terminology is often used
in the literature in the game-theoretical sense, that is, minimization with respect
to control variables and maximization with respect to disturbances [11]. There is a
growing interest in studying problems for functionals defined by a supremum norm
[5], [9], [13], [14]. A survey of the existing literature for control problems involving
supremum norm functionals, and governed by ordinary differential equations, is given
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in the introduction of [5]. For problems governed by partial differential equations,
the interest is more recent [9]. To understand the difficulties in deriving optimality
conditions, consider the following control problem with no state constraints:

(Pc) inf{I(y, u) = ||G(y, u)||C(Q) | (y, u) ∈ C(Q)× Uc, (y, u) satisfies (1)},

where Uc is a closed convex set in C(Q). In this case, for a regular function G, we can
prove that if (ȳ, ū) is an optimal solution of (Pc), then there exists a Radon measure
η̄ on Q, that is, a regular Borel measure such that∫

Q

p̄ Φ′u(·, ȳ, ū)(u− ū) dx dt+
〈
η̄, G′u(ȳ, ū)(u− ū)

〉
M(Q),C(Q)

≥ 0

for all u ∈ Uc, where the adjoint state p̄ ∈ L1(0, T ;W 1,1
0 (Ω)) satisfies

−∂p̄
∂t

+A∗p̄+ Φ′y(·, ȳ, ū)p̄+G′y(ȳ, ū)∗η̄|Q= 0 in Q,

p̄(·, T ) +G′y(ȳ, ū)∗η̄|ΩT = 0 in Ω,

(3)

and
η̄ 6= 0,

〈
η̄, z
〉
M(Q),C(Q)

≤ 0 for all z ∈
{
y ∈ C(Q) | [G(ȳ, ū); y] < 0

}
,

where [G(ȳ, ū); y] stands for the derivative of the mapping z −→ ||z||C(Q) at G(ȳ, ū)

in the direction y (see section 2). Similar results are obtained by W. Yu for some iden-
tification problems [14]. Now, if the set of admissible controls is a subset of L∞(Q),
it is natural to consider functionals of the form of J . In this case, the main diffi-
culty to derive optimality conditions comes from that the directional derivatives of
the mapping z −→ ||z||∞,Q are elements of (L∞(Q))′. Therefore, the corresponding
adjoint equation may involve finitely additive measures in place of Radon measures.
Contrary to (3), such an equation cannot be studied with the classical tools of distri-
bution theory. To overcome this difficulty, we suggest following the method developed
in [1], [3]. By introducing a compactification of the domain Q, we are able to prove
a representation theorem for finitely additive measures belonging to (L∞(Q))′ (The-
orem 4.1). Roughly speaking, with each element of (L∞(Q))′, we associate a Radon
measure on Q and a bounded linear transformation. With these tools, we obtain
new optimality conditions for minimax control problems with (or without) pointwise
state constraints. Due to the representation theorem of elements of (L∞(Q))′, the
adjoint equation is written in a classical form (with Radon measures as source terms).
The bounded linear transformation intervenes only in optimality conditions for the
distributed control.

In Theorem 4.2, optimality conditions are obtained in a Lagrangian form and not
in the form of a Pontryagin’s principle. Let us explain why. To prove a Pontryagin’s
principle, we need continuity properties of the cost functional with respect to diffuse
perturbations of controls (see [9], [2], [6]). These continuity properties are not satisfied
for J (because J is defined by a L∞-norm). A classical way to overcome this difficulty
is to approximate the L∞-norm by a Lr-norm and to write approximate optimality
conditions. But the passage to the limit when r tends to infinity can only be carried
out for a subclass of admissible controls [5], [9], [13]. In this case (see [9, p. 203]), it
is not obvious to verify if optimality conditions are trivial or not.
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By using Lagrangian perturbations, we recover continuity properties for the cost
functional, and optimality conditions are stated in Lagrangian form, but they give
nontrivial information. In particular, we are able to derive some interesting corollaries
(Corollaries 5.4–5.7) from the general result stated in Theorem 4.2.

In the case where Uad ⊂ C(Q), we recover classical optimality conditions (Corol-
lary 5.4). For problems with no state constraints, optimality conditions are obtained
in qualified form (Corollary 5.1). Moreover, if F is convex, necessary optimality
conditions are also sufficient (Corollary 5.2). For problems with state constraints,
optimality conditions in qualified form are also sufficient if F is convex (Theorem
4.5).

2. Examples and assumptions. For simplicity, we have considered only an
equation with a distributed control. But the results of our paper may be extended
to problems with controls on the boundary and in the initial condition. Let us give
elementary examples for which optimality conditions of the paper may be applied.

Example 1. Let yd be a given function in C(Q). Set

J(y) = ||y − yd||C(Q),

Uad = {u ∈ L∞(Q) | a ≤ u ≤ b}, a ∈ L∞(Q), b ∈ L∞(Q).

Let yu be the solution of

∂y

∂t
−∆y = u+ f in Q, y = 0 on Σ, y(0) = Ψ in Ω,

with f ∈ Lq(Q) (q > N
2 + 1), and Ψ ∈ Co(Ω). Suppose that there exists u ∈ Uad such

that z1 ≤ yu ≤ z2, where z1, z2 are two functions in C(Q). The problem

inf{J(yu) | u ∈ Uad, z1 ≤ yu ≤ z2}
admits solutions. Optimality conditions may be deduced from Corollary 5.7.

Example 2. Let yd be a given function in L∞(Q). Define Uad as in Example 1.
Let yu be the solution to

∂y

∂t
−∆y + uy = f in Q, y = 0 on Σ, y(0) = Ψ in Ω,

where f and Ψ are as in Example 1. The identification problem

Minimize ||yu − yd||∞,Q, u ∈ Uad
admits solutions. Optimality conditions may be deduced from Corollary 5.1.

Example 3. Let us give an example with two controls u1 ∈ L∞(Q) and u2 ∈
L∞(Q). Consider the problem

Minimize ||y + u1 − yd||∞,Q,
subject to

∂y

∂t
−∆y = u2 + f in Q, y = 0 on Σ, y(0) = Ψ in Ω,

−ε ≤ u1 ≤ ε, a ≤ u2 ≤ b,
where ε is a positive number, f , Ψ, a, b are as in Example 1. The control u1 may
play the role of a noise with level ε. The above problem admits solutions. Optimality
conditions for this problem may be obtained by adapting the result of Corollary 5.1 to
the case of two control variables.
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Assumptions and notation. Throughout the paper, Ω denotes a bounded,
open, and connected subset in RN (N ≥ 2) of class C2+γ for some 0 < γ ≤ 1. We
denote by Ω0 (resp., ΩT ) the set Ω× {0} (resp., Ω× {T}). The second-order elliptic

operator A is of the form Ay(x) = −∑N
i,j=1Di(aij(x)Djy(x)). (Di denotes the partial

derivative with respect to xi.) The coefficients aij belong to C1+γ(Ω) and satisfy the
conditions

aij(x) = aji(x) for every i, j ∈ {1, . . . , N}, m0|χ|2 ≤
N∑

i,j=1

aij(x)χiχj

for all χ ∈ RN and for all x ∈ Ω, with m0 > 0. For every 1 ≤ ` ≤ ∞, the usual norms
in the spaces L`(Q), L`(Σ), will be denoted by || · ||`,Q, || · ||`,Σ. Throughout the paper
〈·, ·〉∗,Q denotes the duality pairing between the spaces (L∞(Q))′ and L∞(Q). If E

is a locally compact subset of Q, µ ∈Mb(E) (the space of bounded Radon measures
on E) and y ∈ Cb(E), we set 〈µ, y〉b,E =

∫
E
y(x, t)dµ(x, t). We denote by int C, the

interior of C for the usual topology of C(Q) and by cl∞S, the closure of S ⊂ L∞(Q)
for the usual topology of L∞(Q). For z and χ in L∞(Q), we set

[z;χ] = lim
ρ↘0

||z + ρχ||∞,Q − ||z||∞,Q
ρ

.

The previous limit exists for all z and for all χ, because the mapping ||·||∞,Q is convex

and the function ρ −→ ||z+ρχ||∞,Q−||z||∞,Q
ρ is nondecreasing on R∗+. Moreover, we can

easily see that the mapping χ −→ [z;χ] is Lipschitz of rank 1 from L∞(Q) into R (see
[8, Chapter 7]).

A1. Φ is a Carathéodory function from Q×R2 into R (i.e., Φ(·, y, u) is measurable
for all (y, u) ∈ R2 and Φ(x, t, ·) is continuous for almost all (x, t) ∈ Q). For almost all
(x, t) ∈ Q, Φ(x, t, ·) is of class C1. Moreover, the following estimates hold:

|Φ(x, t, 0, u)| ≤ η(|u|), 0 ≤ Φ′y(x, t, y, u) ≤ η(|y|)η(|u|), |Φ′u(x, t, y, u)| ≤ η(|y|)η(|u|),

where η is a nondecreasing function from R+ into R+.
A2. F is of class C1 on R2. Moreover, the following estimate holds:

|F (y, u)|+ |F ′y(y, u)|+ |F ′u(y, u)| ≤ η(|u|)η(|y|).

A3. Uad is a bounded closed convex subset in L∞(Q).
A4. g is continuous on Q× R and, for every (x, t) ∈ Q, g(x, t, ·) is differentiable

and g′y is continuous on Q × R. Moreover, we suppose that there exists θo > 0 such

that g(x, t,Ψ(x, t)) ≤ −θo for all (x, t) ∈ Σ∪Ω0. (Ψ is the function appearing in (1).)

3. State equation and adjoint equation.

3.1. State equation. The following result is proved in [2, Proposition 3.9].
Proposition 3.1. Let a be a nonnegative function in Lq(Q) (q > N

2 + 1), let φ

be in Lq(Q), and ψ be in C(Σ ∪ Ω0). The solution y of

∂y

∂t
+Ay + ay = φ in Q, y = ψ|Σ on Σ, y(·, 0) = ψ(0) in Ω,(4)

belongs to C(Q) and satisfies the following estimate:

||y||C(Q) ≤ C
(
||φ||q,Q + ||ψ||C(Σ∪Ω0)

)
for all q >

N

2
+ 1,
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where C ≡ C(M,Ω, T,N, q).

Theorem 3.2 (see [2, Theorem 3.11]). Let u be in L∞(Q). Equation (1) admits
a unique solution yu ∈ C(Q) satisfying

||yu||C(Q) ≤ C
(
||u||q,Q + ||Ψ||C(Σ∪Ω0) + 1

)
for all q >

N

2
+ 1,

where C ≡ C(T,Ω, N, q). Moreover, the mapping u −→ yu is continuous from L∞(Q)
into C(Q).

3.2. Adjoint equation. Let a be a nonnegative function in L∞(Q). Consider
the equation

−∂p
∂t

+Ap+ ap = µ|Q in Q, p = 0 on Σ, p(T ) = µ|ΩT in Ω,(5)

where µ = µ|Q +µ|ΩT is a bounded Radon measure on Q ∪ΩT , µ|Q is the restriction
of µ to Q, and µ|ΩT the restriction of µ to ΩT .

Definition 3.3. A function p ∈ L1(0, T ;W 1,1
0 (Ω)) is a weak solution to (5) if

and only if∫
Q

−p∂z
∂t

+
N∑

i,j=1

aijDjpDiz + azp

 dx dt = 〈µ, z〉b,Q∪ΩT

for all z ∈ C1(Q) ∩ C0(Q ∪ ΩT ).

Theorem 3.4 (see [2, Theorem 4.2]). Let a be a nonnegative function in L∞(Q)
and let µ ∈ Mb(Q ∪ ΩT ). Equation (5) admits a unique weak solution p in L1(0, T ;

W 1,1
0 (Ω)). The function p belongs to Lδ(0, T ;W 1,d

0 (Ω)), for every (δ, d) satisfying
δ ≥ 1, d ≥ 1, N

2d + 1
δ >

N+1
2 and satisfies

||p||Lδ(0,T ;W 1,d(Ω)) ≤ C||µ||Mb(Q∪ΩT ),

where C ≡ C(Ω, T, δ, d) is independent of a. Moreover, there exist a function ∂p
∂nA
∈

L1(Σ) and a function p(0) ∈ L1(Ω) such that∫
Q

(
∂z

∂t
+Az + az

)
p dx dt = 〈µ, z〉b,Q∪ΩT

+

∫
Σ

z
∂p

∂nA
ds dt−

∫
Ω

z(0)p(0) dx

for all z ∈ Yq = {y ∈ Cb(Q∪ΩT ) | ∂y∂t+Ay ∈ Lq(Q), y|Σ∈ L∞(Σ), and y(0) ∈ C(Ω)}.
4. Statement of the main results. Every ζ ∈ (L∞(Q))′ is identified with a

measure
ˆ̂
ζ ∈ M(Q × Q#), where Q# is a compactification of Q (see section 6). For

notational simplicity,
ˆ̂
ζ will still be denoted by ζ. We denote by B the canonical

projection from M(Q×Q#) onto M(Q) defined by

B : ζ ∈M(Q×Q#) −→ B(ζ) ∈M(Q),〈
B(ζ), φ

〉
M(Q),C(Q)

=
〈
ζ, φ
〉
M(Q×Q#),C(Q×Q#)

for all φ ∈ C(Q).

Throughout the paper, for any ζ ∈ (L∞(Q))′, |ζ| stands for the total variation of ζ,
B(|ζ|) is the canonical projection of |ζ| ontoM(Q), and L∞B(|ζ|)(Q) denotes the space

of B(|ζ|)-essentially bounded B(|ζ|)-measurable functions on Q. The proofs of the
following theorems are given in sections 6 and 7.
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Theorem 4.1. Let ζ ∈ (L∞(Q))′. There exists a bounded linear transformation
Λζ : L∞(Q) −→ L∞B(|ζ|)(Q) such that

〈
ζ, hφ

〉
∗,Q

=

∫
Q

Λζ(h)φ dB(|ζ|) for all h ∈ L∞(Q) and for all φ ∈ C(Q).(6)

If A is an open subset of Q, then we have∫
Q

Λζ(h̃) dB(|ζ|) =
〈
B(ζ), h̃

〉
b,A

+

∫
Q\A

Λζ(h̃) dB(|ζ|)(7)

for all h̃ ∈ Cb(A) ∩ L∞(Q). Moreover,〈
`∗ζ, φ

〉
∗,Q

=
〈
B(ζ), `φ

〉
b,A

+
〈
B(`∗ζ), φ

〉
b,Q\A

(8)

for all φ ∈ C(Q) and for all ` ∈ (Cb(A) ∩ L∞(Q)), where `∗ζ is the measure defined
by 〈

`∗ζ, h
〉
∗,Q

=
〈
ζ, `h

〉
∗,Q

for all h ∈ L∞(Q).

We shall say that (ȳ, ū) satisfies the regularity condition (R) if there exists (zo, uo)
in C(Q)× Uad such that

g(·, ȳ) + g′y(·, ȳ) zo ∈ int C,
∂zo
∂t

+Azo + Φ′y(·, ȳ, ū)zo = −Φ′u(·, ȳ, ū)(uo − ū) in Q,

zo = 0 on Σ, zo(0) = 0 in Ω.

Throughout the paper, we suppose that (ȳ, ū) is an admissibe solution for (P), satis-
fying ||F (ȳ, ū)||∞,Q > 0.

Theorem 4.2. If A1–A4 are fulfilled, and if (ȳ, ū) is a solution of (P), then there
exist µ̄ ∈ M(Q), ζ̄ ∈ (L∞(Q))′, and p̄ ∈ L1(0, T ;W 1,1

0 (Ω)) such that the following
conditions hold:

• Nontriviality condition:

(ζ̄, µ̄|Q∪ΩT ) 6= (0, 0), µ̄ ≥ 0.(9)

• Complementary conditions:〈
µ̄, z − g(·, ȳ)

〉
M(Q),C(Q)

≤ 0 for all z ∈ C,(10)

〈
ζ̄, χ
〉
∗,Q
≤ 0 for all χ ∈ cl∞

{
y ∈ L∞(Q) | [F (ȳ, ū); y] < 0

}
.(11)

If µ̄|Q∪ΩT = 0, then 〈ζ̄, χ〉∗,Q < 0 for all χ ∈
{
y ∈ L∞(Q) | [F (ȳ, ū); y] < 0

}
.(12)
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• Adjoint equation:
−∂p̄
∂t

+Ap̄+ Φ′y(·, ȳ, ū)p̄+ g′y(·, ȳ)∗µ̄|Q +B(F ′y(ȳ, ū)∗ζ̄)|Q= 0 in Q,

p̄(·, T ) + g′y(·, ȳ)∗µ̄|ΩT +B(F ′y(ȳ, ū)∗ζ̄)|ΩT = 0 in Ω.

(13)

• Optimality condition for ū:∫
Q

p̄ Φ′u(x, t, ȳ, ū)(u−ū) dx dt+
〈
ζ̄, F ′u(ȳ, ū)(u−ū)

〉
∗,Q
≥ 0 for all u ∈ Uad,(14)

where g′y(·, ȳ)∗µ̄ |Q is the restriction of g′y(·, ȳ)∗µ̄ to Q, g′y(·, ȳ)∗µ̄ |ΩT is the restric-

tion of g′y(·, ȳ)∗µ̄ to ΩT , B(F ′y(ȳ, ū)∗ζ̄) |Q is the restriction of B(F ′y(ȳ, ū)∗ζ̄) to Q,

B(F ′y(ȳ, ū)∗ζ̄)|ΩT is the restriction of B(F ′y(ȳ, ū)∗ζ̄) to ΩT , g′y(·, ȳ)∗µ̄ and F ′y(ȳ, ū)∗ζ̄
are defined by〈

g′y(·, ȳ)∗µ̄, z
〉
M(Q),C(Q)

=
〈
µ̄, g′y(·, ȳ)z

〉
M(Q),C(Q)

for all z ∈ C(Q),

〈
F ′y(ȳ, ū)∗ζ̄, h

〉
∗,Q

=
〈
ζ̄, F ′y(ȳ, ū)h

〉
∗,Q

for all h ∈ L∞(Q).

Moreover, if (ȳ, ū) satisfies the regularity condition (R), then ζ̄ 6= 0.

Remark 4.3. (i) Notice that for every ε ∈]0, 1[, we have[
F (ȳ, ū);−εF (ȳ, ū)

]
= −ε ||F (ȳ, ū)||∞,Q < 0.

It follows that 0 belongs to cl∞{χ ∈ L∞(Q) | [F (ȳ, ū);χ] < 0}.
(ii) In the same way, if z ∈ L∞(Q) satisfies z 6= 0 and ||z||∞,Q ≤ ||F (ȳ, ū)||∞,Q,
then there exists (zε)ε ⊂ L∞(Q) such that

||zε||∞,Q < ||z||∞,Q ≤ ||F (ȳ, ū)||∞,Q and ||zε − z||∞,Q −→ 0 when ε→ 0.

It is easy to see that (zε − F (ȳ, ū))ε ⊂ {χ ∈ L∞(Q) | [F (ȳ, ū);χ] < 0}. Therefore,
z − F (ȳ, ū) belongs to cl∞{χ ∈ L∞(Q) | [F (ȳ, ū);χ] < 0}. Due to (11), we have〈

ζ̄, z − F (ȳ, ū)
〉
∗,Q
≤ 0 for all z satisfying ||z||∞,Q ≤ ||F (ȳ, ū)||∞,Q.(15)

Remark 4.4. Notice that µ̄ is a measure on Q, but the nontriviality condition
is stated with the restriction of µ to Q ∪ ΩT .

Theorem 4.5 (sufficient optimality conditions). Suppose that A1–A4 are ful-
filled. Suppose in addition that Φ is of the form Φ(·, y, u) = β(·) y−u, that g(·, y) = y,
and that F is convex. If (ȳ, ū, p̄) ∈ C(Q) × Uad × L1(0, T ;W 1,1(Ω)) satisfies (1)–(2)
together with (9)–(14) for ζ̄ 6= 0, then (ȳ, ū) is an optimal pair for problem (P).

Remark 4.6. This result is still true with obvious modifications for constraints
of the form y ∈ C, where C is a closed convex subset of C(Q), with nonempty interior
in C(Q). The proof of Theorem 4.5 is similar to the one given in Corollary 5.2.
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5. Some applications.

5.1. Problems with no state constraints. In this section, we are interested
in the following control problem:

(P̃) inf{J(y, u) | (y, u) ∈ C(Q)× Uad, (y, u) satisfies (1)}.

Since there is no state constraints stated in (P̃), we are able to give necessary opti-
mality conditions in qualified form.

Corollary 5.1. If A1–A3 are fulfilled and if (ȳ, ū) is a solution of (P̃), then
there exist ζ̄ ∈ (L∞(Q))′ and p̄ ∈ L1(0, T ;W 1,1

0 (Ω)) such that the following conditions
hold:

ζ̄ 6= 0,(16)

〈
ζ̄, y
〉
∗,Q

< 0 for all y ∈
{
χ ∈ L∞(Q) | [F (ȳ, ū);χ] < 0

}
,(17)


−∂p̄
∂t

+Ap̄+ Φ′y(x, t, ȳ, ū)p̄+ B(F ′y(ȳ, ū)∗ζ)|Q= 0 in Q,

p̄(x, T ) + B(F ′y(ȳ, ū)∗ζ)|ΩT = 0 in Ω,

(18)

∫
Q

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt+
〈
ζ̄, F ′u(ȳ, ū)(u− ū)

〉
∗,Q
≥ 0(19)

for all u ∈ Uad.
Proof. Due to Theorem 4.2, there exist µ̄ ∈ M(Q), ζ̄ ∈ (L∞(Q))′, and p̄ ∈

L1(0, T ;W 1,1
0 (Ω)) such that (9)–(14) hold. From (10), we deduce〈

µ̄, z − g(·, ȳ)
〉
M(Q),C(Q)

≤ 0 for all z ∈ C(Q).

Therefore, we obtain

〈µ̄, z〉M(Q),C(Q) ≤ 0 for all z ∈ C(Q),

and thus µ̄ ≡ 0. Taking (9) and (12) into account, we deduce (16) and (17).
Corollary 5.2 (sufficient optimality conditions). Suppose that A1–A3 are ful-

filled. Suppose in addition that Φ is of the form Φ(·, y, u) = β(·) y − u and that F
is convex. If (ȳ, ū, p̄, ζ̄) ∈ C(Q) × Uad × L1(0, T ;W 1,1

0 (Ω)) × (L∞(Q))′ satisfies (1)

together with (16)–(19), then (ȳ, ū) is an optimal pair for the problem (P̃).
Proof. Let (ȳ, ū, p̄, ζ̄) be in C(Q)×Uad×L1(0, T ;W 1,1

0 (Ω))× (L∞(Q))′, satisfying
(1) together with (16)–(19). Due to Theorem 3.4, p̄ satisfies∫

Q

p̄

(
∂z

∂t
+Az + βz

)
dx dt−

∫
Σ

∂p̄

∂nA
z ds dt+

∫
Ω

p̄(0)z(0) dx(20)

= −
〈
B(F ′y(ȳ, ū)∗ζ̄), z

〉
b,Q∪ΩT

for all z ∈ Yq.

Let u be in Uad and let yu be the solution of (1) corresponding to u. Since the function
ȳ − yu belongs to C0(Q ∪ ΩT ), by setting z = ȳ − yu in (20), we obtain



262 NADIR ARADA AND JEAN-PIERRE RAYMOND∫
Q

p(ū− u)dx dt =

∫
Q

p

(
∂(ȳ − yu)

∂t
+A(ȳ − yu) + β(ȳ − yu)

)
dx dt

= −
〈
B(F ′y(ȳ, ū)∗ζ̄), ȳ − yu

〉
b,Q∪ΩT

= −
〈
B(F ′y(ȳ, ū)∗ζ̄), ȳ − yu

〉
M(Q),C(Q)

= −
〈
ζ̄, F ′y(ȳ, ū)(ȳ − yu)

〉
∗,Q

.

Consequently, from (19), it follows that〈
ζ̄, F ′y(ȳ, ū)(yu − ȳ) + F ′u(ȳ, ū)(u− ū)

〉
∗,Q
≥ 0.(21)

On the other hand, for ρ ∈]0, 1[ and u ∈ Uad, let us set uρ = ū+ ρ(u− ū), and let yuρ
be the solution of (1) corresponding to uρ. It is clear that (yuρ , uρ) is admissible for

(P̃). By applying Lemma 7.1, and using the convexity of F , we obtain

lim
ρ↘0

J(yuρ , uρ)− J(ȳ, ū)

ρ
=
[
F (ȳ, ū); F ′y(ȳ, ū)(yu − ȳ) + F ′u(ȳ, ū)(u− ū)

]
≤ J(yu, u)− J(ȳ, ū).

We claim that [F (ȳ, ū); F ′y(ȳ, ū)(yu−ȳ)+F ′u(ȳ, ū)(u−ū)] ≥ 0. Argue by contradiction
and suppose the contrary. From (17), it follows that〈

ζ̄, F ′y(ȳ, ū)(yu − ȳ) + F ′u(ȳ, ū)(u− ū)
〉
∗,Q

< 0,

which contradicts (21). Therefore J(yu, u) ≥ J(ȳ, ū).

5.2. Problems with partially continuous controls. In this section, we are
concerned with problems of the form (P) when the admissible controls are continuous
on an open set A of Q. In particular, when A = Q, we recover the result stated in
the introduction for the problem (Pc) (see Remark 5.5). In this case, the multiplier
ζ̄ ∈ (L∞(Q))′ may be replaced by B(ζ̄), that is, a Radon measure on Q. If the set of
admissible controls are continuous on an open subset A ⊂ Q, then we show that the
operator Λζ̄ intervenes only on Q \ A.

Corollary 5.3. Assume that A1–A4 are fulfilled and that Uad ⊂ C(Q). If (ȳ, ū)
is a solution of (P), then there exist µ̄ ∈ M(Q) and η̄ ∈ M(Q) such that (µ̄, η̄, p̄)
satisfies (9), (10), (11), (12), and (22), where p̄ ∈ L1(0, T ;W 1,1

0 (Ω)) is the solution of
−∂p̄
∂t

+Ap̄+ Φ′y(·, ȳ, ū)p̄+ g′y(·, ȳ)∗µ̄|Q +F ′y(ȳ, ū)∗η̄|Q= 0 in Q,

p̄(T ) + g′y(·, ȳ)∗µ̄|ΩT +F ′y(ȳ, ū)∗η̄|ΩT = 0 in Ω.

Proof. The proof is based on arguments similar to those of Corollary 5.4 and is
omitted. The corollary corresponds to the case when A = Q.

Corollary 5.4. Let A be an open subset of Q. Assume that A1–A4 are fulfilled
and that Uad ⊂ (Cb(A) ∩ L∞(Q)). If (ȳ, ū) is a solution of (P), then there exist
µ̄ ∈M+(Q) and ζ̄ ∈ (L∞(Q))′ such that (µ̄, ζ̄) satisfies (9), (10), (11), and (12),∫

Q

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt(22)
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+
〈
B(ζ̄), F ′u(ȳ, ū)(u− ū)

〉
b,A

+

∫
Q\A

Λζ̄

(
F ′u(ȳ, ū)(u− ū)

)
dB(|ζ̄|) ≥ 0

for all u ∈ Uad, where Λζ̄ is the operator associated with ζ̄ and defined in Theorem

4.1 and p̄ ∈ L1(0, T ;W 1,1
0 (Ω)) is the solution of

−∂p̄
∂t

+Ap̄+ Φ′y(·, ȳ, ū)p̄+ g′y(·, ȳ)∗µ̄|Q +F ′y(ȳ, ū)∗B(ζ̄)|A

+B(F ′y(ȳ, ū)∗ζ̄)|Q\A= 0 in Q,

p̄(T ) + g′y(·, ȳ)∗µ̄|ΩT +B(F ′y(ȳ, ū)∗ζ̄)|ΩT = 0 in Ω.

Proof. Due to Theorem 4.2, there exist µ̄ ∈ M(Q), ζ̄ ∈ (L∞(Q))′, and p̄ ∈
L1(0, T ;W 1,1

0 (Ω)) such that (9)–(14) hold. Since Uad ⊂ Cb(A) ∩ L∞(Q), for every
u ∈ Uad and every z ∈ C(Q), the functions F ′y(ȳ, ū)z and F ′u(ȳ, ū)u belong to Cb(A)∩
L∞(Q). From Theorem 4.1, it follows that〈

ζ̄, F ′u(ȳ, ū)u
〉
∗,Q

=
〈
B(ζ̄), F ′u(ȳ, ū)u

〉
b,A

+

∫
Q\A

Λζ̄

(
F ′u(ȳ, ū)u

)
dB(|ζ|)

for all u ∈ Uad. On the other hand, with the definition of p̄ and with (8), we have

∫
Q

p̄ ∂z
∂t

+
∑
i,j

aijDizDj p̄+ Φ′y(x, t, ȳ, ū)p̄z

 dx dt

= −
〈
g′y(·, ȳ)∗µ̄+ B(F ′y(ȳ, ū)∗ζ̄), z

〉
b,Q∪ΩT

= −
〈
µ̄, g′y(·, ȳ)z

〉
b,Q∪ΩT

−
〈
F ′y(ȳ, ū)∗B(ζ̄), z

〉
b,A
−
〈
B(F ′y(ȳ, ū)∗ζ̄), z

〉
b,(Q\A)∪ΩT

for every z ∈ C1(Q) ∩ C0(Q ∪ ΩT ). The proof is complete.
Remark 5.5. If there are no state constraints,by using Corollaries 5.1 and 5.3,

we recover the optimality conditions stated in the introduction for problem (Pc).
5.3. Comparison with other results. In this section, we apply our general re-

sult to problem (P) when the function F is assumed to satisfy the following additional
assumption.

A6. There exists a positive constant a such that a ≤ F (y, u) for all (y, u) ∈ R2.

This kind of assumption is used in [9, p. 198], [13], and [5].
Corollary 5.6. Assume that A1–A4 and A6 are fulfilled. If (ȳ, ū) is a solution

of (P), then there exist µ̄ ∈ M(Q), ζ̄ ∈ (L∞(Q))′, and p̄ ∈ L1(0, T ;W 1,1
0 (Ω)) such

that the conditions (9)–(14) hold. Moreover, we have

ζ̄ ≥ 0,∫
Q0

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt ≥ 0 for all u ∈ U0,(23)

where
Q0 = {(x, t) ∈ Q | F (ȳ(x, t), ū(x, t)) < ||F (ȳ, ū)||∞,Q},
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U0 = {u ∈ Uad | u(x, t) = ū(x, t) for almost all (x, t) ∈ Q \Q0}.
Proof. Due to Theorem 4.2, there exist µ̄ ∈ M(Q), ζ̄ ∈ (L∞(Q))′, and p̄ ∈

L1(0, T ;W 1,1
0 (Ω)) such that (9)–(14) hold.

• Let us prove that ζ̄ ≥ 0. Let φ ∈ L∞(Q) be such that φ ≥ 0 and ||φ||∞,Q 6= 0.
It is clear that

0 ≤ φ(x, t)

||φ||∞,Q a ≤ a ≤ F (ȳ(x, t), ū(x, t)) for all (x, t) ∈ Q.

Taking (15) into account, and since 0 < a ≤ F , we have〈
ζ̄,

φ a

||φ||∞,Q
〉
∗,Q

=

〈
ζ̄, F (ȳ, ū)−

(
F (ȳ, ū)− φ a

||φ||∞,Q

)〉
∗,Q
≥ 0.

Therefore, 〈ζ̄, φ〉∗,Q ≥ 0 for all nonnegative functions φ ∈ L∞(Q).

• Let us prove (23). Suppose that meas (Q0) > 0, and let ε > 0 be such that

Qε = {(x, t) ∈ Q | F (ȳ(x, t), ū(x, t)) ≤ ||F (ȳ, ū)||∞,Q − ε} 6= ∅.
Let us set

Uε = {u ∈ Uad | u(x, t) = ū(x, t) for almost all (x, t) ∈ Q \Qε}.
First, we prove that ζ̄(Qε) = 0 for all ε > 0. Suppose that ζ̄(Qε) > 0 for some ε > 0,
and consider

Fε(s, t) =

 F (ȳ(x, t), ū(x, t)) in Q \Qε,

F (ȳ(x, t), ū(x, t)) + ε
2 in Qε.

Due to the definition of Qε, we have

||Fε||∞,Q = max
(
||Fε||∞,Q\Qε , ||Fε||∞,Qε

)
= max

(
||F (ȳ, ū)||∞,Q\Qε , ||F (ȳ, ū) +

ε

2
||∞,Qε

)
≤ max

(
||F (ȳ, ū)||∞,Q\Qε , ||F (ȳ, ū)||∞,Q − ε

2

)
≤ ||F (ȳ, ū)||∞,Q.

By using (15), we obtain

ε

2
ζ̄(Qε) =

〈
ζ̄, Fε − F (ȳ, ū)

〉
∗,Q
≤ 0.

This contradicts ζ̄(Qε) > 0. Consequently, ζ̄(Qε) = 0 for all ε > 0. Therefore, from
the definition of Uε, we deduce that〈

ζ̄, F ′u(ȳ, ū)(u− ū)
〉
∗,Q

= 0 for all u ∈ Uε and for all ε > 0.

The optimality condition (14) can be rewritten as∫
Qε

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt ≥ 0 for all u ∈ Uε and for all ε > 0.

Since Q0 = ∪ε>0 Qε and U0 = ∩ε>0 Uε, it follows that∫
Q0

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt ≥ 0 for all u ∈ U0.
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The proof is complete.
In the case when F does not explicitly depend on u, we have the following result.
Corollary 5.7. Assume that A1–A4 are fulfilled. Assume in addition that

F ≡ F (y). If (ȳ, ū) is a solution of (P), then there exist µ̄ ∈ M(Q), ν̄ ∈ M(Q), and
p̄ ∈ L1(0, T ;W 1,1

0 (Ω)) such that the following conditions hold:

(ν̄, µ̄) satisfies (9)–(12),
−∂p̄
∂t

+Ap̄+ Φ′y(·, ȳ, ū)p̄+ g′y(·, ȳ)∗µ̄|Q +F ′y(ȳ)∗ν̄|Q= 0 in Q,

p̄(T ) + g′y(·, ȳ)∗µ̄|ΩT +F ′y(ȳ)∗ν̄|ΩT = 0 in Ω,

∫
Q

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt ≥ 0 for all u ∈ Uad.

Moreover, if ||F (Ψ)||C(Σ∪Ω0) 6= ||F (ȳ)||C(Q), then ν̄|Q∪ΩT 6= 0.

Proof. Due to Theorem 4.2, there exist µ̄ ∈ M(Q), ζ̄ ∈ (L∞(Q))′, and p̄ ∈
L1(0, T ;W 1,1

0 (Ω)) such that (9)–(14) hold. Due to Theorem 4.1, for all φ ∈ C(Q), we
have 〈

ζ, φ
〉
∗,Q

=
〈
B(ζ), φ

〉
M(Q),C(Q)

,

〈
F ′y(ȳ)∗ζ, φ

〉
∗,Q

=
〈
ζ, F ′y(ȳ)φ

〉
∗,Q

=
〈
B(ζ), F ′y(ȳ)φ

〉
M(Q),C(Q)

=
〈
F ′y(ȳ)∗B(ζ), φ

〉
M(Q),C(Q)

.

The result follows from these properties by setting B(ζ̄) = ν̄. It remains to prove that
(µ̄|Q∪ΩT , ν̄ |Q∪ΩT ) 6= 0. Argue by contradiction and suppose that µ̄|Q∪ΩT = ν̄ |Q∪ΩT =
0. From (9), it follows that ν̄|Σ∪Ω0

6= 0. Consider the solution zF of

∂z

∂t
+Az = 0 in Q, z = F (Ψ)|Σ in Σ, z(0) = F (Ψ)|Ω×{0} in Ω.

The function zF − F (ȳ) belongs to C0(Q ∪ ΩT ), and〈
ν̄, zF − F (ȳ)

〉
M(Q),C(Q)

=
〈
ν̄, zF − F (ȳ)

〉
b,Q∪ΩT

= 0.(24)

On the other hand, since ||zF ||C(Q) = ||F (Ψ)||Cb(Σ∪Ω0) < ||F (ȳ)||C(Q), we can easily

see that zF −F (ȳ) belongs to {χ ∈ C(Q) | [F (ȳ);χ] < 0}. Due to (12), it follows that〈
ν̄, zF − F (ȳ)

〉
M(Q),C(Q)

=
〈
ν̄, zF − F (ȳ)

〉
b,Q∪ΩT

< 0.

This contradicts (24). The proof is complete.

6. The compactification of Q. Let O be a locally compact subset of Q and
let L∞(O) be the space of essentially bounded measurable functions on O. Denote
by (L∞(O))′ the dual space of L∞(O).

Theorem 6.1 (see [7, Theorem 11, p. 445]). There exist a compact Hausdorff
space O# and an isometric homomorphism τ from L∞(O) onto C(O#). The isomor-
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phism τ maps nonnegative functions into nonnegative functions. Moreover, τ is an
algebraic isomorphism in the sense that if h = h1h2 almost everywhere on O, then
τ(h) = τ(h1)τ(h2). If f is an arbitrary real continuous function and h is in L∞(O),
then τ(f(h)) = f(τ(h)).

Remark 6.2 (see [7, Theorem 26, p. 278]). Since τ is an algebraic homomor-
phism from C(O) into C(O#), there exists a continuous mapping i, from O# into
O, such that

τ(φ) = φ ◦ i for all φ ∈ C(O).

Moreover, observe that τ−1 (the inverse of τ) satisfies

τ−1(h`) = τ−1(h) τ−1(`) for all h ∈ C(O#) and for all ` ∈ C(O#).

The set C(O)⊗C(O#), of linear combinations of functions of the form φψ, where
φ ∈ C(O) and ψ ∈ C(O#), is a subspace of C(O × O#). The following result gives
interesting properties for the elements ofM(O×O#) (the dual space of C(O×O#)).

Lemma 6.3. Let η be a Radon measure on O × O#, let B(η) ∈ M(O) be the
projection of η on O, and let B(|η|) ∈ M+(O) be the projection of |η| on O. There
exists a bounded linear tranformation Λη : C(O#) −→ L∞B(|η|)(O) such that〈

η, φψ
〉

#
=

∫
O

Λη(ψ)φ dB(|η|) for all (φ, ψ) ∈ C(O)× C(O#).(25)

(〈·, ·〉# is the duality pairing between M(O × O#) and C(O × O#), τ is defined in
Theorem 6.1.)

Proof. The proof is word for word the same as the proof of Lemma 4.4
in [1].

Due to Theorem 6.1, the measure ζ ∈ (L∞(O))′ can be identified with ζ̂ ∈M(O#)
via the formula〈

ζ̂, ξ
〉
M(O#),C(O#)

=
〈
ζ, τ−1(ξ)

〉
(L∞(O))′,L∞(O)

for all ξ ∈ C(O#).(26)

Let i be the continuous mapping defined in Remark 6.2 and let e be the continuous
mapping, from O# into O ×O#, defined by

e(q#) = (i(q#), q#) for all q# ∈ O#.

To each ζ̂ ∈M(O#) (defined by (26)), we associate
ˆ̂
ζ ∈M(O ×O#) defined by〈

ˆ̂
ζ, ψ

〉
#

=
〈
ζ̂, ψ ◦ e

〉
M(O#),C(O#)

=
〈
ζ, τ−1(ψ ◦ e)

〉
(L∞(O))′,L∞(O)

(27)

for all ψ ∈ C(O ×O#).

Theorem 6.4. Let ζ ∈ (L∞(O))′ and let
ˆ̂
ζ ∈ M(O × O#) be the measure

associated with ζ. There exists a bounded linear transformation Λˆ̂
ζ

: C(O#) −→
L∞
B(|ˆ̂ζ|)

(O) such that

〈
ˆ̂
ζ, φτ(h)

〉
#

=
〈
B(

ˆ̂
ζ), φh

〉
b,A

+

∫
O\A

φΛˆ̂
ζ
(τ(h)) dB(|ˆ̂ζ|)(28)

for all (φ, h) ∈ C(O)× (Cb(A) ∩ L∞(O)) and for all open subsets A of O.
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Proof. See the proof of Theorem 4.7 in [1].
Theorem 6.5. Let ζ be in (L∞(O))′. For ` ∈ L∞(O), define the measure

`∗ζ ∈ (L∞(O))′ by〈
`∗ζ, h

〉
(L∞(O))′,L∞(O)

=
〈
ζ, `h

〉
(L∞(O))′,L∞(O)

for all h ∈ L∞(O).

Then, the measures
ˆ̂
ζ and

̂̀̂∗ζ, respectively, associated with ζ and `∗ζ via (27), satisfy〈 ̂̀̂∗ζ, ψ〉
#

=
〈
τ(`)∗ˆ̂ζ, ψ

〉
#

for all ψ ∈ C(O ×O#).(29)

Proof. With (27), we can identify the measure `∗µ with
̂̀̂∗µ ∈ M(O × O#).

Moreover,

〈 ̂̀̂∗ζ, ψ〉
#

=
〈
`∗ζ, τ−1(ψ ◦ e)

〉
(L∞(O))′,L∞(O)

=
〈
ζ, `τ−1(ψ ◦ e)

〉
(L∞(O))′,L∞(O)

=
〈
ζ, τ−1τ(`) τ−1(ψ ◦ e)

〉
(L∞(O))′,L∞(O)

=
〈
ζ, τ−1

(
τ(`)(ψ ◦ e)

)〉
(L∞(O))′,L∞(O)

=
〈
ζ, τ−1

(
(τ(`)ψ) ◦ e

)〉
(L∞(O))′,L∞(O)

=
〈

ˆ̂
ζ, τ(`)ψ

〉
#

=
〈
τ(`)∗ˆ̂ζ, ψ

〉
#

for all ψ ∈ C(O ×O#).

Corollary 6.6. Let ` ∈ L∞(O), ζ ∈ (L∞(O))′ and let
ˆ̂
ζ ∈ M(O ×O#) be the

measure associated with ζ. Then,

〈
ζ, φh

〉
(L∞(O))′,L∞(O)

=
〈

ˆ̂
ζ, φτ(h)

〉
#

for all (φ, h) ∈ C(O)× L∞(O),(30)

〈
`∗ζ, φh

〉
(L∞(O))′,L∞(O)

=
〈
τ(`)∗ˆ̂ζ, φ τ(h)

〉
#

for all (φ, h) ∈ C(O)× L∞(O).

In particular, we have〈
`∗ζ, φ

〉
(L∞(O))′,L∞(O)

=
〈
τ(`)∗ˆ̂ζ, φ

〉
#

=
〈
B
(
τ(`)∗ˆ̂ζ

)
, φ
〉
M(O),C(O)

for all φ ∈ C(O).
Proof. To prove (30), it is sufficient to observe that〈
ζ, φh

〉
(L∞(O))′,L∞(O)

=
〈
ζ, τ−1τ(φh)

〉
(L∞(O))′,L∞(O)

=
〈
ζ̂, τ(φh)

〉
M(O#),C(O#)

=
〈
ζ̂, τ(φ)τ(h)

〉
M(O#),C(O#)

=
〈
ζ̂, (φ ◦ i) τ(h)

〉
M(O#),C(O#)

=
〈
ζ̂, (φ τ(h)) ◦ e

〉
M(O#),C(O#)

=
〈

ˆ̂
ζ, φτ(h)

〉
#

for all (φ, h) ∈ C(O)× L∞(O).
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By taking (30) and (29) into account, it follows that〈
`∗ζ, φh

〉
(L∞(O))′,L∞(O)

=
〈 ̂̀̂∗ζ, φ τ(h)

〉
#

=
〈
τ(`)∗ˆ̂ζ, φ τ(h)

〉
#
.

The proof is complete.
Proposition 6.7. Let ` ∈ (L∞(O) ∩ Cb(A)), where A is an open subset of O.

Let ζ ∈ (L∞(O))′ and let
ˆ̂
ζ ∈M(O ×O#) be the measure associated with ζ. Then,〈

ζ, φh
〉

(L∞(O))′,L∞(O)
=
〈
τ(`)∗ˆ̂ζ, φ

〉
#

=
〈
B(

ˆ̂
ζ), `φ

〉
b,A

+
〈
B(τ(`)∗ˆ̂ζ), φ

〉
b,O\A

for all φ ∈ C(O).
Proof. From Corollary 6.6 and from (28), for all φ ∈ C(O), we have〈

ζ, φh
〉

(L∞(O))′,L∞(O)
=
〈
τ(`)∗ ˆ̂µ, φ

〉
#

=
〈
B
(
τ(`)∗ˆ̂ζ

)
, φ
〉
M(O),C(O)

(31)

=
〈
B
(
τ(`)∗ˆ̂ζ

)
, φ
〉
b,A

+
〈
B
(
τ(`)∗ˆ̂ζ

)
, φ
〉
b,O\A

.

Let (fk)k be a sequence of continuous functions with compact support in A, with
values in [0, 1], and converging to 1 on every compact subset included in A. For

φ ∈ C(O), the integrals
∫
A φ d[B(τ(`)∗ˆ̂ζ)] and

∫
A `φ dB(

ˆ̂
ζ) are obtained by passing to

the limit in
∫
A φfk d[B(τ(`)∗ ˆ̂µ)] and in

∫
A`φfk dB(

ˆ̂
ζ). Let us still denote by fk the

extension of fk by zero to O \ A. Since the functions φfk and `φfk belong to C(O),
we have∫

A
φfk d

[
B
(
τ(`)∗ˆ̂ζ

)]
=
〈
B
(
τ(`)∗ˆ̂ζ

)
, φfk

〉
M(O),C(O)

=
〈

ˆ̂
ζ, τ(`) φfk

〉
#

=
〈
ζ, `φfk

〉
(L∞(O))′,L∞(O)

=
〈
B
(

ˆ̂
ζ
)
, `φfk

〉
M(O),C(O)

=

∫
A
`φfk dB

(
ˆ̂
ζ
)
.

It follows that∫
A
φd
[
B
(
τ(`)∗ˆ̂ζ

)]
=

∫
A
`φ dB

(
ˆ̂
ζ
)
.(32)

The conclusion follows from (31) and (32).

Proof of Theorem 4.1. Let us identify the measure ζ ∈ (L∞(Q))′ with
ˆ̂
ζ ∈

M(Q×Q#). By setting Λζ = Λˆ̂
ζ
◦ τ , the properties (6) and (7) follow from (25) and

(28). Assertion (8) follows from Proposition 6.7.

7. Proof of necessary optimality conditions. To obtain optimality condi-
tions, we prove some differential calculus rules stated below.

Lemma 7.1. For every 0 < ρ < 1 and every u1, u2 ∈ L∞(Q), we set uρ =
u1 + ρu2. If yρ and y1 are the solutions of (1) corresponding to uρ and u1, then

yρ = y1 + ρz + rρ with lim
ρ→0

1

ρ
||rρ||C(Q) = 0,(33)

F (yρ, uρ) = F (y1, u1)+ρ(F ′y(y1, u1)z+F ′u(y1, u1)u2)+ r̃ρ, lim
ρ→0

1

ρ
||r̃ρ||∞,Q = 0,(34)
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where z is the weak solution of

∂z

∂t
+Az + Φ′y(·, y1, u1)z = −Φ′u(·, y1, u1)u2 in Q, z = 0 on Σ, z(0) = 0 in Ω.

Proof. The function ζρ =
yρ−y1

ρ − z is the weak solution in C(Q) of

∂ζ

∂t
+Aζ + aρζ = (a− aρ)z + (b− bρ)u2 in Q, ζ = 0 on Σ, ζ(0) = 0 in Ω,

where aρ =
∫ 1

0
Φ′y(·, y1 + θ(yρ − y1), uρ)dθ, bρ =

∫ 1

0
Φ′u(·, y1, u1 + θ(uρ − u1))dθ, a =

Φ′y(·, y1, u1), and b = Φ′u(·, y1, u1). Moreover, by Proposition 3.1, we have

||ζρ||C(Q̄) ≤ C(||a− aρ||q,Q + ||b− bρ||q,Q) for all q >
N

2
+ 1,

where C ≡ C(T,Ω, N, q) is a constant independent of ρ. Since (uρ)ρ converges to u1

in L∞(Q), the sequence (yρ)ρ converges to y1 in C(Q) and (aρ, bρ)ρ converges to (a, b)
in Lθ(Q) × Lθ(Q) for all θ < ∞. We have established (33). To prove (34), observe
that

F (yρ, uρ)− F (y1, u1)

ρ

=
F (yρ, uρ)− F (y1 + ρz, uρ)

ρ
+
F (y1 + ρz, uρ)− F (y1, uρ)

ρ
+
F (y1, uρ)− F (y1, u1)

ρ
.

Due to (33) and A2, we have

lim
ρ↘0

∣∣∣∣∣∣F (yρ, uρ)− F (y1 + ρz, uρ)

ρ

∣∣∣∣∣∣
∞,Q

= lim
ρ↘0

(
||F̃ρ||∞,Q ||rρ||∞,Q

ρ

)
= 0,

where F̃ρ =
∫ 1

0
F ′y(θyρ + (1− θ)(y1 + ρz), uρ)dθ. Therefore,

lim
ρ↘0

∣∣∣∣∣∣F (yρ, uρ)− F (y1, u1)

ρ
− (F ′y(y1, u1)z + F ′u(y1, u1)u2)

∣∣∣∣∣∣
∞,Q

≤ lim
ρ↘0

∣∣∣∣∣∣F (y1 + ρz, uρ)− F (y1, uρ)

ρ
− F ′y(y1, u1)z

∣∣∣∣∣∣
∞,Q

+ lim
ρ↘0

∣∣∣∣∣∣F (y1, uρ)− F (y1, u1)

ρ
− F ′u(y1, u1)u2

∣∣∣∣∣∣
∞,Q

= 0.

The proof is complete.
For u ∈ Uad, let us denote by zu the solution of

∂z

∂t
+Az + Φ′y(·, ȳ, ū)z = −Φ′u(·, ȳ, ū) u in Q, z = 0 on Σ, z(0) = 0 in Ω.

Lemma 7.2. Assume that A1–A4 are fulfilled. Let (ȳ, ū) be a solution of (P).
Let us set

S =
{

(ξ, χ) ∈ C(Q)× L∞(Q) | there exists u ∈ Uad such that

ξ = g(·, ȳ) + g′y(·, ȳ)(zu − zū) χ = F ′y(ȳ, ū) (zu − zū) + F ′u(ȳ, ū)(u− ū)
}
,
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D = int C × {χ ∈ L∞(Q) | [F (ȳ, ū);χ] < 0}.
Then there exist µ̄ ∈M(Q) and ζ̄ ∈ (L∞(Q))′ such that

〈µ̄, ξ1〉M(Q),C(Q) + 〈ζ̄, χ1〉∗,Q > 〈µ̄, ξ2〉M(Q),C(Q) + 〈ζ̄, χ2〉∗,Q(35)

for all (ξ1, χ1) ∈ S and for all (ξ2, χ2) ∈ D and

〈µ̄, ξ1〉M(Q),C(Q) + 〈ζ̄, χ1〉∗,Q ≥ 〈µ̄, ξ2〉M(Q),C(Q) + 〈ζ̄, χ2〉∗,Q(36)

for all (ξ1, χ1) ∈ S and for all (ξ2, χ2) ∈ D = C×cl∞{χ ∈ L∞(Q) | [F (ȳ, ū);χ] < 0}.
Proof. The sets S and D are convex, and D is open. Let us prove that S ∩D = ∅.

Argue by contradiction and suppose that there exists uo ∈ Uad such that

g(·, ȳ) + g′y(·, ȳ)(zuo − zū) ∈ int C,(37)

[
F (ȳ, ū);F ′y(ȳ, ū) (zuo − zū) + F ′u(ȳ, ū)(uo − ū)

]
< 0.(38)

Let uρ = ū+ ρ(uo − ū), gρ = g(·, ȳ) + 1
ρ (g(yρ)− g(ȳ)), where yρ is the solution of (1)

corresponding to uρ. From (37), (38), and Lemma 7.1, it follows that

lim
ρ↘0

gρ ∈ int C and lim
ρ↘0

||F (yρ, uρ)||∞,Q − ||F (ȳ, ū)||∞,Q
ρ

< 0.

Therefore, there exists ρo > 0 such that, for every 0 < ρ ≤ ρo < 1, we have

g(·, yρ) = ρ gρ + (1− ρ) g(ȳ) ∈ int C and J(yρ, vρ) < J(ȳ, v̄).

This contradicts the optimality of (ȳ, ū) and proves that S ∩D = ∅. From a geometric
version of the Hahn–Banach theorem (the Eidelheit theorem [12]), there exists (µ̄, ζ̄) ∈
M(Q)× (L∞(Q))′ such that

inf
(ξ1,χ1)∈S

(
〈µ̄, ξ1〉M(Q),C(Q) + 〈ζ̄, χ1〉∗,Q

)
> 〈µ̄, ξ2〉M(Q),C(Q) + 〈ζ̄, χ2〉∗,Q for all (ξ2, χ2) ∈ D

and

inf
(ξ1,χ1)∈S

(
〈µ̄, ξ1〉M(Q),C(Q) + 〈ζ̄, χ1〉∗,Q

)
≥ sup

(ξ2,χ2)∈D

(
〈µ̄, ξ2〉M(Q),C(Q) + 〈ζ̄, χ2〉∗,Q

)
.

The proof is complete.

7.1. Proof of Theorem 4.2. Let zθo be a function belonging to int C and
satisfying zθo ≡ g(·, Ψ̄) in Σ∪Ω0. (The existence of such a function follows from A4.)
• If we set χ1 = 0, ξ1 = g(·, ȳ), and ξ2 = zθo in (35), we obtain〈

µ̄, g(·, ȳ)− zθo
〉
M(Q),C(Q)

=
〈
µ̄, g(·, ȳ)− zθo

〉
b,Q∪ΩT

>
〈
ζ̄, χ
〉
∗,Q

for all χ ∈ {y ∈ L∞(Q) | [F (ȳ, ū); y] < 0}. Conditions (9) and (12) easily follow from
this inequality.
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• The following is a direct consequence of Remark 4.3:
(i) If we set ξ1 = g(·, ȳ), ξ2 = z ∈ C fixed, and χ1 = χ2 = 0 in (36), we obtain

(10).
(ii) If we set ξ1 = ξ2 = g(·, ȳ) and χ1 = 0 in (36), we obtain (11).
(iii) Let u ∈ Uad. By setting ξ1 = g(·, ȳ) + g′y(·, ȳ)(zu − zū), χ1 = F ′y(ȳ, ū) (zu −

zū) + F ′u(ȳ, ū)(u− ū), χ2 = 0, and ξ2 = g(·, ȳ) in (36), we obtain〈
µ̄, g′y(·, ȳ)(zu−zū)

〉
M(Q),C(Q)

+
〈
ζ̄, F ′y(ȳ, ū)(zu−zū)+F ′u(ȳ, ū)(u−ū)

〉
∗,Q
≥ 0.(39)

Let p̄ be the weak solution of (13). With the Green formula of Theorem 3.4 and with
Theorem 4.1, we obtain〈

µ̄, g′y(·, ȳ)(zu − zū)
〉
M(Q),C(Q)

+
〈
ζ̄, F ′y(ȳ, ū)(zu − zū)

〉
∗,Q

=
〈
g′y(·, ȳ)∗µ̄+ B(F ′y(ȳ, ū)∗ζ̄), zu − zū

〉
b,Q∪ΩT

=

∫
Q

p̄ Φ′u(x, t, ȳ, ū)(u− ū) dx dt.

This equality, with (39), gives (14). The proof is complete.
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Abstract. Optimal control problems with partial differential equations lead to large scale
nonlinear optimization problems with constraints. An efficient solver which takes into account the
structure and also the size of the problem is an inexact sequential quadratic programming method
where the quadratic problems are solved iteratively. Based on a reformulation as a mixed nonlinear
complementarity problem we give a measure of when to terminate the iterative quadratic program
solver. For the latter we use an interior point algorithm. Under standard assumptions, local linear,
superlinear, and quadratic convergence can be proved. The numerical application is an optimal
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1. Introduction. In this paper we consider large scale optimization problems
with equality and inequality constraints which occur, for instance, from the discretiza-
tion of optimal control problems with partial differential equations and state con-
straints.

As an example we use a problem which arises in the control of heating processes
of industrial kilns. The goal is to heat the furnace such that the interior of the metal
ingots or ceramic charges inside the kiln follows a prescribed temperature profile.
Furthermore, constraints on the temperature, so-called state constraints, are imposed
during the heating process. This problem can be formulated as an optimal control
problem with a nonlinear diffusion equation which is controlled through the boundary.
The objective function is given in a least squares framework. The state constraints
are upper bounds on the temperature and are so-called hard constraints, in contrast
to constraints on the controls. It is well known that control problems with state
constraints require advanced numerical methods for their solution.

We present a method from sequential quadratic programming (SQP) for the solu-
tion of the resulting finite-dimensional optimization problem. In general, SQP meth-
ods reduce the nonlinear problem to a sequence of quadratic subproblems. For large
problems, the solution of a single quadratic program might be very expensive. Even
for small problems, the computational effort in SQP methods is dominated by solving
the quadratic subproblems. In the view of global and local convergence properties
of the SQP methods, it is advisable to solve each of the quadratic subproblems by
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an efficient algorithm only up to a certain accuracy. Furthermore, the structure of
the matrices occurring in each quadratic subproblem should be taken into account.
Moreover, the presence of inequality constraints poses a further difficulty for these
algorithms. In our work we use an interior point algorithm for the solution of the
quadratic subproblems (cf. [6], [12], [23], [24], and the references therein). Since this
is an iterative method it has two major advantages which can be used in the context
of large scale optimization problems. First, the sparsity of the matrices can be used
in an efficient way. Second, the quadratic subproblems can be solved only approxi-
mately. In other words, the inner iterative process can be terminated during the first
iterations of the outer SQP method when one is still far away from a solution at an
early stage, saving computing time. Then one can adaptively tighten the accuracy of
the solutions of the quadratic problems as the iteration progresses. This leads to an
inexact SQP approach which offers a trade-off between the accuracy of solving each
subproblem and the amount of work for solving them (cf. [3], [4], and [19]). An imme-
diate question is just how accurately should the subproblems be solved? And is there
a measure when to terminate the iterative quadratic program solver? Furthermore,
does an inexact SQP approach possess the same asymptotic convergence behavior as
an exact SQP method? We will show that theoretical and practical answers to the
above questions are available (cf. [5], [8], [10], [14, section 7], [16], [17], [22], and the
references therein).

Converting the Karush–Kuhn–Tucker conditions of the nonlinear optimization
problem into a mixed nonlinear complementarity problem enables us to define a quan-
tity which gives a practical measure of how close a given vector is at a solution of the
considered problem. This quantity determines how accurately the quadratic subprob-
lems will be solved. Moreover, we prove under standard assumptions that a linear,
superlinear, or quadratic rate of the outer SQP method is retained, although the
quadratic subproblems are not solved exactly. Furthermore, the interior point algo-
rithm itself can be shown to be superlinearly or quadratically convergent. The linear
systems of the interior point approach are solved by an iterative equation solver like
GMRES, in order to make use of the inherent sparsity structure, also with an adaptive
termination criterion. All the convergence results will be verified by numerical results
for a discretized control problem, as mentioned above.

Note that the convergence results for the inexact SQP method are of a local
nature and no globalization strategies are incorporated. These require second order
sufficiency conditions for optimality at the solution. This implies that the correspond-
ing quadratic subproblems to be solved by interior point methods exhibit the proper
convexity requirements.

In section 2 we state the finite-dimensional optimization problem with nonlinear
equality and inequality constraints. The corresponding Karush–Kuhn–Tucker condi-
tions will be restated into a mixed nonlinear complementarity problem. After that we
present the inexact SQP algorithm for determining a solution of the mixed nonlinear
complementarity problem. Furthermore, we discuss the notion of a regular solution
and state some sufficient conditions for the regularity of this problem class.

Essential to an inexact SQP method is a practical measure of how close a given
vector is to being a solution of the mixed nonlinear complementarity problem. There-
fore, in section 3 we give a quantity which can be used as a measure of inexactness.
Some results will justify the use of this quantity.

The local convergence analysis for the inexact SQP algorithm can be found in
section 4. Under standard assumptions we prove that this method achieves the same
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asymptotic convergence rates as an exact SQP approach. A similar result can be
found in Pang [19] for nonmixed complementarity problems.

In section 5 an interior point method is described which is an iterative scheme to
solve the quadratic subproblems, or, equivalently, the mixed linear complementarity
problems occurring in the inexact SQP iteration. Furthermore, we state some local
convergence results. In particular, the first result yields a superlinear convergence
rate of the Karush–Kuhn–Tucker system of the quadratic subproblem to zero. Sec-
ond, under stronger assumptions we obtain locally the quadratic convergence of the
generated sequence to a solution of the subproblem.

Finally, in section 6, we use a discretized parabolic state-constrained control prob-
lem to support our theoretical results. It shows that the combination of an inexact
SQP method with an interior point algorithm works very well for the considered
problem class.

Throughout this paper we use the following notation. If ϕ : Rn → Rm is a
continuously differentiable function, we use the notation

ϕz(z) = [(ϕ1)z(z), . . . , (ϕm)z(z)] ∈ Rn×m.
Thus, the matrix ϕz(z) has as columns the gradients (ϕ1)z(z), . . . , (ϕm)z(z) and is the
transpose of the Jacobian matrix of the function ϕ. For vectors ζ ∈ Rn and ϑ ∈ Rn
we also use

min(ζ) = min
1≤i≤n

ζi, max(ζ) = max
1≤i≤n

ζi, χ = min(ζ, ϑ), χ = max(ζ, ϑ),

where χ ∈ Rn is vector valued with the “min” (“max”) interpreted as component-
wise minimum (maximum). The index l will be used as the inexact SQP iteration
counter and the index k denotes the interior point iteration counter of the considered
algorithms.

2. Inexact SQP method for nonlinear optimization problems. In this
section we consider a local inexact SQP method for the solution of the following finite-
dimensional minimization problem with nonlinear equality and inequality constraints:

(NP) min
z

F (z) s.t. f(z) = 0, g(z) ≤ 0,

where z ∈ Rn, F : Rn → R, f : Rn → Rme , g : Rn → Rm. We make the following
assumptions on (NP):

Assumption 2.1.
(i) There exists an optimal solution z∗ of (NP).
(ii) The functions F , f , g are twice continuously differentiable in an open ball

U(z∗).
(iii) The linear independent constraint qualification is fulfilled, i.e., the gradients

of the active constraints are linearly independent at z∗.
Using the Karush–Kuhn–Tucker theorem, Assumption 2.1 implies that there exist

w∗ ∈ Rme and y∗ ∈ Rm, y∗ ≥ 0, such that (z∗, w∗, y∗) satisfies the first order necessary
optimality conditions for (NP), i.e.,

Fz(z
∗) + fz(z

∗)w∗ + gz(z
∗)y∗ = 0,(2.1)

f(z∗) = 0,(2.2)

g(z∗) ≤ 0,(2.3)

(y∗)T g(z∗) = 0.(2.4)
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These conditions can be converted into a mixed nonlinear complementarity problem
due to the fact that some variables (z and w) are not restricted to be nonnegative (cf.,
for example, [9], [19], [20], or [21]). The mixed nonlinear complementarity problem,
defined in terms of two mappings h1 : Rn+me+m → Rn+me and h2 : Rn+me+m → Rm,
is to determine a triple of vectors (z, w, y) ∈ Rn+me+m such that

h1(z, w, y) = 0, h2(z, w, y) ≥ 0, y ≥ 0, and yTh2(z, w, y) = 0.(2.5)

If we define the functions by

h1(z, w, y) =

[
Fz(z) + fz(z)w + gz(z) y

f(z)

]
and h2(z, w, y) = −g(z),(2.6)

then the Karush–Kuhn–Tucker conditions (2.1)–(2.4) correspond precisely to the
mixed nonlinear complementarity problem (2.5). In the following, we look for a solu-
tion (z∗, w∗, y∗) ∈ Rn+me+m such that

(MNCP)
y∗ ≥ 0, y∗T g(z∗) = 0,

h1(z∗, w∗, y∗) = 0, and h2(z∗, w∗, y∗) ≥ 0,

where the mappings h1 and h2 are given by (2.6).
SQP methods reduce the solution of the nonlinear problem (NP) to the numerical

solution of a sequence of quadratic subproblems. In particular, a SQP method for a
problem with equality constraints determines the step as the solution of a subproblem
with quadratic objective function and linear constraints. For w ∈ Rme , y ∈ Rm, define
the Lagrangian function by

L(z, w, y) = F (z) + wT f(z) + yT g(z).(2.7)

A common variant of the SQP algorithm for (NP) including inequality constraints
obtains a new iterate (zl+1, wl+1, yl+1) from the current iterate (zl, wl, yl) by solving
at each stage the quadratic program

(QP)l

min∆z
1
2 ∆zT Lzz(zl, wl, yl) ∆z + FTz (zl) ∆z

s.t. fTz (zl) ∆z + f(zl) = 0,
gTz (zl) ∆z + g(zl) ≤ 0.

Then the new iterate zl+1 is set to zl+∆z and the new Lagrange multipliers wl+1, yl+1

are obtained from the multipliers at the solution of (QP)l. The necessary optimality
conditions for this subproblem can be restated as a mixed linear complementarity
problem, i.e.,

(MLCP)l

find (z, w, y) such that

y ≥ 0, −gTz (zl)(z − zl)− g(zl) ≥ 0,

yT
(−gTz (zl)(z − zl)− g(zl)

)
= 0,[

Fz(z
l)

f(zl)

]
+

[ Lzz(zl, wl, yl) fz(z
l) gz(z

l)
fTz (zl) O O

] z − zl
w
y

 = 0.

For ∆z = zl+1−zl the point (∆z, wl+1, yl+1) satisfies the Karush–Kuhn–Tucker condi-
tions of (QP)l. Hence, it is also a solution vector of the mixed linear complementarity
problem.
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Under suitable regularity conditions the sequence {(zl, wl, yl)} generated by a
SQP approach is well defined and locally convergent. A drawback of this method
is the cost of solving the quadratic subproblem, or, equivalently, the mixed linear
complementarity problem at each iteration. Computing the exact solution can be
expensive if the number of unknowns is large and may not be justified when far from
a solution. Therefore, one is led to use an iterative method, e.g., an interior point
algorithm, and to solve the subproblem only approximately. This observation leads
to an inexact SQP method which offers a trade-off between the accuracy of solving
the subproblems and the amount of work involved in solving them (cf. [3], [4], and
[19]).

Pang [19] suggests an inexact Newton method for solving a nonmixed nonlinear
complementarity problem of the following form. Find a vector ξ ∈ Rn such that

ξ ≥ 0, ϕ(ξ) ≥ 0, ξTϕ(ξ) = 0.

In this paper we formulate an inexact SQP algorithm for determining a solution of the
mixed nonlinear complementarity problem (MNCP). If we define the mixed nonlinear

complementarity function ĥ : Rn+me+m → Rn+me+m (cf. [11]) by

ĥ(z, w, y) =

 Lz(z, w, y)
f(z)

min(y,−g(z))

(2.8)

and its linearization at a given point (zl, wl, yl) near the solution (z∗, w∗, y∗) by

ĥl(z, w, y) =

 Fz(z
l) + fz(z

l)w + gz(z
l)y + Lzz(zl, wl, yl)(z − zl)

f(zl) + fTz (zl)(z − zl)
min(y,−g(zl)− gTz (zl)(z − zl))

 ,(2.9)

where the min-operator is interpreted as the componentwise minimum of the vector-
valued entries, then we obtain the following algorithm.

Algorithm 2.2. INEXACT SQP METHOD.
Choose a local starting point (z0, w0, y0) and a termination criterion ε > 0.

For l = 0, 1, 2, . . . until ||ĥ(zl, wl, yl)|| ≤ ε do
(I) Choose λl > 0 and find a vector (z, w, y) of (MLCP)l which

satisfies

||ĥl(z, w, y)|| ≤ λl ||ĥ(zl, wl, yl)||.(2.10)

(II) Set (zl+1, wl+1, yl+1) = (z, w, y).

The inexact SQP method of Algorithm 2.2 generates in every iteration a new
point (zl+1, wl+1, yl+1) according to the approximation rule (2.10). The nonnegative
sequence {λl} controls the level of accuracy and will be specified later.

The approximation rule (2.10) as a measure of inexactness will be motivated in
the next section. Pang [19] introduced this error bound in the context of nonlinear
complementarity problems. Furthermore, the rule (2.10) is similar to the residual rule
used in [3] for the solution of nonlinear equations with an inexact Newton method.

In order to state the convergence of the inexact SQP method and to motivate the
usefulness of (2.10) as a measure of inexactness, we discuss the notion of a regular so-
lution, which was introduced by Robinson [21] in the context of generalized equations.
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For our purpose, we define regularity in terms of the mixed nonlinear complementarity
problem (MNCP).

Definition 2.3 (cf. [21, p. 45]). Let (z∗, w∗, y∗) be a solution of (MNCP). Then
(z∗, w∗, y∗) is called regular if there exists a neighborhood U∗δ of (z∗, w∗, y∗) and a
scalar γ∗ > 0 such that for every perturbation vector ρ = (ρ1, ρ2, ρ3)T ∈ Rn+me+m

with ||ρ|| < γ∗, there is a unique solution (z(ρ), w(ρ), y(ρ)) ∈ U∗δ that solves the
perturbed mixed linear complementarity problem defined by

(MLCP)ρ
y(ρ) ≥ 0, y(ρ)T

(−gTz (z∗)(z(ρ)− z∗)− g(z∗)− ρ3

)
= 0

−gTz (z∗)(z(ρ)− z∗)− g(z∗)− ρ3 ≥ 0,[
Fz(z

∗)
f(z∗)

]
+

[ Lzz(z∗, w∗, y∗) fz(z
∗) gz(z

∗)
fTz (z∗) O O

] z(ρ)− z∗
w(ρ)
y(ρ)

−[ ρ1

ρ2

]
=0.

Moreover, the solution (z(ρ), w(ρ), y(ρ)) is Lipschitz continuous in ρ; i.e., there is a
constant L > 0 such that for every ρ, ρ̂ with ||ρ|| < γ∗, ||ρ̂|| < γ∗ we have

‖(z(ρ), w(ρ), y(ρ))− (z(ρ̂), w(ρ̂), y(ρ̂))‖ ≤ L ‖ρ− ρ̂‖.
This regularity condition can be considered a generalization of the requirement

that the Jacobian matrix be nonsingular in the case of solving systems of nonlin-
ear equations. Robinson [21] states some sufficient conditions for the regularity of
(MNCP). In particular, he proved under Assumption 2.4 that (z∗, w∗, y∗) is a regular
solution of (MNCP). Hence, the mixed nonlinear complementarity problem is locally
solvable in a vicinity of (z∗, w∗, y∗). Without loss of generality, g(z∗) and y∗ can be
partitioned as

(g+(z∗), g0(z∗), g−(z∗))T ∈ Rr+s+t, (
y∗+, y

∗
0 , y
∗
−
)T ∈ Rr+s+t,

where m = r + s+ t and

g+(z∗) = 0, y∗+ > 0,
g0(z∗) = 0, y∗0 = 0,
g−(z∗) < 0, y∗− = 0.

(2.11)

With this partition we can formulate a special strong second order sufficiency condi-
tion and a linear independence condition. We make the following assumption.

Assumption 2.4.
(i) The matrix [fTz (z∗) (g+)Tz (z∗) (g0)Tz (z∗)]T has full row rank.

(ii) For all ∆z 6= 0, ∆z ∈ Rn satisfying ∆zT fz(z
∗) = 0 and ∆zT (g+)z(z

∗) = 0:

∆zT Lzz(z∗, w∗, y∗) ∆z > 0.

With these conditions one can show the following result.
Theorem 2.5 (see Robinson [21, Theorem 4.1]). Let Assumption 2.1(ii) and

Assumption 2.4 be fulfilled. Furthermore, let (z∗, w∗, y∗) be a solution of (MNCP).
Then, (z∗, w∗, y∗) is a regular solution of (MNCP).

If a solution of (MNCP) satisfies the conditions of Assumption 2.4, then Theorem
2.5 guarantees the regularity of the problem. In this case we know from Definition
2.3 that there is a unique solution of (MLCP)ρ in a vicinity of (z∗, w∗, y∗). Hence,
we can locally determine a solution of the mixed nonlinear complementarity problem
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with the inexact SQP method of Algorithm 2.2. Furthermore, the regular solution
(z∗, w∗, y∗) of (MNCP) is also an optimal solution of (NP). In particular, we can state
the following result.

Theorem 2.6 (cf. Bertsekas [1, Theorem 1.30]). Let Assumption 2.1(ii) and
Assumption 2.4 be fulfilled. Furthermore, let (z∗, w∗, y∗) be a solution of (MNCP).
Then, z∗ is a strict local minimum of the nonlinear problem (NP).

3. Measure of inexactness. The main advantage of the approximation rule
(2.10) is the savings in the computational effort during the early iterations; i.e., at
each stage of the inexact SQP method of Algorithm 2.2 a new iterate is defined as an
inaccurate solution of the subproblem (MLCP)l. The use of an inexact method raises
the question of how to measure the accuracy of the approximate solution to a mixed
nonlinear complementarity problem, or, in other words, how close is a given vector to
a solution of (MNCP)?

For the motivation of the approximation rule (2.10) as a measure of inexactness,
first, we consider the mixed linear complementarity problem (MLCP)l. Second, sim-
ilar results will be given for the mixed nonlinear complementarity problem (MNCP).

We assume that (zl, wl, yl), l ≥ 0, is fixed and given. For such a point, we define
the matrix M ∈ R(n+me+m)×(n+me+m) and the vectors r1, s1 ∈ Rn+me by

M =

[ ∇h1(zl, wl, yl)
∇h2(zl, wl, yl)

]
, r1 =

[
Fz(z

l)
f(zl)

]
, s1 =

[
z − zl
w

]
,

where

∇h1(zl, wl, yl) =

[ Lzz(zl, wl, yl) fz(z
l) gz(z

l)

fTz (zl) O O

]
,

∇h2(zl, wl, yl) =
[ −gTz (zl) O O

]
,

and rewrite (MLCP)l as

y ≥ 0, yT
(−gTz (zl)(z − zl)− g(zl)

)
= 0,

−gTz (zl)(z − zl)− g(zl) ≥ 0, r1 +∇h1(zl, wl, yl)

[
s1

y

]
= 0.

(3.1)

Obviously, a vector (z̃, w̃, ỹ) is an exact solution of (MLCP)l, or, equivalently, of (3.1)
if and only if the linearized complementarity function (2.9) is equal to zero.

Lemma 3.1. Let (zl, wl, yl) be fixed. Furthermore, let ĥl be defined by (2.9).
Then

ĥl(z̃, w̃, ỹ) ≡ 0 ⇐⇒ (z̃, w̃, ỹ) is a solution of (MLCP)l.

Thus, the quantity ||ĥl(z, w, y)|| is a practical measure of how close a given vector
is to being a solution of (MLCP)l. The following result justifies the use of the above
quantity as a measure of inexactness, which can be proved by a simple modification
of the proof of [19, Lemma 1].

Proposition 3.2. Let (zl, wl, yl) be fixed. Furthermore, let (z̃, w̃, ỹ) be a regular

solution of (3.1). Then there exists a neighborhood Uδ̃ of (z̃, w̃, ỹ) and λ̂ > 0 such that
for all (z, w, y) ∈ Uδ̃, we obtain

||(z, w, y)− (z̃, w̃, ỹ)|| ≤ λ̂ ||ĥl(z, w, y)||.
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Under the assumption of regularity Proposition 3.2 guarantees that the quantity
||ĥl|| is a good measure of the inexactness in a neighborhood of a solution to the mixed

linear complementarity problem. One can expect that the smaller ||ĥl|| is, the closer
a point (z, w, y) is to the solution (z̃, w̃, ỹ) of (3.1).

Similar to the above discussion, we can show that an iterate (zl, wl, yl) is an exact
solution of the mixed nonlinear complementarity problem (MNCP) if and only if the
complementarity function (2.8) is zero. In particular, we state the following result.

Lemma 3.3. Let ĥ be defined by (2.8). Then

ĥ(z∗, w∗, y∗) ≡ 0 ⇐⇒ (z∗, w∗, y∗) is a solution of (MNCP).

Thus, the quantity ||ĥ(zl, wl, yl)|| measures how close the current iterate is to be-

ing a solution of (MNCP). We can expect that the larger ||ĥ(zl, wl, yl)|| is, the further
away the current point is from an exact solution of the mixed nonlinear complemen-
tarity problem. On the other hand, the smaller it is, the more accurately the next
subproblem is solved. In particular, we have the following proposition.

Proposition 3.4. Let (z∗, w∗, y∗) be a regular solution of the mixed nonlinear
complementarity problem (MNCP). Then there exists a neighborhood U∗ of (z∗, w∗, y∗)
and a positive scalar λ̂l such that whenever a point (zl, wl, yl) is in U∗, we obtain

||(zl, wl, yl)− (z∗, w∗, y∗)|| ≤ λ̂l ||ĥ(zl, wl, yl)||.

Proof. Let L > 0, γ∗ > 0, and U∗δ be specified as in Definition 2.3. From the

continuity of ĥ we obtain the existence of a neighborhood U∗ of (z∗, w∗, y∗) such that
for all points (zl, wl, yl) in U∗ we get

vl =
(

(zl, wl, yl)− (ĥ1(zl, wl, yl), ĥ2(zl, wl, yl), ĥ3(zl, wl, yl))
)T
∈ U∗δ , ||ρl|| < γ∗,

where ρl = (I − M)ĥ(zl, wl, yl). Then, by the definition of ĥ and ĥl(zl, wl, yl) =

ĥ(zl, wl, yl), it follows that ĥl(vl; ρl) = 0, where ĥl(v; ρ) := ĥl(v) − ρ denotes the
perturbed linearized complementarity function according to (MLCP)ρ. Hence, the

vector vl ∈ U∗δ is a solution of a perturbed mixed linear complementarity problem
of the form (MLCP)ρ. Furthermore, the exact solution (z∗, w∗, y∗) of (MNCP) is

regular. Then, by Definition 2.3 we know that ||(vl1, vl2, vl3)− (z∗, w∗, y∗)|| ≤ L ||(I −
M)ĥ(zl, wl, yl)||. Therefore, with λ̂l = 1 + L ||I −M ||, we can deduce the desired
result.

4. Convergence rate for the inexact SQP method. In this section we state
a local convergence result for the inexact SQP Algorithm 2.2. This method produces
at every stage a new iterate according to the approximation rule (2.10). From the
discussion of the previous section, we know that an iterate (zl, wl, yl) is an exact
solution of the mixed nonlinear complementarity problem (MNCP) if and only if the
mixed nonlinear complementarity function (2.8) is equal to zero. Thus, the quantity

||ĥ(zl, wl, yl)||measures how close the current iterate is to being a solution of (MNCP).

As in Proposition 3.4 we can expect that the larger ||ĥ(zl, wl, yl)|| is, the further away
the current point is from an exact solution of (MNCP). On the other hand, the smaller
it is, the more accurately the next subproblem is solved.

We need two lemmas to establish the local convergence result. The first lemma
is easy to prove and guarantees that under a sufficient differentiability assumption on
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F , f , and g, the mixed nonlinear complementarity function ĥ is Lipschitz continuous.
The second lemma is a consequence of regularity. It states under the sole assump-
tion of regularity that for sufficiently small perturbations the perturbed mixed linear
complementarity problems are uniquely solvable in a vicinity of a regular solution of
(MNCP). This result is a special case of Robinson [21, Theorem 2.4].

Lemma 4.1. Let F , f , and g be twice continuously differentiable. Then the mixed
complementarity function ĥ defined in (2.8) is Lipschitz continuous; i.e., there exist
positive constants cf , cg, and cL such that for all (z1, w1, y1), (z2, w2, y2) ∈ Rn+me+m

we have

||ĥ(z1, w1, y1)− ĥ(z2, w2, y2)|| ≤ L̂ ||(z1, w1, y1)− (z2, w2, y2)||,(4.1)

where L̂ := cL + 2 max(1, cf ) + 2
√
m max(1, cg).

Lemma 4.2. Let (z∗, w∗, y∗) be a solution of (MNCP). Furthermore, suppose that
Assumption 2.1(ii) and Assumption 2.4 are fulfilled. Then there exist a scalar γ∗ > 0,
two neighborhoods U∗δ1 and U∗δ2 of (z∗, w∗, y∗), and a Lipschitz constant L > 0 such

that for all (z, w, y) ∈ U∗δ1 and every perturbation ρ = (ρ1, ρ2, ρ3)T ∈ Rn+me+m with
||ρ|| < γ∗, there is a unique solution vector

ξ(z, w, y; ρ) := (ξ1, ξ2, ξ3)T ∈ U∗δ2
depending on z, w, y, and ρ that solves the perturbed mixed linear complementarity
problem defined by

ξ3 ≥ 0, ξT3
(−gTz (z)(ξ1 − z)− g(z)− ρ3

)
= 0,

−gTz (z)(ξ1 − z)− g(z)− ρ3 ≥ 0,[
Fz(z)
f(z)

]
+

[ Lzz(z, w, y) fz(z) gz(z)
fTz (z) O O

] ξ1 − z
ξ2
ξ3

− [ ρ1

ρ2

]
= 0.

Moreover, if ||ρ|| < γ∗ and ||ρ̂|| < γ∗, then

||(ξ1, ξ2, ξ3)− (ξ̂1, ξ̂2, ξ̂3)|| ≤ L ||ρ− ρ̂||,

where ξ̂(z, w, y; ρ̂) := (ξ̂1, ξ̂2, ξ̂3) depends on z, w, y, and ρ̂.
Now we are ready to show the local convergence result. A similar result can be

found in Pang [19] for nonmixed nonlinear complementarity problems. For mixed
nonlinear complementarity problems, i.e., those with equality as well as inequality
relations, considered in this paper, the problem formulation, the definition of ĥ, and
other relations have to be modified as described above. In particular, we are able to
prove the following theorem.

Theorem 4.3. Let (z∗, w∗, y∗) be a solution triple of (MNCP). Furthermore,
suppose that Assumption 2.1(ii) and Assumption 2.4 are fulfilled. Let L̂ > 0 be the
Lipschitz constant specified in Lemma 4.1 and let L > 0 be the scalar as given in
Lemma 4.2. Moreover, assume that for all l we have for some λ ∈ (0, 1) and λ̃ > 1

λl ≤ λ/λ̃,(4.2)

where λ̃ = max(1, L̂) ( 1 + max(1, L) c ) and c > 0 is a given constant satisfying (4.8).
Then
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(i) There exists an open ball U∗ including (z∗, w∗, y∗) such that for all starting
data (z0, w0, y0) ∈ U∗, the sequence {(zl, wl, yl)} generated by the inexact
SQP Algorithm 2.2 is well defined and converges to (z∗, w∗, y∗) with a linear
rate; i.e., there is a constant r ∈ (0, 1) such that

||(zl+1, wl+1, yl+1)− (z∗, w∗, y∗)|| ≤ r ||(zl, wl, yl)− (z∗, w∗, y∗)||;(4.3)

(ii) If, in addition to the assumptions in (i), liml→∞ λl = 0, then the rate of
convergence is superlinear;

(iii) Suppose, in addition to the assumptions in (i), that the second derivatives of
F , f , and g satisfy a Lipschitz condition in a neighborhood of z∗. Then, if

λl ≤ β̂ ‖ĥ(zl, wl, yl)‖(4.4)

for some β̂ > 0, the convergence of {(zl, wl, yl)} to (z∗, w∗, y∗) is quadratic.
Proof. Let U∗δ1 , U∗δ2 , γ∗ > 0, and L > 0 be specified as in Lemma 4.2. Since

ĥ(z∗, w∗, y∗) = 0, Lemma 4.1 implies that with the Lipschitz constant L̂ > 0,∥∥∥ĥ(z, w, y)
∥∥∥ =

∥∥∥ĥ(z, w, y)− ĥ(z∗, w∗, y∗)
∥∥∥ ≤ L̂ ‖(z, w, y)− (z∗, w∗, y∗)‖(4.5)

holds for all (z, w, y) ∈ U∗δ1 . By restricting U∗δ1 , if necessary, we can assume that

λ ‖(z, w, y)− (z∗, w∗, y∗)‖ < γ∗ ∀ (z, w, y) ∈ U∗δ1 and λ ∈ (0, 1).(4.6)

Since h1 and h2 are continuously differentiable functions, we can assume, by restricting
U∗δ1 further, the existence of constant ε > 0 such that∥∥∥∥[ h1(z∗, w∗, y∗)

h2(z∗, w∗, y∗)

]
−
[
h1(z, w, y)
h2(z, w, y)

]
−
[ ∇h1(z, w, y)
∇h2(z, w, y)

]
((z∗, w∗, y∗)− (z, w, y))T

∥∥∥∥
≤ ε ‖(z, w, y)− (z∗, w∗, y∗)‖ < γ∗ ∀ (z, w, y) ∈ U∗δ1(4.7)

and r := Lε+λ < 1. Moreover, the norm of the gradient of h1 and h2 is bounded for
all points in a vicinity of the regular solution (z∗, w∗, y∗). Hence, there is a constant
c > 0 such that∥∥∥∥[ I1 O

O I2

]
−
[ ∇h1(z, w, y)
∇h2(z, w, y)

]∥∥∥∥ ≤ c ∀ (z, w, y) ∈ U∗δ1 .(4.8)

(i) We interpret the residual vector ĥl as perturbation ρ̃ for solving (MLCP)l at
the lth stage of the inexact SQP algorithm and show that (zl+1, wl+1, yl+1) solves
a perturbed mixed linear complementarity problem. Then, choosing two perturba-
tions ρ, ρ̂ and perturbing (zl+1, wl+1, yl+1) by ρ̃ (denoted by ξl+1), we conclude that
ξl+1 and (z∗, w∗, y∗) each solve a perturbed mixed linear complementarity problem.
Finally, using the Lipschitz continuity of these solutions with respect to the pertur-
bations and adding 0 = ρ̃− ρ̃ to the left-hand side of (4.3), we show that (4.3) holds.

Let (z0, w0, y0) be chosen in U∗δ1 . In general, assume that the point (zl, wl, yl) lies

in U∗δ1 . Let (zl+1, wl+1, yl+1) be generated by the inexact SQP Algorithm 2.2; i.e.,

(zl+1, wl+1, yl+1) is an approximate solution of (MLCP)l satisfying (2.10). Setting

ρ̃ := (ρ̃1, ρ̃2, ρ̃3)T = ĥl(zl+1, wl+1, yl+1), then it follows by (2.10), (4.2), and (4.5) that

||ρ̃|| ≤ λlL̂||(zl, wl, yl)− (z∗, w∗, y∗)|| ≤ λ||(zl, wl, yl)− (z∗, w∗, y∗)||
1 + max(1, L)c

.(4.9)
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Thus, (4.9), together with (4.6), implies ||ρ̃|| < γ∗. Using Lemma 4.2, we deduce
that (zl+1, wl+1, yl+1) ∈ U∗δ2 satisfies uniquely the following perturbed mixed linear
complementarity problem:

yl+1 ≥ 0,
(
yl+1

)T (−gTz (zl)(zl+1 − zl)− g(zl)− ρ̃3

)
= 0,

−gTz (zl)(zl+1 − zl)− g(zl)− ρ̃3 ≥ 0,[
Fz(z

l)
f(zl)

]
+∇h1(zl, wl, yl)

 zl+1 − zl
wl+1

yl+1

− [ ρ̃1

ρ̃2

]
= 0.

(4.10)

Defining ξl+1 :=
(
ξl+1
1 , ξl+1

2 , ξl+1
3

)T
=
(
(zl+1, wl+1, yl+1)− (ρ̃1, ρ̃2, ρ̃3)

)T
and

ρ := (ρ1, ρ2, ρ3)T =

([
I1 O
O I2

]
−
[ ∇h1(zl, wl, yl)
∇h2(zl, wl, yl)

])
ρ̃,

it follows by (4.6), (4.8), and (4.9), that ||ρ|| < γ∗. Then, with the definition of ρ̃,
ξl+1, ρ, and yl+1 ≥ ρ̃3, the vector ξl+1 solves

ξl+1
3 ≥ 0,

(
ξl+1
3

)T (−gTz (zl)(ξl+1
1 − zl)− g(zl)− ρ3

)
= 0,

−gTz (zl)(ξl+1
1 − zl)− g(zl)− ρ3 ≥ 0,[

Fz(z
l)

f(zl)

]
+∇h1(zl, wl, yl)

 ξl+1
1 − zl
ξl+1
2

ξl+1
3

− [ ρ1

ρ2

]
= 0.

(4.11)

Hence, the continuity of ĥl, ρ̃ = ĥl(zl+1, wl+1, yl+1) and Lemma 4.2 imply that the
vector ξl+1 ∈ U∗δ2 is the unique solution of (4.11). Setting ρ̂ = [ρ̂1,2 ρ̂3]T , where

[
ρ̂1,2

ρ̂3

]
=

[
h1(z∗, w∗, y∗)
h2(z∗, w∗, y∗)

]
−
[
h1(zl, wl, yl)
h2(zl, wl, yl)

]
−
[ ∇h1(zl, wl, yl)
∇h2(zl, wl, yl)

] z∗ − zl
w∗ − wl
y∗ − yl

 ,
then by (4.7) we obtain ||ρ̂|| ≤ ε||(z∗, w∗, y∗)− (zl, wl, yl)|| < γ∗. Since

h1(z∗, w∗, y∗) = h1(zl, wl, yl) + ρ̂1,2 +∇h1(zl, wl, yl)((z∗, w∗, y∗)− (zl, wl, yl))T = 0,
h2(z∗, w∗, y∗) = h2(zl, wl, yl) + ρ̂3 +∇h2(zl, wl, yl)((z∗, w∗, y∗)− (zl, wl, yl))T ≥ 0,

it follows that the regular solution (z∗, w∗, y∗) satisfies the following perturbed mixed
linear complementarity problem:

y∗ ≥ 0, (y∗)T
(−gTz (zl)(z∗ − zl)− g(zl) + ρ̂3

)
= 0,

−gTz (zl)(z∗ − zl)− g(zl) + ρ̂3 ≥ 0,

h1(zl, wl, yl) + ρ̂1,2 +∇h1(zl, wl, yl)((z∗, w∗, y∗)− (zl, wl, yl))T = 0.

(4.12)

Then, Lemma 4.2 guarantees the Lipschitz continuity of the above solutions with
respect to the perturbations; i.e., we obtain

||(ξl+1
1 , ξl+1

2 , ξl+1
3 )− (z∗, w∗, y∗)|| ≤ L ||ρ− ρ̂||.(4.13)
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Hence, with ||ρ̂|| ≤ ε||(z∗, w∗, y∗)− (zl, wl, yl)||, (2.10), (4.2), (4.8), (4.9), and (4.13),
we have

||(zl+1, wl+1, yl+1)− (z∗, w∗, y∗)|| ≤ (λlL̂(1 + Lc) + Lε)||(zl, wl, yl)− (z∗, w∗, y∗)||
≤ (λ+ Lε)||(zl, wl, yl)− (z∗, w∗, y∗)||.

Since r := λ+Lε < 1 and (zl, wl, yl) ∈ U∗δ1 we obtain (zl+1, wl+1, yl+1) ∈ U∗δ1 . Then,

it follows that the point (zl+1, wl+1, yl+1) generated by the inexact SQP Algorithm
2.2 is well defined, and by induction, we can conclude that the sequence {(zl, wl, yl)}
is well defined. Furthermore, {(zl, wl, yl)} converges to (z∗, w∗, y∗) with a linear rate.

(ii) Suppose, in addition, that liml→∞ λl = 0. If we replace in (4.7) r := Lε+λ <
1, the constant ε by εl > 0 with liml→∞ εl = 0, then the same analysis as in (i) yields

||(zl+1, wl+1, yl+1)− (z∗, w∗, y∗)|| ≤ rl ||(zl, wl, yl)− (z∗, w∗, y∗)||,
where rl = λl L̂ (1 + Lc) + Lεl → 0. But this implies the superlinear convergence.

(iii) Let, in addition, the assumptions in (iii) be fulfilled. The differentiability
of h1, h2, and the Lipschitz condition imply in a neighborhood of (z∗, w∗, y∗) the
Lipschitz continuity of ∇h1 and ∇h2. Then, by [18, Theorem 3.2.12], there exists
β > 0 such that ||ρ̂|| ≤ (β/2) ||(zl, wl, yl)− (z∗, w∗, y∗)||2 ∀ (zl, wl, yl) ∈ U∗δ1 . Thus,
the same analysis as in (i) yields

||(zl+1, wl+1, yl+1)− (z∗, w∗, y∗)|| ≤ α ||(zl, wl, yl)− (z∗, w∗, y∗)||2,

where α = β̂ L̂2 (1 + Lc) + (Lβ/2). This and (zl, wl, yl)→ (z∗, w∗, y∗) establish the
quadratic convergence rate of the considered sequence.

This theorem shows that it is sufficient for the local convergence behavior to solve
the quadratic subproblem, or, equivalently, the mixed linear complementarity problem
only up to a certain accuracy. Dependent on the choice of the control sequence {λl}
in (2.10), this results in a linear, superlinear, or quadratic rate of convergence.

5. Interior point method for solving the quadratic subproblem. We have
seen in the previous section that the quadratic subproblem, or, equivalently, the mixed
linear complementarity problem in the inexact SQP method of Algorithm 2.2 should
be solved by an iterative scheme. Since there are inequality constraints involved, we
use an interior point method.

In order to describe the primal-dual interior point approach for the quadratic
subproblem in general, we define

A = fTz (zl), C = gTz (zl), Q = Lzz(zl, wl, yl),
b = −f(zl), c = Fz(z

l), d = −g(zl), and ξ = ∆z = z − zl,(5.1)

where (zl, wl, yl), l = 0, 1, 2, . . ., is a given SQP iterate andA ∈ Rme×n, C ∈ Rm×n, Q ∈
Rn×n, b ∈ Rme , c ∈ Rn, d ∈ Rm, and ξ ∈ Rn. Then, the subproblem (QP)l can be
rewritten as a general quadratic program, i.e.,

(QP) min
ξ

1

2
ξT Qξ + cT ξ s.t. Aξ − b = 0, Cξ − d ≤ 0.

Let ξ∗ be an optimal solution of (QP) and let the inequality constraints and µ∗ be
partitioned as

νA∗ = dA∗−CA∗ ξ∗ = 0, µ∗A∗ > 0 and νI∗ = dI∗−CI∗ ξ∗ > 0, µ∗I∗ = 0,(5.2)
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where A∗ denotes the index set of the active and I∗ denotes the index set of the
nonbinding constraints at an optimal solution of (QP), and µ∗ ∈ Rm, µ∗ ≥ 0 denotes
the Lagrange multiplier of the inequality constraints of (QP). With this partition
we can formulate Assumption 5.1, which should hold throughout this section at an
optimal solution ξ∗ of (QP).

Assumption 5.1.
(i) There exists an optimal solution ξ∗ of (QP).

(ii) Q is symmetric and positive definite on the null space N ∗ at ξ∗, where

N ∗ := {ξ ∈ Rn | Aξ = 0, CA∗ξ = 0} .(5.3)

(iii) The matrix [A CA∗ ]T has full rank at the solution ξ∗ of (QP).
For the special case (5.1) the following statement can be made. If Assumption 2.4 is
fulfilled, we obtain that Assumption 5.1 holds in a neighborhood of ξ∗. In particular,
Assumption 5.1(ii) is a convexity condition for the quadratic program and, together
with Assumption 5.1(iii), a regularity condition, which guarantees the local solvabil-
ity of (QP). Using the Karush–Kuhn–Tucker theorem, this assumption implies the
existence of π∗ ∈ Rme and µ∗ ∈ Rm, µ∗ ≥ 0, such that the point (ξ∗, π∗, µ∗) satisfies
the Karush–Kuhn–Tucker conditions for (QP). Introducing a slack variable ν ∈ Rm,
defined by ν = d − Cξ ≥ 0, the necessary optimality conditions can be restated as a
mixed linear complementarity problem.

We arrive at the following nonlinear system with nonnegativity constraints on the
variables µ and ν:

J(ξ, π, µ, ν) =


Qξ +ATπ + CTµ+ c

Aξ − b
Cξ + ν − d
NMe

 = 0, (µ, ν) ≥ 0,(5.4)

where J : Rn+me+2m → Rn+me+2m and e = (1, . . . , 1)T ∈ Rm and diagonal matrices
N,M ∈ Rm×m

N = diag(ν1, . . . , νm) and M = diag(µ1, . . . , µm).

We denote the primal-dual feasibility set defined by

F := {(ξ, π, µ, ν) ∈ Rn+me+2m | (ξ, π, µ, ν) satisfies (5.4)}(5.5)

and impose the following assumption.
Assumption 5.2. The interior of the primal-dual feasibility set is nonempty, i.e.,

F+ = {(ξ, π, µ, ν) ∈ F | µ > 0, ν > 0} 6= ∅.
We say that points in the set F are feasible for (5.4) and strictly feasible, if they are
elements of F+.

The interior point algorithm we consider in this paper is motivated by the appli-
cation of the logarithmic barrier approach (cf. [7]) to the quadratic program. The
unique minimum of the corresponding logarithmic barrier problem, if it exists, is
characterized by the Karush–Kuhn–Tucker condition

J(ξ, π, µ, ν)−


0
0
0
ηe

 = 0, (µ, ν) > 0,(5.6)
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where η > 0 is the logarithmic barrier parameter and the function J is defined in
(5.4).

The primal-dual interior point framework can now be formulated (cf., for example,
[12] or [24] and the references therein). Recall that J is given by (5.4).

Algorithm 5.3. INTERIOR POINT METHOD.

Choose a starting point (ξ0, π0, µ0, ν0) ∈ F+.

For k = 0, 1, 2, . . . until convergence do

(I) Choose σk ∈ [0, 1) and set ηk = σk(µk
T
νk)/m.

(II) Generate the search direction (δξk, δπk, δµk, δνk) by solving the following
system of equations:

J ′(ξk, πk, µk, νk)


δξk

δπk

δµk

δνk

 = −J(ξk, πk, µk, νk) +


0
0
0
ηke

 .(5.7)

(III) Choose τk ∈ (0, 1) and compute the step length by

θk =
−τk

min1≤i≤m([(Mk)−1δµk]i, [(Nk)−1δνk]i,−τk)
.(5.8)

(IV) Set (ξk+1, πk+1, µk+1, νk+1) = (ξk, πk, µk, νk) + θk(δξk, δπk, δµk, δνk).

The following proposition guarantees the nonsingularity of the Jacobian matrix
J ′ of the perturbed Newton system (5.7) in a neighborhood of the solution of (5.4).

Proposition 5.4. Let Assumption 5.1 be fulfilled. If µk > 0, νk > 0, and
(ξk, πk, µk, νk)→ (ξ∗, π∗, µ∗, ν∗), then the Jacobian

J ′(ξk, πk, µk, νk) =


Q AT CT O
A O O O
C O O I
O O Nk Mk

(5.9)

of the perturbed system (5.7) is nonsingular for k sufficiently large.

Proposition 5.4 ensures that the iterates produced by the interior point method
of Algorithm 5.3 are locally well defined. Its proof is a direct consequence of the
following result. Hence, we omit the proof.

A variant of the interior point method of Algorithm 5.3 generates a search direc-
tion by solving the following reduced symmetric, indefinite system of equations: Q AT CT

A O O
C O −(Mk)−1Nk

 δξk

δπk

δµk

 =

 −Qξk −ATπk − CTµk − c−Aξk + b
−ηk(Mk)−1e− Cξk + d

 .(5.10)

The eliminated variable δνk is set to

δνk = ηk(Mk)−1e−Nke− (Mk)−1Nkδµk.(5.11)

If we replace the perturbed Newton system (5.7) by (5.10) and (5.11), we can prove
that the iterates produced by this variant of Algorithm 5.3 are locally well defined.
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Proposition 5.5. Let Assumption 5.1 be fulfilled, µk > 0, νk > 0, and let
Dk = (Mk)−1Nk be positive definite. If (µk, νk)→ (µ∗, ν∗) then the matrix

Ĵk =

 Q AT CT

A O O
C O −Dk

(5.12)

is nonsingular for k sufficiently large.
Proof. Let the assumptions be fulfilled and let Dk = (Mk)−1Nk. Without loss of

generality, the matrices C,Dk can be partitioned as

C = [CA∗ CI∗ ]T and Dk = diag(Dk
A∗ , D

k
I∗),

where A∗ corresponds with the index set of the active and I∗ with the index set of the
nonbinding constraints at the solution of (QP). Note that the submatrices Dk

A∗ and
Dk
I∗ are positive definite and that limk→∞Dk

A∗ = D∗A∗ = 0 and limk→∞(Dk
I∗)
−1 =

(D∗I∗)
−1 = 0.

Assume that a subsequence {Ĵki} of {Ĵk} is singular. Then there exists a subse-
quence {(µki , νki)} of {(µk, νk)} such that for (zki , wki , ykiA∗ , y

ki
I∗) 6= 0

Qzki +ATwki + CTA∗y
ki
A∗ + CTI∗y

ki
I∗ = 0,

Azki = 0,

CA∗zki −Dki
A∗y

ki
A∗ = 0 ⇐⇒ ykiA∗ = (Dki

A∗)
−1CA∗zki ,

CI∗zki −Dki
I∗y

ki
I∗ = 0 ⇐⇒ ykiI∗ = (Dki

I∗)
−1CI∗zki .

(5.13)

If zki = 0, we can conclude from the last equation of (5.13) that ykiI∗ = 0. This,

together with Assumption 5.1(iii), implies wki = 0 and ykiA∗ = 0. Hence, zki 6= 0.

From this sequence we can extract a subsequence, i.e., {(1/||zki ||)(zki , wki , ykiA∗ , ykiI∗)},
which we denote by {(zki , wki , ykiA∗ , ykiI∗)}, where limi→∞ zki = z∗ and ||zki || = 1 for
some z∗. Then we have

Qzki + CTA∗(D
ki
A∗)
−1CA∗zki + CTI∗(D

ki
I∗)
−1CI∗zki +ATwki = 0,

Azki = 0.
(5.14)

Premultiplying the first equation in (5.14) by (zki)T we deduce from (5.14) that

(zki)TQzki + (zki)TCTA∗(D
ki
A∗)
−1CA∗zki + (zki)TCTI∗(D

ki
I∗)
−1CI∗zki = 0.(5.15)

Then we obtain

(zki)TCTA∗(D
ki
A∗)
−1CA∗ zki = − (zki)TQ zki − (zki)TCTI∗(D

ki
I∗)
−1CI∗ zki .

Note that for all ki we have

(zki)T
(
CTA∗(D

ki
A∗)
−1CA∗

)
zki ≥ 0 and (zki)T

(
CTI∗(D

ki
I∗)
−1CI∗

)
zki ≥ 0.

Moreover, for the subsequence {(µki , νki)} of {(µk, νk)} we know that Dki
A∗ → 0 and

(Dki
I∗)
−1 → 0 if i→∞. Then we can conclude that

lim sup
i→∞

(zki)TCTA∗(D
ki
A∗)
−1CA∗ zki ≤ − (z∗)TQ z∗.
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Since Dki
A∗ → 0, we obtain CA∗ zki → CA∗ z∗ = 0. Now, we deduce from (5.15) that

(z∗)TQz∗ ≤ 0, which is a contradiction to Assumption 5.1 (ii).
In the last part of this section we state some local convergence results for the

interior point method of Algorithm 5.3. The first theorem yields a superlinear con-
vergence rate of the Karush–Kuhn–Tucker system J to zero without the assumption of
nonsingularity of the Jacobian J ′ at the solution of (5.4). Then, Theorem 5.6 can be
obtained by making straightforward modifications to Theorems 3.1 and 3.3 of Zhang,
Potra, and Tapia [24]. Its proof is omitted.

Theorem 5.6. Let {(ξk, πk, µk, νk)} be a sequence generated by the interior point
method of Algorithm 5.3 and assume that (ξk, πk, µk, νk) converge to (ξ∗, π∗, µ∗, ν∗).
Furthermore, suppose that

(i) strict complementarity holds at the solution of (5.4), i.e., that for all i =
1, . . . ,m we have either µ∗i > 0 and ν∗i = 0 or µ∗i = 0 and ν∗i > 0;

(ii) the sequence {κk} is bounded, where κk = µk
T
νk/(m min(MkNke));

(iii) Q is symmetric and positive semidefinite on N ∗;
(iv) σk → 0 and τk → 1.

Then for k sufficiently large the convergence of the sequence {J(ξk, πk, µk, νk)} to zero
is superlinear and the point (ξ∗, π∗, µ∗, ν∗) solves problem (5.4).

With some additional work, we can actually demonstrate that the complemen-
tarity sequence {MkNke} componentwise converges to zero with a superlinear rate.

Theorem 5.8 states the quadratic convergence of the sequence {(ξk, πk, µk, νk)}
to (ξ∗, π∗, µ∗, ν∗) in a vicinity of the solution. To obtain this result we have to assume
the nonsingularity of the Jacobian matrix J ′ at the solution of (5.4). In particular,
we state the following lemma, which is a direct consequence of Proposition 5.5.

Lemma 5.7. Let (ξ∗, π∗, µ∗, ν∗) be a solution of (5.4) and assume that
(i) strict complementarity holds at the solution of (5.4), i.e., that for all i =

1, . . . ,m we have either µ∗i > 0 and ν∗i = 0 or µ∗i = 0 and ν∗i > 0;
(ii) the matrix [A CA∗ ]T has full rank at ξ∗;

(iii) Q is symmetric and positive definite on the null space N ∗ at ξ∗.
Then the Jacobian matrix J ′(ξ∗, π∗, µ∗, ν∗) is nonsingular.

In particular, we have the following quadratic convergence result, which is at-
tributed to Zhang, Tapia, and Dennis [23] in the context of linear programming, and
it can be proved by making straightforward modifications to [23, Theorem 4.3]. Its
proof is omitted.

Theorem 5.8. Let {(ξk, πk, µk, νk)} be a sequence generated by the interior point
method of Algorithm 5.3 and assume that (ξk, πk, µk, νk) converges to (ξ∗, π∗, µ∗, ν∗).
Furthermore, suppose that

(i) strict complementarity holds at the solution of (5.4), i.e., that for all i =
1, . . . ,m we have either µ∗i > 0 and ν∗i = 0 or µ∗i = 0 and ν∗i > 0;

(ii) the matrix [A CA∗ ]T has full rank at ξ∗;
(iii) Q is symmetric and positive definite on the null space N ∗;
(iv) the parameters σk and τk satisfy in every iteration

0 ≤ σk ≤ min(σ, c1µ
kT νk) and max(τ, 1− c2µkT νk) ≤ τk < 1,

where σ ∈ [0, 1), τ ∈ (0, 1), and c1, c2 are positive constants.
Then the convergence of the sequence {(ξk, πk, µk, νk)} to (ξ∗, π∗, µ∗, ν∗) is quadratic.

6. Numerical solution of a parabolic state-constrained control problem.
As an example for an application of the inexact SQP interior point method we use a
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parabolic control problem that has already been presented in the literature. Burger
and Pogu [2] use Newton’s method and a conjugate gradient method. In order to avoid
the repeated solution of a nonlinear parabolic boundary value problem, Kupfer and
Sachs [13] apply a reduced SQP method. Both consider an unconstrained parabolic
control problem. In Leibfritz and Sachs [15] a state-constrained problem is solved
by an exact SQP approach combined with an interior point solver for the quadratic
subproblems and a band LR decomposition for the linear systems. In [16] the authors
present implementation details of an inexact SQP interior point method and some
numerical results.

For motivation we formulate the control problem in infinite dimension. The goal
is to solve the discretized counterpart with our inexact SQP interior point algorithm.
For further details we refer to Leibfritz and Sachs [15], [16]. Let φ(x, t) denote the
temperature at time t ∈ [0, T ] and at x ∈ [0, 1], where x = 0 is on the boundary and
x = 1 is inside the probe. Furthermore, we use the following notation:

C: heat capacity, λ: heat conduction,
q: source term, p: reference profile,
u: control, φ: state,

φ̃0: initial temperature distribution, φmax: maximal temperature.

Then the parabolic state-constrained optimal control problem for a diffusion equation
with boundary inputs and state constraints is given as follows:

Minimize

∫ T

0

(φ(1, t)− p(t))2
dt + α

∫ T

0

u2(t) dt,(6.1)

subject to all (φ(x, t), u(t)) satisfying the diffusion equation

C(φ(x, t))φt(x, t)− [λ(φ(x, t))φx(x, t)]x = q(x, t), (x, t) ∈ (0, 1)× (0, T ),(6.2)

with initial and boundary conditions

λ(φ(0, t))φx(0, t) = g[φ(0, t)− u(t)], t ∈ (0, T ),
λ(φ(1, t))φx(1, t) = 0, t ∈ (0, T ),

φ(x, 0) = φ̃0(x), x ∈ (0, 1),
(6.3)

and the state constraint,

φ(x, t) ≤ φmax, (x, t) ∈ (0, 1)× (0, T ).(6.4)

Note that the optimal control problem has inequality constraints on the state
which avoids overheating during the process. The positive constant α imposes a
penalty on large values of the control. In Figure 6.1 we see that for the unconstrained
problem, after the start of the process at t = 0, the heating leads to rather large
temperatures at the boundary, where the probe is heated. This effect can be removed
by an upper limit on these temperatures (see, e.g., Figure 6.2), which leads to the
state constraint (6.4).

In the numerical tests we use the following parameters for the state-constrained
optimal control problem:

T = 12.0, φ̃0(x) ≡ 0, x ∈ (0, 1), φmax = 2.2, α = 1.0 · 10−4, g = 1.0.
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Fig. 6.1. Unconstrained temperature distribution.
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Fig. 6.2. Computed temperature distribution φ(x, t) with φmax = 2.2.

For the discretization parameters N of the space grid and M of the time grid we use
different values. The nonlinearities in the diffusion equation are described by

C(t) = q1 + q2t, λ(t) = r1 + r2t,

and the source term at (x, t) ∈ (0, 1)× (0, T ) is given by

q(x, t) =
[
ρ(q1 + 2q2) + π2(r1 + 2r2)

]
exp(ρt) cos(πx)

− r2π
2 exp(2ρt) +

(
2r2π

2 + ρq2

)
exp(2ρt) cos(πx)2,
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Fig. 6.3. Temperature profile p(t) and computed temperature profile φ(1, t).

where q1 = r1 = 4.0, q2 = 1.0, r2 = −1.0, and ρ = −1.0. The temperature profile,
which should be reached at x = 1 for t ∈ (0, T ), is defined by

p(t) =

 2− 2 exp(ρt), 0 ≤ t ≤ 6,
2− 2 exp(ρ(T − t)), 6 < t ≤ T,

0, t > T.

The graph in Figure 6.2 shows that the temperature is reduced at the right bound-
ary and that the constraint is active for a certain time period. Furthermore, this figure
demonstrates that the introduction of the inequality constraint avoids overheating of
the whole process.

The desired and the achieved temperature distributions inside the probe at x = 1
are illustrated in Figure 6.3 and indicate that the approximation is satisfactory. In
the time interval between t = 0.0 and t ≈ 3.0, where the constraints are active on
the right boundary, the computed temperature profile lies below the desired reference
profile. After that, the profiles match each other. This profile exhibits a typical
structure. During the time interval [0, T ] there is a heating phase followed by a phase
where the temperature is kept nearly constant. Then the process is concluded by a
cooling down phase.

The optimal control, which is due to the upper bound imposed on the temperature
at the other boundary, is displayed in Figure 6.4.

Table 6.1
Quadratic convergence rate of the inexact SQP method.

N = 9 M = 40 N = 18 M = 120 N = 18 M = 240

l IP εl IP εl IP εl

1 7 7.884 · 10−1 18 6.581 · 10−0 7 6.688 · 10−0

2 5 2.415 · 10−3 5 9.199 · 10−1 5 8.874 · 10−1

3 6 2.532 · 10−8 6 1.028 · 10−3 7 2.727 · 10−3

4 – – 6 3.565 · 10−8 6 5.210 · 10−8

In the last part of this section, we present several numerical tables for the state-
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Fig. 6.4. Computed optimal control u(t) at x = 0.

constrained parabolic control problem. All computations were performed in double-
precision Fortran-77 on a Sun Sparcstation 10. In all numerical tests we have ini-
tialized our local inexact SQP Algorithm 2.2 with an approximate solution of the
unconstrained control problem (cf. Figure 6.1). The forcing sequence {λl} of the
inexact SQP Algorithm 2.2 is chosen by (4.4). Then one can expect that the se-
quence {(zl, wl, yl)} generated by the inexact SQP Algorithm 2.2 converges locally to
(z∗, w∗, y∗) with a quadratic rate (cf. Theorem 4.3). In every inexact SQP iteration,
we solve the subproblems with the interior point method of Algorithm 5.3. There, we
have chosen the parameters σk and τk as in Theorem 5.8 (iv) and we have used the
constants

c1 = c2 = 1.0, σ = 0.001, and τ = 0.99995.

Table 6.2
Quadratic convergence rate of the interior point algorithm.

N = 18 M = 120 N = 18 M = 240

l k εk ε2k−1 k εk ε2k−1

2 4 2.912 · 10−02 – 4 6.940 · 10−02 –
5 1.031 · 10−04 8.482 · 10−04 5 3.756 · 10−03 4.817 · 10−03

3 4 4.363 · 10−02 – 6 8.474 · 10−04 –
5 6.481 · 10−04 1.911 · 10−03 7 1.580 · 10−07 7.181 · 10−07

6 1.023 · 10−07 4.201 · 10−07

4 5 3.286 · 10−10 – 5 1.357 · 10−09 –
6 4.317 · 10−19 1.080 · 10−19 6 6.196 · 10−18 1.841 · 10−18

The interior point algorithm will be terminated if the approximation rule (2.10) is
satisfied and the linear system (5.10) is solved iteratively by GMRES. Finally, we

terminate the inexact SQP approach if εl = ||ĥ(zl, wl, yl)|| ≤ 10−08 ·√M(3N + 4).
Table 6.1 shows the convergence rate of the inexact SQP method. There, IP

indicates the number of interior point iterations for each inexact SQP iteration. We
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observe that the inexact SQP approach locally achieves a quadratic rate of convergence
according to Theorem 4.3. The results clearly demonstrate numerically the theoretical
properties of the inexact SQP algorithm. Furthermore, we see that this approach
achieves asymptotically the same convergence rates as an exact SQP method. In
Table 6.2 we illustrate the quadratic convergence of the sequence generated by the
interior point method during the last few inner iterations. During the first inexact
SQP iteration the interior point algorithm terminates before achieving the vicinity of
the solution of (QP), where we can observe the asymptotic rates. After that, we obtain
a quadratic rate during the last few iterations according to Theorem 5.8. Furthermore,
this table indicates that each quadratic subproblem is solved more accurately the more
the iteration progresses. Finally, Table 6.3 shows the superlinear convergence of the
duality gap during the last few iterations of the interior point algorithm according to
Theorem 5.6.

Table 6.3
Superlinear convergence of the duality gap.

N = 18 M = 120 N = 18 M = 240

l k dk = µk
T
νk dk/dk−1 k dk = µk

T
νk dk/dk−1

2 4 8.083 · 10−03 0.99813 4 3.576 · 10−03 0.99466
5 6.491 · 10−05 0.00803 5 9.937 · 10−05 0.02779

3 4 6.484 · 10−05 0.99793 6 3.835 · 10−06 0.11196
5 3.001 · 10−06 0.04628 7 4.595 · 10−08 0.01198
6 4.930 · 10−09 0.00164

4 2 9.445 · 10−05 0.99952
3 5.452 · 10−06 0.99767 3 9.436 · 10−06 0.09990
4 6.927 · 10−09 0.00127 4 1.465 · 10−08 0.00155
5 4.823 · 10−13 0.00007 5 6.735 · 10−13 0.00005
6 2.904 · 10−21 0.000000006 6 2.205 · 10−20 0.0000003
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Abstract. A class of Lagrange–Newton–SQP methods is investigated for optimal control prob-
lems governed by semilinear parabolic initial-boundary value problems. Distributed and boundary
controls are given, restricted by pointwise upper and lower bounds. The convergence of the method is
discussed in appropriate Banach spaces. Based on a weak second order sufficient optimality condition
for the reference solution, local quadratic convergence is proved. The proof is based on the theory of
Newton methods for generalized equations in Banach spaces.
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1. Introduction. This paper is concerned with the numerical analysis of a se-
quential quadratic programming (SQP) method for optimal control problems governed
by semilinear parabolic equations. We extend convergence results obtained in the au-
thor’s papers [31] and [32] for simplified cases. Here, we allow for distributed and
boundary control. Moreover, terminal, distributed, and boundary observation are in-
cluded in the objective functional. In contrast to the former papers, where a semigroup
approach was chosen to deal with the parabolic equations, the theory is now presented
in the framework of weak solutions relying on papers by Casas [7], Raymond and Zi-
dani [28], and Schmidt [30]. We refer also to Heinkenschloss and Tröltzsch [15], where
the convergence of an SQP method is proved for the optimal control of a phase field
model. Including first order sufficient optimality conditions in the considerations, we
are able to essentially weaken the second order sufficient optimality conditions needed
to prove the convergence of the method. These sufficient conditions tighten the gap
to the associated necessary ones. However, the approach requires a quite extensive
analysis.

SQP methods for the optimal control of ODEs have already been the subject
of many papers. We refer, for instance, to the discussion of quadratic convergence
and the associated numerical examples by Alt [1], [2], Alt and Malanowski [5], [6],
to the mesh independence principle in Alt [3], and to the numerical application by
Machielsen [27]. Moreover, we refer to the more extensive references therein. For a
paper standing in some sense between the control of ODEs and PDEs we refer to Alt,
Sontag and Tröltzsch [4], who investigated the control of weakly singular Hammerstein
integral equations. The case of semilinear elliptic PDEs was considered by Unger [34].

Following recent developments for ordinary differential equations, we adopt here
the relation between the SQP method and a generalized Newton method. This ap-
proach makes the whole theory more transparent. We are able to apply known results
on the convergence of generalized Newton methods in Banach spaces assuming the so
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called strong regularity at the optimal reference point. In this way, the convergence
analysis is shorter, and we are able to concentrate on specific questions arising from
the presence of partial differential equations.

Once the convergence of the Newton method is shown, we still need an extensive
analysis to make the theory complete. We have to ensure the strong regularity by
sufficient conditions and to show that the Newton steps can be performed by solving
linear-quadratic control problems (SQP-method). This interplay between the Newton
method and the SQP method is a specific feature, which cannot be derived from
general results in Banach spaces, since we have to discuss pointwise relations.

We should underline that this paper does not aim to discuss the numerical appli-
cation of the method. Any computation has to be connected with a discretization of
the problem. This gives rise to consider approximation errors, stability estimates, the
interplay between mesh adaption and precision (particularly delicate for PDEs), and
the numerical implementation. Besides the fact that some of these questions are still
unsolved, the presentation of the associated theory would go far beyond the scope of
one paper. We understand the analysis of our paper as a general line applicable to any
proof of convergence for these numerical methods. Some test examples close to this
paper were presented by Goldberg and Tröltzsch [11], [12]. The fast convergence of
the SQP method is demonstrated there by examples in spatial domains of dimension
one and two relying on a fine discretization of the problems. Lagrange–Newton-type
methods were also discussed for PDEs by Heinkenschloss and Sachs [14], Ito and Ku-
nisch [16], [17], Kelley and Sachs [19], [20], [21], Kupfer and Sachs [23], Heinkenschloss
[13], and Kunisch and Volkwein [22], who report in much more detail on the numerical
details needed for an effective implementation.

The paper is organized as follows. Section 2 is concerned with existence and
uniqueness of weak solutions for the equation of state. After stating the problem and
associated necessary and sufficient optimality conditions in section 3, the generalized
Newton method is established in section 4. The strong stability of the generalized
equation is discussed in section 5, while section 6 is concerned with performing the
Newton steps by SQP steps.

2. The equation of state. The dynamics of our control system are described
by the semilinear parabolic initial-boundary value problem

yt(x, t) + div (A(x) gradxy(x, t)) + d(x, t, y(x, t), v(x, t)) = 0 in Q,
∂νy(x, t) + b(x, t, y(x, t), u(x, t)) = 0 on Σ,

y(x, 0)− y0(x) = 0 on Ω .
(2.1)

This system is considered in Q = Ω × (0, T ), where Ω ⊂ RN (N ≥ 2) is a bounded
domain and T > 0 a fixed time. By ∂ν the co-normal derivative ∂y/∂νA = −ν>A∇y is
denoted, where ν is the outward normal on Γ. The functions u and v denote boundary
and distributed control, Σ = Γ×(0, T ), Γ = ∂Ω, and y0 is a fixed initial state function.
Following [7] and [28], we impose the following assumptions on the data.

(A1) Γ is of class C2,α for some α ∈ (0, 1]. The coefficients aij of the matrix
A = (aij)i,j=1,...,N belong to C1,α(Ω), and there is m0 > 0 such that

−ξ>A(x) ξ ≥ m0 |ξ|2 ∀ξ ∈ RN ∀x ∈ Ω.(2.2)

A(x) is (w.l.o.g.) symmetric .
(A2) The “distributed” nonlinearity d = d(x, t, y, v) is defined on Q × R2 and

satisfies the following Carathéodory-type condition:
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(i) For all (y, v) ∈ R2, d(·, ·, y, v) is Lebesgue measurable on Q.
(ii) For almost all (x, t) ∈ Q, d(x, t, ·, ·) is of class C2,1(R2).
The “boundary” nonlinearity b = b(x, t, y, u) is defined on Σ × R2 and is
supposed to fulfill (i), (ii) with Σ substituted for Q.

In our setting, the controls u, v will be uniformly bounded by a certain constant K.

(A3) The functions d, b fulfill the assumptions of boundedness and monotonicity
(i)

|d(x, t, 0, v)| ≤ dK(x, t) ∀(x, t) ∈ Q, |v| ≤ K,(2.3)

where dK ∈ Lq(Q) and q > N
2 + 1. There is a number c0 ∈ R and a

nondecreasing function η : R+ → R+ such that

c0 ≤ dy(x, t, y, v) ≤ η(|y|)(2.4)

for almost everywhere (a.e.) (x, t) ∈ Q, all y ∈ R, all |v| ≤ K.
(ii)

|b(x, t, 0, u)| ≤ bK(x, t) ∀(x, t) ∈ Σ, |u| ≤ K(2.5)

and

c0 ≤ by(x, t, y, u) ≤ η(|y|)(2.6)

for a.e. (x, t) ∈ Σ, all y ∈ R, all |u| ≤ K, where bK ∈ Lr(Σ), r > N + 1.
The assumptions imply those supposed in [7], [28], since our controls are uni-

formly bounded. The C2,1-assumption on d, b is not necessary for the discussion of
the equation of state. We shall need it for the Lagrange–Newton method. Although
the discussion of existence and uniqueness for the nonlinear system (2.1) is not nec-
essary for our analysis we quote the following result from [7], [28].

Theorem 2.1. Suppose that (A1)–(A3) are satisfied, y0 ∈ C(Ω), v ∈ L∞(Q), u ∈
L∞(Σ). Then the system (2.1) admits a unique weak solution y ∈ L2(0, T ;H1(Ω)) ∩
C(Q).

A weak solution of (2.1) is a function y of L2(0, T ;H1(Ω)) ∩ C(Q) such that

−
∫
Q

(y · pt + (∇xy)>A(x)∇xp) dxdt+

∫
Q

d(x, t, y, v) p dxdt

+

∫
Σ

b(x, t, y, u) p dSdt−
∫

Ω

y0(x)p(x, 0)dx = 0
(2.7)

holds ∀ p ∈ W 1,1
2 (Q) satisfying p(x, T ) = 0 [24]. In (2.7) we have assumed that

y ∈ C(Q) to make the nonlinearities d, b well defined. Theorem 2.1 was shown by
a detailed discussion of regularity for an associated linear equation. This linear ver-
sion of Theorem 2.1 is more important for our analysis. In what follows, we shall
use the symbol A = div (A grad y). Moreover, we need the space W (0, T ) = {y ∈
L2(0, T ;H1(Ω))|yt ∈ L2(0, T ;H1(Ω)′)}[25], [26]. Regard the linear initial-boundary
value problem

yt +Ay + a y = v on Q,
∂νy + b y = u on Σ,

y(0) = y0 on Ω.
(2.8)
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Theorem 2.2. Suppose that a ∈ L∞(Q), b ∈ L∞(Σ), q > N/2 + 1, r > N + 1,
a(x, t) ≥ c0, b(x, t) ≥ c0 a.e. on Q and Σ, respectively, and y0 ∈ C(Ω). Then there is
a constant cl = c(c0, q, r,m0,Ω, T ) not depending on a, b, v, u, y0 such that

‖y‖L2(0,T ;H1(Ω)) + ‖y‖C(Q) ≤ cl (‖v‖Lq(Q) + ‖u‖Lr(Σ) + ‖y0‖C(Ω))(2.9)

holds for the weak solution of the linear system (2.8).
For the proof we refer to [7] or [28]. Equation (2.9) yields a similar estimate for

b · y. Regarding the linear system (2.8) with right-hand sides v − ay, u − by, and y0,
respectively, the L2-theory of linear parabolic equations applies to derive

‖y‖W (0,T ) ≤ c′(‖v‖Lq(Q) + ‖u‖Lr(Σ) + ‖y0‖C(Ω)),(2.10)

where c′l depends also on ‖a‖L∞(Q), ‖b‖L∞(Σ). We shall work in the state space Y =

{y ∈ W (0, T ) | yt + Ay ∈ Lq(Q), ∂νy ∈ Lr(Σ) y(0) ∈ C(Ω)} endowed with the norm
‖y‖Y := ‖y‖W (0,T ) + ‖yt + Ay‖Lq(Q) + ‖∂νy‖Lr(Σ) + ‖y(0)‖C(Ω). Y is known to be

continuously embedded into C(Q). From (2.9) and (2.10) we get

‖y‖Y ≤ c̃l (‖v‖Lq(Q) + ‖u‖Lr(Σ) + ‖y0‖C(Ω)),(2.11)

where c̃l depends on c0, q, r,m0,Ω, T, ‖a‖L∞(Q), ‖b‖L∞(Σ). Further on, we shall need
the Hilbert spaceH = W (0, T )×L2(Ω)×L2(Σ) equipped with the norm ‖(y, v, u)‖H :=
(‖y‖2W (0,T ) + ‖v‖2L2(Q) + ‖u‖2L2(Σ))

1/2.

3. Optimal control problem and SQP method. Let ϕ : Ω × R → R, f :
Q × R2 → R, and g : Σ × R2 → R be given functions specified below. Consider the
problem (P) to minimize

J(y, v, u) =

∫
Ω

ϕ(x, y(x, T ))dx+

∫
Q

f(x, t, y, v)dxdt+

∫
Σ

g(x, t, y, u)dSdt(3.1)

subject to the state equation (2.1) and to the pointwise constraints on the control

va ≤ v(x, t) ≤ vb a.e. on Q,(3.2)

ua ≤ u(x, t) ≤ ub a.e. on Σ,(3.3)

where va, vb, ua, ub are given functions of L∞(Q) and L∞(Σ), respectively, such that
va ≤ vb a.e. on Q and ua ≤ ub a.e. on Σ. The controls v and u belong to the sets of
admissible controls

Vad = {v ∈ L∞(Q) | v satisfies (3.2)}, Uad = {u ∈ L∞(Σ) |u satisfies (3.3)}.
(P) is a nonconvex programming problem, hence different local minima will possibly
occur. Numerical methods will deliver a local minimum close to their starting point.
Therefore, we do not restrict our investigations to global solutions of (P). We will
assume later that a fixed reference solution is given satisfying certain first and second
order optimality conditions (ensuring local optimality of the solution). For the same
reason, we shall not discuss the problem of existence of global (optimal) solutions for
(P).

In the next assumptions, D2 will denote Hessian matrices of functions. The func-
tions ϕ, f, d, g, and b are assumed to satisfy the following assumptions on smoothness
and growth. Here, ‖ · ‖ denotes any useful norm for 2× 2 matrices.
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(A4) For all x ∈ Ω, ϕ(x, ·) belongs to C2,1(R) with respect to y ∈ R, while ϕ(·, y),
ϕy(·, y), and ϕyy(·, y) are bounded and measurable on Ω. There is a constant
cK > 0 such that

|ϕyy(x, y1)− ϕyy(x, y2)| ≤ cK |y1 − y2|(3.4)

holds ∀ yi ∈ R such that |yj | ≤ K, i = 1, 2.
For all (x, t) ∈ Q, f(x, t, ·, ·) is of class C2,1(R2) with respect to (y, v) ∈ R2,
while f , fy, fv, fyy, fyv, and fvv, all depending on (·, ·, y, v), are bounded
and measurable with respect to (x, t) ∈ Q. There is a constant fK > 0 such
that

‖D2f(x, t, y1, v1)−D2f(x, t, y2, v2)‖ ≤ fK (|y1 − y2|+ |v1 − v2|)(3.5)

holds ∀ yi, vi satisfying |yi| ≤ K, |vi| ≤ K, i = 1, 2, and almost all (x, t) ∈ Q.
For d we require the same except the boundedness of d(·, ·, y, v).
The functions g and d satisfy analogous assumptions on Σ×R2. In particular,

‖D2g(x, t, y1, u1)−D2g(x, t, y2, u2)‖ ≤ gK (|y1 − y2|+ |u1 − u2|)(3.6)

holds ∀ yi, ui satisfying |yi| ≤ K, |ui| ≤ K, i = 1, 2, and almost all (x, t) ∈ Σ.
Let us recall the known standard first order necessary optimality system for a

local minimizer (y, v, u) of (P). The triplet (y, v, u) has to satisfy, together with an
adjoint state p ∈ W (0, T ), the state system (2.1), the constraints v ∈ Vad, u ∈ Uad,
the adjoint equation

−pt +Ap+ dy(x, t, y, v) p = fy(x, t, y, v) in Q,
∂νp+ by(x, t, y, u) p = gy(x, t, y, u) on Σ,

p (x, T ) = ϕy(x, y(x, T )) in Ω,
(3.7)

and the variational inequalities∫
Q

(fv(x, t, y, v)− dv(x, t, y, v) · p)(z − v) dxdt ≥ 0 ∀z ∈ Vad,(3.8) ∫
Σ

(gu(x, t, y, u)− bu(x, t, y, u) · p)(z − u) dSdt ≥ 0 ∀z ∈ Uad.(3.9)

We introduce for convenience the Lagrange function L,

L(y, v, u; p) = J(y, v, u)−
∫
Q

{(yt +Ay + d(x, t, y, v)} p dxdt

−
∫

Σ

{∂νy + b(x, t, y, v)} p dSdt,
(3.10)

defined on Y ×L∞(Q)×L∞(Σ)×W (0, T ). L is of class C2,1 with respect to (y, v, u)
in Y × L∞(Q)× L∞(Σ). Moreover, we define the Hamilton functions

HQ = HQ(x, t, y, p, v) = f(x, t, y, v)− p d(x, t, y, v),(3.11)

HΣ = HΣ(x, t, y, p, u) = g(x, t, y, u)− p b(x, t, y, u),(3.12)

containing the “nondifferential” parts of L. Then the relations (3.7)–(3.9) imply

Ly(y, v, u; p)h = 0 ∀h ∈W (0, T ) satisfying h(0) = 0,(3.13)

Lv(y, v, u; p)(z − v) =

∫
Q

HQ
v (x, t, y, p, v)(z − v) dxdt ≥ 0 ∀z ∈ Vad,(3.14)

Lu(y, v, u; p)(z − u) =

∫
Σ

HΣ
u (x, t, y, p, u)(z − u)dSdt ≥ 0 ∀z ∈ Uad.(3.15)
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Let us suppose once and for all that a fixed reference triplet (y, v, u) ∈ Y × L∞(Q)×
L∞(Σ) is given satisfying together with p ∈ W (0, T ) the optimality system. This
system is not sufficient for local optimality. Therefore, we shall assume some kind of
second order sufficient conditions. We have to consider them along with a first order
sufficient condition. Following Dontchev, et al. [10], the sets

Q(σ) = {(x, t) ∈ Q | |HQ
v (x, t, y(x, t), v(x, t), p(x, t)) | ≥ σ},(3.16)

Σ(σ) = {(x, t) ∈ Σ | |HΣ
u (x, t, y(x, t), u(x, t), p(x, t)) | ≥ σ}(3.17)

are defined for arbitrarily small but fixed σ > 0. On these sets, the controls ū and v̄
are uniquely defined by the first order optimality conditions; they attain the lower or
upper bound of their control set. Here we do not need second order information, since
first order sufficiency applies. Although the same holds for all points, where |HQ

v | and
|HΣ

u | are positive, we need the level σ > 0 to make this property stable with respect to
small perturbations. The sets Q(σ) and Σ(σ) define strongly active control constraints
in the sense of optimization theory, since |HQ

v | and |HΣ
u | are Lagrange multipliers

associated to the control constraints. However, we shall not need this interpretation.
D2HQ and D2HΣ denote the Hessian matrices of HQ, HΣ with respect to (y, v) and
(y, u) respectively, taken at the reference point. For instance,

D2HQ(x, t) =

(
HQ
yy(x, t, y(x, t), v(x, t), p(x, t)) HQ

yv(x, t, y(x, t), v(x, t), p(x, t))
HQ
vy(x, t, y(x, t), v(x, t), p(x, t)) HQ

vv(x, t, y(x, t), v(x, t), p(x, t))

)
.

D2HΣ is defined analogously. Moreover, we introduce a quadratic form B depending
on hi = (yi, vi, ui) ∈ Y × L∞(Q)× L∞(Σ), i = 1, 2, by

B[h1, h2] =

∫
Ω

ϕyy(x, y(x, T ))y1(x, T )y2(x, T ) dx+

∫
Q

(y1, v1)D2HQ(y2, v2)> dxdt

+

∫
Σ

(y1, u1)D2HΣ(y2, u2)> dSdt.

(3.18)
The second order sufficient optimality condition is defined as follows:

(SSC) There are δ > 0, σ > 0 such that

B[h, h] ≥ δ · ‖h‖2H(3.19)

holds ∀h = (y, v, u) ∈ W (0, T ) × L2(Q) × L2(Σ), where v ∈ Vad, v(x, t) = 0 on
Q(σ), u ∈ Uad, u = 0 on Σ(σ), and y is the associated weak solution of the linearized
equation

yt +Ay + dy(y, v) y + dv(y, v) v = 0,
∂νy + by(y, u) y + bu(y, u)u = 0,

y(0) = 0.
(3.20)

Next we introduce the SQP method to solve the problem (P) iteratively. Let us first
assume that the controls are unrestricted, that is Vad = L∞(Q), Uad = L∞(Σ). Then
the optimality system (2.1), (3.7), (3.8), (3.9) is a nonlinear system of equations
for the unknown functions v, p, y, u, which can be treated by the Newton method.
(For unrestricted controls, the variational inequalities are equivalent to the equations
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fv − dvp = 0 and gu − bup = 0.) In each step of the method, a linear system of
equations is to be solved. This linear system is the optimality system of a linear-
quadratic optimal control problem without constraints on the controls, which can be
solved instead of the linear system of equations.

Now consider again the constraints on the control. Then the optimality system
is no longer a system of equations, since it contains the two variational inequalities
(3.8) and (3.9). However, it is not difficult to generalize the linear-quadratic control
problems by adding the control-constraints. This idea leads to the following iterative
method: Suppose that (yi, pi, vi, ui), i = 1, . . . , n, have already been determined.
Then (yn+1, vn+1, un+1) is computed by solving the following linear-quadratic optimal
control problem (QPn) :

(QPn) Minimize

Jn(y, v, u) =

∫
Ω

ϕny · y(T )dx+

∫
Q

(fny · y + fnv · v) dxdt+

∫
Σ

(gny y + gnu u)dSdt

+ 1
2

∫
Ω

ϕnyy (y(T )− yn(T ))2dx+
1

2

∫
Q

(y − yn, v − vn)D2HQ,n

(
y − yn
v − vn

)
dxdt

+ 1
2

∫
Σ

(y − yn, u− un)D2HΣ,n

(
y − yn
u− un

)
dSdt

(3.21)

subject to

yt +Ay + dn + dny (y − yn) + dnv (v − vn) = 0,
∂νy + bn + bny (y − yn) + bnu (u− un) = 0,

y(0) = y0

(3.22)

and to

v ∈ Vad, u ∈ Uad.(3.23)

In this setting, the notation ϕny = ϕy(x, yn(x, T )), ϕnyy = ϕnyy(x, yn(x, T )), fny =

fny (x, t, yn(x, t), vn(x, t)), D2HQ,n = D2H(y,v,u)(x, t, yn(x, t), vn(x, t), pn(x, t)) etc.,
was used. The associated adjoint state pn+1 is determined from

−pt +Ap+ dny (p− pn) = HQ,n
y +HQ,n

yy (yn+1 − yn) +HQ,n
yv (vn+1 − vn),

p(T ) = ϕny + ϕnyy (yn+1 − yn)(T ),
∂νp+ bny (p− pn) = HΣ,n

y +HΣ,n
yy (yn+1 − yn) +HΣ,n

yu (un+1 − un).
(3.24)

In this way, a sequence of quadratic optimization problems is to be solved, giving the
method the name sequential quadratic programming (SQP) method. The main aim
of this paper is to show that this process exhibits a local quadratic convergence. We
shall transform the optimality system into a generalized equation. Then we are able
to interpret the SQP method as a Newton method for a generalized equation. This
approach gives direct access to known results on the convergence of Newton methods.
In the analysis, a specific difficulty arises from the fact that (QPn) might be non-
convex. It therefore may have multiple local minima. We shall have to restrict the
control set to a sufficiently small neighborhood around the reference solution.
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4. Generalized equation and Newton method. To transform the optimality
system into a generalized equation, we reformulate the variational inequalities (3.8)–
(3.9) as generalized equations, too.

Therefore, we define the cones

NQ(v) =

 {z ∈ L∞(Q) |
∫
Q

z(ṽ − v)dxdt ≤ 0 ∀ṽ ∈ Vad} if v ∈ Vad,
∅ if v /∈ Vad,

(4.1)

NΣ(u) =

 {z ∈ L∞(Σ) |
∫

Σ

z(ũ− u)dSdt ≤ 0 ∀ũ ∈ Uad} if u ∈ Uad,
∅ if u /∈ Uad.

(4.2)

Then (3.8) and (3.9) read −HQ
v (y, p, v) ∈ NQ(v), −HΣ

u (y, p, u) ∈ NΣ(u), or

0 ∈ HQ
v (y, p, v) +NQ(v),(4.3)

0 ∈ HΣ
u (y, p, u) +NΣ(u).(4.4)

(HQ
v and HΣ

u are Nemytskii operators defined analogously to HQ
y , HΣ

y .) The set-

valued mappings T1 : v 7→ NQ(v) from L∞(Q) to 2L
∞(Q) and T2 : u 7→ NΣ(u)

from L∞(Σ) to 2L
∞(Σ) have closed graph. We introduce now the subspace E of

Ẽ = L∞(Q) × L∞(Σ) × C(Ω))2 × L∞(Q) × L∞(Σ), which contains all η ∈ Ẽ of
the form η = (eQ, eΣ, 0, γQ, γΣ, γΩ, γv, γu) and is endowed with the norm ‖η‖E =
‖eQ‖L∞(Q)+‖eΣ‖L∞(Σ)+‖γQ‖L∞(Q)+‖γΣ‖L∞(Σ)+‖γΩ‖C(Ω)+‖γv‖L∞(Q)+‖γu‖L∞(Σ).

We also need the space W = Y × Y × L∞(Q) × L∞(Σ) equipped with the norm
‖(y, p, v, u)‖W = ‖y‖Y + ‖p‖Y + ‖v‖L∞(Ω) + ‖u‖L∞(Σ). Moreover, define the set-
valued mapping T : W → 2E by

T (w) = ({0}, {0}, {0}, {0}, {0}, {0}, NQ(v)NΣ(u))

and F : W → E by F (w) = (F1(w), ..., F8(w)), where

F1(w) = yt +Ay + d(y, v),

F2(w) = ∂νy + b(y, u),

F3(w) = y(0)− y0,

F4(w) = −pt +Ap−HQ
y (y, p, v),

F5(w) = ∂νp−HΣ
y (y, p, u),

F6(w) = p(T )− ϕy(y(T )),

F7(w) = HQ
v (y, p, v),

F8(w) = HΣ
u (y, p, u).

In the definition of E, the third component is vanishing, since it will correspond to the
initial condition y(0)− y0 = 0, which is kept fixed in the generalized Newton method.
The optimality system is clearly equivalent to the generalized equation

0 ∈ F (w) + T (w),(4.5)

where F is of class C1,1, and the set-valued mapping T has closed graph. Obviously,
the reference solution w = (y, p, v, u) satisfies (4.5). The generalized Newton method
for solving (4.5) is similar to the Newton method for equations in Banach spaces.
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Suppose that we have already computed w1, . . . , wn. Then wn+1 is to be determined
by the generalized equation

0 ∈ F (wn) + F ′(wn)(w − wn) + T (w).(4.6)

The convergence analysis of this method is closely related to the notion of strong
regularity of (4.5). See Robinson [29]. The generalized equation (4.5) is said to be
strongly regular at w if there are constants r1 > 0, r2 > 0, and cL > 0 such that for
all perturbations e ∈ Br1(0E) the linearized equation

e ∈ F (w) + F ′(w)(w − w) + T (w)(4.7)

has in Br2(w) a unique solution w = w(e), and the Lipschitz property

‖w(e1)− w(e2)‖W ≤ cL‖e1 − e2‖E(4.8)

holds ∀ e1, e2 ∈ Br1(0E). In the case of an equation F (w) = 0, we have F (w) =
0, T (w) = {0}, and strong regularity means the existence and boundedness of (F ′(w))−1.
For other aspects of L-stability we refer to [9]. The following result gives a first answer
to the convergence analysis of the generalized Newton method.

Theorem 4.1. Suppose that (4.5) is strongly regular at w. Then there are rN > 0
and cN > 0 such that for each starting element w1 ∈ BrN (w) the generalized Newton
method generates a unique sequence {wn}∞n=1. This sequence remains in BrN (w), and
it holds that

‖wn+1 − w‖W ≤ cN ‖wn − w‖2W ∀n ∈ N.(4.9)

This result was apparently shown first by Josephy [18]. Generalizations can be
found in Dontchev [8] and Alt [1], [2]. We refer in particular to the recent publication
by Alt [3], where a mesh-independence principle was shown for numerical approxima-
tion of (4.5). We shall verify that the second order condition (SSC) implies strong

regularity of the generalized equation at w = (y, p, v, u) in certain subsets V̂ad ⊂ Vad,
Ûad ⊂ Uad. Then Theorem 4.1 yields the quadratic convergence of the generalized
Newton method in these subsets.

5. Strong regularity. To investigate the strong regularity of the generalized
equation (4.5) at w̄, we have to consider the perturbed generalized equation (4.7).
Once again, we are able to interpret this equation as the optimality system of a
linear-quadratic control problem. This problem is not necessarily convex, therefore
we study the behavior of the following auxiliary linear-quadratic problem associated
with the perturbation e:

(Q̂Pe) Minimize

Je(y, v, u) =

∫
Ω

(ϕ̄y + γΩ) y(T ) dx+

∫
Q

(f̄y + γQ) y dxdt+

∫
Q

(f̄v + γv) v dxdt

+

∫
Σ

(ḡy + γΣ) y dSdt+

∫
Σ

(ḡu + γu)u dSdt+
1

2

∫
Ω

ϕ̄yy(y(T )− ȳ(T ))2dx

+ 1
2

∫
Q

(
y − ȳ
v − v̄

)>
D2H̄Q

(
y − ȳ
v − v̄

)
dxdt+ 1

2

∫
Σ

(
y − ȳ
u− ū

)>
D2H̄Σ

(
y − ȳ
u− ū

)
dSdt

(5.1)
subject to

yt +Ay + d(ȳ, v̄) + d̄y (y − ȳ) + d̄v (v − v̄) = eQ in Q,
∂νy + b(ȳ, ū) + b̄y (y − ȳ) + b̄u (u− ū) = eΣ on Σ,

y(0) = y0 in Ω
(5.2)
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and to the constraints on the control

v ∈ V̂ad = {v ∈ Vad | v(x, t) = v̄(x, t) on Q(σ)},
u ∈ Ûad = {u ∈ Uad |u(x, t) = ū(x, t) on Σ(σ)}.(5.3)

In this setting, the perturbation vector e = (eQ, eΣ, 0, γQ, γΣ, γΩ, γv, γu) belongs

to E. The hat in (Q̂Pe) indicates that v and u are taken equal to v̄ and ū on the
strongly active sets Q(σ) and Σ(σ), respectively.

Remark. The generalized equation (4.7) is equivalent to the optimality system of

the problem (QPe) obtained from (Q̂Pe) on substituting Vad for V̂ad and Uad for Ûad,
respectively.

In the space of perturbations E we need another norm

‖e‖2 = ‖eQ‖L2(Q) + ‖eΣ‖L2(Σ) + ‖γQ‖L2(Q) + ‖γΣ‖L2(Σ)

+‖γΩ‖L2(Ω) + ‖γv‖L2(Q) + ‖γu‖L2(Σ).

Moreover, in W we shall also use the norm

‖(y, p, v, u)‖2 = ‖y‖W (0,T ) + ‖p‖W (0,T ) + ‖v‖L2(Q) + ‖u‖L2(Σ).

The next results follow from the author’s paper [33].
Lemma 5.1. Suppose that the second order sufficient optimality condition (SSC)

is satisfied at (ȳ, v̄, ū) with associated adjoint state p̄. Then for each e ∈ E, the problem

(Q̂Pe) has a unique solution (ye, ve, ue) with associated adjoint state pe. Let (yi, vi, ui)
and pi, i = 1, 2, be the solutions and adjoint states to ei ∈ E, i = 1, 2. There is a
constant l2 > 0, not depending on ei, such that

‖(y1, p1, v1, u1)− (y2, p2, v2, u2)‖2 ≤ l2‖e1 − e2‖2(5.4)

holds ∀ ei ∈ E, i = 1, 2.
By continuity, (5.4) extends to perturbations ei of L2. It was shown in [33]

that the second order condition (SSC) implies the following strong Legendre–Clebsch
condition:

(LC) HQ
vv(x, t, ȳ(x, t), p̄(x, t), v̄(x, t)) ≥ δ a.e. on Q,

HΣ
uu(x, t, ȳ(x, t), p̄(x, t), ū(x, t)) ≥ δ a.e. on Σ.

Theorem 5.2. Let the assumptions of Lemma 5.1 be satisfied. Then there is a
constant l∞ > 0, not depending on ei, such that

‖(y1, p1, v1, u1)− (y2, p2, v2, u2)‖W ≤ l∞ ‖e1 − e2‖E(5.5)

holds for (yi, vi, ui, pi), and ei, i = 1, 2, introduced in Lemma 5.1.
This theorem follows from [33, Thm. 5.2]. (Notice that vi = v̄ and ui = ū on

Q(σ) and Σ(σ), respectively. This can be expressed by taking ua := ub := ū and
va := vb := v̄ on these sets. Then [33, Thm. 5.2] is easy to apply.)

Unfortunately, (5.5) holds only for V̂ad and Ûad. We are not able to prove (5.5) in
Vad, Uad. In this case, Je might be nonconvex and (QPe) may have multiple solutions,
if solvable at all. However, formulating Theorem 5.2 in the context of our generalized
equation, we already have obtained the following result on strong regularity.

Theorem 5.3. Suppose that w̄ = (ȳ, p̄, v̄, ū) satisfies the first order optimality
system (2.1), (3.2)–(3.3), (3.7)–(3.9) together with the second order sufficient condition
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(SSC). Then the generalized equation (4.5) is strongly regular at w̄, provided that the

control sets V̂ad, Ûad are substituted for Vad, Uad in the definition of T (w).
Remark. The last assumption means that the cones NQ(v) and NΣ(u) are defined

on using V̂ad and Ûad, respectively.
To complete the discussion of the Newton method, the following questions have

yet to be answered: How can we solve the generalized equation (4.6) in V̂ad and Ûad,
and how do we get rid of the artificial restriction v = v̄ on Q(σ) and u = ū on Σ(σ)?

We shall show that the SQP method, restricted to a sufficiently small neighbor-
hood around v̄ and ū, will solve both the problems: If the region is small enough, then
the SQP method delivers a unique solution wn = (yn, pn, vn, un), where vn = v̄, un = ū
is automatically satisfied on Q(σ),Σ(σ). Moreover, this wn is a solution of the gener-
alized equation (4.5), that is, a solution of the optimality system for (P).

6. The linear-quadratic subproblems (QPn). The presentation of the SQP
method is still quite formal. We do not know whether the quadratic subproblem
(QPn) defined by (3.21)–(3.23) is solvable at all. Moreover, if solutions exist, we are
not able to show their uniqueness. There might exist multiple stationary solutions,
i.e., solutions satisfying the optimality system for (QPn). Notice that the objective
Jn of (QPn) is only convex on a subspace. Owing to this, we have to restrict (QPn)
to a sufficiently small neighborhood around the reference solution (v̄, ū). This region
is defined by

V %ad = {v ∈ Vad | ‖v − v̄‖L∞(Q) ≤ %},
U%ad = {u ∈ Uad | ‖u− ū‖L∞(Σ) ≤ %},

where % > 0 is a sufficiently small radius. To avoid the unknown reference solution
(v̄, ū) in the definition of the neighborhood, we shall later replace this neighborhood
by a ball around the initial iterate (v1, u1) .

Let us denote by (QP%n) the problem (QPn) restricted to V %ad, U
%
ad and by (Q̂Pn)

the same problem restricted to V̂ad, Ûad, respectively. To analyze (Q̂Pn) in a first
step, we need some auxiliary results.

Lemma 6.1. For all K > 0 there is a constant cL = cL(K) such that

E ≤ cL(K)‖wn − w̄‖W(6.1)

holds ∀wn ∈W with ‖wn − w̄‖W ≤ K, where the expression E is defined by

E = max {‖fnv − f̄v‖L∞(Q), ‖fny − f̄y‖L∞(Q), ‖gnv − ḡu‖L∞(Σ), ‖gny − ḡy‖L∞(Σ),
‖ dny − d̄y‖L∞(Q), ‖dnv − d̄v‖L∞(Q), ‖bny − b̄y‖L∞(Σ), ‖bnu − b̄u‖L∞(Σ), ‖ϕny − ϕ̄y‖C(Ω̄),

‖ ϕnyy − ϕ̄yy‖C(Ω̄), ‖D2HQ,n −D2H̄Q‖L∞(Q), ‖D2HΣ,n −D2H̄Σ‖L∞(Q)}.

Proof. The estimate follows from the assumptions (A2)–(A4) imposed on the
functions f, g, ϕ, b, d in sections 2 and 3. For instance, the mean value theorem yields

‖fnv − f̄v‖L∞(Q) = sup(x,t)∈Q ess|fvy(yϑ, vϑ)(yn − ȳ) + fvv(v
ϑ, vϑ)(vn − v̄)|

≤ c(K) sup(x,t)∈Q ess(|yn − ȳ|+ |vn − v̄|)

by (3.5), where yϑ = ȳ + ϑ(yn − ȳ), vϑ = v̄ + ϑ(vn − v̄), and ϑ = ϑ(x, t) belongs to
(0, 1). (Consider, for example, the estimation

|fvy(yϑ, vϑ)| ≤ |fyv(0, 0)|+ |fvy(yϑ, vϑ)− fvy(0, 0)| ≤ c1 + c(K) (|yϑ|+ |vϑ|)
≤ c1 + c(K) ·K,
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which follows from (3.5).) The other terms in E are handled analogously.
We shall denote the quadratic part of the functional Jn by

Bn[(y1, v1, u1), (y2, v2, u2)] =

∫
Ω

ϕnyy y1(T )y2(T ) dx+

∫
Q

(y1, v1)D2HQ,n(y2, v2)> dxdt

+

∫
Σ

(y1, u1)D2HΣ,n(y2, u2)> dSdt

(6.2)
and write for short Bn[(y, v, u), (y, v, u)] = Bn[y, v, u]2.

Lemma 6.2. Suppose that the second order sufficient optimality condition (SSC)
is satisfied. Then there is %1 > 0 with the following property: If ‖wn − w̄‖W ≤ %1,
then

Bn[y, v, u]2 ≥ δ

2
‖(y, v, u)‖2H(6.3)

holds ∀ (y, v, u) ∈ H satisfying v = 0 on Q(σ), u = 0 on Iu(σ) together with

yt +Ay + dny y + dnv v = 0,
∂νy + bny y + bnu u = 0,

y(0) = 0.
(6.4)

Proof. Let z denote the weak solution of the parabolic equation obtained from
(6.4) on substituting d̄y, d̄v, b̄y, b̄u for dny , d

n
v , b

n
y , b

n
u, respectively. Then

(y − z)t +A (y − z) + d̄y (y − z) = (d̄y − dny ) y + (d̄v − dnv ) v,

∂ν(y − z) + b̄y (y − z) = (b̄y − bny ) y + (b̄u − bnu)u,

(y − z)(0) = 0.

We have d̄y ≥ c0, b̄y ≥ c0. The differences on the right-hand sides can be estimated
by Lemma 6.1, where K = ‖w̄‖W + %1; hence parabolic L2-regularity yields

‖y − z‖W (0,T ) ≤ c (‖d̄y − dny‖L∞(Q)‖y‖L2(Q) + ‖d̄y − dnv‖L∞(Q)‖v‖L2(Q)

+‖b̄y − bny‖L∞(Σ)‖y‖L2(Σ) + ‖b̄u − bnu‖‖u‖L2(Σ))
≤ c %1(‖y‖W (0,T ) + ‖v‖L2(Q) + ‖u‖L2(Σ)) ≤ c %1‖(y, v, u)‖H .

(6.5)

Substituting y = z + (y − z) in Bn,

Bn[y, v, u]2 = Bn[z + (y − z), v, u]2

= B[z, v, u]2 + (Bn −B)[z, v, u]2 + 2Bn[(z, v, u), (y − z, 0, 0)]

+Bn[y − z, 0, 0]2

is obtained. (SSC) applies to the first expression B, while the second is estimated
by Lemma 6.1. In the remaining two parts, we use the uniform boundedness of all
coefficients. Therefore, by (6.5)

Bn[y, v, u]2 ≥ δ ‖(z, v, u)‖2H − c %1‖(z, v, u)‖2H − c ‖(z, v, u)‖H‖y − z‖W (0,T )

−c ‖y − z‖2W (0,T )

≥ 3

4
δ ‖(z, v, u)‖2H − c%1‖(z, v, u)‖H‖(y, v, u)‖H − c%2

1‖(y, v, u)‖2H
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if %1 is sufficiently small. Next we resubstitute z = y + (z − y) and apply (6.5)
again. In this way, the desired estimate (6.3) is easily verified for sufficiently small
%1 > 0.

Corollary 6.3. If ‖wn − w̄‖W ≤ %1 and (SSC) is satisfied at w̄, then (Q̂Pn)
has a unique optimal pair of controls (v̂, û) with associated state ŷ.

Proof. The functional Jn to be minimized in (Q̂Pn) has the form (see (3.21))

Jn(y, v, u) = an(y, v, u) +
1

2
Bn[y − yn, v − vn, u− un]2,

where an is a linear integral functional. Jn is uniformly convex on the feasible region
of (Q̂Pn). By Lemma 6.2, the sets V̂ad and Ûad are weakly compact in L2(Q) and
L2(Σ), respectively. Therefore, the corollary follows from standard arguments.

Let us return to the discussion of the relation between Newton method and SQP
method. In what follows, we shall denote by ŵn = (ŷn, p̂n, v̂n, ûn) the sequence of

iterates generated by the SQP method performed in V̂ad, Ûad (provided that this
sequence is well defined). The iterates of the generalized Newton method are denoted
by wn. Consider now both methods initiating from the same element wn = ŵn.

If ‖wn − w̄‖W ≤ %1, then Corollary 6.3 shows the existence of a unique solution

(ŷn+1, v̂n+1, ûn+1) of (Q̂Pn) having the associated adjoint state p̂n+1. The element

ŵn+1 solves the optimality system corresponding to (Q̂Pn). By convexity (Lemma

6.2), any other solution of this system solves (Q̂Pn); hence it is equal to ŵn+1. On
the other hand, the optimality system is equivalent to the generalized equation (4.6)

at wn (based on the sets V̂ad, Ûad). For ‖wn − w̄‖W ≤ rN , one step of the gener-
alized Newton method delivers the unique solution wn+1 of (4.6). As wn+1 solves

the optimality system for (Q̂Pn), it has to coincide with ŵn+1. Suppose further that
‖wn − w̄‖W ≤ min {rN , %1}. Then Theorem 4.1 implies that wn+1 = ŵn+1 remains
in Bmin {rN ,%1}(w), so that ‖ŵn+1 − w̄‖W ≤ min {rN , %1}. Consequently, we are able

to perform the next step in both the methods. Moreover, in V̂ad, Ûad each step of the
Newton method is equivalent to solving (Q̂Pn), which always has a unique solution.

In other words, the Newton method and the SQP method are identical in V̂ad, Ûad.
Theorem 6.4. Let w̄ = (ȳ, p̄, v̄, ū) satisfy the first order optimality system (2.1),

(3.2)–(3.3), (3.7)–(3.9) together with the second order sufficient optimality conditions
(SSC). Suppose that w1 = (y1, p1, v1, u1) ∈ W is given such that ‖w1 − w̄‖W ≤
min {%1, rN }, v1 ∈ V̂ad, and u1 ∈ Ûad. Then in V̂ad, Ûad, the generalized Newton
method is equivalent to the SQP method: The solution of the generalized equation
(4.6) is given by the unique solution of (Q̂Pn) along with the associated adjoint state.

The result follows from Theorem 5.3 (strong regularity) and the considerations
above.

Remark. It is easy to verify that ŵn, the solution of (Q̂Pn), obeys the optimality
system for (P) in the original sets Vad, Uad (cf. also Corollary 6.9).

Next, we discuss the optimality system for (Q̂Pn) and (QP%n). Let us denote the
associated Hamilton functions by H̃ to distinguish them from H, which belongs to
(P):

H̃Q(x, t, y, p, v) = fny (y − yn) + fnv (v − vn)− p (dn + dny (y − yn) + dnv (v − vn))
+ 1

2 (y − yn, v − vn)D2HQ,n(y − yn, v − vn)>,
H̃Σ(x, t, y, p, u) = gny (y − yn) + gnu(u− un)− p (bn + bny (y − yn) + bnu(u− un))

+ 1
2 (y − yn, u− un)D2HΣ,n(y − yn, u− un)>,
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where y, v, p, u are real numbers and (x, t) appears in the quantities depending on n.

Notice that these Hamiltonians coincide for (Q̂Pn), (QP%n), and (QPn), since these
problems differ only in the underlying sets of admissible controls. We consider the
problems defined at wn = (yn, pn, vn, un). In what follows, we denote solutions of the
optimality system corresponding to (QP%n) by (y+, v+, u+). The optimality system for
(QP%n) consists of ∫

Q

H̃Q
v (y+, p+, v+)(v − v+) dxdt ≥ 0 ∀v ∈ V %ad,(6.6)

∫
Σ

H̃Σ
u (y+, p+, u+)(u− u+) dSdt ≥ 0 ∀u ∈ U%ad,(6.7)

where the associated adjoint state p+ is defined by

−p+
t +Ap+ = H̃Q

y = fny +HQ,n
yy (y+ − yn) +HQ,n

yv (v+ − vn)− dnyp+,
p(T ) = ϕny + ϕnyy(y+(T )− y(T )),

∂νp = H̃Σ
y = gny +HΣ,n

yy (y+ − yn) +HΣ,n
yv (u+ − un)− bnyp+.

(6.8)

The state equation (3.22) for y+ and the constraints v+ ∈ V %ad, u+ ∈ U%ad are included

in the optimality system too. The optimality system of (Q̂Pn) has the same principal
form as (6.6)–(6.8) and is obtained on replacing (y+, p+, v+, u+) by (ŷn+1, p̂n+1, v̂n+1,

ûn+1). Moreover, V̂ad, Ûad is to be substituted for V %ad, U
%
ad there.

In the further analysis, we shall perform the following steps. First we prove
by a sequence of results that the solution (v̂n, ûn) of (Q̂Pn) satisfies the optimality
system of (QP%n) for sufficiently small %. Moreover, we prove that (QP%n) has at least
one optimal pair, if wn is sufficiently close to w̄. Finally, relying on (SSC), we verify
uniqueness for the optimality system of (QP%n). Therefore, (v̂n, ûn) can be obtained
as the unique global solution of (QP%n). Notice that (QP%n) might be nonconvex; hence
the optimality of (v̂n, ûn) does not follow directly from fulfilling the optimality system.

Lemma 6.5. There is %2 > 0 with the following property: If % ≤ %2, wn ∈ W
fulfills ‖wn − w̄‖W ≤ %2, and (y+, v+, u+) satisfies the constraints of (QP%n) with
associated adjoint state p+, then

sign H̃Q
v (y+, p+, v+)(x, t) = sign HQ

v (ȳ, p̄, v̄)(x, t) a.e. on Q(σ),(6.9)

sign H̃Σ
u (y+, p+, u+)(x, t) = sign HΣ

u (ȳ, p̄, ū)(x, t) a.e. on Σ(σ),(6.10)

|H̃Q
v (y+, p+, v+)(x, t)| ≥ σ

2
a.e. on Q(σ),(6.11)

|H̃Σ
u (y+, p+, u+)(x, t)| ≥ σ

2
a.e. on Σ(σ).(6.12)

Proof. Let us discuss H̃Q
v ; the proof is analogous for H̃Σ

u . We have

H̃Q
v = fnv +HQ,n

yv (y+ − yn) +HQ,n
vv (v+ − vn)− p+dnv

= f̄v − p̄d̄v + {fnv − f̄v + (fnyv − pndnyv)(y+ − yn)

+(fnvv − pndnvv)(v+ − vn) + (p̄d̄v − p+dnv )} = H̄Q
v + {. . .} ≥ σ − |{. . .}|

a.e. on Q(σ). Lemma 6.1 applies to estimate |{. . .}| ≤ c · %2, where c does not depend
on wn, y

+, p+, u+, v+, provided that we are able to prove that ‖p+−p̄‖C(Q̄) ≤ c %2 and
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‖y+− ȳ‖C(Q̄) ≤ c %2 holds with an associated constant c. Let us sketch the estimation

of y+ − ȳ =: y. This function satisfies

yt +Ay + dnyy = −dnv (v+ − v̄) + (dny − dϑy )(yn − ȳ) + (dnv − dϑv )(vn − v̄)

∂νy + bnyy = −dnu(u+ − ū) + (bny − bϑy )(yn − ȳ) + (bnu − bϑu)(un − ū)

y(0) = 0,

where dϑy = dy(ȳ + ϑ(yn − ȳ), v̄ + ϑ(vn − v̄)), ϑ = ϑ(x, t) ∈ (0, 1), and the other
quantities are defined accordingly. We have max {‖v+ − v̄‖L∞(Q), ‖u+ − ū‖L∞(Σ)} ≤
%,max {‖yn− ȳ‖C(Q̄), ‖un− ū‖L∞(Σ), ‖vn− v̄‖L∞(Q)} ≤ %2. Thus the right-hand sides
of the PDE and its boundary condition are estimated by c · %2. The estimate for
‖y+ − ȳ‖ follows from Theorem 2.2. The difference p+ − p̄ is handled in the same
way.

Corollary 6.6. If max {‖wn − w̄‖W , %} ≤ %2, then the relations

v+(x, t) = v̄(x, t) a.e. on Q(σ),
u+(x, t) = ū(x, t) a.e. on Σ(σ)

hold for all controls (v+, u+) of (QP %n), satisfying together with the associated state
y+ and the adjoint state p+ the optimality systems (6.6)–(6.8), (3.22).

Proof. On Q(σ) we have v̄(x, t) = vb, where H̄Q
v (x, t) ≤ −σ, and v̄(x, t) = va,

where H̄Q
v (x, t) ≥ σ. Therefore, v ∈ V %ad means v(x, t) ∈ [vb − %, vb] or v(x, t) ∈

[va, va + %], respectively. Lemma 6.5 yields H̃Q
v ≤ −σ/2 or H̃Q

v ≥ σ/2 on Q(σ), hence
the variational inequality (6.6) gives v+ = vb or v+ = va, respectively. In this way, we
have shown v+ = v̄ on Q(σ); u+ is handled analogously.

Corollary 6.7. Let the assumptions of Theorem 6.4 be satisfied and suppose
that ‖w1 − w̄‖W ≤ % := min {rN , %1, %2}. Then ‖ŵn − w̄‖W ≤ % holds ∀ n ∈ N . In
particular, v̂n ∈ V %ad, ûn ∈ U%ad.

This is obtained by Theorem 4.1 and the convergence estimate (4.9).
Corollary 6.8. Under the assumptions of Corollary 6.7, the sign-conditions

(6.9)–(6.12) hold true for (y+, p+, v+, u+) := (ŷn, p̂n, v̂n, ûn) .
(Corollary 6.7 yields v̂n ∈ V %2

ad , ûn ∈ U%2

ad , hence the result follows from Lemma
6.5.)

Corollary 6.9. Under the assumptions of Corollary 6.7, the solution (v̂n, ûn)

of (Q̂Pn) satisfies the optimality system of (QPn), too.

Proof. The optimality systems for (Q̂Pn) and (QPn) differ only in the variational

inequalities. From the optimality system of (Q̂Pn) we know that∫
Q

H̃Q
v (ŷn, p̂n, v̂n)(v − v̂n) dxdt ≥ 0 ∀v ∈ V̂ad.(6.13)

On Q(σ), v̂n = v̄ = va, if H̄Q
v ≥ σ and v̂n = v̄ = vb, if H̄Q

v ≤ −σ. Lemma 6.5
and Corollary 6.8 yield H̃Q

v (ŷn, p̂n, v̂n) ≥ σ/2 or H̃Q
v (ŷn, p̂n, v̂n) ≤ −σ/2, respectively.

Therefore, H̃Q
v (ŷn, v̂n, p̂n)(v − v̂n) ≥ 0 holds on Q(σ) for all real numbers v ∈ [va, vb].

On the complement Q \Q(σ), the controls of V̂ad are not restricted to be equal to v̄;
hence in (6.13) v was arbitrary in [ua, ub]. This yields∫
Q

H̃Q
v (v−v̂n) dxdt =

∫
Q\Q(σ)

H̃Q
v (v−v̂n) dxdt+

∫
Q(σ)

H̃Q
v (v−v̂n) dxdt ≥ 0 ∀v ∈ Vad,
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where the nonnegativity of the first term follows from (6.13). The variational inequal-
ity for ûn is discussed in the same way.

Corollary 6.10. Let the assumptions of Corollary 6.7 be fulfilled. Then (v̂n, ûn),

the solution of (Q̂Pn), satisfies the optimality system for (QP%n).
Proof. By Corollary 6.9, (v̂n, ûn) satisfies the variational inequality (6.13) ∀ v ∈

Vad, u ∈ Uad, in particular ∀ v ∈ V %ad, u ∈ U%ad. Moreover, v̂n ∈ V %ad, ûn ∈ U%ad is granted
by Corollary 6.9.

Lemma 6.11. Assume that w̄ = (ȳ, p̄, v̄, ū) satisfies the second order condition
(SSC). If %3 > 0 is taken sufficiently small, and ‖wn − w̄‖W ≤ %3, then for all % > 0
the problem (QP %n) has at least one pair of (globally) optimal controls (v, u).

Proof. If ‖wn − w̄‖W ≤ %3 and %3 > 0 is sufficiently small, then

HQ
vv(x, t, yn(x, t), pn(x, t), vn(x, t)) ≥ δ

2
a.e. on Q,(6.14)

HΣ
uu(x, t, yn(x, t), pn(x, t), un(x, t)) ≥ δ

2
a.e. on Σ(6.15)

follow from (LC), ‖yn−ȳ‖C(Q̄)+‖pn−p̄‖C(Q̄)+‖vn−v̄‖L∞(Q)+‖un−ū‖L∞(Σ) ≤ %3, and

the Lipschitz properties of HQ
vv, H

Σ
vv. Notice that wn belongs to a set of diameter K :=

‖w̄‖W +%3, hence the Lipschitz estimates (3.5) and (3.6) apply. Therefore, (QP %n) has
the following properties. It is a linear-quadratic problem with linear equation of state.
In the objective, the controls appear linearly and convex-quadratically (with convexity
following from (6.14)–(6.15)). The control-state mapping (v, u) 7→ y is compact from
L2(Q)×L2(Σ) to Y . Moreover, V %ad, U

%
ad are nonempty weakly compact sets of L2. Now

the existence of at least one optimal pair of controls follows by standard arguments.
Here, it is essential that the quadratic control-part of Jn is weakly l.s.c. with respect
to the controls and that products of the type y ·v or y ·u lead to sequences of the type
“strongly convergent times weakly convergent sequence,” so that yn → y and vn ⇀ v
implies ynvn ⇀ yv.

Remark. Alternatively, this result can be deduced also from the fact that (ŷn, v̂n, ûn)
satisfies together with p̂n the first and second order necessary conditions for (QP %n)
and that the optimality system of (QP %n) is uniquely solvable (cf. Thm. 6.12).

Theorem 6.12. Let w̄ = (ȳ, p̄, v̄, ū) fulfill the first order necessary conditions
(2.1), (3.2)–(3.3), (3.7)–(3.9) together with the second order sufficient optimality con-
dition (SSC). If wn = (yn, pn, vn, un) ∈ W is given such that max{ ‖wn − w̄‖W , %} ≤
min {rN , %1, %2, %3}, then the solution (v̂n, ûn) of (Q̂Pn) is (globally) optimal for
(QP%n). Together with ŷn, p̂n, it delivers the unique solution of the optimality system
of (QP%n).

Proof. Denote by (v+, u+) the solution of (QP%n), which exists according to Lemma
6.11. Therefore, (y+, p+, v+, u+) = w+ has to satisfy the associated optimality sys-
tem. On the other hand, also ŵn = (ŷn, p̂n, v̂n, ûn) fulfills this optimality system by
Corollary 6.10. We show that the solution of the optimality system is unique, and
then the theorem is proven.

Let us assume that another ŵ = (ŷ, p̂, v̂, û) obeys the optimality system too.
Inserting (v̂, û) in the variational inequalities for (v+, u+), while (v+, u+) is inserted
in the corresponding ones for (v̂, û), we arrive at∫

Q

{H̃Q
v (y+, p+, v+)(v̂ − v+) + H̃Q

v (ŷ, p̂, v̂)(v+ − v̂)} dxdt

+

∫
Σ

{H̃Σ
u (y+, p+, u+)(û− u+) + H̃Σ

u (ŷ, p̂, û)(u+ − û)} dSdt ≥ 0.
(6.16)
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The expressions under the integral over Q in (6.16) have the form

fnv (v̂ − v+) +HQ,n
yv (y+ − yn)(v̂ − v+) +HQ,n

vv (v+ − vn)(v̂ − v+)− p+dnv (v̂ − v+)

+fnv (v+ − v̂) +HQ,n
yv (ŷ − yn)(v+ − v̂) +HQ,n

vv (v̂ − vn)(v+ − v̂)− p̂ dnv (v+ − v̂);

the other terms look similar. Simplifying (6.16), we get, after setting y = ŷ − y+,
v = v̂ − v+, u = û− u+, p = p̂− p+,

0 ≤ −
∫
Q

{HQ,n
yv yv +HQ,n

vv v2 + p dnv v} dxdt

−
∫

Σ

{HΣ,n
yu yu+HΣ,n

uu u2 + p bnu u} dSdt.
(6.17)

The difference p = p̂− p+ obeys

−pt +Ap = HQ,n
yy y +HQ,n

yv v − dnyp,
∂νp = HΣ,n

yy y +HΣ,n
yu u− bnyp,

p(T ) = ϕnyyy(T ).
(6.18)

Multiplying the PDE in (6.18) by y and integrating over Q we find, after an integration
by parts,

−
∫

Ω

p(T )y(T )dx+

∫ T

0

(yt, p)H1(Ω)′,H1(Ω)dt+

∫
Q

〈A∇p,∇y〉dxdt

=

∫
Q

(HQ,n
yy y2 +HQ,n

yv yv − dny p y) dxdt+

∫
Σ

(HΣ,n
yy y2 +HΣ,n

yu yu− bny p y) dSdt.

(6.19)
This description of the procedure was formal, as the definition of the weak solution
of (6.18) requires the test function y to be zero at t = T . To make (6.19) precise we
have to use the information that p ∈W (0, T ), y ∈W (0, T ) along with the integration
by parts formula∫ T

0

(pt, y)H1(Ω)′,H1(Ω)dt =

∫
Ω

(p(T )y(T )− p(0)y(0))dx−
∫ T

0

(yt, p)H1(Ω)′,H1(Ω)dt.

Next, we invoke the state equation for y = ŷ−y+ and the condition for p(T ) to obtain
from (6.19)

−
∫

Ω

ϕnyyy(T )2dx −
∫
Q

(HQ,n
yy y2 +HQ,n

yv yv) dxdt

−
∫

Σ

(HΣ,n
yy y2 + HΣ,n

yu yu) dSdt =

∫
Q

dnv v p dxdt+

∫
Σ

dnu u p dSdt.
(6.20)

Adding (6.20) to (6.17) yields

0 ≤ −
∫

Ω

ϕnyyy(T )2dx−
∫
Q

(y, v)D2HQ,n(y, v)>dxdt−
∫

Σ

(y, u)D2HΣ,n(y, u)>dSdt;

that is, 0 ≤ −Bn[y, v, u]2. As max{ ‖wn−w̄‖W , %} ≤ %2, Corollary 6.6 yields v = 0 on
Q(σ) and u = 0 on Σ(σ). Therefore, Lemma 6.2 applies to conclude δ/2 ‖(y, v, u)‖2H ≤
0, i.e., v = 0, u = 0. In other words, v̂ = v+, û = u+, completing the proof.

Now we are able to formulate the main result of this paper.
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Theorem 6.13. Let w̄ = (ȳ, p̄, v̄, ū) satisfy the assumptions of Theorem 6.12 and
define %N = min{rN , %1, %2, %3}.If max {%, ‖w1−w̄‖} ≤ %N , then the sequence {wn} =
{(yn, pn, vn, un)} generated by the SQP method by solving (QP %n) coincides with the

sequence ŵn obtained by solving (Q̂Pn). Therefore, wn converges q-quadratically to w̄
according to the convergence estimate (4.9).

Thanks to this theorem, we are justified to solve (QP%n) instead of (Q̂Pn) to
obtain the same (unique) solution. This result is still not completely satisfactory, as
the unknown element w̄ was used to define (QP%n).

However, an analysis of this section reveals that any convex, closed set Ṽad, Ũad
can be taken instead of V %ad, U

%
ad , if the following properties are satisfied:

Ṽad ⊂ V %Nad , Ũad ⊂ U%Nad , and Ṽad ⊃ V %0

ad , Ũad ⊃ U%0

ad for some %0 > 0. (The last
condition is needed to guarantee v̂n = v̄ on Q(σ), ûn = ū on Σ(σ) and, last but not
least, to make the convergence v̂n → v̄, ûn → ū possible.)

Define, for instance, %0 = ‖w̄ − w1‖W , where %0 ≤ 1
3%N ,

Ṽad = {v ∈ Vad| ‖v − v1‖L∞(Q) ≤ 2%0},

Ũad = {u ∈ Uad| ‖u− u1‖L∞(Σ) ≤ 2%0},

where %0 = ‖w̄−w1‖W is the distance of the starting element of the SQP method to
w̄. Then V %0

ad ⊂ Ṽad ⊂ V %Nad . The same property holds for Ũad. In that case, the SQP

method will deliver the same solution in Ṽad, Q̃ad as in V %Nad , U
%N
ad . This however, is

the solution in V̂ad, Ûad.
Remark. The restriction of the admissible sets to V %ad, U

%
ad might appear artificial,

since restrictions of this type are not known from the theory of SQP methods in spaces
of finite dimension. However, it is indispensable. In finite dimensions, the set of active
constraints is detected after one step, provided that the starting value was chosen
sufficiently close to the reference solution. The further analysis can rely on this. Here,
we cannot determine the active set in finitely many steps unless we assume this a
priori as in the definition of Q̂Pn.
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Abstract. A plant is strongly stabilizable if there exists a stable compensator to stabilize it.
Based on some theorems in complex analysis of several variables proved in this paper, we present
necessary conditions for the strong stabilizability of complex and real n-D multi-input multi-output
(MIMO) shift-invariant linear plants. For the real case, the condition is a generalization of the parity
interlacing property of Youla, Bongiorno, and Lu [Automatica J. IFAC, 10 (1974), pp. 159–173] for
the strong stabilizability of a real one-dimensional MIMO plant.

These conditions are also sufficient for the cases of n-D plants with a single output (MISO) or
with a single input (SIMO). For general n-D MIMO plants, we do not know if the conditions are
sufficient or not. A useful sufficient, but not necessary, condition for the strong stabilizability of a
class of n-D (n ≥ 2) MIMO plants is given.
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1. Introduction. Let Ūn = {z ∈ Cn | |z1| ≤ 1, . . . , |zn| ≤ 1} be the closed unit
polydisc in Cn. In this paper a polynomial in z is said to be Hurwitz if it is free from
0 in Ūn. A rational function with a Hurwitz denominator is regular (analytic) over
Ūn and will be said to be stable.

An n-dimensional (n-D) multi-input multi-output (MIMO) linear shift invariant
plant with l inputs and m outputs can be described by a transfer matrix with entries
of rational functions in z = (z1, . . . , zn):

P (z) =

 p11(z) · · · p1l(z)
... · · · ...

pm1(z) · · · pml(z)

 .(1.1)

The system is called real if the entries are real rational functions and complex if they
are complex rational functions. See [4] for more materials on n-D systems theory.

P (z) is stable by definition if all its entries are stable. For an unstable plant P (z),
one may try to use a stabilizing compensator C(z) in some feedback configuration to
obtain a stable feedback system. In a standard feedback configuration [23, 22, 15], the
stability of the feedback system is equivalent to the stability of the following system:

H(P,C) =

[
I − P (I + CP )−1C −P (I + CP )−1

(I + CP )−1C (I + CP )−1

]
(1.2)
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=

[
(I + PC)−1 −(I + PC)−1P
C(I + PC)−1 I − C(I + PC)−1P

]
.(1.3)

P is said to be stabilizable if such a C (complex or real) exists to make H(P,C)
stable. Stabilizability conditions and stabilizing compensator construction methods
have been given in [22, 16, 15]. For real stabilizable systems, the compensators can
always be constructed real.

In the case that the compensator C(z) itself can be chosen stable, P is said to be
strongly stabilizable. Furthermore, for a real system P , if C can be chosen real and
stable, we say that P is real strongly stabilizable.

For an MIMO one-dimensional (1-D) linear system described by a real rational
transfer matrix, Youla, Bongiorno, and Lu [27] in the early seventies gave a construc-
tive condition for the existence of a stable real compensator. It can be easily derived
from the works of [27], [20], and [25] that 1-D systems are always strongly stabilizable
in the sense that a complex stable compensator always exists. See Appendix A of this
paper for details.

Youla, Bongiorno, and Lu’s work at the same time solved the problem of simulta-
neously stabilizing two 1-D plants with a single (not necessarily stable) compensator.
In general, k 1-D plants can be simultaneously stabilized by a single compensator if
certain other k− 1 plants can be stabilized by a single stable compensator. However,
the general simultaneous stabilization problem is rather complicated, as indicated
by a recent result due to Blondel which says that for some three 1-D single-input
single-output (SISO) plants, it is not rationally decidable whether or not they can be
simultaneously stabilized by a single compensator [2, 3].

On the other hand, the extension of Youla, Bongiorno, and Lu’s result to n-D
systems or even more general linear systems over a commutative ring has also been a
long standing open problem [23, Section 8.3]. For the problem of strong stabilization
of n-D linear systems, recently a topological condition for strong stabilizability of an
n-D SISO complex system was given by Shankar [20] and a computable equivalent was
given by Ying [25]. By introducing a concept of “sign” of real functions on complex
varieties, Ying gave a necessary and sufficient condition for real strong stabilizability
of a real n-D SISO system [25]. But in the literature nothing significant has been
known concerning the strong stabilizability of MIMO n-D systems.

In this paper we present new results concerning strong stabilizability of MIMO
n-D systems. The main contributions are some mathematical theorems that extend
Shankar and Ying’s results. Applying these theorems, we are able to give necessary
conditions for the strong stabilizability of MIMO systems. For two special classes of
systems, i.e., MISO (multi-input single-output) and SIMO (single-input multi-output)
systems, these conditions are also sufficient.

The concept of the sign of a real polynomial function on a complex variety, which
has been first formulated in [25] and will also be involved in the part of this paper
that concerns the real strong stabilizability of systems, along with the key theorems
in several complex variables theory, will be stated in the next section. Readers who
feel lack of motivation for the pure mathematical materials of section 2 may start
directly with section 3 and look back to section 2 when necessary.

In section 3, necessary conditions for strong stabilizability of n-D MIMO systems
are presented. Some examples are given at the end. In section 4, the sufficiency of the
conditions for MISO and SIMO systems are proved. In section 5, a useful sufficient,
but not necessary, condition for the strong stabilizability of a complex MIMO system
is given. The difficulty in applying existing algebraic methods for establishing a
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sufficient condition for strong stabilizability, and for stable compensator construction,
is briefly discussed for general MIMO n-D systems.

2. Main mathematical theorems. Throughout this paper, by saying that a
function is analytic on a closed set in Cn, we mean that the function is defined and
analytic in some open neighborhood of the closed set. See, e.g., [12, 13] for the theory
of analytic functions of complex variables.

In this section we give solutions to the following questions:
Let g(z), α1(z), . . . , αM (z) be complex polynomials.
(i) What is the condition for the existence of M stable complex rational functions

h1(z), . . . , hM (z) such that

g(z) + h1(z)α1(z) + · · ·+ hM (z)αM (z) 6= 0 on Ūn?(2.1)

(ii) When g(z), α1(z), . . . , αM (z) are real polynomials and the above inequality
(2.1) has a solution, what is the condition for h1, . . . , hM to be real?

For the special case when M = 1, questions (i) and (ii) were answered by Shankar
[20] and Ying [25], respectively, from which necessary and sufficient conditions for
the strong stabilizability of complex and real n-D SISO plants were derived. In the
following we present answers for the general case.

2.1. Complex stable rational functions. Clearly, a necessary condition for
the existence of h1, . . . , hM such that the inequality (2.1) holds is that g, α1, . . . , αM
do not have common zero in Ūn. It can be derived from Cartan’s Theorems A or B
(see, e.g., [12, 13, 21]) that this condition is also sufficient for the existence of M + 1
rational functions analytic on Ūn: f0(z), f1(z), . . . , fM (z), such that

f0(z)g(z) + f1(z)α1(z) + · · ·+ fM (z)αM (z) 6= 0 on Ūn.

In the following a stronger condition is given such that f0(z) can be fixed to a nonzero
constant. Before this we review some necessary topological concepts.

Recall that the winding number of a cycle (a closed curve) γ in C∗ = C\{0} is
defined as

W (γ) =
1

2πi

∫
γ

dξ

ξ
=

1

2πi

∫
γ

d(log ξ).

It is the number of times that γ winds around the origin counterclockwise. A single-
valued logarithmic function log ξ can be defined in some subset Σ of C∗ if and only if
Σ does not contain any cycle with a nonzero winding number.

In general, for a subset Σ in some complex space, an analytic function g : Σ −→
C∗ has a single-valued logarithmic function log g on Σ if and only if g maps any cycle
in Σ into a cycle with winding number 0 in C∗, i.e., W (g(γ)) = 0. This property is
equivalent to that g induces a 0 homomorphism from the first homology group of Σ
to that of C∗ (see, e.g., [9]). If this is satisfied, we say that g is 0-homotopic on Σ.

For some positive real number r, an open polydisc in Cn of radius r is defined as

∆(0; r) = {z = (z1, . . . , zn) ∈ Cn | |z1| < r, . . . , |zn| < r} .
Let I be the ideal generated by α1, . . . , αM in C[z], the ring of complex polynomials,
and let

V (I) ∩ Ūn =
{
z ∈ Ūn | f(z) = 0 ∀f(z) ∈ I} .
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Theorem 2.1. Let g(z), α1(z), . . . , αM (z) be complex polynomials. A necessary
and sufficient condition for the existence of analytic functions h1, . . . , hM on an open
polydisc Ω = ∆(0; r) containing Ūn, such that

g(z) +
∑

1≤j≤M
hjαj 6= 0 on Ūn(2.2)

is that g(z) is 0-homotopic on V (I) ∩ Ūn; or equivalently, g(z) has a single-valued
logarithmic function log g(z) on V (I) ∩ Ūn.

Proof. Let I be the ideal sheaf generated by (α1, . . . , αM ) in the sheaf O of
analytic functions on some open polydisc Ω ⊃ Ūn. We have the following exact
sequence of sheaves:

0→ I → O → O/I → 0,(2.3)

which induces a long exact sequence of modules over the ring of analytic functions

0→ Γ(I,Ω)→ Γ(O,Ω)
ϕ→ Γ(O/I,Ω)→ H1(I)→ · · · .(2.4)

The assumption that log g(z) is defined over V (I) means that log g(z) is a global
section of the quotient sheaf O/I on Ω, that is, log g(z) ∈ Γ(O/I,Ω).

Now I is finitely generated; thus it is a coherent sheaf. By Cartan’s Theorem B,
we have H1(I) = 0, which means that ϕ is surjective and there exists aG(z) ∈ Γ(O,Ω)
such that ϕ(G(z)) = log g(z).

Clearly, ϕ(g(z)) = elog g(z) and ϕ(eG(z)) = eϕ(G(z)) in Γ(O/I,Ω). We have

ϕ
(
eG(z) − g(z)

)
= 0 in Γ(O/I,Ω);(2.5)

therefore

eG(z) − g(z) ∈ Γ(I,Ω).(2.6)

That is, there exist hj(z) ∈ Γ(O,Ω), j = 1, . . . ,M , such that

eG(z) = g(z) +
∑

1≤j≤M
hj(z)αj(z) 6= 0 on Ω.(2.7)

Since analytic functions can be approximated to any precision by polynomials on Ūn,
thus also by stable rational functions, the inequality

g(z) +
∑

1≤j≤M
hj(z)αj(z) 6= 0

still holds if the hi’s are replaced with their rational approximators. This proves the
sufficiency of the condition.

For necessity, let

G(z) = log

(
g(z) +

∑
1≤j≤M

hj(z)αj(z)

)
,

the restriction of G(z) on V (I) ∩ Ūn is a logarithm of g(z). This completes the
proof.
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2.2. Concept of signs of real polynomial functions. Suppose that g(z),
α1(z), . . . , αM (z) are real and that there exist real stable rational functions h1(z),
. . . , hM (z) such that

g(z) + h1(z)α1(z) + · · ·+ hM (z)αM (z) 6= 0 on Ūn.

This is a real valued continuous mapping on Ūn ∩Rn and

g(z) + h1(z)α1(z) + · · ·+ hM (z)αM (z) 6= 0 on Ūn ∩Rn.(2.8)

The left side of 2.8 must have an invariant sign on the connected set Ūn∩Rn. There-
fore g has an invariant sign, either + or −, over V (I)∩ Ūn ∩Rn, where I denotes the
ideal generated by α1, . . . , αM in C[z].

Here we extend this condition to a stronger one which is concerned with the
complex components which may not possess a real point. Recall that a connected
component, or simply a component, is defined as a connected subset which is not
contained in any larger connected subset; see, e.g., [9].

In the following we use “-” to denote a complex conjugation operator. From
the context there should be no confusion with the “-” in the notation “Ūn” which
means the closedness of the polydisc. We first make clear an important aspect of
the structure of a connected component X of V (I) ∩ Ūn. Let z0 ∈ X; if z0 ∈ X,
then for any z ∈ X, z ∈ X. In fact, since z0, z0, and z are all in X, there exist a
path γ0 connecting z0 to z0 and a path γ connecting z0 to z. The path γ defined as
t → γ(t) then connects z0 to z; hence we have z̄ ∈ X. In this case X is identical to
X = {z | z ∈ X} and is said to be self-conjugate in this paper.

On the other hand, if X 6= X̄, then X ∩ X̄ = φ. In this case both X and X̄ are
non-self-conjugate components.

It is evident from the above argument that a connected component containing a
real point is self-conjugate. Now suppose that X is a component containing a real
point z0. We reformulate the above sign consistency condition into one which is
independent of the real point. We assume g(z0) > 0. Let G0 be a real number such
that

eG0 = g(z0).

For an arbitrary point z ∈ X, let γ be a path in X connecting z0 to z, define

G(z) = G0 +

∫
γ

dg

g
.

G is an analytic function on X. Let γ be the path defined as

γ(t) = γ(t) for t ∈ [0, 1].

We have

G(z) = G0 +

∫
γ

dg(z)

g(z)
= G0 +

∫
γ

dg(z)

g(z)
= G0 +

∫
γ

dg(z)

g(z)
= G(z).

To summarize, G(z) is an analytic function on X such that

eG(z) = g(z) and G(z) = G(z) ∀z ∈ X.(2.9)



318 JIANG QIAN YING

On the other hand, the existence of such a G(z) implies that g(z) = eG(z) > 0 for
z ∈ X ∩Rn, because G(z) is real on Rn. The case g(z0) < 0 can be proved similarly.

Definition 2.2. Let X be a self-conjugate connected component of V (I) ∩ Ūn.
Then g is said to have a positive sign on X if there exists an analytic function G on
X such that

eG(z) = g(z) and G(z) = G(z) ∀z ∈ X;

g is said to have a negative sign on X if −g has a positive sign on X.
The following proposition asserts that g either has a positive sign or has a negative

sign on X.
Proposition 2.3. Let g(z), α1(z), . . . , αM (z) be real polynomials. Let I denote

the ideal generated by α1(z), . . . , αM (z) in C[z]. Assume that g(z) has logarithm on
V (I)∩ Ūn. Let X be a self-conjugate component of V (I)∩ Ūn, and let γ0 be a path in
X connecting a point z0 ∈ X to its conjugate z0. Let G0 be a complex (possibly real)
number such that

eG0 = g(z0).

Then ∫
γ0

dg

g
= G0 −G0 +m2πi,(2.10)

where m is an integer. Moreover, g has a positive sign if m is an even number and g
has a negative sign if m is an odd number.

Proof. Let

G̃0 = G0 +

∫
γ0

dg

g
;

then we have

eG̃0 = g(z0) = eG0 ,

and hence

G̃0 = G0 +m2πi

for some integer m. Therefore∫
γ0

dg

g
= G̃0 −G0 = G0 −G0 +m2πi.

If m = 2k, for an integer k, we set

Gz0 = G0 − k2πi.

It then follows that

Gz0 +

∫
γ0

dg

g
= G0 − k2πi+G0 −G0 +m2πi = G0 + k2πi = Gz0 .

For any z ∈ X, let γ be a path connecting z0 to z; from the assumption of the
proposition, the integral
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G(z) = Gz0 +

∫
γ

dg

g

is independent of the path and therefore defines a function G(z) in z on X.

If γ is a path connecting z0 to z, then γ is a path connecting z0 to z, and the
concatenation γ0γ, then connects z0 to z,

G(z) = Gz0 +

∫
γ0γ

dg

g
= Gz0 +

∫
γ

dg

g
= Gz0 +

∫
γ

dg

g
= G(z).

In this case g has a positive sign on X.

Else if m = 2k − 1 for an integer k, we set

G′0 = G0 − (2k − 1)πi.

We have

−g(z0) = −eG0 = eG
′
0 ,

G′0 +

∫
γ0

d(−g)

(−g)
= G0 − (2k − 1)πi+G0 −G0 +m2πi = G′0.

In this case −g has a positive sign and hence g has a negative sign on X.

Let X be a non-self-conjugate component of V (I) ∩ Ūn. Then X̄ is also a non-
self-conjugate component since X ∩ X̄ = φ. If some analytic function G(z) is defined
on X such that

eG(z) = g(z) ∀z ∈ X,

then we can extend it to the union X ∪ X̄ by letting

G(ξ) = G(ξ̄), ξ ∈ X̄.

It is clear that G(z) satisfies

eG(z) = g(z), and G(z) = G(z̄) ∀z ∈ X ∪ X̄.

In this sense, we say that g(z) has a positive sign on X ∪ X̄. On the other hand,
since the above argument also holds exactly for −g(z), we may also say that g(z)
simultaneously has a negative sign on X ∪ X̄.

Therefore we are justified to make the following definition.

Definition 2.4. g(z) is said to have a positive (negative, respectively) sign on
V (I) ∩ Ūn if g(z) has a positive (negative, respectively) sign over the union of the
self-conjugate components of V (I) ∩ Ūn.

It is clear that g(z) has a positive (negative, respectively) sign on V (I) ∩ Ūn if
there exists an analytic function G on V (I) ∩ Ūn such that

eG(z) = g(z)
(
eG(z) = −g(z), respectively

)
and G(z) = G(z) ∀z ∈ V (I) ∩ Ūn.

In particular, this is true if there is no self-conjugate component at all.
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2.3. Real stable rational functions. We are now able to answer the second
question proposed at the beginning of this section.

Theorem 2.5. Let g(z), α1(z), . . . , αM (z) be real polynomials. Let I denote the
ideal generated by α1(z), . . . , αM (z) in C[z]. A necessary and sufficient condition for
the existence of real stable rational functions h1, . . . , hM , such that

g(z) +
∑

1≤j≤M
hjαj 6= 0 on Ūn(2.11)

is that g(z) is 0-homotopic on V (I) ∩ Ūn and that g(z) has an invariant sign on
V (I) ∩ Ūn.

Proof. For proof of sufficiency, clearly it suffices to treat the case when g(z) has a
positive sign on V (I) ∩ Ūn, as will be assumed in the following. From the statement
at the end of section 2.2, it is seen that an analytic logarithmic function log g(z) can
be constructed such that

log g(z) = log g(z̄) on V (I) ∩ Ūn.(2.12)

Let Ω be an open polydisc containing Ūn small enough so that log g(z) can be extended
to V (I)∩Ω, where the above equation still holds. From the proof of Theorem 2.1, we
have an analytic function G(z) on Ω such that

eG(z) = log g(z) ∀z ∈ V (I) ∩ Ω.

Then the analytic function defined as

W (z) =
(
G(z) +G(z̄)

)
/2, z ∈ Ω,(2.13)

satisfies

ϕ
(
W (z)

)
= log g(z) in Γ(O/I,Ω),

where ϕ : Γ(O,Ω) → Γ(O/I,Ω) is the canonical map. It follows that there exist
hj(z) ∈ Γ(O,Ω), j = 1, . . . ,M , such that

eW (z) = g(z) +
∑

1≤j≤M
hj(z)αj(z) 6= 0 on Ūn.(2.14)

Now W (z) satisfies

W (z) = W (z̄)(2.15)

and can be chosen as a power series with real coefficients convergent on Ω. It is
thus clear that h1(z), . . . , hM (z) can be chosen as a power series with real coefficients
convergent on Ω and can be approximated by real stable rational functions.

For necessity, suppose that real stable rational functions h1(z), . . . , hM (z) have
been given such that

u(z) = g(z) +
∑

1≤j≤M
hj(z)αj(z) 6= 0 on Ω.

If u(0) > 0, let log u(0) be defined as a real number. Define

W (z) = log u(0) +

∫
γ

du(z)

u(z)
(2.16)
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for any γ connecting 0 to z in Ūn. Now W satisfies

W (z) = W (z̄), eW (z) = g(z) ∀z ∈ V (I) ∩ Ūn;

g(z) therefore has a positive sign on V (I) ∩ Ūn.
Similarly, it could be shown that g(z) has a negative sign if u(0) < 0.

3. Necessary conditions for strong stabilizability of MIMO systems.
In this section we will adopt the matrix fraction description (MFD) approach for
describing a system. A left MFD of P is defined as

P (z) = D−1(z)N(z),

where D is an m×m and N an m× l polynomial matrix:

D =

d11 · · · d1m

... · · · ...
dm1 · · · dmm

 , N =

n11 · · · n1l

... · · · ...
nm1 · · · nml

 ,(3.1)

where djk and njk are polynomials in z with real or complex coefficients, corresponding
to a real or a complex system, respectively. Let

F = [D N ] =

d11 · · · d1m n11 · · · n1l

... · · · ...
... · · · ...

dm1 · · · dmm nm1 · · · nml

 .(3.2)

Let M = (m+l
l

). Let α1, α2, . . . , αM denote the M maximal order minors of F , with
α1 = detD.

An MFD is said to be minor coprime if the αi’s have no nonunit common factor.
Similarly, a minor coprime right MFD is defined as a matrix fraction Y X−1 such that
the maximal order minors of [XY ] have no common nonunit factor. A minor coprime
MFD (either left or right) can always be constructed for a 1-D and a two-dimensional
(2-D) transfer matrix, but not generally for an n-D (n ≥ 3) matrix [28, 14].

In the following we will first treat MIMO systems with a minor coprime MFD
because of their simplicity, although they will turn out to be special instances of a
more general case treated subsequently.

3.1. Necessary conditions for strong stabilizability of MIMO systems
with a minor coprime MFD. It is known that if D−1N is a minor coprime MFD
for a plant P , then P is stable if and only if detD(z) 6= 0 for z ∈ Ūn; see, e.g., [14,
proof of Theorem 3.4].

If D−1N is a minor coprime MFD for an unstable plant P , consider a compensator
C with minor coprime right MFD C = Y X−1. C stabilizes P if and only if the
determinant of

D(z)X(z) +N(z)Y (z)

is free from zero in Ūn. See, e.g., [11, p. 77] for the 2-D case and [15, Theorem 2] for
the general case.

By the Cauchy–Binet theorem, we have

det[DX +NY ] =

M∑
i=1

αiβi,
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where β1, . . . , βM are the maximal minors of [XY ], with β1 = detX.
It follows obviously that a necessary condition for P = D−1N to be stabilizable

is that there exist M = (m+l
m ) polynomials β1(z), . . . , βM (z) such that

M∑
i=1

αi(z)βi(z) 6= 0 for z ∈ Ūn.(3.3)

This condition is equivalent to that α1, . . . , αM have no common zero in Ūn [11, 21].
Conversely, if such polynomials exist, a compensator C = Y X−1 can be con-

structed such that [23, 10, 11, 15]

det[DX +NY ] =

M∑
i=1

αiβi 6= 0 on Ūn.(3.4)

It then follows that for a plant P = D−1N to be stabilizable it is necessary and
sufficient that α1, . . . , αM have no common zero in Ūn. From the construction [11] of
the compensator, it can be seen that a real compensator can always be found for a
real plant which satisfies this condition.

For a 1-D system, minor coprimeness is equivalent to zero coprimeness [28] which
means that the αi’s have no common zero at all. This implies that a 1-D system
described with a minor coprime MFD is always stabilizable.

If the compensator C = Y X−1 itself can be chosen stable, then as a necessary
condition β1(z) in (3.3) must be able to be chosen stable. Therefore we have the
following theorem.

Theorem 3.1. Assume that P has a minor coprime MFD P = D−1N .
(i) Let αj, j = 1, . . . ,M , M = (m+l

m ) be the maximal order minors of [D N ] with
α1 = detD. A necessary condition for P = D−1N to be strongly stabilizable is that
there are stable rational functions h2, . . . , hM such that

detD +
∑

2≤j≤M
hjαj 6= 0 on Ūn.

(ii) If P = D−1N is strongly stabilizable and is real, then a necessary condition
for the existence of a real stable compensator is that the above hj’s can be chosen
real.

Recalling Theorems 2.1 and 2.5 gives the following theorem.
Theorem 3.2. Assume that P has a minor coprime MFD P = D−1N . Let I be

the ideal generated by α2, . . . , αM in C[z].
(i) A necessary condition for P to be strongly stabilizable is that detD(z) is 0-

homotopic on V (I) ∩ Ūn.
(ii) If P is strongly stabilizable and is real, then a necessary condition for the exis-

tence of a real stable compensator is that detD has an invariant sign on V (I) ∩ Ūn.
The following lemmas say that, instead of V (I), it is equivalent to investigate

the behavior of detD(z) on another variety V (J), where J is the ideal generated by
njk(z), 1 ≤ j ≤ m, 1 ≤ k ≤ l, the entries of N(z).

Lemma 3.3. Assume D−1N is a minor coprime MFD for a stabilizable plant.
Let α1 = detD,α2, . . . , αM be the maximal order minors of [D N ], let I be the ideal
generated by α2, . . . , αM , and J be the ideal generated by nij, 1 ≤ j ≤ m, 1 ≤ k ≤ l,
the entries of N(z). Then

V (I)\V (detD) = V (J)\V (detD).
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Proof. It is clear that

V (J) ⊆ V (I);

hence

V (J)\V (detD) ⊆ V (I)\V (detD).

Assume that

z0 ∈ V (I)\V (detD).

If z0 /∈ V (J), then there is an njk that is not zero at z0. Since detD(z0) 6= 0, there
are some m− 1 columns of D(z0) independent of the kth column

[n1k(z0) · · ·nmk(z0)]t

of N(z0). The corresponding minor of [D N ] is then not 0 at z0. Thus z0 /∈ V (I).
This contradicts the assumption. Therefore

V (I)\V (detD) ⊆ V (J)\V (detD).

Lemma 3.4. With the same notations and assumptions as in Lemma 3.3, we
have

V (I) ∩ Ūn = V (J) ∩ Ūn.
Proof. Since D−1N is assumed to be a minor coprime MFD of a stabilizable

plant, the maximum order minors necessarily do not have common zero on Ūn. In
our notation, I is the ideal generated by all the minors excluding detD; therefore we
have

V (I) ∩ Ūn ∩ V (detD) = φ,

V (I) ∩ Ūn = V (I) ∩ Ūn\V (detD) = V (J) ∩ Ūn\V (detD) ⊆ V (J) ∩ Ūn.
On the other hand,

V (J) ∩ Ūn ⊆ V (I) ∩ Ūn.
This completes the proof.

The following theorem is obvious from Lemma 3.4 and Theorem 3.2.
Theorem 3.5. Suppose that P has a minor coprime MFD D−1N . Let J be the

ideal generated by the entries of N in C[z].
(i) A necessary condition for P to be strongly stabilizable is that detD(z) is 0-

homotopic on V (J) ∩ Ūn.
(ii) If P is strongly stabilizable and is real, then a necessary condition for the exis-

tence of a real stable compensator is that detD has an invariant sign on V (J) ∩ Ūn.
This theorem applies to all 1-D and 2-D systems, for which minor coprime MFDs

always exist. For the 1-D case, the condition of (i) is trivial, because V (I) consists of
a finite number of discrete points. Furthermore, since the only self-conjugate compo-
nents of V (I)∩ Ūn are the real points, condition (ii) means exactly that detD has an
invariant sign on V (I) ∩ Ūn ∩Rn. This is equivalent to the well-known parity inter-
lacing property of Youla, Bongiorno, and Lu [27] and is sufficient for the existence of
a real stable compensator; see Appendix A for more details.

Unfortunately, for 2-D and general n-D systems, we do not know if the conditions
of (i) and (ii) in Theorems 3.2 and 3.5 are sufficient or not.
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3.2. Necessary conditions for strong stabilizability of general MIMO
systems. Let P be an n-D transfer matrix with a (not necessarily minor coprime)
left MFD D−1N . Let F = [D N ].

Let α1, α2, . . . , αM denote the M = (m+l
l

) maximal order minors of F , with
α1 = detD. Let d be the greatest common divisor of the α′is. The polynomials

b1 =
α1

d
, . . . , bM =

αM
d

(3.5)

are called generating polynomials of P and are independent of the choices of F up to
a nonzero constant [14]. The following two propositions establish the stability and
stabilizability conditions of an n-D system in terms of the generating polynomials.

Proposition 3.6 (see [14]). P is stable if and only if the first generating poly-
nomial b1 is free from 0 in Ūn.

Proposition 3.7 (see [15, 22]). P is stabilizable if and only if the generating
polynomials do not share a common zero in Ūn.

In the following we assume the stabilizability of P (z).
Let e1, . . . , eM be the generating polynomials of the compensator C. It is shown

in [15] that the first generating polynomial of the resultant feedback system is

bH1 = r
M∑
j=1

bjej ,(3.6)

where r is a nonzero constant.
If P = D−1N is strongly stabilizable, then the compensator C can be chosen

stable. This implies that both e1 and bH1 in the above equation are free from 0 in
Ūn. Dividing the equation by e1 and r, we have

bH1

re1
= b1 +

M∑
j=2

bj
ej
e1
.(3.7)

This leads to the following theorem.
Theorem 3.8. (i) Let bj, j = 1, . . . ,M , M = (m+l

m ) be the generating polynomi-
als of P = D−1N. A necessary condition for P to be strongly stabilizable is that there
exist stable rational functions h2, . . . , hM such that

b1 +
∑

2≤j≤M
hjbj 6= 0 on Ūn.

(ii) If P = D−1N is strongly stabilizable and is real, then a necessary condition
for the existence of a real stable compensator is that the above hj’s can be chosen real.

In view of Theorems 2.1 and 2.5 of section 2, we have the following theorem.
Theorem 3.9. Let b1, b2, . . . , bM be the generating polynomials of P = D−1N ,

and I ′ be the ideal generated by b2, . . . , bM in C[z].
(i) A necessary condition for P to be strongly stabilizable is that b1 is 0-homotopic

on V (I ′) ∩ Ūn.
(ii) If P is strongly stabilizable and is real, then a necessary condition for the

existence of a real stable compensator is that b1 has an invariant sign on V (I ′)∩ Ūn.
If P = D−1N is a minor coprime MFD, then the generating polynomials are

exactly the maximal order minors of [D N ]. In this case Theorems 3.8 and 3.9 reduce
to Theorems 3.1 and 3.2, respectively.
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3.3. Examples.
Example 1 (real strongly stabilizable).

F = [D N ] =

[
z2

2 1 z1 z2

−1 z2
3 z3 0

]
.

The minors are

(α1, α2, α3, α4, α5, α6) =
(
1 + z2

2z
2
3 , z1 + z2

2z3, z2, z3 − z1z
2
3 ,−z2z

2
3 ,−z2z3

)
.

Obviously D−1N is minor coprime. In accordance with our previous notations, I =
(α1, . . . , α6), J = (z1, z2, z3). We have

V (I) ∩ Ū3 = V (J) ∩ Ū3 = {(0, 0, 0)}.

The necessary conditions of Theorems 3.2 and 3.5 are satisfied. For this plant we
have the following stable real compensator C = Y X−1 with

[
X
Y

]
=


1 0
0 1
z2 0
−z1 z3

 .
Example 2 (strongly stabilizable, but not real strongly stabilizable).

F =
[
z1, z

2
1 + z2z3 − z2 − 2, z3

]
.

V (J) ∩ Ū3 = V
(
z2

1 + z2z3 − z2 − 2, z3

) ∩ Ū3 = {(−1,−1, 0), (1,−1, 0)}

is a discrete point set, and the condition (i) for strong stabilizability of Theorem 3.5
is trivial. By trial, we found a complex stable compensator C = Y X−1,

[
X
Y

]
=

0.5z1 + i
−1
z2

 .
In fact, it is not difficult to check that the polynomial

(0.5z1 + i)z1 −
(
z2

1 + z2z3 − z2 − 2
)

+ z2z3 = −0.5z2
1 + iz1 + z2 + 2

is free from 0 in Ū2 and hence in Ū3. However, z1 has opposite signs at the two
discrete points of Ū3 ∩ V (J), thus violating condition (ii) in Theorem 3.5. There is
no real stable compensator. Using the Gröbner basis method [5, 11, 24], we can find

a real compensator
[ z1−1
z2

]
, which is, however, not stable.

Example 3 (not minor coprime MFD).

F =

[
d(z1, z2, z3) 0 z1z2

0 d(z1, z2, z3) 1

]
,

d = z2
1 + z2

2 + z2
3 − 1.

The minors are

α1 = d2, α2 = d, α3 = −dz1z2.
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D−1N is not minor coprime. The generating polynomials are

(b1, b2, b3) = (d, 1,−z1z2).

We have

1 · b1 + 5 · b2 = z2
1 + z2

2 + z2
3 + 4,

a Hurwitz polynomial. Using the method of [10, 15], one can find a compensator
C = Y X−1,

[
X
Y

]
=

d+ 5 −z1z2

0 d
0 5d

 .
Y X−1 = [0 5] is a right MFD of a stable system.

Example 4 (stabilizable, but not strongly stabilizable).

P =
1− 4z1z2

z1

[
z2 + 1 z2

z1 z1

]
,

F =

[
z1 0 (z2 + 1)f z2f
0 z1 z1f z1f

]
,

where f = 1− 4z1z2. The 2× 2 minors are

(α1, α2, α3, α4, α5, α6) =
(
z2

1 , z
2
1f, z

2
1f,−z1(z2 + 1)f,−z1z2f, z1f

2
)
.

The generating polynomials are

(b1, b2, b3, b4, b5, b6) =
(
z1, z1f, z1f,−(z2 + 1)f,−z2f, f

2
)
.

The plant is stabilizable because

V (b1, b6) ∩ Ū2 = φ.

But

V (b2, . . . , b6) ∩ Ū2 = V (1− 4z1z2) ∩ Ū2

has a cycle

γ : t −→
(

1

2
ei2πt,

1

2
e−i2πt

)
, t ∈ [0, 1]

which is mapped by z1 to a cycle { 1
2e
i2πt, 0 ≤ t ≤ 1} in C∗, which has winding

number 1 around the origin. Thus the system is not strongly stabilizable.

4. MISO and SIMO systems. For two special classes of n-D systems, the
MISO and SIMO systems, the necessary conditions for strong stabilizability given in
Theorems 3.8 and 3.9 are actually sufficient. In the following theorem, the conditions
are reformed for convenience of exposition. Their equivalence with that given in
Theorem 3.9 is not difficult to verify.
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Theorem 4.1. Let P (z) be either an m-input/1-output or a 1-input/m-output
system, described by the following corresponding transfer matrices:

P (z) = d−1(z)
[
n1(z) · · ·nm(z)

]
and(4.1)

P (z) =

n1(z)
...

nm(z)

 d−1(z).(4.2)

Let J be the ideal generated by n1(z), . . . , nm(z). Then
(i) P is strongly stabilizable (by a complex compensator) if and only if d(z) is

0-homotopic on V (J) ∩ Ūn;
(ii) if P is a strongly stabilizable real plant, then a real stable compensator exists

if and only if d(z) has an invariant sign on the self-conjugate components of
V (J) ∩ Ūn.

Proof. We give a proof for the SIMO case. Necessity: P has a left MFD

P = D−1N =


d 0 · · · 0

0 d
...

...
. . . 0

0 · · · 0 d


−1 n1

...
nm

 .
The maximal order minors of [D N ] are

dm, dm−1n1, . . . , d
m−1nm,

and the generating polynomials are

d, n1, . . . , nm.

The necessary part of the conditions is then obvious by Theorem 3.9. Sufficiency:
By Theorems 2.1 and 2.5, there exist y(z)(6= 0 on Ūn), x1(z), . . . , xm(z), real under
condition (ii), such that

y(z)d(z) + x1(z)n1(z) + · · ·+ xm(z)nm(z) 6= 0 on Ūn.

Let

C(z) = y−1X = y−1(z)
[
x1(z) · · ·xm(z)

]
.

It suffices to show that H(P,C) in (1.2) is stable. H(P,C) is stable if and only if

H ′(P,C) =

[
P (I + CP )−1C P (I + CP )−1

(I + CP )−1C (I + CP )−1

]
=

[
N(yd+XN)−1X N(yd+XN)−1y
d(yd+XN)−1X d(yd+XN)−1y

]
=

[
N
d

]
(yd+ x1n1 + · · ·+ xmnm)−1 [Xy](4.3)

is stable. Actually it is stable from the conditions. Therefore C(z) is a stable com-
pensator, real under condition (ii).

The proof for the MISO case is similar by using the alternate expression (1.3) in
section 1 for H(P,C).
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5. On sufficient conditions for strong stabilizability of MIMO systems.
Based on the fact that all stable complex (or real) rational functions in one vari-
able form a Euclidean domain, the necessary conditions in Theorem 3.5 have been
constructively proven to be sufficient for 1-D systems, too; see Appendix A and [23,
section 4.4]. The construction of a stable compensator for a 1-D system relies es-
sentially on the Euclidean division algorithm in the domains of one-variable stable
rational functions. But the domains of stable rational functions in two or more vari-
ables are no longer Euclidean and the method of [23] cannot be applied. Although
we have not met any counterexample which disproves the sufficiency of the necessary
conditions in Theorems 3.1, 3.2, 3.5, 3.8, and 3.9, we have not been able to prove the
sufficiency.

In this section, by extending the analytic method used in section 2.1, we give
a condition which is sufficient, but not necessary, for the strong stabilizability of
a certain class of complex MIMO n-D plants. We also discuss some difficulties in
adopting existing algebraic methods for the construction of stable compensators for
MIMO n-D systems.

5.1. A sufficient condition for complex strong stabilizability.
Theorem 5.1. Let D(z) and N(z) be two complex polynomial m×m matrices.

A sufficient condition for the existence of a complex polynomial m×m matrix X(z)
such that

det
[
D(z) +N(z)X(z)

] 6= 0 on Ūn(5.1)

is that D(z) has a single-valued logarithmic matrix function logD(z) on V (detN(z))∩
Ūn.

Proof. Let O be the sheaf of germs of analytic functions on some open polydisc
Ω ⊃ Ūn. Let Om×m be a free sheaf of modules of rank m × m over O; let N =
N · Om×m be a subsheaf of Om×m obtained by matrix multiplication with N , which
is finitely generated. We have the following exact sequence of sheaves:

0→ N → Om×m → Om×m/N → 0,(5.2)

which induces a long exact sequence of modules over the ring of analytic functions

0→ Γ(N ,Ω)→ Γ(Om×m,Ω)
ϕ→ Γ(Om×m/N ,Ω)→ H1(N )→ · · · .(5.3)

Since N is finitely generated, it is a coherent analytic sheaf. Therefore we have

H1(N ) = 0,(5.4)

and ϕ is a surjective mapping.
By assumption logD(z) is defined over V (detN). This can be analytically ex-

tended to an open neighborhood U0 containing V (detN). Let

U1 = Ω\V (detN).

Consider the m ×m zero matrix 0 as a section of Om×m over U1. On U0 ∩ U1, we
have

logD(z)− 0 = N(z)
(
N(z)−1 logD(z)

)
.
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This implies that logD(z) can actually be viewed as a global section of the quotient
sheaf Om×m/N on Ω, which satisfies

elogD(z) = D(z) for z ∈ V (detN) ∩ Ω.(5.5)

Since ϕ is surjective, there exists a global section G(z) of Om×m on Ω, such that

ϕ
(
G(z)

)
= logD(z) for z ∈ V (detN) ∩ Ω.(5.6)

Clearly, ϕ(D(z)) = elogD(z) and ϕ(eG(z)) = eϕ(G(z)) in Γ(Om×m/N ,Ω), we have

ϕ
(
eG(z) −D(z)

)
= 0 in Γ

(Om×m/N ,Ω);(5.7)

therefore

eG(z) −D(z) ∈ Γ(N ,Ω).(5.8)

That is, there exists an H(z) ∈ Γ(Om×m,Ω) such that

eG(z) = D(z) +N(z) ·H(z) on Ω.(5.9)

Since det eG(z) 6= 0, approximating H(z) by a complex polynomial matrix X(z), we
have

det
[
D(z) +N(z) ·X(z)

] 6= 0 on Ūn.

This completes the proof.
As an immediate consequence of this theorem, we have the following sufficient

condition for strong stabilizability.
Corollary 5.2. Let D(z)−1N(z) be a minor coprime MFD of a complex m× l

plant P (z), l ≥ m. If there is some m×m submatrix N0(z) of N(z), such that D(z)
has a single-valued logarithmic matrix function logD(z) on V (detN0(z)) ∩ Ūn, then
P (z) is strongly stabilizable.

In Example 1 of section 3.3,

[D N ] =

[
z2

2 1 z1 z2

−1 z2
3 z3 0

]
.

It can be verified (e.g., by using the theory of operational calculus [7]; see Appendix B

of this paper) that D(z) =
[
z2
2 1

−1 z2
3

]
has a single-valued analytic logarithmic function

over V (detN) ∩ Ū3 = V (−z2z3) ∩ Ū3.
If D(z) = diag(d1(z), . . . , dm(z)), a diagonal matrix, then its logarithmic function

can be defined as

logD(z) = diag
(

log d1(z), . . . , log dm(z)
)
.

This yields the following simpler criterion for a strong stabilizability test for a class
of plants that have a special form of minor coprime MFD.

Corollary 5.3. Let D(z)−1N(z) be a minor coprime MFD of a complex m× l
plant P (z), l ≥ m with D(z) = diag

(
d1(z), . . . , dm(z)

)
, a diagonal matrix. If there

is some m×m submatrix N0(z) of N(z), such that, for each i = 1, . . . ,m, di(z) has
a single-valued logarithmic function log di(z) on V (detN0(z)) ∩ Ūn; or equivalently,
each di(z) is 0-homotopic on V (detN0(z)) ∩ Ūn, then P (z) is strongly stabilizable.



330 JIANG QIAN YING

Example 5.

[D N ] =

[
1− 4z1z2 0 z2 + 1 z2

0 1 z1 z1

]
.

detN = z1. The condition of Corollary 5.3 is satisfied. We actually have a stable
compensator C = Y X−1 with

[
X
Y

]
=


1 0
0 1
0 0

4z1 0

 .
However, both conditions of the above corollaries are not necessary, as demon-

strated by the following example.
Example 6.

F = [D N ] =

[
z1 0 1 0
0 z2 0 1− 4z1z2

]
.

We have detD(z)+ 1
4 detN(z) = z1z2 + 1

4 (1−4z1z2) = 1
4 . But it is not possible to

define a single-valued logD(z) on V (detN(z)) ∩ Ū2 (see Appendix B). Nevertheless,
for this plant, we have the following stable real compensator C = Y X−1 with

[
X
Y

]
=


1 0
0 1

3z1 1
−− 1 0

 .
Actually, det

(
[D N ]

[
X
Y

])
= det[DX +NY ] = det

[
4z1 1

−1+4z1z2 z2

]
= 1. Note that while

det
[

4z1 1
−1+4z1z2 z2

]
= 1, and has a logarithmic function 0 on Ū2,

[
4z1 1

−1+4z1z2 z2

]
does not

have a logarithmic function on Ū2, even though Ū2 is simply connected. In fact, it can
be shown that

[
4z1 1
0 z2

]
does not have a logarithmic function on V (−1+4z1z2)∩Ū2 (see

Appendix B). Theorem 5.1 actually requires the resulting matrix have a logarithmic
function. This is stronger than what we need for strong stabilizability, as is illustrated
by the above example.

5.2. Difficulties in an algebraic approach. Surely it is desirable to establish
a method that not only gives a sufficient and necessary condition for strong stabi-
lizability, but also constructs a stable compensator when it exists. However, even
when an n-D MIMO system is strongly stabilizable, existing algebraic methods for
constructing a compensator do not ensure the resulting compensator be stable itself.
For instance, the method of [10], applied to Example 1 of section 3.3, goes as follows:

α1 + z2z3α6 = detD + z2z3 detN = 1.

Let Dadj and Nadj denote the adjoint matrices of D and N , respectively. Let

[
X
Y

]
=

[
Dadj

0

]
+ z2z3

[
0

Nadj

]
=


z2

3 −1
1 z2

2

0 −z2
2z3

−z2z
2
3 z1z2z3

 ,
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[DX + NY ] = DDadj + z2z3NN
adj = (α1 + z2z3α6)

[
1 0
0 1

]
=
[

1 0
0 1

]
. X−1Y is the

resulting compensator, which is itself unstable.
A possible approach by making use of the existing algebraic method for construct-

ing a stable compensator for 1-D system is as follows. Let

D−1N = D(z1, z2)−1N(z1, z2)

be a 2-D system. Let

α1 = detD, α2, . . . , αM

be the maximum order minors of [D N]. Assume there exist polynomials β2, . . . , βM ,
such that

detD + β2α2 + · · ·+ βMαM = u(z1, z2) 6= 0 ∀(z1, z2) ∈ Ū2.

Viewing the entries of D and N, and u(z1, z2) as elements of K(z1)[z2], K = C or R,
the ring of polynomials in a single variable z2 over the field of rational functions K(z1).
Since K(z1)[z2] is a Euclidean domain, the algorithm of [23] can be used to give a
matrix Y ′(z1, z2) such that

det
[
D(z1, z2) +N(z1, z2)Y ′(z1, z2)

]
= u(z1, z2).

There Y ′(z1, z2) has entries belonging to K(z1)[z2] and can be written as

Y ′(z1, z2) =
1

d(z1)
Y (z1, z2),

with d(z1) in K[z1] and the entries of Y (z1, z2) in K[z1, z2].
If d(z1) is a 1-D Hurwitz polynomial, then Y ′ is already a stable compensator. In

general, d(z1) may have zeros in Ū1. In this case, if we have a method that can remove
the zeros of d(z1) in Ū1 from Y ′(z1, z2), while keeping the resulting determinant
u(z1, z2) to be nonzero over Ū2, then we will be able to construct a stable compensator.
Unfortunately, after much effort, we have not been able to find such a method.

6. Conclusion. We conclude this paper with open problems for future research.
1. For a finitely generated ideal J , the set V (J) ∩ Ūn can be viewed as a semi-

algebraic set and its homology groups can be computed by the cylindrical algebraic
decomposition [6, 1, 19]. For the case that the ideal J is generated by one polynomial,
computational procedures for testing the criterion in Theorem 2.1 and the sign con-
sistency condition in Theorem 2.5 have been given based on the cylindrical algebraic
decomposition [25, 26]. The extension to the general case (J be generated by a finite
number of polynomials) is straightforward.

Unfortunately, our method is not constructive in that it does not give a solution
to inequality (2.1) in section 2. The development of an algorithmic method to solve
inequality (2.1) remains open.

2. Though it is also possible to explore further advanced analysis method to
fill the gap between the necessary conditions and the sufficient one presented in this
paper, it is desirable to have an algebraic constructive method, as that for a 1-D
MIMO system.

We believe that an adequate preparation has been made by our work for the final
solution of the problem of the strong stabilizability of n-D MIMO systems, which is
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most likely to be achieved by a fundamentally new algebraic approach that considers
standard representations of MIMO n-D systems, analogous in function to that for
conventional 1-D systems, such as the Smith–McMillan forms, which have played an
essential role in stable compensator construction.

On the other hand, the application of the Euclidean algorithm has been indispens-
able to the construction of the Smith–McMillan forms, as well as to the construction
of stable compensators for 1-D systems. Therefore a novel promising algebraic frame-
work to address the above issue in linear MIMO n-D systems should be one in which
adequate algorithms can be applied. In the recent behavioral approach to the study
of n-D systems [18, 8, 29, 17], it seems relatively easy to apply the Gröbner basis
algorithms, which are in a sense alternatives of Euclidean algorithm for dealing with
algorithmic problems in multivariate polynomials and modules. However, we are not
sure if this approach can be easily adapted for solving our problems.

To conclude, it is an interesting topic for future research to establish a new al-
gebraic framework to solve old open problems, as the one remains unsolved in this
paper.

Appendix A. Strong stabilizability of 1-D systems. Let P (z) be a 1-D
system with a minor coprime left MFD

P (z) = D−1N =

d11 · · · d1m

... · · · ...
dm1 · · · dmm


−1 n11 · · · n1l

... · · · ...
nm1 · · · nml

 .
Let b(z) be the greatest common divisor of nij(z), 1 ≤ i ≤ m, 1 ≤ j ≤ l. Then b(z)
is the single generator of the ideal J = (nij(z), 1 ≤ i ≤ m, 1 ≤ j ≤ l) ⊂ C[z]. b(z) is
equal to the smallest invariant factor of P (z), which is defined as the smallest of the
numerators when P (z) is written in the Smith–McMillan form [23, p. 401]. Note that
b can be chosen real if P is real.

Let a(z) = detD(z). The minor coprimeness of D(z)−1N(z) implies that a(z)
and b(z) have no common zero. Since V (b) is discrete, by Theorem 2.1, there exists
a complex stable rational function r(z) such that

a(z) + b(z)r(z) 6= 0 for z ∈ Ū1.

The following lemma is easy to prove.
Lemma A.1. (i) Let

SC = {f(z)/g(z) : f(z), g(z) ∈ C[z], g(z) 6= 0 on Ū1} ⊂ C(z),

the ring of all stable complex rational functions. For each s ∈ SC , define the degree
deg s= the number of zeros of s in Ū1. Then with this degree SC is a Euclidean
domain.

(ii) Let

SR = SC ∩R(z),

the ring of real stable rational functions. Then with the degree induced from that
defined in SC , SR is a Euclidean domain.

Based on the Euclidean property of SC , a complex stable rational matrix R(z)
can be constructed such that [23, section 4.4]

det
[
D(z) +N(z)R(z)

]
= a(z) + b(z)r(z).
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This means that P is stabilized by the stable compensator R(z).
If P = D−1N is a real plant, the condition that detD has an invariant sign on

V (J) = V (b) guarantees the existence of a real stable rational function r(z), such that

a(z) + b(z)r(z) 6= 0 for z ∈ Ū1.

Using the Euclidean property of SR, one can construct a real stable rational matrix
R such that

det
[
D(z) +N(z)R(z)

]
= a(z) + b(z)r(z) 6= 0 for z ∈ Ū1.

It is easy to see that a(z) = detD(z) is the least common denominator of the entries
of P (z) [23, p. 90] and that the zeros of the plant P (z) are exactly the zeros of b(z)
[23, 27].

The condition that a(z) has an invariant sign at the real zeros of b(z) in Ū1 is
equivalent to that the numbers of poles of P (z) lying between two adjacent zeros on
the interval [−1, 1] are always even. This is the parity interlacing property on the
interval [−1, 1]. By transforming the unit disc to the right halfplane, one obtains the
same property on the right half real line [27, 25].

Appendix B. Operational calculus on matrix. For some z, consider D(z) as
a linear operator on a finite-dimensional linear space. Let σ(D(z)) ⊂ C∗ denote the
set of its eigenvalues. As an inverse of the exponential map, an analytic logarithmic
function of D(z) can be defined by the following integral:

logD(z) =
1

2πi

∫
B

log(λ)
(
λI −D(z)

)−1
dλ,(B.1)

where B is the boundary of some domain which contains the closure of some open set
containing σ(D(z)) and consists of a finite number of closed rectifiable Jordan curves.
Clearly, logD(z) is single valued if the domain with boundary B does not contain the
origin in C∗.

In Example 1, D(z) =
[
z2
2 1

−1 z2
3

]
and N(z) =

[ z1 z2
z3 0

]
. The eigenvalues of D(z) are

λ =
1

2

(
z2

2 + z3
3 ±

√(
z2

2 − z3
3

)2 − 4

)
.(B.2)

It is easy to see that the union of the sets of eigenvalues ∪z∈V (z2z3)∩Ū3σ(D(z)) does
not intersect with the real axis, and can be contained in a simply connected open
domain not containing the origin in C∗. With B being the boundary of this domain,
logD(z) defined in (B.1) is a single-valued analytic logarithmic function in z because
λ in (B.2) varies analytically in z.

On the other hand, if logD(z) is defined as a single-valued matrix function, then
by the spectral mapping theorem [7, p. 569], the eigenvalues of D(z) have single-valued
logarithms which are the eigenvalues of logD(z).

In Example 6, the eigenvalues of D(z) are z1 and z2, which are not 0-homotopic
on V (detN(z)) ∩ Ū2 = V (1 − 4z1z2) ∩ Ū2. Therefore D(z) does not have a single-

valued logarithm on V (detN(z)) ∩ Ū2. For the same reason,
[

4z1 1
−1+4z1z2 z2

]
does not

have a logarithm on V (1− 4z1z2) ∩ Ū2.
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Abstract. Controllability properties of a partial differential equation (PDE) model describing a
thermoelastic plate are studied. The PDE is composed of a Kirchoff plate equation coupled to a heat
equation on a bounded domain, with the coupling taking place on the interior and boundary of the
domain. The coupling in this PDE is parameterized by α > 0. Boundary control is exerted through
the (two) free boundary conditions of the plate equation and through the Robin boundary condition of
the temperature. These controls have the physical interpretation of inserted forces and moments and
prescribed temperature, respectively, all of which act on the edges of the plate. The main result here
is that under such boundary control, and with initial data in the basic space of well-posedness, one
can simultaneously control the displacement of the plate exactly and the temperature approximately.
Moreover, the thermal control may be taken to be arbitrarily smooth in time and space, and the
thermal control region may be any nonempty subset of the boundary. This controllability holds for
arbitrary values of the coupling parameter α, with the optimal controllability time in line with that
seen for uncoupled Kirchoff plates.
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1. Introduction.

1.1. Statement of the problem. Throughout, Ω will be a bounded open sub-
set of R2 with sufficiently smooth boundary Γ = Γ0 ∪ Γ1, with both Γ0 and Γ1 being
open, with Γ0 being possibly empty, and satisfying Γ0 ∩ Γ1 = ∅. Furthermore, Γ2

will be any open and nonempty subset of Γ1. With this geometry, we shall consider
here the following thermoelastic system on finite time (0, T ):

{
ωtt − γ∆ωtt + ∆2ω + α∆θ = 0
βθt − η∆θ + σθ − α∆ωt = 0

on (0, T )× Ω;

ω =
∂ω

∂ν
= 0 on (0, T )× Γ0;

{
∆ω + (1− µ)B1ω + αθ = u1

∂∆ω

∂ν
+ (1− µ)

∂B2ω

∂τ
− γ ∂ωtt

∂ν
+ α

∂θ

∂ν
= u2

on (0, T )× Γ1;

∂θ

∂ν
+ λθ =

{
u3 on (0, T )× Γ2,
0 on (0, T )× Γ\Γ2,

λ ≥ 0;

ω(t = 0) = ω0, ωt(t = 0) = ω1, θ(t = 0) = θ0 on Ω.

(1.1)
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Here, α, β, η, and σ are positive constants. The positive constant γ is proportional
to the thickness of the plate and assumed to be small with 0 < γ ≤M. The boundary
operators Bi are given by

B1ω ≡ 2ν1ν2
∂2ω

∂x∂y
−ν2

1

∂2ω

∂y2
−ν2

2

∂2ω

∂x2
and B2ω ≡ (ν2

1−ν2
2)

∂2ω

∂x∂y
+ν1ν2

(
∂2ω

∂y2
− ∂2ω

∂x2

)
.

(1.2)
The constant µ ∈ (0, 1

2 ) is the familiar Poisson ratio, and ν = [ν1, ν2] denotes the out-
ward unit normal to the boundary. Here and throughout we shall make the following
geometric assumption on the (uncontrolled) portion of the boundary Γ0:

(1.3)

with h(x, y) ≡ [x− x0, y − y0] ,∃ {x0, y0} ∈ R2 such that h(x, y) · ν ≤ 0 on Γ0.

The PDE model (1.1), with boundary functions u1 = u2 = 0 and u3 = 0, math-
ematically describes an uncontrolled Kirchoff plate subjected to a thermal damping,
with the displacement of the plate represented by the function ω(t, x, y) and the tem-
perature given by the function θ(t, x, y) (see [11] for a derivation of this model). The
given control variables u1(t, x) and u2(t, x) are defined on the portion of the boundary
(0, T )× Γ1; the control u3(t, x) is defined on (0, T )× Γ2.

Making the denotation

Hk
Γ0

(Ω) ≡
{
$ ∈ Hk(Ω) :

∂j$

∂νj

∣∣∣∣
Γ0

= 0 for j = 0, ..., k − 1

}
,(1.4)

we will throughout take the initial data [ω0, ω1, θ0] to be in H2
Γ0

(Ω)×H1
Γ0

(Ω)×L2(Ω).
For initial data in these spaces and controls u1 = u2 = 0 and u3 = 0, one can
show the well-posedness of (1.1) with the corresponding solution [ω, ωt, θ] being in
C([0, T ];H2

Γ0
(Ω) × H1

Γ0
(Ω) × L2(Ω)) (see, e.g., [11] and [2]). In this paper, we will

study controllability properties of solutions of (1.1) under the influence of boundary
control functions in the following spaces:

[u1, u2, u3] ∈ L2(0, T ;L2(Γ1)×H−1(Γ1))×Cr(Σ2,T ), where r > 0 and Σ2,T = (0, T )×Γ2.
(1.5)

For arbitrary [u1, u2, u3] of such smoothness, the corresponding solution [ω, ωt, θ] will
be in the “large” space C([0, T ]; [D(A∗γ)]′) (see the definition of D(A∗γ) in (1.49)).
In particular, we intend to address, on the finite time interval [0, T ], the question of
exact-approximate controllability (this term being originally coined in [6]). That is
to say, for given data [ω0, ω1, θ0] (initial) and

[
ωT0 , ω

T
1 , θ

T
0

]
(terminal) in H2

Γ0
(Ω) ×

H1
Γ0

(Ω) × L2(Ω), and arbitrary ε > 0, is there a suitable control triple [u1, u2, u3] ∈
L2(0, T ;L2(Γ1)×H−1(Γ1))×Cr(Σ2,T ) such that the corresponding solution [ω, ωt, θ]
of (1.1) satisfies the following steering property at terminal time T :

[ω(T ), ωt(T )] =
[
ωT0 , ω

T
1

]
and

∥∥θ(T )− θT0
∥∥
L2(Ω)

≤ ε?

In this regard, we post our main result here for which we need the number

T ∗ ≡ 2
√
γ ·max

{√
2

1− µ max
[x,y]∈Ω

∣∣h(x, y)
∣∣ , sup

[x,y]∈Ω

d ([x, y],Γ2)

}
,(1.6)

where, above, d([x, y],Γ2) denotes the distance between [x, y] and Γ2.
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Theorem 1.1. Let assumptions (1.3) and (1.6) stand. Then for T > T ∗, the
following controllability property holds true: For given initial data [ω0, ω1, θ0] and
terminal data

[
ωT0 , ω

T
1 , θ

T
0

]
in the space H2

Γ0
(Ω) × H1

Γ0
(Ω) × L2(Ω), and arbitrary

ε > 0, one can find control functions [u∗1, u
∗
2, u
∗
3] ∈ L2(0, T ;L2(Γ1) × H−1(Γ1)) ×

Cr(Σ2,T ) (where arbitrary r ≥ 0) such that the corresponding solution [ω∗, ω∗t , θ
∗] to

(1.1) satisfies at terminal time T ,

[ω∗(T ), ω∗t (T )] =
[
ωT0 , ω

T
1

]
,∥∥θ∗(T )− θT0

∥∥
L2(Ω)

< ε.

Theorem 1.1 is almost a corollary from the following controllability result for the
mechanical variable only, which comprises the bulk of our effort here.

Theorem 1.2. With the coupling parameter α in (1.1) being arbitrary, and
(1.3), (1.6) in place, then for T > T ∗, the following property holds true: For all
initial data [ω0, ω1, θ0] ∈ H2

Γ0
(Ω) × H1

Γ0
(Ω) × L2(Ω) and terminal data

[
ωT0 , ω

T
1

] ∈
H2

Γ0
(Ω)×H1

Γ0
(Ω), there exists [u1, u2, u3] ∈ L2(0, T ;L2(Γ1)×H−1(Γ1))×Hs(Σ2,T ),

where arbitrary s ≥ 0, such that the corresponding solution [ω, ωt, θ] to (1.1) satisfies
[ω(T ), ωt(T )] =

[
ωT0 , ω

T
1

]
.

Remark 1.3. Note that the point [x0, y0] can be selected in such a way so that
2 max[x,y]∈Ω

∣∣h(x, y)
∣∣ ≤ diam (Ω), and so, ultimately, T ∗ in (1.6) can be rechosen as

T ∗ = 2
√
γ diam (Ω).

Remark 1.4. Note that in our statement of controllability, no geometric conditions
are imposed on the controlled region of the boundary Γ1 , only on the (possibly void)
boundary portion Γ0.

1.2. Literature. To date, the only work dealing with the boundary control of
thermoelastic plates, in dimension greater than one, had been that of J. Lagnese in [12]
(indeed, this present paper is principally motivated by [12]). In this paper, Lagnese
shows that if the coupling parameter α is small enough and the boundary Γ is “star
shaped,” then the boundary controlled system (1.1) is (partially) exactly controllable
with respect to the mechanical variables [ω, ωt]. Also in [22], a boundary-controlled
system of thermoelastic waves is studied, with a coupling parameter α likewise present
therein, and a result of partial exact controllability for this PDE is cited (again,
controllability with respect to the hyperbolic component). This controllability result
is quoted in [22] to be valid for all sizes of α; however, in the erratum [23], the author
of [22] has acknowledged a flaw in the controllability proof, the correction of which
will necessitate a smallness criterion on α. Ultimately, then, the paper [22] produces
a controllability result if the coupling parameter is small enough, a result in the style
of [12]. The chief contribution of the present paper is to remove restrictions on the
size of α (see Theorem 1.2 above). For a one-dimensional version of (1.1), S. Hansen
and B. Zhang in [8], via a moment problem approach, show the system’s exact null
controllability with boundary control in either the plate or the thermal component.

Other controllability results for the thermoelastic system, which do not assume
any “smallness” condition on the coupling parameters, involve the implementation
of distributed/internal controls subject to clamped or hinged boundary conditions.
These results include that in [6], in which interior control is placed in the Kirchoff
plate component subject to clamped boundary conditions.
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With such control, one obtains exact controllability for the plate [ω, ωt] and ap-
proximate controllability for the temperature θ (i.e., exact-approximate controllabil-
ity). In addition, the work in [19] deals with obtaining a result of null controllability
for a linear system of thermoelasticity, in which both the hyperbolic and the parabolic
components can be driven to zero by means of interior control placed in the hyperbolic
(wave) component.

Another result of internal control for the thermoelastic PDE (1.1) is in [5], wherein
interior control is placed in the heat equation only (i.e., βθt− η∆θ+ σθ−α∆ωt = u)
so as to obtain exact controllability for both components ω and θ. The novelty of this
result is that this (total) exact controllability obtains for all values of the rotational
inertia parameter γ ≥ 0: in the limiting case γ = 0, one is then presented with a result
of exact controllability for a PDE modeled by the generator of an analytic semigroup
(see [18]). This controllability holds for all values of α.

Again, the main contribution of this paper is that we consider boundary controls
acting via the higher order free mechanical boundary conditions, and we do not assume
any size restriction on the coupling parameter α. Moreover, we do not impose any
geometric “star-shaped” conditions on the controlled portion of the geometry.

At this point, we attempt to compare the degree of difficulty in obtaining control-
lability results for thermoelastic plates under mechanical interior control with lower-
order mechanical boundary conditions enforced (such as clamped or hinged), versus
that involved in the present study, where, again, boundary control is exerted upon
the second and third order free boundary conditions. This comparison is appropriate,
since the novelty of our work is touted to be (mechanical) exact controllability for the
PDE (1.1), whatever α may be; and excluding the paper [5], the only other available
controllability results for thermoelastic systems, which require no size constraints on
α, concerned thermoelastic systems under (distributed) interior mechanical control
and with lower mechanical boundary conditions in place.

An underlying strategy in control theoretic studies of thermoelastic plates has
been to exploit, if possible, previously known controllability results for (uncoupled)
Kirchoff plates. To this end, one attempts to treat the thermoelastic system as a sort
of perturbation of the Kirchoff plate. It is well known that if the underlying con-
trollability map can be decomposed into the sum of a compact map and a surjective
controllability map, corresponding to a (simpler) subcomponent of the PDE system,
then the exact controllability of the original problem is equivalent to its approximate
controllability. This favorable scenario occurs in equations of thermoelasticity with
either clamped or hinged boundary conditions and interior, distributed controls (see,
e.g., [20]). Indeed, the part of the simpler component is played by the classical and
much-studied Kirchoff plate, for which many results on exact controllability are al-
ready available in the literature. Taking the boundary conditions to be clamped or
hinged allows for a known structural decomposition of the thermoelastic system into
a group (associated with the Kirchoff plate) and a compact perturbation. Combin-
ing this decomposition with the boundedness of interior control actions immediately
yields the desired decomposition of the original controllability map into the sum of
a surjective controllability map (corresponding to the Kirchoff plate) and a compact
perturbation. This popular strategy was used in [6], where an exact-approximate
controllability result was established for the thermoelastic system with clamped ho-
mogeneous boundary conditions and internal controls.

The situation is drastically different in the present paper, involving the case of
boundary controls. Here, in this case of free mechanical boundary conditions, the
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corresponding controllability operator cannot be taken to be a compact perturbation
of the controllability map for the (uncoupled) boundary-controlled Kirchoff plate. In
the first place, the associated input→state space map, defined explicitly in (1.42), is
an inherently unbounded operator with respect to the natural energy space (see [17]
for recent sharp regularity results for corresponding solutions, which are still, however,
below the level of energy). Moreover, in the present case of free boundary conditions,
there is a decomposition of the underlying thermoelastic semigroup, but it is into the
sum of a Kirchoff plate semigroup and an unbounded—not compact—operator (see
[16]). This complication is due to the fact that the Lopatinski conditions are not
satisfied for the Kirchoff model under free boundary conditions, and to the intrinsic
nature of the coupling between the mechanical and thermal variables within the free
boundary conditions. These two complications above, again an artifact of the “free
case,” explain why there have been so few results regarding the boundary control of
thermoelastic plates and why a “decoupling” of the thermoelastic PDE into a sole
Kirchoff plate can only go so far.

Our goal here is to dispense with this smallness assumption and, in addition,
show that a control can be constructed that provides exact controllability of the me-
chanical variables and approximate controllability of the thermal component. We
note that the thermal control u3 present in (1.1)—wholly absent in [12]—plays no
part at all in the removal of the size restriction on α; it is in place only to exploit,
in a compactness-uniqueness argument, recently obtained approximate controllability
properties of the thermoelastic plate under the action of boundary control in the free
mechanical boundary conditions (see [10]). At this point in time, the thermoelastic
system cannot be shown to be approximately controllable with control in the free
boundary conditions only (and no thermal control). Therefore, the presence of the
thermal boundary control here is not an artificiality; it appears to be necessary for
approximate controllability. (We do not know if the future will bring a unique con-
tinuation result for the thermoelastic plate in the absence of the thermal component.)
However, the result of Theorem 1.1 says that the thermal control may be taken to
be very smooth and with arbitrarily small support Γ2. Again, this benign situation
is a consequence of our employing thermal control at the compactness-uniqueness
level only; it plays no part whatsoever in generating the main observability estimate
(estimate (2.5) of Theorem 2.1), this being free of any size restrictions on α.

The strategy adopted in this paper consists of the following steps. Initially, a
suitable transformation of variables is made and applied to (1.1); subsequently, a mul-
tiplier method is invoked with respect to the transformed equation. The mulitiplers
employed here are the differential multipliers used in the study of exact controllabil-
ity for the Kirchoff plate model (inspired by [11]), together with the nonlocal (ΨDO)
multipliers used in the study of thermoelastic plates in [3] and [4]. The controllabil-
ity time T ∗ in Theorem 1.1 ultimately depends in part upon the radial vector field
associated with the differential Kirchoff multipliers (see Lemma 2.5 below). This mul-
tiplier method allows the attainment of preliminary estimates for the energy of the
system. However, these estimates are “polluted” by certain boundary terms that are
not majorized by the energy. To cope with these, we use the sharp trace estimates
established in [15] for Kirchoff plates. The use of this PDE result introduces lower
order terms into the energy estimate, which are eventually eliminated with the help of
a new unique continuation result in [10]. It is only at the level of invoking this unique-
ness result that the thermal control u3 on Γ2 must be introduced. The controllability
time T ∗ in (1.6) is optimal.
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1.3. Operator theoretic formulation and analysis.

1.3.1. Preliminary definitions. In obtaining our controllability result Theo-
rem 1.1, it will be useful to consider the PDE system (1.1) as an abstract evolution
equation in a certain Hilbert space, to which end we introduce the following definitions
and notation.

• With Hk
Γ0

(Ω) as defined in (1.4), we define Å: L2(Ω) ⊃ D
(
Å
) → L2(Ω) to

be Å= ∆2, with domain

D(Å) =

{
ω ∈ H4(Ω) ∩H2

Γ0
(Ω) : ∆ω + (1− µ)B1ω = 0 on Γ1 and

∂∆ω

∂ν
+ (1− µ)

∂B2ω

∂τ
= 0 on Γ1

}
.(1.7)

• Å is then positive definite and self-adjoint, and consequently from [7] we have
the characterizations

D
(
Å

1
4

)
= H1

Γ0
(Ω),

D
(
Å

1
2

)
= H2

Γ0
(Ω),

D
(
Å

3
4

)
=
{
ω ∈ H3(Ω) ∩H2

Γ0
(Ω) : ∆ω + (1− µ)B1ω = 0 on Γ1

}
.

(1.8)

Note that without loss of generality, we are here taking Γ0 to be nonempty
in order to have the equivalence of the H2(Ω) norm with that induced by the

D(Å
1
2 ). In the case that Γ0 = ∅, we would simply modify D(Å) by enforcing

∂∆ω
∂ν + (1−µ)∂B2ω

∂τ |Γ1
= ω|Γ1

(instead of ∂∆ω
∂ν + (1−µ)∂B2ω

∂τ |Γ1
= 0 in (1.7)).

This modification would not change the problem.
Moreover, using Green’s formula in [11], we have that for ω, ω̂ “smooth

enough,” ∫
Ω

(∆2ω)ω̂dΩ = a (ω, ω̂) +

∫
Γ

[
∂∆ω

∂ν
+ (1− µ)

∂B2ω

∂τ

]
ω̂dΓ

−
∫

Γ

[∆ω + (1− µ)B1ω]
∂ω̂

∂ν
dΓ,(1.9)

where a(·, ·) is defined by

a (ω, ω̂) ≡
∫

Ω

[ωxxω̂xx + ωyyω̂yy + µ (ωxxω̂yy + ωyyω̂xx) + 2(1− µ)ωxyω̂xy] dΩ.

(1.10)
In particular, this formula and the second characterization in (1.8) give that

for all ω, ω̂ ∈ D(Å
1
2 ),〈

Åω, ω̂
〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) =
(
Å

1
2ω, Å

1
2 ω̂
)
L2(Ω)

= a (ω, ω̂)L2(Ω) ,

‖ω‖2
D

(
Å

1
2

) =
∥∥∥Å 1

2ω
∥∥∥2

L2(Ω)
= a (ω, ω) .(1.11)

• We define AD : L2(Ω) ⊃ D (AD) → L2(Ω) to be AD = −∆, with Dirichlet
boundary conditions, viz.,

D(AD) = H2(Ω) ∩H1
0 (Ω).(1.12)
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AD is also positive definite, self-adjoint, and by [7]

D
(
A

1
2

D

)
= H1

0 (Ω).(1.13)

• We denote the operator AR : L2(Ω) ⊃ D (AR) → L2(Ω) by the following
second order elliptic operator:

AR = −∆ +
σ

η
I, with D(AR) =

{
ϑ ∈ H2(Ω) :

∂ϑ

∂ν
+ λϑ = 0

}
.(1.14)

AR is self-adjoint, positive definite on L2(Ω), with its fractional powers there-
fore being well defined. In particular, we have again by [7] that for s ∈ [0, 3

4

)
,

D(AsR) = H2s(Ω),(
ϑ, ϑ̃

)
H1(Ω)

=
(
A

1
2

Rϑ,A
1
2

Rϑ̃
)
L2(Ω)

=
(
∇ϑ,∇ϑ̃

)
L2(Ω)

+ λ
(
ϑ, ϑ̃

)
L2(Γ)

+
σ

η

(
ϑ, ϑ̃

)
L2(Ω)

.(1.15)

• We denote the operator AN : L2(Ω) ⊃ D (AN ) → L2(Ω) by the following
second order elliptic operator:

AN = −∆, with D(AN ) =

{
ϑ ∈ H2(Ω) : ϑ|Γ0

=
∂ϑ

∂ν

∣∣∣∣
Γ1

= 0

}
.(1.16)

Once again by [7], we have for s ∈ ( 1
4 ,

3
4

)
D(AsN ) =

{
ϑ ∈ H2s(Ω) such that ϑ|Γ0

= 0
}
.(1.17)

• (γ0, γ1) will denote the classical Sobolev trace maps, which yield for f ∈
C∞(Ω)

γ0f = f |Γ ; γ1f =
∂f

∂ν

∣∣∣∣
Γ

.(1.18)

• We define the elliptic operators G1, G2, and D as follows:

G1h = v ⇐⇒



∆2v = 0 on Ω,

v =
∂v

∂ν
= 0 on Γ0, ∆v + (1− µ)B1v = h

∂∆v

∂ν
+ (1− µ)

∂B2v

∂τ
= 0

on Γ1,

G2h = v ⇐⇒



∆2v = 0 on Ω,

v =
∂v

∂ν
= 0 on Γ0, ∆v + (1− µ)B1v = 0

∂∆v

∂ν
+ (1− µ)

∂B2v

∂τ
= h

on Γ1,

(1.19)
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Dh = v ⇐⇒
{

∆v = 0 on Ω,

v|Γ = h on Γ;
Rh = v ⇐⇒



(
−∆ + σ

η I
)
v = 0 on Ω,

∂v

∂ν
+ λv = h on Γ2,

∂v

∂ν
+ λv = 0 on Γ\Γ2.

(1.20)
The classic regularity results of [21, p. 152] then provide that for all q real,

D ∈ L
(
Hq(Γ), Hq+ 1

2 (Ω)
)
,

R ∈ L
(
Hq

0 (Γ2), Hq+ 3
2 (Ω)

)
,

G1 ∈ L
(
Hq

0 (Γ1), Hq+ 5
2 (Ω)

)
,

G2 ∈ L
(
H
q− 1

2
0 (Γ1), Hq+3(Ω)

)
.

(1.21)

Denoting the topological dual of Hq as [Hq]
′

(pivotal with respect to the
L2-inner product), then with the elliptic operators AR and R as defined
above, one can show that for q ≥ − 1

2 , the (Banach space) adjoint R∗AR ∈
L(D(A

1
2

R), [Hq(Γ2)]′) satisfies

R∗ARϑ = ϑ|Γ2
for all ϑ ∈ D

(
A

1
2

R

)
.(1.22)

Moreover, with the operators Å and Gi as defined above, one can readily
show with the use of Green’s formula (1.9) that ∀ $ ∈ D(Å

1
2 ) the (Banach

space) adjoints G∗i Å ∈ L(D(Å
1
2 ), Hi− 1

2 (Γ1)) satisfy for i = 1, 2,

G∗i Å$ =

{
(−1)i−1 γ2−i$|Γ1

on Γ1,

0 on Γ0.
(1.23)

• With AN given by (1.16), we define the operator Pγ : D(Pγ) ⊂ L2(Ω) →
L2(Ω) by

Pγ ≡ I + γAN .(1.24)

(i) With the parameter γ > 0, we define a space H1
Γ0,γ

(Ω) equivalent to

H1
Γ0

(Ω) with inner product

(1.25)

(ω1, ω2)H1
Γ0,γ

(Ω) ≡ (ω1, ω2)L2(Ω) + γ (∇ω1,∇ω2)L2(Ω) ∀ω1, ω2 ∈ H1
Γ0

(Ω)

and with its dual denoted as H−1
Γ0,γ

(Ω). After recalling that H1
Γ0

(Ω) = D(A
1
2

N )
(by (1.17)), two extensions by continuity will then yield that

Pγ ∈ L
(
H1

Γ0,γ(Ω), H−1
Γ0,γ

(Ω)
)

with 〈Pγω1, ω2〉H−1
Γ0,γ

(Ω)×H1
Γ0,γ

(Ω) = (ω1, ω2)H1
Γ0,γ

(Ω) .(1.26)

Furthermore, the obvious H1
Γ0,γ

(Ω)-ellipticity of Pγ and Lax–Milgram give us

that Pγ ∈ L(H1
Γ0,γ

(Ω), H−1
Γ0,γ

(Ω))is boundedly invertible, with

P−1
γ ∈ L

(
H−1

Γ0,γ
(Ω), H1

Γ0,γ(Ω)
)
.(1.27)
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Moreover, because Pγ is positive definite and self-adjoint as an operator Pγ :

L2(Ω) ⊃ D(Pγ) → L2(Ω), the square root P
1
2
γ is consequently well defined

with D(P
1
2
γ ) = H1

Γ0,γ
(Ω), by (1.17). It then follows from (1.25) and (1.26)

that for ω and ω̂ ∈ H1
Γ0,γ

(Ω),∥∥∥P 1
2
γ ω
∥∥∥2

L2(Ω)
= ‖ω‖2L2(Ω) + γ ‖∇ω‖2L2(Ω) = ‖ω‖2H1

Γ0,γ
(Ω) ,(1.28) (

P
1
2
γ ω, P

1
2
γ ω̂
)
L2(Ω)

= (ω, ω̂)H1
Γ0,γ

(Ω) .(1.29)

(ii) Finally, by Green’s formula we have for ω, ω̂ ∈ D(Å
1
2 ),

γ
〈(

∆ + ÅG2γ1

)
ω, ω̂

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

= −γ (∇ω,∇ω̂)L2(Ω) + γ

(
∂ω

∂ν
, ω̂

)
L2(Γ1)

+ γ
(
γ1ω,G

∗
2Åω̂

)
L2(Γ1)

= −γ (∇ω,∇ω̂)L2(Ω) = −γ 〈ANω, ω̂〉H−1
Γ0,γ

(Ω)×H1
Γ0,γ

(Ω)(1.30)

after using (1.23). We thus obtain after two extensions by continuity to
H1

Γ0,γ
(Ω) that

Pγ = I− γ (∆ + ÅG2γ1

)
as elements of L

(
H1

Γ0,γ(Ω), H−1
Γ0,γ

(Ω)
)
.(1.31)

In obtaining the equality above, we have used implicitly the fact that for
every $∗ ∈ H−1

Γ0,γ
(Ω) and $ ∈ D(Å

1
2 ),

〈$∗, $〉H−1
Γ0,γ

(Ω)×H1
Γ0,γ

(Ω) = 〈$∗, $〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)(1.32)

• We denote the Hilbert space Hγ to be

Hγ ≡ D
(
Å

1
2

)
×H1

Γ0,γ(Ω)× L2(Ω),(1.33)

with the inner product ω1

ω2

θ

 ,
 ω̂1

ω̂2

θ̂


Hγ

=
(
Å

1
2ω1, Å

1
2 ω̂1

)
L2(Ω)

+
(
P

1
2
γ ω2, P

1
2
γ ω̂2

)
L2(Ω)

+ β
(
θ, θ̂
)
L2(Ω)

.(1.34)

• With the above definitions, and making the denotation

(♣) ≡ AR − σ

η
− ÅG1γ0 + λÅG2γ0,(1.35)

we then set Aγ : Hγ ⊃ D(Aγ)→ Hγ to be

Aγ ≡
 I 0 0

0 P−1
γ 0

0 0 I


 0 I 0
−Å 0 α(♣)

0 −α
β
AD(I−Dγ0) − η

β
AR


with D(Aγ) =

{
[ω0, ω1, θ0] ∈ D

(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR))

such that Åω0 + αÅG1γ0θ0 ∈ H−1
Γ0,γ

(Ω)
}
.

(1.36)
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• We make the following denotations for the space of controllability:

Us = L2(Γ1)×H−1(Γ1)×Hs(Γ2),

Us = L2(0, T ;L2(Γ1)×H−1(Γ1))×Hs((0, T )× Γ2),(1.37)

where s ≥ 0. We define the control operator B on Us by having for every
u = [u1, u2, u3] ∈ Us,

Bu =

 0
P−1
γ [ÅG1u1 + ÅG2u2]

η

β
ARRu3

 .(1.38)

Note that a priori the mapping B only makes sense as an element of L(Us,
[D(A∗γ)]′), where Hγ ⊂ [D(A∗γ)]′. Indeed, for fixed u = [u1, u2, u3] ∈ Us one
has, upon using the expression for the inverse A−1

γ given in (4.2) below, and
the definition of the elliptic operators G1, G2, and R in (1.19) and (1.20)
above, that

Bu = AγA−1
γ

 0
P−1
γ [ÅG1u1 + ÅG2u2]

η

β
ARRu3


= Aγ

 −G1u1 −G2u2 − αÅ
−1

(♣)Ru3

0
−Ru3

 ∈ [D(A∗γ)
]′
,(1.39)

where (♣) is as defined in (1.35).
• By duality, we have

U∗s = L2(Γ1)×H1(Γ1)× [Hs(Γ2)]
′
,

U∗s = L2(0, T ;L2(Γ1)×H1(Γ1))× [Hs(0, T ;L2(Γ2))
]′
,(1.40)

and B∗ ∈ L (D(A∗γ), U∗s
)
.

1.3.2. Abstract operator formulation. If we take the initial data [ω0, ω1, θ0]
to be in Hγ , and control u ∈ Us, where Us is as defined in (1.37), then considering
the operator definitions above, the coupled system (1.1) can be rewritten a fortiori as
the operator theoretic model

d

dt

 ω(t)
ωt(t)
θ(t)

 = Aγ
 ω(t)
ωt(t)
θ(t)

+ Bu(t),

 ω(0)
ωt(0)
θ(0)

 =

 ω0

ω1

θ0

 ,(1.41)

with this equation having sense in
[
D(A∗γ)

]′
(a space strictly larger than Hγ). Given

the operator definitions for Aγ and B above, the solution [ω, ωt, θ] to the ODE (1.41)
(and so to the PDE (1.1)) is given by ω(·)

ωt(·)
θ(·)

 = eAγ(·)

 ω0

ω1

θ0

+

∫ (·)

0

eAγ(·−s)Bu(s)ds,(1.42)
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which by (1.39) and the convolution theorem is an element of C([0, T ]; [D(A∗γ)]′).
With this representation of the solution [ω, ωt, θ] in mind, we define the input →
terminal state map LT ∈ L(Us,

[
D(A∗γ)

]′
) as

LTu =

∫ T

0

eAγ(T−s)Bu(s)ds.(1.43)

Taken as an unbounded operator from Us into Hγ , then LT : D(LT ) ⊂ Us → Hγ is
closed and densely defined, with its domain of definition D(LT ) given to be

D(LT ) = {u ∈ Us : LTu ∈ Hγ} .(1.44)

Its adjoint L∗T : D(L∗T ) ⊂ Hγ → U∗s , where U∗s is as given in (1.40), is likewise closed
and densely defined, with

D(L∗T ) =

[φ0, φ1, ψ0] ∈ Hγ : L∗T

 φ0

φ1

ψ0

 ∈ U∗s
 .(1.45)

As we are concerned with obtaining exact controllability of the displacement
[ω, ωt] only, we accordingly define the projection operator Π : Hγ → D(Å

1
2 ) ×

H1
Γ0,γ

(Ω) by

Π

 $0

$1

ϑ0

 =

[
$0

$1

]
.(1.46)

Henceforth, the work here will be concerned with determining the surjectivity of the
closed operator ΠLT , D(ΠLT ) ⊂ Us → D(Å

1
2 )×H1

Γ0,γ
(Ω), with

ΠLTu = Π

∫ T

0

eAγ(T−s)Bu(s)ds,(1.47)

and with D(ΠLT ) = D(LT ). Determining the surjectivity of the operator ΠLT for
some T > 0 becomes our concern here, since it is equivalent to showing the exact
controllability of the mechanical component [ω, ωt] to (1.1) (Theorem 1.2). This
surjectivity for ΠLT is in turn equivalent to the existence of a certain observability
inequality pertaining to the range of the adjoint L∗TΠ∗ (the inequality (2.1) below),

where L∗TΠ∗ : D(L∗TΠ∗) ⊂ D(Å
1
2 ) × H1

Γ0,γ
(Ω) → Hγ is likewise a closed densely

defined operator (as L∗T is), with its domain given by

D(L∗TΠ∗) =
{

[φ0, φ1] ∈ D
(
Å

1
2

)
×H1

Γ0
(Ω) : [φ0, φ1, 0] ∈ D(L∗T )

}
.(1.48)

It is the injectivity condition (2.1) that we intend to directly verify. In order to rewrite
this abstract inequality in “PDE form” (i.e., as the inequality (2.2) below), we need
the following two propositions, the first of which is proved in the appendix below.

Proposition 1.5. The Hilbert space adjoint A∗γ of Aγ , as defined in (1.36), is
given to be

A∗γ =

 I 0 0
0 P−1

γ 0
0 0 I


 0 −I 0

Å 0 −α(♣)

0
α

β
AD(I−Dγ0) − η

β
AR

 ,

with D(A∗γ) =
{

[φ0, φ1, ψ0] ∈ D
(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR)

such that Åφ0 + αÅG1γ0ψ0 ∈ H−1
Γ0,γ

(Ω)
}

(1.49)
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(above, (♣) is the same denotation made in (1.35)).
Remark 1.6. Using the semigroup {eA∗γt}t≥0 generated by A∗γ , then for terminal

data [φ0, φ1, ψ0] ∈ Hγ , φ(t)
φt(t)
ψ(t)

 = eA
∗
γ(T−t)

 φ0

φ1

ψ0

 ∈ C([0, T ]; Hγ)(1.50)

is the solution to the following backward problem:

{
φtt − γ∆φtt + ∆2φ+ α∆ψ = 0
βψt + η∆ψ − σψ − α∆φt = 0

on (0,∞)× Ω,

φ =
∂φ

∂ν
= 0 on (0,∞)× Γ0,

{
∆φ+ (1− µ)B1φ+ αψ = 0
∂∆φ

∂ν
+ (1− µ)

∂B2φ

∂τ
− γ ∂φtt

∂ν
+ α

∂ψ

∂ν
= 0

on (0,∞)× Γ1,

∂ψ

∂ν
+ λψ = 0 on (0,∞)× Γ, λ ≥ 0,

[φ(T ), φt(T ), ψ(T )] = [φ0, φ1, ψ0] .

(1.51)

Remark 1.7. For terminal data [φ0, φ1, ψ0] in D(A∗γ), the two equations of (1.51)
may be written pointwise as

Pγφtt = −Åφ− αÅG1γ0ψ + αλÅG2γ0ψ − α∆ψ in H−1
Γ0,γ

(Ω),(1.52)

βψt = −η∆ψ + σψ+α∆φt in L2(Ω),(1.53)

[φ(T ), φt(T ), ψ(T )] = [φ0, φ1, ψ0] .(1.54)

Remark 1.8. Since Γ0∩Γ1 = ∅, and Γ is smooth, we can assume throughout that
D(A∗γ) is dense in the graph topology of D(L∗T ).

Proposition 1.9. The adjoint L∗T : D (L∗T ) ⊂ Hγ → U∗s of LT is computed to
be

L∗T

 φ0

φ1

ψ0

 =

[
∂φt
∂ν

∣∣∣∣
Γ1

, −φt|Γ1
, η ψ|Γ2

]
for all

 φ0

φ1

ψ0

 ∈ D (L∗T ) ,(1.55)

where [∂φt∂ν |Γ1
, φt|Γ1

, ψ|Γ2
] are boundary “traces” of the solution [φ, φt, ψ] to the coupled

system (1.51).
Proof. By Remark 1.8, it is enough to show the characterization in (1.55) for

[φ0, φ1, ψ0] ∈ D(A∗γ). With this in mind, one has readily the classic representation

L∗T

 φ0

φ1

ψ0

 = B∗eA∗γ(T−t)

 φ0

φ1

ψ0

 for every

 φ0

φ1

ψ0

 ∈ D (A∗γ) ,(1.56)

where again, B∗ ∈ L (D (A∗γ) , U∗s ) is the adjoint of B. We must show that the right-
hand side of this equality may be written explicitly in “PDE form” as (1.55). To this
end, for every [u1, u2, u3] ∈ Us and [φ0, φ1, ψ0] ∈ D (A∗γ), we have

(1.57)



CONTROLLABILITY OF THERMOELASTIC PLATES 349〈
LT
 u1

u2

u3

 ,
 φ0

φ1

ψ0

〉
[D(A∗γ)]′×D(A∗γ)

=

〈∫ T

0

eAγ(T−s)B
 u1(s)
u2(s)
u3(s)

 ds,
 φ0

φ1

ψ0

〉
[D(A∗γ)]′×D(A∗γ)

=

∫ T

0

〈
eAγ(T−s)AγA−1

γ B
 u1(s)
u2(s)
u3(s)

 ,
 φ0

φ1

ψ0

〉
[D(A∗γ )]′×D(A∗γ )

ds

=

∫ T

0

A−1
γ B

 u1(s)
u2(s)
u3(s)

 , eA∗γ(T−s)A∗γ

 φ0

φ1

ψ0


Hγ

ds

=

∫ T

0

 −G1u1(s)−G2u2(s)− αÅ
−1

(♣)Ru3

0
−Ru3

 ,A∗γeA∗γ(T−s)

 φ0

φ1

ψ0


Hγ

ds.

Noting that  φ(t)
φt(t)
ψ(t)

 ≡ eA∗γ(T−t)

 φ0

φ1

ψ0


gives the solution to the backward problem (1.51), we then use this relation, the
definition of the adjoint A∗γ in (1.49), and Proposition 4.1 of the appendix to obtain

(1.58)〈
LT
 u1(s)
u2(s)
u3(s)

 ,
 φ0

φ1

ψ0

〉
[D(A∗γ)]′×D(A∗γ)

=

∫ T

0

 −G1u1(s)−G2u2(s)− αÅ
−1

(♣)Ru3

0
−Ru3

 ,
 −φt

P−1
γ Åφ− αP−1

γ (♣)ψ
α

β
AD(I−Dγ0)φt − η

β
ARψ




Hγ

ds

=

∫ T

0

[(
Å

1
2G1u1, Å

1
2φt

)
L2(Ω)

+
(
Å

1
2G2u2, Å

1
2φt

)
L2(Ω)

+ η (Ru3, ARψ)L2(Ω)

]
dt

=

∫ T

0

[(
u1, G

∗
1Åφt

)
L2(Γ1)

+
〈
u2, G

∗
2Åφt

〉
H−1(Γ1)×H1(Γ1)

]
dt+

∫ T

0

η (u3, ψ)L2(Γ2) dt

=

∫ T

0

[(
u1,

∂φt
∂ν

)
L2(Γ1)

− 〈u2, φt〉
H−1(Γ1)×H1(Γ1)

]
dt+ η 〈u3, ψ〉Hs((0,T )Γ2)×[Hs((0,T )×Γ2)]′ ,

thereby completing the proof of Proposition 1.9.
Immediately, we have Corollary 1.10.
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Corollary 1.10. The adjoint operator L∗TΠ∗ : D(L∗TΠ∗) ⊂ D(Å
1
2 )×H1

Γ0,γ
(Ω)→

U∗s is given by

L∗TΠ∗
[
φ0

φ1

]
=

[
∂φt
∂ν

∣∣∣∣
Γ1

, −φt|Γ1
, ηψ|Γ2

]
(1.59)

for all [φ0, φ1] ∈ D(L∗TΠ∗), where [∂φt∂ν |Γ1
, φt|Γ1

, ψ|Γ2
] are boundary traces of the so-

lution [φ, φt, ψ] to the following (backward) system:

{
φtt − γ∆φtt + ∆2φ+ α∆ψ = 0
βψt + η∆ψ − σψ − α∆φt = 0

on (0,∞)× Ω,

φ =
∂φ

∂ν
= 0 on (0,∞)× Γ0,

{
∆φ+ (1− µ)B1φ+ αψ = 0
∂∆φ

∂ν
+ (1− µ)

∂B2φ

∂τ
− γ ∂φtt

∂ν
+ α

∂ψ

∂ν
= 0

on (0,∞)× Γ1,

∂ψ

∂ν
+ λψ = 0 on (0,∞)× Γ, λ ≥ 0,

[φ(T ), φt(T ), ψ(T )] = [φ0, φ1, 0] .

(1.60)

We conclude this section with a regularity result for the thermal component of
the solution [φ, φt, ψ] to (1.51) , this being originally derived in [11] and [2] for the
forward problem (1.1). Assuming terminal data [φ0, φ1, ψ0] ∈ D(A∗γ), we have, by
using (1.50), the equality

d

dt

∥∥∥∥∥∥
 φ(t)
φt(t)
ψ(t)

∥∥∥∥∥∥
2

Hγ

= −2

A∗γ
 φ(t)
φt(t)
ψ(t)

 ,
 φ(t)
φt(t)
ψ(t)


Hγ

.(1.61)

Integrating this equation from 0 to T , performing computations similar to those per-
formed for the proof of Proposition 1.9, recalling the characterization (1.15), and
subsequently invoking a density argument, we have the following proposition.

Proposition 1.11. With terminal data [φ0, φ1, ψ0] ∈ Hγ , we have that the

component ψ of the solution of (1.51) is an element of L2(0,∞;D(A
1
2

R)). Indeed, we
have the following relation valid for all T > 0:∥∥∥∥∥∥

 φ0

φ1

ψ0

∥∥∥∥∥∥
2

Hγ

−
∥∥∥∥∥∥
 φ(0)
φt(0)
ψ(0)

∥∥∥∥∥∥
2

Hγ

= 2η

∫ T

0

∥∥∥A 1
2

Rψ
∥∥∥2

L2(Ω)
dt.(1.62)

2. Proof of Theorem 1.2.

2.1. The necessary inequality. As stated above, showing the partial exact
controllability of the system (1.1) for some time T > 0 is equivalent to showing the

surjectivity of the operator ΠLT : D(LT ) ⊂ Us → D(Å
1
2 )×H1

Γ0,γ
(Ω), where ΠLT is

as defined in (1.47) and with D(LT ) as defined in (1.44). Using the classical functional
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analysis (e.g., couple Lemma 3.8.18(i) and Theorem 6.5.10(ii) of [9]), the surjectivity
of ΠLT for some time T > 0 is tantamount to the existence of a constant CT > 0
such that following inequality is satisfied for all [φ0, φ1] ∈ D(L∗TΠ∗), where D(L∗TΠ∗)
is as defined in (1.48):∥∥∥∥∥∥L∗T

 φ0

φ1

0

∥∥∥∥∥∥
U∗s

≥ CT
∥∥∥∥[ φ0

φ1

]∥∥∥∥
D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)

.(2.1)

Corollary 1.10 then gives that this abstract inequality above may be rewritten by
having for all [φ0, φ1] ∈ D(L∗TΠ∗),∫ T

0

[
‖φt‖2H1(Γ1) +

∥∥∥∥∂φt∂ν

∥∥∥∥2

L2(Γ1)

]
dt+η ‖ψ‖2[Hs((0,T )×Γ2)]′ ≥ CT

∥∥∥∥[ φ0

φ1

]∥∥∥∥2

D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)

,

(2.2)
where [∂φt∂ν |Γ1

, φt|Γ1
, ψ|Γ2

] are traces of the solution [φ, φt, ψ] to the backward system
(1.60) (this being “adjoint” with respect to (1.1)). So to prove the statement of partial
exact controllability of the thermoelastic system (Theorem 1.2), it will hence suffice to
establish the inequality (2.2) for T > 0 large enough. With this end in mind, we make
the following denotation for the mechanical “energy” of the system for 0 ≤ t ≤ T :

Eφ(t) =
1

2

[∥∥∥Å 1
2φ(t)

∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ φt(t)

∥∥∥2

L2(Ω)

]
,(2.3)

where again [φ, φt, ψ] solve the backward system (1.60). In addition, we will denote
by l.o.t.(φ, φt, ψ) (“lower order terms”) any sum of terms that obey the following
estimate for some constant CT :

l.o.t.(φ, φt, ψ) ≤ CT
‖φ‖2

L∞
(

0,T ;H
3
2

+ε(Ω)

) + ‖φt‖2
L∞
(

0,T ;H
1
2

+ε(Ω)

)
+ ‖ψ‖2

L2

(
0,T ;H

1
2

+ε(Ω)

) + ‖ψ‖2
L∞
(

0,T ;H−
1
2

+ε(Ω)

) .(2.4)

By way of establishing (2.2), the bulk of the work will entail the derivation of the
following estimate.

Theorem 2.1. For T > 0 large enough, the solution [φ, φt, ψ] to (1.51) with
terminal data [φ0, φ1, ψ0] ∈ D(L∗T ) satisfies the following inequality:∫ T

0

[
Eφ(t) +

∥∥∥A 1
2

Rψ
∥∥∥2

L2(Ω)

]
dt+ Eφ(0)

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

‖∇φt‖2L2(Γ1) dt+ l.o.t.(φ, φt, ψ)

)
.(2.5)

This theorem will follow from a chain of results. Given the density of D(A∗γ) in
D (L∗T ) (see Remark 1.8) and the fact that the solution of (1.51) has the representation φ(t)

φt(t)
ψ(t)

 = eA
∗
γ(T−t)

 φ0

φ1

ψ0

 ,(2.6)



352 GEORGE AVALOS AND IRENA LASIECKA

it will be enough to show inequality (2.5) for solutions [φ, φt, ψ] to (1.51) corresponding

to terminal data in D(
[A∗γ]2). Taking [φ0, φ1, ψ0] ∈ D(

[A∗γ]2), we then have that

[φ, φt, ψ] is an element of C2([0, T ]; Hγ)∩ C1([0, T ];D(A∗γ))∩ C([0, T ];D(
[A∗γ]2)) and

as such has the additional regularity (see [3, Theorem 2] and also [12]):

φ ∈ C([0, T ];H4(Ω)); φt ∈ C([0, T ];H3(Ω)); φtt ∈ C
(

[0, T ];D
(
Å

1
2

))
,

ψt ∈ C([0, T ];D(AR)),

φ− γG2γ1φtt + αG1γ0ψ − αλG2γ0ψ ∈ C([0, T ];D(Å)).(2.7)

This extra regularity of [φ, φt, ψ], corresponding to smooth initial data, will justify
the computations to be done below.

2.2. Proof of Theorem 2.1. As mentioned above, the terminal data [φ0, φ1, ψ0]

will be considered to be in D(
[A∗γ]2); accordingly the corresponding solution [φ, φt, ψ]

of (1.51) will be a classical one, with the regularity posted in (2.7). With the end in
mind of deriving the estimate (2.2), we start by making the substitution

φ̂(t) = e−ξtφ(t) and ψ̂(t) = e−ξtψ(t),(2.8)

where parameter ξ ∈R is to be determined. Necessarily then [φ̂, φ̂t, ψ̂] solves the
coupled (backward) system


(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
− γ∆

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ ∆2φ̂+ α∆ψ̂ = 0

β
(
ξψ̂ + ψ̂t

)
+ η∆ψ̂ − σψ̂ − α∆

(
ξφ̂+ φ̂t

)
= 0

on (0,∞)× Ω,

φ̂ =
∂φ̂

∂ν
= 0 on (0,∞)× Γ0, ∆φ̂+ (1− µ)B1φ̂+ αψ̂ = 0

∂∆φ̂

∂ν
+ (1− µ)

∂B2φ̂

∂τ
− γ ∂

∂ν

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ α

∂ψ̂

∂ν
= 0

on (0,∞)× Γ1,

∂ψ̂

∂ν
+ λψ̂ = 0 on (0,∞)× Γ, λ ≥ 0,

[
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
.

(2.9)

Since [φ0, φ1, ψ0] ∈ D(
[A∗γ]2), the extra regularity in (2.7) gives that [φ̂, φ̂t, ψ̂] is a

classical (not just weak) solution of (2.9); accordingly, we can rewrite (2.9) abstractly
as (see Remark 1.7 and (1.31))(

ξ2φ̂+ 2ξφ̂t + φ̂tt

)
− γ∆

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
− γÅG2γ1

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ Åφ̂+ αÅG1γ0ψ̂ − αλÅG2γ0ψ̂ + α∆ψ̂ = 0 in H−1

Γ0,γ
(Ω),(2.10)

β
(
ξψ̂ + ψ̂t

)
+ η∆ψ̂ − σψ̂ − α∆

(
ξφ̂+ φ̂t

)
= 0 in L2(Ω),(2.11)

[
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
.(2.12)
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Now multiplying the heat equation (2.11) by α
η and adding it to the Kirchoff plate

(2.10), and subsequently taking the parameter ξ to be ξ ≡ α2

2γη , we obtain the single
equation

φ̂tt − γ∆φ̂tt + Åφ̂− γÅG2γ1

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ αÅG1γ0ψ̂ − αλÅG2γ0ψ̂

= c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂ ,(2.13) [
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
,(2.14)

where the constants c0 = α3β
2γη2 − ασ

η , c1 = αβ
η , c2 = − α4

4γ2η2 , c3 = −α2

γη , and c4 =

− α4

4γη2 . (Note that the particular choice of ξ made here eliminates the higher order

term ∆φ̂t.) System (2.13)–(2.14) may be rewritten in PDE form as the Kirchoff plate
equation

φ̂tt − γ∆φ̂tt + ∆2φ̂ = c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂ on (0,∞)× Ω,

φ̂ =
∂φ̂

∂ν
= 0 on (0,∞)× Γ0, ∆φ̂+ (1− µ)B1φ̂ = −αψ̂

∂∆φ̂

∂ν
+ (1− µ)

∂B2φ̂

∂τ
− γ ∂φ̂tt

∂ν
= γ

∂

∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν

on (0,∞)× Γ1,

[
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
.

(2.15)

As φ̂ − γG2γ1(ξ2φ̂ + 2ξφ̂t + φ̂tt) + αG1γ0ψ̂ − αλG2γ0ψ̂ ∈ C([0, T ];D(Å)) (using the

last containment in (2.7)), then [φ̂, φ̂t] is a classical solution of (2.15).
We note at this point that one can readily derive the trace estimate Lemma 4.5

(of the appendix below) for the plate component ∆φ̂|Γ0 of the solution [φ̂, φ̂t, ψ̂] of
(2.9). The proof of this is relegated to the appendix, since it is entirely analogous to
that shown for the forward problem in [3] and [4]. This estimate will be critical in
the proof of the following lemma, which gives an energy relation for the mechanical
variable.

Lemma 2.2. (a) The solution [φ̂, φ̂t, ψ̂] to (2.9) satisfies the following relation for
all s and τ ∈ [0, T ]:

E
φ̂
(t)
∣∣∣t=τ
t=s

= F(s, τ),(2.16)

where E
φ̂
(τ) is the mechanical energy function defined in (2.3) and F(·, ·) is a function

(defined below in (2.34)) that obeys the following estimate for all s and τ ∈ [0, T ] and
ε > 0:

F(s, τ) ≤ Cε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ ε

∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt

+ε
(
E
φ̂
(s) + E

φ̂
(τ)
)

+ l.o.t.(φ̂, φ̂tψ̂).(2.17)

(b) For ε > 0 small enough, the solution [φ̂, φ̂t, ψ̂] to (2.9) satisfies the following
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estimate for all s and τ ∈ [0, T ]:

E
φ̂
(τ) ≤

(
1 + ε

1− ε
)
E
φ̂
(s) + Cε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

+
ε

1− ε
∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt+ l.o.t.(φ̂, φ̂tψ̂).(2.18)

Above, the constant Cε is independent of time.
Proof. We take the duality pairing of the abstract equation (2.13) with φ̂t and

integrate in time and space so as to get

(2.19)

∫ τ

s

〈φ̂tt − γ∆φ̂tt − γÅG2γ1φ̂tt, φ̂t

〉
H−1

Γ0
(Ω)×H1

Γ0
(Ω)

+
〈
Åφ̂, φ̂t

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) dt
=

∫ τ

s

〈
γÅG2γ1

(
ξ2φ̂+ 2ξφ̂t

)
− αÅG1γ0ψ̂ + αλ ÅG2γ0ψ̂, φ̂t

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) dt
+

∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t

)
L2(Ω)

dt.

(Note that here we are using implicitly the fact that the terminal data [φ0, φ1, ψ0]

being in D(A∗γ) implies that Åφ̂+γÅG2γ1(ξ2φ̂+2ξφ̂t+φ̂tt)−αÅG1γ0ψ̂+αλÅG2γ0ψ̂

is an element of C([0, T ];H−1
Γ0

(Ω)).) Second, denoting A−1
D to be the inverse of the

elliptic operator defined in (1.12), we multiply the PDE (2.15) by − c1γ A−1
D ψ̂, and

subsequently integrate in time and space so as to get

−c1
γ

∫ τ

s

(
φ̂tt − γ∆φ̂tt + ∆2φ̂−

[
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂

]
, A−1

D ψ̂
)
L2(Ω)dt = 0.

(2.20)
(A1) Rewriting (2.19). Using equality (1.31) and the characterizations in (1.23),

we have upon the taking of adjoints that (2.19) may be rewritten as

E
φ̂
(t)
∣∣∣t=τ
t=s

=

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t

)
L2(Ω)

dt+

∫ τ

s

c1

(
ψ̂t, φ̂t

)
L2(Ω)

dt

−
∫ τ

s

(γξ2 ∂φ̂

∂ν
+ 2γξ

∂φ̂t
∂ν

+ αλγ0ψ̂, φ̂t

)
L2(Γ1)

+ α

(
ψ̂,
∂φ̂t
∂ν

)
L2(Γ1)

 dt .
(2.21)

(A2) Rewriting (2.20). (i) An integration by parts, the use of the heat equation

(2.11), and the fact that ARψ̂ = −∆ψ̂ + ∆Dγ0ψ̂ + σ
η ψ̂ = AD( I−Dγ0)ψ̂ + σ

η ψ̂ yield

(2.22) ∫ τ

s

−c1
γ

(
φ̂tt, A

−1
D ψ̂

)
L2(Ω)

dt =

[
−c1
γ

(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

+
c1
γ

∫ τ

s

(
φ̂t, A

−1
D ψ̂t

)
L2(Ω)

dt
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=

[
−c1
γ

(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

+
c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt

−c1
γ

∫ τ

s

(
φ̂t,

αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

dt.

(ii) An integration by parts and employment of Green’s theorem yield

(2.23) ∫ τ

s

c1

(
∆φ̂tt, A

−1
D ψ̂

)
L2(Ω)

dt = −
∫ τ

s

c1

(
∇φ̂tt,∇A−1

D ψ̂
)
L2(Ω)

dt

= −c1
[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

(
∇φ̂t,∇A−1

D ψ̂t

)
L2(Ω)

dt

= − c1
[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

(
φ̂t, ADA

−1
D ψ̂t

)
L2(Ω)

dt

+ c1

∫ τ

s

(
φ̂t,

∂A−1
D ψ̂t
∂ν

)
L2(Γ1)

dt

= −c1
[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

(
φ̂t, ψ̂t

)
L2(Ω)

dt

+ c1

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν
+
η

β

∂(I−Dγ0)ψ̂

∂ν

)
L2(Γ1)

dt

− c1
∫ τ

s

(
φ̂t,

αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂(I−Dγ0)φ̂t
∂ν

)
L2(Γ1)

dt.

(iii) Through the use of Green’s theorem (1.9) and the boundary conditions in
(2.15), we obtain

(2.24)

−
∫ τ

s

c1
γ

(
∆2φ̂, A−1

D ψ̂
)
L2(Ω)

dt

= −c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
dt− αc1

γ

∫ τ

s

(
ψ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

+
c1
γ

∫ τ

s

(
∆φ̂,

∂A−1
D ψ̂

∂ν

)
L2(Γ0)

dt

(where we have used the fact that φ̂|Γ0
= ∂φ̂

∂ν |Γ0
= 0 implies B1φ̂|Γ0

= 0; see [11]).

Jointly then, equalities (2.20) and (2.22)–(2.24) give the relation

(2.25)



356 GEORGE AVALOS AND IRENA LASIECKA

0 = −c1
∫ τ

s

(
φ̂t, ψ̂t

)
L2(Ω)

dt− c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt

+
c1
γ

∫ τ

s

(
φ̂t,

αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

dt

− c1
∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν
+
η

β

∂(I−Dγ0)ψ̂

∂ν

)
L2(Γ1)

dt

+ c1

∫ τ

s

(
φ̂t,

αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂(I−Dγ0)φ̂t
∂ν

)
L2(Γ1)

dt

+
c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
dt+

αc1
γ

∫ τ

s

(
ψ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

− c1
γ

∫ τ

s

(
∆φ̂,

∂A−1
D ψ̂

∂ν

)
L2(Γ0)

dt

−
∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,

c1
γ
A−1
D ψ̂

)
L2(Ω)

dt

+ c1

[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

+
1

γ

(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

.

Summing the relations (2.21) and (2.25), we obtain

(2.26)

E
φ̂
(t)
∣∣∣t=τ
t=s

=

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t − c1

γ
A−1
D ψ̂

)
L2(Ω)

dt

−
∫ τ

s

(γξ2 ∂φ̂

∂ν
+ 2γξ

∂φ̂t
∂ν

+ αλγ0ψ̂, φ̂t

)
L2(Γ1)

+ α

(
ψ̂,
∂φ̂t
∂ν

)
L2(Γ1)

 dt
− c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt+ c1

[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

( φ̂t
γ
,
αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

−
(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν
+
η

β

∂(I−Dγ0)ψ̂

∂ν

)
L2(Γ1)

 dt
+ c1

∫ τ

s

(
φ̂t,

αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂(I−Dγ0)φ̂t
∂ν

)
L2(Γ1)

dt+
c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
L2(Ω)

dt

+
c1
γ

∫ τ

s

(αψ̂, ∂A−1
D ψ̂

∂ν

)
L2(Γ1)

−
(

∆φ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ0)

 dt+
c1
γ

[(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

(note the cancellation of the high order term
∫ τ
s

(ψ̂t, φ̂t)L2(Ω)dt).
We now proceed to estimate the right-hand side of this relation. In so doing, we

will be using implicitly, in (B1)–(B7) below, the inequality ab ≤ εa2 + Cεb
2.
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(B1) We have by trace theory

−
∫ τ

s

(γξ2 ∂φ̂

∂ν
+ 2γξ

∂φ̂t
∂ν

+ αλγ0ψ̂, φ̂t

)
L2(Γ1)

+ α

(
ψ̂,
∂φ̂t
∂ν

)
L2(Γ1)

 dt
≤C

∫ T

0

∥∥∥∥∥∂φ̂t∂ν

∥∥∥∥∥
2

L2(Γ1)

dt+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.27)

(B2) As A−1
D is a bounded operator, we have∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t − c1

γ
A−1
D ψ̂

)
dt

≤ ε

6

∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.28)

(B3) As Dγ0 ∈ L(Hs(Ω)) for s > 1
2 (by standard elliptic theory), and A−1

D

∈ L(L2(Ω), D(AD)), we then have in conjunction with trace theory

(2.29)

−c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt

+
c1
γ

∫ τ

s

(
φ̂t,

αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

dt

−c1
∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

+
c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
dt+

αc1
γ

∫ τ

s

(
ψ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

≤ ε

6

∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

(B4) Using the fact that Dγ0 ∈ L(Hs(Ω)) for s > 1
2 , and ∂ψ̂

∂ν (t)|Γ = −λψ̂(t)|Γ, we
have along with trace theory that

c1

∫ τ

s

(
φ̂t,− η

β

∂ψ̂

∂ν
+
αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂φ̂t
∂ν

)
L2(Γ1)

dt

≤ C
∫ T

0

∥∥∥∥∥∂φ̂t∂ν

∥∥∥∥∥
2

L2(Γ1)

dt+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.30)

(B5) By [1, p. 311, Theorem 3] and trace theory we deduce that ∂
∂νDγ0 ∈

L(H1(Ω), H−
1
2 (Γ)), and so accordingly we have

c1

∫ τ

s

(
φ̂t,

η

β

∂Dγ0ψ̂

∂ν
− α

β

∂Dγ0φ̂t
∂ν

)
L2(Γ1)

dt ≤ Cε
∫ T

0

∥∥∥φ̂t∥∥∥2

H
1
2 (Γ1)

dt

+
ε

6

∫ T

0

[∥∥∥P 1
2
γ φ̂t

∥∥∥2

L2(Ω)
+
∥∥∥A 1

2

Rψ̂
∥∥∥2

L2(Ω)

]
dt.(2.31)
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(B6) As A−1
D ∈ L(H−1(Ω), H1

0 (Ω)), by the characterizations of elliptic operators
given in [7] , we then have for all t ∈ [0, T ](

∇φ̂t(t),∇A−1
D ψ̂(t)

)
L2(Ω)

≤ C
∥∥∥∇φ̂t(t)∥∥∥

L2(Ω)

∥∥∥∇A−1
D ψ̂(t)

∥∥∥
L2(Ω)

≤ ε

6

∥∥∥P 1
2
γ φ̂t(t)

∥∥∥2

L2(Ω)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

We thus have

c1

[(
∇φ̂t(t),∇A−1

D ψ̂
)
L2(Ω)

]t=τ
t=s

+

[
c1
γ

(
φ̂t(t), A

−1
D ψ̂(t)

)
L2(Ω)

]t=τ
t=s

≤ ε

6

(∥∥∥P 1
2
γ φ̂t(τ)

∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ φ̂t(s)

∥∥∥2

L2(Ω)

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.32)

(B7) Finally, we can use the trace result Lemma 4.5 of the appendix and the fact

that A−1
D ∈ L(H−

1
2 +ε(Ω), H

3
2 +ε(Ω) (again by [7]) to have

(2.33)

−c1
γ

∫ τ

s

(
∆φ̂,

∂A−1
D ψ̂

∂ν

)
L2(Γ0)

dt

≤ C
∫ τ

s

∥∥∥∆φ̂
∥∥∥
L2(Γ0)

∥∥∥ψ̂∥∥∥
H−

1
2

+ε(Ω)
dt ≤ ε

6C0

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt+ Cε

∫ T

0

∥∥∥ψ̂∥∥∥2

H−
1
2

+ε(Ω)
dt

(where the constant C0 above is the very same as that in ( 4.13))

≤ ε

3

∫ T

0

E
φ̂
(t)dt+

ε

3

[
E
φ̂
(s) + E

φ̂
(τ)
]

+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.

Therefore, if we define F(s, τ) to be

F(s, τ) ≡ right-hand side of (2.26) ,(2.34)

estimates (2.27)–(2.33), then we have

F(s, τ) ≤ Cε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ ε

∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt

+ε
[
E
φ̂
(s) + E

φ̂
(τ)
]

+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
,(2.35)

where the constant Cε does not depend on time T . This and equality (2.26) prove
(a).

To prove (b), we combine (2.16) and (2.17) and subsequently take ε > 0 small
enough. The proof of Lemma 2.2 is concluded.

With the radial vector field h defined in (1.3) , one has the following relation,
which is essentially demonstrated in [12] (the complete proof is carried out in Propo-
sition 4.6 of the appendix below).

Proposition 2.3. With the vector field h as defined in (1.3), the solution

[φ̂, φ̂t, ψ̂] to (2.15), corresponding to terminal data [φ0, φ1, ψ0] ∈ D(
[A∗γ]2), satisfies

the following equality for arbitrary ε0 ∈ [0, T ):

(2.36)
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ε0

E
φ̂
(t)dt =

∫ T−ε0

ε0

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt

− c1
∫ T−ε0

ε0

(
ψ̂, h · ∇φ̂t − 1

2
φ̂t

)
L2(Ω)

dt+
1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt

−
∫ T−ε0

ε0

∥∥∥φ̂t∥∥∥2

L2(Ω)
dt+

1

2

∫ T−ε0

ε0

∫
Γ0

h · ν
(

∆φ̂
)2

dΓdt

−
∫ T−ε0

ε0

[
α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂− 1

2
φ̂

))
L2(Γ1)

+

(
γ
∂

∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

 dt
−
[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

+

[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

+ c1

(
ψ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

−
∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)
+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ.

So as to derive another intermediate energy inequality, we will now estimate the
right-hand side of the relation (2.36). In the course of this work, we will make critical
use of the following trace estimate for (uncoupled ) Kirchoff plates, which was derived
in [15]. It is this regularity result that allows the controlled portion Γ1 of the boundary
to be free of geometric constraints.

Trace theorem (see [15]). Let the function ϕ(t, x) satisfy the following Kirchoff
equation on an open, bounded domain Ω⊂Rn, with smooth boundary Γ, Γ = Γ0 ∪Γ1,
where each Γi is open and nonempty, with Γ0 ∩ Γ1 = ∅:

ϕtt − γ∆ϕtt + ∆2ϕ = f on (0, T )× Ω,

ϕ =
∂ϕ

∂ν
= 0 on (0, T )× Γ0,

∆ϕ+ (1− µ)B1ϕ = g1

∂∆ϕ

∂ν
+ (1− µ)

∂B2ϕ

∂τ
− γ ∂ϕtt

∂ν
= g2

on (0, T )× Γ1

(2.37)

(here the boundary operators B1 and B2 are as given in (1.2)). Let 0 < ε0 <
T
2 and

ε > 0 be arbitrary. Then the following inequality holds true for the solution ϕ:

(2.38) ∫ T−ε0

ε0

[∥∥∥∥∂2ϕ

∂τ2

∥∥∥∥2

L2(Γ1)

+

∥∥∥∥∂2ϕ

∂ν2

∥∥∥∥2

L2(Γ1)

+

∥∥∥∥ ∂2ϕ

∂τ∂ν

∥∥∥∥2

L2(Γ1)

]
dt



360 GEORGE AVALOS AND IRENA LASIECKA

≤ CT,ε0,γ
{[∫ T

0

‖f‖2
[H

3
2
−ε(Ω)]′

+ ‖g1‖2L2(Γ1) + ‖ϕ‖2
H

3
2

+ε(Γ1)
+ ‖|∇ϕt|‖2L2(Γ1)

+ ‖ϕt‖2L2(Γ1)

]
dt+ ‖g2‖2H−1(0,T×Γ1)

}
.

Remark 2.4. In the original statement of this theorem (see Theorem 2.1 in [15]),

the term
∫ T

0
‖f‖2

[H
3
2
−ε(Ω)]′

dt in the inequality (2.38) is replaced by ‖f‖2[Hq(0,T×Ω)]′ ,

where q < 1
2 . However, if one replaces theH−q(0, T×Ω) spaces with L2(0, T ; [Hq(Ω)]′),

the values of allowed parameters extend to q < 3/2 + ε. This is in line with elliptic
theory corresponding to free boundary conditions.

By the use of this trace result in part, we have the following energy estimate.
Lemma 2.5. For all ε0 ∈ (0, T2 ) and ε̃ > 0 arbitrary, the solution [φ̂, φ̂t, ψ̂] to

(2.15) satisfies∫ T−ε0

ε0

E
φ̂
(t)dt ≤ C∗

(
E
φ̂
(T − ε0) + E

φ̂
(ε0)

)
+ CT

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+ ε̃

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
+ l.o.t. (φ̂, φ̂t, ψ̂),(2.39)

where the (time independent) constant C∗ ≥
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣ (where, again,

µ is Poisson’s ratio and h satisfies 1.3).
Proof. We proceed to majorize the right-hand side of (2.36).

(A.1) Handling the term
∫ T−ε0
ε0

(c0ψ̂ + c2φ̂ + c3φ̂t + c4∆φ̂, h · ∇φ̂ − 1
2 φ̂)L2(Ω)dt:

First, by Green’s theorem and the fact that ∇ ∈ L (Hs(Ω), Hs−1(Ω)
)

and ∇ (h · ∇) ∈
L (Hs(Ω), Hs−2(Ω)

)
, we obtain(

∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

= −
(
∇φ̂,∇

(
h · ∇φ̂

)
− 1

2
∇̂φ
)
L2(Ω)

+

(
∂φ̂

∂ν
,∇φ̂− 1

2
φ̂

)
L2(Γ1)

= −
(
∇φ̂,∇

(
h · ∇φ̂

)
− 1

2
∇̂φ
)
Hε(Ω)×H−ε(Ω)

+

(
∂φ̂

∂ν
,∇φ̂− 1

2
φ̂

)
L2(Γ1)

≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
,

where in the last step we have also used Cauchy–Schwarz and the trace theory. We
thus have∫ T−ε0

ε0

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt ≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.40)

(A.2) Likewise using Sobolev trace theory, the fact that ∂ψ̂
∂ν = −λψ̂, and the

divergence theorem, we have

(2.41)
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−
∫ T−ε0

ε0

[
c1

(
ψ̂, h · ∇φ̂t − 1

2
φ̂t

)
L2(Ω)

+
∥∥∥φ̂t∥∥∥2

L2(Ω)

]
dt

+

∫ T−ε0

ε0

−(γ ∂
∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

+
α

2

(
ψ̂,
∂φ̂

∂ν

)
L2(Γ1)

 dt
≤ c1

∫ T−ε0

ε0

(
ψ̂, h1φ̂tx + h2φ̂ty

)
L2(Ω)

dt+ C

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t. (φ̂, φ̂t, ψ̂)

= −c1
∫ T−ε0

ε0

∫
Ω

div
(
ψ̂h
)
φ̂tdΩdt

+ c1

∫ T−ε0

ε0

∫
Γ1

h · ν ψ̂φ̂tdΓdt+ C

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t. (φ̂, φ̂t, ψ̂)

≤ C
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ ε̃

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
+ l.o.t. (φ̂, φ̂t, ψ̂).

(A.3) Using (1.3), we have

1

2

∫ T−ε0

ε0

∫
Γ0

h · ν
(

∆φ̂
)2

≤ 0.(2.42)

(A.4) We now estimate the terms

−
[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

+

[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

+ c1

(
ψ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

.(2.43)

First, as h · ∇φ̂(t) ∈ H 1
2−ε(Ω) for all t ∈ [0, T ], we have

(2.44)(
ψ̂(t), h · ∇φ̂(t)− 1

2
φ̂(t)

)
L2(Ω)

=

〈
ψ̂(t), h · ∇φ̂(t)− 1

2
φ̂(t)

〉
H−

1
2

+ε(Ω)×H 1
2
−ε(Ω)

≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.

Second, we have pointwise in time

γ
(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

+
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

=
√
γ

∫
Ω

√
γ∇φ̂t(x, y) · [(x− x0)φxx + (y − y0)φxy, (x− x0)φxy + (y − y0)φyy] dxdy

+
3γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

.(2.45)

Now, to handle the first term on the right-hand side of (2.45), we use the inequality
ab ≤ δ

2a
2 + 1

2δ b
2 with δ ≡√2 (1− µ) (where, again, Poisson’s ratio µ ∈ (0, 1

2 ))

(2.46)
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Ω

√
γ∇φ̂t(x, y) · [(x− x0)φxx + (y − y0)φxy, (x− x0)φxy + (y − y0)φyy] dxdy

=

∫
Ω

(x− x0)
√
γ∇φ̂t · [φxx, φxy] dxdy +

∫
Ω

(y − y0)
√
γ∇φ̂t · [φxy, φyy] dxdy

≤ max
[x,y]∈Ω

∣∣h(x, y)
∣∣{ γ√

2 (1− µ)

∫
Ω

|∇φt|2 dΩ +

√
(1− µ)√

2

∫
Ω

[
φ2
xx + φ2

yy

]
dΩ

+
√

2 (1− µ)

∫
Ω

φ2
xydΩ

}
≤ 1√

2 (1− µ)
max

[x,y]∈Ω

∣∣h(x, y)
∣∣ {∥∥∥P 1

2
γ φ̂t

∥∥∥2

L2(Ω)
+ (1− µ)

∫
Ω

[
φ2
xx + φ2

yy

]
dΩ

+ 2(1− µ)

∫
Ω

φ2
xydΩ

}
.

From this inequality, the definition of a(·, ·) in (1.10), and the characterization in
(1.11), we obtain

(2.47)∫
Ω

√
γ∇φ̂t(x, y) · [(x− x0)φxx + (y − y0)φxy, (x− x0)φxy + (y − y0)φyy] dxdy

≤ 1√
2 (1− µ)

max
[x,y]∈Ω

∣∣h(x, y)
∣∣ {∥∥∥P 1

2
γ φ̂t

∥∥∥2

L2(Ω)
+
∥∥∥Å 1

2 φ̂
∥∥∥2

L2(Ω)

}
.

To deal with the second term on the right-hand side of (2.45), we can use the fact
that ∇ ∈ L (Hs(Ω), H1−s(Ω)

)
for all real s, so as to have(

∇φ̂t(t),∇φ̂(t)
)
L2(Ω)

=
〈
∇φ̂t(t),∇φ̂(t)

〉
H−ε(Ω)×Hε(Ω)

≤ C
∥∥∥φ̂t(t)∥∥∥

H1−ε(Ω)

∥∥∥φ̂(t)
∥∥∥
H1+ε(Ω

≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.48)

Combining (2.45), (2.47), and (2.48) with the definition of E
φ̂

in (2.3), we then obtain

γ
(
∇φ̂t(t),∇

(
h · ∇φ̂(t))

))
L2(Ω)

+
γ

2

(
∇φ̂t(t),∇φ̂(t)

)
L2(Ω)

≤
√

2γ

1− µ max
(x,y)∈Ω

∣∣h(x, y)
∣∣E

φ̂
(t) + l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.49)

Coupling (2.44) and (2.49) in turn, we arrive at the estimate

(2.50)

(2.43) ≤
√

2γ

1− µ

{
max

(x,y)∈Ω

∣∣h(x, y)
∣∣}(E

φ̂
(T − ε0) + E

φ̂
(ε0)

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

(A.5) Handling the term − ∫ T−ε0
ε0

α(ψ̂, ∂∂ν (h · ∇φ̂)) and noting that

∂

∂ν

(
h · ∇φ̂

)
= ν1φ̂x + ν1 (x− x0) φ̂xx + ν1 (y − y0) φ̂xy + ν2 (x− x0) φ̂xy

+ν2φ̂y+ ν2 (y − y0) φ̂yy,(2.51)
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we then have by Cauchy–Schwarz, the trace estimate (2.38) for the Kirchoff plates
above, the use of the forcing data in (2.15), and the standard Sobolev trace theory
that

(2.52)

−
∫ T−ε0

ε0

α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂

))
L2(Γ1)

dt

≤ C
∫ T−ε0

ε0

[∥∥∥ψ̂∥∥∥2

H
1
2

+ε(Ω)
+
∥∥∥φ̂xx∥∥∥2

L2(Γ1)
+
∥∥∥φ̂yy∥∥∥2

L2(Γ1)
+ 2

∥∥∥φ̂xy∥∥∥2

L2(Γ1)

+
∥∥∥φ̂x∥∥∥2

H
1
2

+ε(Ω)
+
∥∥∥φ̂y∥∥∥2

H
1
2

+ε(Ω)

]
dt

= C

∫ T−ε0

ε0

∥∥∥ψ̂∥∥∥2

H
1
2

+ε(Ω)
+

∥∥∥∥∥∂2φ̂

∂τ2

∥∥∥∥∥
2

L2(Γ1)

+

∥∥∥∥∥∂2φ̂

∂ν2

∥∥∥∥∥
2

L2(Γ1)

+ 2

∥∥∥∥∥ ∂2φ̂

∂τ∂ν

∥∥∥∥∥
2

L2(Γ1)

+
∥∥∥φ̂x∥∥∥2

H
1
2

+ε(Ω)
+
∥∥∥φ̂y∥∥∥2

H
1
2

+ε(Ω)

]
dt

≤ CT
∫ T

0

∥∥∥c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂
∥∥∥2[
H

3
2
−ε(Ω)

]′ +
∥∥∥ψ̂∥∥∥2

H
1
2

+ε(Ω)

+

∥∥∥∥γ ∂∂ν (ξ2φ̂+ 2ξφ̂t

)∥∥∥∥2

L2(Γ1)

]
dt

+

∫ T

0

[∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+
∥∥∥φ̂∥∥∥2

H
3
2

+ε(Ω)
+
∥∥∥φ̂t∥∥∥2

H
1
2

+ε(Ω)

]
dt

)

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+
∥∥∥c1ψ̂t + c4∆φ̂

∥∥∥2[
H

3
2
−ε(Ω)

]′ +
 dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

To handle the term
∫ T

0
‖c1ψ̂t + c4∆φ̂‖2

[H
3
2
−ε(Ω)]′

dt, we use Proposition 4.4 in the

appendix below and the fact that ψ̂t = −ξψ̂(t) + e−ξtψt(t) and φ̂(t) = e−ξtφ(t) to
have

(2.53)∫ T

0

∥∥∥c1ψ̂t + c4∆φ̂
∥∥∥2[
H

3
2
−ε(Ω)

]′ dt
=

∫ T

0

∥∥∥−ξc1ψ̂(t) + c1e
−ξtψt(t) + c4e

−ξt∆φ(t)
∥∥∥2[
H

3
2
−ε(Ω)

]′ dt
≤ C

∫ T

0

[∥∥∥ψ̂∥∥∥2

L2(Ω)
+ ‖φ‖2

H
3
2

+ε(Ω)
+ ‖ψ‖2

H
1
2

+ε(Ω)
+ ‖φt‖2

H
1
2

+ε(Ω)
+

∥∥∥∥∂φt∂ν

∥∥∥∥2

L2(Γ1)

]
dt

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.
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Collectively, estimates (2.52) and (2.53) then give

−
∫ T−ε0

ε0

α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂

))
L2(Γ1)

dt

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.54)

(A.6) In the same way as in (A.5) we have

(2.55)

−
∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)

+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

(A.7) Finally,

(2.56)

1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt ≤ C
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

Estimate (2.39) now comes about by stringing together (2.36), (2.40)–(2.42), (2.50),
and (2.56), and taking ε > 0 small enough.

Lemma 2.6. For T > T0 ≡ 2
√

2γ
1−µ max(x,y)∈Ω |h(x, y)|, the solution [φ̂, φ̂t, ψ̂] of

(2.15) satisfies the following estimate:∫ T

0

E
φ̂
(t)dt+ E

φ̂
(T ) +

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.57)

Proof. We have for any ε0 ∈ (0, T ),∫ T

0

E
φ̂
(t)dt =

∫ ε0

0

E
φ̂
(t)dt+

∫ T

T−ε0
E
φ̂
(t)dt+

∫ T−ε0

ε0

E
φ̂
(t)dt

≤ 2ε0 (1 + ε)

1− ε E
φ̂
(T ) +

2ε0ε

1− ε
∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt+

∫ T−ε0

ε0

E
φ̂
(t)dt

+Cε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂)

(after applying Lemma 2.2(b) twice)

≤ C∗
(
E
φ̂
(T − ε0) + E

φ̂
(ε0)

)
+

2ε0 (1 + ε)

1− ε E
φ̂
(T ) +

2ε0ε

1− ε
∫ T

0

E
φ̂
(t)dt

+
2ε (1 + ε0)

1− ε
∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂),(2.58)
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after applying Lemma 2.5 with C∗ ≥
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣, and ε̃ ≡ 2ε

1−ε therein.

Applying Lemma 2.2(b) twice more to the right-hand side of (2.58) yields now

(2.59) ∫ T

0

E
φ̂
(t)dt ≤ 2 (ε0 + C∗)

1 + ε

1− εEφ̂(T ) +
2ε (ε0 + C∗)

1− ε
∫ T

0

E
φ̂
(t)dt

+
2ε (1 + ε0 + C∗)

1− ε
∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

+ l.o.t.(φ̂, φ̂t, ψ̂).

Moreover, we have by (2.16)∫ T

0

E
φ̂
(t)dt = TE

φ̂
(T ) +

∫ T

0

F(T, t)dt,(2.60)

where the function F is as defined in (2.34). Combining (2.59) and (2.60) yields

(2.61)

TE
φ̂
(T ) +

∫ T

0

F(T, t)dt ≤ 2 (ε0 + C∗)
1 + ε

1− εEφ̂(T ) +
2ε (ε0 + C∗)

1− ε
∫ T

0

E
φ̂
(t)dt

+
2ε (1 + ε0 + C∗)

1− ε
∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).

To use this inequality, we integrate both sides of (2.17) (with s = T therein) so as to
have ∫ T

0

F(T, t)dt ≤ ε (T + 1)

∫ T

0

E
φ̂
(t)dt+ εTE

φ̂
(T ) + εT

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt

+CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).(2.62)

Combining (2.61) and (2.62), we thus obtain

(2.63)

TE
φ̂
(T ) ≤

[
2 (ε0 + C∗) (1 + ε)

1− ε + εT

]
E
φ̂
(T )

+ ε

[
2 (ε0 + C∗)

1− ε + (T + 1)

] ∫ T

0

E
φ̂
(t)dt

+ ε

[
2 (1 + ε0 + C∗)

1− ε + T

] ∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

+ l.o.t.(φ̂, φ̂t, ψ̂).

Taking now T > 2(ε0+C∗)(1+ε)
(1−ε)2 , or what is the same, T > 2C∗ for ε and ε0 small

enough, we then have

E
φ̂
(T ) ≤ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃T

[∫ T

0

E
φ̂
(t)dt+

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt

]
+ l.o.t.(φ̂, φ̂t, ψ̂),(2.64)
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where throughout C̃T will denote a constant independent of ε and ε0 (small enough).
In turn, applying this to (2.59), we have

∫ T

0

E
φ̂
(t)dt ≤ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+

2ε (ε0 + C∗)
[
(1 + ε) C̃T + 1

]
1− ε

∫ T

0

E
φ̂
(t)dt

+
2ε
[
(ε0 + C∗) (1 + ε) C̃T + (1 + ε0 + C∗)

]
1− ε

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂)

from which follows the estimate, for ε, ε0 > 0 small enough,

(2.65)∫ T

0

E
φ̂
(t)dt ≤ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃T

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).

Coupling together (2.64) and (2.65), we have the following preliminary inequality
for the mechanical energy, again for T > 2C∗:∫ T

0

E
φ̂
(t)dt+ E

φ̂
(T )

≤ CT,ε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃T

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).(2.66)

It remains to estimate the thermal component. To this end, we can multiply
(2.11) by ψ̂, integrate in time and space, use the characterization (1.15) and (2.8) to
have

η

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt =

[
β

2

∥∥e−ξtψ(t)
∥∥2

L2(Ω)

]t=T
t=0

+ ξ

∫ T

0

(
βψ̂ − α∆φ̂, ψ̂

)
L2(Ω)

dt

+ α

∫ T

0

(∇φ̂t,∇ψ̂)
L2(Ω)

−
(
∂φ̂t
∂ν

, ψ̂

)
L2(Γ1)

 dt.(2.67)

Majorizing this expression results in

η

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt ≤ C

ε̃

(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+

∫ T

0

E
φ̂
(t)dt

)

+ε̃

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂),

and taking ε̃ > 0 small enough above, this becomes∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt ≤ C1

(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+

∫ T

0

E
φ̂
(t)dt

)
+ l.o.t.(φ̂, φ̂t, ψ̂),(2.68)

where C1 = Cε̃
η−ε̃ .

Combining (2.66) and (2.68), we have

(2.69)
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0

E
φ̂
(t)dt+ E

φ̂
(T )

≤ CT,ε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃TC1

(
‖ψ0‖2L2(Ω) +

∫ T

0

E
φ̂
(t)dt

)
+ l.o.t.(φ̂, φ̂t, ψ̂),

from which we obtain for ε > 0 small enough

(2.70)∫ T

0

E
φ̂
(t)dt+ E

φ̂
(T ) ≤ CT,ε

(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

)
+ l.o.t.(φ̂, φ̂t, ψ̂).

The final estimate (2.57) finally comes about by combining (2.70) and (2.68).
Conclusion of the proof of Theorem 2.1. Assume initially that [φ0, φ1, ψ0] ∈

D(A∗γ). Through the change of variable φ̂(t) = e−ξtφ(t) and ψ̂(t) = e−ξtψ(t),

where again [φ̂, φ̂t, ψ̂] solves (2.15) and ξ ≡ α2

2γη > 0, we have for T > T0 ≡
2
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣

(2.71)∫ T

0

Eφ(t)dt+

∫ T

0

∥∥∥A 1
2

Rψ(t)
∥∥∥2

L2(Ω)
dt+ Eφ(T )

=

∫ T

0

[∥∥∥Å 1
2 eξtφ̂(t)

∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ

(
eξtφ̂t(t) + ξeξtφ̂(t)

)∥∥∥2

L2(Ω)
+
∥∥∥A 1

2

Re
ξtψ̂(t)

∥∥∥2

L2(Ω)

]
dt

+
∥∥∥Å 1

2 eξT φ̂(T )
∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ

(
eξT φ̂t(T ) + ξeT φ̂(T )

)∥∥∥2

L2(Ω)

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
(after using estimate (2.57))

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∇ (e−ξtφt(t)− ξe−ξtφ(t)
)∥∥2

L2(Γ1)
dt

)
+ l.o.t.

(
e−ξtφ, e−ξtφt − ξe−ξtφ, e−ξtψ

)
≤ CT

(
‖ψ0‖2L2(Ω) +

∫ T

0

‖∇φt(t)‖2L2(Γ1) dt

)
+ l.o.t. (φ, φt, ψ) .

This gives the desired inequality (2.5).

2.3. Conclusion of the proof of Theorem 1.2. For [φ0, φ1] ∈ D(L∗TΠ∗), we
immediately have from Theorem 2.1 the following corollary.

Corollary 2.7. For [φ0, φ1] ∈ D(L∗TΠ∗) and T > T0 ≡ 2
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣,

the corresponding solution [φ, φt, ψ] of (1.60) satisfies the following inequality:

(2.72)∫ T

0

Eφ(t)dt+ Eφ(T ) +

∫ T

0

∥∥∥A 1
2

Rψ
∥∥∥2

L2(Ω)
dt ≤ CT

∫ T

0

‖∇φt‖2L2(Γ1) dt+ l.o.t. (φ, φt, ψ) .
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We will have the desired inequality (2.2) upon the elimination of the tainting
lower order terms in (2.72). To this end, we invoke a (by now) classical compactness–
uniqueness argument (see, e.g., [13] and [2]), which makes crucial use of the new
Holmgren-type uniqueness result for the thermoelastic system recently derived by
Isakov in [10]. It is at this point that the boundary trace ψ|Γ2

, corresponding to the
control u3, comes into play.

Lemma 2.8. Let T ∗ be as defined in (1.6). Then for T > T ∗ and initial data
[φ0, φ1] ∈ D(L∗TΠ∗), there exists a CT such that the following estimate holds true for
the solution of (1.60):

‖φ‖2
L∞(0,T ;H

3
2

+ε(Ω))
+‖φt‖2

L∞(0,T ;H
1
2

+ε(Ω))
+‖ψ‖2

L∞(0,T ;H−
1
2

+ε(Ω))
+

∫ T

0

‖ψ‖2
H

1
2

+ε(Ω)
dt

≤ CT
(∫ T

0

‖∇φt‖2L2(Γ1) dt+ ‖ψ‖2[Hs((0,T )×Γ2)]′

)
.(2.73)

Proof. If the proposition is false, then there exists a sequence {[φ(n)
0 , φ

(n)
1 ]}∞n=1 ⊆

D(L∗TΠ∗), and a corresponding solution sequence {[φ(n), φ
(n)
t , ψ(n)]}∞n=1 to (1.60),

which satisfies∥∥∥φ(n)
∥∥∥2

L∞
(

0,T ;H
3
2

+ε(Ω)

) +
∥∥∥φ(n)

t

∥∥∥2

L∞
(

0,T ;H
1
2

+ε(Ω)

) +
∥∥∥ψ(n)

∥∥∥2

L∞
(

0,T ;H−
1
2

+ε(Ω)

)
+

∫ T

0

∥∥∥ψ(n)
∥∥∥2

H
1
2

+ε(Ω)
dt = 1 ∀n,(2.74)

lim
n→∞

∫ T

0

∥∥∥∇φ(n)
t

∥∥∥2

L2(Γ1)
dt+

∥∥∥ψ(n)
∥∥∥2

[Hs((0,T )×Γ2)]′
= 0.(2.75)

As T > 2
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣, we have the existence of the inequality (2.72).

This and (2.74)–(2.75) then imply the boundedness of the sequence
∫ T

0

∥∥∥∥[ φ(n)(t)

φ
(n)
t (t)

]∥∥∥∥2

D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)

+
∥∥∥A 1

2

Rψ
(n)(t)

∥∥∥2

L2(Ω)

 dt
+

∥∥∥∥∥
[
φ

(n)
0

φ
(n)
1

]∥∥∥∥∥
2

D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)


∞

n=1

.(2.76)

There thus exists a subsequence, still denoted here as {[φ(n)
0 , φ

(n)
1 ]}∞n=1, and [φ̃0, φ̃1] ∈

D(Å
1
2 )×H1

Γ0,γ
(Ω), such that

φ
(n)
0 → φ̃0 in D(Å

1
2 ) weakly,(2.77)

φ
(n)
1 → φ̃1 in H1

Γ0,γ(Ω) weakly.(2.78)

If we further denote [φ̃, φ̃t, ψ̃] as the solution to (1.60), corresponding to initial data

[φ̃0, φ̃1, 0], then a fortiori,[
φ(n), φ

(n)
t , ψ(n)

]
→
[
φ̃, φ̃t, ψ̃

]
in L∞(0, T ; Hγ) weak star.(2.79)
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From Proposition 4.3 of the appendix, we have that {φ(n)
tt }∞n=1 is bounded in

L∞(0, T ; [D(Å
1
2P−1

γ )]′), inasmuch as {‖[φ(n)
0 , φ

(n)
1 ]‖

D(Å
1
2 )×H1

Γ0,γ
(Ω)
}∞n=1 is bounded in

D(Å
1
2 )×H1

Γ0,γ
(Ω). Also, from Proposition 4.4 we have that ψ

(n)
t ∈ L2(0, T ; [H

3
2−ε(Ω)]′)

for all n, with the estimate

∫ T

0

∥∥∥ψ(n)
t

∥∥∥2

[H
3
2
−ε(Ω)]′

dt ≤ C
∫ T

0

∥∥∥∇φ(n)
t

∥∥∥2

L2(Γ1)
dt+ l.o.t. (φ, φt, ψ) ,(2.80)

and this combined with (2.74)–(2.75) yields that {ψ(n)
t }∞n=1 is bounded in

L2(0, T ; [H
3
2−ε(Ω)]′). This boundedness of {[φ(n)

tt , ψ
(n)
t ]}∞n=1, and that for the se-

quence posted in (2.76), allows us to deduce through a compactness result of Simon’s
in [24] that

φ(n) → φ̃ strongly in L∞(0, T ;H
3
2 +ε(Ω)),

φ
(n)
t → φ̃t strongly in L∞(0, T ;H

1
2 +ε(Ω)),

ψ(n) → ψ̃ strongly in L2(0, T ;H
1
2 +ε(Ω)),

ψ(n) → ψ̃ strongly in L∞(0, T ;H−
1
2 +ε(Ω)).

These convergences and (2.74) thus give∥∥∥φ̃∥∥∥2

L∞
(

0,T ;H
3
2

+ε(Ω)

) +
∥∥∥φ̃t∥∥∥2

L∞
(

0,T ;H
1
2

+ε(Ω)

) +
∥∥∥ψ̃∥∥∥2

L∞
(

0,T ;H−
1
2

+ε(Ω)

)
+

∫ T

0

∥∥∥ψ̃∥∥∥2

H
1
2

+ε(Ω)
dt = 1.(2.81)

Moreover, the explicit representation of L∗TΠ∗ in (1.59) and the convergences

posted in (2.75) and (2.77)–(2.79) give that [φ̃0, φ̃1] ∈ D(L∗TΠ∗), with∫ T

0

∥∥∥∇φ̃t∥∥∥2

H1(Γ1)
dt+

∥∥∥ψ̃∥∥∥2

[Hs((0,T )×Γ2)]′
= 0.(2.82)

Now if we make the change of variable

z = φ̃t, v = ψ̃t,

then using (2.82), [z, v] solve the system

{
ztt − γ∆ztt + ∆2z + α∆v = 0

βvt + η∆v − σv − α∆zt = 0
on (0,∞)× Ω,

z =
∂z

∂ν
= 0 on (0,∞)× Γ,


∆z + (1− µ)B1z + αv = 0

∂∆z

∂ν
+ (1− µ)

∂B2z

∂τ
− γ ∂ztt

∂ν
+ α

∂v

∂ν
= 0

on (0,∞)× Γ1,

∂v

∂ν
+ λv = 0 on (0,∞)× Γ,

v = 0 on (0,∞)× Γ2.

(2.83)
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Now by Isakov’s theorem in [10, p. 3, Corollary 1.2], we have for

T > 2
√
γ · sup

[x,y]∈Ω

d ([x, y],Γ2)

that the uniqueness property for the thermoelastic system is obtained, so that the
solution [z, v] of (2.83) is necessarily zero. Consequently φ̃ and ψ̃ are each constants.

From the essential boundary condition on Γ0 in (1.60), we then have φ̃ = 0 on (0, T )×
Ω. In turn, the free boundary conditions on Γ1 give that ψ̃ = 0 on (0, T )× Ω. Thus

[φ̃, ψ̃] = [0, 0], which contradicts the equality given in (2.81). This concludes the proof
of the lemma.

Corollary 2.7 and Lemma 2.8 in combination give inequality (2.2), the estab-
lishment of which verifies the surjectivity of the control to partial state map ΠLT :
D(LT ) ⊂ Us → D(Å

1
2 )×H1

Γ0,γ
(Ω). This completes the proof of Theorem 1.2.

3. The proof of Theorem 1.1. Given the space Cr(Σ2,T ), we consider system
(1.1) under the influence of boundary controls in Ur+1, as defined in (1.37). The
controlled PDE is then approximately controllable in Ur+1 for T > 2

√
γ · sup[x,y]∈Ω

d ([x, y],Γ2). Indeed, if we take arbitrary [φ0, φ1, ψ0] from the null space of L∗T , then
using the form of this operator given in (1.55), we have necessarily that φt|Γ1

=
∂φt
∂ν |Γ1

= 0, and ψ|Γ2
= 0, where [φ, φt, ψ] is the solution to (1.51). We can then use

the uniqueness theorem of Isakov, in a fashion similar to that employed in Lemma 2.8,
to show that [φ, φt, ψ] = [0, 0, 0] on (0, T )×Ω and, in particular, [φ0, φ1, ψ0] = [0, 0, 0].

A preliminary step (a regularity property of LT ). With the designated
control space Ur+1 we then take T > T ∗ so as to ensure both the approximate con-
trollability of the entire system (1.1) and the exact controllability with respect to the
displacement (see Theorem 1.2). In this event, we have the observability inequal-
ity (2.2), and therewith one can show in a manner identical to that done in [14,
Appendix B] that the operator

ΠLTL∗TΠ∗ is an isomorphism from D(L∗TΠ∗) into [D(L∗TΠ∗)]′,(3.1)

where the projection Π onto D(Å
1
2 )×H1

Γ0,γ
(Ω) is as defined in (1.46). Consequently,

we have

ΠLTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π ∈ L

(
Hγ , D(Å

1
2 )×H1

Γ0,γ(Ω)
)
.(3.2)

Moreover, if we denote the mapsL(1), L(2) by

L(1)

[
u1

u2

]
(t) =

∫ t

0

eAγ(t−s)B
 u1(s)
u2(s)

0

 ,
L(2)u(t) =

∫ t

0

eAγ(t−s)B
 0

0
u(s)


(cf. (1.42)), then by a standard energy method one can show that

L(2) : L2(0, T ;H−
1
2 (Γ2))→ C([0, T ]; Hγ) continuously.(3.3)
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To handle L(1) on the other hand, one must appeal to a new regularity result in [17],
which gives

L(1) : L2(0, T ;L2(Γ1)×H−1(Γ1))→ C([0, T ];H
3
2 (Ω)×H 1

2 (Ω)×L2(Ω)) continuously.
(3.4)
Combining (3.3) and (3.4) (at terminal time T ) with (3.2), we thus deduce that the
mapping

(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π ∈ L (Hγ) ,(3.5)

where I : Hγ → Hγ denotes the identity.
Combining (3.2) and (3.5) thus gives

LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π ∈ L(Hγ).(3.6)

Step 1. For arbitrary ε > 0 we select a u1 ∈ D(LT ) ⊂ Ur+1, so that for arbitrary

terminal state [ωT0 , ω
T
1 , θ

T
0 ] ∈ Hγ , the corresponding solution [ω(1)(t), ω

(1)
t (t), θ(1)(t)]

to (1.1), with [u1, u2, u3] ≡ u1 and zero initial data, satisfies∥∥∥∥∥∥
 ω(1)(T )− ωT0
ω

(1)
t (T )− ωT1
θ(1)(T )− θT0

+ eAγT

 ω0

ω1

θ0

∥∥∥∥∥∥
Hγ

<
ε

1 +
∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1

Π
∥∥∥
L(Hγ)

(3.7)

(where the fact that (I-Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π is due to (3.6)).

Step 2. We now select u2 ∈ D(LT ) to be the “minimal norm steering control”

with respect to the (partial) terminal state [ωT0 − ω(1)(T ), ωT1 − ω(1)
t (T )]. That is to

say, u2 satisfies

ΠLTu2 + ΠeAγT

 ω0

ω1

θ0

 =

[
ωT0 − ω(1)(T )

ωT1 − ω(1)
t (T )

]
(3.8)

and minimizes the functional 1
2 ‖u‖2Us , over all u ∈ Us, which satisfies

ΠLTu =

[
ωT0 − ω(1)(T )

ωT1 − ω(1)
t (T )

]
−ΠeAγT

 ω0

ω1

θ0

 .
(By Theorem 1.2. we know there exists at least one such u.) By convex optimization
theory and Lax–Milgram, the minimizer u2 can be given explicitly by

u2 = L∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π

 ωT0 − ω(1)(T )

ωT1 − ω(1)
t (T )

θT0 − θ(1)(T )

− eAγT
 ω0

ω1

θ0

(3.9)

(see (B.20) of [14, p. 288]). With this representation, we then have from (3.7) the
norm bound

‖(I−Π∗Π)LTu2‖Hγ
≤

∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π
∥∥∥
L(Hγ)

· ε

1 +
∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1

Π
∥∥∥
L(Hγ)

.(3.10)
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Step 3. Set the control u∗ = u1 + u2. Consequently, there is the equality

LTu∗ + eAγT

 ω0

ω1

θ0

 = LTu1 + LTu2 + eAγT

 ω0

ω1

θ0

 =

 ωT0
ωT1

θ(1)(T )


+ (I−Π∗Π)

LTu2 + eAγT

 ω0

ω1

θ0

 .(3.11)

Letting [ω∗, ω∗t , θ
∗] denote the solution of (1.1) corresponding to the chosen control

u∗, we then have from (3.11) that [ω∗(T ), ω∗t (T )] = [ωT0 , ω
T
1 ]. Moreover, from (3.11),

(3.7), and (3.10) we obtain the estimate

∥∥θ∗(T )− θT0
∥∥
L2
σ+λ

(Ω)
≤
∥∥∥∥∥∥
 0

0
θ(1)(T )− θT0

+ (I−Π∗Π)

eAγT
 ω0

ω1

θ0

∥∥∥∥∥∥
Hγ

+ ‖(I−Π∗Π)LTu2‖Hγ

<
ε

1 +
∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1

Π
∥∥∥
L(Hγ)

+ ‖(I−Π∗Π)LTu2‖Hγ
< ε.

(3.12)

Thus, the constructed control u∗ = [u∗1, u
∗
2, u
∗
3] ∈ Ur+1 satisfies the desired exact–

approximate controllability property. Moreover, the Sobolev embedding theorem gives
that u∗3 ∈ Cr(Σ2,T ). This concludes the proof of Theorem 1.1.

4. Appendix.

Proposition 4.1. The operator AR − σ
η + λÅG2γ0−ÅG1γ0 is an element of

L(L2(Ω), [D(Å
1
2 )]′) and (AR − σ

η + λÅG2γ0 − ÅG1γ0)∗ = AD(I −Dγ0) as elements

of L(D(Å
1
2 ), L2(Ω)).

Proof. For every ϑ ∈ D(AR) and $ ∈ D(Å
1
2 ), we have〈(

AR − σ

η
+ λÅG2γ0 − ÅG1γ0

)
ϑ,$

〉[
D

(
Å

1
2

)]′
×D|
(

Å
1
2

)
= (−∆ϑ,$)L2(Ω) +

〈
λÅG2γ0ϑ,$

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − 〈ÅG1γ0ϑ,$
〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)
= (∇ϑ,∇$)L2(Ω) −

(
∂ϑ

∂ν
,$

)
L2(Γ1)

+ λ
(
γ0ϑ,G

∗
2Å$

)
L2(Γ1)

− (γ0ϑ,G
∗
1Å$

)
L2(Γ1)

(after the use of Green’s formula and the taking of adjoints)

= (∇ϑ,∇$)L2(Ω) −
(
γ0ϑ,G

∗
1Å$

)
L2(Γ1)

= (ϑ,−∆$)L2(Ω)

(after one more use of Green’s theorem and the characterization (1.23))

= (ϑ,AD(I −Dγ0)$)L2(Ω) .

As D(AR) is dense in L2(Ω), this equality proves the assertion.
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Lemma 4.2. The Hilbert space adjoint A∗γ of Aγ , as defined in (1.36), is given
to be

A∗γ =

 I 0 0
0 P−1

γ 0
0 0 I


 0 −I 0

Å 0 −α(♣)

0
α

β
AD(I−Dγ0) − η

β
AR

 ,

with D(A∗γ) =
{

[φ0, φ1, ψ0] ∈ D
(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR)

such that Åφ0 + αÅG1γ0ψ0 ∈ H−1
Γ0,γ

(Ω)
}

(above, (♣) is the same denotation made in (1.35)).
Proof. We define S ⊆ Hγ to be

S ≡
{

[φ0, φ1, ψ0] ∈ D
(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR)

such that Åω1 + α ÅG1γ0θ ∈ H−1
Γ0,γ

(Ω)
}

and proceed to show that D(A∗γ) = S. Indeed, if [ω1, ω2, θ] ∈ D(Aγ) and [ω̃1, ω̃2, θ̃] ∈
S, we have by using (1.36)Aγ

 ω1

ω2

θ

 ,
 ω̃1

ω̃2

θ̃


Hγ

=
(
Å

1
2ω2, Å

1
2 ω̃1

)
L2(Ω)

+

(
P−1
γ

(
−Åω1 + αARθ − ασ

η
θ − αÅG1γ0θ + αλÅG2γ0θ

)
, ω̃2

)
H1

Γ0,γ
(Ω)

−
(
αAD(I −Dγ0)ω2, θ̃

)
L2(Ω)

− ηβ

β

(
ARθ, θ̃

)
L2(Ω)

=
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − 〈ω1, Åω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − α (∆θ, ω̃2)L2(Ω)

−α 〈ÅG1γ0θ, ω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + αλ
〈
ÅG2γ0θ, ω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)
+α

(
∆ω2, θ̃

)
L2(Ω)

− β
(
θ,
η

β
ARθ̃

)
L2(Ω)

(after using the equality posted in (1.32))

=
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − 〈ω1, Åω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + α (∇θ,∇ω̃2)L2(Ω)

−α
(
∂θ

∂ν
, γ0ω̃2

)
L2(Γ1)

− α
(
γ0θ,

∂ω̃2

∂ν

)
L2(Γ1)

− αλ (γ0θ, γ0ω̃2)L2(Γ1)

−α
(
∇ω2,∇θ̃

)
L2(Ω)

+ α

(
∂ω2

∂ν
, γ0θ̃

)
L2(Γ1)

− β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

(after using Green’s theorem and (1.23))

= −
(
Å

1
2ω1, Å

1
2 ω̃2

)
L2(Ω)

+
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + β

(
θ,−α

β
∆ω̃2

)
L2(Ω)
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+α
(
ω2,∆θ̃

)
L2(Ω)

− α
(
γ0ω2,

∂θ̃

∂ν

)
L2(Γ1)

+ α
(
G∗1Åω2, γ0θ̃

)
L2(Γ1)

−β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

= −
(
Å

1
2ω1, Å

1
2 ω̃2

)
L2(Ω)

+
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)
+α

(
ω2,−ARθ̃ +

σ

η
θ̃

)
L2(Ω)

− αλ
(
G∗2Åω2, γ0θ̃

)
L2(Γ1)

+α
〈
ω2, ÅG1γ0θ̃

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + β

(
θ,
α

β
AD(I −Dγ0)ω̃2

)
L2(Ω)

−β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

= −
(
Å

1
2ω1, Å

1
2 ω̃2

)
L2(Ω)

+

(
P

1
2
γ ω2, P

1
2
γ P
−1
γ

[
Åω̃1 + α

(
−ARθ̃ +

σ

η
θ̃ + ÅG1γ0θ̃ − λÅG2γ0θ̃

)])
L2(Ω)

+β

(
θ,
α

β
AD(I −Dγ0)ω̃2

)
L2(Ω)

− β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

(after again using (1.32), (1.23), and the fact that
[
ω̃1, ω̃2, θ̃

]
∈ S)

=

 ω1

ω2

θ

 , T
 ω̃1

ω̃2

θ̃


Hγ

,

where

T ≡
 I 0 0

0 P−1
γ 0

0 0 I


 0 −I 0

Å 0 −α(♣)

0
α

β
AD(I−Dγ0) − η

β
AR

 .

Thus,

S ⊆ D(A∗γ) and A∗γ
∣∣
S = T .(4.1)

To show the opposite containment, one can straightforwardly compute the inverse
A−1
γ ∈ L(Hγ , D(Aγ)) as

A−1
γ =


−α

2

η
Å
−1

(♣)A−1
R AD(I −Dγ0) −Å

−1
Pγ −αβ

η
Å
−1

(♣)A−1
R

I 0 0

−α
η
A−1
R AD(I −Dγ0) 0 −β

η
A−1
R

 .(4.2)

In turn, one can use this quantity and Proposition 4.1 to compute the Hilbert space
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adjoint
(A∗γ)−1

of A−1
γ as

(A∗γ)−1
=


−α

2

η
Å
−1

(♣)A−1
R AD(I −Dγ0) Å

−1
Pγ −αβ

η
Å
−1

(♣)A−1
R

−I 0 0

−α
η
A−1
R AD(I −Dγ0) 0 −β

η
A−1
R

 .(4.3)

With this quantity in hand, we then have that for arbitrary [φ0, φ1, ψ0] ∈ D(A∗γ) and
corresponding  ω0

ω1

θ0

 = A∗γ

 φ0

φ1

ψ0

 ∈ Hγ ,

 φ0

φ1

ψ0

 =
(A∗γ)−1

 ω0

ω1

θ0



=


−α

2

η
Å
−1

(♣)A−1
R AD(I −Dγ0)ω0 + Å

−1
Pγω1 − αβ

η
Å
−1

(♣)A−1
R θ0

−ω0

−α
η
A−1
R AD(I −Dγ0)ω0 − β

η
A−1
R θ0

 .
(4.4)

A fortiori then, [φ0, φ1] ∈ [D(Å
1
2 )]2 and ψ0 ∈ D(AR). Moreover, (4.4) and the

definition of the operator (♣) in (1.35) gives

Åφ0 + αÅG1γ0φ1 ∈ H1
Γ0,γ(Ω).(4.5)

Thus, D(A∗γ) ⊆ S, and this combined with (4.1) concludes Lemma 4.2.
Proposition 4.3. For arbitrary terminal data [φ0, φ1, ψ0] ∈ Hγ , the solution

[φ, φt, ψ] to (1.51) has the following additional regularity:

‖φtt‖
L∞(0,T ;[D(Å

1
2 P−1

γ )]′)
≤ C ‖[φ0, φ1, ψ0]‖Hγ

,

where Å
1
2P−1

γ is taken as a closed and densely defined operator, Å
1
2P−1

γ : D( Å
1
2P−1

γ ) ⊂
L2(Ω)→ L2(Ω), with D(Å

1
2P−1

γ ) = {ϕ ∈ L2(Ω) : P−1
γ ϕ ∈ D(Å

1
2 )}.

Proof. For terminal data [φ0, φ1, ψ0] ∈D(A∗γ), we have for all$ ∈ L1(0, T ;D(Å
1
2P−1

γ )),
upon using the abstract equation (1.52), the characterizations in (1.23) , the fact that

P−1
γ $ ∈ L1(0, T ;D(Å

1
2 ) ∩ D(AN )) (recall the definition of AN in (1.16) and Pγ in

(1.24)), and ∂ψ
∂ν |Γ = −λψ|Γ, that

(4.6)∫ T

0

($,φtt)L2(Ω) dt =

∫ T

0

(
$,P−1

γ

[−Åφ− αÅG1γ0ψ + αλ ÅG2γ0ψ − α∆ψ
])
L2(Ω)

dt

=

∫ T

0

[
−
(
Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

− α (G∗1ÅP−1
γ $, γ0ψ

)
L2(Γ1)
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+ αλ
(
G∗2 ÅP−1

γ $, γ0ψ
)
L2(Γ1)

− α (P−1
γ $,∆ψ

)
L2(Ω)

]
dt

=

∫ T

0

[(
−Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

+ α

(
P−1
γ $,

∂ψ

∂ν

)
L2(Γ1)

− α (P−1
γ $,∆ψ

)
L2(Ω)

]
dt

=

∫ T

0

[(
−Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

+ α
(∇P−1

γ $,∇ψ)
L2(Ω)

]
dt

=

∫ T

0

[(
−Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

− α (∆P−1
γ $,ψ

)
L2(Ω)

]
dt.

Estimating the far side of this expression by using the fact that P−1
γ ∈ L(L2(Ω), D(AN )),

followed by the contraction of the semigroup {eA∗γt}t≥0, one has the estimate

∫ T

0

($,φtt)L2(Ω) dt ≤ C
∥∥∥∥∥∥
 φ0

φ1

ψ0

∥∥∥∥∥∥
Hγ

‖$‖
L1(0,T ;D(Å

1
2 P−1

γ ))
dt.(4.7)

A density argument concludes the proof.
Proposition 4.4. If [φ, φt, ψ] denotes the solution to (1.51), corresponding to

terminal data [φ0, φ1, ψ0], we have the following estimates.
1. The map [φ0, φ1, ψ0] → ∆φ is an element of L(Hγ , L

2(0, T ; [H1(Ω)]′)), with
the norm bound

‖∆φ‖L2(0,T ;[H1(Ω)]′) ≤ l.o.t. (φ, φt, ψ) .(4.8)

2. The map [φ0, φ1, ψ0]→ [∆φt, ψt] is an element of L(D(L∗T ), [L2(0, T ; [H
3
2−ε(Ω)]′)]2),

with the norm bound

‖[∆φt, ψt]‖[
L2

(
0,T ;

[
H

3
2
−ε(Ω)

]′)]2 ≤ C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ) .(4.9)

Proof of (i). For all $ ∈ L2(0, T ;H1(Ω)), we easily have

(4.10) ∫ T

0

(∆φ,$)L2(Ω) dt = −
∫ T

0

(∇φ,∇$)L2(Ω) dt+

∫ T

0

(
∂φ

∂ν
,$

)
L2(Γ1)

dt

≤ C
∫ T

0

[
‖∇φ‖L2(Ω) ‖∇$‖L2(Ω) + ‖φ‖

H
3
2

+ε(Ω)
‖$‖H1(Ω)

]
dt

≤ C ‖φ‖
L2

(
0,T ;H

3
2

+ε(Ω)

) ‖$‖L2(0,T ;H1(Ω)) ,

and this estimate gives the asserted result.
Proof of (ii). If [φ0, φ1, ψ0] ∈ D(A∗γ), then [φ, φt, ψ] ∈ C([0, T ];D(A∗γ))∩C1([0, T ];

Hγ), and so in particular ∆φt ∈ L2(0, T ;L2(Ω)). Taking the L2-inner product with

respect to arbitrary $ ∈ L2(0, T ;H
3
2−ε(Ω)), we have upon the use of Green’s theorem

and the definition of AR in (1.14) that

(4.11)
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−
∫ T

0

(∆φt, $)L2(Ω) dt

=

∫ T

0

(
A

1
2

Rφt, A
1
2

R$
)
L2(Ω)

dt

−
∫ T

0

[
λ (φt, $)L2(Γ) +

σ

η
(φt, $)L2(Ω) +

(
∂φt
∂ν

,$

)
L2(Γ1)

]
dt

=

∫ T

0

(
A

1
4 + ε

2

R φt, A
3
4− ε2
R $

)
L2(Ω)

dt

−
∫ T

0

[
λ (φt, $)L2(Γ) +

σ

η
(φt, $)L2(Ω) +

(
∂φt
∂ν

,$

)
L2(Γ1)

]
dt

≤
∫ T

0

(∥∥∥A 1
4 + ε

2

R φt

∥∥∥
L2(Ω)

∥∥∥A 3
4− ε2
R $

∥∥∥
L2(Ω)

+
(
C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ)

)
‖$‖

H
1
2

+ε(Ω)

)
dt

≤
(
C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ)

)
‖$‖

L2

(
0,T ;H

3
2
−ε(Ω)

) .
Moreover, as [φ0, φ1, ψ0] ∈ D(A∗γ), we can take the L2-inner product of ψt with

arbitrary $ ∈ L2(0, T ;H
3
2−ε(Ω)) and use (1.53) and (4.11) to obtain∫ T

0

(ψt, $)L2(Ω) dt = β−1

∫ T

0

(ηARψ + α∆φt, $)L2(Ω) dt

= β−1

∫ T

0

[(
ηA

1
4 + ε

2

R ψ,A
3
4− ε2
R $

)
L2(Ω)

+ (α∆φt, $)L2(Ω)

]
dt

≤
(
C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ)

)
‖$‖

L2

(
0,T ;H

3
2
−ε(Ω)

) .(4.12)

Having obtained estimates (4.11) and (4.12) with smooth data [φ0, φ1, ψ0], a
density argument (see Remark 1.8) and a recollection of the form of the adjoint
L∗T in (1.55) will allow us to obtain the norm bound (4.9) for all terminal data
in D(L∗T ).

Lemma 4.5. Concerning the component φ̂ of the solution [φ̂, φ̂t, ψ̂] of (2.9), one

has that ∆φ̂|Γ0 ∈ L2(0, T ;L2(Γ0)) with the following estimate valid for all s and
τ ∈ [0, T ]:

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt ≤ C0

(∫ T

0

E
φ̂
(t)dt+ E

φ̂
(s) + E

φ̂
(τ)

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(4.13)

Proof. So as to obtain the inequality (4.13), we multiply the first equation of

(2.15) by the quantity m · ∇φ̂, where m(x, y) ≡ [m1(x, y),m2(x, y)] is a
[
C2(Ω)

]2
vector field,1 which satisfies

m|Γ =

{
[ν1, ν2] on Γ0,
0 on Γ1,

(4.14)

1Here we make use of the fact that Γ0 and Γ1 are separated.



378 GEORGE AVALOS AND IRENA LASIECKA

and follow this by an integration from s to τ ; i.e., we will work with the equation∫ τ

s

(
φ̂tt − γ∆φ̂tt + ∆2φ̂,m · ∇φ̂

)
L2(Ω)

dt

=

∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt.(4.15)

To handle the left-hand side of (4.15), perform the following steps.
(i) First,

(4.16)∫ τ

s

(
φ̂tt,m · ∇φ̂

)
L2(Ω)

dt =
(
φ̂t,m · ∇φ̂

)
L2(Ω)

∣∣∣∣τ
s

−
∫ τ

s

(
φ̂t,m · ∇φ̂t

)
L2(Ω)

dt

=
(
φ̂t,m · ∇φ̂

)
L2(Ω)

∣∣∣∣τ
s

− 1

2

∫ τ

s

∫
Ω

div
(
φ̂2
tm
)
dtdΩ

+
1

2

∫ τ

s

∫
Ω

φ̂2
t [m1x +m2y] dtdΩ

=
(
φ̂t,m · ∇φ̂

)
L2(Ω)

∣∣∣∣τ
s

+
1

2

∫ τ

s

∫
Ω

φ̂2
t [m1x +m2y] dtdΩ,

after making use of the divergence theorem and the fact that φ̂t = 0 on Γ0.
(ii) Next,

(4.17)∫ τ

s

(
−∆φ̂tt,m · ∇φ̂

)
L2(Ω)

dt =
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

∣∣∣∣τ
s

−
∫ τ

s

(
∇φ̂t,∇

(
m · ∇φ̂t

))
L2(Ω)

dt

=
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

∣∣∣∣τ
s

− 1

2

∫ τ

s

∫
Ω

div

(∣∣∣∇φ̂t∣∣∣2m) dtdΩ

−
∫ τ

s

∫
Ω

[
φ̂2
txm1x

2
+
φ̂2
tym2y

2

]
dtdΩ−

∫ τ

s

∫
Ω

[
φ̂txφ̂tym2x + φ̂txφ̂tym1y

]
dtdΩ

+

∫ τ

s

∫
Ω

[
φ̂2
txm2y

2
+
φ̂2
tym1x

2

]
dtdΩ

=
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

∣∣∣∣τ
s

+

∫ τ

s

∫
Ω

[
φ̂2
txm2y

2
+
φ̂2
tym1x

2
− φ̂2

txm1x

2
− φ̂2

tym2y

2

]
dtdΩ

−
∫ τ

s

∫
Ω

[
φ̂txφ̂tym2x + φ̂txφ̂tym1y

]
dtdΩ,

after again using the divergence theorem and the fact that
∫

Ω
div(|∇φ̂t|2m)dΩ =∫

Γ0
|∇φ̂t|2dΓ0 = 0 (as φ̂t(t) ∈ H2

Γ0
(Ω)).
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(iii) To handle the biharmonic term, we use Green’s theorem (1.9), the given

boundary conditions of (2.15), (4.14), and the fact that φ̂ ∈ H2
Γ0

(Ω) to obtain

(4.18) ∫ τ

s

(
∆2φ̂,m · ∇φ̂

)
L2(Ω)

dt =

∫ τ

s

a
(
φ̂,m · ∇φ̂

)
dt

+α

∫ τ

s

∫
Γ1

ψ̂ · ∂m · ∇φ̂
∂ν

dΓ1dt −
∫ τ

s

∫
Γ0

(
∆φ̂+ (1− µ)B1φ̂

) ∂2φ̂

∂ν2
dΓ0dt.

We note at this point that we can rewrite the first term on the right-hand side of
(4.18) as

(4.19) ∫ τ

s

a
(
φ̂,m · ∇φ̂

)
dt

=
1

2

∫ τ

s

∫
Ω

m · ∇
[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
,

where O(
∫ T

0
‖Å

1
2 φ̂‖2L2(Ω)dt) denotes a series of terms that can be majorized by the

L2(0, T ;D(Å
1
2 ))-norm of φ̂. We consequently have by the divergence theorem that

(4.20) ∫ τ

s

a
(
φ̂,m · ∇φ̂

)
dt

=
1

2

∫ τ

s

∫
Ω

m · ∇
[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)

=
1

2

∫ τ

s

∫
Ω

div
{
m
[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]}
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)

=
1

2

∫ τ

s

∫
Γ0

[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]
dtdΓ0

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)

=
1

2

∫ τ

s

∫
Γ0

(
∆φ̂
)2

dt+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
,

where in the last step above, we have used the fact (as reasoned in [11, Chapter 4])

that φ̂|Γ0 = ∂φ̂
∂ν |Γ0 = 0 implies that φ̂2

xx + φ̂2
yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2

xy = (∆φ̂)2 on
Γ0.
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To handle the last term on the right-hand side of (4.18), we note that B1φ̂ = 0
on Γ0, which implies that

∆φ̂ = ∆φ̂+ (1− µ)B1φ̂ =
∂2φ̂

∂ν2
on Γ0 .(4.21)

We consequently have upon the insertion of (4.20) into (4.18), followed by the con-
sideration of (4.21) that∫ τ

s

(
∆2φ̂,m · ∇φ̂

)
L2(Ω)

dt = −1

2

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt

+α

∫ τ

s

∫
Γ1

ψ̂ · ∂m · ∇φ̂
∂ν

dΓ1dt + O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
.(4.22)

(iv) To handle the right-hand side of (4.15), an integration by parts yields∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt

= c1

[(
ψ̂,m · ∇φ̂

)
L2(Ω)

]τ
s

− c1
∫ τ

s

(
ψ̂,m · ∇φ̂t

)
L2(Ω)

dt

+

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt.

As m · ∇φ̂ ∈ C([0, T ];H1
Γ0,γ

(Ω)), we have for all t ∈ [0, T ],(
ψ̂(t),m · ∇φ̂(t)

)
L2(Ω)

=
〈
ψ̂(t),m · ∇φ̂(t)

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

.

Accordingly, we have

(4.23)∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt

= c1

[〈
ψ̂,m · ∇φ̂

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

]τ
s

−c1
∫ τ

s

(
ψ̂,m · ∇φ̂t

)
L2(Ω)

dt+

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt.

To finish the proof, we rewrite (4.15) by collecting the relations given above in
(4.16), (4.17), (4.22), and (4.23) to attain

(4.24)

1

2

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt = α

∫ τ

s

∫
Γ1

ψ̂ · ∂m · ∇φ̂
∂ν

dΓ1dt

+ O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
+

1

2

∫ τ

s

∫
Ω

φ̂2
t [m1x +m2y] dtdΩ
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−
∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt

+ γ

∫ τ

s

∫
Ω

[
φ̂2
txm2y

2
+
φ̂2
tym1x

2
− φ̂2

txm1x

2
− φ̂2

tym2y

2

]
dtdΩ

− γ

∫ τ

s

∫
Ω

[
φ̂txφ̂tym2x + φ̂txφ̂tym1y

]
dtdΩ + c1

∫ τ

s

(
ψ̂,m · ∇φ̂t

)
L2(Ω)

dt

+

[(
φ̂t,m · ∇φ̂

)
L2(Ω)

+ γ
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

− c1
〈
ψ̂,m · ∇φ̂

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

]τ
s

.

The desired inequality (4.13) now comes about by majorizing the right-hand side of
this expression (note that in this majorization we are using implicitly the fact that
∂m·∇φ̂
∂ν |Γ1

is a “lower order term,” as m|Γ1
= 0).

Proposition 4.6. With the vector field h as defined in (1.3), the solution

[φ̂, φ̂t, ψ̂] to (2.15), corresponding to terminal data [φ0, φ1, ψ0] ∈ D([A∗γ ]2), satisfies
equality (2.36) for arbitrary ε0 ∈ [0, T ).

Proof. We multiply (2.15) by h · ∇φ̂− 1
2 φ̂ and subsequently integrate in time and

space; i.e., we will consider the equation∫ T−ε0

ε0

(
φ̂tt − γ∆φ̂tt + ∆2φ̂−

[
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t

]
, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt = 0.

(4.25)

First, using directly the computations performed in [12] for the quantity
∫ T−ε0
ε0

(φ̂tt−
γ∆φ̂tt + ∆2φ̂, h · ∇φ̂− 1

2 φ̂)L2(Ω)dt, in the case that h is a radial vector field (see the
relations (3.12) and (3.16) of [12]), we have

(4.26)∫ T−ε0

ε0

(
φ̂tt − γ∆φ̂tt + ∆2φ, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt

=

[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

−
[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

− 1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt

+

∫ T−ε0

ε0

1

2

∥∥∥P 1
2
γ φ̂t

∥∥∥2

L2(Ω)
+
∥∥∥φ̂t∥∥∥2

L2(Ω)
− γ

(
h · ∇φ̂− 1

2
φ̂,
∂φ̂tt
∂ν

)
L2(Γ1)

 dt
+

∫ T−ε0

ε0

[
1

2

∥∥∥ Å
1
2 φ̂
∥∥∥2

+
1

2

∫
Γ0

h · ν
(

∆φ̂
)2

dΓ−
(

∆φ̂,
∂

∂ν

(
h · ∇φ̂

))
L2(Γ0)

]
dt

+

∫ T−ε0

ε0

(∂∆φ̂

∂ν
+ (1− µ)

∂B2φ̂

∂τ
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

−
(

∆φ̂+ (1− µ)B1φ̂,
∂

∂ν

(
h · ∇φ̂− 1

2
φ̂

))
L2(Γ1)

]
dt
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+

∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)

+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ.

Using the boundary conditions in (2.15) and the fact that ∂(h·∇φ)
∂ν |Γ0 =

(h · ν)∆φ|Γ0 , this equation becomes

(4.27)∫ T−ε0

ε0

(
φ̂tt − γ∆φ̂tt + ∆2φ, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt =
1

2

∫ T−ε0

ε0

E
φ̂
(t)dt

+

[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

−
[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

− 1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt

+

∫ T−ε0

ε0

[∥∥∥φ̂t∥∥∥2

L2(Ω)
− 1

2

∫
Γ0

h · ν
(

∆φ̂
)2

dΓ

]
dt

+

∫ T−ε0

ε0

[
α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂− 1

2
φ̂

))
L2(Γ1)

+

(
γ
∂

∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

 dt
+

∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)

+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ.

Second, we multiply [c0ψ̂+c1ψ̂t+c2φ̂+c3φ̂t+c4∆φ̂] by h ·∇φ̂− 1
2 φ̂ and integrate

by parts to obtain

(4.28) ∫ T−ε0

ε0

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt

= c1

[(
ψ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

− c1
∫ T−ε0

ε0

(
ψ̂, h · ∇φ̂t − 1

2
φ̂t

)
L2(Ω)

dt
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+

∫ T−ε0

ε0

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt.

To now obtain (2.36), we combine the expressions (4.25) and (4.27)–(4.28) and follow
this by a rearrangement of terms.
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Abstract. We give sufficient conditions for the existence of solutions of the minimum problem

Pu0 : Minimize

∫
Ω

g(Du(x))dx, u ∈ u0 +W 1,p
0 (Ω,R),

based on the structure of the epigraph of the lower convex envelope of g, which is assumed be lower
semicontinuous and to grow at infinity faster than the power p with p larger than the dimension of
the space. No convexity conditions are required on g, and no assumptions are made on the boundary
datum u0 ∈W 1,p

0 (Ω,R).
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1. Introduction. Consider the problem

Pu0 : Minimize I(u) =

∫
Ω

g(Du(x))dx

on u ∈ u0 +W 1,1
0 (Ω,R), where Ω is an open and bounded subset of Rn and g : Rn →

R ∪ {+∞} is lower semicontinuous and satisfies g(y) ≥ φ(|y|) for some continuous
function φ with superlinear growth at infinity. As the theorem quoted below shows
clearly, for n > 1, if we do not assume the convexity of g, in general Pu0 fails to
have solutions since I is not weak lower semicontinuous on W 1,1(Ω,R). However,
if the boundary datum u0 is assumed to be affine, i.e., u0 = Aξ := 〈ξ, ·〉 for some

ξ ∈ Rn, the existence of minimum points for I on Aξ +W 1,p
0 (Ω,R) can be completely

characterized by the following result, due to Cellina [C1], [C2].
Theorem. Problem PAξ admits at least one solution if and only if either g(ξ) =

g∗∗(ξ) or the point (ξ, g∗∗(ξ)) belongs to the relative interior of an n-dimensional
proper face of epi(g∗∗), where g∗∗ is the lower convex envelope of g and epi(g∗∗)
denotes its epigraph.

By the lower semicontinuity of g, if (y, g∗∗(y)) is an extreme point of epi(g∗∗),
then necessarily g∗∗(y) = g(y); hence Cellina’s result implies in particular that if g∗∗

satisfies hypothesis (H) (the dimension of any proper face of the epigraph of g∗∗ is
either 0 or n), then problem PAξ admits at least one solution for any affine boundary
datum Aξ.

In this paper we prove that under condition (H), if the n-dimensional faces of
epi(g∗∗) are finitely many and pairwise disjoint and if φ(|y|) = a|y|p − b for some
positive constant a, b and for p > n, problem Pu0 admits at least one solution for any
u0 ∈W 1,p(Ω,R).
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To prove this result we make use of Baire’s theorem, considering the nonempty
set S of solutions of the minimum problem for the relaxed functional

Pu0 : Minimize I(u) =

∫
Ω

g∗∗(Du(x))dx, u ∈ u0 +W 1,p
0 (Ω,R),

endowed with a distance with respect to which it is a complete metric space, and
introducing suitable open and dense subsets Sk ⊆ S such that, for any element u
of
⋂
k Sk, g∗∗(Du) = g(Du) almost everywhere in Ω. Consequently there exists (a

dense subset of) v ∈ S such that I(v) = I(v), and, since the infimum of I equals the
minimum of I, v solves Pu0

.
To do this we use techniques introduced in the framework of differential inclusions

(see, for example, [B], [BF], [DP1] and the references quoted there) and more recently
implemented in the study of existence of generalized solutions for Hamilton–Jacobi
equations [DM1], [DM2], [DP2], [Z].

2. Preliminaries and notation. In this paper an element x of Rn is written
x = (x1, . . . , xn) and we denote by 〈·, ·〉 and by |·|, respectively, the scalar product and
the Euclidean norm in Rn; for x ∈ Rn and r > 0, B(x, r) is the open ball centered in
x of radius r. If x and y are elements of Rn by [x, y] we mean the closed line segment
of endpoints x and y, i.e., [x, y] = {z ∈ Rn : z = (1 − t)x + ty, t ∈ [0, 1]}. Given
A ⊆ Rn, ∂A, int(A), A, diam(A), Ls(A), co(A), and χA, mn(A), respectively, denote
the boundary, the interior, the closure, the diameter, the linear span, the convex hull,
the characteristic function, and the n-dimensional Lebesgue measure of A; by dim(A)
we mean the dimension of Ls(A). The relative interior of A (r.i.(A)) and the relative
boundary of A (r.b.(A)) are the interior and the boundary of A relative to Ls(A).
Given two sets A and B, A4B is the symmetric difference (A−B) ∪ (B −A).

We need the notion of face of a convex set. Given a convex subset C of Rn, a face
of C is a convex subset C ′ of C such that every closed line segment in C whose relative
interior intersects C ′ has both endpoints in C ′. A face of C different from C itself is
said to be a proper face. The zero-dimensional faces of C are actually singletons and
are called extreme points of C. The set of extreme points of C is denoted by extr(C).
The following facts are well known (see [R, pp. 162–169]).

Proposition 2.1. Let C ⊆ Rn be a convex set.
(i) If C ′′ is a face of C ′ and C ′ is a face of C, then C ′′ is a face of C.

(ii) A proper face C ′ of C is entirely contained in the relative boundary of C so
that, in particular, dim(C ′) < dim(C).

(iii) The collection of the relative interiors of the faces of C is a partition of C
itself.

A family V of closed subsets of Rn is said to cover a set A ⊆ Rn in the Vitali
sense (or to be a Vitali covering of E) if for any x ∈ A there exist a positive number
r(x) > 0, a sequence of n-dimensional balls (B(x, ρk))k∈N, with ρk → 0 as k → ∞,
and a sequence (Vk)k∈N in V such that Vk ⊆ B(x, ρk) for any k and

mn(Vk)

mn(B(x, ρk))
> r(x) ∀k ∈ N.

According to the Vitali covering theorem (see [F, pp. 205–207]) given a Vitali covering
V and a positive ε, there exists a finite subfamily {Vk, k = 1, . . . ,m} of V such that
Vk
⋂
Vj = ∅ for j 6= k and mn (A−⋃mk=1 Vk) ≤ ε.
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We recall (see for example [WZ, p. 107]) that, given a measurable subset A of Rn,
almost every point x in A is a point of density, i.e.,

lim
ρ→0

mn(A ∩B(x, ρ))

mn(B(x, ρ))
= 1.

For a map u : Ω(⊆ Rn)→ R, Du denotes the gradient of u: Du = ( ∂u∂x1
, . . . , ∂u∂xn ).

We shall use the spaces L∞(Ω,R), L1(Ω,R), W 1,p(Ω,R), W 1,p
0 (Ω,R), W 1,∞(Ω,R),

and W 1,∞
0 (Ω,R) endowed with their usual topologies.

We recall (see [KS, p. 50]) the following well-known proposition.
Proposition 2.2. Let Ω ⊆ Rn and u ∈W 1,q(Ω,R) (1 ≤ q ≤ +∞); set

v(x) := max{0, u(x)}.

Then v belongs to W 1,q(Ω,R), and

Dv(x) =

{
Du(x) a.e. in {x ∈ Ω : u(x) > 0},
0 a.e. in {x ∈ Ω : u(x) ≤ 0}.

Let g : Rn → R∪{+∞}; we set dom(g) = {y ∈ Rn : g(y) ∈ R} and denote by g∗∗

the lower convex envelope of g (see, for example, [ET]), remarking that the epigraph
of g∗∗, epi(g∗∗) := {(y, t) ∈ Rn × R : t ≥ g∗∗(y)} is a closed convex subset of Rn × R.

Definition 2.3. Let g : Rn → R∪ {+∞} be lower semicontinuous. We say that
g satisfies condition (A) if

(A.i) there exist two positive constant a, b such that

g(y) ≥ a|y|p − b ∀y ∈ Rn,

where p > n.
(A.ii) There exist F 1, . . . , FN proper nonvertical faces of epi(g∗∗) such that dim(F i) =

n for any i = 1, . . . , N , F i
⋂
F j = ∅ when i 6= j and any proper face F 6= F i

for any i ∈ {1, . . . , N has dimension equal to zero, i.e., is an extreme point.
Remark 2.4. For any i = 1, . . . , N , F i ⊆ ∂(epi(g∗∗)) and any extreme point of

epi(g∗∗) is of the form (y, g∗∗(y)).
Definition 2.5. For any n-dimensional face F i (i = 1, . . . , N) of epi(g∗∗) we

set

F i0 := {y ∈ Rn : (y, g∗∗(y)) ∈ F i}.

Example. Let n = 3 and g(y) := (|y|2 − 1)2. The map g satisfies (A.i) and (A.ii).
Indeed we may choose a = 1

2 , b = 3, and p = 4; moreover, any point (y, g∗∗(y)) such
that |y| ≥ 1 is an extreme point of epi(g∗∗) and F 1 := {(y, 0), |y| ≤ 1}, which is a
n-dimensional set, is the unique proper face of epi(g∗∗) having nonzero dimension. In
this case we have F 1

0 = B(0, 1).
We collect now some properties of epi(g∗∗) that will be useful in the following.
Proposition 2.6. Let g satisfy (A). Then
(i) F i is a compact convex subset of Rn × R for any i = 1, . . . , N .
(ii) F i0 is a compact convex subset of Rn with nonempty interior for any i =

1, . . . , N .
(iii) r.b.(F i) = extr(F i) ⊆ extr(epi(g∗∗)) for any i = 1, . . . , N .
(iv) extr(F i0) = ∂(F i0) and, if i 6= j, F i0

⋂
F j0 = ∅.
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(v) The set {y ∈ Rn : g(y) = g∗∗(y)} is contained in the set (Rn −⋃Ni=1 int(F i0)).
(vi) The map g∗∗ is affine on each F i0; i.e., there exist αi ∈ Rn, βi ∈ R, such that

g∗∗(y) = 〈αi, y〉+ βi for any y ∈ F i0 and for any i = 1, . . . , N .

(vii) Let y1, y2 ∈ Rn, y1 6= y2 be such that either y1, y2 ∈ Rn−
⋃N
i=1 F

i
0 or y1 ∈ F j0

for some j and y2 ∈ Rn − F j0 . Then, for any λ ∈]0, 1[,

g∗∗((1− λ)y1 + λy2) < (1− λ)g∗∗(y1) + λg∗∗(y2).(2.1)

Proof. Statement (i) is an obvious consequence of the definition of face and of
the growth condition expressed in point (A.i) of Definition 2.3. Moreover it implies
obviously (ii).

To prove (iii) take z ∈ r.b.(F i). By point (i) and (iii) of Proposition 2.1 z
belongs to the relative interior of a proper face F of F i and, by point (ii) of the same
proposition, dim(F ) < n; but, again by point (i) of Proposition 2.1, F is a face of
epi(g∗∗) and this implies, by assumption (A.ii) of Definition 2.3, that dim(F ) = 0.

Point (iv) is a consequence of the fact that

extr(F i0) = {y ∈ Rn : (y, g∗∗(y)) ∈ extr(F i)}
of previous point (iii) and of the fact that F i

⋂
F j = ∅.

Point (v) follows from (iv), from Remark 2.4, and from the lower semicontinuity
of g. To prove (vi) see [ET, Chap. 2] or [C1].

To prove point (vii) assume by contradiction that for some λ ∈]0, 1[ equality
holds in equation (2.1) instead of strict inequality. This means that the point Pλ =
((1− λ)y1 + λy2), g∗∗((1− λ)y1 + λy2), which belongs to the relative interior of the
line segment L = [(y1, g

∗∗(y1)), (y2, g
∗∗(y2))] ⊆ epi(g∗∗), belongs to ∂(epi(g∗∗)); then

Pλ belongs to some proper face H of epi(g∗∗) and, by the definition of face, both
endpoints of the line segment L lie in H. But H must have dimension larger than
one, since it contains L, and this, recalling that by Definition 2.3 the only faces of
epi(g∗∗) having dimension larger than zero are the n-dimensional faces F i0, implies
that (y1, g

∗∗(y1)) and (y2, g
∗∗(y2)) belongs to F j for some j ∈ {1, . . . , N}, which is a

contradiction in both cases.
Definition 2.7. Let E ⊆ Rn be measurable and K ⊆ Rn compact and convex.

We define the map h(·,K) : Rn → R ∪ {−∞} by

h(ξ,K) =

 sup

{(∫ 1

0
|φ(y)− ξ|2dy

) 1
2

, φ : [0, 1]→ K,
∫ 1

0
φ(y)dy = ξ

}
, ξ ∈ K,

−∞, ξ ∈ Rn −K,
and the likelihood functional

L(V,E) :=

∫
E

h(V (x),K)dx

for V ∈ L∞(E,Rn).
Proposition 2.8.
(i) The map ξ → h(ξ,K) is upper semicontinuous and strictly concave.
(ii) h(ξ,K) ≥ 0 for any ξ ∈ K and h(ξ,K) = 0 if and only if ξ ∈ extr(K).
(iii) |h(ξ,K)| ≤ diam(K).
(iv) The functional L(·, E) is upper semicontinuous with respect to weak* topol-

ogy of L∞(E,Rn); i.e., for any sequence {Vk}k∈N such that Vk
∗
⇀ V in

L∞(E,Rn), we have

L(V,E) ≥ lim sup
k→∞

L(Vk, E).
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For the proof of (i), (ii), and (iii) see [B]. To prove (iv) see Theorem 1.2, p. 49,
of [D].

3. Statement of the result. Throughout this paper we assume that Ω is an
open bounded subset of Rn, g : Rn → R ∪ {+∞} satisfies condition (A), and u0

denotes an element of W 1,p(Ω,R).
We define the set of admissible functions

W := u0 +W 1,p
0 (Ω,R)

and the functionals

I(u) :=

∫
Ω

g(Du(x))dx, I(u) :=

∫
Ω

g∗∗(Du(x))dx,

and we consider the problems

P : Minimize I(u), u ∈ W,

and

P : Minimize I(u), u ∈ W.

Clearly for some boundary data u0 we could have I(u) = I(u) = +∞ for any
u ∈ W. To avoid triviality, we shall assume, however, that the functionals are finite
for some u ∈ W.

The following is a well-known fact (see, for example, [ET, Chap. IX] or [D,
Chap. 3]).

Theorem 3.1. I is coercive and weak lower semicontinuous on W 1,p(Ω,R).
Consequently P admits at least one solution. Moreover,

m := min{I(u), u ∈ W} ≤ inf{I(u), u ∈ W}.

The main result of this paper, which will be proved in the next section, is the
following theorem.

Theorem 3.2. P admits at least one solution.

4. Proof of Theorem 3.2.
Definition 4.1. We set S(P) := {u ∈ W : u is a solution of P}.
Definition 4.2. Let u ∈ S(P) and i ∈ {1, . . . , N}; we set

Eiu := {x ∈ Ω : Du(x) ∈ F i0}.

Remark 4.3. The sets Eiu are measurable.
Proposition 4.4. Let u, v ∈ S(P), i, j ∈ {1, . . . , N}, i 6= j. Then

mn(Eiu 4 Eiv) = 0,(4.1)

mn(Eiu ∩ Eju) = 0.(4.2)

Proof. We prove that mn(Eiu − Eiv) = 0; then (4.1) follows interchanging u with
v. Assume, by contradiction, mn(Eiu − Eiv) > 0 and set G = Eiu − Eiv. For almost
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every x ∈ G, Du(x) ∈ F i0, and Dv(x) ∈ Rn − (F i0); hence, recalling point (vii) of
Proposition 2.6, for any λ ∈]0, 1[, we have

g∗∗((1− λ)Du(x) + λDv(x)) < (1− λ)g∗∗(Du(x)) + λg∗∗(Dv(x))

almost everywhere in G. Define the map w := (1 − λ)u + λv. Clearly w belongs to
W and, by the convexity of g∗∗ and the above inequality, we have

I(w) =

∫
G

g∗∗(Dw(x))dx+

∫
Ω−G

g∗∗(Dw(x))dx

< (1− λ)

∫
G

g∗∗(Du(x))dx+ λ

∫
G

g∗∗(Dv(x))dx+

∫
Ω−G

g∗∗(Dw(x))dx

≤ (1− λ)

∫
G

g∗∗(Du(x))dx+ λ

∫
G

g∗∗(Dv(x))dx

+ (1− λ)

∫
Ω−G

g∗∗(Du(x))dx+ λ

∫
Ω−G

g∗∗(Dv(x))dx

= (1− λ)I(u) + λI(v) = m,

which is a contradiction.
To prove the second assertion assume mn(Eiu

⋂
Eju) > 0. This implies that given

any representative of u there exists some x ∈ Eiu
⋂
Eju such that Du(x) ∈ F i0

⋂
F j0 ,

and this contradicts point (iv) of Proposition 2.6.
Definition 4.5. Take u ∈ S(P) and set

Ei := Eiu, E :=
N⋃
i=1

Ei.

Remark 4.6.
(i) In view of (4.1) the sets Ei are defined modulo null sets in the sense that,

given any v ∈ S(P), Dv(x) ∈ F i0 for almost every x ∈ Ei, and then, choosing
a suitable representative of v, we may assume

Eiv = Ei ∀v ∈ S(P) ∀i ∈ {1, . . . , N}.(4.3)

(ii) By (4.2) we may also assume

Ei
⋂
Ej = ∅,(4.4)

observing that the sets Ei may be empty.
Proposition 4.7. Let u, v ∈ S(P). Then Du(x) = Dv(x) for almost every

x ∈ Ω− E.
Proof. First, we remark that by the definition of E, Du(x), Dv(x) ∈ Rn −(⋃s
i=1 F

i
0

)
for almost every x ∈ Ω− E.

Assume that there exists G ⊆ Ω − E with positive measure such that Du(x) 6=
Dv(x) for x ∈ G; recalling point (iii) of Proposition 2.6 we have, for any λ ∈]0, 1[,

g∗∗((1− λ)Du(x) + λDv(x)) < (1− λ)g∗∗(Du(x)) + λg∗∗(Dv(x)), x ∈ G.
Then we define w := (1− λ)u+ λv ∈ W and, by the same computations of the proof
of Proposition 4.4, get

I(w) =

∫
G

g∗∗(Dw(x))dx+

∫
Ω−G

g∗∗(Dw(x))dx < m,

which is a contradiction.
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Definition 4.8.
(i) For any i ∈ {1, . . . , N} we define the functional

L(u,Ei) :=

∫
Ei
h(Du(x), F i0)dx, u ∈ S(P),

where h is given by Definition 4.1 and the first argument of the integrand is
intended as the restriction to Ei of the L1(Ω,Rn)-map Du. By Remark 4.6
and by the boundedness of F i0 such a restriction belongs to L∞(Ei,Rn).

(ii) For any α > 0 we define the sets

Sα := {u ∈ S(P) : L(u,Ei) < α for every i ∈ {1, . . . , N}}.
Remark 4.9. By Propositions 2.8 and 4.4, for any u ∈ S(P) and for any i ∈

{1, . . . , N}, we have that L(u,Ei) ≥ 0 and that L(u,Ei) = 0 if and only if Du(x) ∈
extr(F i0) = ∂F i0 for almost every x ∈ Ei.

Definition 4.10. Letting u, v ∈ S(P) we set d(u, v) := ‖u− v‖L1(Ω).

Proposition 4.11. The pair
(S(P), d

)
is a complete metric space.

Proof. We prove that S(P) is a closed subset of L1(Ω). For this purpose take a
sequence (uk)k∈N in S(P) such that uk → u in L1(Ω); we have to show that u is a

solution of P.
Recalling the growth condition expressed in (A.ii) of Definition 2.3, we have∫

Ω

|Du(x)|pdx ≤M for any k ∈ N

for some positive constant M ; hence, by the superlinear growth of φ, there exist a
subsequence

(
ukj
)
j∈N and v ∈W 1,p(Ω,R) such that

ukj ⇀ v in W 1,p(Ω,R).(4.5)

By weak lower semicontinuity of I (Theorem 3.1), v belongs to S(P). By Propo-
sition 4.7, Dukj = Dv almost everywhere in Ω − E and, for almost every x ∈
E, Dukj (x), Dv(x) ∈ (⋃si=1 F

i
0

) ⊆ B(0, R) for some R > 0; hence the sequence(
ukj − v

)
j∈N belongs to W 1,∞

0 (Ω,R) and ‖ukj − v‖W 1,∞
0 (Ω,R) ≤ R. Consequently

we may extract a subsequence that we still call (ukj − v), weakly* converging in

W 1,∞
0 (Ω,R); by (4.5) its weak* limit must be zero and then, by the Rellich–Kondrachov

compactness theorem we have (ukj − v) → 0 in L∞(Ω,R) as j → ∞. This implies

u(x) = v(x) for almost every x ∈ Ω and then u is a solution of P.
Proposition 4.12. For every α > 0, Sα is relatively open in S(P).
Proof. Fix α > 0; we prove that S(P)−Sα is closed. Let (uk)k∈N be a sequence in

S(P)− Sα converging in L1(Ω,R) to some u. Extracting if necessary a subsequence,
we may assume that for some j ∈ {1, . . . , N}, L(uk, E

j) ≥ α for every k ∈ N. By
the same argument used in the proof of Proposition 4.11 we infer the existence of
a subsequence that we still call (uk)k∈N such that uk ⇀ u in W 1,p(Ω,R). Hence

u belongs to S(P) and ‖Duk − Du‖L∞(Ω,R) ≤ R, where R > 0 is the radius of a
ball containing ∪Ni=1F

i
0. Extracting if necessary a subsequence we may assume that

(Duk−Du)
∗
⇀ 0 in L∞(Ω,R) so that, in particular, remarking that |Duk| and |Du| are

bounded by R on each set Ei (i ∈ {1, . . . , N}), (Duk)
∣∣
Ej

∗
⇀ (Du)

∣∣
Ej

in L∞(Ej ,R).
Hence, by point (iv) of Proposition 2.8,

L(u,Ej) ≥ lim sup
k→∞

L(uk, E
j) ≥ α.

Hence u belongs to S(P)− Sα and the statement is proved.
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In the following we shall consider S(P) endowed with the distance d(·, ·).
The following proposition is an adaptation of our case of the approximation lemma

proved in [DP2].
Proposition 4.13. Let u ∈ S(P), j ∈ {1, . . . , N}. Assume that the set

Hj = {x ∈ Ω : Du(x) ∈ int(F j0 )}

has positive measure.
Then there exists Ej0 ⊆ Hj with mn(Hj − Ej0) = 0 such that, given ε > 0, the

following conditions hold:
(i) For any y ∈ Ej0 there exist s0

y > 0, a family
{
A(y,s), s ∈ (0, s0

y)
}

of compact

subsets of Ej, and a family
{
u(y,s), s ∈ (0, s0

y)
}

of elements of S(P), satisfying
the following properties:

u(y,s) − u ∈W 1,∞
0 (Ω,R) ∀s ∈ (0, s0

y),(4.6)

u(y,s) = u a.e. in Ω−A(y,s) ∀s ∈ (0, s0
y),(4.7)

‖u(y,s) − u‖L∞(Ω) ≤ ε ∀s ∈ (0, s0
y),(4.8)

Du(y,s) = Du a.e. in Ω−A(y,s) ∀s ∈ (0, s0
y),(4.9)

Du(y,s) ∈ extr(K) a.e. in A(y,s) ∀s ∈ (0, s0
y),(4.10) ∫

Ω

Du(y,s)(x)dx =

∫
Ω

Du(x)dx ∀s ∈ (0, s0
y).(4.11)

(ii) The family
{
A(y,s), s ∈ (0, s0

y), y ∈ A0

}
is a Vitali covering of Ej0.

Proof. First, we suppress the dependence on j and set

E0 := {y ∈ H : u is differentiable at y}.(4.12)

By Theorem 1, p. 235, of [EG], mn(H − E0) = 0. We fix y ∈ E0 and proceed to the
construction of A(y,s) and of u(y,s); for the sake of simplicity we omit the dependence
on y writing s0, As, and us instead of s0

y, A(y,s), and u(y,s), respectively.
Let ρ > 0 be such that B(y, ρ) ⊆ Ω. Since Du(y) ∈ int(F0), by Carathéodory’s

theorem (see [R, p. 155]) there exists a set

{vj , j = 0, 1, . . . , n} ⊆ extr(F0)(4.13)

such that Du(y) ∈ int(co({vj , j = 0, 1, . . . , n})).
Define the set

P1 := {z ∈ Rn : 〈vj −Du(y), z〉 ≤ 1, j = 0, . . . , n}

and, for any r > 0, set Pr = rP1 := {w ∈ Rn : w = rz, z ∈ P1}. We notice that

Pr = {z ∈ Rn : 〈vj −Du(y), z〉 ≤ r, j = 0, . . . , n},
∂Pr = {z ∈ Rn : 〈vj −Du(y), z〉 = r for some j = 0, . . . , n}.(4.14)

It is easy to see that, for any r > 0, Pr is a compact neighborhood of the origin, and,
in particular, there exist two positive numbers d,D such that

0 < d < 1 < D and B(0, d) ⊆ P1 ⊆ B(0, D).(4.15)
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Now, for s > 0, we define the map ws : Rn → R by setting

ws(x) := max
0≤j≤n

{〈vj −Du(y), x− y〉} − s.(4.16)

It is easy to check that ws is a piecewise affine continuous map belonging to
W 1,∞

loc (Rn,R); moreover, recalling (4.13) and (4.14) we have that

ws(x) ≤ 0 if and only if x ∈ y + Ps,

ws(x) = 0 if and only if x ∈ y + ∂Ps.
(4.17)

In addition

ws(x) ≥ s ∀x ∈ y + ∂P2s,(4.18)

while (see [C1])

Dws(x) ∈ {vj −Du(y), j = 0, 1, . . . , n} for a.e. x ∈ Rn.(4.19)

Claim 4.14. There exists s1 > 0 such that, for every s ∈ (0, s1) and ∀x ∈ y+∂P2s,

u(x) < u(y) + 〈Du(y), x− y〉+ ws(x).(4.20)

Proof of Claim 4.14. Since u is differentiable at y (recall (4.12)) we may choose
s1 > 0 in such a way that ∀x ∈ B(y, 2s1D),∣∣∣∣u(x)− u(y)− 〈Du(y), x− y〉

|x− y|
∣∣∣∣ ≤ 1

4D
.

Hence, for any s ∈ (0, s1), remarking that y + P2s ⊆ B(y, 2sD) ⊆ B(y, 2s1D),

u(x)− u(y)− 〈Du(y), x− y〉 ≤ 1

4D
(2sD) =

s

2
∀x ∈ y + P2s.

Since, by (4.18), ws(x) ≥ s for any x ∈ y + ∂P2s, the claim is proved.
Now we fix a positive s0 such that

s0 < min

{
s1,

ρ

2D
,

ε

4diam(F0)D

}
and define the map ũs : y + P2s → R, by

ũs(x) := min {u(x), u(y) + 〈Du(y), x− y〉+ ws(x)} , x ∈ y + P2s.(4.21)

We set also

As := {x ∈ y + P2s : ũs(x) = u(y) + 〈Du(y), x− y〉+ ws(x)} .(4.22)

First, we notice that, by Proposition 2.1, ũs belongs to W 1,p(Ω,R). We recall that
y + P2s ⊆ B(y, 2sD), that s < s0, and that B(y, 2s0D) ⊆ B(y, ρ) ⊆ Ω; hence
y+ int(P2s) ⊆ Ω and, by Proposition 2.1, ũs belongs to W 1,p((y+P2s),R). Then it is
continuous and, consequently, the set As turns out to be a compact subset of y+P2s.
Moreover

∂As ⊆ {x ∈ y + P2s : ũs(x) = u(x)}
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and

As ⊆ y + int(P2s).(4.23)

Indeed, assuming by contradiction the existence of some x ∈ As∩(y+∂P2s) we would
have, by (4.20) and (4.23),

u(y) + 〈Du(y), x− y〉+ ws(x) = ũ(x) < u(y) + 〈Du(y), x− y〉+ ws(x).

We have so proved that u and ũs agree on the open set int(y+P2s)−As ⊆ Ω; hence,
by (4.21), (4.22), and (4.24),

ũs − u ∈W 1,p
0 (y + int(P2s),R).(4.24)

Moreover, by Proposition 2.1, we have

Dũs(x) =

Du(x), x ∈ (y + P2s)−As,

Du(y) +Dws(x), x ∈ As.
(4.25)

Now we define the map us by setting

us(x) :=

 ũs(x), x ∈ (y + P2s),

u(x), x ∈ Ω− (y + P2s).
(4.26)

Claim 4.15. The families
{
As, s ∈ (0, s0)

}
and

{
us, s ∈ (0, s0)

}
satisfy (4.6)–

(4.11).
Proof of Claim 4.15. By (4.23), (4.24), and (4.26), prolonging the map ũs − u

by zero outside (y + P2s) we may write us = u+ (us − u)χ(y+P2s). Consequently, us
belongs to W 1,p(Ω,R) and

us − u ∈W 1,p
0 (Ω,R).(4.27)

Hence us belongs to S(P) and (4.7) follows easily from (4.21), (4.23), and (4.26).
Moreover, by Proposition 2.1, we have

Dus(x) :=

Dũs(x), x ∈ (y + P2s),

Du(x), x ∈ Ω− (y + P2s).
(4.28)

Hence (4.9) holds trivially, while (4.19), (4.25), and (4.28) imply (4.10).
By (4.27) and (4.9), applying the divergence theorem, we have∫

Ω

(Dus(x)−Du(x)) dx =

∫
As

(Dus(x)−Du(x)) dx = 0,

i.e., (4.11). This last fact implies that us belongs to S(P); indeed recalling (4.25),
(4.28), and that g∗∗ is affine on F0, we have, by Jensen’s inequality,

1

mn(As)

∫
As

g∗∗(Dus(x))dx = g∗∗
(

1

mn(As)

∫
As

Dus(x)dx

)
= g∗∗

(
1

mn(As)

∫
As

Du(x)dx

)
≤
(

1

mn(As)

∫
As

g∗∗(Du(x))dx

)
.
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Hence

I(us) =

∫
Ω−As

g∗∗(Dus(x))dx+

∫
As

g∗∗(Dus(x))dx

≤
∫

Ω−As
g∗∗(Du(x))dx+

∫
As

g∗∗(Du(x))dx = m.

Since us belongs to S(P) and Dus(x) ∈ F0 for almost every x ∈ As it follows that
As ⊆ E. Hence we may infer that us − u belongs to W 1,∞

0 (Ω,R) and that |Dus(x)−
Du(x)| ≤ 2diam(F0) for almost every x ∈ Ω. Then, recalling that Dus(x)−Du(x) 6= 0
only for x ∈ y + P2s ⊆ B(y, 2sD), we have, for every s ∈ (0, s0),

|us(x)− u(x)| ≤ 4diam(F0)sD ≤ ε.

Hence (4.6) and (4.8) are proved.
Claim 4.16. Point (ii) of Proposition 4.13 holds true.
Proof of Claim 4.16. First note that, given η > 0, we have that

ws(x) ≥ ηs− s ∀x ∈ y + Pηs.

Choose η0 sufficiently small so that∣∣∣∣u(x)− u(y)− 〈Du(y), x− y〉
|x− y|

∣∣∣∣ ≤ 1

for any x ∈ B(y, η0sD). Then fix η < min{η0,
1

2+2D}; we have, for any x ∈ y+Pηs ⊆
B(y, ηsD) ⊆ B(y, η0sD),

u(x)− u(y)− 〈Du(y), x− y〉 − ws(x) ≥ −ηsD − ηs+ s ≥ s

2
.

This implies that any x ∈ y + Pηs belongs to As; hence,

B(y, ηsd) ⊆ y + Pηs ⊆ As ⊆ y + P2s ⊆ B(y, 2sD) ∀s ∈ (0, s0).(4.29)

Now we recall that the construction depends on y ∈ E0 and set

A(y,s) := As and u(y,s) := us.

In general (4.29) takes the form

B(y, ηysdy) ⊆ y + Pηys ⊆ A(y,s)y + P2s ⊆ B(y, 2sDy) ∀s ∈ (0, s0
y),(4.30)

where ηy, dy, Dy, and s0
y are suitable positive numbers satisfying the same require-

ments of η, d,D, and s0. Now we observe that for any y ∈ E0, A(y,s) is a compact
subset of Ω and that, by (4.30),

mn(A(y,s))

mn(B(y, 2sD))
≥ mn(B(y, ηysdy))

mn(B(y, 2sD))
≥
(
ηydy
2Dy

)n
∀s ∈ (0, s0

y).

This inequality, together with (4.30), shows that
{
A(y,s), s ∈ (0, s0

y), y ∈ E0

}
is a Vitali

covering of E0.
Proposition 4.17. For any α > 0 the set Sα is dense in S(P).
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Proof. Let ε > 0 and u ∈ S(P) be given. We want to construct v ∈ Sα such that
‖u− v‖L1(Ω,R) ≤ ε. Suppose first that, for any i ∈ {1, . . . , N},

mn

({x ∈ Ei : Du(x) ∈ int(F i0)}) = 0.(4.31)

Recalling the definition of Ei and point (iv) of Proposition 2.6, we imply that Du ∈
extr(F i0) almost everywhere in Ei and then, by point (ii) of Proposition 2.8, L(u,Ei) =
0 for any i ∈ {1, . . . , N}. In this case we set v = u and there is nothing to prove.

Suppose now that (4.31) does not hold. Renumbering the indices, we may assume
that for some P ≤ N ,

mn

({x ∈ Ei : Du(x) ∈ intF i0}
)
> 0 for any i ∈ {1, . . . , P}(4.32)

and that

mn

({x ∈ Ω : Du(x) ∈ intF i0}
)

= 0 for any i ∈ {P + 1, . . . , N}.
This last inequality implies, as above, that L(u,Ei) = 0 for any i ∈ {P+1, . . . , N}.

We consider then the other indices. Set

Hi := {x ∈ Ei : Du(x) ∈ intF i0}, i ∈ {1, . . . , P}.
For any i ∈ {1, . . . , P} we apply Proposition 4.13, with ε

mn(Ω) in place of ε, obtaining

sets Ei0 ⊆ Hi such that

mn(Hi − Ei0) = 0(4.33)

and families {
Ai(y,s), s ∈ (0, s0

y), y ∈ Ei0,
}
, i ∈ {1, . . . , P},{

ui(y,s), s ∈ (0, s0
y), y ∈ Ei0,

}
, i ∈ {1, . . . , P},

satisfying (4.6)–(4.11), so that, in particular,

‖ui(y,s) − u‖L∞(Ω) ≤ ε

mn(Ω)
.(4.34)

By the Vitali covering theorem there exists a finite subfamily{
Ai(yj ,sj), s ∈ (0, s0

yj ), yj ∈ Ei0, j ∈ {1, . . . , `i},
}
, i ∈ {1, . . . , P},

such that

Ai(yj ,sj)
⋂
Ai(yk,sk) = ∅ ∀j, k ∈ {1, . . . , `i}, j 6= k,(4.35)

and

mn

(
Ei0 −Gi

) ≤ α

2diam(F i0)
,(4.36)

where we have set

Gi :=

`i⋃
j=1

Ai(yj ,sj).(4.37)
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Claim 4.18. Let i,m ∈ {1, . . . , P}, i 6= m. Then

Ai(yj ,sj)
⋂
Am(yk,sk) = ∅ ∀j ∈ {1, . . . , `i} ∀k ∈ {1, . . . , `m}.(4.38)

Proof of Claim 4.18. Keeping the index i fixed, we define

vi(x) :=


u(x) for x ∈ Ω−Gi,

ui(yj ,sj)(x) for x ∈ Ai(yj ,sj) for some index j ∈ {1, . . . , `i}.

We have to show that this definition is well posed, i.e., that vi belongs to W 1,p(Ω,R).
By (4.35), recalling the compactness of the sets Ai(y,s), we may find open disjoint sets

Λij , j ∈ {1, . . . , `i} such that

Ai(yj ,sj) ⊆ Λij ⊆ Λij ⊆ Ω.

Recalling (4.6) and (4.7), we have

W 1,p(Ω,R) 3 ui(yj ,sj) = u+ (ui(yj ,sj) − u) = u+ (ui(yj ,sj) − u)χΛi
j
;

hence (ui(yj ,sj) − u)χΛi
j
∈W 1,p(Ω,R) and, consequently,

vi = u+

`i∑
j=1

(ui(yj ,sj) − u)χΛi
j

belongs to W 1,p(Ω,R). Moreover, by (4.6) and (4.35), vi − u ∈W 1,∞
0 (Ω,R) and then

vi belongs to W.
Recalling (4.28), we have

Dvi(x) :=


Du(x) for x ∈ Ω−Gi,

Dui(yj ,sj)(x) for x ∈ Ai(yj ,sj) for some index j ∈ {1, . . . , `i},

and, by (4.11), ∫
Ai

(yj,sj)

Dvi(x)dx =

∫
Ai

(yj,sj)

Du(x)dx.

This implies that

(4.39)∫
Gi
Dvi(x)dx =

`i∑
j=1

∫
Ai

(yj,sj)

Dvi(x)dx =

`i∑
j=1

∫
Ai

(yj,sj)

Du(x)dx =

∫
Gi
Du(x)dx.

By (4.10) we have that

Dvi(x) ∈ extr(F i0) for a.e. x ∈ Gi;(4.40)



FUNCTIONALS OF THE GRADIENT 397

recalling that g∗∗ is affine on F i0 (point (vi) of Proposition 2.6), we have, by Jensen’s
inequality by (4.39) and (4.40),

1

mn(Gi)

∫
Gi
g∗∗(Dvi(x))dx = g∗∗

(
1

mn(Gi)

∫
Gi
Dvi(x)dx

)

= g∗∗
(

1

mn(Gi)

∫
Gi
Du(x)dx

)

≤ 1

mn(Gi)

∫
Gi
g∗∗(Du(x))dx;

i.e., ∫
Gi
g∗∗(Dvi(x))dx ≤

∫
Gi
g∗∗(Du(x))dx.

This last inequality, the definition of vi, and the convexity of g∗∗ imply that

I(vi) =

∫
Gi
g∗∗(Dvi(x))dx+

∫
Ω−Gi

g∗∗(Du(x))dx ≤
∫

Ω

g∗∗(Du(x))dx = m.

Hence vi belongs to S(P) and, by (4.40) and point (ii) of Remark 4.6,

Gi ⊆ Eiv ⊆ Ei;(4.41)

i.e., by (4.37),

Ai(yj ,sj) ⊆ Ei ∀j ∈ {1, . . . , `i}.

Recalling (4.4) we conclude that Ai(yj ,sj) ∩ Em = ∅ for any j ∈ {1, . . . , `i} and,

conversely, that Am(yk,sk) ∩ Ei = ∅ for any k ∈ {1, . . . , `m}. Hence, again by (4.4),

(4.38) holds true, and the claim is proved.
Now we define

v(x) :=


u(x) for x ∈ Ω−

(⋃P
i=1G

i
)
,

ui(yj ,sj)(x) for x ∈ Ai(yj ,sj)
for some indices j ∈ {1, . . . , `i} and i ∈ {1, . . . , P}.

By virtue of Claim 4.18 we may apply to v the same argument used for map vi

in the proof of Claim 4.19, obtaining that v belongs to S(P).
Claim 4.19. The map v belongs to Sα and ‖u− v‖L1(Ω,R) ≤ ε.
Proof of Claim 4.19. By the definition of v and by point (4.6) of Proposition 4.12

we have that u− v belongs to W 1,∞
0 (Ω,R); moreover, by (4.8) and (4.34),

‖ui(yj ,sj) − v‖L∞(Ω,R) ≤ ε

mn(Ω)
∀j ∈ {1, . . . , `i} ∀i ∈ {1, . . . , P}.

Hence ‖u− v‖L1(Ω,R) ≤ ε.
We have to prove now that

L(v,Ei) < α ∀i ∈ {1, . . . , N}.
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By (4.33), recalling Remark 4.9, we have that

L(v,Ei) = 0 ∀i ∈ {P + 1, . . . , N}.
Take then i ∈ {1, . . . , P}. By the definition of v, by (4.10) and (4.32), we have that

Dv(x) ∈ extr(F i0) for a.e. x ∈ Gi ∪ (Ei −Hi);

hence, again by Proposition 2.8,∫
Gi
h(Dv(x), F i0)dx =

∫
Ei−Hi

h(Dv(x), F i0)dx = 0.(4.42)

Then, by (4.33), (4.36), (4.41), and (4.42),

L(v,Ei) =

∫
Ei
h(Dv(x), F i0)dx

≤
∫
Ei−Hi

h(Dv(x), F i0)dx+

∫
Hi−Ei0

h(Dv(x), F i0)dx

+

∫
Ei0−Gi

h(Dv(x), F i0)dx+

∫
Gi
h(Dv(x), F i0)dx

=

∫
Ei0−Gi

h(Dv(x), F i0)dx

≤ diam(F i0)mn(Ei0 −Gi) ≤
α

2
< α.

Proof of Theorem 3.2. By Baire’s theorem and by Propositions 4.11, 4.12, and
4.13, we have that

S0 :=
⋂
k∈N
S 1
k

is a dense subset of S(P). Take an element u ∈ S0. Clearly L(u,Ei) = 0 for any
i ∈ {1, . . . , N}; hence, recalling Remark 4.9,

Du(x) ∈ extr(F i0) for a.e. x ∈ Ei.(4.43)

Moreover, by Definition 4.5 and Proposition 4.7,

Du(x) ∈ Rn −
N⋃
i=1

F i0 for a.e. x ∈ Ω− E.(4.44)

Putting together (4.43) and (4.44) we have that

Du(x) ∈ Rn −
N⋃
i=1

int(F i0) for a.e. x ∈ Ω

and then, by point (iv) of Proposition 2.6,

g(Du(x)) = g∗∗(Du(x)) for a.e. x ∈ Ω.

Since u is a solution of P, this implies that

I(u) = I(u),

and, recalling Theorem 3.1, we conclude that u is a solution of P.
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SECOND ORDER HAMILTON–JACOBI EQUATIONS IN HILBERT
SPACES AND STOCHASTIC BOUNDARY CONTROL∗
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Abstract. The paper is concerned with fully nonlinear second order Hamilton–Jacobi–Bellman–
Isaacs equations of elliptic type in separable Hilbert spaces which have unbounded first and second
order terms. The viscosity solution approach is adapted to the equations under consideration and
the existence and uniqueness of viscosity solutions are proved. A stochastic optimal control problem
driven by a parabolic stochastic PDE with control of Dirichlet type on the boundary is considered.
It is proved that the value function of this problem is the unique viscosity solution of the associated
Hamilton–Jacobi–Bellman equation.

Key words. stochastic boundary control, Hamilton–Jacobi equations, viscosity solutions

AMS subject classifications. 49L25, 93E20, 35R15

PII. S0363012997324909

1. Introduction. In this paper we study second order infinite dimensional
Hamilton–Jacobi–Bellman–Isaacs equations

λv(x) +
〈
Ax,Dv(x)

〉
+H

(
x,Dv(x), D2v(x)

)
= 0, x ∈ X,(1.1)

and their relationship with stochastic optimal control problems. Above, X is a real,
separable Hilbert space, D denotes the Fréchet derivative, λ is a positive number,
and −A : D(A) ⊂ X → X is a closed linear operator that generates an analytic
C0–semigroup e−tA on X. Moreover, we assume that A is positive and self-adjoint
and has compact resolvent R(µ,A), and that H : X1 → R, where X1 ⊂ X×X×Σ(X)
(Σ denotes the space of all bounded, self-adjoint linear operators from X to itself).
X1 will be specified later. We call such equations unbounded.

Equations of this type arise in stochastic optimal control problems driven by
parabolic stochastic PDE, for instance, when the control is given at the boundary
with Dirichlet or Neumann type conditions (see section 5.4) and the stochastic term
is given by the so-called “white noise.” This has been one of the main motivations of
our study. Our approach is very flexible since the model control problem we study in
section 5 includes both distributed and boundary controls and applies also to cases
with purely distributed controls (infinite or finite dimensional). In this paper we define
a suitable notion of solution of (1.1), prove existence and uniqueness of solutions, and
show that if (1.1) comes from a stochastic optimal control problem the value function
is its unique solution. These results are general and apply also to equations with no

∗Received by the editors July 23, 1997; accepted for publication (in revised form) August 21, 1998;
published electronically January 11, 2000. Most of this research was completed when the authors
visited Scuola Normale Superiore, Pisa, Italy, and when the first author visited Georgia Institute of
Technology, Atlanta, GA.

http://www.siam.org/journals/sicon/38-2/32490.html
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“sup” structure, in particular to Isaacs’ equations. Therefore, instead of studying a
boundary control problem in section 5 we could study a differential game problem.

To have an idea of what we have in mind let us look at the following stochastic
optimal control problem (P0) that we will study in detail in section 5.4. Let Ω ⊂ Rn be
an open, connected, and bounded set with smooth boundary. Consider the stochastic
controlled PDE

∂x

∂t
(t, ξ) = ∆ξx(t, ξ) + f1

(
x(t, ξ), α1(t, ξ)

)
+f2

(
x(t, ξ), α1(t, ξ)

)
ẆQ(t, ξ) in (0,∞)× Ω,

x(0, ξ) = x0(ξ) on Ω,

x(t, ξ) = α2(t, ξ) on (0,∞)× ∂Ω,

(1.2)

where WQ is a Wiener process with values in L2(Ω) and with covariance operator
Q, x0 ∈ L2(Ω), and the controls α1 : (0,∞) → L2(Ω), α2 : (0,∞) → L2(∂Ω) are
measurable and adapted to the Wiener process WQ, and f1, f2 : R2 → R. In this
equation we have two control functions. The first, indicated by α1, is the “distributed”
control, while the other, indicated by α2, is the “boundary” control. The Cauchy
problem (1.2) may be rewritten in an abstract form as explained in section 5.

Consider now the problem of minimizing the cost functional

J(x0;α1, α2) = E
∫ +∞

0

e−λtL
(
x(t;x0, α1, α2), α1(t), α2(t)

)
dt,

where λ > 0, L : L2(Ω) × L2(Ω) × L2(∂Ω) → R is a bounded, uniformly continuous
function and x(· ;x0, α) is the solution of the Cauchy problem (1.2). The value function
of this problem is defined as

v(x) = inf J(x;α1, α2),

where the infimum is taken over all admissible controls (α1, α2) considered above.
We expect that the function v is a solution (in a suitable sense) of (1.1), where the
Hamiltonian H depends on the data of the problem (see section 5.3). We point out
here that the presence of the boundary control term in the state equation (1.2) causes
H(x,Dv(x), D2v(x)) to be defined only if Dv(x) ∈ D(Aβ), where A is the Laplace
operator with Dirichlet boundary conditions and β ∈ ( 3

4 , 1). Clearly, in the case of
different boundary conditions, different values of β have to be considered; for example,
the case of Neumann boundary conditions (which also fits in our assumptions) gives
β ∈ ( 1

4 , 1). This “bad behavior” appears as a result of “transforming” the boundary
control into a distributed one, as it is explained, e.g., in Bensoussan et al. [3] and
Cannarsa and Tessitore [10].

To deal with the difficulties posed by this problem we introduce a change of
variables which is similar to the one used by Cannarsa and Tessitore in [10] to study
a first order Hamilton–Jacobi equation associated with a boundary control problem
with Dirichlet boundary conditions. Given a solution x(·) of the state equation (1.2),

we set y(·) = A−
β
2 x(·) for a chosen β ∈ (0, 1), and we study a new control problem

(P1) with cost J(A
β
2 y, α) and state y(·). We then obtain a different Hamilton–Jacobi–

Bellman equation,

λu(y) + 〈Ay,Du(y)〉+H
(
A
β
2 y,A−

β
2Du(y), A−

β
2D2u(y)A−

β
2

)
= 0,(1.3)
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which can also be obtained directly from (1.1) by making the change of variable

y = A−
β
2 x and setting u(y) = v(A

β
2 y). This equation contains fewer unbounded terms

and is easier to handle in spite of the additional difficulty created by the presence of

the unbounded term A
β
2 y. For (1.3) we are able to prove existence and uniqueness of

viscosity solutions. Then, since (1.1) and (1.3) are related by the change of variable

u(y) = v(A
β
2 y), we define a viscosity solution of (1.1) as a function v such that

u(·) def
= v(A

β
2 ·) is a viscosity solution of (1.3). The function v is uniquely determined

once u has been characterized on D(A
β
2 ). This is the idea behind the definition of

viscosity solution we employ and we will make it rigorous in section 3. The definition
is meaningful since in the case when (1.1) comes from a stochastic control problem, v
and u can be respectively characterized as the value functions of problems (P0) and
(P1).

The techniques of this paper could also be employed to study evolution equations
of parabolic type and stochastic boundary control problems with finite horizon (see
Cannarsa and Tessitore [9] for an analogue in the first order case). Moreover, some of
the assumptions made throughout the paper can be relaxed but we do not attempt
to do so here.

Finally we observe that the problems of optimality conditions and synthesis of
optimal controls for stochastic control problems in infinite dimensions when the value
function is not regular are open. Even in the case of finite dimensional stochastic
control problems very few results are available (see [37]). These questions will be
studied in the future. We briefly discuss what is known in section 5.5.

There is an increasing interest in and a growing literature on Hamilton–Jacobi
equations in infinite dimensions. These equations were first studied by Barbu and
Da Prato (see, e.g., [2]), setting the problem in classes of convex functions and using
semigroup and perturbation methods (see also Da Prato [15] and Havarneanu [28]).
Much progress has been made recently due to the introduction of the notion of vis-
cosity solutions. We refer the reader to Crandall and Lions [14], Ishii [31], Soner
[42], and Tataru [44, 45, 46] for the first order equations. As regards the second or-
der, “bounded” equations have been investigated by P.-L. Lions in [39, Parts I and
III], and “unbounded” in [39, Part II], Ishii [32], Kocan and Świȩch [34], and Świȩch
[43]. Except for [32] the unboundedness in the studied equations was always com-
ing from the term 〈Ax,Du〉. This paper is concerned with equations that exhibit
“bad behavior” in the Hamiltonian H also in Du and D2u.

To compare our work with the existing literature let us look at the following
model equation:

λv(x)− 1

2
TrQD2v(x) +

〈
Ax,Dv(x)

〉
+H

(
x,Dv(x)

)
= 0, x ∈ X,(1.4)

where Q : X → X is a self-adjoint nonnegative linear operator. Leaving aside the
unboundedness of the term 〈Ax,Dv(x)〉 that has been investigated in various cases,
let us concentrate our attention on the other terms. If Q is a nuclear operator, the
term TrQC is well defined for all C ∈ Σ(X), and (1.4) is well studied. If Q is not
nuclear, TrQC does not make sense for many operators, notably for C = I. However,
equations like this arise in stochastic optimal control of infinite dimensional systems
driven by “nondegenerate processes,” in particular by the so-called “white noise”
(see Albeverio and Röckner [1], and Jona Lasinio and Mitter [33]). Concerning the
“bad behavior” with respect to Dv, in the case of Bellman equations (1.4) associated
with stochastic boundary control problems, H is well defined only on X × D(Aβ)
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(where D(Aβ) denotes the domain of the β-fractional power of A for a suitable
β ∈ (0, 1)), and hence the term H(x,Dv(x)) is not well defined even if v is Fréchet
differentiable. To our knowledge equations of this kind have been studied only in the
first order case (i.e., when Q = 0) by Cannarsa, Gozzi and Soner [8] and Cannarsa
and Tessitore [10].

In the case when Q is not nuclear and H is continuous in X×X, Hamilton–Jacobi
equations (1.4) and their parabolic analogues have been recently studied by Cannarsa
and Da Prato [4, 5, 7], Gozzi [25, 26], and Gozzi and Rouy [27] from the point of view
of strong solutions (which are in particular differentiable in the space variable x). The
theory is based on stochastic representation of solutions and uses techniques related
to properties of transition semigroups in infinite dimensions recently developed by
Da Prato and Zabczyk [17, 18]. Another approach to second order Hamilton–Jacobi
equations in infinite dimensions is presented by Chow and Menaldi in [11].

The plan of the paper is the following. In section 2 we give some preliminaries. In
section 3 and section 4 we present the definition of a viscosity solution and we prove
a general uniqueness and existence result for the transformed equation (1.3) and for
the original one (1.1), respectively. Section 5 is devoted to the control problem (P0).
In sections 5.1 and 5.2 we introduce the problem and we prove various estimates
for the solutions of the transformed state equation. In section 5.3 we prove that
the value function of the control problem (P0) is the unique viscosity solution of
the associated Hamilton–Jacobi–Bellman equation, while in section 5.4 we present
examples of stochastic boundary control problems. Finally, in section 5.5 we briefly
discuss the relationship between the notions of viscosity and strong solutions and the
problem of synthesis of optimal controls.

We refer the reader to the survey paper of Crandall, Ishii, and Lions [12] for the
introduction to the notion of viscosity solutions and a complete treatment of finite
dimensional equations and to the book of Fleming and Soner [24] for the connection
with stochastic optimal control.

2. Notation and preliminaries. Throughout this paper X will denote a real
separable Hilbert space endowed with the inner product 〈·, ·〉 and the norm | · |. We
denote by L(X) the Banach space of the continuous linear operators T : X → X with
the operator norm ‖ · ‖, and we set

Σ(X) =
{
T ∈ L(X), T self-adjoint

}
.

Moreover, we denote by L2(X) the set of all Hilbert–Schmidt operators T : X → X.
It is well known that L2(X) is a Hilbert space with the norm

‖T‖2L2(X) =
∞∑
k=1

|Tek|2,

where {ek}k∈N is any orthonormal basis of X.

For any Hilbert spaces X and Y , we denote by B(X,Y ), UC (X,Y ), and
BUC (X,Y ) the Banach space of all functions ϕ : X → Y which are, respectively,
bounded, uniformly continuous, uniformly continuous and bounded on X with the
usual norm

‖ϕ‖ = sup
x∈X
|ϕ(x)|Y .
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For k ∈ N, we denote by BUC k(X,Y ) the set of all functions ϕ : X → Y which are
uniformly continuous and bounded on X together with all their Fréchet derivatives
up to the order k. If Y = R, then we write BUC k(X) instead of BUC k(X,R).

We say that a function ρ : [0,+∞) → [0,+∞) is a modulus if ρ is continuous,
nondecreasing, subadditive, and ρ(0) = 0. Subadditivity in particular implies that for
all ε > 0, there exists Cε > 0 such that

ρ(r) ≤ ε+ Cεr for every r ≥ 0.

Moreover, a function ρ : [0,+∞) × [0,+∞) → [0,+∞) is a local modulus if ρ is
continuous, nondecreasing in both variables, subadditive in the first variable, and
ρ(0, r) = 0 for every r ≥ 0.

For any ϕ ∈ UC (X), we denote by ρϕ a continuity modulus of ϕ, i.e., a modulus
such that |ϕ(x) − ϕ(y)| ≤ ρϕ(|x − y|) for every x, y ∈ X. We recall that, if ϕ ∈
UC (X,Y ), then its modulus of continuity always exists and so there exist positive
constants C0, C1 such that

|ϕ(x)|Y ≤ C0 + C1|x| for every x ∈ X.
We now briefly recall some properties of the stochastic convolution. Let (Ω,F ,

Ft,P) be a complete probability space with a normal filtration {Ft : t ≥ 0}, and let
W be a cylindrical Wiener process with respect to Ft (see [17, Chapter 4], for the
definition and properties of a cylindrical Wiener process W ).

Given T ∈ (0,+∞], let us denote by M0(0, T ;X) the space of all X-valued
processes measurable on (0, T ) and adapted to the filtration Ft and by M2(0, T ;X)
the space of the X-valued processes x such that x ∈M0(0, T ;X) and

E

(∫ T

0

|x(s)|2 ds
)
< +∞.

The result below can be found in [17, Theorem 7.6] and [18, Chapter 5].
Proposition 2.1. Let A : D(A) ⊂ X → X be the generator of a strongly

continuous semigroup etA on X. Assume that B : [0, T ] × X × Ω → L(X) is a
strongly continuous predictable process such that etAB(s, x, ω) is a Hilbert–Schmidt
operator for all s, t ∈ (0, T ], x ∈ X, ω ∈ Ω and

E
∫ T

0

∥∥etAB(s, x)
∥∥2

L2(X)
dt < +∞

uniformly in (s, x) ∈ [0, T ]×X. Then, setting

W̄ (t, x) =

∫ t

0

e(t−s)AB(s, x) dW (s),

we have that, for every x ∈ X,
(i) the process W̄ (·, x) is mean square continuous,
(ii) the process W̄ (·, x) has P-almost surely (a.s.) square integrable trajectories

and W̄ (·, x) ∈M2(0, T ;X),
(iii) if for some δ > 0

E
∫ T

0

t−δ
∥∥etAB(s, x)

∥∥2

L2
dt < +∞(2.1)
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uniformly in (s, x) ∈ [0, T ]×X, then W̄ (·, x) has continuous trajectories and

E
(

sup
0≤t≤T

|W̄ (t, x)|2
)
< +∞.

3. Definition of viscosity solution and a general existence and unique-
ness result for the transformed equation. In this section we study the “trans-
formed” equation (1.3). Note that, for the purpose of studying (1.1), we need only to
solve the transformed problem on D(Aβ/2), but since Hamilton–Jacobi equations of
this kind may be of independent interest, we investigate a general equation

λu(y) +
〈
Ay,Du(y)

〉
+G

(
y,Du(y), D2u(y)

)
= 0, y ∈ X.(3.1)

We assume the following.
Hypothesis 3.1. A : D(A) ⊂ X → X is a self-adjoint operator, there exists

a > 0 such that 〈Ax, x〉 ≥ a|x|2 for all x ∈ D(A), and A−1 is compact.
Remark 3.2. Hypothesis 3.1 implies in particular that −A is the infinitesimal

generator of an analytic semigroup with compact resolvent satisfying ‖e−tA‖ ≤ e−at

for all t ≥ 0 and that there is an orthonormal basis of X made of eigenvectors of A
such that the corresponding sequence of eigenvalues diverges to +∞ as n → ∞. It
also follows that for every θ ∈ [0, 1] there exists a constant Mθ > 0 such that∣∣Aθe−tAx∣∣ ≤Mθ

e−ta

tθ
|x| for every t > 0, x ∈ X.(3.2)

Moreover, for γ ∈ (0, 1] and α ∈ (0, γ), a well known interpolation inequality (see,
e.g., [41, pp. 73–74]) states that for every σ > 0 there exists Cσ > 0 such that

|Aαx| ≤ σ|Aγx|+ Cσ|x| for every x ∈ D(Aγ).(3.3)

LetX1 ⊂ X2 ⊂ · · · be finite dimensional subspaces ofX generated by eigenvectors
of A such that

⋃∞
N=1XN = X. Given N ∈ N, denote by PN the orthogonal projection

onto XN , let QN = I − PN , and let X⊥N = QNX. We then have an orthogonal
decomposition X = XN ×X⊥N and we will denote by xN an element of XN and by x⊥N
an element of X⊥N . For x ∈ X we will write x = (PNx,QNx). For γ > 0 we denote
by X−γ the completion of X in the norm |x|−γ = |A− γ2 x|. We make the following
assumptions about G.

Hypothesis 3.3.
(A0) There exists β ∈ (0, 1) such that the function G : D(A

β
2 )×D(A

β
2 )×Σ(X)→ R

is continuous (in the topology of D(A
β
2 )×D(A

β
2 )× Σ(X)).

(A1)

G(x, p, S1) ≤ G(x, p, S2) if S1 ≥ S2

for all x, p ∈ D(A
β
2 ).

(A2) There exists a modulus ρ such that∣∣G(x, p, S1)−G(x, q, S2)
∣∣

≤ ρ
((

1 +
∣∣A β

2 x
∣∣)|A β

2 (p− q)|+ (1 + |A β
2 x|2)‖S1 − S2‖

)
for all x, p, q ∈ D(A

β
2 ) and S1, S2 ∈ Σ(X).
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(A3) There exist 0 < η < 1− β and a modulus ω such that, for all N ≥ 1,

G

(
x,
A−η(x− y)

ε
, Z

)
−G

(
y,
A−η(x− y)

ε
, Y

)
≥ −ω

(
|A β

2 (x− y)|
(

1 +
|A β

2 (x− y)|
ε

))
for all x, y ∈ D(A

β
2 ) and Z, Y ∈ Σ(XN ) such that(

Z 0
0 −Y

)
≤ 2

ε

(
PNA

−ηPN −PNA−ηPN
−PNA−ηPN PNA

−ηPN

)
.(3.4)

(A4) For every R < +∞, |λ| ≤ R, p, x ∈ D(A
β
2 )

(3.5) sup
{|G(x, p, S + λQN )−G(x, p, S)| :

‖S‖ ≤ R,S = PNSPN
}→ 0 as N →∞.

Remark 3.4. By the properties of moduli, condition (A2) guarantees that there
exists a constant C such that, for every x, p, S,∣∣G(x, p, S)

∣∣ ≤ C (1 +
(
1 + |A β

2 x|)∣∣A β
2 p
∣∣+
(
1 + |A β

2 x|2)‖S‖)+
∣∣G(x, 0, 0)

∣∣.(3.6)

Some of the conditions above can be weakened; however, we want to keep the tech-
nicalities down. We refer the reader to [43] for techniques leading to possible gener-
alizations.

The definition of viscosity solution is motivated by [10].
Definition 3.5. We say that a function ϕ belongs to the space C̃2

−(X) (resp.,

C̃2
+(X)) if

(i) ϕ ∈ C2(X) and is weakly sequentially lower (resp., upper) semicontinuous
on X.

(ii) Dϕ ∈ UC (X,X) ∩UC (D(A
1
2−ε), D(A

1
2 )) for some ε = ε(ϕ) > 0.

(iii) D2ϕ ∈ BUC (X,Σ(X)).
Definition 3.6. Given δ > 0 and w,ϕ : X → R we say that a point y0 ∈ X

belongs to the set M+
δ (w,ϕ) if y0 is a point of a local maximum for the function

w − ϕ− δ

2
| · |2.

Similarly, we say that y0 belongs to M−δ (w,ϕ) if y0 is a point of a local minimum for
the function

w − ϕ+
δ

2
| · |2.

Definition 3.7. We say that a function w : X → R is a viscosity subsolution of
(3.1) if w is weakly sequentially upper semicontinuous on X, and for every ϕ ∈ C̃2

−(X)
and δ > 0,

(i) M+
δ (w,ϕ) ⊂ D(A

1
2 ),

(ii) for all y ∈M+
δ (w,ϕ),
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λw(y) +
〈
A

1
2 y,A

1
2Dϕ(y)

〉
+ δ|A 1

2 y|2 +G
(
y,Dϕ(y) + δy,D2ϕ(y) + δI

) ≤ 0.

We say that w is a viscosity supersolution of (3.1) if w is weakly sequentially lower
semicontinuous on X, and for every ϕ ∈ C̃2

+(X) and δ > 0,

(i) M−δ (w,ϕ) ⊂ D(A
1
2 ),

(ii) for all y ∈M−δ (w,ϕ),

λw(y) +
〈
A

1
2 y,A

1
2Dϕ(y)

〉− δ∣∣A 1
2 y
∣∣2 +G

(
y,Dϕ(y)− δy,D2ϕ(y)− δI) ≥ 0.

We say that w is a viscosity solution of (3.1) if it is both a viscosity subsolution and
a supersolution.

Theorem 3.8. Let Hypotheses 3.1 and 3.3 be satisfied. Then we have the follow-
ing.

Comparison: Let u,−v ≤M for some constant M . If u is a viscosity subsolution
of (3.1) and v is a viscosity supersolution of (3.1), then u ≤ v on X. Moreover, if u
is a viscosity solution then∣∣u(x)− u(y)

∣∣ ≤ m(|A− η2 (x− y)|)(3.7)

for all x, y ∈ X and some modulus m, where η is the constant in (A3).
Existence: If

sup

x∈D
(
A
β
2

) ∣∣G(x, 0, 0)
∣∣ = K <∞,(3.8)

then there exists a unique viscosity solution u ∈ BUC (X−η) of (3.1).
Proof. Comparison. Let ε, δ > 0. Put

Φ(x, y) = u(x)− v(y)−
∣∣A− η2 (x− y)

∣∣2
2ε

− δ

2
|x|2 − δ

2
|y|2.

Since u − v is bounded from above and weakly upper-semicontinuous in X × X, Φ
must attain its maximum at some point (x̄, ȳ) (which can be assumed to be strict by
subtracting, for instance, µ(|A−1(x − x̄)|2 + |A−1(y − ȳ)|2) and then letting µ → 0).
Moreover, standard considerations (see, for instance, [32]) yield that

lim
ε→0

lim sup
δ→0

( |A− η2 (x̄− ȳ)|2
ε

)
= 0(3.9)

and

lim
δ→0

(
δ|x|2 + δ|y|2) = 0 for every fixed ε > 0.(3.10)

We now fix N ∈ N. Then obviously〈
A−η(x− y), x− y〉 =

〈
PNA

−ηPN (x− y), x− y〉+
∣∣A− η2QN (x− y)

∣∣2,
and we have∣∣A− η2QN (x− y)

∣∣2 ≤ 2
〈
QNA

−ηQN (x̄− ȳ), x− y〉− 〈QNA−ηQN (x̄− ȳ), x̄− ȳ〉
+ 2
∣∣A− η2QN (x− x̄)

∣∣2 + 2
∣∣A− η2QN (y − ȳ)

∣∣2
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with equality if x = x̄, y = ȳ. Therefore, if we define

u1(x) = u(x)−
〈
x,QNA

−ηQN (x̄− ȳ)
〉

ε
+

〈
QNA

−ηQN (x̄− ȳ), x̄− ȳ〉
2ε

−
∣∣A− η2QN (x− x̄)

∣∣2
ε

− δ

2
|x|2

and

v1(y) = v(y)−
〈
y,QNA

−ηQN (x̄− ȳ)
〉

ε
+

∣∣A− η2QN (y − ȳ)
∣∣2

ε
+
δ

2
|y|2,

it follows that the function

Φ̃(x, y)
def
= u1(x)− v1(y)−

〈
PNA

−ηPN (x− y), x− y〉
2ε

(3.11)

always satisfies Φ̃ ≤ Φ and attains a strict global maximum at x̄, ȳ, where Φ̃(x̄, ȳ) =
Φ(x̄, ȳ). We now define, for xN , yN ∈ XN , the functions

ũ1(xN ) = sup
x⊥N∈X⊥N

u1

(
xN , x

⊥
N

)
, ṽ1(yN ) = inf

y⊥N∈X⊥N
v1

(
yN , y

⊥
N

)
.

Since u1 and −v1 are weakly upper semicontinuous on X, ũ1 and −ṽ1 are upper
semicontinuous on XN (see [13]). Moreover, by definition of u1 and −v1 and by the

form of Φ̃, it follows that

ũ1(PN x̄) = u1(x̄), ṽ1(PN ȳ) = v1(ȳ).(3.12)

Defining now the map ΦN : XN ×XN → R as

ΦN (xN , yN ) = ũ1(xN )− ṽ1(yN )−
〈
PNA

−ηPN (xN − yN ), xN − yN
〉

2ε

= sup
x⊥N , y

⊥
N∈X⊥N

Φ̃
((
xN , x

⊥
N

)
,
(
yN , y

⊥
N

))
,

it is not difficult to check that ΦN attains a strict global maximum over XN × XN

at (x̄N , ȳN ) = (PN x̄, PN ȳ). By a finite dimensional result (see [12]) for every n ∈ N
there exist points xnN , y

n
N ∈ XN such that

xnN → x̄N , y
n
N → ȳN , ũ1(xnN )→ ũ1(x̄N ), ṽ1(ynN )→ ṽ1(ȳN ) as n→∞

(3.13)

and there exist functions ϕn, ψn ∈ C2(XN ) such that ũ1 − ϕn, and −ṽ1 + ψn have
unique, strict, global maxima at xnN , and ynN respectively, and

Dϕn(xnN )→ 1

ε
PNA

−ηPN (x̄N − ȳN ),

Dψn(ynN )→ 1

ε
PNA

−ηPN (x̄N − ȳN ),

(3.14)

D2ϕn(xnN )→ ZN , D2ψn(ynN )→ YN ,(3.15)
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where ZN , YN satisfy (3.4). Consider finally the map ΦnN : X ×X → R defined as

ΦnN (x, y) = u1(x)− v1(y)− ϕn(PNx) + ψn(PNy).(3.16)

This map has the variables split and, by the definition of u1 and v1, attains its global
maximum (which we can assume to be strict) at some point (x̂n, ŷn). This point
depends also on N but we will drop this dependence since N is now fixed. Setting now

ϕN,n(x)
def
=

〈
x,QNA

−ηQN (x̄− ȳ)
〉

ε
+

∣∣A− η2QN (x− x̄)
∣∣2

ε
+ ϕn(PNx),

we easily see that ϕN,n ∈ C̃2
−(X) and we have from (3.16) that u(x)−ϕN,n(x)− δ

2 |x|2
has a maximum at x̂n. Therefore, by the definition of viscosity subsolution, x̂n ∈
D(A

1
2 ) and

λu(x̂n) +

〈
A

1
2 x̂n, A

1
2Dϕn(PN x̂

n) +
A

1
2−ηQN (x̄− ȳ)

ε
+

2A
1
2−ηQN (x̂n − x̄)

ε

〉

+ δ|A 1
2 x̂n|2 +G

(
x̂n, Dϕn(PN x̂

n) +
A−ηQN (x̄− ȳ)

ε
+

2A−ηQN (x̂n − x̄)

ε
(3.17)

+ δx̂n, D2ϕn(PN x̂
n) +

2A−ηQN
ε

+ δI

)
≤ 0.

We now would like to pass to the limit as n→∞ in the above inequality keeping
ε, δ,N fixed. To do this we have to justify a lot of convergencies. We start by observing
that setting

x̂n = (PN x̂
n, QN x̂

n), ŷn = (PN ŷ
n, QN ŷ

n) for every x⊥N , y
⊥
N ∈ X⊥N ,

we have

ũ1(PN x̂
n)− ṽ1(PN ŷ

n)− ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ u1(PN x̂
n, QN x̂

n)− v1(PN ŷ
n, QN ŷ

n)− ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ u1(xnN , x
⊥
N )− v1(ynN , y

⊥
N )− ϕn(xnN ) + ψn(ynN ).

Therefore taking suprema over x⊥N and y⊥N in the above inequality we obtain

ũ1(PN x̂
n)− ṽ1(PN ŷ

n)− ϕn(PN x̂
n) + ψn(PN x̂

n)

≥ u1(PN x̂
n, QN x̂

n)− v1(PN ŷ
n, QN ŷ

n)− ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ ũ1(xnN )− ṽ1(ynN )− ϕn(xnN ) + ψn(ynN ).

This implies that

PN x̂
n = xnN , PN ŷ

n = ynN , u1(x̂n) = ũ1(xnN ), v1(ŷn) = ṽ1(ynN ),

which, together with (3.13) and (3.12), yields

u1(x̂n) −→ u1(x̄), v1(ŷn) −→ u1(ȳ)(3.18)

as n→ +∞. Finally, since

u1(x̂n) = ũ1(PN x̂
n), v1(ŷn) = ṽ1(PN ŷ

n)
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and

u1(x̄) = ũ1(PN x̄), v1(ȳ) = ṽ1(PN ȳ),

formula (3.18), together with the weak upper semicontinuity of u1 and the weak lower
semicontinuity of v1, implies

x̂n −→ x̄, ŷn −→ ȳ(3.19)

as n → +∞. Therefore, using (3.19), (3.18), (3.6), (A0), and (3.3), it follows from

(3.17) that |A 1
2 x̂n| are bounded independently of n which implies, thanks to (3.19),

that x̄ ∈ D(A
1
2 ) and

A
1
2 x̂n ⇀ A

1
2 x̄(3.20)

as n→ +∞. Since A
β−1

2 and A−
η
2 are compact we conclude that, as n→ +∞,

A
β
2 x̂n = A

β−1
2

(
A

1
2 x̂n

)→ A
β
2 x̄ and A

1−η
2 x̂n → A

1−η
2 x̄.(3.21)

Using (3.14), (3.15), (3.20), (3.21), and the weak lower semicontinuity of norm we
thus obtain that〈
A

1−η
2 x̄,

A
1−η

2 (x̄− ȳ)

ε

〉
+ δ|A 1

2 x̄|2

≤ lim inf
n→∞

[〈
A

1
2 x̂n, A

1
2Dϕn(PN x̂

n) +
A

1
2−ηQN (x̄− ȳ)

ε
+

2A
1
2−ηQN (x̂n − x̄)

ε

〉
+ δ|A 1

2 x̂n|2
]
.

Therefore, letting n→∞ in (3.17) yields

λu(x̄) +

〈
A

1−η
2 x̄,

A
1−η

2 (x̄− ȳ)

ε

〉
+ δ|A 1

2 x̄|2

+G

(
x̄,
A−η(x̄− ȳ)

ε
+ δx̄, ZN +

2‖A−η‖QN
ε

+ δI

)
≤ 0.

(3.22)

We now eliminate terms with δ and N . Using (A2) we have

G

(
x̄,
A−η(x̄− ȳ)

ε
,ZN +

2‖A−η‖QN
ε

)
− ρ
(
dδ
(
1 + |A β

2 x|2))
≤ G

(
x̄,
A−η(x̄− ȳ)

ε
+ δx̄, ZN +

2‖A−η‖QN
ε

+ δI

)(3.23)

for some constant d > 0. Now, given τ > 0, let Kτ be such that ρ(s) ≤ τ + Kτs.
Applying (3.3) with α = β/2 and γ = 1/2 we obtain that

ρ
(
dδ
(
1 + |A β

2 x|2)) ≤ δ

2
|A 1

2x|2 + δCτ |x|2 + τ +Kτ dδ

for some constant Cτ > 0 independent of δ and ε. It then follows from (3.10) that

lim sup
δ→0

(
ρ
(
dδ
(
1 + |A β

2 x|2))− δ|A 1
2x|2

)
≤ 0.(3.24)
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Using this, (3.23), and (3.5) in (3.22), we therefore obtain

λu(x̄) +

〈
A

1−η
2 x̄,

A
1−η

2 (x̄− ȳ)

ε

〉
+G

(
x̄,
A−η(x̄− ȳ)

ε
, ZN

)
≤ ω1(N ; δ, ε) + ω2(δ, ε),

(3.25)

where limN→∞ ω1(N ; δ, ε) = 0 if ε, δ are fixed and ω2 is a local modulus. Similarly
we obtain

λv(ȳ) +

〈
A

1−η
2 ȳ,

A
1−η

2 (x̄− ȳ)

ε

〉
+G

(
ȳ,
A−η(x̄− ȳ)

ε
, YN

)
≥ −ω1(N ; δ, ε)− ω2(δ, ε).

(3.26)

We now subtract (3.26) from (3.25), use (A3), and then let N → ∞. We then
conclude that

λ
(
u(x̄)− v(ȳ)

) ≤ ω(∣∣A β
2 (x̄− ȳ)

∣∣(1 +
|A β

2 (x̄− ȳ)|
ε

))
− |A

1−η
2 (x̄− ȳ)|2

ε
+ 2ω2(δ, ε).

Set r = |A 1−η
2 (x̄ − ȳ)|, and let σ > 0. Using the interpolation inequality (3.3), the

fact that |A β
2 (x̄− ȳ)| ≤ c|A 1−η

2 (x̄− ȳ)| for some c > 0 and the property of the moduli,
we have that, for all α, σ > 0, there exist Cσ, Kα > 0 such that

λ
(
u(x̄)− v(ȳ)

) ≤ α+ cKα

(
σ
r2

ε
+ Cσ

∣∣A− η2 (x̄− ȳ)
∣∣

ε
r + r

)
− r2

ε
+ 2ω2(δ, ε).

For α fixed, we chose σ such that cKασ < 1. Then, in the right-hand side of the
previous inequality, we have a polynomial of order 2 in r/

√
ε which is bounded from

above and we get

λ
(
u(x̄)− v(ȳ)

) ≤ α+
K2
αc

2
(√

ε+ Cσ
|A− η2 (x̄−ȳ)|√

ε

)2

4(1−Kαcσ)
+ 2ω2(δ, ε).(3.27)

By using (3.9), this yields

lim sup
ε→0

lim sup
δ→0

(
u(x̄)− v(ȳ)

) ≤ α
for all α > 0, which implies u ≤ v in X since for all x ∈ X, we have

Φ(x, x) ≤ Φ(x̄, ȳ) ≤ u(x̄)− v(ȳ).

Now, let u be a solution. We can set u = v in the preceding proof and we obtain
that for all x, y in X

u(x)− u(y)− |A
− η2 (x− y)|2

2ε
= lim sup

δ→0
Φ(x, y) ≤ lim sup

δ→0

(
u(x̄)− u(ȳ)

) ≤ ρ1(ε)

for some modulus ρ1 in light of (3.27). This proves (3.7).
Existence. Consider the approximating equation

λuN + 〈Ax,DuN 〉+G(x,DuN , D
2uN ) = 0 in XN .(3.28)
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We notice that (3.28) satisfies the assumptions of the comparison part of the theorem
with constants and moduli independent of N . By the finite dimensional theory (3.28)
has a solution uN (for every N) such that ‖uN‖∞ ≤ K/λ. We will prove that there
exists a modulus σ independent of N such that∣∣uN (x)− uN (y)

∣∣ ≤ σ(|x− y|−η)
for all x, y ∈ XN . To do this we adapt the technique of [30] which was also used
in [43].

For every ε > 0 let Kε be such that ω(r) ≤ λε/2 +Kεr. For L > K/λ+ 1 we set

ψL(r) = 2L21− 1
2L r

1
2L .

The function ψL ∈ C2(0,∞) is increasing and concave, ψ′L(r) ≥ 1 for 0 < r ≤ 2,
ψL(0) = 0, ψL(1) > 2(K/λ+ 1), and

ψL(r) > L
(
ψ′L(r)r + r

)
for 0 ≤ r ≤ 2.(3.29)

We will show that for every ε > 0 there exists L = Lε such that

uN (x)− uN (y) ≤ ψL
(|A− η2 (x− y)|)+ ε for every x, y ∈ X.(3.30)

Denoting by ∆ = {(x, y) ∈ X ×X : |A− η2 (x− y)| < 1} it is clear, from the properties
of ψL, that for (x, y) 6∈ ∆ (3.30) is always satisfied independently of L. Assume now
by contradiction that (3.30) is false. Then, given any L > K

λ + 1 we have, for small
δ > 0, that

sup
(x,y)∈X×X

(
uN (x)− uN (y)− ψL(|A− η2 (x− y)|)− ε− δ

2
|x|2 − δ

2
|y|2
)
> 0(3.31)

and the supremum is attained at (x̄, ȳ) ∈ ∆ such that x̄ 6= ȳ. Denote s = |A− η2 (x̄−ȳ)|.
Using Lemma 2.3 in [43] (see the proof of Proposition 2.5 in [43]) and then repeating
arguments from the just-finished proof of comparison we obtain that there exist Z, Y ∈
Σ(XN ) such that(

Z 0
0 −Y

)
≤ 2ψ′L(s)

s

(
PNA

−ηPN −PNA−ηPN
−PNA−ηPN PNA

−ηPN

)
and

λ(uN (x̄)− uN (ȳ)) ≤ −ψ
′
L(s)

s
|A 1−η

2 (x̄− ȳ)|2 +G

(
ȳ,
ψ′L(s)

s
A−η(x̄− ȳ), Y

)
−G

(
x̄,
ψ′L(s)

s
A−η(x̄− ȳ), Z

)
+ ρ(δ, L)

≤ −ψ
′
L(s)

s

∣∣A 1−η
2 (x̄− ȳ)

∣∣2 +
λε

2

+Kε

(∣∣A β
2 (x̄− ȳ)

∣∣ (1 +
ψ′L(s)

s

∣∣A β
2 (x̄− ȳ)

∣∣))+ ρ(δ, L)

for some local modulus ρ. Therefore, using (3.3) with a sufficiently small σ, it fol-
lows that

λ(uN (x̄)− uN (ȳ)) ≤ −ψ
′
L(s)

2s

∣∣A 1−η
2 (x̄− ȳ)

∣∣2 +
λε

2

+ Cε
(
ψ′L(s)s+ s

)
+
c

2

∣∣A 1−η
2 (x̄− ȳ)

∣∣+ ρ(δ, L),
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where Cε depends only on Kε and the interpolation constant (but not on L), and c

is such that |A 1−η
2 x| ≥ c|A− η2 x| for all x ∈ H. Thus, we eventually have

λ
(
uN (x̄)− uN (ȳ)

) ≤ λε

2
+ Cε

(
ψ′L(s)s+ s

)
+ ρ(δ, L),

which becomes, choosing L = Cε/λ and letting δ → 0,

uN (x̄)− uN (ȳ) ≤ ε

2
+ L

(
ψ′L(s)s+ s

)
.

This leads to a contradiction in light of (3.29) since we obviously have by (3.31)

ψL(s) + ε ≤ uN (x̄)− uN (ȳ).

Hence, we obtain the required modulus of continuity.
Now set vN (x) = uN (PNx). Since A−

η
2 is compact we are in a position to apply

the Arzelà–Ascoli theorem to find a subsequence (still denoted by vN ) converging
uniformly on bounded sets of X to a function u that obviously satisfies the same
estimates as uN ’s (see [14, Part IV] and [43] for more). It remains to show that u
solves the limiting equation (3.1). Let ϕ ∈ C̃2

−(X) and let u(x) − ϕ(x) − δ
2 |x|2 have

a maximum at x̂ which we may assume to be strict. It follows that there exists a
sequence x̂N = PN x̂N → x̂ as N →∞ such that, for every x ∈ XN ,

vN (x)− ϕ(x)− δ

2
|x|2 ≤ vN (x̂N )− ϕ(x̂N )− δ

2
|x̂N |2.

Therefore, since APN = PNA,

λuN (x̂N ) +
〈
A

1
2 x̂N , A

1
2Dϕ(x̂N )

〉
+ δ
∣∣A 1

2 x̂N
∣∣2

+G
(
x̂N , PNDϕ(x̂N ) + δx̂N , PN (D2ϕ(x̂N ) + δI)PN

) ≤ 0.
(3.32)

Since x̂N ∈ XN and ϕ is a test function we have∣∣A 1
2Dϕ(x̂N )

∣∣ ≤ B + C
∣∣A 1

2−εx̂N
∣∣(3.33)

for some independent constants B,C. Also, by (3.33), (3.3), (3.6), and (3.8),∣∣G(x̂N , PNDϕ(x̂N ) + δx̂N , PN (D2ϕ(x̂N ) + δI)PN
)∣∣

≤ C1

(
1 + |A β

2 x̂N |2 + |A 1
2−εx̂N |2

)
≤ C2 +

δ

4
|A 1

2 x̂N |2.

Using this, (3.33), and the interpolation inequality (3.3), we therefore obtain from
(3.32) that ∣∣A 1

2 x̂N
∣∣ ≤ C3

for some constant C3 independent of N . Thus, A
1
2 x̂N ⇀ A

1
2 x̂ (so x̂ ∈ D(A

1
2 )) and

hence

A
β
2 x̂N → A

β
2 x̂, and A

1
2Dϕ(x̂N )→ A

1
2Dϕ(x̂).

These convergencies and Lemma 2.8 in [43] allow us to pass to the limit in (3.32) as
N →∞ to conclude that

λu(x̂) +
〈
A

1
2 x̂, A

1
2Dϕ(x̂)

〉
+ δ
∣∣A 1

2 x̂
∣∣2 +G

(
x̂, Dϕ(x̂) + δx̂,D2ϕ(x̂) + δI

) ≤ 0.
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Remark 3.9. If instead of (A2) we assume that there exist γ < 1 and a modulus
ρ such that∣∣G(x, p, S1)−G(x, q, S2)

∣∣ ≤ ρ((1 + |A β
2 x|γ)∣∣A β

2 (p− q)∣∣+
(
1 + |A β

2 x|2γ)‖S1 − S2‖
)

for all x, p, q ∈ D(A
β
2 ) and S1, S2 ∈ Σ(X), then the conclusion of the comparison

part of Theorem 3.8 holds if we replace the assumption that u,−v ≤ M by the
assumption that ∣∣u(x)− u(y)

∣∣, ∣∣v(x)− v(y)
∣∣ ≤ m(|A− η2 (x− y)|)

for some modulus m. The same proof applies except that an analogue of (3.24)
has to be justified differently and instead of (3.10) we now obtain (by a standard
argument) that ∣∣A− η2 (x̄− ȳ)

∣∣2
ε

≤ tε → 0 as ε→ 0.

4. Viscosity solutions of the original equation. We now briefly explain how
to define the viscosity solution of the original equation

λv(x) +
〈
Ax,Dv(x)

〉
+H

(
x,Dv(x), D2v(x)

)
= 0, x ∈ X,(4.1)

where we assume that Hypothesis 3.1 and the following hold.

Hypothesis 4.1. The function H : X × D(Aβ) × A− β2 Σ(X)A−
β
2 → R is such

that, if we define

GH(z, p, S)
def
= H

(
A
β
2 z,A−

β
2 p,A−

β
2 SA−

β
2

)
,

then GH satisfies Hypothesis 3.3.
Remark 4.2. The last hypothesis could also be written more explicitly by trans-

lating Hypothesis 3.3. We used the above formulation for brevity and also because it
can be easily checked by the change of variable.

If we apply the change of variable y = A−
β
2 x and set u(y)

def
= v(A

β
2 y), (4.1) for v

formally becomes the following equation for u:

λu(y) +
〈
Ay,Du(y)

〉
+GH

(
y,Du(y), D2u(y)

)
= 0, y ∈ X.(4.2)

The function v is uniquely determined, once u has been characterized on D(A
β
2 ).

Therefore we are driven to the following definition of viscosity solution for equa-
tion (4.1).

Definition 4.3. A bounded continuous function v : X → R is said to be a
viscosity solution of equation (4.1) if and only if the function

u(y)
def
= v

(
A
β
2 y
)

is a viscosity solution of the transformed equation (4.2). Similarly we define a viscosity
subsolution and a supersolution of (4.1).

From Theorem 3.8 we have the following.
Theorem 4.4. Let Hypotheses 3.1 and 4.1 be satisfied. If

sup
x∈X
|H(x, 0, 0)| = K <∞,(4.3)

then there exists a unique viscosity solution v ∈ BUC (X−(β+η)) of (4.1).
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5. The stochastic boundary control problem.

5.1. The state equation. Let X, U1, and U2 be real separable Hilbert spaces.
Let Ũ2 be a given closed bounded subset of U2 with R = suph∈Ũ2

|h| and define

U
def
= U1 × Ũ2. Let (Ω,F , (Ft)t≥0,P) and W be respectively the stochastic base and

the cylindrical Brownian motion on X defined in section 2.
Consider a stochastic dynamical system governed by the following stochastic dif-

ferential equation in X:

{
dx(t) =

[−Ax(t) + b(x(t), α1(t)) +AβCα2(t)
]
dt+B(x(t), α1(t))dW (t), t > 0,

x(0) = x0 ∈ X,

(5.1)

where we assume that Hypothesis 3.1 holds. We also assume the following.
Hypothesis 5.1.

(i) α
def
= (α1, α2) ∈ Uad(0, T ;U)

def
= M0(0, T ;U1)×M0(0, T ; Ũ2) for every T > 0.

(ii) The function b is continuous from X × U1 to X and there exists a constant
c0 > 0 such that

|b(x, α1)| ≤ c0(1 + |x|) for all x ∈ X, α1 ∈ U1,

|b(x1, α1)− b(x2, α1)| ≤ c0|x1 − x2| for all x1, x2 ∈ X, α1 ∈ U1.

(iii) C ∈ L(U2, X) and β ∈ ( 3
4 , 1).

(iv) B is a mapping from X ×U1 into L(X) such that A−
β
2B : X ×U1 → L2(X)

is continuous, and moreover, there exists a constant K1 > 0 such that

‖A− β2B(x, α1)‖L2(X) ≤ K1(1 + |x|) for all x ∈ X, α1 ∈ U1,

‖A− β2 [B(x1, α1)−B(x2, α1)]‖L2(X) ≤ K1|x1 − x2| for all x1, x2 ∈ X, α1 ∈ U1.

(v) For all x ∈ X,

lim
N→+∞

sup
α1∈U1

∥∥QNA− β2B(x, α1)
∥∥
L2(X)

= 0.

Remark 5.2.
• Hypotheses 5.1(iv), (v) are satisfied if we assume, for example, that there

exists a constant K2 > 0 such that

‖B(x, α1)‖ ≤ K2(1 + |x|) for all x ∈ X, α1 ∈ U1,

‖B(x1, α1)−B(x2, α1)‖ ≤ K2|x1 − x2| for all x1, x2 ∈ X, α1 ∈ U1,

and if the operator A−β is trace class.
• Hypothesis 5.1(v) is satisfied if, for instance, for every x ∈ X there exists
η ∈ (0, β/2) such that A−ηB(x, α1) is bounded in L2(X) independently of
α1 ∈ U1.

Equation (5.1) contains terms that are not well defined in general. However it is
possible to give sense to its integral form. For this reason we introduce the concept
of mild solution of (5.1) (see, e.g., [17]).

Definition 5.3. An Ft-adapted process x(t), t ≥ 0, is said to be a mild solution
of (5.1) if

P

(∫ t

0

|x(s)|2ds < +∞
)

= 1 for all t ≥ 0
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and if it satisfies the integral equation

x(t) = e−tAx0 +

∫ t

0

e−(t−s)Ab
(
x(s), α1(s)

)
ds+Aβ

∫ t

0

e−(t−s)ACα2(s) ds

+

∫ t

0

e−(t−s)AB
(
x(s), α1(s)

)
dW (s), Pa.s., t ≥ 0.

(5.2)

Equation (5.2) will be called the mild form of (5.1).
If, given T ≥ 0, we denote by H2,T the Banach space of all (equivalence classes

of) predictable X-valued processes z(t), t ≥ 0 such that

‖z‖H2,T

def
= sup

s∈[0,T ]

(
E|z(s)|2) 1

2 < +∞,

then we have the following result (see [17, Chapter 7] and [18, Chapter 5]).
Theorem 5.4. Assume that Hypotheses 3.1 and 5.1(i)–(iv) hold. Then, for any

initial condition x0 there exists a unique mild solution x(·) = x(·;x0, α) of (5.1) such
that for every T > 0 x(·) ∈ H2,T and there exists a constant CT independent of x0

such that

sup
s∈[0,T ]

E|x(s)|2 ≤ CT
(
1 + |x0|2

)
.

Finally, the solution has continuous trajectories P-a.s.
Proof. The proof is completely similar to the one given in [17, Chapter 7] and

[18, Chapter 5]. The only differences between (5.2) and those treated in the results
above are the presence of the term

Aβ
∫ t

0

e−(t−s)ACα2(s) ds(5.3)

and the nonstandard assumption 5.1(iv). The term (5.3) does not influence the proof
of the theorem, since, when α2 is bounded a.s., we have for some constant C0 > 0,

E
∣∣∣∣Aβ ∫ t

0

e−(t−s)ACα2(s) ds

∣∣∣∣2 ≤ C0R
2

(∫ t

0

e−a(t−s)

(t− s)β ds
)2

.

Moreover, the stochastic convolution can be estimated by writing∫ t

0

e−(t−s)AB
(
x(s), α1(s)

)
dW (s) =

∫ t

0

A
β
2 e−(t−s)AA−

β
2B
(
x(s), α1(s)

)
dW (s)

so that, thanks to (3.2),

E
∣∣∣∣ ∫ t

0

e−(t−s)AB
(
x(s), α1(s)

)
dW (s)

∣∣∣∣2
≤
∫ t

0

M2
β
2

e−2a(t−s)

(t− s)β E
∥∥A− β2B(x(s), α1(s)

)∥∥2

L2(X)
ds.

In particular this ensures also that (2.1) holds as well as the continuity of trajectories
of the solution.
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5.2. Change of variables and main estimates. As we said in the introduc-
tion, we transform (5.1) by the change of variables

y(t) = A−
β
2 x(t).(5.4)

Then the function y(·) = y(·; y0, α) = A−
β
2 x(·;x0, α) satisfies the equation

dy(t) =
[−Ay(t) +A−

β
2 b(A

β
2 y(t), α1(t)) +A

β
2Cα2(t)

]
dt

+A−
β
2B
(
A
β
2 y(t), α1(t)

)
dW (t),

y(0) = y0 = A−
β
2 x0 ∈ X.

Again, the above equation has to be understood in its mild form

y(t) = e−tAy0 +A−
β
2

∫ t

0

e−(t−s)Ab
(
A
β
2 y(s), α1(s)

)
ds

+A
β
2

∫ t

0

e−(t−s)ACα2(s) ds+A−
β
2

∫ t

0

e−(t−s)AB
(
A
β
2 y(s), α1(s)

)
dW (s).

(5.5)

When y0 ∈ D(A
β
2 ), the last equation is nothing else but a different form of (5.1)

obtained by the change of variables (5.4), and so the function

y(· ; y0, α) = A−
β
2 x
(· ;A β

2 y0, α
)

is a mild solution of (5.5), and the following estimate holds:∥∥A β
2 y
∥∥2

H2,T
≤ CT

(
1 + |A β

2 y0|2
)
.

However, one can also find a solution of (5.5) for a general initial condition y0 ∈ X.
Denote by M2(a, b;D(Aγ)), for γ ∈ [0, 1], the Banach space of all (equivalence

classes of) predictable X-valued processes z(t), for t ≥ 0, such that

‖z‖2,γ def
=

(
E
∫ b

a

|Aγz(s)|2ds
) 1

2

< +∞.

By a careful application of the arguments used in the proof of Theorem 5.4 we get
the following result.

Proposition 5.5. Assume that Hypotheses 3.1 and 5.1 hold. Then for every
y0 ∈ X, equation (5.5) has a unique solution y(·) = y(· ; y0, α) such that for every

T > 0, y ∈M2(0, T ;D(A
β
2 )). Moreover, y has continuous trajectories to 0.

Proof. The proof of existence and uniqueness follows by applying the contraction

mapping principle in a suitable way. Let y0 ∈ X; for y ∈M2(0, T ;D(A
β
2 )), we define

a map Λ on M2(0, T ;D(A
β
2 )) by

[Λy](t) = e−tAy0 +A−
β
2

∫ t

0

e−(t−s)Ab
(
A
β
2 y(s), α1(s)

)
ds+A

β
2

∫ t

0

e−(t−s)ACα2(s) ds

+A−
β
2

∫ t

0

e−(t−s)AB
(
A
β
2 y(s), α1(s)

)
dW (s).
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First, we prove that Λ maps M2(0, T ;D(A
β
2 )) into itself. For y ∈ M2(0, T ;D(A

β
2 )),

we have

A
β
2 [Λy](t) = A

β
2 e−tAy0 +

∫ t

0

e−(t−s)Ab
(
A
β
2 y(s), α1(s)

)
ds

+Aβ
∫ t

0

e−(t−s)ACα2(s) ds

+A
β
2

∫ t

0

e−(t−s)AA−
β
2B
(
A
β
2 y(s), α1(s)

)
dW (s)

so that, for suitable constants C1, C2 > 0,∣∣A β
2 [Λy](t)

∣∣ ≤ ∣∣A β
2 e−tAy0

∣∣+ C1

∫ t

0

e−a(t−s)[1 + |A β
2 y(s)|] ds

+ C2R

∫ t

0

e−a(t−s)

(t− s)β ds+

∣∣∣∣∫ t

0

A
β
2 e−(t−s)AA−

β
2B
(
A
β
2 y(s), α1(s)

)
dW (s)

∣∣∣∣ .
Then, taking the mean value of the square of the terms of this last inequality and
using the isometry formula for stochastic integrals, we get

E
∣∣∣A β

2 [Λy](t)
∣∣∣2 ≤ C3

[∣∣A β
2 e−tAy0

∣∣2 +

∫ t

0

[
1 + E

∣∣A β
2 y(s)

∣∣2] ds
+R2 +

∫ t

0

1

(t− s)β
[
1 + E

∣∣A β
2 y(s)

∣∣2] ds],(5.6)

where C3 > 0 is a suitable constant, since∫ t

0

e−a(t−s)

(t− s)β ds

is bounded independently of t > 0. Integrating over [0, T ] we obtain, for suitable
C4 > 0,

‖Λy‖2
M2
(

0,T ;D
(
A
β
2

)) =

∫ T

0

E
∣∣∣A β

2 [Λy](t)
∣∣∣2 dt

≤ C4

[
|y0|2T 1−β + T 2 + T + T 2−β

+

∫ T

0

∫ t

0

[
1 +

1

(t− s)β
]
E
∣∣A β

2 y(s)
∣∣2 ds].

Moreover, since∫ T

0

∫ t

0

[
1 +

1

(t− s)β
]
E
∣∣A β

2 y(s)
∣∣2ds dt =

∫ T

0

E
∣∣A β

2 y(s)
∣∣2 ∫ T

s

[
1 +

1

(t− s)β
]
dt ds

=

∫ T

0

E|A β
2 y(s)|2

[
T − s+

(T − s)1−β

1− β
]
ds,

it finally follows that, for some modulus ω,

‖Λy‖2
M2
(

0,T ;D
(
A
β
2

)) ≤ ω(T )

[
1 + |y0|2 + ‖y‖2

M2
(

0,T ;D
(
A
β
2

))] .
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We now prove that Λ is a contraction on M2(0, T ;D(A
β
2 )) when T is sufficiently

small. Let y1(·), y2(·) ∈M2(0, T ;D(A
β
2 )). Then, arguing as above, we have

E
∣∣∣A β

2

(
Λy1(t)− Λy2(t)

)∣∣∣2 ≤ C4

∫ t

0

(
1 +

1

(t− s)β
)
E
∣∣∣A β

2

(
y1(s)− y2(s)

)∣∣∣2 ds
for some constant C4 > 0, which implies

‖Λy1 − Λy2‖
M2
(

0,T ;D
(
A
β
2

)) ≤ ω1(T ) ‖y1 − y2‖
M2
(

0,T ;D
(
A
β
2

))
for some modulus ω1. This implies that Λ is a contraction on M2(0, T ;D(A

β
2 )) for

small T . The existence of a unique solution in M2(0, T ;D(A
β
2 )) for general T > 0

follows by repeating the argument a finite number of times. Finally this implies the
existence of a unique solution y(· ; y0, α) of (5.5) defined on [0,+∞) and such that

y(· ; y0, α) ∈M2(0, T ;D(A
β
2 )) for every T > 0. The proof of continuity of trajectories

is exactly the same as in the proof of Theorem 5.4.
We conclude this section with some estimates for the solution of (5.5). First we

recall a well-known generalization of the Gronwall lemma (see [29, p. 188]).
Lemma 5.6. Let T ∈ (0,+∞] and let a0 : [0, T ] → R be a locally integrable

function. Assume that ϕ : [0, T ] → R is a locally integrable function satisfying the
inequality, for some η ∈ (0, 1),

ϕ(t) ≤ a0(t) + b0

∫ t

0

[
1 +

1

(t− s)η
]
ϕ(s) ds

for a given constant b0 > 0. Then there exists a positive constant C0 = C0(b0, η)
such that

ϕ(t) ≤ a0(t) + C0

∫ t

0

eC0(t−s)

(t− s)η a0(s) ds.

Proposition 5.7. Assume that Hypothesis 5.1 holds. Let T > 0, y0 ∈ X. Then
there exists a constant C(T, y0) such that, for all t ∈ (0, T ] and all α ∈ Uad(0,+∞;U),
we have

E
∣∣A β

2 y(t; y0, α)
∣∣2 ≤ C(T, y0)

(
1 +

1

tβ

)
.(5.7)

Moreover, for every γ ∈ (0, 1 − β), there exists a constant Cγ(T, y0) > 0 such that,
for all t ∈ (0, T ] and α ∈ Uad(0,+∞;U), we have∫ t

0

(
1 +

1

(t− s)β+γ

)
E
∣∣A β

2 y(s; y0, α)
∣∣2 ds ≤ Cγ(T, y0)

(
1 +

1

tβ

)
.(5.8)

Proof. We use the arguments from the proof of Proposition 5.5. Let y0 ∈ X,
T > 0, α ∈ Uad(0, T ;U), y(·) = y(·; y0, α) and t ∈ (0, T ]. The estimate (5.6) implies
that there exist some C > 0 and then some C(T ) > 0 such that

E
∣∣A β

2 y(t)
∣∣2 ≤ C [1 + t+ t1−β +

∣∣A β
2 e−tAy0

∣∣2 +

∫ t

0

(
1 +

1

(t− s)β
)
E
∣∣A β

2 y(s)
∣∣2 ds]

≤ C(T )

(
1 +
|y0|2
tβ

+

∫ t

0

(
1 +

1

(t− s)β
)
E
∣∣A β

2 y(s)
∣∣2 ds) .
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We apply Lemma 5.6 and we obtain for a suitable C(T, y0) > 0 that

E
∣∣A β

2 y(t)
∣∣2 ≤ C(T, y0)

(
1 +

1

tβ
+

∫ t

0

1

(t− s)β
(

1 +
1

sβ

)
ds

)
= C(T, y0)

(
1 +

1

tβ
+

t1−β

1− β +

∫ t

0

1

(t− s)β
1

sβ
ds

)
.

However, ∫ t

0

1

(t− s)β
1

sβ
ds = t1−2β

∫ 1

0

1

(1− s)β
1

sβ
ds,

and this last integral is bounded so that, since t1−2β ≤ t−βT 1−β , we obtain the
desired result.

Now, let γ ∈ (0, 1− β). We have by (5.7)∫ t

0

1

(t− s)β+γ
E
∣∣A β

2 y(s)
∣∣2 ds ≤ C(T, y0)

∫ t

0

1

(t− s)β+γ

(
1 +

1

sβ

)
ds.

We proceed as above and the result follows.

5.3. Properties of the value function. We now consider the stochastic opti-
mal control problem of minimizing the functional

J(x0;α) = E
∫ +∞

0

e−λtL
(
x(t;x0, α), α(t)

)
dt, x0 ∈ X(5.9)

over all functions α ∈ Uad(0,+∞;U) (called controls). Here x(·;x0, α) is the mild
solution of equation (5.1), i.e., the solution of the integral equation (5.2). The discount
factor λ is positive and L satisfies the following assumptions:

(i) L ∈ C(X × U), |L(x, α)| ≤ CL for all (x, α) ∈ X × U ;

(ii) |L(x1, α)− L(x2, α)| ≤ ωL(|x1 − x2|) for all α ∈ U, x1, x2 ∈ X,
(5.10)

for some positive constant CL and some modulus ωL.
The value function

v(x0) = inf
{
J(x0;α); α ∈ Uad(0,+∞;U)

}
, x0 ∈ X(5.11)

should solve the associated Hamilton–Jacobi equation

λv(x) +
〈
Ax,Dv(x)

〉
+H

(
x,Dv(x), D2v(x)

)
= 0 for x ∈ X,(5.12)

where the Hamiltonian H : X ×D(Aβ)×A− β2 Σ(X)A−
β
2 → R is given by

H(x, p, S) = sup
α∈U

{
− 1

2
Tr
[
B∗(x, α1)SB(x, α1)

]
− 〈b(x, α1), p

〉− 〈Cα2, A
βp
〉− L(x, α)

}
.

The connection between the control problem introduced above and stochastic
boundary control problems is discussed in section 5.4.
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By inserting the change of variable (5.4) in the cost functional (5.9), we obtain a
new optimal control problem whose value function u is given by

u(y0) = inf
α(·)∈Uad(0,+∞;U)

E
∫ +∞

0

e−λtL
(
A
β
2 y(t; y0, α), α(t)

)
dt.(5.13)

The value functions u and v are related by the formula

v(x) = u
(
A−

β
2 x
)

for all x ∈ X.(5.14)

But if v solves (5.12) then u should solve

λu(y) +
〈
Ay,Du(y)

〉
+H

(
A
β
2 y,A−

β
2Du(y), A−

β
2D2u(y)A−

β
2

)
= 0.(5.15)

By setting GH(y, q, S) = H(A
β
2 y,A−

β
2 q, A−

β
2 SA−

β
2 ), (5.15) can be written as

λu(y) +
〈
Ay,Du(y)

〉
+GH

(
y,Du(y), D2u(y)

)
= 0(5.16)

where now GH : D(A
β
2 )×D(A

β
2 )× Σ(X)→ R and

GH(y, q, S) = sup
α∈U

{
− 1

2
Tr
[(
A−

β
2B
(
A
β
2 y, α1

))∗
S
(
A−

β
2B
(
A
β
2 y, α1

))]
− 〈b(A β

2 y, α1

)
, A−

β
2 q
〉− 〈Cα2, A

β
2 q
〉− L(A β

2 y, α1

)}
.

The goal of this section is to prove that v is the unique viscosity solution of (5.12).
In fact we will prove more. We will prove that u is the unique viscosity solution of
(5.16) and that it satisfies the dynamic programming principle in X. To obtain the
latter for v we require only that the dynamic programming principle for u be satisfied

on D(A
β
2 ). Therefore in fact we prove that the transformed problem itself has a

control interpretation and we think that this fact may be of independent interest.
Theorem 5.8. Assume that Hypotheses 3.1 and 5.1 and (5.10) hold. Then the

value function v defined in (5.11) is the unique BUC (X−η) viscosity solution (for
every η ∈ (0, 1)) of the Hamilton–Jacobi equation (5.12). Moreover, the dynamic
programming principle holds for u and v, i.e., for x ∈ X and all T > 0,

v(x) = inf
α∈Uad(0,+∞;U)

E

{∫ T

0

e−λtL
(
x(t;x, α), α(t)

)
dt+ e−λT v

(
x(T ;x, α)

)}
and

u(y) = inf
α∈Uad(0,+∞;U)

E

{∫ T

0

e−λtL
(
A
β
2 y(t; y, α), α(t)

)
dt+ e−λTu

(
y(T ; y, α)

)}
.

We will prove this theorem by the approximation argument used in the proof of
the existence of Theorem 3.8. We need a preliminary lemma.

Definition 5.9. Let N ≥ 1 and y0 ∈ X. For a given α ∈ Uad(0,+∞;U), we

define yN (·; y0, α) ∈M2(0,+∞;D(A
β
2 )) to be the solution of

yN (t) = e−tAPNy0 +A−
β
2

∫ t

0

e−(t−s)APNb
(
A
β
2 yN (s), α1(s)

)
ds

+A
β
2

∫ t

0

e−(t−s)APNCα2(s) ds

+A−
β
2

∫ t

0

e−(t−s)APNB(A
β
2 yN (s), α1(s)) dW (s).

(5.17)
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Lemma 5.10. Let y0 ∈ X, and for α ∈ Uad(0,+∞;U) denote by y(·; y0, α) the
solution of (5.5). Then, for all T > 0, we have

lim
N→+∞

sup
α∈Uad(0,+∞;U)

∥∥yN (·; y0, α)− y(·; y0, α)
∥∥
M2
(

0,T ;D
(
A
β
2

)) = 0.

Proof. Let α ∈ Uad(0,+∞;U), yN (·) = yN (·; y0, α), and y(·) = y(·; y0, α). Fix γ
in (0, 1− β). Then, for t ∈ (0, T ), we have

A
β
2

(
yN (t)− y(t)

)
= −A β

2 e−tAQNy0 −QNA−
γ
2

∫ t

0

A
γ
2 e−(t−s)AQNb

(
A
β
2 y(s), α1(s)

)
ds

−QNA−
γ
2

∫ t

0

Aβ+ γ
2 e−(t−s)AQNCα2(s) ds

−QNA−
γ
2

∫ t

0

A
β+γ

2 e−(t−s)AA−
β
2QNB

(
A
β
2 y(s), α1(s)

)
dW (s)

+

∫ t

0

e−(t−s)APN
[
b
(
A
β
2 yN (s), α1(s)

)− b(A β
2 y(s), α1(s)

)]
ds

+

∫ t

0

A
β
2 e−(t−s)AA−

β
2 PN

[
B
(
A
β
2 yN (s), α1(s)

)
−B(A β

2 y(s), α1(s)
)]
dW (s)

which yields, for a suitable Cγ(T ) > 0,

E
∣∣A β

2

(
yN (t)− y(t)

)∣∣2
≤ Cγ(T )

[
1

tβ
∣∣QNy0

∣∣2 +
∥∥QNA− γ2 ∥∥2

(
1 +

∫ t

0

(
1 +

1

(t− s)β+γ

)
E|A β

2 y(s)|2ds
)

+

∫ t

0

(
1 +

1

(t− s)β
)
E
∣∣A β

2

(
yN (s)− y(s)

)∣∣2ds] .
Since A−γ/2 is compact, ‖QNA−γ/2‖ → 0 as N → +∞, and by using (5.8) we can
rewrite the above inequality as follows:

E
∣∣A β

2

(
yN (t)− y(t)

)∣∣2 ≤ Cγ,N (T, y0)

(
1 +

1

tβ

)
+

∫ t

0

(
1 +

1

(t− s)β
)
E
∣∣A β

2

(
yN (s)− y(s)

)∣∣2 ds,
where Cγ,N (T, y0) → 0 as N → +∞. Using Lemma 5.6 and arguing as in the proof
of Proposition 5.7, we finally obtain, for a suitable C > 0,

E
∣∣A β

2

(
yN (t)− y(t)

)∣∣2 ≤ Cγ,N (T, y0)C

(
1 +

1

tβ

)
,(5.18)

so that

sup
α∈Uad(0,+∞;U)

‖yN − y‖
M2
(

0,T ;D
(
A
β
2

)) → 0 as N → +∞.

Proof of Theorem 5.8. We notice that under our assumptions (5.16) has a unique
viscosity solution in BUC (X−η) for every η ∈ (0, 1 − β). To verify that the value
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function (5.13) is the solution, we consider the approximating problems

λuN + 〈Ax,DuN 〉+GH(x,DuN , D
2uN ) = 0 in XN .(5.19)

Equation (5.19) is the one used in the proof of Theorem 3.8 and it is easy to see that
it is the equation in XN corresponding to the control problem with evolution given
by (5.17). Therefore, by the finite dimensional theory (see [24, 35, 38] for results and
techniques that adapt to our situation to obtain the dynamic programming principle
and Theorem 3.8), the function

uN (y0) = inf
α∈Uad(0,+∞;U)

E
∫ +∞

0

e−λtL
(
A
β
2 yN (t; y0, α), α(t)

)
dt(5.20)

is the unique viscosity solution of (5.19) in XN and the dynamic programming prin-
ciple holds for uN , i.e., for every y0 ∈ X, T ≥ 0,

uN (y0) = inf
α∈Uad(0,+∞;U)

E
{∫ T

0

e−λtL
(
A
β
2 yN (t; y0, α), α(t)

)
dt

+ e−λTuN
(
yN (T ; y0, α)

)}
.

(5.21)

Since for every y0 ∈ X yN (t; y0, α) = PNyN (t;PNy0, α), extending uN to X by putting
uN (y) = uN (PNy) we obtain (5.20) and (5.19) for every y0 ∈ X. Moreover, from the
proof of existence of Theorem 3.8, we know that for every η ∈ (0, 1− β) and N ≥ 1,

‖uN‖∞ ≤ K

λ
,

∣∣uN (x)− uN (y)
∣∣ ≤ ση(|x− y|−η)(5.22)

for some modulus ση and uN → u uniformly on bounded sets, where u is the unique
viscosity solution of (5.16). Therefore it remains to show that u = u which is an
immediate consequence of the following lemma.

Lemma 5.11. uN converges pointwise to u as N →∞.
Proof. Let y0 ∈ X, N ∈ N. For every T > 0,∣∣uN (y0)− u(y0)

∣∣
≤ sup
α∈Uad(0,+∞;U)

∫ T

0

e−λtE ωL
(|A β

2 (yN (t; y0, α)− y(t; y0, α))|) dt+ 2CL
e−λT

λ
.

Let ε > 0. There exists Tε > 0 such that, for all N ,∣∣uN (y0)− u(y0)
∣∣

≤ sup
α∈Uad(0,+∞;U)

∫ Tε

0

e−λtE ωL
(|A β

2 (yN (t; y0, α)− y(t; y0, α))|) dt+ ε.

Now, by using the properties of moduli and Schwarz inequality, we know that for all
σ > 0, there exists Cσ > 0 such that∫ Tε

0

e−λtE ωL
(|A β

2 (yN (t; y0, α)− y(t; y0, α))|) dt
≤ σ

λ
+ Cσ

√
Tε
∥∥yN (·; y0, α)− y(·; y0, α)

∥∥
M2
(

0,Tε;D
(
A
β
2

))
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for all N ∈ N and all α ∈ Uad(0,+∞;U). By letting N go to infinity, then σ to 0,
and finally ε to 0, we conclude the proof of the Lemma 5.11.

To finish the proof of Theorem 5.8 we only have to show the dynamic programming
principle for u. By (5.21), we have∣∣∣∣uN (y0)− inf

α∈Uad
E
{∫ T

0

e−λtL
(
A
β
2 y(t; y0, α), α(t)

)
dt+ e−λTu

(
y(T ; y0, α)

)}∣∣∣∣
≤ sup
α∈Uad

E
∫ T

0

e−λtωL
(|A β

2 (yN (t; y0, α)− y(t; y0, α))|) dt
+ e−λT sup

α∈Uad
E
∣∣uN(yN (T ; y0, α)

)− u(y(T ; y0, α)
)∣∣.

As in the proof of Lemma 5.11, the first term of the right-hand side converges to 0
when N goes to infinity. For the second term, we proceed as follows:

E
∣∣uN(yN (T ; y0, α)

)− u(y(T ; y0, α)
)∣∣ ≤ E∣∣uN(yN (T ; y0, α)

)− uN(y(T ; y0, α)
)∣∣

+ E
∣∣uN(y(T ; y0, α)

)− u(y(T ; y0, α)
)∣∣.

The first term of the right-hand side converges uniformly to 0 when N goes to infinity
by (5.18) and (5.22). It remains to prove that

sup
α∈Uad(0,+∞;U)

E
∣∣uN(y(T ; y0, α)

)− u(y(T ; y0, α)
)∣∣

goes to 0 when N goes to infinity. By Proposition 5.7, estimate (5.7), E|y(T ; y0, α)|2
is bounded by a constant C(T, y0) > 0 which does not depend on α ∈ Uad(0,+∞;U).
Hence, for all R > 0,

P
{∣∣y(T ; y0, α)

∣∣ > R
} ≤ C(T, y0)

R2
.

Let ε > 0 and choose Rε > 0 sufficiently large so that this probability will be smaller
than ε. Then

sup
α∈Uad(0,+∞;U)

E
∣∣uN(y(T ; y0, α)

)− u(y(T ; y0, α)
)∣∣ ≤ 2CL

λ
ε+ sup

|y|≤Rε

∣∣uN (y)− u(y)
∣∣.

We conclude by letting N → +∞ since ε was arbitrary.

5.4. Examples of stochastic boundary control problems. We now present
examples of problems where the operator A is the Laplacian with Dirichlet boundary
conditions, reminding that our results also hold true for the case of Laplacian with
Neumann boundary conditions (which is in some sense easier to treat since it gives
rise to a lower exponent β in the Bellman equation). For further examples we refer to
the book of Lasiecka and Triggiani [36]. This book deals with deterministic boundary
control problems. However, it can be checked that our results apply to suitable
stochastic perturbations of examples belonging to the “first abstract class” treated in
the book.

We refer the reader to the papers of Tessitore [47, 48] and Duncan, Maslowski,
and Pasik-Duncan [19, 20] for more about stochastic boundary control problems and
to Da Prato and Ichikawa [16], Flandoli [22, 23], Fattorini [21], and Zabczyk [49] for
deterministic boundary control problems. However, to the best of our knowledge, the
results presented in our paper are the first of this kind in the literature.
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Example. Let Ω ⊂ RN be an open, connected, and bounded set with smooth
boundary. Consider, as in the introduction, the following stochastic controlled PDE


∂x

∂t
(t, ξ) = ∆ξx(t, ξ)

+f1 (x(t, ξ), α1(t, ξ)) + f2 (x(t, ξ), α1(t, ξ)) ẆQ(t, ξ) in (0,∞)× Ω,

x(0, ξ) = x0(ξ) on Ω,

x(t, ξ) = α2(t, ξ) on (0,∞)× ∂Ω,

(5.23)

where WQ is a Wiener process with values in L2(Ω) and with covariance operator
Q, x0 ∈ L2(Ω), and the controls are α1 ∈ M0(0,∞;L2(Ω)), α2 ∈ M0(0,∞;L2(∂Ω)),
with ‖α2(s)‖L2(∂Ω) ≤ C1 for a given C1 > 0. Moreover, f1 : R2 → R is a continuous
function, Lipschitz continuous in the first variable, uniformly with respect to the
second one. Assumptions on f2 and Q will be specified later. Here we have two
control functions. The first, indicated by α1, is the “distributed” control, while the
other, indicated by α2, is the “boundary” control.

Using a standard procedure which can be found, e.g., in [3] and [10] for the
deterministic case (the stochastic case does not need any substantial change), problem
(5.23) may be rewritten in an abstract form by finding an equation similar to the one
treated in section 5.1. LetX = L2(Ω) be the state space, let U1 = L2(Ω), U2 = L2(∂Ω)
be the spaces of control parameters, and let Ũ2 be the closed ball of U2 of radius C1.
Let U = U1 × Ũ2. Then (5.23) becomes


dx(s) =

[−Ax(s) + b
(
x(s), α1(s)

)
+ACα2(s)

]
ds+B

(
x(s), α1(s)

)
dW (s),

0 < s < +∞,
x(0) = x0, x0 ∈ X,

(5.24)

where α ∈ M0(0,∞;U), A is the Laplace operator with zero Dirichlet boundary
conditions, and b : X × U1 → X and B : X × U1 → L(X) are defined as

b(x, α1)(ξ) = f1

(
x(ξ), α1(ξ)

)
,[

B(x, α1)y
]
(ξ) = f2

(
x(ξ), α1(ξ)

)[
[Q

1
2 y](ξ)

]
for all ξ ∈ Ω, y ∈ L2(Ω),

and finally C : U2 → X is a continuous linear operator, the Dirichlet operator.

Since f1 is Lipschitz continuous in the first variable, uniformly with respect to
the second one, b satisfies Hypothesis 5.1(ii). As for the diffusion term, we assume
here that f2 and Q are such that Hypotheses 5.1(iv) and (v) are satisfied. This is
true, for example, if N = 1, Q = I, and f2 is Lipschitz continuous in the first variable,
uniformly with respect to the second one. Indeed, taking the orthonormal basis {ek}
of eigenvectors of A (which is uniformly bounded in L∞(Ω)), we have, for suitable
C0 > 0,

∥∥A− β2B(x, α1)
∥∥2

L2(X)
=

+∞∑
k=1

∣∣A− β2B(x, α1)ek
∣∣2 = C0

+∞∑
k=1

+∞∑
h=1

h−2β
〈
B(x, α1)ek, eh

〉2
.
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Now, since B is self-adjoint,

∥∥A− β2B(x, α1)
∥∥2

L2(X)
= C0

+∞∑
h=1

h−2β
∣∣B(x, α1)eh

∣∣2
= C0

+∞∑
h=1

h−2β

∫
Ω

∣∣f2(x(ξ), α1(ξ))eh(ξ)
∣∣2 dξ

so, since ‖eh(ξ)‖∞ ≤ C1 for some positive constant C1, we easily get that, for suitable
C2 > 0, ∥∥A− β2B(x, α1)

∥∥2

L2(X)
≤ C2

[
1 + |x|2],

since β > 3/4. We can check similarly the other assumptions in Hypotheses 5.1(iv),
(v). For N ≥ 2 we need stronger assumptions on f2. Furthermore, since Im C ⊂
D(Aη) (see, e.g., [40]) for η ∈ (0, 1

4 ), setting C = AηC we have that C is a continuous

linear operator and ACα2 = AβCα2 for β ∈ ( 3
4 , 1), β = 1 − η, so that we obtain an

equation that falls into the class discussed in section 5.1.
Equation (5.24) makes sense only in the mild form, as explained in section 5.1,

due to the presence of the unbounded term AβCα2. Given λ > 0 and l ∈ BUC (R2),
we now define

L(x, α1) =

∫
Ω

l
(
x(ξ), α1(ξ)

)
dξ,

(assumptions (5.10) are then satisfied) and consider the problem of minimizing the
cost functional

J(x0;α1, α2) = E
∫ +∞

0

e−λtL (x(t;x0, α1, α2), α1(t)) dt,(5.25)

where x(· ;x0, α) is the mild solution of the stochastic differential equation 5.24.
The cost functional can be more general. The associated Hamilton–Jacobi–Bellman
equation is now (1.1) where the Hamiltonian H is given by

H(x, p, S)

= sup
α=(α1,α2)∈U

{
−1

2
Tr B∗(x, α1)SB(x, α1)− 〈b(x, α1), p〉 − 〈Cα2, A

βp〉 − L(x, α1)

}
.

When f2 is constant (and thus so is B) Hypothesis 5.1 holds in the following case.
Hypothesis 5.12. Let {ek} be an orthonormal basis in X, let B be linear and

independent of x and α1. Let A and B satisfy

Aek = −αkek, BB∗ek = λkek, k ∈ N,
where {αk} is a sequence of positive numbers increasing to +∞ while {λk} is a bounded
sequence of nonnegative real numbers.

Proposition 5.13. Assume that Hypothesis 5.12 holds. Then Hypothesis 5.1 is
satisfied if

∞∑
k=1

λk

αβk
< +∞.(5.26)
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For Ω = [0, π]N , the Laplace operator A satisfies Hypothesis 5.12 by taking, for
(n1, . . . , nN ) ∈ NN ,

en1,...,nN (ξ) =

(
2

π

)N
2

sinn1ξ1 · · · sinnNξN and αn1,...,nN (ξ) = n2
1 + · · ·+ n2

N

so that, by ordering the eigenvalues, we obtain

αk ≈ k 2
N as k → +∞.

Therefore condition 5.26 is fulfilled if for some small ε > 0 λk = o(k
2β
N −1−ε). When

B is invertible this is possible only for N = 1. We remark that, differently from the
case studied in [27], we can allow B to vary in a wider class, in particular B can have
finite rank.

5.5. Concluding remarks. Second order Hamilton–Jacobi equations with sec-
ond order terms being trace class have been studied in various papers (see, e.g.,
[2, 15, 28]). In some cases (e.g., when the second order term is linear and hypoellip-
tic) it is possible to prove existence and uniqueness of differentiable solutions, while
in the general fully nonlinear case a theory of viscosity solutions is available (see
[31, 39, 43]).

When the second order terms are not trace class there are no results about ex-
istence and uniqueness of viscosity solutions. However, in the papers [4, 7, 25] and
[26] for the evolution case and [27] for the stationary case, it is proved that in some
special cases these equations can be solved by using regularizing properties of tran-
sition semigroups associated with suitable Markov processes: in this way existence
and uniqueness of differentiable solutions is proved and the theory finds applications
to stochastic control problems allowing to prove existence of feedback controls. The
stationary case is also treated in [11] where existence and uniqueness of a certain
kind of weak solution is proved using variational methods in Gauss–Sobolev spaces.
The assumptions in [11] are different from ours. The question arises naturally if it is
possible to extend the theory of viscosity solutions to include the equations studied
in [11, 27], and if the viscosity solution coincides with solutions proposed there. An
answer to this question, though incomplete, is given by Theorem 5.14 below. The
types of equations studied in [27] and here overlap, but neither of them contains
the other. The main advantage of our approach is that it allows us to handle fully
nonlinear equations. However, we pay the price of rather strong assumptions on the
operator A.

To be more precise, we recall that in [27] the equation

λv(x) =
1

2

[
QD2v(x)

]
+
〈
Ax+ F (x), Dv(x)

〉−H0

(
Dv(x)

)
+ ψ(x), x ∈ X(5.27)

was considered (see [27] for the precise setting). By combining the results and tech-
niques of this paper and [27] the following result holds, which we state here without
a proof.

Theorem 5.14. Assume that −A satisfies Hypothesis 3.1 and moreover that
the operator A−βQ is nuclear for some β ∈ (0, 1). Assume also that F is Lipschitz
continuous and H0 is uniformly continuous on bounded subsets of X. Then, for every
λ > 0 and ψ ∈ BUC (X), there exists a unique BUC (X−η) viscosity solution (for
every η < 1) of 5.27. Moreover, if the hypotheses of Theorems 3.3 and 3.11 in [27]
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hold then the viscosity solution is Fréchet differentiable with respect to x and coincides
with the mild-strong one of the above theorems.

It is proved in [27, Theorem 5.7] that the solution v can be used to construct an
optimal control in feedback form given by

α∗(s) = DH0

(
Dv
(
y∗(t)

))
,

where y∗(·) solves a closed-loop equation. To our knowledge this is the only nontrace
class infinite dimensional case when the solution is regular enough to allow construc-
tion of an optimal control. Moreover there are no general results available about
optimality conditions (see [37] for the finite dimensional case). It is an open problem
if such results can be proved in cases of boundary control or stronger nonlinearities in
the Bellman equation, i.e., the cases tractable only by viscosity solutions introduced
here. We plan to come back to these questions in the future.
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[4] P. Cannarsa and G. Da Prato, Direct solution of a second order Hamilton–Jacobi equation
in Hilbert spaces, in Stochastic Partial Differential Equations and Applications, G. Da
Prato and L. Tubaro, eds., Pitman Res. Notes in Math. 268, Longman, Harlow, UK, 1992,
pp. 72–85.

[5] P. Cannarsa and G. Da Prato, On a functional analysis approach to parabolic equations in
infinite dimensions, J. Funct. Anal., 118 (1993), pp. 22–42.

[6] P. Cannarsa and G. da prato, Second order elliptic and parabolic equations with infinitely
many variables, in Proceedings of the Amer. Math. Soc. Conference in honor of Lax and
Nirenberg, Venice, 1996.

[7] P. Cannarsa and G. Da Prato, Second-order Hamilton–Jacobi equations in infinite dimen-
sions, SIAM J. Control Optim., 29 (1991), pp. 474–492.

[8] P. Cannarsa, F. Gozzi, and H. M. soner, A dynamic programming approach to nonlinear
boundary control problems of parabolic type, J. Funct. Anal., 117 (1992), pp. 25–61.

[9] P. Cannarsa and M. E. Tessitore, Cauchy problem for the dynamic programming equation
of boundary control, in Proceedings IFIP Workshop on Boundary Control and Boundary
Variation, Marcel Dekker, New York, Basel, 1993.

[10] P. Cannarsa and M. E. Tessitore, Infinite-dimensional Hamilton–Jacobi equations and
Dirichlet boundary control problems of parabolic type, SIAM J. Control Optim., 34 (1996),
pp. 1831–1847.

[11] P. L. Chow and J. L. Menaldi, Infinite dimensional Hamilton–Jacobi–Bellman equations in
Gauss–Sobolev spaces, Nonlinear Anal., 27 (1997), pp. 415–426.

[12] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc., 27 (1992), pp. 1–67.
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PAUL TSENG†

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 431–446

Abstract. We consider the forward-backward splitting method for finding a zero of the sum
of two maximal monotone mappings. This method is known to converge when the inverse of the
forward mapping is strongly monotone. We propose a modification to this method, in the spirit of
the extragradient method for monotone variational inequalities, under which the method converges
assuming only the forward mapping is (Lipschitz) continuous on some closed convex subset of its
domain. The modification entails an additional forward step and a projection step at each itera-
tion. Applications of the modified method to decomposition in convex programming and monotone
variational inequalities are discussed.
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1. Introduction. Let H be a real Hilbert space with inner product 〈x, y〉 and
induced norm ‖x‖ =

√〈x, x〉 for x, y ∈ H. (In the case of H = <n, the space of n-
dimensional real column-vectors, 〈·, ·〉 is the Euclidean inner product.) A set-valued
mapping (also called “operator”) T on H, which is written as T : H →→ H, associates
each point x ∈ H with a subset T (x) of H. Denote domT = {x ∈ H : T (x) 6= ∅}. The
mapping T is called monotone if

〈x− x′, y − y′〉 ≥ 0 for all x, x′ ∈ domT, y ∈ T (x), y′ ∈ T (x′),

and T is called maximal monotone if its graph

gphT = {(x, y) ∈ H ×H : y ∈ T (x)}

is not properly contained in the graph of any other monotone mapping on H. The
inverse mapping T−1 defined by T−1(y) = {x ∈ H : y ∈ T (x)} is, by symmetry,
maximal monotone on H whenever T is. Maximal monotone mappings have been
well studied by Minty, Moreau, Rockafellar, and others (see [4, 36, 38, 61], [47, Chap.
12], and references therein). One well-known example of such a mapping is T =
∂f, where ∂f is the subdifferential of a proper closed convex function f : H 7→
(−∞,∞] [43]. Then, 0 ∈ ∂f(x) if and only if x is a minimizer of f . Another example
is T = F + NC , where C is a nonempty closed convex set in H, F is a maximal
monotone mapping that is single-valued and continuous on C, and NC is the normal
cone mapping NC(x) = {y ∈ H : 〈y, x′ − x〉 ≤ 0 for all x′ ∈ C} for x ∈ C and is
empty otherwise. Then, 0 ∈ F (x)+NC(x) if and only if x ∈ C satisfies the variational
inequalities of 〈F (x), x′ − x〉 ≥ 0 for all x′ ∈ C.
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In general, we are interested in finding, for a given maximal monotone mapping T
on H, an x ∈ H satisfying 0 ∈ T (x). A classical method for doing this is the proximal
point algorithm, proposed by Martinet [27, 28] and generalized by Rockafellar [44, 45]:

xk+1 = (I + αkT )−1(xk), k = 0, 1, . . . ,

where αk > 0. This method and its dual version in the context of convex pro-
gramming, the method of multipliers of Hesteness and Powell, have been extensively
studied (see [1, 15, 18, 21] and references therein) and are known to yield as spe-
cial cases decomposition methods such as the method of partial inverses [48, 53], the
Douglas–Rachford splitting method, and the alternating direction method of multi-
pliers [8, 9, 10, 22]. In the case of T = A+B, where A and B are maximal monotone
mappings on H with A single-valued on domA ⊃ domB, the forward-backward (F-B)
splitting method

xk+1 = (I + αkB)−1(I − αkA)(xk), k = 0, 1, . . . ,

where αk > 0, was proposed by Lions and Mercier [22], by Passty [37], and, in a dual
form for convex programming, by Han and Lou [16]. In the case where B = NC ,
with C a nonempty closed convex set in H, this method reduces to a projection
method proposed by Sibony [49] for monotone variational inequalities and, in the
further case where F is the gradient of a differentiable convex function, it reduces
to a gradient projection method of Goldstein and of Levitin and Polyak [1]. This
method was extensively analyzed by Mercier [30] and Gabay [13] and was further
studied in [5, 6, 20, 33, 34, 39, 56, 57]. In particular, Mercier and Gabay showed
that if A−1 is strongly monotone with modulus γ > 0, then the iterates xk converge
weakly to a solution, provided, αk is constant and less than 2γ. And if in addition A
is strongly monotone, then xk converge strongly to the unique solution [30, p. 24], [13,
Thm. 6.1] (also see [12, Chap. 6], [34], and, for the case of nonconstant αk, [6, 57]).
If A is Lipschitz continuous on domA = H and T is strongly monotone, Chen and
Rockafellar [6] showed that the iterates xk converge strongly at a linear rate to the
unique solution provided αk is less than some threshold depending on the Lipschitz
constant and the modulus of strong monotonicity (also see Chen’s thesis [5] and, for
the case A is Lipschitz continuous and strongly monotone, see [30, p. 26], [39, Prop.
3.2]). Moreover, their method incorporates scaling and they derive an explicit formula
for the convergence ratio in terms of the constants and the stepsize, from which a
minimum-ratio stepsize was calculated. If neither A−1 nor T is assumed to be strongly
monotone, Passty [37] showed that a weighted average of the iterates xk, weighted by
the stepsize αk, converges weakly to a solution, provided A(xk) is bounded (it need
not be single-valued even) and αk is square summable but not absolutely summable.
However, such ergodic convergence does not seem very useful in practice. For further
discussions of splitting methods and applications, see [9, 11, 14, 30, 34] and references
therein.

A nice feature of the F-B method is that the backward (i.e., proximal) step
involves B only, so the “dense” portion of T can be put into A to facilitate problem
decomposition. And, as a referee noted, the splitting is even more attractive if in
addition any ill-conditioned portion of T can be put into B. In contrast, other splitting
methods have backward step(s) that involve A also, possibly limiting the level of
problem decomposition achievable. Some studies of this in the context of discrete-time
optimal control problems are given in [5, 9, 48, 56]. (Of course, problem decomposition
is not the only consideration. Convergence rate is another.) On the other hand, the
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F-B method has the drawback that it requires either A−1 to be strongly monotone,
implying A is Lipschitz continuous on domA = H (see [4, Cor. 2.4], [41]), or A
to be Lipschitz continuous on domA = H and T to be strongly monotone. These
requirements limit the choice of the splitting T = A + B and rule out the kind of
applications considered in section 4. Furthermore, choosing a good stepsize may be
difficult since it entails estimating the modulus of A−1 or the Lipschitz constant of A
and the modulus of A or B.

In this paper, we propose a simple modification to the F-B method that removes
the requirement of A−1 or T being strongly monotone for convergence. The modi-
fication is motivated by the extragradient method of Korpelevich [19] for monotone
variational inequalities, which modifies the projection method of Sibony by perform-
ing an additional forward step and a projection step at each iteration. By adaptively
choosing the stepsize, this method has been shown to converge for monotone contin-
uous mappings in the case H = <n [17, 26, 54]. Our proposed modified method is in
the same spirit as the extragradient method, performing an additional forward step
and projection step onto some closed convex set X ⊂ domA at each iteration (see
(2.3)) and using an adaptive stepsize rule (see (2.4)). The modified method, when
specialized to the case of variational inequalities, coincides with the extragradient
method when the problem is unconstrained but otherwise seems to be new (see Ex-
ample 2 in section 4). We show that if (i) A is Lipschitz continuous on X ∪ domB
or if (ii) A is locally (in the weak topology) uniformly continuous on X ⊂ domB
and x 7→ minw∈T (x) ‖w‖ is locally (in the weak topology) bounded on X, then the
iterates generated by this method converge weakly to a solution. Under additional
assumptions on T , namely, T is strongly monotone or T−1 has a (local) Lipschitzian
property, linear rate of convergence is also shown (see Theorem 3.4). Applications of
the method to decomposition in convex programming and variational inequalities are
discussed in section 4.

Throughout this paper, we denote by I either the identity mapping on H or the
identity matrix. By a closed set C in H, we mean C is closed in the weak topology.
For any nonempty closed convex set X ⊂ H, we denote the nearest-point projection
of y ∈ H onto X by PX [y] = arg minx∈X ‖x − y‖. A mapping S : H →→ H is said to
be strongly monotone with modulus γ > 0 if

〈x− x′, y − y′〉 ≥ γ‖x− x′‖2 for all x, x′ ∈ domS, y ∈ S(x), y′ ∈ S(x′).

A mapping A : H →→ H that is single-valued on some set Y ⊂ H is said to be Lipschitz
continuous on a set X with constant λ ≥ 0, where X ⊂ Y , if

‖A(x)−A(x′)‖ ≤ λ‖x− x′‖ for all x, x′ ∈ X
and is said to be locally uniformly continuous on X ⊂ Y if

‖A(xk)−A(yk)‖ → 0 wheneverxk ∈ X, yk ∈ Y converge weakly and ||xk−yk‖ → 0.
(1.1)
A function φ : X 7→ <, where X ⊂ H, is said to be locally bounded on X if φ(xk) is
bounded whenever xk ∈ X converges weakly. (Here {xk} and {yk} are sequences.)

2. Method description. Let A : H →→ H and B : H →→ H be maximal mono-
tone mappings with A single-valued on domA ⊃ domB and with T−1(0) 6= ∅, where
T = A+B. In this section we describe the modified F-B splitting method for finding
an element of T−1(0). For convenience, we denote the F-B mapping by

J(x, α) = (I + αB)−1(I − αA)(x) for all x ∈ domA, for all α > 0.(2.1)
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It is well known (see Minty [32]) that (I + αB)−1 is a single-valued mapping from H
to domB. Thus, J(·, α) is a single-valued mapping from domA to domB.

Modified F-B splitting method. Assume X ⊂ domA is a closed convex
set such that X ∩ T−1(0) 6= ∅ and either A is Lipschitz continuous on X ∪ domB
or A is continuous (from the strong topology to the strong topology) on domB and
X ⊂ domB. Choose any x0 ∈ X. For k = 0, 1, . . ., we generate xk+1 from xk by
choosing an αk ∈ (0,∞) and letting

x̄k = J(xk, αk),(2.2)

xk+1 = PX [x̄k − αk(A(x̄k)−A(xk))].(2.3)

Since J(·, α) maps domA to domB ⊂ domA and x0 ∈ X ⊂ domA, an induction
argument yields xk ∈ X and x̄k ∈ domB, so A(xk) and A(x̄k) are nonempty for
all k = 0, 1, . . .. The projection onto X in (2.3) is needed to ensure that A(xk) is
nonempty and that αk can be chosen by the stepsize rule below (see the proof of
Theorem 3.4(a)).

There are various choices for the set X. If A is Lipschitz continuous on a closed
convex subset of domA that contains domB, then we can choose X to be this set. If
domB is closed, then a result of Minty [31] (also see [4, Rem. 2.1]) implies domB is
convex and we can choose X = domB. This occurs, for example, when the constraints
are explicit, so that B = G + NC , with C a nonempty closed convex set in H and
G : H →→ H a maximal monotone mapping with domG ⊃ C. (See section 4 for
specific choices of X in some applications.) In some cases, such as when domB
is unbounded, there may be an advantage in choosing X to be a bounded subset
of domB. Also, we can more generally work with a dynamically changing set Xk,
provided (∩∞k=0X

k) ∩ T−1(0) 6= ∅. This does not affect our convergence result and
allows for Xk to be adjusted so to better approximate T−1(0). For example, if A is
Lipschitz continuous on domA = H with constant λ ≥ 0, then following a cutting-
plane approach of Solodov and Svaiter [50], we can choose Xk to be the half-space

Xk = {x ∈ H : 〈w̄k, x− x̄k〉 ≤ 0},
where w̄k = (xk − x̄k)/αk − A(xk) + A(x̄k). Using w̄k ∈ T (x̄k) (see (3.12)) and
monotonicity of T , it can be seen that T−1(0) ⊂ Xk, and if αk < 1/λ, then xk 6∈ Xk.

Choosing αk requires some care, for it cannot be too large (or the method might
diverge) nor can it be too small (or the convergence might be too slow). If A is
Lipschitz continuous on X ∪ domB, then αk can be chosen to be a constant (see
Theorem 3.4(a)). However, it is more practical to choose αk dynamically using an
Armijo–Goldstein-type stepsize rule. Specifically, we will choose αk to be the largest
α ∈ {σ, σβ, σβ2, . . .} satisfying

α‖A(J(xk, α))−A(xk)‖ ≤ θ‖J(xk, α)− xk‖,(2.4)

where β ∈ (0, 1) and θ ∈ (0, 1) and σ > 0 are constants. As a referee noted, in the
optimization context, the acceptance criterion (2.4) involves function gradients, not
function values, which distinguishes it from the classical Armijo–Goldstein criteria,
e.g., [1, pp. 20, 57]. We will show that (2.4) is satisfied by all α sufficiently small,
so αk is well defined (see Theorem 3.4(a)). Alternatively, we can choose αk to be the
largest α ∈ {αk−1, αk−1β, αk−1β

2, . . .} satisfying (2.4), with α−1 chosen arbitrarily.
The resulting αk, though more conservative, is cheaper to find since typically α = αk−1

will satisfy (2.4). Our convergence results below hold for this alternative stepsize rule
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also. The above stepsize rules are motivated by, but are simpler than, those given
in [59] for an alternating projection-proximal method. These stepsize rules contrast
with those for F-B splitting methods, which require the stepsize to be less than a
constant depending on the modulus of A−1 or the Lipschitz constant of A and the
modulus of A or B, so the latter need to be known or estimated. Related stepsize rules
in the context of projection-type methods for variational inequalities are discussed in
[17, 26, 52, 54]. In the case where domA = domB = H = X, the modified F-B method
may be viewed as an instance of a hybrid approximate extragradient-proximal point
algorithm proposed recently by Solodov and Svaiter [51].

3. Convergence analysis. In this section we analyze the convergence and the
rate of convergence of the method in the previous section. We begin with the following
lemma, showing that the algorithmic mapping for the modified F-B method has a
nonexpansive property analogous to those for projection and proximal methods.

Lemma 3.1. Consider any maximal monotone mappings A : H →→ H and B :
H →→ H and any closed convex set X ⊂ domA such that A is single-valued on domA ⊃
domB and Σ = X ∩ (A+B)−1(0) is nonempty. For any α > 0, any x ∈ domA, and
any x∗ ∈ Σ, the vectors x̄ = J(x, α) and z = x̄−α(A(x̄)−A(x)), where J is given by
(2.1), together with some η ≥ 0 satisfy

‖PX [z]− x∗‖2 ≤ ‖z− x∗‖2 = ‖x− x∗‖2 +α2‖A(x̄)−A(x)‖2−‖x̄− x‖2− 2αη,(3.1)

with η having the property that, if A+B is strongly monotone on domB with modulus
γ > 0, then η ≥ γ‖x̄− x∗‖2.

Proof. We have from the definition of x̄ and z that

x̄+ αv̄ = x− αu, z = x̄− α(ū− u), u = A(x), ū = A(x̄), ∃v̄ ∈ B(x̄)(3.2)

and from 0 ∈ A(x∗) +B(x∗) that

u∗ + v∗ = 0, u∗ = A(u∗), ∃v∗ ∈ B(x∗).(3.3)

Then,

‖x− x∗‖2 = ‖x− x̄+ x̄− z + z − x∗‖2
= ‖x− x̄‖2 + ‖x̄− z‖2 + ‖z − x∗‖2 + 2〈x− x̄, x̄− x∗〉+ 2〈x̄− z, z − x∗〉
= ‖x− x̄‖2 − ‖x̄− z‖2 + ‖z − x∗‖2 + 2〈x− z, x̄− x∗〉
= ‖x− x̄‖2 − α2‖A(x̄)−A(x)‖2 + ‖z − x∗‖2 + 2α〈ū+ v̄, x̄− x∗〉
= ‖x− x̄‖2 − α2‖A(x̄)−A(x)‖2 + ‖z − x∗‖2 + 2α〈ū− u∗ + v̄ − v∗, x̄− x∗〉,

where the fourth equality uses (3.2) and the fifth equality uses (3.3). This proves the
equality in (3.1) with η = 〈ū − u∗ + v̄ − v∗, x̄ − x∗〉. Since A and B are monotone,
it follows from (3.2) and (3.3) that η = 〈ū − u∗ + v̄ − v∗, x̄ − x∗〉 is nonnegative.
And if in addition A + B is strongly monotone on domB with modulus γ > 0, then
η ≥ γ‖x̄− x∗‖2. The inequality in (3.1) follows from x∗ = PX [x∗] (since x∗ ∈ X) and
the nonexpansive property of PX [60, Eq. (1.8)].

The next lemma is well known (see [4, p. 27], [36, p. 105]) and a proof is included
for completeness.

Lemma 3.2. Consider any maximal monotone mapping S : H →→ H. If {xk}
is a sequence in H bounded in norm and converging weakly to some x and {wk}
is a sequence in H converging strongly to some w and wk ∈ S(xk) for all k, then
w ∈ S(x).
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Proof. For any x′ ∈ domS and any w′ ∈ S(x′), we have 0 ≤ 〈w′ − wk, x′ − xk〉 =
〈w′ − wk, x′ − x〉 + 〈w′ − w, x − xk〉 + 〈w − wk, x − xk〉 ≤ 〈w′ − wk, x′ − x〉 + 〈w′ −
w, x− xk〉+ ‖w−wk‖‖x− xk‖ → 〈w′−w, x′− x〉. The maximality of S then implies
w ∈ S(x).

In a Hilbert space, a weakly convergent sequence is automatically bounded in
norm (see, e.g., [36, p. 2]), but we will not need this fact. The following lemma
extends a basic result about the backward mapping (I + αB)−1 (see [4, Prop. 2.6])
to the F-B mapping J .

Lemma 3.3. Consider any maximal monotone mappings A : H →→ H and B :
H →→ H such that A is single-valued on domA ⊃ domB. Let J be given by (2.1).
Then,

‖J(x, α)− x‖/α ≤ min
w∈A(x)+B(x)

‖w‖ for all x ∈ domB, for all α > 0.(3.4)

Proof. Fix any x ∈ domB and any α > 0. Let z = J(x, α). Then, (2.1) implies
(x − z)/α ∈ A(x) + B(z) so that, for any w ∈ A(x) + B(x), the monotonicity of B
implies

〈((x− z)/α−A(x))− (w −A(x)), z − x〉 ≥ 0.

Simplifying and rearranging terms give

‖x− z‖2/α ≤ 〈w, x− z〉 ≤ ‖w‖‖x− z‖,
and (3.4) is proven. (The minimum in (3.4) is attained uniquely since A(x) +B(x) is
a closed convex set.)

The inequality in (3.4) is sharp as α→ 0. To see this, note that, by (3.4), J(x, α)
converges strongly to x as α → 0 and wα = (x − J(x, α))/α is bounded in norm.
Choose any sequence {αk} → 0 such that ‖wαk‖ → liminfα→0‖wα‖. By Alaoglu’s
theorem [36, p. 2], {wαk} has a weak cluster point and, by wα ∈ A(x) + B(J(x, α))
and Lemma 3.2 with S = B−1, any such weak cluster point w is in A(x)+B(x). This
together with ‖wα‖2 = ‖wα−w‖2+‖w‖2+2〈wα−w,w〉 ≥ ‖w‖2+2〈wα−w,w〉 → ‖w‖2
as α→ 0 implies

α→0
liminf ‖J(x, α)− x‖/α = lim

k
‖wαk‖ ≥ min

w∈A(x)+B(x)
‖w‖.(3.5)

By (3.4), the inequality in (3.5) holds with equality. The mapping x 7→ arg minw∈T (x) ‖w‖
has been much studied; see, e.g., [4, Chap. 2].

Below we state and prove our main convergence result, showing that, under
mild assumptions on A and B, the modified F-B method with αk determined by
the Armijo–Goldstein-type stepsize rule (2.4) generates well-defined iterates xk that
converge weakly to a solution. Moreover, if T is strongly monotone or T−1 has a
(local) Lipschitzian property (see (3.7)) and if the stepsizes αk are bounded away
from zero, then the iterates have (local) linear rate of convergence. The proof entails
using Lemma 3.3 to show that (2.4) holds for all α sufficiently small, so that αk is
well defined. Then, Lemmas 3.1 and 3.2 are used to show, respectively, that xk are
bounded in norm and every weak cluster point is a solution.

Theorem 3.4. Consider any maximal monotone mappings A : H →→ H and
B : H →→ H such that A is single-valued on domA ⊃ domB, and T = A + B is
maximal monotone with T−1(0) 6= ∅. Assume X ⊂ domA is a closed convex set such
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that Σ = X ∩ T−1(0) 6= ∅ and either A is Lipschitz continuous on X ∪ domB or A
is continuous on domB ⊃ X. Let {(xk, x̄k)}k=0,1,... be generated by the modified F-B
method (2.2)–(2.3) with αk chosen to be the largest α ∈ {σ, σβ, σβ2, . . .} satisfying
(2.4), where β ∈ (0, 1), θ ∈ (0, 1), and σ > 0. Then the following hold.

(a) αk is well defined for all k. If A is Lipschitz continuous on X ∪ domB with
constant λ ≥ 0, then αk ≥ min{σ, θβ/λ}.

(b) For every x∗ ∈ Σ and every k ∈ {0, 1, . . .}, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− θ2)‖x̄k − xk‖2 − 2αkη
k(3.6)

for some ηk ≥ 0 with the property that, if T is strongly monotone on domB
with modulus γ > 0, then ηk ≥ γ‖x̄k − x∗‖2. If either (i) liminfk→∞αk > 0
or (ii) A is locally uniformly continuous on X ⊂ domB (see (1.1)) and the
function x 7→ minw∈T (x) ‖w‖ is locally bounded on X, then {xk} converges
weakly to an element of Σ.

(c) If T is strongly monotone on domB with modulus γ > 0, then

‖xk+1 − x∗‖ ≤ (1−min{1− θ2, 2αkγ}/2)1/2‖xk − x∗‖
for all k, where x∗ denotes the unique element of Σ.

(d) If there exist τ > 0 and δ > 0 such that

(X + δB) ∩ T−1(w) ⊂ Σ + τ‖w‖B for all w ∈ H with ‖w‖ ≤ δ,(3.7)

where B = {x ∈ H : ‖x‖ ≤ 1}, and either liminfk→∞αk > 0 or δ = ∞, then
there exists an index k̄ such that

d
(
xk+1,Σ

) ≤ d
(
xk,Σ

)
/(1 + ρα2

k)1/2

for all k ≥ k̄, where we denote d(x,Σ) = minx∗∈Σ ‖x − x∗‖ and ρ = (1 −
θ2)/((σ + τ)θ + τ)2. If δ = ∞, then k̄ = 0. (The minimum is attained
uniquely since Σ is a closed convex set.)

Proof. (a) Suppose A is Lipschitz continuous on X ∪ domB with constant λ ≥ 0.
For each k ∈ {0, 1, . . .}, since xk ∈ X and J(xk, α) ∈ domB, it follows from the
Lipschitz continuity of A that (2.4) holds for all α ≤ θ/λ, so αk is well defined.
Moreover, either αk = σ or else (2.4) fails to hold for α = αk/β. In the latter case,
we must have αk/β > θ/λ.

Suppose A is continuous on domB and X ⊂ domB. Fix any k ∈ {0, 1, . . .}. If
xk ∈ Σ, then αk = σ (since both sides of (2.4) equal zero for any α > 0). Now suppose
xk 6∈ Σ. Since xk ∈ X ⊂ domB, applying Lemma 3.3 with x = xk yields

‖J(xk, α)− xk‖/α ≤ min
w∈T (xk)

‖w‖ for all α > 0,(3.8)

so J(xk, α) converges strongly to xk as α → 0 and the continuity of A on domB
implies

‖A(J(xk, α))−A(xk)‖ → 0 as α→ 0.

By (2.1), we have (xk − J(xk, α))/α ∈ A(xk) + B(J(xk, α)). If liminfα→0‖xk −
J(xk, α)‖/α = 0, then since J(xk, α) converges strongly to xk, Lemma 3.2 with S = B
would yield 0 ∈ A(xk) +B(xk), contradicting xk 6∈ Σ. Thus,

α→0
liminf ‖xk − J(xk, α)‖/α > 0.
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The preceding two relations show that (2.4) holds whenever α is sufficiently small, so
αk is well defined.

(b) For every x∗ ∈ Σ and every k ∈ {0, 1, . . .}, we have from (2.2), (2.3), and
applying Lemma 3.1 that (3.1) holds with α = αk, x = xk, x̄ = x̄k, PX [z] = xk+1,
and η = ηk, for some ηk ≥ 0 having the desired property. Hence

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + (αk)2‖A(x̄k)−A(xk)‖2 − ‖x̄k − xk‖2 − 2αkη
k.

Since α = αk satisfies (2.4) so that, by (2.2), αk‖A(x̄k)− A(xk)‖ ≤ θ‖x̄k − xk‖, this
yields (3.6). Thus, (3.6) holds for k = 0, 1, . . . and any x∗ ∈ Σ. Then the sequence
{xk}k=0,1,... is bounded in norm and, by Alaoglu’s theorem [36, p. 2], has at least one
weak cluster point.

Let x∞ be any weak cluster point of {xk}, and we will show that x∞ ∈ Σ.
Consider any subsequence {xk}k∈K (K ⊂ {0, 1, 2, . . .}) converging weakly to x∞.
Since xk ∈ X and X is closed, then x∞ ∈ X. Suppose liminfk→∞αk > 0. Since
(3.6) implies ‖x̄k − xk‖ → 0, this together with α = αk in (2.4) and (2.2) yields
‖A(x̄k)−A(xk)‖ → 0. By (2.1) and (2.2), we also have

(xk − x̄k)/αk +A(x̄k)−A(xk) ∈ A(x̄k) +B(x̄k) = T (x̄k)(3.9)

for all k. It follows that the left-hand side of (3.9) converges strongly to 0 as k ∈ K,
k →∞. Since {x̄k}k∈K is bounded in norm and converges weakly to x∞, Lemma 3.2
with S = T yields 0 ∈ T (x∞). Thus, x∞ ∈ Σ. Suppose instead A is locally uniformly
continuous on X ⊂ domB and the function x 7→ minw∈T (x) ‖w‖ is locally bounded
on X. If {αk}k∈K contains a subsequence that is bounded below by a positive scalar,
then an argument analogous to that used above would yield x∞ ∈ Σ. Otherwise,
suppose {αk}k∈K → 0. Then for all k ∈ K sufficiently large, we have αk < σ, so our
choice of αk implies (2.4) fails to hold for α = ᾱk, where ᾱk = αk/β, i.e.,

θ‖J(xk, ᾱk)− xk‖/ᾱk < ‖A(J(xk, ᾱk))−A(xk)‖.(3.10)

Applying Lemma 3.3 with x = xk and α = ᾱk yields

‖J(xk, ᾱk)− xk‖/ᾱk ≤ min
w∈T (xk)

‖w‖

for all k ∈ K. Since xk is in X and converges weakly to x∞ as k ∈ K, k → ∞, the
right-hand side is bounded for all k ∈ K, implying {J(xk, ᾱk)}k∈K is bounded in
norm and converges weakly to x∞. By (2.1) and T = A+B, we have

wk = (xk − J(xk, ᾱk))/ᾱk +A(J(xk, ᾱk))−A(xk) ∈ T (J(xk, ᾱk))

for all k ∈ K. If liminfk∈K,k→∞‖wk‖ = 0, then Lemma 3.2 with S = T would
imply 0 ∈ T (x∞), so x∞ ∈ Σ. Otherwise suppose liminfk∈K,k→∞‖wk‖ > 0. Since
xk ∈ X and J(xk, ᾱk) ∈ domB converge weakly and ‖J(xk, ᾱk) − xk‖ → 0 as k ∈
K, k → ∞, we have from the local uniform continuity of A on X ⊂ domB that
{‖A(J(xk, ᾱk))−A(xk)‖}k∈K → 0, and hence liminfk∈K,k→∞‖xk − J(xk, ᾱk)‖/ᾱk =
liminfk∈K,k→∞‖wk‖ > 0. This contradicts the fact that (3.10) holds for all k ∈ K
sufficiently large.

We now show, by an argument used in [3] and in [44, p. 885], that {xk} has no
more than one weak cluster point. Suppose x∞1 and x∞2 are two weak cluster points
of {xk}. Then, as we just showed above, for i = 1, 2, we have x∞i ∈ Σ, so letting
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x∗ = x∞i in (3.6) yields {‖xk−x∞i ‖2} is monotonically decreasing and hence converges
to a limit, say, υi. Since

‖xk − x∞1 ‖2 = ‖xk − x∞2 ‖2 + ‖x∞2 − x∞1 ‖2 + 2〈xk − x∞2 , x∞1 − x∞2 〉

for all k, passing to the limit along any subsequence of {xk} converging weakly to x∞2
yields υ1 = υ2 + ‖x∞2 − x∞1 ‖2. A symmetric argument yields υ2 = υ1 + ‖x∞1 − x∞2 ‖2.
Adding these two equalities gives ‖x∞1 − x∞2 ‖ = 0.

(c) Suppose that T is strongly monotone on domB with modulus γ > 0. Then
(b) implies (3.6) holds and ηk ≥ γ‖x̄k − x∗‖2, so that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− θ2)‖x̄k − xk‖2 − 2αkγ‖x̄k − x∗‖2
≤ ‖xk − x∗‖2 −min{1− θ2, 2αkγ}(‖x̄k − xk‖2 + ‖x̄k − x∗‖2)

≤ ‖xk − x∗‖2 − 1

2
min{1− θ2, 2αkγ}‖xk − x∗‖2,

where the last inequality follows from ‖xk − x∗‖2 ≤ (‖xk − x̄k‖ + ‖x̄k − x∗‖)2 ≤
2‖xk − x̄k‖2 + 2‖x̄k − x∗‖2.

(d) Suppose that there exist τ > 0 and δ > 0 such that (3.7) holds. It can be
seen that (3.7) is equivalent to

d(x,Σ) ≤ τ min
w∈T (x)

‖w‖ for all x ∈ domT ∩ (X + δB) with min
w∈T (x)

‖w‖ ≤ δ.(3.11)

(The minimum is attained uniquely since T (x) is a closed convex set.) Also, we have
from (3.9) that the vector zk = x̄k − αk(A(x̄k)−A(xk)) satisfies

(xk − zk)/αk = (xk − x̄k)/αk −A(xk) +A(x̄k) ∈ B(x̄k) +A(x̄k) = T (x̄k)(3.12)

for all k. Suppose liminfk→∞αk > 0. Since (3.6) implies {‖x̄k − xk‖} → 0, we have
from (2.4) with α = αk and (2.2) that {‖A(x̄k)−A(xk)‖} → 0. Thus, there exists an
index k̄ such that the left-hand side of (3.12) and x̄k − xk are both below δ in norm
for all k ≥ k̄, in which case xk ∈ X and (3.11) yield

d
(
x̄k,Σ

) ≤ τ‖xk − zk‖/αk.
Then, for x∗ ∈ Σ satisfying ‖x̄k − x∗‖ = d(x̄k,Σ), we have

d
(
xk+1,Σ

) ≤ ‖xk+1 − x∗‖
= ‖PX [zk]− PX [x∗]‖
≤ ‖zk − x∗‖
≤ ‖zk − x̄k‖+ ‖x̄k − x∗‖
≤ ‖zk − x̄k‖+ τ‖xk − zk‖/αk
≤ ‖zk − x̄k‖+ τ(‖xk − x̄k‖+ ‖x̄k − zk‖)/αk
= (αk + τ)‖A(x̄k)−A(xk)‖+ τ‖xk − x̄k‖/αk
≤ ((αk + τ)θ + τ)‖xk − x̄k‖/αk,

where the first equality uses (2.3), the second inequality uses the nonexpansive prop-
erty of PX [60, Eq. (1.8)], and the last inequality uses (2.2) and (2.4) with α = αk.
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Then, for x∗ ∈ Σ satisfying ‖xk − x∗‖ = d(xk,Σ), inequality (3.6) and the above
inequality yield

d
(
xk+1,Σ

)2 ≤ ‖xk+1 − x∗‖2
≤ ‖xk − x∗‖2 − (1− θ2)‖x̄k − xk‖2

≤ ‖xk − x∗‖2 − (1− θ2)α2
k

((αk + τ)θ + τ)2
d
(
xk+1,Σ

)2
= d

(
xk,Σ

)2 − (1− θ2)α2
k

((αk + τ)θ + τ)2
d
(
xk+1,Σ

)2
.

This holds for all k ≥ k̄ and, since αk ≤ σ, the desired inequality follows. The case of
δ =∞ is treated similarly with k̄ = 0.

Sufficient conditions for the sum of two maximal monotone mappings T = A+B
to be maximal are given in [42]. The assumption made in Theorem 3.4(b) on the local
uniform continuity of A on X ⊂ domB holds if either A is continuous (from the weak
topology to the strong topology) on domB or A is uniformly continuous (from the
strong topology to the strong topology) on domB. The other assumption that x 7→
minw∈T (x) ‖w‖ be locally bounded on X is reasonably mild. If A is continuous, from
the weak topology to the strong topology, on X and B = G + NC , with G : H →→ H
maximal monotone and C a nonempty closed convex subset of int(domG), then this
assumption holds. This is because G is locally bounded on int(domG) [41] (also see
[4, Prop. 2.9]). However, in general, this assumption may fail to hold. For example,
for B = ∂f , where f is the proper closed convex function on <2 defined by

f(x) = f(x1, x2) =

{
max{−

√
1− x2

1 − x2
2, x1 − 1} if x2

1 + x2
2 ≤ 1,

∞ else,

it can be checked that x 7→ minv∈B(x) ‖v‖ is not locally bounded at (1, 0) ∈ domB.
The assumption (3.7) made in Theorem 3.4(d) is weaker than the Lipschitzian as-
sumption made in [44, Eq. (3.1)] as it does not require T−1(0) to be a singleton. This
assumption has been much studied and is known to hold when T is polyhedral [40]
(also see [47, Chap. 9] for related discussions). In the case of variational inequalities,
corresponding to T = F +NC with F single-valued on a nonempty closed convex set
C, we have minw∈T (x) ‖w‖ = ‖F (x) + v‖ for some v ∈ NC(x), implying

‖x−PC [x−F (x)]‖ = ‖PC [x+v]−PC [x−F (x)]‖ ≤ ‖(x+v)−(x−F (x))‖ = min
w∈T (x)

‖w‖.

Thus, the Lipschitzian property (3.7) and its equivalent formulation as an error bound
(3.11) can be inferred from corresponding results for the projection residual R(x) =
x − PC [x − F (x)], as studied in [23, 24, 35, 58] and references therein. Also, as in
[7, 8, 9, 44, 50], it may be worthwhile to consider inexact evaluation of the backward
mapping (I + αB)−1.

In the case where A is Lipschitz continuous on domA = H with constant λ and T
is strongly monotone with modulus γ, parts (a) and (c) of Theorem 3.4 imply that xk

converge strongly at linear rate to the unique element of T−1(0) and the convergence
ratio is at most

(1−min{1− θ2, 2γσ, 2γθβ/λ}/2)1/2.

Assuming λ and γ are known, one can choose σ > 0 and θ ∈ (0, 1) to minimize the
above estimate and obtain

1/
√

1 + βκ/(1 + (βκ)2)1/2,
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where κ = γ/λ. This can be compared with an analogous estimate by Chen and
Rockafellar [6, Cor. 2.5] for the F-B method:

1/
√

1 + κ2/(1− (γ1/λ)2),

where γ1 is the modulus of A (with γ1 = 0 allowed). Which estimate is smaller
depends on κ, β, and γ1/λ, and whether these estimates reflect the methods’ behavior
in practice remains to be seen.

4. Applications. Below we derive new decomposition methods by applying the
modified F-B method appropriately to special cases of convex programming and vari-
ational inequalities. Throughout this paper, for any matrix D ∈ <m×n, we denote
its transpose by DT and its operator norm by ‖D‖ = maxx∈<n:‖x‖=1‖Dx‖. For any
function f : <n 7→ (−∞,∞], we denote its effective domain by domf = {x ∈ <n :
f(x) <∞}.

Example 1. Consider the following convex program studied in [57, Sec. 4]:

minimize f1(x1) + f2(x2)
subject to Dx1 + Ex2 = b,

(4.1)

where f1 and f2 are closed proper convex functions on, respectively, <n1 and <n2

and D ∈ <m×n1 , E ∈ <m×n2 , b ∈ <m. We assume that f1 is strictly convex and
cofinite [43, p. 116], so that (∂f1)−1 is single-valued and continuous on <n1 . (Roughly
speaking, f1 being cofinite means it grows faster than linear. If f1 is strongly convex or
if domf1 is bounded, then f1 is cofinite.) We also assume that there exists (x1, x2) ∈
ri(domf1) × ri(domf2) satisfying Dx1 + Ex2 = b and that there does not exist x2 ∈
domf2 and z ∈ <n2 satisfying Ez = 0 and f2(x2 + tz) < f2(x2) for all t > 0.
Then, it can be argued similarly as in [57] that the above convex program has an
optimal solution and a Kuhn–Tucker vector y ∈ <m associated with the constraints
Dx1 + Ex2 = b. Moreover, y is a Kuhn–Tucker vector if and only if y satisfies
0 ∈ A(y) +B(y), where A and B are the maximal monotone mappings:

A(y) = D(∂f1)−1(DT y), B(y) = E(∂f2)−1(ET y)− b.

Notice that A is single-valued and continuous on <m. Applying the modified F-B
method with this choice of A and B and with X being a suitable closed convex subset
of domB (or X = <m, if (∂f1)−1 is Lipschitz continuous on <n1), we obtain the
following modification to the alternating minimization algorithm in [57]:

x̄k1 = arg min
x1∈<n1

{f1(x1)− 〈yk, Dx1〉},
x̄k2 = arg min

x2∈<n2
{f2(x2)− 〈yk, Ex2〉+ αk‖Dx̄k1 + Ex2 − b‖2/2},

ȳk = yk + αk(b−Dx̄k1 − Ex̄k2),

xk+1
1 = arg min

x1∈<n1
{f1(x1)− 〈ȳk, Dx1〉},

yk+1 = PX [ȳk − αk(Dxk+1
1 −Dx̄k1)],

for k = 0, 1, . . . In contrast to the original method, the modified method does not
require f1 to be strongly convex for convergence, so f1 can include functions such as
x lnx, which are strictly convex and cofinite, but not strongly convex. On the other
hand, the modified method requires an additional minimization in x1 and a projection
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onto the set X. If f2 has a separable structure and E = −I, as considered in [7],
then X can be chosen to have a corresponding Cartesian product structure and the
projection onto X would decompose accordingly. Alternatively, if f2 is cofinite so
that dom(∂f2)−1 = <n2 , then X can be chosen to be domB = <m and the projection
would be vacuous.

Example 2. Consider the variational inequality problem of finding an x ∈ H
satisfying 0 ∈ F (x) + NC(x), where C is a nonempty closed convex set in H and F
is a maximal monotone mapping that is single-valued and continuous on C. This is
equivalent to 0 ∈ A(x) +B(x), where A and B are the maximal monotone mappings:

A(x) = F (x), B(x) = NC(x).

Applying the modified F-B method with this choice of A and B and with X = C (or
X = H, if A is Lipschitz continuous on domA = H), we obtain the following (new)
double-projection method:

x̄k = PC [xk − αkF (xk)],(4.2)

xk+1 = PX [x̄k − αk(F (x̄k)− F (xk))],(4.3)

for k = 0, 1, . . . This method differs from the extragradient method [17, 19, 26, 54],
whose second equation is

xk+1 = PC [xk − αkF (x̄k)].(4.4)

It also differs from a modified projection-type method [52] (also see [55] for a similar
method) whose second equation is

xk+1 = xk − γk(xk − x̄k + αk(F (x̄k)− F (xk)))(4.5)

with γk > 0 a quantity depending on xk, x̄k, αk. If X = H, then (4.3) and (4.5) would
coincide whenever γk = 1. If in addition C = H, then (4.3) and (4.4) would also
coincide. In this case, the three methods differ only in their stepsize rules for choosing
αk. While the method (4.2)–(4.3) has similar theoretical convergence properties as
the other two methods, its practical performance remains to be determined from
numerical testing. Notice that (4.3) involves projection onto X rather than onto
C as in (4.4), which can be advantageous when X has a simpler structure than
C. Other projection-type methods, including the method of Sibony, require stronger
assumptions, such as F−1 being strongly monotone, for convergence (see [2, 25, 29, 49]
and references therein).

Example 3. Consider the convex program (4.1), where f1 and f2 are closed proper
convex functions on, respectively, <n1 and <n2 and D ∈ <m×n1 , E ∈ <m×n2 , b ∈ <m.
The case of E = −I and b = 0 corresponds to the problem studied in [7]. We assume
there exists (x1, x2) ∈ ri(domf1)×ri(domf2) satisfying Dx1+Ex2 = b but, in contrast
to Example 1, we do not assume f1 is strictly convex or cofinite. Then, this problem
has an optimal solution if and only if 0 ∈ A(x1, x2, y) + B(x1, x2, y) has a solution
[42, Chap. 28], where A and B are the maximal monotone mappings:

A(x1, x2, y) = (DT y,ET y,−Dx1 −Ex2), B(x1, x2, y) = ∂f1(x1)× ∂f2(x2)×{b}.
Notice that A is Lipschitz continuous on <m+n1+n2 with constant

λ =
√
‖DT ‖2 + ‖D‖2 + ‖ET ‖2 + ‖E‖2.
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Applying the modified F-B method with this choice of A and B and with X =
<m+n1+n2 , we obtain (in case of E = −I and b = 0) the following variant of a
decomposition method of Chen and Teboulle [7]:

x̄k1 = arg min
x1∈<n1

{f1(x1) + 〈yk, Dx1〉+ ‖x1 − xk1‖2/(2αk)},
x̄k2 = arg min

x2∈<n2
{f2(x2) + 〈yk, Ex2〉+ ‖x2 − xk2‖2/(2αk)},

ȳk = yk + αk(Dxk1 + Exk2 − b),
xk+1

1 = x̄k1 − αkDT (ȳk − yk),

xk+1
2 = x̄k2 − αkET (yk − ȳk),

yk+1 = ȳk + αk(Dx̄k1 + Ex̄k2 −Dxk1 − Exk2),

for k = 0, 1, . . . This method has the same minimization subproblems as the Chen–
Teboulle method and, in particular, the subproblems have strongly convex objective
function and decompose according to the separable structure of f1 and f2.

Example 4. Consider the inclusion problem 0 ∈ A(x1, x2, y) +B(x1, x2, y), where

A(x1, x2, y) = (DT y,ET y,−Dx1 − Ex2), B(x1, x2, y) = T1(x1)× T2(x2)× {b},
and T1 and T2 are maximal monotone mappings on <n1 and <n2 , respectively, and
D ∈ <m×n1 , E ∈ <m×n2 , b ∈ <m. Then, A and B are maximal monotone and A is
Lipschitz continuous on <m+n1+n2 with constant

λ =
√
‖DT ‖2 + ‖D‖2 + ‖ET ‖2 + ‖E‖2.

The special case where T1 = ∂f1, T2 = ∂f2 yields the convex program (4.1). The
special case where n1 = n2, D = −E = I, and b = 0 yields the inclusion 0 ∈
T1(x) + T2(x). Applying the modified F-B method with this choice of A and B and
with X = <m+n1+n2 , we obtain the following variant of a splitting method in [59, Ex.
3]:

x̄k1 = (I + αkT1)−1(xk − αkDT yk),

x̄k2 = (I + αkT2)−1(xk − αkET yk),

ȳk = yk + αk(Dxk1 + Exk2 − b),
xk+1

1 = x̄k1 − αkDT (ȳk − yk),

xk+1
2 = x̄k2 − αkET (ȳk − yk),

yk+1 = ȳk + αk(Dx̄k1 + Ex̄k2 −Dxk1 − Exk2),

for k = 0, 1, . . ..
Example 5. Consider the minimax problem:

min
x∈<n

max
y∈Y
{f(x)− g(y) + 〈y,Dx〉},

where f is a closed proper convex functions on <n, g is a continuously differentiable
convex function on <m, Y is a nonempty closed convex set in <m, and D ∈ <m×n.
Under a suitable constraint qualification [42, Chap. 37], this problem is equivalent to
0 ∈ A(x, y) +B(x, y), where A and B are the maximal monotone mappings

A(x, y) = (DT y,∇g(y)−Dx), B(x, y) = ∂f(x)×NY .
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Applying the modified F-B method with this choice of A and B and with X = X1×Y ,
where X1 = <n if ∇g is Lipschitz continuous on <m and otherwise X1 is a suitable
closed convex subset of dom∂f , we obtain the following variant of a method in [59,
Ex. 4]:

x̄k = arg min
x∈<n

{f(x) + 〈yk, Dx〉+ ‖x− xk‖2/(2αk)},
ȳk = PY [yk + αk(Dxk −∇g(yk))],

xk+1 = PX1
[x̄k − αkDT (ȳk − yk)],

yk+1 = PY [yk + αk(Dx̄k −∇g(ȳk)−Dxk +∇g(yk))],

for k = 0, 1, . . .. As in the method of [59], if Y has a Cartesian product structure
or f has a separable structure (e.g., f(x1, . . . , xn) = f1(x1) + · · · + fn(xn) for some
functions f1, . . . , fn on <), as in certain discrete-time deterministic optimal control
problem [5, 46] and in the scheduling of hydroelectric power generation under uncer-
tainty [48], then X1 can be chosen to have a corresponding product structure and the
computation of x̄k and xk+1 decompose accordingly. See [59] for further discussions
of the advantages of such decomposition methods.

Under additional assumptions on the problems, convergence and linear conver-
gence of the methods in Examples 1–5 can be established by appropriately applying
Theorem 3.4. (For H = <n, weak convergence and strong convergence are equiva-
lent.) Additional applications are discussed in [5, 13, 56, 57]. Notice that the inclusion
0 ∈ A(x) +B(x) may be reformuated as 0 ∈ F (x, y1, y2)×G(x, y1, y2), where

F (x, y1, y2) = (B(x)− y2), G(x, y1, y2) = (A(y1) + y2)× {x− y1}.
Then, provided A is single-valued and continuous on H = <n, the method in [59] may
be applied to this reformulated problem to obtain a method that has similar compu-
tation and convergence properties as, but is more complicated than, the modified F-B
method. (The analysis in [59] is for the case H = <n, although extension to a Hilbert
space setting seems possible.) Last, there recently has been much study of proximal
point methods using a nonquadratic proximal term (see [18] and references therein),
and it would be interesting to extend the modified F-B method to this setting.
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[4] H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
[5] H.-G. Chen, Forward-Backward Splitting Techniques: Theory and Applications, Ph.D. thesis,

Department of Applied Mathematics, University of Washington, Seattle, WA, 1994.
[6] H.-G. Chen and R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM

J. Optim., 7 (1997), pp. 421–444.
[7] G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization

problems, Math. Programming, 64 (1994), pp. 81–101.
[8] J. Eckstein and D. P. Bertsekas, On the Douglas–Rachford splitting method and the prox-

imal point algorithm for maximal monotone operators, Math. Programming, 55 (1992),
pp. 293–318.



A MODIFIED FORWARD-BACKWARD SPLITTING METHOD 445

[9] J. Eckstein and M. C. Ferris, Operator-splitting methods for monotone affine variational in-
equalities, with a parallel application to optimal control, INFORMS J. Comput., 10 (1998),
pp. 218–235.

[10] J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating
direction method of multipliers, in Large Scale Optimization: State of the Art, W. W.
Hager, D. W. Hearn, and P. M. Pardalos, eds., Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1994, pp. 115–134.

[11] M. Fortin and R. Glowinski, Eds., Augmented Lagrangian Methods: Applications to the
Numerical Solution of Boundary Value Problems, North-Holland, Amsterdam, 1983.
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[15] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM
J. Control Optim., 29 (1991), pp. 403–419.

[16] S. P. Han and G. Lou, A parallel algorithm for a class of convex programs, SIAM J. Control
Optim., 26 (1988), pp. 345–355.

[17] A. N. Iusem, An iterative algorithm for the variational inequality problem, Mat. Apl. Comput.,
13 (1994), pp. 103–114.

[18] K. C. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM J.
Control Optim., 35 (1997), pp. 1142–1168.

[19] G. M. Korpelevich, The extragradient method for finding saddle points and other problems,
Matecon, 12 (1976), pp. 747–756.

[20] B. Lemaire, Coupling optimization methods and variational convergence, in Trends in Math-
ematical Optimization, K.-H. Hoffman, J.-B. Hiriart-Urruty, J. Zowe, and C. Lemarechal,
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de Paris-Sud, Orsay, 1980.

[31] G. J. Minty, On the maximal domain of a “monotone” function, Michigan Math. J., 8 (1961),
pp. 135–137.

[32] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962),
pp. 341–346.

[33] K. Mouallif, V. H. Nguyen, and J.-J. Strodiot, A perturbed parallel decomposition method
for a class of nonsmooth convex minimization problems, SIAM J. Control Optim., 29
(1991), pp. 829–847.
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1. Introduction. The stochastic approximation algorithm considered in this
paper is described by the d-dimensional recursion

X(n+ 1) = X(n) + a(n)
[
h
(
X(n)

)
+M(n+ 1)

]
, n ≥ 0,(1.1)

where X(n) = [X1(n), . . . , Xd(n)]T ∈ Rd, h : Rd → Rd, and {a(n)} is a sequence of
positive numbers. The sequence {M(n) : n ≥ 0} is uncorrelated with zero mean.

Though more than four decades old, the stochastic approximation algorithm is
now of renewed interest due to novel applications to reinforcement learning [20] and as
a model of learning by boundedly rational economic agents [19]. Traditional conver-
gence analysis usually shows that the recursion (1.1) will have the desired asymptotic
behavior provided that the iterates remain bounded with probability one, or that
they visit a prescribed bounded set infinitely often with probability one [3, 14]. Un-
der such stability or recurrence conditions one can then approximate the sequence
X = {X(n) : n ≥ 0} with the solution to the ordinary differential equation (ODE)

ẋ(t) = h
(
x(t)

)
(1.2)

with identical initial conditions x(0) = X(0).
The recurrence assumption is crucial, and in many practical cases this becomes

a bottleneck in applying the ODE method. The most successful technique for estab-
lishing stochastic stability is the stochastic Lyapunov function approach (see, e.g.,
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[14]). One also has techniques based upon the contractive properties or homogeneity
properties of the functions involved (see, e.g., [20] and [12], respectively).

The main contribution of this paper is to add to this collection another general
technique for proving stability of the stochastic approximation method. This tech-
nique is inspired by the fluid model approach to stability of networks developed in
[9, 10], which is itself based upon the multistep drift criterion of [15, 16]. The idea
is that the usual stochastic Lyapunov function approach can be difficult to apply due
to the fact that time-averaging of the noise may be necessary before a given positive
valued function of the state process will decrease towards zero. In general such time-
averaging of the noise will require infeasible calculation. In many models, however, it
is possible to combine time-averaging with a limiting operation on the magnitude of
the initial state, to replace the stochastic system of interest with a simpler determin-
istic process.

The scaling applied in this paper to approximate the model (1.1) with a determin-
istic process is similar to the construction of the fluid model of [9, 10]. Suppose that

the state is scaled by its initial value to give X̃(n) = X(n)/max(|X(0)|, 1), n ≥ 0.
We then scale time to obtain a continuous function φ : R+ → Rd which interpolates

the values of {X̃(n)}. At a sequence of times {t(j) : j ≥ 0} we set φ(t(j)) = X̃(j),
and for arbitrary t ≥ 0, we extend the definition by linear interpolation. The times
{t(j) : j ≥ 0} are defined in terms of the constants {a(j)} used in (1.1). For any
r > 0, the scaled function hr : Rd → Rd is given by

hr(x) = h(rx)/r, x ∈ Rd.(1.3)

Then through elementary arguments we find that the stochastic process φ approxi-
mates the solution φ̂ to the associated ODE

ẋ(t) = hr
(
x(t)

)
, t ≥ 0,(1.4)

with φ̂(0) = φ(0) and r = max(|X(0)|, 1).
With our attention on stability considerations, we are most interested in the

behavior of X when the magnitude of the initial condition |X(0)| is large. Assuming
that the limiting function h∞ = limr→∞ hr exists, for large initial conditions we find
that φ is approximated by the solution φ∞ of the limiting ODE

ẋ(t) = h∞
(
x(t)

)
,(1.5)

where again we take identical initial conditions φ∞(0) = φ(0).
Thus, for large initial conditions all three processes are approximately equal,

φ ≈ φ̂ ≈ φ∞.
Using these observations we find in Theorem 2.1 that the stochastic model (1.1) is
stable in a strong sense provided the origin is asymptotically stable for the limiting
ODE (1.5). Equation (1.5) is precisely the fluid model of [9, 10].

Thus, the major conclusion of this paper is that the ODE method can be ex-
tended to establish both the stability and convergence of the stochastic approximation
method, as opposed to only the latter. The result [14, Theorem 4.1, p. 115] arrives at
a similar conclusion: if the ODE (1.2) possesses a “global” Lyapunov function with
bounded partial derivatives, then this will serve as a stochastic Lyapunov function,
thereby establishing recurrence of the algorithm. Though similar in flavor, there are
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significant differences between these results. First, in the present paper we consider a
scaled ODE, not the usual ODE (1.2). The former retains only terms with dominant
growth and is frequently simpler. Second, while it is possible that the stability of the
scaled ODE and the usual one go hand in hand, this does not imply that a Lyapunov
function for the latter is easily found. The reinforcement learning algorithms for
ergodic-cost optimal control and asynchronous algorithms, both considered as appli-
cations of the theory in this paper, are examples where the scaled ODE is conveniently
analyzed.

Though the assumptions made in this paper are explicitly motivated by appli-
cations to reinforcement learning algorithms for Markov decision processes, this ap-
proach is likely to find a broader range of applications.

The paper is organized as follows. The next section presents the main results for
the stochastic approximation algorithm with vanishing stepsize or with bounded, non-
vanishing stepsize. Section 2 also gives a useful error bound for the constant stepsize
case and briefly sketches an extension to asynchronous algorithms, omitting details
that can be found in [6]. Section 3 gives examples of algorithms for reinforcement
learning of Markov decision processes to which this analysis is applicable. The proofs
of the main results are collected together in section 4.

2. Main results. Here we collect together the main general results concerning
the stochastic approximation algorithm. Proofs not included here may be found in
section 4.

We shall impose the following additional conditions on the functions {hr : r ≥ 1}
defined in (1.3) and the sequence M = {M(n) : n ≥ 1} used in (1.1). Some relaxations
of assumption (A1) are discussed in section 2.4.

(A1) The function h is Lipschitz, and there exists a function h∞ : Rd → Rd such
that

lim
r→∞hr(x) = h∞(x), x ∈ Rd.

Furthermore, the origin in Rd is an asymptotically stable equilibrium for the ODE
(1.5).

(A2) The sequence {M(n),Fn : n ≥ 1}, with Fn = σ(X(i),M(i), i ≤ n), is a
martingale difference sequence. Moreover, for some C0 <∞ and any initial condition
X(0) ∈ Rd,

E
[∥∥M(n+ 1)

∥∥2 | Fn
] ≤ C0

(
1 + ‖X(n)‖2), n ≥ 0.

The sequence {a(n)} is deterministic and is assumed to satisfy one of the follow-
ing two assumptions. Here TS stands for “tapering stepsize” and BS for “bounded
stepsize.”

(TS) The sequence {a(n)} satisfies 0 < a(n) ≤ 1, n ≥ 0, and∑
n

a(n) =∞,
∑
n

a(n)2 <∞.

(BS) The sequence {a(n)} satisfies for some constants 1 > α > α > 0,

α ≤ a(n) ≤ α, n ≥ 0.
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2.1. Stability and convergence. The first result shows that the algorithm is
stabilizing for both bounded and tapering step sizes.

Theorem 2.1. Assume that (A1) and (A2) hold. Then we have the following:
(i) Under (TS), for any initial condition X(0) ∈ Rd,

sup
n
‖X(n)‖ <∞ almost surely (a.s.).

(ii) Under (BS) there exist α∗ > 0 and C1 <∞ such that for all 0 < α < α∗ and
X(0) ∈ Rd,

lim sup
n→∞

E
[∥∥X(n)

∥∥2] ≤ C1.

An immediate corollary to Theorem 2.1 is convergence of the algorithm under
(TS). The proof is a standard application of the Hirsch lemma (see [11, Theorem 1,
p. 339] or [3, 14]), but we give the details below for sake of completeness.

Theorem 2.2. Suppose that (A1), (A2), and (TS) hold and that the ODE (1.2)
has a unique globally asymptotically stable equilibrium x∗. Then X(n) → x∗ a.s. as
n→∞ for any initial condition X(0) ∈ Rd.

Proof. We may suppose that X(0) is deterministic without any loss of generality
so that the conclusion of Theorem 2.1 (i) holds that the sample paths of X are
bounded with probability one. Fixing such a sample path, we see that X remains in
a bounded set H, which may be chosen so that x∗ ∈ int(H).

The proof depends on an approximation of X with the solution to the primary
ODE (1.2). To perform this approximation, first define t(n) ↑ ∞, T (n) ↑ ∞ as

follows: Set t(0) = T (0) = 0 and for n ≥ 1, t(n) =
∑n−1
i=0 a(i). Fix T > 0 and define

inductively

T (n+ 1) = min
{
t(j) : t(j) > T (n) + T

}
, n ≥ 0.

Thus T (n) = t(m(n)) for some m(n) ↑ ∞ and T ≤ T (n+1)−T (n) ≤ T +1 for n ≥ 0.
We then define two functions from R+ to Rd:

(a) {ψ(t), t > 0} is defined by ψ(t(n)) = X(n) with linear interpolation on
[t(n), t(n+ 1)] for each n ≥ 0.

(b) {ψ̂(t), t > 0} is piecewise continuous, defined so that, for any j ≥ 0, ψ̂ is the

solution to (1.2) for t ∈ [T (j), T (j+1)), with the initial condition ψ̂(T (j)) = ψ(T (j)).
Let ε > 0 and let B(ε) denote the open ball centered at x∗ of radius ε. We may

then choose the following:
(i) 0 < δ < ε such that x(t) ∈ B(ε) for all t ≥ 0 whenever x( · ) is a solution of

(1.2) satisfying x(0) ∈ B(δ).
(ii) T > 0 so large that for any solution of (1.2) with x(0) ∈ H we have x(t) ∈

B(δ/2) for all t ≥ T . Hence, ψ̂(T (j)−) ∈ B(δ/2) for all j ≥ 1.
(iii) An application of the Bellman Gronwall lemma as in Lemma 4.6 below that

leads to the limit ∥∥ψ(t)− ψ̂(t)
∥∥→ 0 a.s., t→∞.(2.1)

Hence we may choose j0 > 0 so that we have∥∥ψ(T (j)− )− ψ̂(T (j)− )∥∥ ≤ δ/2, j ≥ j0.
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Since ψ( · ) is continuous, we conclude from (ii) and (iii) that ψ(T (j)) ∈ B(δ) for

j ≥ j0. Since ψ̂(T (j)) = ψ(T (j)), it then follows from (i) that ψ̂(t) ∈ B(ε) for all
t ≥ T (j0). Hence by (2.1),

lim sup
t→∞

‖ψ(t)− x∗‖ ≤ ε a.s.

This completes the proof since ε > 0 was arbitrary.
We now consider (BS), focusing on the absolute error defined by

e(n) := ‖X(n)− x∗‖, n ≥ 0.(2.2)

Theorem 2.3. Assume that (A1), (A2), and (BS) hold, and suppose that (1.2)
has a globally asymptotically stable equilibrium point x∗.

Then for any 0 < α ≤ α∗, where α∗ is introduced in Theorem 2.1 (ii),
(i) for any ε > 0, there exists b1 = b1(ε) <∞ such that

lim sup
n→∞

P
(
e(n) ≥ ε) ≤ b1α;

(ii) if x∗ is a globally exponentially asymptotically stable equilibrium for the ODE
(1.2), then there exists b2 <∞ such that for every initial condition X(0) ∈ Rd,

lim sup
n→∞

E
[
e(n)2

] ≤ b2α.
2.2. Rate of convergence. A uniform bound on the mean square error E[e(n)2]

for n ≥ 0 can be obtained under slightly stronger conditions on M via the theory of
ψ-irreducible Markov chains. We find that this error can be bounded from above by
a sum of two terms: the first converges to zero as α ↓ 0, while the second decays to
zero exponentially as n→∞.

To illustrate the nature of these bounds, consider the linear recursion

X(n+ 1) = X(n) + α
[− (X(n)− x∗)+W (n+ 1)

]
, n ≥ 0,

where {W (n)} is independently and identically distributed (i.i.d.) with mean zero
and variance σ2. This is of the form (1.1) with h(x) = −(x− x∗) and M(n) = W (n).
The error e(n+ 1) defined in (2.2) may be bounded as follows:

E
[
e(n+ 1)2

] ≤ α2σ2 + (1− α)2E
[
e(n)2

]
≤ ασ2/(2− α) + exp(−2αn)E

[
e(0)2

]
, n ≥ 0.

For a deterministic initial condition X(0) = x and any ε > 0, we thus arrive at the
formal bound,

E[e(n)2 | X(0) = x] ≤ B1(α) +B2

(‖x‖2 + 1
)

exp
(− ε0(α)n

)
,(2.3)

where B1, B2, and ε0 are positive-valued functions of α. The bound (2.3) is of the form
that we seek: the first term on the right-hand side (r.h.s.) decays to zero with α, while
the second decays exponentially to zero with n. However, the rate of convergence for
the second term becomes vanishingly small as α ↓ 0. Hence to maintain a small
probability of error the variable α should be neither too small nor too large. This
recalls the well-known trade-off between mean and variance that must be made in the
application of stochastic approximation algorithms.
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A bound of this form carries over to the nonlinear model under some additional
conditions. For convenience, we take a Markov model of the form

X(n+ 1) = X(n) + α
[
h
(
X(n)

)
+m

(
X(n),W (n+ 1)

)]
,(2.4)

where again {W (n)} is i.i.d. and also independent of the initial condition X(0). We
assume that the functions h : Rd → Rd and m : Rd × Rq → Rd are smooth (C1) and
that assumptions (A1) and (A2) continue to hold. The recursion (2.4) then describes
a Feller–Markov chain with stationary transition kernel to be denoted by P .

Let V : Rd → [1,∞) be given. The Markov chain X with transition function P
is called V -uniformly ergodic if there is a unique invariant probability π, an R <∞,
and ρ < 1 such that for any function g satisfying |g(x)| ≤ V (x),∣∣E[g(X(n)

) | X(0) = x
]− Eπ

[
g
(
X(n)

)]∣∣ ≤ RV (x)ρn, x ∈ Rd, n ≥ 0,(2.5)

where Eπ[g(X(n))] =
∫
g(x)π(dx), n ≥ 0.

The following result establishes bounds of the form (2.3) using V -ergodicity of the
model. Assumptions (2.6) and (2.7) below are required to establish ψ-irreducibility
of the model in Lemma 4.10.

There exists a w∗ ∈ Rq with m(x∗, w∗) = 0, and for a continuous function p :
Rq → [0, 1] with p(w∗) > 0,

P
(
W (1) ∈ A) ≥ ∫

A

p(z)dz, A ∈ B(Rq).(2.6)

The pair of matrices (F,G) is controllable with

F =
d

dx
h(x∗) +

∂

∂x
m(x∗, w∗) and G =

∂

∂w
m(x∗, w∗).(2.7)

Theorem 2.4. Suppose that (A1), (A2), (2.6), and (2.7) hold for the Markov
model (2.4) with 0 < α ≤ α∗. Then the Markov chain X is V -uniformly ergodic, with
V (x) = ‖x‖2 + 1, and we have the following bounds:

(i) There exist positive-valued functions A1 and ε0 of α and a constant A2 inde-
pendent of α, such that

P
{
e(n) ≥ ε | X(0) = x

} ≤ A1(α) +A2

(‖x‖2 + 1
)

exp
(− ε0(α)n

)
.

The functions satisfy A1(α)→ 0, ε0(α)→ 0 as α ↓ 0.
(ii) If in addition the ODE (1.2) is exponentially asymptotically stable, then the

stronger bound (2.3) holds, where again B1(α) → 0, ε0(α) → 0 as α ↓ 0, and B2 is
independent of α.

Proof. The V -uniform ergodicity is established in Lemma 4.10.
From Theorem 2.3 (i) we have, when X(0) ∼ π,

Pπ
(
e(n) ≥ ε) = Pπ

(
e(0) ≥ ε) ≤ b1α,

and hence from V -uniform ergodicity,

P
(
e(n) ≥ ε | X(0) = x

) ≤ Pπ
(
e(n) ≥ ε)+

∣∣P(e(n) ≥ ε | X(0) = x
)− Pπ

(
e(n) ≥ ε)∣∣

≤ b1α+RV (x)ρn, n ≥ 0.

This and the definition of V establishes (i). The proof of (ii) is similar.
The fact that ρ = ρα → 1 as α ↓ 0 is discussed in section 4.3.
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2.3. The asynchronous case. The conclusions above also extend to the model
of asynchronous stochastic approximation analyzed in [6]. We now assume that each
component of X(n) is updated by a separate processor. We postulate a set-valued
process {Y (n)} taking values in the set of subsets of {1, 2, . . . , d}, with the interpre-
tation: Y (n) = {indices of the components updated at time n}. For n ≥ 0, 1 ≤ i ≤ d,
define

ν(i, n) =

n∑
m=0

I
{
i ∈ Y (m)

}
,

the number of updates executed by the ith processor up to time n. A key assumption
is that there exists a deterministic ∆ > 0 such that for all i,

lim inf
n→∞

ν(i, n)

n
≥ ∆ a.s.

This ensures that all components are updated comparably often. Furthermore, if

N(n, x) = min

{
m > n :

m∑
k=n+1

a(n) > x

}

for x > 0, the limit

limn→∞

∑v(i,N(n,x))
k=v(i,n) a(k)∑v(j,N(n,x))
k=v(j,n) a(k)

exists a.s. for all i, j.
At time n, the kth processor has available the following data:
(i) Processor (k) is given ν(k, n), but it may not have n, the “global clock.”
(ii) There are interprocessor communication delays τkj(n), 1 ≤ k, j ≤ d, n ≥ 0, so

that at time n, processor (k) may use the data Xj(m) only for m ≤ n− τkj(n).
We assume that τkk(n) = 0 for all n and that {τkj(n)} have a common upper

bound τ <∞ ([6] considers a slightly more general situation).
To relate the present work to [6], we recall that the “centralized” algorithm of [6] is

X(n+ 1) = X(n) + a(n)f
(
X(n),W (n+ 1)

)
,

where {W (n)} are i.i.d. and {f(·, y)} are uniformly Lipschitz. Thus F (x) := E[f(x,W (1))]
is Lipschitz. The correspondence with the present set up is obtained by setting
h(x) = F (x) and

M(n+ 1) = f
(
X(n),W (n+ 1)

)− F (X(n)
)

for n ≥ 0. The asynchronous version then is

Xi(n+ 1) = Xi(n) + a
(
ν(i, n)

)
f
(
X1(n− τi1(n)

)
, X2

(
n− τi2(n)

)
,(2.8)

. . . , Xd

(
n− τid(n)

)
,W (n+ 1))I

{
i ∈ Y (n)

}
, n ≥ 0,

for 1 ≤ i ≤ d. Note that this can be executed by the ith processor without any
knowledge of the global clock which, in fact, can be a complete artifice as long as
causal relationships are respected.
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The analysis presented in [6] depends upon the following additional conditions on
{a(n)}:

(i) a(n+ 1) ≤ a(n) eventually;
(ii) for x ∈ (0, 1), supn a([xn])/a(n) <∞;
(iii) for x ∈ (0, 1), [xn]∑

i=0

a(i)

/(
n∑
i=0

a(i)

)
→ 1,

where [ · ] stands for “the integer part of ( · ).”
A fourth condition is imposed in [6], but this becomes irrelevant when the delays

are bounded. Examples of {a(n)} satisfying (i)–(iii) are a(n) = 1/(n + 1) or 1/(1 +
n log(n+ 1)).

As a first simplifying step, it is observed in [6] that {Y (n)} may be assumed to
be singletons without any loss of generality. We shall do likewise. What this entails is
simply unfolding a single update at time n into |Y (n)| separate updates, each involving
a single component. This blows up the delays at most d-fold, which does not affect
the analysis in any way.

The main result of [6] is the analog of our Theorem 2.2 given that the conclusions
of our Theorem 2.1 hold. In other words, stability implies convergence. Under (A1)
and (A2), our arguments above can be easily adapted to show that the conclusions of
Theorem 2.2 also hold for the asynchronous case. One argues exactly as above and in
[6] to conclude that the suitably interpolated and rescaled trajectory of the algorithm
tracks an appropriate ODE. The only difference is a scalar factor 1/d multiplying
the r.h.s. of the ODE (i.e., ẋ(t) = (1/d)h(x(t))). This factor, which reflects the
asynchronous sampling, amounts to a time-scaling that does not affect the qualitative
behavior of the ODE.

Theorem 2.5. Under the conditions of Theorem 2.2 and the above hypotheses
on {a(n)}, {Y (n)}, and {τij(n)}, the asynchronous iterates given by (3.7) remain a.s.
bounded and (therefore) converge to x∗ a.s.

2.4. Further extensions. Although satisfied in all of the applications treated
in section 3, in some other models assumption (A1) that hr → h∞ pointwise may be
violated. If this convergence does not hold, then we may abandon the fluid model
and replace (A1) by

(A1′) The function h is Lipschitz, and there exists T > 0, R > 0 such that

∣∣φ̂(t)
∣∣ ≤ 1

2
, t ≥ T,

for any solution to (1.4) with r ≥ R and with initial condition satisfying |φ̂(0)| = 1.
Under the Lipschitz condition on h, at worst we may find that the pointwise limits

of {hr : r ≥ 1} will form a family Λ of Lipschitz functions on Rd. That is, h∞ ∈ Λ if
and only if there exists a sequence {ri} ↑ ∞ such that

hri(x)→ h∞(x), i→∞,

where the convergence is uniform for x in compact subsets of Rd. Under (A1′) we
then find, using the same arguments as in the proof of Lemma 4.1, that the family Λ
is uniformly stable.
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Lemma 2.6. Under (A1′) the family of ODEs defined via Λ is uniformly expo-
nentially asymptotically stable in the following sense. For some b < ∞, δ > 0, and
any solution φ∞ to the ODE (1.5) with h∞ ∈ Λ,

|φ∞(t)| ≤ be−δt|φ∞(0)|, t ≥ 0.

Using this lemma the development of section 4 goes through with virtually no
changes, and hence Theorems 2.1–2.5 are valid with (A1) replaced by (A1′).

Another extension is to broaden the class of scalings. Consider a nonlinear scaling
defined by a function g : R+ → R+ satisfying g(r)/r → ∞ as r → ∞, and suppose
that hr( · ) redefined as hr(x) = h(rx)/g(r) satisfies

hr(x)→ h∞(x) uniformly on compacts as r →∞.
Then, assuming that the a.s. boundedness of rescaled iterates can be separately es-
tablished, a completely analogous development of the stochastic algorithm is possible.
An example would be a “stochastic gradient” scheme, where h( · ) is the gradient of
an even degree polynomial, with degree, say, 2n. Then g(r) = r2n−1 will do. We
do not pursue this further because the reinforcement learning algorithms we consider
below do conform to the case g(r) = r.

3. Reinforcement learning. As both an illustration of the theory and an im-
portant application in its own right, in this section we analyze reinforcement learning
algorithms for Markov decision processes. The reader is referred to [4] for a general
background of the subject and to other references listed below for further details.

3.1. Markov decision processes. We consider a Markov decision process Φ =
{Φ(t) : t ∈ Z} taking values in a finite state space S = {1, 2, . . . , s} and controlled
by a control sequence Z = {Z(t) : t ∈ Z} taking values in a finite action space
A = {a0, . . . , ar}. We assume that the control sequence is admissible in the sense
that Z(n) ∈ σ{Φ(t) : t ≤ n} for each n. We are most interested in stationary policies
of the form Z(t) = w(Φ(t)), where the feedback law w is a function w : S → A. The
controlled transition probabilities are given by p(i, j, a) for i, j ∈ S, a ∈ A.

Let c : S × A → R be the one-step cost function, and consider first the infinite
horizon discounted cost control problem of minimizing over all admissible Z the total
discounted cost

J(i,Z ) = E

[ ∞∑
t=0

βtc
(
Φ(t), Z(t)

) | Φ(0) = i

]
,

where β ∈ (0, 1) is the discount factor. The minimal value function is defined as

V (i) = minJ(i,Z ),

where the minimum is over all admissible control sequences Z . The function V satisfies
the dynamic programming equation

V (i) = min
a

[
c(i, a) + β

∑
j

p(i, j, a)V (j)

]
, i ∈ S,

and the optimal control minimizing J is given as the stationary policy defined through
the feedback law w∗ given as any solution to

w∗(i) := arg min
a

[
c(i, a) + β

∑
j

p(i, j, a)V (j)

]
, i ∈ S.
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The value iteration algorithm is an iterative procedure to compute the minimal
value function. Given an initial function V0 : S → R+ one obtains a sequence of
functions {Vn} through the recursion

Vn+1(i) = min
a

[
c(i, a) + β

∑
j

p(i, j, a)Vn(j)

]
, i ∈ S, n ≥ 0.(3.1)

This recursion is convergent for any initialization V0 ≥ 0. If we define Q-values via

Q(i, a) = c(i, a) + β
∑
j

p(i, j, a)V (j), i ∈ S, a ∈ A,

then V (i) = minaQ(i, a) and the matrix Q satisfies

Q(i, a) = c(i, a) + β
∑
j

p(i, j, a) min
b
Q(j, b), i ∈ S, a ∈ A.

The matrixQ can also be computed using the equivalent formulation of value iteration,

Qn+1(i, a) = c(i, a) + β
∑
j

p(i, j, a) min
b
Qn(j, b), i ∈ S, a ∈ A, n ≥ 0,(3.2)

where Q0 ≥ 0 is arbitrary.
The value iteration algorithm is initialized with a function V0 : S → R+. In

contrast, the policy iteration algorithm is initialized with a feedback law w0 and
generates a sequence of feedback laws {wn : n ≥ 0}. At the nth stage of the algorithm
a feedback law wn is given and the value function for the resulting control sequence
Zn = {wn(Φ(0)), wn(Φ(1)), wn(Φ(2)), . . . } is computed to give

Jn(i) = J
(
i,Zn

)
, i ∈ S.

Interpreted as a column vector in Rs, the vector Jn satisfies the equation(
I − βPn

)
Jn = cn,(3.3)

where the s × s matrix Pn is defined by Pn(i, j) = p(i, j, wn(i)), i, j ∈ S, and the
column vector cn is given by cn(i) = c(i, wn(i)), i ∈ S. Equation (3.3) can be solved
for fixed n by the “fixed-policy” version of value iteration given by

Jn(i+ 1) = βPnJn(i) + cn, i ≥ 0,(3.4)

where Jn(0) ∈ Rs is given as an initial condition. Then Jn(i) → Jn, the solution to
(3.3), at a geometric rate as i→∞.

Given Jn, the next feedback law wn+1 is then computed via

wn+1(i) = arg min
a

[
c(i, a) + β

∑
j

p(i, j, a)Jn(j)

]
, i ∈ S.(3.5)

Each step of the policy iteration algorithm is computationally intensive for large state
spaces since the computation of Jn requires the inversion of the s× s matrix I−βPn.

In the average cost optimization problem one seeks to minimize over all
admissible Z ,

lim sup
n→∞

1

n

n−1∑
t=0

E
[
c
(
Φ(t), Z(t)

)]
.(3.6)
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The policy iteration and value iteration algorithms to solve this optimization problem
remain unchanged with three exceptions. One is that the constant β must be set
equal to unity in (3.1) and (3.5). Second, in the policy iteration algorithm the value
function Jn is replaced by a solution Jn to Poisson’s equation∑

p
(
i, j, wn(i)

)
Jn(j) = Jn(i)− c(i, wn(i)

)
+ ηn, i ∈ S,

where ηn is the steady state cost under the policy wn. The computation of Jn and
ηn again involves matrix inversions via

πn
(
I − Pn + ee′

)
= e′, ηn = πncn,

(
I − Pn + ee′

)
Jn = cn,

where e ∈ Rs is the column vector consisting of all ones and the row vector πn is
the invariant probability for Pn. The introduction of the outer product ensures that
the matrix (I − Pn + ee′) is invertible, provided that the invariant probability πn is
unique.

Lastly, the value iteration algorithm is replaced by the “relative value iteration,”
where a common scalar offset is subtracted from all components of the iterates at
each iteration (likewise for the Q-value iteration). The choice of this offset term is not
unique. We shall be considering one particular choice, though others can be handled
similarly (see [1]).

3.2. Q-learning. If the matrix Q defined in (3.2) can be computed via value
iteration or some other scheme, then the optimal control is found through a simple
minimization. If transition probabilities are unknown so that value iteration is not
directly applicable, one may apply a stochastic approximation variant known as the
Q-learning algorithm of Watkins [1, 20, 21]. This is defined through the recursion

Qn+1(i, a) = Qn(i, a) + a(n)
[
βmin

b
Qn(Ψn+1(i, a), b) + c(i, a)−Qn(i, a)

]
,

i ∈ S, a ∈ A, where Ψn+1(i, a) is an independently simulated S-valued random vari-
able with law p(i, ·, a).

Making the appropriate correspondences with our set up, we have X(n) = Qn
and h(Q) = [hia(Q)]i,a with

hia(Q) = β
∑
j

p(i, j, a) min
b
Q(j, b) + c(i, a)−Q(i, a), i ∈ S, a ∈ A.

The martingale is given by M(n+ 1) = [Mia(n+ 1)]i,a with

Mia(n+ 1)

= β

min
b
Qn(Ψn+1(i, a), b)−

∑
j

p(i, j, a)
(

min
b
Qn(j, b)

) , i ∈ S, a ∈ A.

Define F (Q) = [Fia(Q)]i,a by

Fia(Q) = β
∑
j

p(i, j, a) min
b
Q(j, b) + c(i, a).

Then h(Q) = F (Q)−Q and the associated ODE is

Q̇ = F (Q)−Q := h(Q).(3.7)
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The map F : Rs×(r+1) → Rs×(r+1) is a contraction with respect to the max norm
‖ · ‖∞. The global asymptotic stability of its unique equilibrium point is a special
case of the results of [8]. This h( · ) fits the framework of our analysis, with the (i, a)th
component of h∞(Q) given by

β
∑
j

p(i, j, a) min
b
Q(j, b)−Q(i, a), i ∈ S, a ∈ A.

This also is of the form h∞(Q) = F∞(Q)−Q where F∞( · ) is an ‖ · ‖∞- contraction,
and thus the asymptotic stability of the unique equilibrium point of the corresponding
ODE is guaranteed (see [8]). We conclude that assumptions (A1) and (A2) hold, and
hence Theorems 2.1–2.4 also hold for the Q-learning model.

3.3. Adaptive critic algorithm. Next we shall consider the adaptive critic
algorithm, which may be considered as the reinforcement learning analog of policy
iteration (see [2, 13] for a discussion). There are several variants of this, one of which,
taken from [13], is as follows. For i ∈ S, we define

Vn+1(i) = Vn(i) + b(n)
[
c
(
i, ψn(i)

)
+ βVn

(
Ψn

(
i, ψn(i)

))− Vn(i)
]
,(3.8)

from which the policies are updated according to

(3.9) ŵn+1(i)

= Γ

{
ŵn(i) + a(n)

r∑
`=1

([
c(i, a0) + βVn

(
ηn(i, a0)

)]− [c(i, a`) + βVn(ηn(i, a`))]e`

)}
.

Here {Vn} are s-vectors and for each i, {ŵn(i)} are r-vectors lying in the simplex
{x ∈ Rr | x = [x1, . . . , xr], xi ≥ 0,

∑
i xi ≤ 1}. Γ( · ) is the projection onto this

simplex. The sequences {a(n)}, {b(n)} satisfy∑
n

a(n) =
∑
n

b(n) =∞,
∑
n

(
a(n)2 + b(n)2

)
<∞, a(n) = o

(
b(n)

)
.

The rest of the notation is as follows. For 1 ≤ ` ≤ r, e` is the unit r-vector in the
`th coordinate direction. For each i, n, wn(i) = wn(i, ·) is a probability vector on A
defined by the following. For ŵn(i) = [ŵn(i, 1), . . . , ŵn(i, r)],

wn(i, a`) =


ŵn(i, `) for ` 6= 0,

1−
∑
j 6=0

ŵn(i, j) for ` = 0.

Given wn(i), ψn(i) is an A-valued random variable independently simulated with law
wn(i). Likewise, Ψn(i, ψn(i)) are S-valued random variables which are independently
simulated (given ψn(i)) with law p(i, ·, ψn(i)) and {ηn(i, a`)} are S-valued random
variables independently simulated with law p(i, ·, a`), respectively.

To see why this is based on policy iteration, recall that policy iteration alternates
between two steps. One step solves the linear system of (3.3) to compute the fixed-
policy value function corresponding to the current policy. We have seen that solving
(3.3) can be accomplished by performing the fixed-policy version of value iteration
given in (3.4). The first step (3.8) in the above iteration is indeed the “learning” or



STOCHASTIC APPROXIMATION AND REINFORCEMENT LEARNING 459

“simulation-based stochastic approximation” analog of this fixed-policy value itera-
tion. The second step in policy iteration updates the current policy by performing an
appropriate minimization. The second iteration (3.9) is a particular search algorithm
for computing this minimum over the simplex of probability measures on A. This
search algorithm is by no means unique; the paper [13] gives two alternative schemes.
However, the first iteration (3.8) is common to all.

The different choices of stepsize schedules for the two iterations (3.8) and (3.9)
induces the “two time-scale” effect discussed in [5]. The first iteration sees the policy
computed by the second as nearly static, thus justifying viewing it as a fixed-policy
iteration. In turn, the second sees the first as almost equilibrated, justifying the search
scheme for minimization over A. See [13] for details.

The boundedness of {ŵn} is guaranteed by the projection Γ( · ). For {Vn}, the
fact that b(n) = o(a(n)) allows one to treat ŵn(i) as constant, say, w(i); see, e.g., [13].
The appropriate ODE then turns out to be

v̇ = G(v)− v := h(v),(3.10)

where G : Rs → Rs is defined by

Gi(x) =
∑
`

w(i, a`)

β∑
j

p(i, j, a`)xj + c(i, a`)

− xi, i ∈ S.

Once again, G( · ) is an ‖ · ‖∞-contraction and it follows from the results of [8]
that (3.10) is globally asymptotically stable. The limiting function h∞(x) is again of
the form h∞(x) = G∞(x)− x with G∞(x) defined so that its ith component is

∑
`

w(i, a`)

β∑
j

p(i, j, a`)xj

− xi.
We see that G∞ is also a ‖ · ‖∞-contraction and the global asymptotic stability of the
origin for the corresponding limiting ODE follows as before from the results of [8].

3.4. Average cost optimal control. For the average cost control problem, we
impose the additional restriction that the chain Φ has a unique invariant probability
measure under any stationary policy so that the steady state cost (3.6) is independent
of the initial condition.

For the average cost optimal control problem, the Q-learning algorithm is given
by the recursion

Qn+1(i, a) = Qn(i, a) + a(n)
(

min
b
Qn(Ψn(i, a), b) + c(i, a)−Qn(i, a)−Qn(i0, a0)

)
,

where i0 ∈ S, a0 ∈ A are fixed a priori. The appropriate ODE now is (3.7) with F ( · )
redefined as Fia(Q) =

∑
j p(i, j, a) minbQ(j, b) + c(i, a) − Q(i, a) − Q(i0, a0). The

global asymptotic stability for the unique equilibrium point for this ODE has been
established in [1]. Once again this fits our framework with h∞(x) = F∞(x) − x for
F∞ defined the same way as F , except for the terms c(·, ·) which are dropped. We
conclude that (A1) and (A2) are satisfied for this version of the Q-learning algorithm.

Another variant of Q-learning for average cost, based on a “stochastic shortest
path” formulation, is presented in [1]. This also can be handled similarly.
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In [13], three variants of the adaptive critic algorithm for the average cost problem
are discussed, differing only in the {ŵn} iteration. The iteration for {Vn} is common
to all and is given by

Vn+1(i) = Vn(i) + b(n)
[
c
(
i, ψn(i)

)
+ Vn

(
Ψn

(
i, ψn, (i)

))− Vn(i)− Vn(i0)
]
, i ∈ S,

where i0 ∈ S is a fixed state prescribed beforehand. This leads to the ODE (3.10)
with G redefined as

Gi(x) =
∑
`

w(i, a`)

∑
j

p(i, j, a`)xj + c(i, a`)

− xi − xi0 , i ∈ S.

The global asymptotic stability of the unique equilibrium point of this ODE has been
established in [7]. Once more, this fits our framework with h∞(x) = G∞(x) − x for
G∞ defined just like G, but without the c(·, ·) terms.

Asynchronous versions of all the above can be written down along the lines of
(3.7). Then by Theorem 2.5, they have bounded iterates a.s. The important point to
note here is that to date, a.s. boundedness for Q-learning and adaptive critic is proved
by other methods for centralized algorithms [1, 12, 20]. For asynchronous algorithms,
it is proved for discounted cost only [1, 13, 20] or by introducing a projection to
enforce stability [14].

4. Derivations. Here we provide proofs for the main results given in section 2.
Throughout this section we assume that (A1) and (A2) hold.

4.1. Stability. The functions {hr, r ≥ 1} and the limiting function h∞ are Lip-
schitz with the same Lipschitz constant as h under (A1). It follows from Ascoli’s
theorem that the convergence hr → h∞ is uniform on compact subsets of Rd. This
observation is the basis of the following lemma.

Lemma 4.1. Under (A1), the ODE (1.5) is globally exponentially asymptotically
stable.

Proof. The function h∞ satisfies

h∞(cx) = ch∞(x), c > 0, x ∈ Rd.
Hence the origin θ ∈ Rd is an equilibrium for (1.5), i.e., h∞(θ) = θ. Let B(ε) be the
closed ball of radius ε centered at θ with ε chosen so that x(t)→ θ as t→∞ uniformly
for initial conditions in B(ε). Thus there exists a T > 0 such that ‖x(T )‖ ≤ ε/2
whenever ‖x(0)‖ ≤ ε. For an arbitrary solution x( · ) of (1.5), y( · ) = εx( · )/‖x(0)‖
is another, with ‖y(0)‖ = ε. Hence ‖y(T )‖ < ε/2, implying ‖x(T )‖ ≤ 1

2‖x(0)‖. The
global exponential asymptotic stability follows.

With the scaling parameter r given by r(j) = max(1, ‖X(m(j))‖), j ≥ 0, we
define three piecewise continuous functions from R+ to Rd as in the introduction:

(a) {φ(t) : t ≥ 0} is an interpolated version of X defined as follows. For each
j ≥ 0, define a function φj on the interval [T (j), T (j + 1)] by

φj
(
t(n)

)
= X(n)/r(j), m(j) ≤ n ≤ m(j + 1),

with φj( · ) defined by linear interpolation on the remainder of [T (j), T (j+1)] to form
a piecewise linear function.

We then define φ to be the piecewise continuous function

φ(t) = φj(t), t ∈ [T (j), T (j + 1)
)
, j ≥ 0.
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(b) {φ̂(t) : t ≥ 0} is continuous on each interval [T (j), T (j + 1)), and on this
interval it is the solution to the ODE

ẋ(t) = hr(j)
(
x(t)

)
,(4.1)

with initial condition φ̂(T (j)) = φ(T (j)), j ≥ 0.
(c) {φ∞(t) : t ≥ 0} is also continuous on each interval [T (j), T (j+1)), and on this

interval it is the solution to the “fluid model” (1.5) with the same initial condition

φ∞
(
T (j)

)
= φ̂

(
T (j)

)
= φ

(
T (j)

)
j ≥ 0.

Boundedness of φ̂( · ) and φ∞( · ) is crucial in deriving useful approximations.
Lemma 4.2. Under (A1) and (A2) and either (TS) or (BS), there exists C̄ <∞

such that for any initial condition X(0) ∈ Rd

φ̂(t) ≤ C̄ and φ∞(t) ≤ C̄, t ≥ 0.

Proof. To establish the first bound use the Lipschitz continuity of h to obtain the
bound

d

dt

∥∥φ̂(t)
∥∥2

= 2φ̂(t)Thr(j)
(
φ̂(t)

) ≤ C(∥∥φ̂(t)
∥∥2

+ 1
)
, T (j) ≤ t < T (j + 1),

where C is a deterministic constant, independent of j. The claim follows with C̄ =
2 exp((T + 1)C) since ‖φ̂(T (j))‖ ≤ 1. The proof of the second bound is therefore
identical.

The following version of the Bellman Gronwall lemma will be used repeatedly.
Lemma 4.3.
(i) Suppose {α(n)}, {A(n)} are nonnegative sequences and β > 0 such that

A(n+ 1) ≤ β +

n∑
k=0

α(k)A(k), n ≥ 0.

Then for all n ≥ 1,

A(n+ 1) ≤ exp

(
n∑
k=1

α(k)

)(
α(0)A(0) + β

)
.

(ii) Suppose {α(n)}, {A(n)}, {γ(n)} are nonnegative sequences such that

A(n+ 1) ≤ (1 + α(n)
)
A(n) + γ(n), n ≥ 0.

Then for all n ≥ 1,

A(n+ 1) ≤ exp

(
n∑
k=1

α(k)

)((
1 + α(0)

)
A(0) + β(n)

)
,

where β(n) =
∑n

0 γ(k).
Proof. Define {R(n)} inductively by R(0) = A(0) and

R(n+ 1) = β +

n∑
k=0

α(k)R(k), n ≥ 0.
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A simple induction shows that A(n) ≤ R(n), n ≥ 0. An alternative expression for
R(n) is

R(n) =

(
n∏
k=1

(1 + α(k)

)(
α(0)A(0) + β

)
.

The inequality (i) then follows from the bound 1 + x ≤ ex.
To see (ii) fix n ≥ 0 and observe that on summing both sides of the bound

A(k + 1)−A(k) ≤ α(k)A(k) + γ(k)

over 0 ≤ k ≤ ` we obtain for all 0 ≤ ` < n,

A(`+ 1) ≤ A(0) + β(n) +
∑̀
k=0

α(k)A(k).

The result then follows from (i).

The following lemmas relate the three functions φ( · ), φ̂( · ), and φ∞( · ).
Lemma 4.4. Suppose that (A1) and (A2) hold. Given any ε > 0, there exist

T,R < ∞ such that for any r > R and any solution to the ODE (1.4) satisfying
‖x(0)‖ ≤ 1, we have ‖x(t)‖ ≤ ε for t ∈ [T, T + 1].

Proof. By global asymptotic stability of (1.5) we can find T > 0 such that
‖φ∞(t)‖ ≤ ε/2, t ≥ T , for solutions φ∞( · ) of (1.5) satisfying ‖φ∞(0)‖ ≤ 1.

With T fixed, choose R so large that |φ̂(t)−φ∞(t)| ≤ ε/2 whenever φ̂ is a solution

to (1.4) satisfying φ̂(0) = φ∞(0); |φ̂(0)| ≤ 1; and r ≥ R. This is possible since, as we
have already observed, hr → h∞ as r → ∞ uniformly on compact sets. The claim
then follows from the triangle inequality.

Define the following: For j ≥ 0, m(j) ≤ n < m(j + 1),

X̃(n) := X(n)/r(j),

M̃(n+ 1) := M(n+ 1)/r(j),

and for n ≥ 1,

ξ(n) :=

n−1∑
m=0

a(m)M̃(m+ 1).

Lemma 4.5. Under (A1), (A2), and either (TS) or (BS), for each initial condition
X(0) ∈ Rd satisfying E[‖X(0)‖2] <∞, we have the following:

(i) sup n≥0E[‖X̃(n)‖2] <∞.
(ii) sup j≥0E[‖X(m(j + 1))/r(j)‖2] <∞.
(iii) sup j≥0,T (j)≤t≤T (j+1)E[‖φ(t)‖2] <∞.
(iv) Under (TS) the sequence {ξ(n),Fn} is a square integrable martingale with

sup
n≥0

E[‖ξ(n)‖2] <∞.

Proof. To prove (i) note first that under (A2) and the Lipschitz condition on h
there exists C <∞ such that for all n ≥ 1,

E
[‖X(n)‖2 | Fn−1

] ≤ (1 + Ca(n− 1)
)‖X(n− 1)‖2 + Ca(n− 1), n ≥ 0.(4.2)
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It then follows that for any j ≥ 0 and any m(j) < n < m(j + 1),

E
[∥∥X̃(n)

∥∥2 | Fn−1

] ≤ (1 + Ca(n− 1)
)∥∥X̃(n− 1)

∥∥2
+ Ca(n− 1),

so that by Lemma 4.3 (ii), for all such n,

E
[∥∥X̃(n+ 1)

∥∥2] ≤ exp
(
C(T + 1)

)(
2E
[∥∥X̃(m(j))

∥∥2]
+ C(T + 1)

)
≤ exp

(
C(T + 1)

)(
2 + C(T + 1)

)
.

Claim (i) follows, and claim (ii) follows similarly. We then obtain claim (iii) from the

definition of φ( · ). From (i), (ii), and (A2), we have supn E[‖M̃(n)‖2] <∞. Using this
and the square summability of {a(n)} assumed in (TS), the bound (iv) immediately
follows.

Lemma 4.6. Suppose E[‖X(0)‖2] < ∞. Under (A1), (A2), and (TS), with
probability one,

(i) ‖φ(t)− φ̂(t)‖ → 0 as t→∞,
(ii) sup t≥0‖φ(t)‖ <∞.

Proof. Express φ̂( · ) as follows: For m(j) ≤ n < m(j + 1),

φ̂(t(n+ 1)−) = φ̂(T (j)) +

n∑
i=m(j)

∫ t(i+1)

t(i)

hr(j)
(
φ̂(s)

)
ds

= φ̂(T (j)) + ε1(j) +

n∑
i=m(j)

a(i)hr(j)
(
φ̂(t(i))

)
,(4.3)

where ε1(j) = O(
∑m(j+1)
i=m(j) a(i)2) → 0 as j → ∞. The “−” covers the case where

t(n+ 1) = t(m(j + 1)) = T (j + 1).
We also have by definition

φ
(
t(n+ 1)− ) = φ

(
T (j)

)
+

n∑
i=m(j)

a(i)
[
hr(j)

(
φ
(
t(i)
))

+ M̃(i+ 1)
]
.(4.4)

For m(j) ≤ n ≤ m(j + 1), let ε(n) = ‖φ(t(n)−)− φ̂(t(n)−)‖. Combining (4.3), (4.4),
and the Lipschitz continuity of h, we have

ε(n+ 1) ≤ ε(m(j)
)

+ ε1(j) + ‖ξ(n+ 1)− ξ(m(j))‖+ C
n∑

i=m(j)

a(i)ε(i),

where C <∞ is a suitable constant. Since ε(m(j)) = 0, we can use Lemma 4.3 (i) to
obtain

ε(n) ≤ exp
(
C(T + 1)

)(
ε1(j) + ε2(j)

)
, m(j) ≤ n ≤ m(j + 1),

where ε2(j) = maxm(j)≤n≤m(j+1) ‖ξ(n + 1) − ξ(m(j))‖. By (iv) of Lemma 4.5 and
the martingale convergence theorem [18, p. 62], {ξ(n)} converges a.s.; thus ε2(j)→ 0
a.s., as j →∞. Since ε1(j)→ 0 as well,

sup
m(j)≤n≤m(j+1)

∥∥φ(t(n)−)− φ̂(t(n)−)
∥∥ = sup

m(j)≤n≤m(j+1)

ε(n)→ 0
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as j →∞, which implies the first claim.
Result (ii) then follows from Lemma 4.2 and the triangle inequality.
Lemma 4.7. Under (A1), (A2), and (BS), there exists a constant C2 < ∞ such

that for all j ≥ 0,
(i) sup j≥0,T (j)≤t≤T (j+1)E[‖φ(t)− φ̂(t)‖2 | Fn(j)] ≤ C2α,

(ii) sup j≥0,T (j)≤t≤T (j+1)E[‖φ(t)‖2 | Fn(j)] ≤ C2.
Proof. Mimic the proof of Lemma 4.6 to obtain

ε(n+ 1) ≤
n∑

i=m(j)

Ca(i)ε(i) + ε0(j), m(j) ≤ n < m(j + 1),

where ε(n) = E[‖φ(t(n)−)− φ̂(t(n)−)‖2 | Fm(j)]
1/2 for m(j) ≤ n ≤ m(j + 1), and the

error term has the upper bound

|ε0(j)| = O(α),

where the bound is deterministic. By Lemma 4.3 (i) we obtain the bound,

ε(n) ≤ exp
(
C(T + 1)

)
ε0(j), m(j) ≤ n ≤ m(j + 1),

which proves (i). We, therefore, obtain (ii) using Lemma 4.2, (i), and the triangle
inequality.

Proof of Theorem 2.1. (i) By a simple conditioning argument, we may take X(0)
to be deterministic without any loss of generality. In particular, E[‖X(0)‖2] < ∞
trivially. By Lemma 4.6 (ii), it now suffices to prove that supn ‖X(m(n))‖ < ∞
a.s. Fix a sample point outside the zero probability set where Lemma 4.6 fails. Pick
T > 0 as above and R > 0 such that for every solution x( · ) of the ODE (1.4) with
‖x(0)‖ ≤ 1 and r ≥ R, we have ‖x(t)‖ ≤ 1

4 for t ∈ [T, T + 1]. This is possible by
Lemma 4.4.

Hence by Lemma 4.6 (i) we can find an j0 ≥ 1 such that whenever j ≥ j0 and
‖X(m(j))‖ ≥ R,

‖X(m(j + 1))‖
‖X(m(j))‖ = φ

(
T (j + 1)− ) ≤ 1

2
.(4.5)

This implies that {X(m(j)) : j ≥ 0} is a.s. bounded, and the claim follows.
(ii) For m(j) < n ≤ m(j + 1),

E
[∥∥X(n)

∥∥2 | Fm(j)

]1/2
= E

[∥∥φ(t(n)− )∥∥2 | Fm(j)

]1/2(∥∥X(m(j))
∥∥ ∨ 1

)(4.6)

≤ E
[∥∥φ(t(n)− )− φ̂(t(n)− )∥∥2 | Fm(j)

]1/2(∥∥X(m(j)
)∥∥ ∨ 1

)
+ E

[∥∥φ̂(t(n)−)
∥∥2 | Fm(j)

]1/2(‖X(m(j)
)‖ ∨ 1

)
.

Let 0 < η < 1
2 , and let α∗ = η/(2C2), for C2 as in Lemma 4.7. We then obtain

for α ≤ α∗,

E
[∥∥X(n)

∥∥2 | Fm(j)

]1/2 ≤ (η/2)
(∥∥X(m(j)

)∥∥ ∨ 1
)

+ E
[∥∥φ̂(t(n)− )∥∥2 | Fm(j)

]1/2(∥∥X(m(j)
)∥∥ ∨ 1

)
.(4.7)
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Choose R, T > 0 such that for any solution x( · ) of the ODE (1.4), ‖x(t)‖ < η/2 for
t ∈ [T, T + 1], whenever ‖x(0)‖ < 1 and r ≥ R. When ‖X(m(j))‖ ≥ R, we then
obtain

E
[∥∥X(m(j + 1)

)∥∥2 | Fm(j)

]1/2 ≤ η∥∥X(m(j)
)∥∥,(4.8)

while by Lemma 4.7 (ii) there exists a constant C such that the left-hand side (l.h.s.)
of the inequality above is bounded by C a.s. when ‖X(m(j))‖ ≤ R. Thus,

E
[∥∥X(m(j + 1)

)∥∥2] ≤ 2η2E
[∥∥X(m(j)

)∥∥2]
+ 2C2.

This establishes boundedness of E[‖X(m(j + 1))‖2], and the proof then follows from
(4.7) and Lemma 4.2.

4.2. Convergence for (BS). Lemma 4.8. Suppose that (A1), (A2), and (BS)
hold and that α ≤ α∗. Then for some constant C3 <∞,

sup
t≥0

E
[∥∥ψ̂(t)− ψ(t)

∥∥2] ≤ C3α.

Proof. By (A2) and Theorem 2.1 (ii),

sup
n

E
[∥∥X(n)

∥∥2]
<∞, sup

n
E
[∥∥M(n)

∥∥2]
<∞.

The claim then follows from familiar arguments using the Bellman Gronwall lemma
exactly as in the proof of Lemma 4.6.

Proof of Theorem 2.3. (i) We apply Theorem 2.1 which allows us to choose an
R > 0 such that

sup
n

P
(‖X(n)‖ > R

)
< α.

Let B(c) denote the ball centered at x∗ of radius c > 0 and let 0 < µ < ε/2 be such
that if a solution x( · ) of (1.2) satisfies x(0) ∈ B(µ), then x(t) ∈ B(ε/2) for t ≥ 0. Pick
T > 0 such that if a solution x( · ) of (1.2) satisfies ‖x(0)‖ ≤ R, then x(t) ∈ B(µ/2)
for t ∈ [T, T + 1]. Then for all j ≥ 0,

P
(
e
(
m(j + 1)

) ≥ µ) = P
(
e
(
m(j + 1)

) ≥ µ,∥∥X(m(j)
)∥∥ > R)

+ P
(
e
(
m(j + 1

)) ≥ µ, ‖X(m(j))‖ ≤ R
)

≤ α+ P
(
ψ
(
T (j + 1)

) 6∈ B(µ), ψ̂
(
T (j + 1)

) ∈ B(µ/2)
)

≤ α+ P
(
‖ψ(T (j + 1)

)− ψ̂(T (j + 1)
)‖ > µ/2

)
≤ O(α)

by Lemma 4.8. Then for m(j) ≤ n < m(j + 1),

P
(
e(n) ≥ ε) = P

(
e(n) ≥ ε, e(m(j)

) ≥ µ)
+ P

(
e(n) ≥ ε, e(m(j)

) ≤ µ)
≤ O(α) + P

(
ψ(t(n)

) 6∈ B(ε), ψ̂
(
t(n)

) ∈ B(ε/2)
)

≤ O(α) + P
(‖ψ(t(n)

)− ψ̂(t(n)
)‖ > ε/2

)
≤ O(α).
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Since the bound on the r.h.s. is uniform in n, the claim follows.
(ii) We first establish the bound with n = m(j + 1), j →∞. We have for any j,

E
[
e
(
m(j + 1)

)2]1/2 ≤ E
[∥∥ψ(T (j + 1)− )− ψ̂(T (j + 1)− )∥∥2]1/2

+ E
[∥∥ψ̂(T (j + 1)− )− x∗∥∥2]1/2

.(4.9)

By exponential stability there exist C <∞, δ > 0 such that for all j ≥ 0,∥∥ψ̂(T (j + 1)− )− x∗∥∥ ≤ C exp
(− δ[T (j + 1)− T (j)

])∥∥ψ̂(T (j)
)− x∗∥∥

≤ C exp(−δT )
∥∥ψ̂(T (j)

)− x∗∥∥.
Choose T so large that C exp(−δT ) ≤ 1

2 so that

E
[∥∥ψ̂(T (j + 1)− )− x∗∥∥2]1/2 ≤ 1

2
E
[∥∥ψ̂(T (j)

)− x∗∥∥2]1/2
≤ 1

2
E
[
e
(
m(j)

)2]1/2
+

1

2
E
[∥∥ψ(T (j)

)− ψ̂(T (j)
)∥∥2]1/2

.(4.10)

Combining (4.9) and (4.10) with Lemma 4.8 gives

E
[
e
(
m(j + 1)

)2]1/2 ≤ 1

2
E
[
e
(
m(j)

)2]1/2
+ 2
√
C3α,

which shows that

lim sup
j→∞

E
[
e
(
m(j)

)2] ≤ 16C3α.

The result follows from this and Lemma 4.7 (ii).
Proof of Theorem 2.5. The details of the proof, though pedestrian in the light of

the foregoing and [6], are quite lengthy, not to mention the considerable overhead of
additional notation, and are therefore omitted. We briefly sketch below a single point
of departure in the proof.

In Lemma 4.6 we compare two functions φ( · ) and φ̂( · ) on the interval [T (j), T (j+

1)]. The former in turn involved the iterates X̃(n) for m(j) ≤ n < m(j + 1) or,
equivalently, X(n) for m(j) ≤ n < m(j + 1). Here X(n + 1) was computed in terms
of X(n) and the “noise” M(n+1). In the asynchronous case, however, the evaluation
of Xj(n + 1) can involve Xj(n) for n − τ ≤ m ≤ n, j 6= i. Therefore the argument
leading to Lemma 4.6 calls for a slight modification. While computing X(n),m(j) ≤
n < m(j + 1), we plug into the iteration as and when required X̃i(m) = Xi(m)/r(j).
Note, however, that if the same Xi(m) also features in the computation of Xk(l) for

m(q) ≤ ` < m(q + 1), say, with q 6= j, then X̃i(m) should be redefined there as

Xi(m)/r(q). Thus the definition of X̃i(m) now becomes context-dependent.
With this minor change, the proofs of [6] can be easily combined with the

arguments used in the proofs of Theorems 2.1 and 2.2 to draw the desired
conclusions.

4.3. The Markov model. The bounds that we obtain for the Markov model
(2.4) are based upon the theory of ψ-irreducible Markov chains.

A subset S ⊂ Rd is called petite if there exists a probability measure ν on Rd and
δ > 0 such that the resolvent kernel K satisfies

K(x,A) :=

∞∑
k=0

2−k−1P k(x,A) ≥ δν(A), x ∈ S,
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for any measurable A ⊂ Rd. Under assumptions (2.6) and (2.7) we show below that
every compact subset of Rd is petite, so that Φ is a ψ-irreducible T -chain. We refer
the reader to [16] for further terminology and notation.

Lemma 4.9. Suppose that (A1), (A2), (2.6), and (2.7) hold and that α ≤ α∗.
Then all compact subsets of Rd are petite for the Markov chain X, and hence the
chain is ψ-irreducible.

Proof. The conclusions of the theorem will be satisfied if we can find a function
s which is bounded from below on compact sets and a probability ν such that the
resolvent kernel K satisfies the bound

K(x,A) ≥ s(x)ν(A)

for every x ∈ Rd and any measurable subset A ⊂ Rd. This bound is written succinctly
as K ≥ s⊗ ν.

The first step of the proof is to apply the implicit function theorem together with
(2.6) and (2.7) to obtain a bound of the form

P d(x,A) = P(X(d) ∈ A | X(0) = x) ≥ εν(A), x ∈ O,

where O is an open set containing x∗, ε > 0, and ν is the uniform distribution on O.
The set O can be chosen independent of α, but the constant ε may depend on α. For
details on this construction, see Chapter 7 of [16].

To complete the proof it is enough to show that K(x,O) > 0. To see this, suppose
that α ≤ α∗ and that W (n) = w∗ for all n. Then the foregoing stability analysis shows
that X(n) ∈ O for all n sufficiently large. Since w∗ is in the support of the marginal
distribution of {W (n)}, it then follows that K(x,O) > 0.

From these two bounds, we then have

K(x,A) ≥ 2−d
∫
K(x, dy)P d(y,A) ≥ 2−dεK(x,O)ν(A).

This is of the form K ≥ s⊗ ν with s lower semicontinuous and positive everywhere.
The function s is therefore bounded from below on compact sets, which proves the
claim.

The previous lemma together with Theorem 2.1 allows us to establish a strong
form of ergodicity for the model.

Lemma 4.10. Suppose that (A1), (A2), (2.6), and (2.7) hold and that α ≤ α∗.
(i) There exists a function Vα : Rd → [1,∞) and constants b, L < ∞ and ε0 > 0

independent of α such that

PVα(x) ≤ exp(−ε0α)Vα(x) + bIC(x),

where C = {x : ‖x‖ ≤ L}. While the function Vα will depend upon α, it is uniformly
bounded as follows,

γ−1(‖x‖2 + 1) ≤ Vα(x) ≤ γ(‖x‖2 + 1),

where γ ≥ 1 does not depend upon α.
(ii) The chain is V -uniformly ergodic, with V (x) = ‖x‖2 + 1.
Proof. Using (4.8) we may construct T and L independent of α ≤ α∗ such that

E
[∥∥X(k0)

∥∥2
+ 1 | X(0) = x

] ≤ (1/2)(‖x‖2 + 1), ‖x‖ ≥ L,
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where k0 = [T/α] + 1. We now set

Vα(x) = α

k0−1∑
k=0

E
[∥∥X(k)

∥∥2
+ 1 | X(0) = x

]
2k/k0 .

From the previous bound, it follows directly that the desired drift inequality holds
with ε0 = log(2)/T . Lipschitz continuity of the model gives the bounds on Vα. This
proves (i).

The V -uniform ergodicity then follows from Lemma 4.9 and Theorem 16.0.1 of
[16].

We note that for small α and large x, the Lyapunov function Vα approximates
V∞ plus a constant, where

V∞(x) =

∫ T

0

(‖x(s)‖2 + 1
)

2s/T ds; x(0) = x,

and x( · ) is a solution to (1.5). If this ODE is asymptotically stable then the function
V∞ is in fact a Lyapunov function for (1.5), provided T > 0 is chosen sufficiently
large.

In [17] a bound is obtained on the rate of convergence ρ given in (2.5) for a chain
satisfying the drift condition

PVα(x) ≤ λV (x) + bIC(x).

The bound depends on the “petiteness” of the set C and the constants b < ∞ and
λ < 1. The bound on ρ obtained in [17] also tends to unity with vanishing α since
in the preceding lemma we have λ = exp(−ε0α) → 1 as α → 0. From the structure
of the algorithm this is not surprising, but this underlines the fact that care must be
taken in the choice of the stepsize α.
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UNIQUENESS OF LOWER SEMICONTINUOUS VISCOSITY
SOLUTIONS FOR THE MINIMUM TIME PROBLEM∗
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Abstract. We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the
transformed minimum time problem assuming that they converge to zero on a “reachable” part of
the target in appropriate directions. We present a counter-example which shows that the uniqueness
does not hold without this convergence assumption.

It was shown by Soravia that the uniqueness of LSC viscosity solutions having a “subsolution
property” on the target holds. In order to verify this subsolution property, we show that the dynamic
programming principle (DPP) holds inside for any LSC viscosity solutions.

In order to obtain the DPP, we prepare appropriate approximate PDEs derived through Barles’
inf-convolution and its variant.

Key words. semicontinuous viscosity solutions, dynamic programming principle, minimum
time problem

AMS subject classifications. 49L25, 49L20, 35F30
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1. Introduction. In this manuscript, we discuss the minimum time problem of
deterministic optimal control, which has been studied via viscosity solution approach
by many authors. As the first result, we refer to Bardi [Ba]. See also [EJ], [BF], [BS],
and [BSo], who also treated the minimum time problem of differential games.

In those works, they characterized the value function of the minimum time prob-
lem to reach a given target as the unique viscosity solution of a first-order PDE.
However, they treated the case only when the resulting value functions are continuous
since those uniqueness results imply the continuity of solutions. We note that there
often appear discontinuous value functions for practical minimum time problems.

The breakthrough to treat semicontinuous solutions for first-order PDEs was done
by Barron and Jensen [BJ1]. Indeed, they introduced a new definition of semicontin-
uous viscosity solutions for Cauchy problems with convex Hamiltonians, which arise
when we deal with optimal control problems. Under their setting, it was shown in
[BJ2] that the semicontinuous value function is the unique solution of the associated
PDE. We note that if we restrict ourselves to treat continuous viscosity solutions,
then their definition is equivalent to that of the standard one.

Afterward, Barles [B1] discussed semicontinuous solutions for stationary problems
utilizing “Barles”-convolution. With this idea, Soravia [S1] studied the Dirichlet-type
problems. More precisely, he imposed a “subsolution” property on the boundary of the
target, under which the uniqueness of LSC viscosity solutions for the (transformed)
minimum time problem was obtained. See also [K] and [BL] for related topics. Re-
cently, Cârjǎ, Mignanego, and Pieri in [CMP] (see also [C]) studied LSC viscosity
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solutions of the minimum time problem assuming that they converge to the Dirichlet
data from inside.

For the viscosity solution theory of first-order Hamilton–Jacobi equations, we
refer to a new book by Bardi and Capuzzo Dolcetta [BC].

On the other hand, in nonsmooth analysis, LSC solutions have been studied
in optimal control theory. For the first result, we refer to Frankowska [F]. More
recently, Wolenski and Zhuang [WZ] have proved the uniqueness of LSC solutions
of the minimum time problem assuming the subsolution property on the target as
in [S1], which the value function satisfies. We note that their definition of solutions
is slightly different from that of viscosity solutions. It is worth mentioning that in
[WZ], to show the uniqueness, they compared the other LSC solution (if it exists) with
the value function by the so-called invariance theory while, in the literature of the
viscosity solution theory, we have shown it via comparison principle for a boundary
value problem of PDEs.

Our aim here is to obtain a uniqueness result without assuming the subsolution
property on the target. In fact, we will derive such a property from the definition of
solutions under some continuity assumption on a “reachable” part of the boundary.
Then, we will be able to apply Soravia’s argument in [S1] to get the uniqueness.

Moreover, we will mention that our continuity condition is equivalent to Soravia’s
one. In fact, to show that the Soravia’s condition implies the continuity condition,
we give a direct proof, although we can prove it using the uniqueness of solutions.

In an example, we will see that this continuity assumption is necessary to obtain
the uniqueness result.

Here, we shall recall the original minimum time problem. Consider the state
equation associated with controls

α ∈ A ≡ {α : [0,∞)→ A measurable},
where A is a compact set in Rm (for some m ∈ N). For x ∈ Rn,

dX

dt
(t) = g(X(t), α(t)) for t > 0,

X(0) = x,
(1.1)

where g : Rn ×A→ Rn is a given function and x ∈ Rn is fixed.
We shall denote, under appropriate hypotheses, by X(·;x, α) the (unique) solution

of (1.1). We will also denote by X(·;x, ξ(·)) the unique solution for a vector field
ξ ∈W 1,∞(Rn; Rn): 

dX

dt
(t) = ξ(X(t)) for t > 0,

X(0) = x.

For simplicity, we shall suppose that

T ⊂ Rn is compact.(A0)

With these notations, we recall the value function of the minimum time problem:

V (x) = inf
α∈A

Tαx ,

where Tαx = inf{t ≥ 0 | X(t;x, α) ∈ T }.
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Since V (x) might be infinity in a subregion of Ω ≡ Rn\T , we will have to study
the free boundary problem:

max
a∈A
{−〈g(x, a), DV (x)〉 − 1} = 0 in R ≡ {x ∈ Ω | V (x) <∞}.(1.2)

Since we cannot expect that R is open in general, as we will see, we meet some
difficulty if we treat (1.2) directly. Therefore, in this paper, following the previous
works, we shall consider the transformed value function by Kruzkov transformation:

u(x) = inf
α∈A

(
1− e−Tαx

)
.

Then, we can expect u to be a solution of

u(x) + max
a∈A
{−〈g(x, a), Du(x)〉} = 1 in Ω.(1.3)

Thus, once we verify that u is the unique solution of (1.3), we will be able to derive
the reachable set by R = {x ∈ Ω | u(x) < 1}.

This paper is organized as follows. Section 2 is devoted to our definition of
the minimum time problem and the DPP which implies the subsolution property.
We present our uniqueness result and examples in section 3. Also, we discuss the
equivalence of boundary conditions in section 3. In the final section, we prove the
DPP in section 2.

2. DPP. Our hypothesis on the regularity of given functions is as follows:

g ∈ C(Rn ×A; Rn
)

and sup
a∈A
‖g(·, a)‖W 1,∞(Rn;Rn) <∞.(A1)

For later convenience, we shall consider the following general first-order PDE in
a set Σ ⊂ Rn:

u(x) + max
a∈A
{−〈g(x, a), Du(x)〉 − f(x, a)} = 0 in Σ,(2.1)

where f : Rn ×A→ R is a given continuous function.
For simplicity, we shall use the notation

H(x, r, p) ≡ r + max
a∈A
{−〈g(x, a), p〉 − f(x, a)}.

We will suppose the following regularity on given functions in (2.1):g ∈ C
(
Rn ×A; Rn

)
, f ∈ C(Rn ×A; R

)
, and

sup
a∈A

{‖g(·, a)‖W 1,∞(Rn;Rn) + ‖f(·, a)‖W 1,∞(Rn;R)

}
<∞.(A1′)

Following [BJ1] (also [B1]), we present our definition of solutions of (2.1).
Definition. For a function u : Σ → R, we call it a subsolution (resp., superso-

lution) of (2.1) if u is LSC in Σ, and

H(x, u(x), p) ≤ (resp., ≥) 0 for x ∈ Σ and p ∈ D−u(x),

where D−u(x) denotes the standard subdifferential of u at x ∈ Σ.

D−u(x) = {p ∈ Rn | u(y) ≥ u(x) + 〈p, y − x〉+ o(|y − x|) as y → x}.
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For a function u : Σ→ R, we also call it a solution of (2.1) if u is both a sub- and a
supersolution of (2.1)

We characterize the set of reachable controls in the following way. For x ∈ ∂T ,

A(x) ≡
{
a ∈ A

∣∣∣∣ There exists t > 0 such that
X(s;x,−g(·, a)) ∈ Ω for s ∈ (0, t)

}
.

We shall derive the “subsolution” properties on ∂T for solutions through the
following propositions.

Lemma 2.1. Assume that (A1) holds. Let u be a solution of (1.3). Assume also
that u = 0 on T . Then, for x ∈ ∂T and p ∈ D−u(x), we have

−〈g(x, a), p〉 ≤ 0 provided a ∈ A\A(x).

Proof. Choose φ ∈ C1 such that u − φ attains its minimum over Rn at x ∈ ∂T ,
u(x) = φ(x) = 0, and Dφ(x) = p. Set X(·) ≡ X(·;x,−g(·, a)).

Since a ∈ A\A(x), there exists {tk > 0}∞k=1, such that limk→∞ tk = 0 and
X(tk) ∈ T (k = 1, 2, . . . ). Hence,

φ(X(tk))− φ(x) ≤ u(X(tk)) = 0.

Therefore, dividing tk and then sending k →∞, we conclude the assertion.
For simplicity, we shall suppose that

Σ is open and ∂Σ is compact.(A0′)

For δ > 0, we define an open subset

Σδ ≡ {x ∈ Σ | dist(x, ∂Σ) > δ} .
Also, for an open subset O ⊂ Σ and x ∈ O, we use the notation

τx,αO = inf{t ≥ 0 | X(t;x, α) /∈ O}.
We present the DPP for (2.1), whose proof will be given in the final section since

it is rather complicated.
Theorem 2.2 (cf. [L]). Assume that (A0′) and (A1′) hold. Let u : Σ→ R be a

bounded solution of

H(x, u,Du) = 0 in Σ.

Then, for δ > 0 and x ∈ Σδ,

u(x) = inf
α∈A

{∫ τx,α
Σδ

0

e−sf(X(s;x, α), α(s))ds+ e
−τx,α

Σδ u(X(τx,αδ ;x, α))

}
.

Corollary 2.3. Assume that (A0) and (A1) hold. Fix x ∈ ∂T . Let u : Ω→ R
be a bounded solution of

u(x) + max
a∈A
{−〈g(x, a), Du(x)〉} − 1 = 0 in Ω.

Assume also that u = 0 on T and, for any x ∈ ∂T and a ∈ A(x),

lim inf
s→t u(X(s;xt, a)) = u(x) holds,
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where xt ≡ X(t;x,−g(·, a)) for t ≥ 0.
Then,

u(x)− 〈g(x, a), p〉 ≤ 1 for p ∈ D−u(x).

Proof of Corollary 2.3. Let x ∈ ∂T , p ∈ D−u(x), and a ∈ A(x) in the hypothesis.
We then set xt = X(t;x,−g(·, a)) ∈ Ω for small t > 0.

Choose φ ∈ C1 such that u(x) = φ(x), u ≥ φ in Rn, and Dφ(x) = p.
Fix small t > 0 and choose δ(t) > 0 such that xt ∈ Ωδ for δ ∈ (0, δ(t)).
By Theorem 2.2, we have

u(xt) ≤ 1− e−τ
xt,a

Ωδ + e
−τxt,a

Ωδ u(X(τxt,aΩδ
;xt, a)),

where a stands for the constant control; α(·) ≡ a.
We note that limδ→0 τ

xt,a
Ωδ

= t.
We also note that the uniqueness of solutions of (1.1) yields X(τxt,aΩδ

;xt, a) =
xt−τxt,a

Ωδ

. Take the limit infimum, as δ → 0, together with these in the above to get

φ(xt)− e−tφ(x) ≤ u(xt)− e−tu(x) ≤ 1− e−t.
Dividing t > 0 and then, sending t→ 0 in the above, we conclude the proof.

3. Main results. In order to obtain the uniqueness result, we will suppose the
following continuity assumption. Letting u be an LSC function in Ω, we will suppose
that, for any x ∈ T and a ∈ A(x),

lim inf
s→t u(X(s;xt, a)) = 0 for small t > 0,(A2)

where xt = X(t;x,−g(·, a)).
Notice that we do not suppose that A(x) 6= ∅ in this hypothesis.
Our uniqueness result for (1.3) is as follows.
Theorem 3.1. Assume that (A0) and (A1) hold. Let u and v : Rn → R be

bounded solutions of (1.3) and satisfy (A2). Assume also that u = v = 0 on T .
Then, u = v in Rn.

Proof of Theorem 3.1. In view of Lemma 2.1 and Corollary 2.3, we see that

u(x) + max
a∈A
{−〈g(x, a), p〉} ≤ 1 for x ∈ ∂T and p ∈ D−u(x).(3.1)

This property enables us to apply Soravia’s result, Theorem 3.1 in [S1], to con-
clude the proof.

Thanks to the above theorem, it is easy to show that the relaxed value function
is the unique bounded viscosity solution of (1.3) satisfying (A2). To this end, let us
introduce the unique solution X̂(·;x, µ) of the associated state equation:

X̂(t) = x+

∫ t

0

∫
A

g
(
X̂(s), a

)
dµ[s](a)ds,(3.2)

where s ∈ [0,∞) → µ[s] ∈ M(A) is measurable. Here, M(A) is the set of all Radon
probability measures on A. We shall denote by Â the set of such maps µ.

The relaxed value function is as follows:

V̂ (x) = inf
µ∈Â

(
1− e−T̂µx

)
,
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where T̂µx = inf{t ≥ 0 | X̂(t;x, µ) ∈ T }.
Theorem 3.2. Assume that (A0) and (A1) hold. Then, V̂ is the unique bounded

solution of (1.3) satisfying (A2).
Proof of Theorem 3.2. Following the argument in [BJ2], we see that V̂ is LSC

and satisfies (1.3) in our sense in Ω.
To check that A2 holds for V̂ , we observe that, for x ∈ ∂T and a ∈ A(x),

V̂ (X(s;X(t;x,−g(·, a)), a)) ≤ 1− e−(t−s).

Hence, since V̂ (x) = 0, sending s → t, we obtain (A2) for V̂ . We remark here that
the nonnegativity of V̂ indeed yields

lim
s→t V̂ (X(s;X(t;x,−g(·, a)), a)) = 0.

Therefore, Theorem 3.1 immediately implies the assertion.
Remark. If we have an LSC solution u of (1.3) satisfying (3.1), then u(x) = V̂ (x)

in Rn. Hence, (A2) holds true for u by Soravia’s argument in [S1] since V̂ also
satisfies (3.1). Thus, through the above theorem, the condition (3.1) is equivalent
to (A2). See [WZ] for the same argument.

Now, we shall show that condition (3.1) implies a bit stronger assertion than (A2).
Theorem 3.3. Assume that (A0) and (A1) hold. Let u : Ω → [0,∞) be a

bounded subsolution of (1.3), satisfying (3.1) and u = 0 on T . Then, for each x ∈ ∂T ,
a ∈ A(x), and small t > 0, we have

lim
s→tu(X(s;X(t;x,−g(·, a)), a)) = 0.

Proof of Theorem 3.3. Fix x ∈ ∂T and a ∈ A(x). As usual, we may sup-
pose x = 0 and g(0, a) = −en, where en = (0, . . . , 0, 1). Furthermore, we may
suppose that g(·, a) = −en near the origin. Indeed, setting v(y) = v(y1, . . . , yn) =
u(X(yn; (y1, . . . , yn−1, 0),−g(·, a))), we have

v(y) +
∂v

∂yn
(y) = u(X)− 〈g(X, a), Du(X)〉.

Define Qhη = {x = (x′, xn) | −1 < xn < h, |x′| < η} for small h, η ∈ (0, 1), and
φ(x′, xn) = 2(xn−|x′|2/η2). Since min

Qhη
(u−φ) ≤ (u−φ)(0) = 0, the minimum point

x̂ ∈ Qhη can be attained at x̂ = (x̂′, h). Indeed, otherwise, we have four possibilities:
(1) In the case when x̂n = −1, we immediately see (u− φ)(x̂) ≥ 2 > (u− φ)(0).
(2) In the case when |x̂′| = η holds, we also have (u− φ)(x̂) > 0 = (u− φ)(0).
(3) In the case when x̂ = (x̂′, x̂n) ∈ Qhη\Ω, there is ε > 0 such that (u − φ)(x̂ +

εen) < (u− φ)(x̂).
In the above three cases, we get a contradiction to the choice of the minimum

point x̂. The remaining case is as follows:
(4) In the case when x̂ ∈ Ω ∩Qhη , the definition of solutions yields

1 ≥ u(x̂) +
∂φ

∂xn
(x̂) ≥ 2,

which is a contradiction.
Therefore, taking η → 0 along a subsequence if necessary, by the lower semicon-

tinuity of u, we find u(0, . . . , 0, h) ≤ 2h, which concludes the assertion.
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Remark. Recently, P. Soravia kindly let us know that we can easily obtain the
above assertion using the optimality principle in [S2], [S3].

The following example is due to Soravia.
Example 3.4. For T ≡ [−1, 1], consider the PDE

u+

∣∣∣∣∂u∂x
∣∣∣∣ = 1 in Ω ≡ R\T .(3.3)

It is easy to show that the unique (continuous) solution is given by

V (x) =

{
1− e−|x|+1 for |x| ≥ 1,

0 for |x| < 1.

On the other hand, we observe that the following function satisfies (3.3) in Ω:

V̂ (x) =


1− ex+1 for x < −1,

0 for |x| ≤ 1,

1 for x > 1.

Notice that V̂ does not satisfy (A2) at x = 1. Thus, this example indicates that
it is necessary for the uniqueness result to suppose (A2).

We also note that, by Theorem 3.1, V̂ is the unique LSC solution of

u− ∂u

∂x
= 1 in Ω.

We next give an example, in which the reachable set is not open and the discon-
tinuity appears in Ω.

Example 3.5. For T ≡ {x = (0, x2) ∈ R2 | 0 ≤ x2 ≤ 1},

u+ max

{∣∣∣∣ ∂u∂x1

∣∣∣∣ ,−a(x2)
∂u

∂x2

}
= 1 in Ω ≡ R2\T ,(3.4)

where

a(x2) =


1 for x2 ≥ −1,

x2 + 2 for x2 ∈ (−2,−1),

0 for x2 ≤ −2.

We easily verify that the reachable set R = {x ∈ Ω | V (x) < 1} is given by

{(x1, x2) ∈ Ω | −2 < x2 ≤ 1}.
Moreover, it is not hard to calculate the value function:

V (x1, x2) =


1 for x2 > 1 or x2 ≤ −2,

1− e−|x1| for x2 ∈ (0, 1],

1− e−|x1|+x2 for x2 ∈ (−1, 0],

1− (x2 + 2)e−|x1|−1 for x2 ∈ (−2,−1].

Notice that the discontinuity of V occurs at (x1, 1) ∈ Ω.
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4. Proof of Theorem 2.2. The basic idea of our proof was obtained by Lions
in [L] for second-order PDEs. We also refer to [EI] and [BSo]. But, in their argument,
we need some regularity of solutions. Hence, we will adapt some approximation
techniques.

Let u be a solution of (2.1). We shall extend u (with the same notation) to the
whole space by setting u(x) =∞ for x /∈ Σ.

We fix any T > 0.
We first approximate u by locally Lipschitz continuous functions. For ε > 0 and

(x, t) ∈ Rn × (0, T ), we define

uε(x, t) = inf
y∈Rn

(
u(y) + e−µt

|x− y|2
ε2

)
and

uε(x, t) = inf
y∈Rn

(
u(y) + eµt

|x− y|2
ε2

)
.

Here, we fix µ > 2 + 2 maxa∈A ‖Dg(·, a)‖∞. Notice that the first one is Barles’
convolution but the second one has an opposite sign of the power on the exponential.

It is immediate to see that uε ≤ uε in Rn × [0, T ].
We can easily show the properties:

|x− y| ≤ εeµt/2(2‖u‖∞)1/2 if uε(x, t) = u(y) + e−µt
|x− y|2
ε2

,

|x− y| ≤ εe−µt/2(2‖u‖∞)1/2 if uε(x, t) = u(y) + eµt
|x− y|2
ε2

.
(4.1)

In view of these facts, we define the constant ĉ = ĉ(T ) ≡ eµT/2(2‖u‖∞)1/2.
We claim that the following properties hold. For some C1 and C ′1 > 0 independent

of ε and µ > 0,{
0 ≥ uε(x, t) + q + max

a∈A
{−〈g(x, a), p〉 − f(x, a)} − C1ε

2eµt

for (x, t) ∈ Σĉε × (0, T ) and (p, q) ∈ D+uε(x, t)
(4.2)

and {
0 ≤ uε(x, t) + q + max

a∈A
{−〈g(x, a), p〉 − f(x, a)}+ C ′1ε

2e−µt

for (x, t) ∈ Σĉε × (0, T ) and (p, q) ∈ D−uε(x, t).
(4.3)

Here, D+uε(x, t) = −D−(−uε)(x, t).
We note that (4.3) holds in a larger set than Σĉε but this is sufficient to conclude

the proof.
Although it is not hard to show (4.2) and (4.3) by the argument in [B1] together

with (4.1), we give a brief proof for the reader’s convenience.
Since (4.3) can be obtained easily by remarking the sign of the power on e, we

shall only show (4.2). See also our proof for (4.2) below.
Let us recall the Barron–Jensen lemma, which will be needed also for checking

the sign of q in (4.2).
Lemma 4.1 (See [BJ1] or [K]). Fix (x, t) ∈ Rn × (0, T ) and (p, q) ∈ D+uε(x, t).

For any α > 0, there exist (xαk , t
α
k ) ∈ Rn × (0, T ), (pαk , q

α
k ) ∈ D−uε(xαk , tαk ) for k ∈
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{1, 2, . . . , n(α)} (with some n(α) ∈ N), (xα, tα) ∈ Rn × (0, T ), C0 > 0, and {θαk ∈
[0, 1]}n(α)

k=1 such that

(i) lim
α→0

|xαk − xα|
α

= 0,

(ii) lim
α→0

(
xα, tαk

)
= (x, t)

(∀k = 1, . . . , n(α)
)
,

(iii) α|pαk | ≤ C0

(∀α > 0, k = 1, . . . , n(α)
)
,

(iv)

n(α)∑
k=1

θαk = 1 (∀α > 0),

(v) lim
α→0

n(α)∑
k=1

θαk (pαk , q
α
k ) = (p, q).

(4.4)

For (x, t) ∈ Σĉε × (0, T ) and (p, q) ∈ D+uε(x, t) in (4.2), we shall choose (xαk , t
α
k ),

etc., in Lemma 4.1.
Since we may suppose xαk ∈ Σĉε for small α > 0, in view of (4.1), we can choose

yαk ∈ Σ such that

uε(x
α
k , t

α
k ) = u(yαk ) + e−µt

α
k
|xαk − yαk |2

ε2
.(4.5)

Since pαk ∈ D−u(yαk ), the definition yields

0 = u(yαk ) + max
a∈A
{−〈g(yαk , a), pαk 〉 − f(yαk , a)}.

Noting pαk = e−µt
α
k

2(xαk−yαk )
ε2 , we calculate in the following way:

0 ≥ u(yαk ) + max
a∈A
{−〈g(xαk , a), pαk 〉 − f(yαk , a)}

− 2 max
a∈A
‖Dg(·, a)‖∞e−µtαk |x

α
k − yαk |2
ε2

≥ u(yαk ) + max
a∈A
{−〈g(xα, a), pαk 〉 − f(xαk , a)}

−max
a∈A
‖Dg(·, a)‖∞

(
2e−µt

α
k
|xαk − yαk |2

ε2
+ |xαk − xα||pαk |

)
−max

a∈A
‖Df(·, a)‖∞|xαk − yαk |.

Since we may also suppose µe−µt
α
k
|xαk−yαk |2

ε2 + qαk = 0 for small α > 0, by (4.5) and
(iii) of (4.4), we can find C1 > 0 such that

0 ≥ uε(xαk , tαk ) + qαk + max
a∈A
{−〈g(xα, a), pαk 〉 − f(xαk , a)}

− C0 max
a∈A
‖Dg(·, a)‖∞ |x

α
k − xα|
α

− C1ε
2eµt

α
k

+

{
µ− 2 max

a∈A
‖Dg(·, a)‖∞ − 2

}
e−µt

α
k
|xαk − yαk |2

ε2
.

From the choice of µ > 0, we see that the last term on the right-hand side of the
above is nonnegative.
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Taking the convex combination with {θαk }n(α)
k=1 and then sending α → 0 with (i),

(ii), (iv), and (v) of (4.4) in the above, we have

0 ≥ uε(x, t) + q + max
a∈A
{−〈g(x, a), p〉 − f(x, a)} − C1ε

2eµt.

Now, for δ > 0, we choose ηδ ∈ C∞(Rn) such that

0 ≤ ηδ ≤ 1 in Rn, ηδ = 1 in Σδ, and ηδ = 0 in
(
Σδ/2

)c
.

We set the functions
gδ(x, a) = ηδ(x)g(x, a),

fε,δ(x, t, a) = ηδ(x)(f(x, a) + C1ε
2eµt) + (1− ηδ(x))uε(x, t),

f ε,δ(x, t, a) = ηδ(x)(f(x, a)− C ′1ε2e−µt) + (1− ηδ(x))uε(x, t).

We then consider the problems: For (x, t, p, q) ∈ Rn × (0, T )×Rn ×R,

u+ ut +Hε,δ(x, t,Du) = 0(4.6)

and

u+ ut +Hε,δ(x, t,Du) = 0,(4.7)

where Hε,δ(x, t, p) = max
a∈A
{−〈gδ(x, a), p〉 − fε,δ(x, t, a)},

Hε,δ(x, t, p) = max
a∈A
{−〈gδ(x, a), p〉 − f ε,δ(x, t, a)}.

In what follows, we suppose that δ > ε
2ĉ .

We claim that uε and uε, respectively, are the standard viscosity subsolution
and supersolution of u + ut + Hε,δ = 0 and u + ut + Hε,δ = 0 in Rn × (0, T ). For
(x, t) ∈ Rn × (0, T ),

uε(x, t) + q +Hε,δ(x, t, p) ≤ 0 provided (p, q) ∈ D+uε(x, t)(4.8)

and

uε(x, t) + q +Hε,δ(x, t, p) ≥ 0 provided (p, q) ∈ D−uε(x, t).(4.9)

Indeed, it is immediate to check that uε and uε, respectively, satisfy that, for
(x, t) ∈ Rn × (0, T ),

uε(x, t) + ηδ(x)q +Hε,δ(x, t, p) ≤ 0 provided (p, q) ∈ D+uε(x, t)

and

uε(x, t) + ηδ(x)q +Hε,δ(x, t, p) ≥ 0 provided (p, q) ∈ D−uε(x, t).
Here, we have used the fact ηδ(x) = 0 for x /∈ Σĉε.

We first show (4.9).

Since (p, q) ∈ D−uε(x, t), from the definition, we have q = µeµt |x−y|
2

ε2 ≥ 0 for
some y ∈ Σ. Hence, we conclude our claim because ηδ ≥ 0.
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Thus, for (4.8), it is sufficient to show that q ≤ 0 provided (p, q) ∈ D+uε(x, t).
This is not straightforward unlike (4.9).

However, in view of (iv) and (v) of Lemma 4.1, q can be approximated by∑n(α)
k=1 θ

α
k q

α
k (as α→ 0) for (pαk , q

α
k ) ∈ D−uε(xαk , tαk ) with appropriate (xαk , t

α
k ). Hence,

we can see that qαk = −µe−µtαk |xαk−y|2ε2 ≤ 0 for some y. Therefore, q ≤ 0.
Now, we shall give the value functions uε,δ and uε,δ, respectively, for (4.6) and (4.7)

with initial condition uε(·, 0) and uε(·, 0):

uε,δ(x, t) = inf
α∈A

{∫ t

0

e−sfε,δ(X(s;x, α), t− s, α(s))ds+ e−tuε(X(t;x, α), 0)

}
and

uε,δ(x, t) = inf
α∈A

{∫ t

0

e−sf ε,δ(X(s;x, α), t− s, α(s))ds+ e−tuε
(
X(t;x, α), 0

)}
.

Since fε,δ(x, t) ≤ f ε,δ(x, t) + ε2(C1e
µt +C ′1e

−µt) and uε ≤ uε, there exists C2 > 0
such that

uε,δ(x, t) ≤ uε,δ(x, t) + C2ε
2eµt in Rn × [0, T ].(4.10)

We also remark that uε,δ and uε,δ are bounded and continuous. Hence, the stan-
dard comparison principle yields that

uε(x, t) ≤ uε,δ(x, t) and uε,δ(x, t) ≤ uε(x, t) in Rn × [0, T ].(4.11)

Fix x ∈ Σ and choose δ > 0 so that x ∈ Σδ.
Then, the DPP for uε,δ at (x, T ) with (4.10) and (4.11) implies that

uε(x, T ) ≤ inf
α∈A


e
−τx,α

Σδ
∧T
uε,δ
(
X(τx,αΣδ

∧ T ;x, α), (T − τx,αΣδ
)+
)

+

∫ τx,α
Σδ
∧T

0

e−sf
(
X(s;x, α), α(s)

)
ds


≤ inf
α∈A


e
−τx,α

Σδ
∧T
uε,δ
(
X(τx,αΣδ

∧ T ;x, α), (T − τx,αΣδ
)+
)

+

∫ τx,α
Σδ
∧T

0

e−sf
(
X(s;x, α), α(s)

)
ds

+ C2ε
2eµT(4.12)

≤ uε(x, T ) + C2ε
2eµT .

We note that, for each α ∈ A, (4.10) and (4.11) imply

u(X(τx,αΣδ
∧ T ;x, α)) = lim

ε→0
uε,δ(X(τx,αΣδ

∧ T ;x, α), (T − τx,αΣδ
)+)

= lim
ε→0

uε,δ(X(τx,αΣδ
∧ T ;x, α), (T − τx,αΣδ

)+).
(4.13)

Therefore, sending ε→ 0 with (4.13) in (4.12), we have

u(x) = inf
α∈A


e
−τx,α

Σδ
∧T
u
(
X(τx,αΣδ

∧ T ;x, α)
)

+

∫ τx,α
Σδ
∧T

0

e−sf
(
X(s;x, α), α(s)

)
ds

 .

Finally, sending T →∞, we conclude the proof.
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NONLINEAR FILTERS∗
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Abstract. Methods of preprocessing the observations for nonlinear filters are investigated, the
aim being to reduce the computational labor involved in their implementation. An example of
preprocessing is quantization, which involves the replacement of real-valued observation samples by
discrete values. Because the resulting likelihood functions have finite support, they can be held in
“look-up” tables kept in some type of rapid access memory, which renders their “real-time” evaluation
trivial. Preprocessed observations of this sort carry less information than raw observations. This loss
of information is characterized here for filters with substantially noisy observation samples by means
of a functional central limit theorem. Among other things, this supplies an asymptotic, effective
signal-to-noise ratio for preprocessed filters.

Methods of optimizing preprocessing operations with respect to this quantified information loss
are developed. In particular, optimal quantization thresholds are found for observations that are
contaminated by Gaussian noise, and it is shown that the loss of information for quite coarse quan-
tization schemes is small; for example, the asymptotic, effective signal-to-noise ratio for a filter with
one-bit quantized observations is 2/π times that for the same filter with raw observations. Simula-
tions on two examples demonstrate the validity of the asymptotic characterization, even when the
observation samples are only modestly contaminated by noise.

Key words. nonlinear filtering, quantization, approximation, weak convergence, hidden Markov
models

AMS subject classifications. 93E11, 60G35, 60F17

PII. S0363012997331147

1. Introduction. Nonlinear filtering concerns methods for progressively esti-
mating the value of a signal process from the available history of a related obser-
vations process, where, typically, the dynamics of both processes are nonlinear and
influenced by random noise. The theory of such filters, in a fairly general context, is
well understood (see [2], [4], [7], [8], [11], [18], and [19]), as are aspects of their ap-
proximation, in particular those relating to continuous-time filters (see, for example,
[1], [3], [5], [12], [14], and [17]), but their implementation in many areas of potential
application remains difficult. This is due largely to the computational complexity of
the algorithms involved, which is often orders of magnitude greater than for linear
filters. One aspect of implementation is the evaluation of likelihood functions for the
observations, and this can be simplified by means of preprocessing. An example of
preprocessing, which motivated this study, is quantization; this involves the replace-
ment of real-valued observation samples by discrete samples. The likelihood functions
for these discrete observations can be held in “look-up” tables kept in some type of
rapid access memory, which renders their “real-time” evaluation trivial. Another ex-
ample of preprocessing is dimension reduction, where an observation sample from
a high-dimensional space is replaced by one from a space of lower dimension, with
obvious computational advantages. Of course, such preprocessing operations reduce
the information content of the observations, making the filters that subsequently use
them less accurate than those using raw observations. The primary concern of this
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article is to quantify this loss and so enable the design of preprocessing operations that
minimize it within various sets of constraints. In particular, methods for determining
the optimal placement of thresholds in quantization schemes are developed.

Attention is restricted, here, to filters for Markov chain signals. Preprocessing
techniques for estimators of continuous-state signals (including filters for diffusions)
are considered in a companion paper [16]. All the results concern filters for which the
observation samples are substantially contaminated by noise. This includes not only
discrete-time filters with inherently noisy observation sequences but also continuous-
time filters that have been discretized in time with a small time step. For example,
suppose we wish to estimate a signal, (Xt; t ∈ [0,∞)), modeled by a Markov chain
with rate matrix A, from continuous-time observations modeled by

Zt =

∫ t

0

g(Xs)ds+Wt for t ∈ [0,∞),(1.1)

where g is an Rn-valued function and (Wt; t ∈ [0,∞)) is an n-dimensional standard
Brownian motion; then, modulo some technical assumptions, we can calculate the
posterior probabilities that Xt occupies the various states, given the observations up
to time t, by means of Wonham’s filter [18],

dπt =

A− n∑
j=1

(Gj − ḡt,jI) ḡt,j

πt dt+
n∑
j=1

(Gj − ḡt,jI)πt dZt,j ,(1.2)

where

πt = veci {P (Xt = xi | Zs; 0 ≤ s ≤ t)} ,
Gj = diagi{gj(xi)},
ḡt =

∑
i

g(xi)πt,i,

and I is the matrix identity. (veci(yi) is used to indicate the column vector, whose
components are the elements yi.) Time discretizations of (1.2), with time step ∆t,
typically involve the sampled (and, here, normalized) observations

Yk = ∆t−1(Z(k+1)∆t − Zk∆t) for k = 0, 1, . . .

≈ g(Xk∆t) + ∆t−1(W(k+1)∆t −Wk∆t),

which become increasingly noisy as ∆t decreases.
In the next section, preprocessing operations for the observation sequences of

discrete-time Markov chain filters are characterized by a central limit theorem. The
limit is taken over sequences of filters with worsening observation noise and slowing
signal dynamics. The slowing of the signal dynamics compensates for the worsening
of the noise in such a way that the performance of the filters converges to that of
a continuous-time limit filter. Section 3 develops applications of this result to the
time discretization of filters for continuous-time Markov chain signals. The limit
filter for both discrete and continuous-time cases is characterized by a matrix-valued
signal-to-noise ratio, H. In section 4, this is related to other measures of performance
such as error probability and mean-square error. The results of some simulations are
presented in section 5. These suggest that the approach of optimizing preprocessing
operations with respect to the performance measure of the limit problem is a useful
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one, in that the performance measures for the limit filter closely approximate those
for the filters in the sequence, even when the observation noise is only modest. This
is true over a wide range of filter performances, as demonstrated by the simulations
in Example 1 of section 5.

The key feature of filters that are well approximated by the limit filter is that, as
a result of a combination of observation noise level and signal switching rate, they act
“long term”; i.e., they make significant use of a long history of observation samples,
taking little notice of a single sample. Another asymptotic performance measure
appropriate for such filters is obtained if the signal dynamics are slowed but the
observation noise remains fixed. In that case, the performance of the filters improves
asymptotically—in particular, the error probability converges to zero. An asymptotic
analysis for the steady-state error probability for filters based on raw observations
is developed in [9] and [10]. This can be adapted for filters based on preprocessed
observations and used as a basis for optimizing the preprocessing operations with
respect to the specific performance criterion of error probability. This approach is
complementary to that of section 2 in that it provides asymptotic analysis for filters
with any level of observation noise, but is useful only if the filters have small error
probabilities. In the context of quantization it prescribes optimal thresholds that
differ from those derived in section 4 when the level of observation noise is low. Of
course, for filters with high levels of observation noise and small error probabilities
the two approaches yield equivalent results.

However, it is not clear how useful this alternative asymptotic analysis is for filters
with low levels of observation noise. Like the analysis developed here, it relies on the
filters acting “long term,” which means that, when the level of observation noise is
low, it is useful only if the signal switching rate is extremely low. In Example 1 of
section 5, the analysis of [10] corresponds to the limit as the parameter a goes to
zero. The optimal thresholds according to the two asymptotic performance measures
broadly coincide for this example for values of δ (the reciprocal of the noise standard
deviation) less than 1. For values of δ greater than 1 the performance of the filter
is dominated by “short-term” effects (even when a = 0.0001). The value of a would
need to be extremely small for a “window” of noise intensities, lower than those for
which the high-noise asymptotic used here applies, but higher than those for which
short-term effects dominate the filter performance, to open. The asymptotic analysis
in [10], applied to preprocessing, may allow the fine tuning of operations for certain
examples with low observation noise intensities and very low error probabilities, but
this is not investigated further here.

2. An asymptotic characterization of preprocessing operations. In this
section, the information lost through preprocessing operations used in conjunction
with Markov chain filters is estimated by means of a central limit theorem.

Let {(Ωδ,Fδ, P δ, (Xδ
k ∈ {x1, x2, . . . , xm}; k = 0, 1, . . . ), Qδ, p); δ ∈ (0, 1]} be a

family of discrete-time, time-homogeneous, Markov chains parametrized by δ, and
having transition probability matrices Qδ and common initial law p (= veci{P (Xδ

0 =

i)}). For each δ, let (Y h,δk ∈M ; k = 1, 2, . . . ) be a preprocessed observation sequence
whose terms take values in some measurable space (M,M) and are defined by

Y h,δk = h
(
δg(Xδ

k) + ζδk
)

for k = 1, 2, . . . ,(2.1)

where (ζδk ∈ Rn; k = 1, 2, . . . ) is a sequence of independent random variables (noises),
defined on (Ωδ,Fδ, P δ), that are independent of (Xδ

k ; k = 0, 1, . . .) and have com-
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mon distribution Pζ(dz), g is an Rn-valued function on {x1, x2, . . . , xm}, and h is a
measurable (preprocessing) function from Rn to M . (For example, quantization.)

For z ∈ Rn, let q(dy, z) be the probability measure induced on (M,M) by h(z+ζ)
and suppose that:

(H1) there exists a constant θ > 0 such that

q(dy, z)� q(dy, 0) if ‖z‖ < θ.

Let r(y, z) be a version of the associated Radon–Nikodým derivative, i.e.,

r(y, z) =
q(dy, z)

q(dy, 0)
almost everywhere (a.e.)−q(dy, 0).

For sufficiently small δ, the discrete-time nonlinear filter for estimating Xδ
k from the

observations (Y h,δ1 , Y h,δ2 , . . . , Y h,δk ) can be expressed recursively as follows. (Note that,
for large values of δ, it may be possible within the constraints of (H1), for the measures
q(dy, g(xi)δ) and q(dy, g(xj)δ) to be mutually singular for one or more pairs of states
(xi, xj). A recursive expression for the nonlinear filter would then necessarily be
different from the following.) Let

πh,δk = veci

{
P δ
(
Xδ
k = xi | Y h,δ1 , Y h,δ2 , . . . , Y h,δk

)}
;(2.2)

then from Bayes’ formula it follows that

πh,δ0 = p,
(2.3)

πh,δk+1 = S
(
R(Y h,δk+1, δ)Q

δπh,δk

)
for k = 0, 1, . . . ,

where

R(y, δ) = diagi{r(y, g(xi)δ)},
and S : Rm → Rm is the following normalization function:

Si(u) =

 m∑
j=1

|uj |
−1

ui if u 6= 0

for i = 1, 2, . . . ,m.(2.4)
0 if u = 0

Theorem 2.1. Suppose that, in addition to (H1),
(H2) for almost every y (q(dy, 0)), r(y, · ) has continuous first and second deriva-

tives in some neighborhood of the origin (in what follows, rz(y, · ) and rzz(y, · ) will
represent, respectively, the corresponding row-vector Jacobian and the Hessian ma-
trix);

(H3) there exists an ε > 0 such that∫
‖rz(y, 0)‖3+ε

q(dy, 0) <∞;

(H4) there exist ε, θ > 0 such that

sup
‖z‖<θ

∫
‖rzz(y, z)‖3+ε

q(dy, 0) <∞;



486 NIGEL J. NEWTON

(H5) there exists an m×m Markov rate matrix, A, such that, for all δ,

Qδ = I +Aδ2 + o(δ2),

where o(·) (and, for later use, O(·)) have their usual (Landau) meanings.
Let (Ω,F , P, (Xt ∈ {x1, x2, . . . , xm}; t ∈ [0,∞)), A, p) be a continuous-time Markov
process with rate matrix A and the same initial law, p, as (Xδ

k). Let H be the n× n
matrix

H =

∫
r′z(y, 0)rz(y, 0)q(dy, 0),(2.5)

and let (ZHt ; t ∈ [0,∞)) be the observations process

ZHt = H

∫ t

0

g(Xs)ds+BHt ,(2.6)

where g is as in (2.1) and (BHt ; t ∈ [0,∞)) is an n-dimensional Brownian motion
on (Ω,F , P ), independent of (Xt; t ∈ [0,∞)), and with covariance matrix H. Let
(πHt ; t ∈ [0,∞)) be the nonlinear filter for (Xt) given (ZHt ), i.e.,

πHt = veci
{
P
(
Xt = xi | ZHs ; s ∈ [0, t]

)}
.(2.7)

Then the piecewise constant extension of (πh,δk ; k = 0, 1, . . .), (πh,δ[δ−2t]; t ∈ [0,∞)),

considered as a family of random variables in the Skorohod space DRm [0,∞), converges
weakly to (πHt ; t ∈ [0,∞)) as δ → 0. ([x] signifies the integer part of x.)

Remark 1. If the rank, d, of H is nonzero, then (ZHt ; t ∈ [0,∞)) is equivalent to
the following d-vector observations process:

Z̃Lt = L

∫ t

0

g(Xs)ds+Wt,

where L is any d × n matrix such that L′L = H, and (Wt; t ∈ [0,∞)) is a standard
d-dimensional Brownian motion. Thus H can be interpreted as the (matrix-valued)
signal-to-noise ratio of the limit filter (2.7), which is itself the weak limit of the
discrete-time filters of (2.3) as the signal dynamics slow, (H5), and the observation
noise worsens, (2.1).

Remark 2. The statement of the theorem remains true if the signal process is
controlled in the sense that the matrix of transition probabilities, Qδ, depends on
(πh,δk ), in which case (Xδ

k , π
h,δ
k ) is Markov and

P δ
(
Xδ
k+1 = xi | Xδ

k = xj , π
h,δ
k

)
= Qδi,j(π

h,δ
k ).

Hypothesis (H5) is replaced by the following.
(H5′) There exists a Lipschitz continuous Markov rate function, A : Sm → Rm×m

(where Sm is the simplex {x ∈ [0, 1]m :
∑
i xi = 1}), such that, for all δ,

Qδ(p) = I +A(p)δ2 + o(δ2) uniformly in p ∈ Sm;

the requirement that the observation noise, (ζδk ; k = 1, 2, . . .), be independent of
the signal, (Xδ

k ; k = 0, 1, . . .), is replaced by the requirement that (ζδk+1, ζ
δ
k+2, . . . ) be
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independent of Xδ
k for each k, and the limit filter is that for the controlled, continuous-

time process (Xt, A(πHt )), given the observations (2.6), where Xs and BHt −BHs are
independent for all 0 ≤ s ≤ t < ∞. The steps in the proof are the same as those for
the uncontrolled case but involve more complex notation.

Proof of Theorem 2.1. The unnormalized version of the discrete-time filters (2.3),

ρh,δ0 = p,

ρh,δk+1 = R(Y h,δk+1, δ)Q
δρh,δk for k = 0, 1, . . .

is first expanded in terms of δ. Because of (H2), for sufficiently small δ, the Radon–
Nikodým derivatives, r(y, g(xi)δ), can be expanded as follows:

r(y, g(xi)δ) = 1 + rz(y, 0)g(xi)δ + f(y, xi, δ)δ
2,

where

f(y, xi, δ) = g′(xi)
∫ 1

0

∫ β

0

rzz(y, αg(xi)δ)dα dβ g(xi).

This, together with (H5), gives

ρh,δk+1 = ρh,δk + F (Y h,δk+1, δ)ρ
h,δ
k ,

where

F (y, δ) = Aδ2 + diagi{rz(y, 0)g(xi)}δ + diagi{f(y, xi, δ)}O(δ2)

+ (I + diagi{rz(y, 0)g(xi)}) o(δ2).

Now, (ρh,δk ) is a Markov process in Rm with (time-homogeneous) transition function
µ(u,B) given by

µ(u,B) = Pu (u+ F (Y, δ)u ∈ B) ,

where

Y = h(δg(X) + ζ),

X (∈ {x1, x2, . . . , xm}), and ζ (∈ Rn) are independent random variables with distribu-
tions S(Qδu) and Pζ(dz), respectively, defined on some probability space (Ωu,Fu, Pu),
and S is the normalization function defined in (2.4). Because of (H3) and (H4), for
sufficiently small δ,

Eu‖F (Y, δ)‖2+ε =
∑
j

∫
‖F (y, δ)‖2+εq(dy, g(xj)δ)(Q

δS(u))j

=
∑
j

∫
‖F (y, δ)‖2+ε

(
1 + rz(y, 0)g(xj)δ + f(y, xj , δ)δ

2
)

×q(dy, 0)(QδS(u))j

= O(δ2+ε) uniformly in u,

and so by Markov’s inequality, for any θ > 0,

δ−2Pu (‖F (Y, δ)‖ > θ) ≤ θ−(2+ε)δ−2Eu‖F (Y, δ)‖2+ε

(2.8)
= O(δε) uniformly in u.
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Again, for sufficiently small δ,

Eurz(Y, 0) =
∑
j

∫
rz(y, 0)q(dy, g(xj)δ)(Q

δS(u))j

=
∑
j

∫
rz(y, 0)

(
1 + rz(y, 0)g(xj)δ + f(y, xj , δ)δ

2
)
q(dy, 0)(QδS(u))j

= ḡ′(u)Hδ +O(δ2) uniformly in u,

where

ḡ(u) =
∑
j

g(xj)(S(u))j .

Similarly, for θ as defined in (H4),

sup
‖z‖<θ

Eurzz(Y, z) = O(δ) uniformly in u,

and so

EuF (Y, δ) = Aδ2 + diagi{ḡ′(u)Hg(xi)}δ2 + o(δ2)
(2.9)

= Aδ2 +
n∑
l=1

(Hḡ(u))lGlδ
2 + o(δ2)

uniformly in u, where Gl = diagi{gl(xi)}. Also, for sufficiently small δ,

EuF (Y, δ)uu′F ′(Y, δ) = Eu diagi{rz(Y, 0)g(xi)}uu′ diagi{rz(Y, 0)g(xi)}δ2 +O(δ3)

=
n∑

k,l=1

Hk,lGkuu
′Glδ2 +O(δ3)(2.10)

uniformly on compacts.
The continuous-time filter (2.7) is Wonham’s filter, which can be expressed re-

cursively in unnormalized form as follows:

ρH0 = p,

dρHt = AρHt dt+
n∑
l=1

Glρ
H
t dZ

H
t,l

=

(
A+

n∑
l=1

(
Hḡ
(
ρHt
))
l
Gl

)
ρHt dt+

n∑
l=1

Glρ
H
t dν

H
t,l,(2.11)

πHt = S(ρHt ),

where

νHt := ZHt −
∫ t

0

Hḡ(ρs)ds

is the associated innovations process.
The coefficients in (2.11) fulfill Itô’s Lipschitz continuity and linear growth con-

ditions and so (2.11) has a unique strong solution. It follows that the associated
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martingale problems for each initial law on (Rm,Bm) all have unique solutions. This,
and properties (2.8), (2.9), and (2.10) of the transition function, µ(u,B), allow the
application of a functional central limit theorem (a simple variation of Lemma 4.2 on
p. 355 of [6]) showing that, for any sequence δl → 0,(

ρh,δl
[δ−2
l
t]

)
⇒ (

ρHt
)

in DRm [0,∞).

The theorem now follows from the a.e. (with respect to the distribution of (ρHt ))
continuity of the mapping

Γ : DRm [0,∞)→ DRm [0,∞),

defined by

Γt(v) = S(vt) for all t ∈ [0,∞).

The following examples illustrate some preprocessing operations and noise distri-
butions that fulfill (H1)–(H4), and give the corresponding signal-to-noise ratios for
the limit filter.

Example 1. Lossless preprocessing. If h is 1–1, and the noise distribution, Pζ(dz),
has a density, p(z), with the following properties:

(H1-1) p(z) > 0 for all z;
(H2-1) p(z) has continuous first and second derivatives (denoted pz(z) and pzz(z));
(H3-1) there exists an ε > 0 such that∫ ‖pz(u)‖3+ε

p2+ε(u)
du <∞;

(H4-1) there exist ε, θ > 0 such that

sup
‖z‖<θ

∫ ‖pzz(u− z)‖3+ε

p2+ε(u)
du <∞;

then (h, Pζ(dz)) fulfills (H1)–(H4), and

H =

∫
p′z(u)pz(u)

p(u)
du.

Two specific examples of noise distributions satisfying the above are Gaussian,

p(z) =
1

(2π)n/2|V |1/2 exp
(− 1

2 (z − µ)′V −1(z − µ)
)

for which H = V −1, and Cauchy (with n = 1),

p(z) =
a

π(1 + (az)2)

for which H = a2. This latter example illustrates an important difference between
linear and nonlinear filtering. At first sight, it would seem reasonable to estimate a
slowly varying signal given a large number of noisy observations by some sort of linear,
moving-average filter. However, this would be completely fruitless in this case, where
the noise distribution is “heavy tailed.” The nonlinear filter does use a moving average
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technique but applies it to the log-likelihood function of the observations, rather than
the observations themselves. This example also illustrates that the discrete-time filters
(2.3) need not themselves have signal-to-noise ratios in the mean-square sense in order
for Theorem 2.1 to apply.

Of course, the preprocessing in this example is artificial in that it does not sac-
rifice any information, and so the signal-to-noise ratio of the limit filter, H, is that
corresponding to the raw observations.

Example 2. Quantization. Let h be the discrete-valued function

h(z) =

N∑
i=1

biχBi(z),

where N could be infinite, the bi are distinct elements of M , the Bi are disjoint Borel
sets in Rn with nonzero Lebesgue measure whose union is Rn, and χBi is the indicator
function of the set Bi. If Pζ(dz) has a density, p(z), with the following properties:

(H1-2) p(z) > 0 for all z;
(H2-2) p(z) has continuous first and second derivatives (pz(z) and pzz(z));
(H3-2) there exists an ε > 0 such that

∑
i

∥∥∥∥∫
Bi

pz(u)du

∥∥∥∥3+ε

Pζ(Bi)
−(2+ε) <∞;

(H4-2) there exist ε, θ > 0 such that

sup
‖z‖<θ

∑
i

∥∥∥∥∫
Bi

pzz(u− z)du
∥∥∥∥3+ε

Pζ(Bi)
−(2+ε) <∞;

then (h, Pζ(dz)) fulfills (H1)–(H4), and

H =
∑
i

∫
Bi

∫
Bi

p′z(u)pz(v)du dv Pζ(Bi)
−1.

The conditions on Pζ(dz) can be weakened if the sets Bi are sufficiently regular. For
example, there is no need for Pζ(dz) to have a density at all interior points of the Bi.

Example 3. Rectangular quantization. Let h be the discrete-valued function

h(z) =

N1∑
j1=0

N2∑
j2=0

· · ·
Nn∑
jn=0

bJχBJ (z),

where Ni < ∞ for all i, J = (j1, j2, . . . , jn), the bJ are distinct elements of M , and
the BJ are the following n-dimensional rectangles:

BJ = (t1,j1 , t1,j1+1)× (t2,j2 , t2,j2+1)× · · · × (tn,jn , tn,jn+1).

Here, for each i,

−∞ = ti,0 < ti,1 < · · · < ti,Ni < ti,Ni+1 =∞.
Let A be the set of boundaries

A = Rn − ∪JBJ .
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If, for some α > 0, Pζ(dz) has a density, p(z), in the neighborhood

Nα := {z ∈ Rn : ‖z − a‖ < α for some a ∈ A} ,

with the following properties:

(H1-3) p(z) > 0 for all z ∈ Nα;

(H2-3) p(z) has a continuous first derivative on Nα (pz(z)); then (H1)–(H4) are
satisfied, and

H =

N1∑
j1=0

N2∑
j2=0

· · ·
Nn∑
jn=0

veci {λJ,i(ti,ji)− λJ,i(ti,ji+1)}

×vec′i {λJ,i(ti,ji)− λJ,i(ti,ji+1)}Pζ(BJ)−1,

where

λJ,i(t) =

∫
B̄J∩{zi=t}

p(z) dz1 dz2 . . . dzi−1 dzi+1 . . . dzn if t is finite,

0 if t is infinite,

and B̄J is the closure of BJ . In particular, if n = 1,

H =
p(t1)2

Pζ((−∞, t1))
+
N−1∑
j=1

(p(tj)− p(tj+1))2

Pζ((tj , tj+1))
+

p(tN )2

Pζ((tN ,∞))
.(2.12)

Example 4. Linear dimension reduction. If M = Rd, h(z) = Bz for some d × n
matrix, B, with rank d (< n), and the noise distribution has a density, p(z), with the
following properties:

(H1-4)
∫
Rn−d p(V v − UU ′z)dv > 0 for all z;

(H2-4) p(z) has continuous first and second derivatives (pz(z) and pzz(z));

(H3-4) there exists an ε > 0 such that

∫
Rd

∥∥∫
Rn−d pz(V v + Uu)dv

∥∥3+ε(∫
Rn−d p(V v + Uu)dv

)2+ε du <∞;

(H4-4) there exist ε, θ > 0 such that

sup
‖z‖<θ

∫
Rd

∥∥∫
Rn−d pzz(V v + Uu− UU ′z)dv∥∥3+ε(∫

Rn−d p(V v + Uu)dv
)2+ε du <∞;

where V and U are, respectively, n× (n− d)- and n× d-dimensional matrices whose
columns form orthonormal bases for, respectively, the kernel of B and its orthogonal
complement, then (h, Pζ(dz)) fulfills (H1)–(H4) and

H = UU ′
∫
Rd

∫
Rn−d p

′
z(V v + Uu)dv

∫
Rn−d pz(V v + Uu)dv∫

Rn−d p(V v + Uu)dv
duUU ′.
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3. Continuous-time filters. Theorem 2.1 concerns discrete-time, discrete-state
filters. Suppose now that (Ω,F , P, (Xt ∈ {x1, x2, . . . , xm}; t ∈ [0,∞)), A, p) is a
continuous-time Markov chain with rate matrix A and initial law p that we wish to
estimate from observations of the continuous-time, n-vector process

Zt =

∫ t

0

g(Xs)ds+Wt,

where (Wt; t ∈ [0,∞)) is a standard n-dimensional Brownian motion on (Ω,F , P ),
independent of (Xt; t ∈ [0,∞)). One step in an implementation of the nonlinear
filter for this problem is discretization in time. With a step size of δ2, this yields
(normalized) raw discrete-time observations of the following form:

Zδk = δ−1(Z(k+1)δ2 − Zkδ2)

= δg(Xkδ2) + δ−1(V δ(k+1)δ2 − V δkδ2),

where

V δt =

∫ t

0

gδ(X, s)ds+Wt

and

gδ(X, t) = g(Xt)− g(X[δ−2t]δ2).

These observations differ from the raw observations of (2.1) in that the noise terms,
δ−1(V δ(k+1)δ2 − V δkδ2), are statistically dependent on the discrete-time signal process,

(Xkδ2 ; k = 0, 1, . . .). However, the process (gδ(X, t); t ∈ [0,∞)) is bounded, and so
Girsanov’s theorem can be used to define new probability measures on (Ω,F) under
which the noise terms are independent of (Xkδ2 ; k = 0, 1, . . .). (See, for example,
Theorem 6.2 in [15].) In fact, if P δT is defined by

dP δT
dP

= exp

(
−
∫ T

0

gδ(X, t)′dWt − 1

2

∫ T

0

‖gδ(X, t)‖2dt
)

=: M δ
T ,

then P δT is a probability measure under which the distribution of (Xt; t ∈ [0, T ])
is unaltered but (V δt ; t ∈ [0, T ]) becomes a standard Brownian motion, indepen-
dent of (Xt; t ∈ [0,∞)). Thus Theorem 2.1 provides, under P δT , a weak limit
for the nonlinear filters for the discrete-time Markov chains, (Ω,F , P δT , (Xkδ2 ; k =
0, 1, . . . ), exp(Aδ2), p), given the preprocessed observations

Y h,δk = h(Zδk).

In fact, (πh,δ[δ−2t]; t ∈ [0,∞)), defined by (2.2)–(2.4) with P δ replaced by P δT , and

Y h,δk as defined above, converges weakly in DRm [0,∞) to the continuous-time filter of
(2.5)–(2.7), i.e., the original continuous-time filter of this section, but with the new
signal-to-noise ratio, H. What is not immediately apparent is that the same can be
said for the nonlinear filter for (Xkδ2 ; k = 0, 1, . . .) under the “true” measure, P ,

(π̃h,δ[δ−2t]; t ∈ [0,∞)), where

π̃h,δk := veci

{
P
(
Xkδ2 = xi | Y h,δ1 , Y h,δ2 , . . . , Y h,δk

)}
for k = 0, 1, . . . .
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The following proposition addresses this issue and shows that the filters, (πh,δk ; k =
0, 1, . . .), are strong approximations to the filters with respect to the true measure.
This is of independent interest as the former are easier to implement than the latter.
For example, in the case of n-bit quantization, the one-step update of the former
filters consists of multiplication by one of 2n precomputed matrices.

Proposition 3.1.
(i) For any T <∞ and any θ ∈ (0,∞),

lim
δ→0

E sup
k≤δ−2T

∥∥∥π̃h,δk − πh,δk
∥∥∥θ = 0.

(ii) For any T <∞ and any sequence (δl ∈ (0, 1]; l = 1, 2, . . .) with the property∑
l

δ2−ε
l <∞ for some ε > 0,(3.1)

lim
l→∞

sup
k≤δ−2

l
T

‖π̃h,δlk − πh,δlk ‖ = 0 almost surely (a.s.).

(iii) (π̃h,δ[δ−2t]; t ∈ [0,∞)), considered as a family of random variables in the Sko-

rohod space DRm [0,∞), converges weakly to the continuous-time filter of (2.5)–(2.7).

Proof. For each k, let Yh,δk be the σ-field generated by Y h,δ1 , Y h,δ2 , . . . , Y h,δk . From
the basic properties of conditional expectation it follows that, for any k < ∞, any
C ∈ Yh,δk , and any 1 ≤ i ≤ m,∫

C

πh,δk,i dP
δ
T =

∫
C

E
(
χ{xi}(Xkδ2)Mδ

T | Yh,δk
)

Eδ
T

(
(M δ

T )−1 | Yh,δk
)
dP δT ,

and so

πh,δk,i − π̃h,δk,i = E
(
χ{xi}(Xkδ2)M δ

T | Yh,δk
)

Eδ
T

(
(M δ

T )−1 − 1 | Yh,δk
)

+E
(
χ{xi}(Xkδ2)(Mδ

T − 1) | Yh,δk
)

a.s.,

from which the triangle and Jensen’s inequalities yield∥∥∥πh,δk − π̃h,δk
∥∥∥ ≤ E

(
M δ
T | Yh,δk

)
Eδ
T

(
|(Mδ

T )−1 − 1| | Yh,δk
)

(3.2)

+E
(
|M δ

T − 1| | Yh,δk
)
.

Since gδ(X, t) is bounded,

sup
δ∈(0,1]

E(Mδ
T )2j <∞ for all integers j (positive or negative).(3.3)

Also, for any θ ∈ (0,∞), there exists a K <∞ such that

sup
t∈[0,∞)

E‖gδ(X, t)‖θ ≤ K sup
t∈[0,δ2]

∑
i6=j
‖g(xj)− g(xi)‖θ |exp(At)i,j |

= O(δ2).
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Now, for some α ∈ (0, 1),

M δ
T − 1 = −

(∫ T

0

gδ(X, t)′dWt +
1

2

∫ T

0

‖gδ(X, t)‖2dt
)

(Mδ
T )α,

and so Hölder’s inequality, (3.3), and a standard result on the moments of stochastic
integrals (see, for example, Lemma 4.12 in [15]) show that, for any θ ∈ (0,∞), there
exists a K <∞ such that

E|M δ
T − 1|θ ≤ K

E

∣∣∣∣∣
∫ T

0

gδ(X, t)′dWt +
1

2

∫ T

0

‖gδ(X, t)‖2dt
∣∣∣∣∣
θp
1/p

= O(δ2/p),

where p = min{α > 1 : θα/2 is an integer}. Similarly,

Eδ
T |(Mδ

T )−1 − 1|θ = O(δ2/p).

Hölder’s and Jensen’s inequalities, when applied to (3.2), show that, for any θ ∈ [1,∞)
and any q ∈ (1,∞),

E sup
k≤δ−2T

∥∥∥πh,δk − π̃h,δk
∥∥∥θ ≤ 2θ−1

(
E sup

k
E
(

(M δ
T )θq/(q−1) | Yh,δk

))(q−1)/q

×
(

E sup
k

Eδ
T

(
|(M δ

T )−1 − 1|θq | Yh,δk
))1/q

(3.4)

+2θ−1

(
E sup

k
E
(
|M δ

T − 1|θ | Yh,δk
))

.

Another application of Hölder’s and Jensen’s inequalities and Doob’s submartingale
inequality shows that

E sup
k

Eδ
T

(
|(M δ

T )−1 − 1|θq | Yh,δk
)
≤
(
Eδ
T (M δ

T )−q/(q−1)
)(q−1)/q

×
(

Eδ
T sup

k
Eδ
T

(
|(M δ

T )−1 − 1|θq2 | Yh,δk
))1/q

≤ K
(
Eδ
T |(Mδ

T )−1 − 1|θq2
)1/q

for some K < ∞. A similar treatment of the other terms in the right-hand side of
(3.4) shows that, for some K <∞,

E sup
k≤δ−2T

∥∥∥π̃h,δk − πh,δk
∥∥∥θ ≤ K (Eδ

T |(Mδ
T )−1 − 1|θq2

)1/q2

+KE|Mδ
T − 1|θ

= O(δ2/p),

where p is as defined above. This proves (i). It also shows that, for any 0 < ε < 1,

E sup
k≤δ−2T

∥∥∥π̃h,δk − πh,δk
∥∥∥2−ε

= O(δ2−ε),

and this, together with (3.1) and the Borel–Cantelli lemma, proves (ii).
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Now let

eδt =
∥∥∥πh,δ[δ−2t] − π̃h,δ[δ−2t]

∥∥∥ .
For any 0 ≤ h ≤ t ≤ T − h, if δ >

√
2h,∣∣eδt − eδt+h∣∣ ∣∣eδt − eδt−h∣∣ = 0,

and so, from (i) and Hölder’s inequality,

sup
δ<1

E
(∣∣eδt − eδt+h∣∣θ/2 ∣∣eδt − eδt−h∣∣θ/2) = sup

δ≤√2h

E
(∣∣eδt − eδt+h∣∣θ/2 ∣∣eδt − eδt−h∣∣θ/2)

= O(h1/p),

where p is as defined above. An application of the theorems on pages 137–139 in [6]

now shows that the family {(πh,δ[δ−2t] − π̃h,δ[δ−2t]) : δ ∈ (0, 1]} is relatively compact. This

and part (i) of the proposition establish part (iii).
Results of this type, but for a more general class of nonlinear estimation problems

(including filters for diffusions), can be found in [16].

4. The rank ordering of preprocessing operations. As discussed earlier,
the matrix H is the signal-to-noise ratio of the limit filter of Theorem 2.1, which we
clearly want to be large in some sense. In fact, we typically want to choose h such
that a cost of the following form is small:

Cφ(h, δ, k) := Jφ(πh,δk )
(4.1)

= Eφ(πh,δk ),

where Jφ is the cost function corresponding to a continuous, convex (upward) function

φ. A variation to this fixed-time cost criterion that is appropriate if πh,δk has a steady-
state distribution is a cost criterion with respect to this distribution:

Cφ(h, δ) = lim
k→∞

Cφ(h, δ, k).

For example, if we wanted to choose a value for Xδ from its range with the minimal
probability of being in error, then an appropriate function, φ, would be

φ(p) = −max
i
{pi},

whereas, if we wanted to estimate a moment Ef(Xδ
k) with minimal mean-square error,

then an appropriate φ would be

φ(p) = −
(∑

i

f(xi)pi

)2

.

Theorem 2.1 shows that, under hypotheses (H1)–(H5), for any continuous φ,

Jφ

(
πh,δ[δ−2t]

)
→ Jφ(πHt ) for all t ∈ [0,∞),
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where (πHt ) is the limit filter of the theorem, i.e., the costs for the discrete-time filters
according to a given criterion converge to the cost for the limit filter according to the
same criterion.

If (πh,δk ) is an approximation to a continuous-time filter based on sampled and
preprocessed observations, then it is appropriate for it to inherit the cost function
of the continuous-time filter, in which case the cost for (πh,δk ) will converge to the
original cost for the continuous-time filter, but with the new signal-to-noise ratio, H.

Clearly, given a limit cost Jφ(πHt ), we could, at least in principle, optimize the pa-
rameters of preprocessing operations for filters where δ is small. In practice, though,
this can be difficult, and we may not have such a precise notion of cost if, for example,
we need to estimate several features of the signal with no clear weighting of impor-
tance. However, there is still a partial ordering of preprocessing operations, which
holds for all reasonable cost functions.

Proposition 4.1. Let (Xt; t ∈ [0,∞)) be the continuous-time Markov chain of
Theorem 2.1, and (πH1

t ; t ∈ [0,∞)) and (πH2
t ; t ∈ [0,∞)) the nonlinear filters for

estimating it from observations (ZH1
t ; t ∈ [0,∞)) and (ZH2

t ; t ∈ [0,∞)), respectively,
defined by (2.6) with matrices H1 and H2, and independent noises, (BH1

t ; t ∈ [0,∞))
and (BH2

t ; t ∈ [0,∞)). If H1 −H2 is positive semidefinite, then

Jφ(πH1
t ) ≤ Jφ(πH2

t )

for all t ∈ [0,∞) and all cost functions of the form (4.1) for which φ is continuous
and convex upward.

Proof. Set H3 = H1 −H2, and let (ZH3
t ; t ∈ [0,∞)) be a corresponding observa-

tions process with a noise process, (BH3
t ), which is independent of (BH2

t ). Examina-
tion of the nonlinear filtering equations (2.7) shows that the filter for (Xt), given the
2n-dimensional observation process (ZH2

t , ZH3
t ; t ∈ [0,∞)), involves only the sum

ZH2
t + ZH3

t = (H2 +H3)

∫ t

0

g(Xs)ds+BH2
t +BH3

t

= H1

∫ t

0

g(Xs)ds+BH2
t +BH3

t .

Now BH2
t + BH3

t is an n-dimensional Brownian motion with covariance matrix H1,
and so (ZH2

t +ZH3
t ) is equivalent to (ZH1

t ) for the filtering problem. Thus, by Jensen’s
inequality, setting ZH2

t = σ(ZH2
s ; s ∈ [0, t]), etc.,

Eφ
(
πH1
t

)
= Eφ

(
veci

{
P
(
Xt = xi | ZH2

t ∨ ZH3
t

)})
≤ EE

(
φ
(

veci

{
P
(
Xt = xi | ZH2

t

)})
| ZH3

t

)
= Eφ

(
πH2
t

)
.

The partial ordering of Proposition 4.1 becomes a complete ordering if the compo-
nents of the noise process (ζi; i = 1, 2 . . . , n) are independent, and the preprocessing
function, h, consists of n separate functions of the n components of the raw observa-
tion. In particular, this is true if n = 1. Thus the choice of thresholds tj in (2.12)
that maximize H will be asymptotically optimal for the nonlinear filtering problem
in terms of any of the cost functions of (4.1).

The optimal thresholds for zero-mean, unit-variance Gaussian noise (with a num-
ber of different degrees of quantization) are given, along with the corresponding values
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Table 4.1
Optimal quantization thresholds for standard Gaussian noise (to three decimal places).

Number
of bits Thresholds H

1 0 0.637
2 0 ±0.982 0.883
3 0 ±0.501 ±1.050 ±1.748 0.965
4 0 ±0.258 ±0.522 ±0.800 ±1.100 ±1.437 ±1.844 ±2.401 0.990

for H in Table 4.1. The reduction in the signal-to-noise ratio of the limit filter arising
through the use of 1-bit quantization is a factor of only 2/π, and the reduction factors
rapidly approach unity as the number of bits in the quantization increases. Clearly,
if the noise has a nonstandard Gaussian distribution, then the thresholds should all
be shifted by its mean and scaled by its standard deviation. The optimal thresholds
of Table 4.1 are also pertinent to the quantization of multidimensional observations
if the components of the noise are independent and Gaussian, and the components of
the observations are quantized separately.

The asymptotic signal-to-noise ratio for 1-bit quantization is similar to that ob-
tained by Kushner in [13] for a continuous-time system comprising a limiter, a gain
control, and a linear filter. The input to this system is taken to be the sum of a (use-
ful) signal and wide-band Gaussian noise. As the bandwidth of the noise increases,
the output of the system converges weakly to the output that would be obtained if
the limiter and gain control were removed, except that the signal-to-noise ratio is re-
duced by a factor that depends on the nature of the signal and the limiting behavior
of the noise. If the signal is sinusoidal and the noise correlation is exponential, then
the reduction factor obtained by Kushner is 2/(π ln 2). The problem is somewhat
different from that considered here, although both problems concern some form of
accumulating larger and larger numbers of samples of an increasingly noise corrupted
signal. Kushner’s problem can be interpreted in this way by time scaling.

A generalization of the techniques discussed here includes feedback from the filter
to the preprocessing operation, i.e., uses preprocessing operations of the following
form:

Y h,δk = h
(
δg(Xδ

k) + ζk, π
h,δ
k−1

)
.

For example, we might use a quantization scheme with thresholds that change when
πh,δk moves between different regions of its range. The functions h(z + · , p) induce
a two-parameter family of distributions on (M,M), q(dy, z, p), with corresponding
Radon–Nikodým derivatives, r(y, z, p). Theorem 2.1 extends to this case showing
that the discrete-time filters converge to a continuous-time filter with observations
process given by (2.6), but with a time-varying, signal-to-noise ratio of H(πHt ), where

H(p) =

∫
r′z(y, 0, p)rz(y, 0, p)q(dy, 0, p).

(Sufficient conditions are that (H1)–(H4) be true uniformly in p and that H(p) be
Lipschitz continuous.) In principle, we could optimize within classes of such feedback
preprocessing operations according to cost functions of the form (4.1) but, once again,
this is not easy, except in special cases. A simple variation of Proposition 4.1 shows
that, if, for two feedback preprocessing operations h1 and h2, the limit signal-to-noise
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ratio functions, H1(·) and H2(·), are such that H1(p)−H2(p) is positive semidefinite
for all p, then

Jφ

(
π
H1(·)
t

)
≤ Jφ

(
π
H2(·)
t

)
for all t ∈ [0,∞) and all cost functions of the form (4.1). Thus, we may partially or-
der the feedback preprocessing operations. If the components of the raw observations
process are perturbed by independent noises and are preprocessed separately (in par-
ticular if the raw observations process is scalar), then the instantaneous, asymptotic
signal-to-noise ratios, H(p), of a feedback preprocessing operation will be completely
ordered in the above sense. There is, therefore, nothing to be gained by the use of
feedback in such cases; the optimal feedback preprocessing operation is clearly the
feedback-less operation, h(·, p∗), where p∗ is the parameter that optimizes H(p).

5. Examples. The optimal quantization techniques for observations perturbed
by Gaussian noise, described above, were used with the following two examples. In
both cases, the filters were based on raw observations, and 1- and 2-bit quantized
observations were simulated. The quantization levels used throughout are those given
in Table 4.1. An ergodic simulation technique was used involving the time averaging
of variates obtained from the posterior distributions provided by the various filters. A
number of the results were checked against results obtained from direct simulations.
The filters were allowed to reach steady-state before data recording started, and so
the cost functions concerned are relative to the invariant distributions of the filters.
All simulations were run until all the sample standard deviations were less than 0.32%
of their corresponding statistics. Error bars have been omitted from the graphs for
the sake of clarity.

Example 5. Binary signal. In this example (Xδ
k ∈ {−1,+1}, k = 0, 1, . . .) is a

binary Markov process with the following matrix of transition probabilities,

Qδ =

[
1− aδ2 aδ2

aδ2 1− aδ2

]
,

and the raw observations are given by

Zδk = δXδ
k + ζk,(5.1)

where (ζk; k = 1, 2, . . .) is an independently and identically distributed (i.i.d.) stan-
dard Gaussian sequence, independent of (Xδ

k).
Figures 5.1 and 5.2 show the steady-state error probabilities for the associated

nonlinear filters based on the variously quantized observations, for values of the nor-
malized switching rate, a, of 0.1 and 0.0001. The three disconnected points on the
left-hand sides of the figures are the asymptotic error probabilities for the filters
predicted by Theorem 2.1. These were calculated from the (known) steady-state dis-
tribution of the nonlinear filter for a continuous-time binary Markov process, given
observations (2.6). (The values of H used for the quantized filters are those given in
Table 4.1, and a value of 1 was used for the filter based on raw observations.) As
the figures show, not only do the error probabilities approach the predicted limits,
but they do so for fairly large values of δ. Thus, at least in this example, the use of
quantization thresholds optimized with respect to limit cost functions appears to be
justified.
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Fig. 5.1. Filter error probabilities for Example 1 (a = 0.1). Bottom curve: raw observations;
middle curve: 2-bit quantized observations; top curve: 1-bit quantized observations.
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Fig. 5.2. Filter error probabilities for Example 1 (a = 0.0001). Bottom curve: raw observations;
middle curve: 2-bit quantized observations; top curve: 1-bit quantized observations.



500 NIGEL J. NEWTON

1

1.5

2

2.5

3

3.5

4

0.01 0.1 1
δ

Fig. 5.3. Mean-square filter errors for Example 2 (a = 1.0). Bottom curve: raw observations;
middle curve: 2-bit quantized observations; top curve: 1-bit quantized observations.
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Fig. 5.4. Mean-square filter errors for Example 2 (a = 0.1). Bottom curve: raw observations;
middle curve: 2-bit quantized observations; top curve: 1-bit quantized observations.
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Example 6. Birth-death approximation to a diffusion. In this example the signal,
(Xδ

k ∈ {±0.5,±1.5,±2.5 . . . ,±9.5}, k = 0, 1, . . .), is a 20-state birth-death process
with transition probabilities

P δ(Xk+1 = y | Xk = x) = aδ2 if y = x+ 1 and x ≤ 8.5,

or y = x− 1 and x ≥ −8.5,

1− 2aδ2 if − 8.5 ≤ y = x ≤ 8.5,

1− aδ2 if y = x = −9.5 or 9.5,

0 for all other x, y,

and the raw observations are given by (5.1). The signal here can be interpreted as
a discrete-state, weak approximation to a diffusion process with zero drift term and
a diffusion coefficient that rapidly approaches zero for arguments beyond ±9 but is
constant elsewhere.

Figures 5.3 and 5.4 show the mean-square error in the posterior mean of X ob-
tained from the filters with the same three preprocessing operations as were used with
Example 5, for values of a of 1.0 and 0.1. Once again, the graphs suggest that the
weak limit is approached for fairly large values of δ.
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Abstract. This paper is concerned with dynamic domain decomposition for optimal boundary
control and for approximate and exact boundary controllability of wave propagation in heteroge-
neous media. We consider a cost functional which penalizes the deviation of the final state of the
solution of the global problem from a specified target state. For any fixed value of the penalty pa-
rameter, optimality conditions are derived for both the global optimal control problem and for local
optimal control problems obtained by a domain decomposition and a saddle-point–type iteration.
Convergence of the iterations to the solution of the global optimality system is established. We then
pass to the limit in the iterations as the penalty parameter increases without bound and show that
the limiting local iterations converge to the solution of the optimality system associated with the
problem of finding the minimum norm control that drives the solution of the global problem to a
specified target state.

Key words. domain decomposition, optimal control, controllability, saddle-point iteration
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1. Introduction. This paper explores optimal boundary final-value control as
well as approximate and exact boundary controllability for scalar wave equations in
heterogeneous media by means of domain decomposition. Indeed, we consider the sit-
uation where the material properties are piecewise constant within a material body
which occupies a bounded domain Ω ∈ Rd and hence deal with a transmission prob-
lem. It is assumed that the subdomains Ωi, i = 1, . . . ,m, within which the material
properties are constant satisfy

Ωi ∩ Ωj = ∅, i 6= j, Ωi ⊂ Ω, i = 1, . . . ,m− 1, Ωm = Ω\
m−1⋃
i=1

Ωi,

and that ∂Ω, ∂Ωi, i = 1, . . . ,m, are smooth. However, our results will hold for other
decompositions {Ωi}mi=1 of Ω and for less regular boundaries if it is known that solu-
tions of the global and local problems considered below have sufficient regularity.

The basic idea of domain decomposition in the present context is to handle the
constant coefficient subdomain problems individually, with the impact on the envi-
ronment of such a subdomain being modeled through some inhomogeneities, and to
then assemble the controlled local processes into the global one by means of some
iteration. Obviously, the communication between the local problems via transmission
conditions has to be restored in the limit of the iteration. In this sense, we consider
the present problem a paradigm and the procedure given in this paper as a general
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tool to handle more complex multilink flexible structures as discussed in Lagnese,
Leugering, and Schmidt [19].

The motivation for the approach considered in this paper is twofold. On the one
hand, controllability properties and optimal control laws (feedbacks, etc.) are more
readily available at the local subdomain level. Consequently, there is good reason to
believe that it may be possible to construct suitable control laws for the global, more
complex, structure by iteration, even in situations where such control properties are
not a priori known at the global level. On the other hand, and perhaps more impor-
tantly, the approach is motivated by its numerical potential: complex heterogeneous
structures or media, after some discretization, inevitably lead to very large systems
to be solved numerically. In typical applications, such as to flexible structures, struc-
tural elements of different kinds (strings, beams, membranes, plates and/or shells) are
coupled through joints and interfaces. Such transmission problems are usually very
difficult to handle numerically at the global level. It seems very natural, therefore,
to decompose such structures into their canonical constituents (structural elements,
subdomains) to discretize those and to run the computations in parallel with the com-
munications between subdomains taking place once an iteration step is completed. The
local problems can be treated numerically as in Glowinski and J.-L. Lions ([14], [15]).

There is extensive literature on domain decomposition methods for direct simula-
tion of static or transient problems (see, for instance, [10], [30], [16] as examples of very
recent expositions and [31] for textbook material in the context of numerical domain
decomposition); comparatively little is known about such methods in the context of
optimal control problems. Let us mention the work by Benamou [2], [3], [4], [5], [6],
[7] and Benamou and Després [8], where elliptic, parabolic, and hyperbolic problems
with constant coefficients in Ω are considered together with a cost functional which
involves the entire state over space and time (in addition to the control). In these
papers the authors use an extension of P. L. Lions’s method [27], originally obtained
for elliptic problems. Regarding transmission problems, the principle of extension of
domain decomposition in optimal control of heterogeneous materials was already men-
tioned in [8] in connection with the Hemholtz equation. Let us also mention the work
of Bamberger, Glowinski, and Tran [1], where a domain decomposition technique is
introduced for the computation of the acoustic wave equation in which the bulk mod-
ulus and density fields are allowed to be discontinuous across an interface.

In fact, the nonoverlapping Schwarz alternating method in [27] has been shown
by Glowinski and LeTallec [13] to be equivalent to an augmented Lagrangian saddle-
point iteration. This analogy has been used by Bounaim [9] to extend the domain
decomposition to elliptic optimal control problems. The idea pursued there is to add
the cost function to the augmented Lagrangian interpretation of the underlying do-
main decomposition. The corresponding saddle-point problem, however, is solved by
a gradient method rather than on the basis of the Uzawa-type iteration obtained af-
ter elimination of the Lagrange multipliers and artificial interface parameters. Very
recently, J. L. Lions and Pironneau [25] (based on [26]) have considered a Lagrangian
approach for both overlapping and nonoverlapping domain decompositions for elliptic
and parabolic problems with a possible extension to hyperbolic problems. Their ap-
proach is similar to Bounaim’s [9] method with the difference that they consider the
original Lagrange functional to match the continuity at the artificial interfaces and use
conjugate gradients. The augmented Lagrangian point of view was also used in [22] in
order to devise a domain decomposition for mechanical networks of one-dimensional
elements, where multiple nodes naturally appear. In that context the basic Lagrangian
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approach, pursued in [25], could be utilized as well. Also in that work, the numerical
implementation was discussed and simulations were presented. It should be mentioned
that in all of the works [2], [3], [4], [5], [6], [7], [8], [22], the proof of convergence of
the decomposition utilizes ideas inspired by Després [11].

To our best knowledge, this paper is the first to apply a dynamic domain de-
composition method to state constrained optimal control problems. (For domain de-
composition in optimal control of elliptic equations with control constraints, see [4].)
Generalizations to more complex multiply connected structures as well as the nu-
merical implementation of the algorithms given in this paper are presently under
investigation. The only numerical study of dynamic domain decomposition in optimal
control problems in dimension greater than one that is known to us is the preprint
by Benamou [6] (see also [7]), where a scalar constant coefficient wave equation on a
square is considered. In that work a complete decomposition down to the finite ele-
ment level is used. Quadrilateral elements, a leap-frog scheme in time, and numerical
integration leading to lumped masses are employed. In addition, various relaxations
are used to speed up convergence.

Let us now formulate more precisely the problems to be studied. Set

Γij = ∂Ωi ∩ ∂Ωj = Γji, i 6= j, Γ = ∂Ω.

It is assumed that Γij is either empty or has a nonempty interior. The exterior unit
normal vector to Ωi is denoted by νi. Introduce the Hilbert spaces

H = L2(Ω) =
m∏
i=1

L2(Ωi),

V = {(φ1, . . . , φm) : φi ∈ H1(Ωi), φi = φj on Γij}
= {(φ1, . . . , φm) : φi = φ|Ωi , φ ∈ H1(Ω)}

with respective norms

‖(φ1, . . . , φm)‖ =

(
m∑
i=1

∫
Ωi

|φi|2dx
)1/2

,

‖(φ1, . . . , φm)‖V =

(
m∑
i=1

∫
Ωi

(ai|∇φi|2 + |φi|2)dx

)1/2

,

where ai > 0. Let V ′ denote the dual space of V with respect to H, (·, ·)V ′ the scalar
product in the V ′ − V duality, and A the Riesz isomorphism of V onto V ′.

Let T > 0 and set

Qi = Ωi × (0, T ), Σij = Γij × (0, T ), Σ = Γ× (0, T ).

Let f ∈ L2(Σ). We consider the following transmission problem: for i = 1, . . . ,m,

yi,tt − ai∆yi = 0 in Qi,

am
∂ym
∂νm

= f on Σ,

yi = yj , ai
∂yi
∂νi

+ aj
∂yj
∂νj

= 0 on Σij ,

yi(0) = yi,t(0) = 0 in Ωi.

(1.1)
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For each f ∈ U := L2(Σ), (1.1) has a unique solution Y := (y1, . . . , ym) with

Y ∈ C([0, T ];H) ∩ C1([0, T ];V ′),

and the map f 7→ (Y,Y,t) : U 7→ C([0, T ];H × V ′) is continuous. The solution of
(1.1) may be interpreted in the sense of transposition (cf. Komornik [17, Theorem
4.7]):

(Y,t(t),Φ(t))V ′ − (Y(t),Φ,t(t)) =

∫ t

0

∫
Γ

fφmdΓdt,(1.2)

∀(Φ0,Φ1) ∈ V ×H, 0 ≤ t ≤ T,

where Φ := (φ1, . . . , φm) is the solution of the problem

φi,tt − ai∆φi = 0 in Qi, i = 1, . . . ,m,

am
∂φm
∂νm

= 0 on Σ,

φi = φj , ai
∂φi
∂νi

+ aj
∂φj
∂νj

= 0 on Σij ,

Φ(0) = Φ0 ∈ V, Φ,t(0) = Φ1 ∈ H.

(1.3)

One has (Φ,Φ,t) ∈ C([0, T ];V ×H) and

‖(Φ,Φ,t)‖L∞(0,T ;V×H) ≤ C‖(Φ0,Φ1)‖V×H .

It is a consequence of Holmgren’s theorem that the system (1.1) is approximately
controllable for T sufficiently large, that is,

RT := {(Y(T ),Y,t(T )) : f ∈ U} is dense in H × V ′.

(This remains true for controls which vanish outside O × (0, T ), where O is a fixed,
nonempty open set in Γ.) Further, (1.1) is known to be exactly controllable to V ×H,
that is, V ×H ⊂ RT , provided certain conditions on the geometries of the regions Ωi
and the elastic parameters ai are satisfied. For example, exact controllability holds
if all of the ai are the same. Exact controllability also holds if (i) Ω1 = ω1, Ωi+1 =
ωi+1\ωi for i = 1, . . . ,m − 1, where ωi are open sets such that ωi ⊂ ωi+1, i =
1, . . . ,m − 1, ωm = Ω; (ii) there is a point x0 ∈ Ω1 such that (x − x0) · νi ≥ 0,
∀x ∈ ∂ωi, for i = 1, . . . ,m; and (iii) ai ≥ ai+1 for i = 1, . . . ,m− 1 (cf. [24, Chap. VI]
and [18]).

Let (YT , ẎT ) ∈ H × V ′, and consider the optimal control problem

J(f) =
1

2

∫
Σ

|f |2dΣ +
k

2
(‖Y(T )−YT ‖2 + ‖Y,t(T )− ẎT ‖2V ′)→ inf(1.4)

subject to (1.1), where the infimum is taken over U . Standard theory gives the exis-
tence of a unique minimizer f characterized by

0 =

∫
Σ

fg dΣ + k(U(T ),Y(T )−YT ) + k(U,t(T ), A−1(Y,t(T )− ẎT ))V ′ ∀g ∈ U ,
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where U = Ug ∈ C([0, T ];H) ∩ C1([0, T ];V ′) is the solution of (1.1) with f replaced
by g. Introduce the adjoint state P = (p1, . . . , pm) as the solution of the system

pi,tt − ai∆pi = 0 in Qi, i = 1, . . . ,m,

am
∂pm
∂νm

= 0 on Σ,

pi = pj , ai
∂pi
∂νi

+ aj
∂pj
∂νj

= 0 on Σij ,

(1.5)

P(T ) = kA−1(Y,t(T )− ẎT ), P,t(T ) = −k(Y(T )−YT ).(1.6)

For any f ∈ U , (1.5), (1.6) has a unique solution with (P,P,t) ∈ C([0, T ];V × H).
From (1.2) we have

0 = (U,t(T ),P(T ))V ′ − (U(T ),P,t(T ))−
∫

Σ

gpm dΣ ∀g ∈ U ,

from which it follows that the optimal control is given by

f = −pm|Σ.(1.7)

The optimality system is therefore (1.1), (1.5)–(1.7).
Remark 1.1. The solution of (1.1), (1.5)–(1.7) satisfies (Y,Y,t) ∈ C([0, T ];V ×

H). In fact, the optimal control f = −pm|Σ ∈ C([0, T ];H1/2(Γ)) so that the conclusion
follows by localization and a result of Miyatake [28], taking into account the above
assumptions on the regions Ωi. It then follows that if (YT , ẎT ) ∈ V × H, we have
(P(T ),P,t(T )) ∈ D(A)× V, where

D(A) = {Φ ∈ V |AΦ ∈ H} =
{

(φ1, . . . , φm)|φi ∈ H2(Ωi),

φi = φj , ai
∂φi
∂νi

+ aj
∂φj
∂νj

= 0 on Γij , am
∂φm
∂νm

= 0 on Γ
}
.

As a consequence, pm|Σ ∈ C1([0, T ];H1/2(Γ)), so that (Y,t,Y,tt) ∈ C([0, T ];V ×H),
and therefore yi ∈ C([0, T ], H2(Ωi)), i = 1, . . . ,m. In particular, the transmission
conditions hold in the sense of traces on Γij .

Remark 1.2. The first condition in (1.6) is the elliptic transmission problem

−ai∆pi(T ) + pi(T ) = k(yi,t(T )− ẏiT ) in Ωi,

am
∂pm(T )

∂νm
= 0 on Γ,

pi(T ) = pj(T ), ai
∂pi(T )

∂νi
+ aj

∂pj(T )

∂νj
= 0 on Γij .

(1.8)

In (1.8),

yi,t(T )− ẏiT := Ai[A
−1(Y,t(T )− ẎT )|Ωi ] ∈ (H1(Ωi))

′,

where Ai is the Riesz isomorphism of H1(Ωi) onto its dual with the norm on H1(Ωi)
given by

‖φ‖H1(Ωi) :=

(∫
Ωi

(ai|∇φ|2 + |φ|2)dx

)1/2

.
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This is because

A(φ1, . . . , φm) = (A1φ1, . . . , Amφm), ∀(φ1, . . . , φm) ∈ V.

If Y(· ; k) denotes the solution of (1.1) corresponding to the optimal control (1.7),
and if T is sufficiently large, it is easy to see that

(Y(T ; k),Yt(T ; k))→ (YT , ẎT ) in H × V ′ as k →∞.

Therefore, a control that steers the solution to a neighborhood of (YT , ẎT ) at time T
may be obtained via the optimality system (1.1), (1.5)–(1.7) with k sufficiently large.
On the other hand, if (1.1) is exactly controllable to (YT , ẎT ) ∈ V ×H at time T, the
minimum L2(Σ) norm control that steers the solution of (1.1) to (YT , ẎT ) at time T
is the solution of the optimal control problem

inf
f∈U

∫
Σ

|f |2dΣ

subject to (1.1) and the state constraint

Y(T ) = YT , Y,t(T ) = ẎT .

It is well known that the optimality system for this problem is given by (1.1), (1.5),

P(T ) = PT , P,t(T ) = ṖT ,(1.9)

where (PT , ṖT ) ∈ H × V ′ is the solution of the equation

((PT , ṖT ), (−ẎT ,YT ))H×V ′ =

∫
Σ

|pm|2dΣ,(1.10)

with the optimal control again given by (1.7).
The main object of this paper is to present domain decomposition methods

(DDMs) for both the approximate controllability and exact controllability problems.
Each DDM is based on an under of the nonoverlapping Schwarz alternating algorithm
and the introduction of skew-symmetric, Robin, iterative transmission conditions be-
tween the subdomains Ωi that couple the direct and adjoint states in the optimality
systems associated with the approximate, resp., the exact, controllability problem.
The use of this type of decomposition, without relaxation, in problems of optimal
control was first proposed by Benamou [2], [3], [4], [5], [6], [7]. The introduction of
relaxation in conjunction with the nonoverlapping Schwarz alternating algorithm has
been previously investigated in [11] for direct approximation and in [8] in conjunction
with some optimal control problems related to the Helmholtz equation. The trans-
mission conditions (3.3) below may be viewed as a generalization of those in [8] to
optimal control problems involving penalization of the final state. Let us comment
that the convergence of our DDMs without relaxation remains an open question.

For both the approximate and exact controllability problems, the corresponding
DDM is a sequence of boundary value problems on the region Qi. In the case of
approximate controllability, these problems, denoted by {Dn

i (k)}∞n=1, depend on the
penalty parameter k. We denote the DDM for the exact controllability problem by
{Dn

i (∞)}∞n=1. Let us denote by yni (· ; k), pni (· ; k) the solution of Dn
i (k); by yni (· ;∞),
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pni (· ;∞) the solution of Dn
i (∞); by {yi(· ; k), pi(· ; k)}mi=1 the solution of the optimality

system (1.1), (1.5)–(1.7); and by {yi(· ;∞), pi(· ;∞)}mi=1 the solution of (1.1), (1.5),
(1.7), (1.9), and (1.10). We wish to determine under what conditions the following
diagram is valid in appropriate norms:

n→∞
(yni (· ; k), pni (· ; k)) −−−−−−→ (yi(· ; k), pi(· ; k))

k→∞
y k→∞

y
n→∞

(yni (· ;∞), pni (· ;∞)) −−−−−−→ (yi(· ;∞), pi(· ;∞))

(1.11)

Assuming that (YT , ẎT ) ∈ V ×H, it will be proved that the top limit is always true
and that the remaining ones are also valid if (1.1) is exactly controllable to V ×H.

As is to be expected from the works of Benamou and of Leugering cited above,
for fixed n, the boundary value problem Dn

i (k) is in fact the optimality system for a
certain local optimal control problem on the region Qi. (The same is true for Dn

i (∞).)
The local optimal control problem associated with Dn

i (k) is introduced in the next
section. In section 3 the convergence (yni (· ; k), pni (· ; k))→ (yi(· ; k), pi(· ; k)) as n→∞
is established. In section 4 it is proved that (yi(· ; k), pi(· k)) → (yi(· ;∞), pi(·∞)) as
k →∞, while in section 5 it is shown that (yni (· ; k), pni (· ; k))→ (yni (· ;∞), pni (· ;∞))
as k → ∞. Finally, in the last section it is established that (yni (· ;∞), pni (· ;∞)) →
(yi(· ;∞), pi(·∞)) as n→∞.

2. The local optimal control problems. For i = 1, . . . ,m we set

γi =
⋃

j:Γij 6=∅
Γij , Γi =

{ ∅, i 6= m,
Γ, i = m,

Si = γi × (0, T ), Σi = Γi × (0, T ).

Then ∂Ωi = γi ∪ Γi. We also set Hi = L2(Ωi), Vi = H1(Ωi) endowed with the norm

‖φ‖Vi =

(∫
Ωi

(ai|∇φ|2 + |φ|2)dx+ α

∫
γi

|φ|2dΓ

)1/2

, α > 0,

and denote by V ′i the dual space of Vi with respect to Hi. Of course, V ′i and (H1(Ωi))
′

are the same as sets and have equivalent norms, but the Riesz isomorphism Ai of
Vi onto V ′i is not the same as the Riesz isomorphism Ai defined above. (However,
they are connected through the bounded invertible mapping Bi on Vi defined by
(φ, ψ)H1(Ωi) = (Biφ, ψ)Vi ∀φ, ψ ∈ Vi.)

Set yiT = YT |Ωi ∈ Hi, ẏiT = Ai(A
−1ẎT |Ωi) ∈ V ′i (see Remark 1.2). Suppose

that λi, µi are given in L2(Si) and τi is given in L2(γi). We define σi ∈ V ′i by

(σi, φ)V ′
i

=

∫
γi

τiφdΓ ∀φ ∈ Vi,

and consider the optimal control problems

Ji(f1, f2) =
1

2

∫
Σi

|f2|2dΣ +
1

2β

∫
Si

(|f1|2 + |βzi + µi|2)dΣ

+
k

2
(‖zi(T )− yiT ‖2Hi + ‖zi,t(T )− ẏiT + k−1σi‖2V ′

i
)→ inf,
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where β > 0, subject to

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= f1 + λi on Si,

ai
∂zi
∂νi

= f2 on Σi,

zi(0) = zi,t(0) = 0 in Ωi,

(2.1)

where the infimum is taken over f1 ∈ L2(Si) and f2 ∈ L2(Σi). This optimal control
problem is well posed since the solution of (2.1) satisfies

zi|Si ∈ L2(Si), zi|Σi ∈ L2(Σi),

(see Lasiecka–Triggiani [20]). In fact, from [20] we have (zi, zi,t) ∈ C([0, T ];Hα(Ωi)×
Hα−1(Ωi)), zi|Σij ∈ H2α−1(Σij), zi|Σi ∈ H2α−1(Σi), where α = 3/5− ε ∀ε > 0, and

‖zi‖H2α−1(Σi) +
∑

j:Γij 6=∅
‖zi‖H2α−1(Σij) + ‖(zi, zi,t)‖L∞(0,T ;Hα(Ωi)×Hα−1(Ωi))

≤ C(‖f1 + λi‖L2(Si) + ‖f2‖L2(Σi)

)
.

From Tataru [33] we have the even stronger regularity result

zi ∈ H2/3(Qi), zi|Σij ∈ H1/3(Σij), zi|Σi ∈ H1/3(Σi).

The unique optimal solution f1, f2 of the above problem is characterized by the
variational equation

0 =

∫
Σi

f2g2dΣ +

∫
Si

[β−1f1g1 + (βzi + µi)ui]dΣ

+ k[(ui(T ), zi(T )− yiT )Hi + (ui,t(T ),A−1
i (zi,t(T )− ẏiT + k−1σi))V ′

i
]

∀g1 ∈ L2(Si), g2 ∈ L2(Σi),

where Ai is the Riesz isomorphism of Vi onto V ′i and where ui is the solution of

ui,tt − ai∆ui = 0 in Qi,

ai
∂ui
∂νi

= g1 on Si,

ai
∂ui
∂νi

= g2 on Σi,

ui(0) = ui,t(0) = 0 in Ωi.

Introduce the adjoint state as the solution of

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= βzi + µi on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ) = kA−1
i (zi,t(T )− ẏiT + k−1σi) ∈ Vi,

qi,t(T ) = −k(zi(T )− yiT ) ∈ Hi.

(2.2)
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The solutions zi, ui, qi all possess the same regularity and after an integration by parts
(which can be justified by virtue of the regularity of ui and qi) we obtain

0 = (ui,t(T ), qi(T ))V ′
i
− (ui(T ), qi,t(T ))Hi −

∫
Σi

qig2dΣ(2.3)

−
∫
Si

[qig1 − (βzi + µi)ui]dΣ, ∀g1 ∈ L2(Si), g2 ∈ L2(Σi).

It follows that

f1 = −βqi|Si , f2 = −qi|Σi .

The optimality system is therefore (2.2) and

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

+ βqi = λi on Si,

ai
∂zi
∂νi

+ qi = 0 on Σi,

zi(0) = zi,t(0) = 0 in Ωi.

(2.4)

Remark 2.1. Note that qi(T ) is the solution of the elliptic boundary value problem

−ai∆qi(T ) + qi(T ) = k(zi,t(T )− ẏiT ) in Ωi,

ai
∂qi(T )

∂νi
+ αqi(T ) = τi on γi,

ai
∂qi(T )

∂νi
= 0 on Γi.

For purposes of studying convergence of the domain decomposition in the next
section, we introduce a space X and a bounded linear operator on X as follows:

X :=

m∏
i=1

L2(Si)× L2(Si)× L2(γi)

with norm ‖ · ‖X given by

‖X‖2X =
m∑
i=1

{
1

β

∫
Si

(|λi|2 + |µi|2)dΣ +
1

αk

∫
γi

|τi|2dΓ

}
,

where X = {(λi, µi, τi) : i = 1, . . . ,m}. Now let X ∈ X and define a linear mapping
T : X 7→ X as follows: let (zi, qi) be the solutions of the local optimality systems
(2.2), (2.4) corresponding to X, where yiT = ẏiT = 0, i = 1, . . . ,m (this is done for
purposes of the proof of Theorem 3.1 below). Set

(T X)ij=

((
−aj ∂zj

∂νj
+ βqj

)
|Σij ,

(
−aj ∂qj

∂νj
− βzj

)
|Σij ,

(
−aj ∂qj(T )

∂νj
+ αqj(T )

)
|γij
)
,

(T X)i = {(T X)ij : j : Γij 6= ∅}, T X = {(T X)i : i = 1, . . . ,m}.(2.5)
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Note that X is a fixed point of T if and only if {(zi, qi) : i = 1, . . . ,m} is a solution
of the global optimality system (1.1), (1.5)–(1.7). It follows that T has a unique fixed
point. Since the solution of the optimal control problem (1.1), (1.4) corresponding to
YT = ẎT = 0 is clearly f = 0, it follows that this fixed point is X = 0 . The following
result shows that T is nonexpansive.

Lemma 2.2. For any X ∈ X ,

‖T X‖2X = ‖X‖2X −
4

k

m∑
i=1

[‖qi(T )‖2H1(Ωi)
+ ‖qi,t(T )‖2L2(Ωi)

]− 4

∫
Σ

|qm|2dΣ.

Proof. One has

‖X‖2X =
m∑
i=1

{
1

β

∫
Si

[∣∣∣∣ai ∂zi∂νi
+ βqi

∣∣∣∣2 +

∣∣∣∣ai ∂qi∂νi
− βzi

∣∣∣∣2] dΣ

+
1

αk

∫
γi

∣∣∣∣ai ∂qi(T )

∂νi
+ αqi(T )

∣∣∣∣2 dΓ

}
=

m∑
i=1

1

β

{∫
Si

[∣∣∣∣ai ∂zi∂νi

∣∣∣∣2 +

∣∣∣∣ai ∂qi∂νi

∣∣∣∣2 + β2(|zi|2 + |qi|2)

+ 2β

(
qiai

∂zi
∂νi
− ziai ∂qi

∂νi

)]
dΣ

+
1

αk

∫
γi

[∣∣∣∣ai ∂qi(T )

∂νi

∣∣∣∣2 + α2|qi(T )|2 + 2αqi(T )ai
∂qi(T )

∂νi

]
dΓ

}
,

‖T X‖2X =
m∑
i=1

∑
j:Γij 6=∅

{
1

β

∫
Σij

[∣∣∣∣−aj ∂zj∂νj
+ βqj

∣∣∣∣2 +

∣∣∣∣aj ∂qj∂νj
+ βzj

∣∣∣∣2] dΣ

+
1

αk

∫
Γij

∣∣∣∣−aj ∂qj(T )

∂νj
+ αqj(T )

∣∣∣∣2 dΓ

}
.

Since
∑m
i=1

∑
j:Γij 6=∅ =

∑m
j=1

∑
i:Γji 6=∅, the last equation may be written

‖T X‖2X =

m∑
j=1

{
1

β

∫
Σj

[∣∣∣∣−aj ∂zj∂νj
+ βqj

∣∣∣∣2 +

∣∣∣∣aj ∂qj∂νj
+ βzj

∣∣∣∣2] dΣ

+
1

αk

∫
γj

∣∣∣∣−aj ∂qj(T )

∂νj
+ αqj(T )

∣∣∣∣2 dΓ

}
.

Therefore

‖T X‖2X − ‖X‖2X = −4
m∑
i=1

{∫
Si

(
qiai

∂zi
∂νi
− ziai ∂qi

∂νi

)
dΣ(2.6)

+
1

k

∫
γi

qi(T )ai
∂qi(T )

∂νi

}
dΓ.

From (2.3) we have

0 = (zi,t(T ), qi(T ))V ′
i
− (zi(T ), qi,t(T ))Hi −

∫
Σi

qiai
∂zi
∂νi

dΣ(2.7)

−
∫
Si

(
qiai

∂zi
∂νi
− ziai ∂qi

∂νi

)
dΣ.
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From (2.2),

(zi,t(T ), qi(T ))V ′
i
− (zi(T ), qi,t(T ))Hi =

1

k

(‖qi(T )‖2H1(Ωi)
+ ‖qi,t(T )‖2L2(Ωi)

)
(2.8)

− 1

k

∫
γi

qi(T )ai
∂qi(T )

∂νi
dΓ.

Lemma 2.2 follows from (2.6)–(2.8).
Lemma 2.2. can be regarded as an extension to optimality systems of the isometry

Lemma 2.4 of Després [12]. Later on we shall use the following result of Opial [29,
Theorem 3].

Proposition 2.3. Let C be a closed convex set in a uniformly convex Banach
space X having a weakly continuous duality mapping, and let T : C 7→ C be a nonex-
pansive mapping with at least one fixed point. Set Tε = εI + (1− ε)T . Then, for any
X ∈ C and any ε ∈ (0, 1), the sequence of successive approximations {T nε X} is weakly
convergent to a fixed point of T .

3. Domain decomposition. For i = 1, . . . ,m and for n = 0, 1, . . . , consider
the problem

yn+1
i,tt − ai∆yn+1

i = 0 in Qi,

ai
∂yn+1

i

∂νi
+ βpn+1

i = λnij on Σij ,

ai
∂yn+1

i

∂νi
+ pn+1

i = 0 on Σi,

yn+1
i (0) = yn+1

i,t (0) = 0,

(3.1)

pn+1
i,tt − ai∆pn+1

i = 0 in Qi,

ai
∂pn+1

i

∂νi
− βyn+1

i = µnij on Σij ,

ai
∂pn+1

i

∂νi
= 0 on Σi,

pn+1
i (T ) = kA−1

i (yn+1
i,t (T )− ẏiT + k−1σni ),

pn+1
i,t (T ) = −k(yn+1

i (T )− yiT ),

(3.2)

where λ0
ij , µ

0
ij ∈ L2(Σij) and, for n = 1, 2, . . . and fixed ε ∈ [0, 1),

λnij = (1− ε)
(
−aj

∂ynj
∂νj

+ βpnj

)
|Σij + ε

(
ai
∂yni
∂νi

+ βpni

)
|Σij ,

µnij = (1− ε)
(
−aj

∂pnj
∂νj
− βynj

)
|Σij + ε

(
ai
∂pni
∂νi
− βyni

)
|Σij ,

(3.3)

and where σni ∈ V ′i is defined by

(σni , φ)V ′
i

=
∑

j:Γij 6=∅

∫
Γij

τnijφdΓ ∀φ ∈ Vi,(3.4)



514 J. E. LAGNESE AND G. LEUGERING

with τ0
ij ∈ L2(Γij) arbitrary and for n = 1, 2, . . . ,

τnij = (1− ε)
(
−aj

∂pnj (T )

∂νj
+ αpnj (T )

)
|Γij + ε

(
ai
∂pni (T )

∂νi
+ αpni (T )

)
|Γij .(3.5)

Note that the iteration on pn+1
i (T ) is a relaxation of the nonoverlapping Schwarz

alternating method applied to the global elliptic transmission problem (1.8) for the
final state p(T ). Written as an elliptic boundary value problem, it is

−ai∆pn+1
i (T ) + pn+1

i (T ) = k(yn+1
i,t (T )− ẏiT ) in Ωi,

ai
∂pn+1

i (T )

∂νi
+ αpn+1

i (T ) = τnij on Γij ,

ai
∂pn+1

i (T )

∂νi
= 0 on Γi

(3.6)

(see Remark 2.1). Note also that (3.1), (3.2) is the optimality system for the local
optimal control problem on Qi considered in the previous section with λi, µi and
τi replaced by (λnij)j:Γij 6=∅, (µnij)j:Γij 6=∅, and (τnij)j:Γij 6=∅, resp. The parameter ε is a
relaxation parameter; when ε = 0 the iterations at the interfaces Σij are exactly those
introduced by Benamou [2], [3], [4], [5], [6], [7].

If λnij , µ
n
ij ∈ L2(Σij), τ

n
ij ∈ L2(Γij), i = 1, . . . ,m, j : Γij 6= ∅, then because of the

regularity possessed by the solutions yn+1
i , pn+1

i , i = 1, . . . ,m, we have

λn+1
ij ∈ L2(Σij), µn+1

ij ∈ L2(Σij), τn+1
ij ∈ L2(Γij).

If, therefore, λ0
ij ∈ L2(Σij), µ

0
ij ∈ L2(Σij), τ

0
ij ∈ L2(Γij), then (3.1), (3.2) is well set

for each n = 0, 1, . . ..
Consider now the global optimality system (1.1), (1.5)–(1.7). If we set

λij = (1− ε)
(
−aj ∂yj

∂νj
+ βpj

)
|Σij + ε

(
ai
∂yi
∂νi

+ βpi

)
|Σij ,

µij = (1− ε)
(
−aj ∂pj

∂νj
− βyj

)
|Σij + ε

(
ai
∂pi
∂νi
− βyi

)
|Σij ,

τij = (1− ε)
(
−aj ∂pj(T )

∂νj
+ αpj(T )

)
|Γij + ε

(
ai
∂pi(T )

∂νi
+ αpi(T )

)
|Γij ,

(σi, φ)V ′
i

=
∑

j:Γij 6=∅

∫
Γij

τijφdΓ ∀φ ∈ Vi,

then it is seen that yi, pi is formally a solution of (3.1), (3.2) with λnij , µ
n
ij , τ

n
ij replaced

by λij , µij , τij , resp., and yi, pi is an actual solution if it is known that

λij ∈ L2(Σij), µij ∈ L2(Σij), τij ∈ L2(Γij).

This amounts to requiring that

∂yj
∂νj
|Σij ∈ L2(Σij),

∂pj
∂νj
|Σij ∈ L2(Σij),

∂pj(T )

∂νj
|Γij ∈ L2(Γij),(3.7)

which will hold if it is assumed that (YT , ẎT ) ∈ V ×H (see Remark 1.1.).
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We will prove the following convergence result.
Theorem 3.1. Assume that (YT , ẎT ) ∈ V × H and ε ∈ (0, 1). Let Y =

(y1, . . . , ym), P = (p1, . . . , pm) be the solution of the global optimality system (1.1),
(1.5)–(1.7), and yni , p

n
i be the solutions of the local optimality systems (3.1), (3.2),

i = 1, . . . ,m. Set Yn = (yn1 , . . . , y
n
m), Pn = (pn1 , . . . , p

n
m). Then as n→∞,

Yn → Y, Pn → P in C

(
[0, T ];

m∏
i=1

L2(Ωi)

)
,

Yn
,t → Ŷ, Pn

,t → P̂ in C

(
[0, T ];

m∏
i=1

(H1(Ωi))
′
)
,

where Ŷ(t)|V = Y,t(t), P̂(t)|V = P,t(t), 0 ≤ t ≤ T,

pnm|Σ → pm|Σ strongly in L2(Σ),

yni |Si → yi|Si , pni |Si → pi|Si strongly in L2(Si),

∂yni
∂νi
|Si →

∂yi
∂νi
|Si ,

∂pni
∂νi
|Si →

∂pi
∂νi
|Si weakly in L2(Si),

Pn(T )→ P(T ) strongly in
m∏
i=1

Vi,

Pn
,t(T )→ P,t(T ) strongly in H,

∂pni (T )

∂νi
|γi →

∂pi(T )

∂νi
|γi weakly in L2(γi).

Remark 3.2. The proof of convergence for the case without relaxation (ε = 0) is
an open problem.

Proof. For n = 1, 2, . . . , set

ỹni = yni − yi, p̃ni = pni − pi,
λ̃nij = λnij − λij = (1− ε)

(
−aj

∂ỹnj
∂νj

+ βp̃nj

)
|Σij + ε

(
ai
∂ỹni
∂νi

+ βp̃ni

)
|Σij ,

µ̃nij = µnij − µij = (1− ε)
(
−aj

∂p̃nj
∂νj
− βỹnj

)
|Σij + ε

(
ai
∂p̃ni
∂νi
− βỹni

)
|Σij ,

τ̃nij = τnij − τij = (1− ε)
(
−aj

∂p̃nj (T )

∂νj
+ αp̃nj (T )

)
|Γij + ε

(
ai
∂p̃ni (T )

∂νi
+ αp̃ni (T )

)
|Γij ,

σ̃ni = σni − σi.

The pair (ỹni , p̃
n
i ) satisfies

ỹn+1
i,tt − ai∆ỹn+1

i = 0, p̃n+1
i,tt − ai∆p̃n+1

i = 0 in Qi,

ai
∂ỹn+1

i

∂νi
+ βp̃n+1

i = λ̃nij , ai
∂p̃n+1

i

∂νi
− βỹn+1

i = µ̃nij on Σij ,

ai
∂ỹn+1

i

∂νi
+ p̃n+1

i = 0, ai
∂p̃n+1

i

∂νi
= 0 on Σi,

ỹn+1
i (0) = ỹn+1

i,t (0) = 0,

p̃n+1
i (T ) = kA−1

i (ỹn+1
i,t (T ) + k−1σ̃ni ), p̃n+1

i,t (T ) = −kỹn+1
i (T ).

(3.8)
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It is important to note that the iterations on the interfaces Σij may be expressed in
terms of the mapping T defined in the last section as follows. Set

Xn
i :=

((
ai
∂ỹni
∂νi

+ βp̃ni

)
|Σi ,

(
ai
∂p̃ni
∂νi
− βỹni

)
|Σi ,

(
ai
∂p̃ni (T )

∂νi
+ αp̃ni (T )

)
|γi
)
,

Xn = {Xn
i }mi=1.

Then the interface conditions may be expressed as the relaxed fixed point iteration

Xn+1 = (1− ε)T Xn + εXn.(3.9)

It follows from Lemma 2.2 and Proposition 2.3 that if 0 < ε < 1, Xn converges weakly
in X to a fixed point X of T . This fixed point must be X = 0 as was noted above
(immediately preceding the statement of Lemma 2.2). Thus Xn → 0 and T Xn → 0
weakly in X , from which follows that

ỹni |Si → 0, p̃ni |Si → 0,
∂ỹni
∂νi
|Si → 0,

∂p̃ni
∂νi
|Si → 0

weakly in L2(Si), and

p̃ni (T )|γi → 0,
∂p̃ni (T )

∂νi
|γi → 0

weakly in L2(γi).
From (3.9) and Lemma 2.2 we have

‖Xn+1‖2X = (1− ε)2‖T Xn‖2X + ε2‖Xn‖2X + 2ε(1− ε)(Xn, T Xn)X(3.10)

= ((1− ε)2 + ε2)‖Xn‖2X −
4(1− ε)2

k

m∑
i=1

Ei(p̃ni (T ))

− 4(1− ε)2

∫
Σ

|p̃nm|2dΣ + 2ε(1− ε)(Xn, T Xn)X ,

where

Ei(φ) = ‖φ‖2H1(Ωi)
+ ‖φ,t‖2L2(Ωi)

.

By the same calculation as in the proof of Lemma 2.2, we obtain

‖Xn‖2X =
m∑
i=1

{
1

αk

∫
γi

(
α2|p̃ni (T )|2 +

∣∣∣∣ai ∂p̃ni (T )

∂νi

∣∣∣∣2
)
dΓ(3.11)

+
1

β

∫
Si

(
β2(|ỹni |2 + |p̃ni |2) +

∣∣∣∣ai ∂ỹni∂νi

∣∣∣∣2 +

∣∣∣∣ai ∂p̃ni∂νi

∣∣∣∣2
)
dΣ

}

+
2

k

m∑
i=1

Ei(p̃ni (T )) + 2

∫
Σ

|p̃nm|2dΣ.

It follows from (3.10), (3.11) that

‖Xn+1‖2X = ((1− ε)2 + ε2)En − 2

k
(1− 2ε)

m∑
i=1

Ei(p̃ni (T ))(3.12)

− 2(1− 2ε)

∫
Σ

|p̃nm|2dΣ + 2ε(1− ε)(Xn, T Xn)X ,
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where

En :=
m∑
i=1

{
1

αk

∫
γi

(
α2|p̃ni (T )|2 +

∣∣∣∣ai ∂p̃ni (T )

∂νi

∣∣∣∣2
)
dΓ

+
1

β

∫
Si

(
β2(|ỹni |2 + |p̃ni |2) +

∣∣∣∣ai ∂ỹni∂νi

∣∣∣∣2 +

∣∣∣∣ai ∂p̃ni∂νi

∣∣∣∣2
)
dΣ

}
.

From (3.12) and (3.11) with n replaced by n+ 1 we obtain

En+1 = ((1− ε)2 + ε2)En − 2

k

m∑
i=1

[(1− 2ε)Ei(p̃ni (T )) + Ei(p̃n+1
i (T ))](3.13)

− 2

∫
Σ

[(1− 2ε)|p̃nm|2 + |p̃n+1
m |2]dΣ + 2ε(1− ε)(Xn, T Xn)X .

We have

(Xn, T Xn)X =
m∑
i=1

∑
j:Γij 6=∅

{
1

β

∫
Σij

[(
ai
∂ỹni
∂νi

+ βp̃ni
)(−aj ∂ỹnj

∂νj
+ βp̃nj

)
−
(
ai
∂p̃ni
∂νi
− βỹni

)(
aj
∂p̃nj
∂νj

+ βỹnj

)]
dΣ

+
1

αk

∫
Γij

(
ai
∂p̃ni (T )

∂νi
+ αp̃ni (T )

)(
−aj

∂p̃nj (T )

∂νi
+ αp̃nj (T )

)
dΓ

}
=

m∑
i=1

∑
j:Γij 6=∅

{
1

β

∫
Σij

[
−ai ∂ỹ

n
i

∂νi
aj
∂ỹnj
∂νj
− ai ∂p̃

n
i

∂νi
aj
∂p̃nj
∂νj

+ β2(p̃ni p̃
n
j + ỹni ỹ

n
j ) + β

(
p̃nj ai

∂ỹni
∂νi
− p̃ni aj

∂ỹnj
∂νj

)
−β
(
ỹnj ai

∂p̃ni
∂νi
− ỹni aj

∂p̃nj
∂νj

)]
dΣ

+
1

αk

∫
Γij

[
−ai ∂p̃

n
i (T )

∂νi
aj
∂p̃nj (T )

∂νj
+ α2p̃ni (T )p̃nj (T )

+ α

(
p̃nj (T )ai

∂p̃ni (T )

∂νi
− p̃ni (T )aj

∂p̃nj (T )

∂νj

)]
dΓ

}
.

One has
m∑
i=1

∑
j:Γij 6=∅

∫
Σij

(
p̃nj ai

∂ỹni
∂νi
− p̃ni aj

∂ỹnj
∂νj

)
dΣ = 0,

and similarly for the other integrals with mixed terms. Therefore

(Xn, T Xn)X =
m∑
i=1

∑
j:Γij 6=∅

{
1

β

∫
Σij

[
− ai ∂ỹ

n
i

∂νi
aj
∂ỹnj
∂νj
− ai ∂p̃

n
i

∂νi
aj
∂p̃nj
∂νj

+ β2(p̃ni p̃
n
j + ỹni ỹ

n
j )

]
dΣ

+
1

αk

∫
Γij

[
−ai ∂p̃

n
i (T )

∂νi
aj
∂p̃nj (T )

∂νj
+ α2p̃ni (T )p̃nj (T )

]
dΓ.
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Since

m∑
i=1

∫
Si

|fi|2dΣ =
m−1∑
i=1

∑
j:Γij 6=∅
j>i

∫
Σij

(|fi|2 + |fj |2) dΣ,

m∑
i=1

∑
j:Γij 6=∅

∫
Σij

fifj dΣ = 2
m−1∑
i=1

∑
j:Γij 6=∅
j>i

∫
Σij

fifj dΣ,

we have

(3.14)

((1− ε)2 + ε2)En + 2ε(1− ε)(Xn, T Xn)X

=
m∑
i=1

∑
j:Γij 6=∅
j>i

{
1

β

∫
Σij

[
((1− ε)2 + ε2)

(∣∣∣∣ai ∂ỹni∂νi

∣∣∣∣2 +

∣∣∣∣aj ∂ỹnj∂νj

∣∣∣∣2

+

∣∣∣∣ai ∂p̃ni∂νi

∣∣∣∣2 +

∣∣∣∣aj ∂p̃nj∂νj

∣∣∣∣2
)
− 4ε(1− ε)

(
ai
∂ỹni
∂νi

aj
∂ỹnj
∂νj

+ ai
∂p̃ni
∂νi

aj
∂p̃nj
∂νj

)

+ β2((1− ε)2 + ε2)(|ỹni |2 + |ỹnj |2 + |p̃ni |2 + |p̃nj |2) + 4β2ε(1− ε)(ỹni ỹnj + p̃ni p̃
n
j )

]
dΣ

+
1

αk

∫
Γij

[
((1− ε)2 + ε2)

(∣∣∣∣ai ∂p̃ni (T )

∂νi

∣∣∣∣2 +

∣∣∣∣aj ∂p̃nj (T )

∂νj

∣∣∣∣2
+ α2(|p̃ni (T )|2 + |p̃nj (T )|2)

)
− 4ε(1− ε)ai ∂p̃

n
i (T )

∂νi
aj
∂p̃nj (T )

∂νj
+ 4α2ε(1− ε)p̃ni (T )p̃nj (T )

]
dΓ

}
≤ [(1− ε)2 + ε2 + 2ε(1− ε)]En = En.

Substitution of (3.14) into (3.13) yields

En+1 ≤ En − 2

k

m∑
i=1

[Ei(p̃n+1
i (T )) + (1− 2ε)Ei(p̃ni (T ))]

− 2

∫
Σ

(|p̃n+1
m |2 + (1− 2ε)|p̃nm|2) dΣ.

By iteration we obtain

En+1 ≤ E1 − 2
n+1∑
`=1

[
1

k

m∑
i=1

c`(ε)Ei(p̃`i(T ))−
∫

Σ

c`(ε)|p̃`m|2dΣ

]
,(3.15)

where

c1(ε) = 1− 2ε, cn+1(ε) = 1, c`(ε) = 2(1− ε), ` = 2, . . . , n.

It follows from (3.15) that for 0 ≤ ε < 1,

∞∑
`=1

m∑
i=1

Ei(p̃`i(T )) <∞,
∞∑
`=1

∫
Σ

|p̃`m|2dΣ <∞
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so that

p̃nm|Σ → 0 strongly in L2(Σ), Ei(p̃ni (T ))→ 0, i = 1, . . . ,m,

from the second of which follows that

p̃ni (T )→ 0 in Vi,

p̃ni,t(T )→ 0 in L2(Ωi), i = 1, . . . ,m.
(3.16)

The boundedness of {En}∞n=1, together with (3.16) and the regularity results of
Lasiecka–Triggiani [20, Theorems 2.0, 2.1] mentioned above, allow us to conclude that

{ỹni }∞n=1, {p̃ni }∞n=1 are bounded in C([0, T ];H3/5−ε(Ωi),

{ỹni,t}∞n=1, {p̃ni,t}∞n=1 are bounded in C([0, T ]; (H2/5+ε(Ωi))
′),

{ỹni,tt}∞n=1, {p̃ni,tt}∞n=1 are bounded in L2(0, T ; (H7/5+ε(Ωi))
′).

(3.17)

In particular, ỹni |Si , p̃ni |Si are bounded in L∞(0, T ;H1/10−ε(γi)). Since they converge
weakly to zero in L2(Si) when 0 < ε < 1, a compactness result of Simon [32, Corol-
lary 5] shows that the convergence is strong in that space (in fact, it is strong in
L∞(0, T ;L2(γi))). The same result also implies that on a subsequence we have

ỹni → ỹi, p̃ni → p̃i in C([0, T ];L2(Ωi)),

ỹni,t → ỹi,t, p̃ni,t → p̃i,t in C([0, T ]; (H1(Ωi))
′),

where ỹi, p̃i is the solution of

ỹi,tt − ai∆ỹi = 0, p̃i,tt − ai∆p̃i = 0 in Qi,

ai
∂ỹi
∂νi

= 0, ai
∂p̃i
∂νi

= 0 on Si,

ai
∂ỹi
∂νi

= 0, ai
∂p̃i
∂νi

= 0 on Σi,

ỹi(0) = ỹi,t(0) = p̃i(T ) = p̃i,t(T ) = 0.

It follows that ỹi = p̃i = 0 in Qi, i = 1, . . . ,m.

4. The limit of the global optimality system. In this section we study the
limiting behavior as k → ∞ of the solution of the global optimality system (1.1),
(1.5)–(1.7) under the assumption that the global problem (1.1) is exactly controllable
to V ×H for T sufficiently large. As is to be expected, the limit of the global optimality
system is the optimality system for the state constrained optimal control problem

J(f) =
1

2

∫
Σ

|f |2dΣ→ inf(4.1)

subject to (1.1) and

Y(T ) = YT , Y,t(T ) = ẎT .(4.2)

We denote by Jk(f) the cost functional in (1.4) and by Y(· ; k), P(· ; k) the solu-
tion of the optimality system (1.1), (1.5)–(1.7). Let Φ be the solution of (1.3), where
(Φ0,Φ1) ∈ V ×H. The assumption that V ×H lies in the range of the control-to-state
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mapping f 7→ (Y(T ),Y,t(T )) : L2(Σ) 7→ H × V ′ for T sufficiently large is equivalent
to the assumption that (1.3) is continuously observable from Σ for T sufficiently large
in the following sense: there exists T0 > 0 such that

‖Φ0‖2H + ‖Φ1‖2V ′ ≤ CT
∫

Σ

|φm|2dΣ, T > T0,(4.3)

for some constant CT independent of (Φ0,Φ1).
We shall prove the following result.
Theorem 4.1. Suppose that (4.3) holds, T > T0, and let (YT , ẎT ) ∈ V × H.

Then as k →∞ the solution of the optimality system (1.1), (1.5)–(1.7) satisfies

Y(· ; k)→ Y(·), P(· ; k)→ P(·) strongly in C([0, T ];H),

Y,t(· ; k)→ Y,t(·), P,t(· ; k)→ P,t(·) strongly in C([0, T ];V ′),
pm(· ; k)|Σ → pm(·)|Σ strongly in L2(Σ),

where Y = (y1, . . . , ym), P = (p1, . . . , pm) satisfy

yi,tt − ai∆yi = 0, pi,tt − ai∆pi = 0 in Qi,

yi = yj , ai
∂yi
∂νi

+ aj
∂yj
∂νj

= 0 on Σij ,

pi = pj , ai
∂pi
∂νi

+ aj
∂pj
∂νj

= 0 on Σij ,

am
∂ym
∂νm

= −pm, am
∂pm
∂νm

= 0 on Σ,

Y(0) = Y,t(0) = 0, P(T ) = PT , P,t(T ) = ṖT ,

Y(T ) = YT , Y,t(T ) = ẎT ,

(4.4)

and where (PT , ṖT ) ∈ H × V ′ is the unique solution of

((PT , ṖT ), (−ẎT ,YT ))H×V ′ =

∫
Σ

|pm|2dΣ.(4.5)

The system (4.4) is the optimality system for the problem (4.1) subject to (1.1) and
(4.2).

Proof. Let T > T0 and fk(·) = −pm(· ; k)|Σ be the optimal control for the optimal
control problem (1.1), (1.4). Let f0 be any L2(Σ) control such that the solution of
(1.1) satisfies (4.2). Then

Jk(fk) ≤ Jk(f0) =
1

2
‖f0‖L2(Σ);(4.6)

hence

{fk} is bounded in L2(Σ),√
k(Y(T ; k)−YT ) is bounded in H,√
k(Y,t(T ; k)− ẎT ) is bounded in V ′.

Therefore

lim
k→∞

Y(T ; k) = YT strongly in H,

lim
k→∞

Y,t(T ; k) = ẎT strongly in V ′,
(4.7)
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and, as k →∞ through an appropriate subnet of k > 0,

fk → f∞ weakly in L2(Σ)

for some f∞ ∈ L2(Σ) that satisfies

‖f∞‖L2(Σ) ≤ lim inf ‖fk‖L2(Σ).(4.8)

The solution Y(· ; k) satisfies

‖(Y(·, ; k),Y,t(· ; k))‖C([0,T ];H×V ′) ≤ C‖fk‖L2(Σ),(4.9)

where C is independent of k, and therefore we may extract a subnet of k > 0 on which
as k →∞,

Y(· ; k)→ Y(·) weakly∗ in L∞(0, T ;H),

Y,t(· ; k)→ Y,t(·) weakly∗ in L∞(0, T ;V ′)

for some Y ∈ C([0, T ];H) ∩ C1([0, T ];V ′). It follows from (1.2) and (4.7) that Y
satisfies

(Y,t(t),Φ(t))V ′ − (Y(t),Φ,t(t)) =

∫ t

0

∫
Γ

f∞φm dΓdt,

(Y,t(T )− ẎT ,Φ(T ))V ′ − (Y(T )−YT ,Φ,t(T )) = 0 ∀(Φ0,Φ1) ∈ V ×H,

where Φ is the solution of (1.3). Therefore Y is the solution of (1.1) corresponding to
f = f∞ and Y satisfies (4.2). Set

Uad = {f ∈ L2(Σ) : Y satisfies (1.1) and (4.2)}.

We have

Jk(fk) ≤ inf
f∈Uad

Jk(f) =
1

2
inf

f∈Uad

‖f‖2L2(Σ).(4.10)

It follows from (4.8) that f∞ is the control of minimum L2(Σ) norm in Uad. Because
this control is unique (since Uad is closed and convex and the mapping f 7→ J(f) is
continuous on L2(Σ)), it follows from (4.8) and (4.10) that

fk → f∞ strongly in L2(Σ) as k →∞(4.11)

and that

‖f∞‖L2(Σ) = inf
f∈Uad

‖f‖L2(Σ).

From (4.9) we then obtain

(Y(· ; k),Y,t(· ; k))→ (Y(·),Y,t(·)) in C([0, T ];H × V ′).

As fk = −pm(· ; k)|Σ, assumption (4.3) together with (4.11) shows that

(P(T ; k),P,t(T ; k))→ (PT , ṖT ) strongly in H × V ′
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for some (PT , ṖT ). Since the linear map (P(T ; k),P,t(T ; k)) 7→ (P(· ; k),P,t(· ; k)) :
H × V ′ 7→ C([0, T ];H × V ′) is continuous we have

P(· ; k)→ P(·) in C([0, T ];H),

P,t(· ; k)→ P,t(·) in C([0, T ];V ′),

where P = (p1, . . . , pm) is the unique solution in C([0, T ];H) ∩ C1([0, T ];V ′) of

pi,tt − ai∆pi = 0 in Qi,

pi = pj , ai
∂pi
∂νi

+ aj
∂pj
∂νj

= 0 on Σij ,

am
∂pm
∂νm

= 0 on Σ,

P(T ) = PT , P,t(T ) = ṖT .

(4.12)

Since P(· ; k) → P(·) strongly in C([0, T ];H) and pm(· ; k)|Σ → −f∞ strongly in
L2(Σ), by definition

pm|Σ = −f∞.
For i = 1, 2, . . . , we may choose that f̂i ∈ L2(Σ) be such that f̂i → f∞ strongly in

L2(Σ) and the corresponding solution Ŷi of (1.1) satisfies (Ŷi, Ŷi,t) ∈ C([0, T ];V×H).
One then has

(Ŷi, Ŷi,t)→ (Y,Y,t) in C([0, T ];H × V ′).
An integration by parts gives

0 = (P,t(T ; k), Ŷi(T ))− (P(T ; k), Ŷi,t(T )) +

∫
Σ

pm(· ; k)f̂i dΣ.

Upon passing to the limit first in i and then in k we obtain

(ṖT ,YT )V ′ − (PT , ẎT ) =

∫
Σ

|pm|2dΣ,

that is, (PT , ṖT ) is the unique solution of the equation

((PT , ṖT ), (−ẎT ,YT ))H×V ′ =

∫
Σ

|pm|2dΣ.(4.13)

Remark 4.2. Of course, the solution (PT , ṖT ) of (4.13) is exactly the one obtained
from the Hilbert uniqueness method. Suppose that (PT , ṖT ) ∈ V ×H, and let Y, P
be the solution of the global problem (4.4), omitting the condition on (Y(T ),Y,t(T )).

By Holmgren’s theorem, for T > T0 one may define a norm ‖(PT , ṖT )‖F by setting

‖(PT , ṖT )‖2F =

∫
Σ

|pm|2dΣ,

and a corresponding Hilbert space

F = completion of V ×H in ‖ · ‖F .
By (4.3) we have F ⊂ H × V ′, so H × V ⊂ F ′. Then (4.13) is the same as

(PT , ṖT ) = Λ−1(−ẎT ,YT ),

where Λ is the canonical isomorphism F 7→ F ′.
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5. The limit of the local optimality system. In this section we wish to study
the limiting behavior as k → ∞ of the solution yn+1

i (· ; k), pn+1
i (· ; k) of the local

problem (3.1)–(3.5). To this end we first consider the limiting behavior as k →∞ of
the solution zi(· ; k), qi(· ; k) of the system

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= fk1 + λi(· ; k) on Si,

ai
∂zi
∂νi

= fk2 on Σi,

zi(0; k) = zi,t(0; k) = 0,

(5.1)

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= βzi + µi(· ; k) on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ; k) = kA−1
i (zi,t(T ; k)− ẏiT + k−1σi(k)),

qi,t(T ; k) = −k(zi(T ; k)− yiT ),

(5.2)

fk1 = −βqi(· ; k)|Si , fk2 = −qi(· ; k)|Σi ,(5.3)

where λi(· ; k), µi(· ; k) ∈ L2(Si), τi(· ; k) ∈ L2(γi) and σi(k) ∈ V ′i is defined by

(σi(k), φ)V ′
i

=

∫
γi

τi(· ; k)φ(·) dΓ ∀φ ∈ Vi.

The system (5.1)–(5.3) is the optimality system for the problem

Jki (f1, f2) =
1

2

∫
Σi

|f2|2dΣ +
1

2β

∫
Si

(|f1|2 + |βzi(· ; k) + µi(· ; k)|2)dΣ

+
k

2
(‖zi(T ; k)− yiT ‖2Hi + ‖zi,t(T ; k)− ẏiT + k−1σi(k)‖2V ′

i
)→ inf

subject to

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= f1 + λi(· ; k) on Si,

ai
∂zi
∂νi

= f2 on Σi,

zi(0) = zi,t(0) = 0 in Ωi,

(5.4)

where the infimum is taken over f1 ∈ L2(Si) and f2 ∈ L2(Σi).
Let φi be the solution of

φi,tt − ai∆φi = 0 in Qi,

ai
∂φi
∂νi

= 0 on Si ∪ Σi,

φi(0) = φ0
i , φi,t(0) = φ1

i .

(5.5)
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It is assumed that (5.5) is continuously observable for T > T0 for some T0 > 0:

(5.6)

‖φ0
i ‖2Hi + ‖φ1

i ‖2V ′
i
≤ CT

(∫
Si

|φi|2dΣ +

∫
Σi

|φi|2dΣ

)
∀(φ0

i , φ
1
i ) ∈ Vi ×Hi,

for some constant CT . It is known that under mild conditions on Γ and γi (for example,
if they are sufficiently smooth), (5.6) holds for T > (2/

√
ai)diam(Ωi). It follows from

(5.6) that if (yiT , ẏiT ) ∈ Vi×Hi there are controls f1 ∈ L2(Si), f2 ∈ L2(Σi) such that
the solution of (5.4) satisfies

zi(T ; k) = yiT , zi,t(T ; k) = ẏiT .(5.7)

Theorem 5.1. Suppose that (5.6) holds, T > T0, and let (yiT , ẏiT ) ∈ Vi × Hi.
Suppose further that as k →∞

λi(· ; k)→ λ∞i (·), µi(· ; k)→ µ∞i (·) strongly in L2(Si),{
1√
k
τi(· ; k)

}
is bounded in L2(γi).

(5.8)

Then the solution of (5.1)–(5.3) satisfies

zi(· ; k)→ zi(·), qi(· ; k)→ qi(·) in C([0, T ];Hi),

zi,t(· ; k)→ zi,t(·), qi,t(· ; k)→ qi,t(·) in C([0, T ];V ′i ),

zi(· ; k)|Si → zi(·)|Si , qi(· ; k)|Si → qi(·)|Si strongly in L2(Si),

qi(· ; k)|Σi → qi(·)|Σi strongly in L2(Σi),

where zi, qi are the solution of

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= −βqi + λ∞i on Si,

ai
∂zi
∂νi

= −qi on Σi,

zi(0) = zi,t(0) = 0, zi(T ) = yiT , zi,t(T ) = ẏiT ,

(5.9)

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= βzi + µ∞i on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ) = qiT , qi,t(T ) = q̇iT ,

(5.10)

and where (qiT , q̇iT ) ∈ Hi × V ′i is the unique solution of

((qiT , q̇iT ), (−ẏiT , yiT ))Hi×V ′i(5.11)

=

∫
Si

[β(|qi|2 + |zi|2)− λ∞i qi + µ∞i zi] dΣ +

∫
Σi

|qi|2dΣ.
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Proof. Let T > T0 and f0
1 ∈ L2(Si), f

0
2 ∈ L2(Σi) be such that the solution ẑi of

ẑi,tt − ai∆ẑi = 0 in Qi,

ai
∂ẑi
∂νi

= f0
1 on Si,

ai
∂ẑi
∂νi

= f0
2 on Σi,

ẑi(0) = ẑi,t(0) = 0 in Ωi

satisfies (5.7), and set f̂k1 (· ; k) = f0
1 (·)− λ(· ; k). Then

Jki (fk1 , f
k
2 ) ≤ Jki (f̂k1 , f

0
2 ) =

1

2
‖f0

2 ‖2L2(Σi)
+

1

2β
‖f̂k1 ‖L2(Si)

+
1

2β

∫
Si

|βẑi(·) + µi(· ; k)|2dΣ +
1

2k
‖σi(k)‖2V ′

i
.

It follows that

{fk1 }, {zi(· ; k)|Si} are bounded in L2(Si),

{fk2 } is bounded in L2(Σi),√
k(zi(T ; k)− yiT ) is bounded in Hi,√

k(zi,t(T ; k)− ẏiT + k−1σi(k)) is bounded in V ′i .

Therefore

zi(T ; k)→ yiT strongly in Hi,

zi,t(T ; k)→ ẏiT strongly in V ′i ,
(5.12)

and on a certain subsequence

fk1 → f∞1 weakly in L2(Si),

fk2 → f∞2 weakly in L2(Σi),

zi(· ; k)|Si → z∞i (·) weakly in L2(Si).

(5.13)

It follows from (5.8), (5.13), the regularity results of [20], and the compactness result
[32] utilized above that

zi(· ; k)→ zi(·) in C([0, T ];L2(Ωi)),

zi,t(· ; k)→ zi,t(·) in C([0, T ]; (H1(Ωi))
′),

(5.14)

where zi satisfies

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= f∞1 + λ∞i on Si,

ai
∂zi
∂νi

= f∞2 on Σi,

zi(0) = zi,t(0) = 0, zi(T ) = yiT , zi,t(T ) = ẏiT .

(5.15)



526 J. E. LAGNESE AND G. LEUGERING

We have

1

β
‖f∞1 ‖2L2(Si)

+ ‖f∞2 ‖2L2(Σi)
+

1

β
‖βz∞i + µ∞i ‖2L2(Si)

(5.16)

≤ lim inf(
1

β
‖fk1 ‖2L2(Si)

+ ‖fk2 ‖2L2(Σi)
+

1

β
‖βzi(· ; k) + µki (·)‖2L2(Si)

)

≤ 2 lim inf Jki (fk1 , f
k
2 ).

Set

Uad = {f1 ∈ L2(Si), f2 ∈ L2(Σi) :

the solution of (2.1) with λi = λ∞i satisfies (5.7)}.
For all f1, f2 ∈ Uad we have

Jki (fk1 , f
k
2 ) ≤ Jki (f1, f2) =

1

2
‖f2‖2L2(Σi)

+
1

2β
‖f1‖2L2(Si)

+
1

2β

∫
Si

|βzi(· ; k) + µki (·)|2dΣ +
1

2k
‖σi(k)‖2V ′

i
,

where zi(· ; k) is the solution of (5.4). Since λi(· ; k)→ λ∞i (·) strongly in L2(Si),

zi(· ; k)|Si → zi(·)|Si strongly in L2(Si),

where zi(·) is the solution of (2.1) with λi = λ∞i . Therefore

lim supJki (fk1 , f
k
2 ) ≤ 1

2
‖f2‖2L2(Σi)

+
1

2β
‖f1‖2L2(Si)

(5.17)

+
1

2β

∫
Si

|βzi + µ∞i |2dΣ ∀(f1, f2) ∈ Uad.

It follows from (5.13), (5.16), and (5.17) that as k →∞,
fk1 → f∞1 strongly in L2(Si),

fk2 → f∞2 strongly in L2(Σi),

zi(· ; k)|Si → z∞i strongly in L2(Si)

(5.18)

and that

Ji(f
∞
1 , f∞2 ) ≤ Ji(f1, f2) ∀(f1, f2) ∈ Uad,

where

Ji(f1, f2) =
1

2
‖f2‖2L2(Σi)

+
1

2β
‖f1‖2L2(Si)

+
1

2β

∫
Si

|βzi + µ∞i |2dΣ

and where zi satisfies

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= f1 + λ∞i on Si,

ai
∂zi
∂νi

= f2 on Σi,

zi(0) = zi,t(0) = 0 zi(T ) = yiT , zi,t(T ) = ẏiT .
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The solution qi(· ; k) of (5.2) may be expressed as qi = ri + si, where ri satisfies
(5.2) except that

ri(T ; k) = ri,t(T ; k) = 0,

and si satisfies (5.2) except that

ai
∂si
∂νi

= 0 on Si.

By virtue of the regularity results in [20] we have

‖ri(· ; k)‖2L2(Σi)
+ ‖ri(· ; k)‖2L2(Si)

≤ CT
∫
Si

|βzi(· ; k) + µi(· ; k)|2dΣ,(5.19)

and by virtue of the observability assumption (5.6) we have, for T > T0,

‖qi(T ; k)‖2Hi + ‖qi,t(T ; k)‖2V ′
i
≤ CT

(∫
Si

|si|2dΣ +

∫
Σi

|si|2dΣ

)
.(5.20)

It follows from (5.19), (5.20) that

‖qi(T ; k)‖2Hi + ‖qi,t(T ; k)‖2V ′
i

(5.21)

≤ CT
(∫

Si

(|qi(· ; k)|2 + |βzi(· ; k) + µi(· ; k)|2)dΣ +

∫
Σi

|qi(· ; k)|2dΣ

)
= CT

(∫
Si

(|fk1 |2 + |βzi(· ; k) + µi(· ; k)|2)dΣ +

∫
Σi

|fk2 |2dΣ

)
.

From (5.8), (5.18), and (5.21) we may conclude that

qi(T ; k)→ qiT strongly in Hi,

qi,t(T ; k)→ q̇iT strongly in V ′i

for some (qiT , q̇iT ) ∈ Hi × V ′i and then that

qi(· ; k)→ qi(·) in C([0, T ];Hi),

qi,t(· ; k)→ qi,t(·) in C([0, T ];V ′i ),

where qi is the solution of

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= βzi + µ∞i on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ) = qiT , qi,t(T ) = q̇iT .

Further,

βqi(· ; k)|Si = −fk1 → −f∞1 strongly in L2(Si),

qi(· ; k)|Σi = −fk2 → −f∞2 strongly in L2(Σi),
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so, by definition,

βqi|Si = −f∞1 , qi|Σi = −f∞2 .

A formal integration by parts (which may be justified by approximating f∞1 , f∞2 , µ∞i ,
λ∞i by smoother data) gives

0 = (ẏiT , qiT )Hi − (q̇iT , yiT )V ′
i
−
∫
Si

(
qiai

∂zi
∂νi
− ziai ∂qi

∂νi

)
dΣ−

∫
Σi

qiai
∂zi
∂νi

dΣ,

that is,

((qiT , q̇iT ), (−ẏiT , yiT ))Hi×V ′i(5.22)

=

∫
Si

[β(|qi|2 + |zi|2)− λ∞i qi + µ∞i zi]dΣ +

∫
Σi

|qi|2dΣ.

Remark 5.2. The above analysis shows that (5.9), (5.10), (5.11) is the optimality
system for the problem inf(f1,f2)∈Uad

Ji(f1, f2).
Let us comment further on (5.22). The pair (qiT , q̇iT ) may be calculated in a

manner reminiscent of the Hilbert uniqueness method. In fact, this pair is chosen so
that the solution of

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= −βqi + λ∞i on Si,

ai
∂zi
∂νi

= −qi on Σi,

zi(0) = zi,t(0) = 0,

(5.23)

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= βzi + µ∞i on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ) = qiT , qi,t(T ) = q̇iT

(5.24)

satisfies

zi(T ) = yiT , zi,t(T ) = ẏiT .(5.25)

For arbitrary (qiT , q̇iT ) ∈ Vi×Hi, the system (5.23), (5.24) has a unique solution since
it is the optimality system for the problem

inf
f∈L2(Si)

(
1

2β

∫
Si

(|f |2 + |βqi − λ∞i |2) dΣ +
1

2

∫
Σi

|qi|2dΣ

)
subject to

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= f + µ∞i on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ) = qiT , qi,t(T ) = q̇iT .
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The solution of (5.23), (5.24) may be written zi = z1
i + z2

i , qi = q1
i + q2

i , where

(z1
i , q

1
i ) is the solution corresponding to λ∞i = µ∞i = 0,

(z2
i , q

2
i ) is the solution corresponding to qiT = q̇iT = 0.

By Holmgren’s theorem, we may define a norm ‖(qiT , q̇iT )‖Fi by setting

‖(qiT , q̇iT )‖2Fi :=

∫
Si

β(|q1
i |2 + |z1

i |2)dΣ +

∫
Σi

|q1
i |2dΣ,

and a corresponding Hilbert space

Fi = completion of Vi ×Hi in ‖ · ‖Fi .
For T > T0, one has (cf. (5.19)–(5.21))

‖(qiT , q̇iT )‖Hi×V ′i ≤ CT ‖(qiT , q̇iT )‖Fi ;
hence Fi ⊂ Hi × V ′i , Hi × Vi ⊂ F ′i . In addition, by Green’s formula we have

((qiT , q̇iT ), (−z1
i,t(T ), z1

i (T ))) = ‖(qiT , q̇iT )‖2Fi .
Therefore, if (−żiT , ziT ) ∈ F ′i and if we set

(qiT , q̇iT ) = Λ−1
i (−żiT , ziT ),

where Λi is the canonical isomorphism Fi 7→ F ′i , then we will have

z1
i (T ) = ziT , z1

i,t(T ) = żiT .

It follows that (5.25) will be satisfied by choosing

(qiT , q̇iT ) = Λ−1
i ((−ẏiT , yiT )− (−z2

i,t(T ), z2
i (T ))).(5.26)

It may be checked that (5.26) is exactly the same as (5.22).

5.1. Application of Theorem 5.1 to domain decomposition. We now ap-
ply Theorem 5.1 to the solution yn+1

i (· ; k), pn+1
i (· ; k) of the optimality system (3.1),

(3.2), where λnij(· ; k), µnij(· ; k), τnij(· ; k) are given by (3.3), (3.5) and σni (k) by (3.4).
We assume that

λ0
ij , µ0

ij , τ0
ij are independent of k.(5.27)

Then, as k → ∞ the solution y1
i (· ; k), p1

i (· ; k) converges in the manner described in
Theorem 5.1 to the solution y1

i (·), p1
i (·) of the system

y1
i,tt − ai∆y1

i = 0, p1
i,tt − ai∆p1

i = 0 in Qi,

ai
∂y1

i

∂νi
+ βp1

i = λ0
ij , ai

∂p1
i

∂νi
− βy1

i = µ0
ij on Σij ,

ai
∂y1

i

∂νi
+ p1

i = 0, ai
∂p1

i

∂νi
= 0 on Σi,

y1
i (0) = y1

i,t(0) = 0, p1
i (T ) = p1

iT , pi,t(T ) = ṗ1
iT ,

y1
i (T ) = yiT , y1

i,t(T ) = ẏiT ,
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where (p1
iT , ṗ

1
iT ) ∈ Hi × V ′i is the solution of

((p1
iT , ṗ

1
iT ), (−ẏiT , yiT ))Hi×V ′i

=
∑

j:Γij 6=∅

∫
Σij

[β(|p1
i |2 + |y1

i |2)dΣ− λ0
ijp

1
i + µ0

ijy
1
i ]dΣ +

∫
Σi

|p1
i |2dΣ.

According to Theorem 5.1,

y1
i (· ; k)|Si → y1

i (·)|Si , p1
i (· ; k)|Si → p1

i (·)|Si strongly in L2(Si),

and therefore

ai
∂y1

i (· ; k)

∂νi
→ λ0

ij(·)− βp1
i (·) = ai

∂y1
i (·)
∂νi

,

ai
∂p1

i (· ; k)

∂νi
→ µ0

ij(·) + βy1
i (·) = ai

∂p1
i (·)
∂νi

strongly in L2(Σij).

As a result,

λ1
ij(· ; k)→ (1− ε)

(
− aj

∂y1
j (·)
∂νj

+ βp1
j (·)
)
|Σij + ε

(
ai
∂y1

i (·)
∂νi

+ βp1
i (·)
)
|Σij

:= λ1
ij(·) strongly in L2(Σij),

µ1
ij(· ; k)→ (1− ε)

(
− aj

∂p1
j (·)
∂νj

− βy1
j (·)
)
|Σij + ε

(
ai
∂p1

i (·)
∂νi

− βy1
i (·)
)
|Σij

:= µ1
ij(·) strongly in L2(Σij).

(5.28)

The proof of Theorem 5.1 showed that
√
k(y1

i,t(T ; k)− ẏiT + k−1σ0
i (k))

is bounded in V ′i and therefore

1√
k
p1
i (T ; k) = A−1

i [
√
k(y1

i,t(T ; k)− ẏiT + k−1σ0
i (k))] is bounded in Vi.

In particular,

1√
k
p1
i (T ; k)|γi is bounded in L2(γi).

Since (see Remark 2.1)

ai
∂p1

i (T ; k)

∂νi
+ αp1

i (T ; k) = τ0
ij(·) on Γij ,

it follows that

1√
k
ai
∂p1

i (T ; k)

∂νi
is bounded in L2(γi);

hence

1√
k
τ1
ij(· ; k) =

1− ε√
k

(
−aj

∂p1
j (T ; k)

∂νj
+ αp1

j (T ; k)

)∣∣∣∣∣
Γij

+
ε√
k

(
ai
∂p1

i (T ; k)

∂νi
+ αp1

i (T ; k)

)∣∣∣∣
Γij

is bounded in L2(Γij).
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We may now apply Theorem 5.1 to conclude that as k → ∞ the solution y2
i (· ; k),

p2
i (· ; k) of (3.1), (3.2) with n + 1 = 2 converges in the manner described in that

theorem to the solution y2
i (·), p2

i (·) of

y2
i,tt − ai∆y2

i = 0, p2
i,tt − ai∆p2

i = 0 in Qi,

ai
∂y2

i

∂νi
+ βp2

i = λ1
ij , ai

∂p2
i

∂νi
− βy2

i = µ1
ij on Σij ,

ai
∂y2

i

∂νi
+ p2

i = 0, ai
∂p2

i

∂νi
= 0 on Σi,

y2
i (0) = y2

i,t(0) = 0, p2
i (T ) = p2

iT , pi,t(T ) = ṗ2
iT ,

y2
i (T ) = yiT , y2

i,t(T ) = ẏiT ,

where λ1
ij , µ

1
ij are given by (5.28) and where (p2

iT , ṗ
2
iT ) is the solution of

((p2
iT , ṗ

2
iT ), (−ẏiT , yiT ))Hi×V ′i

=
∑

j:Γij 6=∅

∫
Σij

[β(|p2
i |2 + |y2

i |2)dΣ− λ1
ijp

2
i + µ1

ijy
2
i ]dΣ +

∫
Σi

|p2
i |2dΣ.

One may now proceed inductively to obtain the following result.
Theorem 5.3. Assume (5.6) and (5.27), and let (yiT , ẏiT ) ∈ Vi × Hi. Then as

k →∞ the solutions {yn+1
i (· ; k), pn+1

i (· ; k)}∞n=0 converge in the sense of Theorem 5.1
to the solutions {yn+1

i (·), pn+1
i (·)}∞n=0 of

yn+1
i,tt − ai∆yn+1

i = 0 in Qi,

ai
∂yn+1

i

∂νi
+ βpn+1

i = λnij on Σij ,

ai
∂yn+1

i

∂νi
+ pn+1

i = 0 on Σi,

yn+1
i (0) = yn+1

i,t (0) = 0,

(5.29)

pn+1
i,tt − ai∆pn+1

i = 0 in Qi,

ai
∂pn+1

i

∂νi
− βyn+1

i = µnij on Σij ,

ai
∂pn+1

i

∂νi
= 0 on Σi,

pn+1
i (T ) = pn+1

iT , pn+1
i,t (T ) = ṗn+1

iT ,

(5.30)

yn+1
i (T ) = yiT , yn+1

i,t (T ) = ẏiT ,(5.31)

where

λnij = (1− ε)
(
−aj

∂ynj
∂νj

+ pnj

)
|Σij + ε

(
ai
∂yni
∂νi

+ pni

)
|Σij ,

µnij = (1− ε)
(
−aj

∂pnj
∂νj
− ynj

)
|Σij + ε

(
ai
∂pni
∂νi
− yni

)
|Σij ,

(5.32)
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and where (pn+1
iT , ṗn+1

iT ) ∈ Hi × V ′i is the solution of

((pn+1
iT , ṗn+1

iT ), (−ẏiT , yiT ))Hi×V ′i =

∫
Σi

|pn+1
i |2dΣ(5.33)

+
∑

j:Γij 6=∅

∫
Σij

[β(|pn+1
i |2 + |yn+1

i |2)dΣ− λnijpn+1
i + µnijy

n+1
i ]dΣ.

6. Convergence to the solution of the global optimality system. In this
section it is proved that the solution of (5.29)–(5.33) converges as n → ∞ to the
solution of (4.4), (4.5). The proof follows the same lines as the proof of Theorem 3.1.
First we introduce the space

X :=

m∏
i=1

L2(Si)× L2(Si)

with norm ‖ · ‖X given by

‖X‖2X =
m∑
i=1

1

β

∫
Si

(|λi|2 + |µi|2)dΣ,

where X = {(λi, µi) : i = 1, . . . ,m}. For X ∈ X define a linear mapping T : X 7→ X
as follows. Let (zi, qi) be the solution of

zi,tt − ai∆zi = 0 in Qi,

ai
∂zi
∂νi

= −βqi + λi on Si,

ai
∂zi
∂νi

= −qi on Σi,

zi(0) = zi,t(0) = 0,

qi,tt − ai∆qi = 0 in Qi,

ai
∂qi
∂νi

= βzi + µi on Si,

ai
∂qi
∂νi

= 0 on Σi,

qi(T ) = qiT , qi,t(T ) = q̇iT ,

where (qiT , q̇iT ) is chosen so that (see (5.26))

zi(T ) = zi,t(T ) = 0.(6.1)

Set

T X =

{((
−aj ∂zj

∂νj
+ βqj

)
|Σij ,

(
−aj ∂qj

∂νj
− βzj

)
|Σij
)

: i = 1, . . . ,m; j : Γij 6= ∅
}
.

We note that T X = X if and only if the global transmission conditions on Σij
are satisfied for all i, j. Clearly X = 0 is a fixed point of T . By the same calculation
as in the proof of Lemma 2.1, we have

‖T X‖2X = ‖X‖2X − 4

∫
Σ

|qm|2dΣ,(6.2)
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so that T is nonexpansive.
We introduce λij , µij , ỹ

n
j , p̃

n
j , λ̃

n
ij , µ̃

n
ij as above, and set

p̃niT = pniT − piT , q̃niT = ṗniT − ṗiT ,
where piT = PT |Ωi ∈ Hi, ṗiT = Ai(A−1ṖT |Ωi) ∈ V ′i . Then ỹnj , p̃

n
j satisfy

ỹn+1
i,tt − ai∆ỹn+1

i = 0, p̃n+1
i,tt − ai∆p̃n+1

i = 0 in Qi,

ai
∂ỹn+1

i

∂νi
+ βp̃n+1

i = λ̃nij , ai
∂p̃n+1

i

∂νi
− βỹn+1

i = µ̃nij on Σij ,

ai
∂ỹn+1

i

∂νi
+ p̃n+1

i = 0, ai
∂p̃n+1

i

∂νi
= 0 on Σi,

ỹn+1
i (0) = ỹn+1

i,t (0) = ỹn+1
i (T ) = ỹn+1

i,t (T ) = 0,

p̃n+1
i (T ) = p̃n+1

iT , p̃n+1
i,t (T ) = q̃n+1

iT .

(6.3)

We observe that the iterations on Σij may be expressed as the fixed point iteration

Xn+1 = (1− ε)T Xn + εXn.

According to Proposition 2.1, if 0 < ε < 1, then Xn → X weakly in X , where X is a
fixed point of T .

Theorem 6.1. Assume that (4.3) and (5.6) hold, T > T0, 0 < ε < 1, and let
(YT , ẎT ) ∈ V ×H. Then as n→∞ we have

ỹni → 0 in C([0, T ];Hi),

ỹni,t → 0 in C([0, T ];V ′i ),

p̃ni → 0 weakly∗ in L∞(0, T ;Hi),

p̃ni,t → 0 weakly∗ in L∞(0, T ;V ′i ),

p̃nm|Σ → 0 strongly in L2(Σ).

Proof. We proceed as in the proof of Theorem 3.1 and calculate with the aid of
(6.2) that

‖Xn+1‖2X = (1− ε)2‖T Xn‖2X + ε2‖Xn‖2X + 2ε(1− ε)(Xn, T Xn)X(6.4)

= ((1− ε)2 + ε2)‖Xn‖2X − 4(1− ε)2

∫
Σ

|p̃nm|2dΣ + 2ε(1− ε)(Xn, T Xn)X .

Again, by the same calculation as in Lemma 2.2, we obtain

‖Xn‖2X =
m∑
i=1

1

β

∫
Si

(
β2(|ỹni |2 + |p̃ni |2) +

∣∣∣∣ai ∂ỹni∂νi

∣∣∣∣2 +

∣∣∣∣ai ∂p̃ni∂νi

∣∣∣∣2
)
dΣ(6.5)

+ 2

∫
Σ

|p̃nm|2dΣ.

Therefore

‖Xn+1‖2X = ((1− ε)2 + ε2)En(6.6)

− 2(1− 2ε)

∫
Σ

|p̃nm|2dΣ + 2ε(1− ε)(Xn, T Xn)X ,
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where

En :=
m∑
i=1

1

β

∫
Si

(
β2(|ỹni |2 + |p̃ni |2) +

∣∣∣∣ai ∂ỹni∂νi

∣∣∣∣2 +

∣∣∣∣ai ∂p̃ni∂νi

∣∣∣∣2
)
dΣ.

From (6.6) and (6.5) with n replaced by n+ 1 we obtain

En+1 = ((1− ε)2 + ε2)En(6.7)

− 2

∫
Σ

[(1− 2ε)|p̃nm|2 + |p̃n+1
m |2]dΣ + 2ε(1− ε)(Xn, T Xn)X .

One has

(Xn, T Xn)X =
m∑
i=1

∑
j:Γij 6=∅

1

β

∫
Σij

[
−ai ∂ỹ

n
i

∂νi
aj
∂ỹnj
∂νj
− ai ∂p̃

n
i

∂νi
aj
∂p̃nj
∂νj

+ β2(p̃ni p̃
n
j + ỹni ỹ

n
j )

]
dΣ,

so that

(6.8)

((1− ε)2 + ε2)En + 2ε(1− ε)(Xn, T Xn)X

=
m∑
i=1

∑
j:Γij 6=∅
j>i

1

β

∫
Σij

[
((1− ε)2 + ε2)

(∣∣∣∣ai ∂ỹni∂νi

∣∣∣∣2 +

∣∣∣∣aj ∂ỹnj∂νj

∣∣∣∣2

+

∣∣∣∣ai ∂p̃ni∂νi

∣∣∣∣2 +

∣∣∣∣aj ∂p̃nj∂νj

∣∣∣∣2
)
− 4ε(1− ε)

(
ai
∂ỹni
∂νi

aj
∂ỹnj
∂νj

+ ai
∂p̃ni
∂νi

aj
∂p̃nj
∂νj

)

+ β2((1− ε)2 + ε2)(|ỹni |2 + |ỹnj |2 + |p̃ni |2 + |p̃nj |2) + 4β2ε(1− ε)(ỹni ỹnj + p̃ni p̃
n
j )

]
dΣ

≤ [(1− ε)2 + ε2 + 2ε(1− ε)]En = En.

Substitution of (6.8) into (6.7) yields

En+1 ≤ En − 2

∫
Σ

(|p̃n+1
m |2 + (1− 2ε)|p̃nm|2) dΣ,

and so, by iteration,

En+1 ≤ E1 −
n+1∑
`=1

∫
Σ

c`(ε)|p̃`m|2dΣ,(6.9)

where

c1(ε) = 1− 2ε, cn+1(ε) = 1, c`(ε) = 2(1− ε), ` = 2, . . . , n.

In particular, for 0 ≤ ε < 1 we have

∞∑
`=1

∫
Σ

|p̃`m|2dΣ <∞
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so that

p̃nm|Σ → 0 strongly in L2(Σ) as n→∞.(6.10)

We also deduce from (6.9) that on a subsequence

p̃`i |Si → p̃∞i , ỹ`i |Si → ỹ∞i , ai
∂ỹ`i
∂νi

∣∣∣∣
Si

→ Ỹi, ai
∂p̃`i
∂νi

∣∣∣∣
Si

→ P̃i(6.11)

weakly in L2(Si). Since for 0 < ε < 1 we know that Xn converges weakly in X to a
fixed point of T , it follows from (6.3) that

P̃i − ỹ∞i = −P̃j − ỹ∞j , Ỹi + p̃∞i = −Ỹj + p̃∞j on Σij

and then that

Ỹi + Ỹj = 0, P̃i + P̃j = 0, ỹ∞i = ỹ∞j , p̃∞i = p̃∞j on Σij .(6.12)

From (5.6) and (6.11) it is seen that

(p̃niT , q̃
n
iT ) is bounded in Hi × V ′i

and then that

(p̃ni , p̃
n
i,t) is bounded in C([0, T ];Hi × V ′i ).

Therefore, on a subsequence,

(p̃`iT , q̃
`
iT )→ (p̃iT , q̃iT ) weakly in Hi × V ′i ,

p̃`i → p̃i weakly∗ in L∞(0, T ;Hi),

p̃`i,t → p̃i,t weakly∗ in L∞(0, T ;V ′i ).

In addition, it follows as in the proof of Theorem 3.1 that on a subsequence

ỹ`i → ỹi in C([0, T ];Hi),

ỹ`i,t → ỹi,t in C([0, T ];V ′i ).

The functions ỹi, p̃i satisfy

ỹi,tt − ai∆ỹi = 0, p̃i,tt − ai∆p̃i = 0 in Qi,

ai
∂ỹi
∂νi

= −Ỹi, ai
∂p̃i
∂νi

= −P̃i on Si,

ai
∂ỹi
∂νi

= 0, ai
∂p̃i
∂νi

= 0 on Σi,

ỹi(0) = ỹi,t(0) = 0, p̃i(T ) = p̃iT , p̃i,t(T ) = q̃iT ,

(6.13)

and

p̃i|Si = p̃∞i , ỹi|Si = ỹ∞i .
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By virtue of (6.12) it is seen that Ỹ := (ỹ1, . . . , ỹm) is the solution of (1.1) with f = 0,
and therefore Ỹ(t) = 0, Ỹt(t)|V = 0, 0 ≤ t ≤ T . In addition, P̃ := (p̃1, . . . , p̃m) is the
solution of

p̃i,tt − ai∆p̃i = 0 in Qi, i = 1, 2,

p̃i = p̃j , ai
∂p̃i
∂νi

+ aj
∂p̃j
∂νj

= 0 on Σij ,

ai
∂p̃i
∂νi

= 0 on Σi,

P̃(T ) = P̃iT , P̃,t(T ) = Q̃iT ,

(6.14)

where

P̃iT = (p̃1T , . . . , p̃mT ), Q̃iT = (q̃1T , . . . , q̃mT ).

From (6.10) and (6.13) we have

p̃m|Σ = 0,

and then (4.3) gives P̃iT = Q̃iT = 0, hence P̃(t) = 0, 0 ≤ t ≤ T .
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STRONG CONVERGENCE OF BLOCK-ITERATIVE OUTER
APPROXIMATION METHODS FOR CONVEX OPTIMIZATION∗
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Abstract. The strong convergence of a broad class of outer approximation methods for mini-
mizing a convex function over the intersection of an arbitrary number of convex sets in a reflexive
Banach space is studied in a unified framework. The generic outer approximation algorithm under
investigation proceeds by successive minimizations over the intersection of convex supersets of the
feasibility set determined in terms of the current iterate and variable blocks of constraints. The
convergence analysis involves flexible constraint approximation and aggregation techniques as well
as relatively mild assumptions on the constituents of the problem. Various well-known schemes are
recovered as special realizations of the generic algorithm and parallel block-iterative extensions of
these schemes are devised within the proposed framework. The case of inconsistent constraints is
also considered.

Key words. block-iterative, convex feasibility problem, convex programming, constrained min-
imization, cutting plane, fixed point, inconsistent constraints, outer approximation, projection onto
an intersection of convex sets, reflexive Banach space, surrogate cut, uniformly convex function

AMS subject classifications. 49M27, 65J05, 65K05, 90C25
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1. Introduction. Let X be a real reflexive Banach space, let J : X →]−∞,+∞]
be a proper function, and let (Si)i∈I be an arbitrary family of closed convex subsets
of X . We investigate a broad class of block-iterative outer approximation methods
for solving the program

findx ∈ S ,
⋂
i∈I

Si such that J(x) = inf
x∈S

J(x) , J(P)

under the following assumptions:

(A1) J is lower semicontinuous and convex.
(A2) For some closed convex set E ⊃ S, there exists a point u ∈ S ∩ dom J such

that the set C , {x ∈ E | J(x) ≤ J(u)} is bounded and J is uniformly
convex with modulus of convexity c on C, i.e., [53], [54]

(∀(x, y) ∈ C2
)

J

(
x+ y

2

)
≤ J(x) + J(y)

2
− c(‖x− y‖),(1.1)

where c : R+ → R+ is nondecreasing and (∀τ ∈ R+) c(τ) = 0⇔ τ = 0.
(A3) For every i ∈ I, Si = {x ∈ X | gi(x) ≤ 0}, where gi belongs to the class G of
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all functions g : X →]−∞,+∞] such that



(i) {x ∈ X | g(x) ≤ 0} is nonempty and convex.

(ii) For every sequence (yn)n≥0 ⊂ X{
yn

n
⇀ y

lim ng(yn) ≤ 0
⇒ g(y) ≤ 0.

(1.2)

Assumptions (A1)–(A2) are rather standard and ensure in particular that (P) admits
a unique solution x [1]. Assumption (A3) provides an explicit description of the
constraint sets (Si)i∈I as lower level sets of functions (gi)i∈I ⊂ G. As will be seen
in section 2, the class G is quite broad, and (A3) therefore covers a wide range of
constraints encountered in convex optimization problems.

In the past four decades, various outer approximation methods for constrained
minimization problems have been proposed, following their introduction by Cheney
and Goldstein [8] and Kelley [31] in the form of cutting plane algorithms. The un-
derlying principle is to replace (P) by a sequence of minimizations over simple closed
convex supersets (Qn)n≥0 of the feasibility set S. Typically, the approximation at
iteration n can be written as Qn = Dn∩Hn, where Dn and Hn are two closed convex
supersets of S, the latter being termed a cut. Outer approximation methods can
be divided into two main categories, namely, cutoff methods and constraints disin-
tegration methods. In cutoff method [37], Dn+1 = Qn and Qn+1 therefore results
from the accumulation of all previous cuts. Several classical algorithms fit in this
framework that differ in the way the cuts are defined, e.g., [8], [30], [31], [52], [55].
Naturally, a limitation of cutoff methods is that the minimization of J over the sets
(Qn)n≥0 becomes increasingly demanding in terms of both computational load and
storage requirements. This shortcoming prompted the development of filtered cutoff
methods in which some of the old cuts can be discarded under various hypotheses,
thereby keeping the complexity of the outer approximations manageable, e.g., [5], [16],
[19], [49], [50]. These methods are cumulative in the sense that every cut must be
retained until it is definitely dropped. By contrast, in the somewhat less well known
constraints disintegration methods, Dn is a half-space depending solely on xn and a
subgradient of J at xn. Such schemes were first proposed by Haugazeau in the 1960s
for the minimization of quadratic forms in Hilbert spaces [26] and several variants
have since been proposed for this particular problem [14], [27], [41], [44], [45]. The
extension to convex functions was dealt with in [35] in Banach spaces and rediscovered
in Euclidean spaces in [29] and [39].

The goal of the present work is to develop a general framework for outer approx-
imation methods that captures and extends the above algorithms. Our investigation
will not only provide a unified strong convergence analysis of existing outer approxi-
mation methods for solving (P) but also yield flexible generalizations of these methods
in the form of parallel block-iterative algorithms.

The paper is built around the following generic outer approximation scheme. For
brevity, m(A) denotes the minimizer of J over a convex set A and C(A) the family of
all closed convex supersets of A.

Algorithm 1.1. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).

Step 0. Set D0 = E, x0 = m(D0), and n = 0.
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Step 1. Take a nonempty finite index set In ⊂ I and generate Hn such that

Hn ∈ C

(⋂
i∈In

Si

)
.(1.3)

Step 2. Set Qn = E ∩Dn ∩Hn and xn+1 = m(Qn).
Step 3. Generate Dn+1 such that

Dn+1 ∈ C(S) and xn+1 = m(Dn+1).(1.4)

Step 4. Set n = n+ 1 and go to Step 1.
Associated with this algorithm is the following terminology.
Definition 1.1. Let Hn and Dn+1 be two subsets of X . Then Hn (respectively,

Dn+1) will be said to be a cut (respectively, a base) for Algorithm 1.1 at iteration n
if (1.3) (respectively, (1.4)) holds.

At iteration n, xn and an outer approximation Dn to S are given such that
xn minimizes J over Dn. A finite block of sets (Si)i∈In is then selected and Hn is
constructed as an outer approximation to their intersection. The update xn+1 is the
minimizer of J over Qn = E ∩Dn ∩Hn. We observe that, since u ∈ Qn, xn+1 is the
minimizer of J over Qn ∩ C. Consequently, since J is weakly lower semicontinuous
(by (A1)) and since Qn ∩ C is nonempty and weakly compact (bounded, closed, and
convex by (A1)–(A2) in the reflexive space X ), the existence of xn+1 follows from
Weierstrass’ theorem [1, Thm. 2.1.1]; its uniqueness follows from the strict convexity
of J over Qn ∩C, which is secured by (A2). The iteration is completed by generating
a new outer approximation Dn+1 to S over which J achieves its infimum at xn+1.

The remainder of the paper is divided into six sections. In section 2 basic nota-
tion and definitions are introduced and assumptions (A1)–(A3) are illustrated through
specific examples. In section 3 we establish the strong convergence of Algorithm 1.1 to
the solution x of (P) for two types of control sequence (In)n≥0 under certain “tight-
ness” conditions. Four frameworks are then considered individually. In section 4,
two general cut construction techniques are described, namely, exact-constraint cuts
in section 4.1 and surrogate cuts in section 4.2. In the former case, the cuts are
drawn directly from the pool of constraint sets (Si)i∈I , whereas in the latter they are
constructed as surrogate half-spaces based on approximate projections of the current
iterate onto the selected block of sets. Section 5 is devoted to the construction of bases.
In section 5.1 the bases are cumulative, as in cutoff methods, whereas in section 5.2
the bases are instantaneous, as in constraints disintegration methods. By coupling
a cut construction strategy from section 4.1 or 4.2 with a base construction strategy
from section 5.1 or 5.2, we obtain in section 6 four general realizations of the abstract
Algorithm 1.1. In each case, strong convergence theorems are given and existing
methods are exhibited as special cases. As a by-product, a block-iterative algorithm
for projecting onto an intersection of convex sets in a Hilbert space is presented in
detail. Finally, problems with inconsistent constraints and feasibility problems are
discussed in section 7.

2. Preliminaries.

2.1. Notation, definitions, and basic facts. The definitions and results
stated hereafter can be found in [1].

N is the set of nonnegative integers, N∗ the set of positive integers, R+ the set of
nonnegative reals, R∗+ the set of positive reals, and RN the standard N -dimensional
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Euclidean space. X is a real reflexive Banach space, and Id its identity operator. bdA
denotes the boundary of a set A ⊂ X , A◦ its interior, m(A) the minimizer of J over
A (i.e., m(A) ∈ A and (∀x ∈ A) J(m(A)) ≤ J(x)) provided such a point exists and is
unique, and C(A) the family of all closed convex supersets of A. The norm of X and
that of its topological dual X ′ is denoted by ‖ · ‖, the associated distance by d, and

the canonical bilinear form on X × X ′ by 〈·, ·〉. The expressions xn
n
⇀ x and xn

n→ x
denote, respectively, the weak and strong convergence to x of a sequence (xn)n≥0 and
W(xn)n≥0 its set of weak cluster points. The closed ball of center x and radius γ in
X or X ′ is denoted by B(x, γ) and the normalized duality mapping of X by ∆, i.e.,

(∀x ∈ X ) ∆(x) =
{
x′ ∈ X ′ | ‖x‖2 = 〈x, x′〉 = ‖x′‖2}.(2.1)

It follows from the reflexivity of X that ∆ is surjective (∆−1(x′) 6= Ø for every
x′ ∈ X ′). ∆ is single valued if X ′ is strictly convex.

Let F : X →] − ∞,+∞] be a proper function, i.e., domF = {x ∈ X | F (x) <
+∞} 6= Ø. F is subdifferentiable at x ∈ domF if its subdifferential at this point,

∂F (x) =
{
t′ ∈ X ′ | (∀y ∈ X ) 〈y − x, t′〉+ F (x) ≤ F (y)

}
,(2.2)

is not empty. A subgradient of F at x is an element of ∂F (x). The lower level set of F
at height λ ∈ R is lev≤λF = {x ∈ X | F (x) ≤ λ}. F is quasi-convex if its lower level
sets (lev≤λF )λ∈R are convex and it is (respectively, weakly) lower semicontinuous if
they are (respectively, weakly) closed. Now suppose that A ⊂ X is a nonempty convex
set and that F is convex and continuous at a point in A∩domF , and let p ∈ A. Then

F (p) = inf
y∈A

F (y) ⇔ (∃t′ ∈ ∂F (p)
)
(∀y ∈ A) 〈p− y, t′〉 ≤ 0.(2.3)

In particular, fix x ∈ X and let F : y 7→ ‖x− y‖2/2. Then (2.3) yields

‖x− p‖ = d(x,A) ⇔ (∃q′ ∈ ∆(x− p))(∀y ∈ A) 〈y − p, q′〉 ≤ 0(2.4)

and p is called a projection of x onto A. Such a point exists if A is closed and
it is unique if in addition X is strictly convex, as is the case when X is uniformly
convex, i.e.,

(∀ε ∈]0, 2])(∃δ ∈]0, 2])
(∀(x, y) ∈ B(0, 1)2

) ‖x− y‖ ≥ ε⇒ ‖x+ y‖ ≤ 2− δ,(2.5)

and a fortiori when X is a Hilbert space.
If X is a Hilbert space, the identifications X ′ = X and ∆ = Id will be made and

the scalar product of X will also be denoted by 〈·, ·〉. Thus, expressions such as 〈x, y′〉,
where (x, y) ∈ X 2 and y′ ∈ ∆(y), will reduce to 〈x, y〉.

2.2. On assumptions (A1)–(A3). We first describe basic scenarios covered
by assumptions (A1)–(A2). It should be noted at this point that the boundedness of
C in (A2) is mentioned only for the sake of clarity and that it is actually implicit.
Indeed, if F : B →] − ∞,+∞] is lower semicontinuous and uniformly convex on a
closed convex set A ⊂ B, where B is a reflexive Banach space, then A ∩ lev≤F (w)F is
bounded for every w ∈ A ∩ domF [53, Thm. 1(1)].

Proposition 2.1. Assumptions (A1) and (A2) are satisfied in each of the fol-
lowing cases.

(i) J is lower semicontinuous and convex and, for some E ∈ C(S), there exists
u ∈ S ∩ dom J such that C = E ∩ lev≤J(u)J is compact and J is strictly
convex and continuous on C.
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(ii) X = RN , J is finite and strictly convex, and either of the following conditions
is fulfilled:
(a) E = X and, for some λ ∈ R, lev≤λJ is nonempty and bounded.
(b) E ∈ C(S) is bounded.

(iii) X is a Hilbert space, E = X , and J is a coercive quadratic form, i.e., J : x 7→
a(x, x)/2 − 〈x, b〉, where b ∈ X and a is a symmetric bounded bilinear form
on X 2 that satisfies(∃γ ∈ R∗+)(∀x ∈ X ) a(x, x) ≥ γ‖x‖2.(2.6)

(iv) X is uniformly convex, E = X , and J : x 7→ ∫ ‖x−w‖
0

ϕ(t)dt, where w ∈ X and
ϕ : R+ → R+ is increasing.

(v) Let (Ω,F, µ) be a complete finite measure space, let p ∈]1,+∞[, and let X be
a separable, real reflexive Banach space with norm ‖ · ‖X and Borel σ-algebra
B. X = LpX is the Lebesgue space of (equivalence classes of µ — almost
everywhere (a.e.) equal) measurable functions x : (Ω,F) → (X,B) such that∫

Ω
‖x(ω)‖pXµ(dω) < +∞ and J : x 7→ ∫

Ω
ϕ(ω, x(ω))µ(dω), where the integrand

ϕ : Ω× X→]−∞,+∞] fulfills the following conditions:
(a) ϕ is measurable relative to the product σ-algebra F ×B.
(b) (∀x ∈ X )

∫
Ω
|ϕ(ω, x(ω))|µ(dω) < +∞.

(c) The functions (ϕ(ω, ·))ω∈Ω are lower semicontinuous, proper, and uni-
formly convex on X with common modulus of convexity c0, hence

(∀ω ∈ Ω)(∀(x, y) ∈ ( domϕ(ω, ·))2
)

ϕ

(
ω,

x + y

2

)
(2.7)

≤ ϕ(ω, x) + ϕ(ω, y)

2
− c0(‖x− y‖X).

Moreover, c0 is continuous and lim τ→+∞c0(τ)/τp > 0.

Proof. (i) is a consequence of [36, Thm. 4.1.8.(1)]. (ii) ⇒ (i): J is convex and,
by [46, Cor. 10.1.1], continuous. Moreover, for any u ∈ S, E ∩ lev≤J(u)J is compact.
This follows from the compactness of lev≤λJ for any λ ∈ R in (a) [46, Cor. 8.7.1]
and from that of E in (b). (iii): a(·, ·) is a scalar product on X with associated norm
||| · ||| : x 7→ √

a(x, x). The parallelogram identity applied to ||| · ||| and (2.6) then
shows its uniform convexity on X with modulus of convexity α 7→ γα2/4. Hence, |||·|||
satisfies (A1)–(A2) and so does J . (iv): Without loss of generality, let w = 0. The
function ψ : α 7→ ∫ α

0
ϕ(t)dt is well defined, finite, increasing, convex, and continuous

on R+ [46, Thm. 24.2]. Hence, J = ψ ◦ ‖ · ‖ is convex and continuous, and (A1) is
satisfied. Finally, (A2) is satisfied due to the uniform convexity of J on any closed
ball [54, Thm. 4.1(ii)] and therefore on lev≤J(u)J for any u ∈ S. (v): X is a reflexive

Banach space with norm ‖·‖ : x 7→ (
∫

Ω
‖x(ω)‖pXµ(dω))1/p [20, Thm. 8.20.5]. Moreover,

J is finite, continuous, and convex on X [47, Thm. 22(a)], which gives (A1). As
regards (A2), we claim that J is uniformly convex on X . Indeed, take arbitrarily
(x, y) ∈ X 2. Then it follows from (b) that ϕ(·, x(·)) < +∞ and ϕ(·, y(·)) < +∞ µ-a.e.
Consequently, by virtue of (2.7), for µ almost every ω ∈ Ω, it holds that

ϕ

(
ω,
x(ω) + y(ω)

2

)
≤ ϕ(ω, x(ω)) + ϕ(ω, y(ω))

2
− c0 (‖x(ω)− y(ω)‖X) ,(2.8)
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where, under our assumptions, the function ω 7→ c0(‖x(ω) − y(ω)‖X) is measurable.
Upon integrating (2.8), we obtain

J

(
x+ y

2

)
≤ J(x) + J(y)

2
−
∫

Ω

c0 (‖x(ω)− y(ω)‖X)µ(dω).(2.9)

Now fix ε ∈ R∗+ arbitrarily. Then, since µ(Ω) < +∞ and lim τ→+∞c0(τ)/τp > 0, it
follows from [54, Lem. 4.4] that there exists c ∈ R∗+ depending only on ε such that∫

Ω
c0(‖x(ω)− y(ω)‖X)µ(dω) ≥ c whenever ‖x− y‖ ≥ ε. This proves the claim.
Scenario (ii) is an important practical instance of (i) in which (P) takes the form

of a semi-infinite convex program, as commonly found in numerical applications. In
scenario (iii), since there exists w ∈ X such that (∀x ∈ X )〈x, b〉 = a(x,w) [7, Chap. V],
we can write J : x 7→ a(x−w, x−w)/2−a(w,w)/2. (P) can therefore be looked upon
as the problem of finding the projection of w onto the intersection of the closed convex
sets (Si)i∈I relative to the norm ||| · ||| : x 7→√

a(x, x). Alternatively, since for every
y ∈ X 〈y,∇J(x)〉 = a(y, x)−〈y, b〉 [15, Chap. VII], (2.3) shows that (P) is equivalent
to solving the variational inequality

findx ∈ S =
⋂
i∈I

Si such that (∀x ∈ S) a(x− x, x) ≥ 〈x− x, b〉,(2.10)

which arises in numerous areas of mathematical sciences [1], [7], [15]. Next, scenario
(iv) describes the problem of projecting w onto the intersection of the closed convex
sets (Si)i∈I in a uniformly convex Banach space. It is noted that if J : x 7→ ‖x−w‖2/2,
then ∂J : x 7→ ∆(x − w) [1]. Finally, scenario (v) is of interdisciplinary interest and
covers problems in areas such as stochastic programming, economics, and control
theory; see, e.g., [1], [43], [47]. It should be added that t′ ∈ ∂J(x)⇔ t′(·) ∈ ∂ϕ(·, x(·))
µ — a.e. [47, Thm. 22(c)] and that X is a Hilbert space if X is a Hilbert space and
p = 2.

We now turn to assumption (A3). The motivation for introducing the class of
functions G stems from its ability to capture in the convenient form of functional
inequalities a wide range of convex constraints arising in theoretical and practical
optimization problems. As illustrated below, constraint sets in the form of lower level
sets of quasi-convex functions or of fixed point sets of quasi-nonexpansive operators,
as found for instance in [4], [10], [11], [12], [29], [34], [35], and [51], are included. Let
us also call attention to the fact that (1.2)(ii) implies that lev≤0g is weakly closed for
every g ∈ G.

Proposition 2.2. Let g : X →] − ∞,+∞] be a function such that, for some
w ∈ X , g(w) ≤ 0. Then g ∈ G if one of the conditions below is fulfilled.

(i) lev≤0g is convex and g is weakly lower semicontinuous.
(ii) g is lower semicontinuous and quasi-convex.

(iii) lev≤0g is closed and convex and the constraint “g(x) ≤ 0” is correct [37]:(∀(yn)n≥0 ⊂ X
)

lim ng(yn) ≤ 0⇒ lim nd(yn, lev≤0g) = 0.(2.11)

(iv) g : x 7→ ‖Tx − x‖ is the displacement function of an operator T : X → X
whose fixed point set FixT , {x ∈ X | Tx = x} is convex and such that
T − Id is demiclosed at the origin:

(∀(yn)n≥0 ⊂ X
) {

yn
n
⇀ y

Tyn − yn n→ 0
⇒ y ∈ FixT.(2.12)

These conditions are fulfilled in each of the following cases.
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(a) X is uniformly convex and T is nonexpansive: (∀(x, y) ∈ X 2) ‖Tx−Ty‖
≤ ‖x− y‖.

(b) FixT is closed and convex and, for every sequence (yn)n≥0 ⊂ X , Tyn −
yn

n→ 0 ⇒ lim nd(yn,FixT ) = 0.
(c) T − Id is demiclosed at the origin and there exists η ∈ R∗+ such that

(∀x ∈ X )
(∃z′ ∈ ∆(x− Tx)

)
(∀y ∈ FixT ) 〈x− y, z′〉 ≥ η‖Tx− x‖2.

(2.13)

(d) X is a Hilbert space, T − Id is demiclosed at the origin, and T is quasi-
nonexpansive:(∀(x, y) ∈ X × FixT

) ‖Tx− y‖ ≤ ‖x− y‖.(2.14)

(e) X is a Hilbert space and T is firmly nonexpansive:

(∀(x, y) ∈ X 2
) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(T − Id)x− (T − Id)y‖2.

(2.15)

Proof. (i) Since g is weakly lower semicontinuous, yn
n
⇀ y ⇒ g(y) ≤ lim ng(yn).

Hence (1.2) (ii) holds. (ii)⇒ (i) is immediate. (iii) Since lev≤0g is convex, d(·, lev≤0g)
is convex and Lipschitzian and therefore weakly lower semicontinuous. Accordingly,

yn
n
⇀ y ⇒ d(y, lev≤0g) ≤ lim nd(yn, lev≤0g).(2.16)

Hence, if we further assume lim ng(yn) ≤ 0, (2.11) gives d(y, lev≤0g) = 0; i.e., g(y) ≤ 0
since lev≤0g is closed. (iv) is immediate. (a) is proved in [24, Lem. 3.4 and Thm. 8.4].
(b) follows from (iii). (c): Let

(∀x ∈ X ) Qx =
{
y ∈ X | 〈x− y, z′〉 ≥ η‖Tx− x‖2}(2.17)

(z′ being as in (2.13)) and Q =
⋂
x∈X Qx. Then Q is convex as an intersection of half-

spaces. Let us show FixT = Q. FixT ⊂ Q results at once from (2.13). Conversely,
let x ∈ Q. Then x ∈ Qx and therefore 0 ≥ η‖Tx − x‖2. Thus, Tx = x and, in turn,
Q ⊂ FixT . (d) ⇒ (c): In Hilbert spaces, (2.13) becomes(∀(x, y) ∈ X × FixT

) 〈x− y, x− Tx〉 ≥ η‖Tx− x‖2.(2.18)

The identity 2〈x− y, x− Tx〉 = ‖Tx− x‖2 + ‖x− y‖2 − ‖Tx− y‖2 shows that (2.18)
is equivalent to(∀(x, y) ∈ X × FixT

) ‖Tx− y‖2 ≤ ‖x− y‖2 − (2η − 1)‖Tx− x‖2,(2.19)

which reduces to (2.14) for η = 1/2. (e) ⇒ (c): T is nonexpansive and T − Id is
therefore demiclosed by (a). In addition, (2.15) ⇒ (2.19) with η = 1.

3. Convergence analysis. This section is devoted to establishing the strong
convergence of Algorithm 1.1 under suitable conditions. Our starting point is the
following proposition, which collects some basic properties of the algorithm.

Proposition 3.1. Let (xn)n≥0 be an arbitrary orbit of Algorithm 1.1. Then:
(i) (∀n ∈ N) J(xn) ≤ J(xn+1) ≤ J .

(ii) (xn)n≥0 ⊂ C.
(iii) W(xn)n≥0 6= Ø.
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(iv) (J(xn))n≥0 converges and limn J(xn) ≤ J .
(v) (∃n ∈ N) xn ∈ S ⇒ (∀k ∈ N) xn+k = x.

(vi) W(xn)n≥0 ⊂ S ⇒ xn
n→ x.

(vii) xn+1 − xn n→ 0.

(viii) d(xn, Hn)
n→ 0.

Proof. (i) results from the inclusions (∀n ∈ N)Dn ⊃ Qn ⊃ S. (ii), (iv), and (v)
follow from (i). (ii) ⇒ (iii): It follows from (A1)–(A2) and the reflexivity of X that
C is weakly compact. (vi): Assume W(xn)n≥0 ⊂ S and take x ∈ W(xn)n≥0, say

xnk
k
⇀ x. By virtue of (A1), J is weakly lower semicontinuous and it follows from

(iv) that J(x) ≤ lim kJ(xnk) = limn J(xn) ≤ J . However, x ∈ S and x is the unique
solution to (P). Hence, x = x, W(xn)n≥0 = {x}, and, since C is weakly compact,

(ii) yields xn
n
⇀ x. Repeating the above argument, we obtain J = J(x) ≤ lim nJ(xn)

and, by (iv), J(xn)
n→ J . Since (xn + x)/2

n
⇀ x, the weak lower semicontinuity of J

and (1.1) yield

J ≤ lim nJ

(
xn + x

2

)
≤ lim n

J(xn) + J

2
− lim nc(‖xn − x‖)

= J − lim nc(‖xn − x‖).(3.1)

Hence, c(‖xn−x‖) n→ 0 and, by (A2), xn
n→ x. (vii): For every n ∈ N, (xn, xn+1) ∈ D2

n

and therefore yn = (xn + xn+1)/2 ∈ Dn. Since xn = m(Dn), (1.1) then yields

J(xn) ≤ J(yn) ≤ J(xn) + J(xn+1)

2
− c(‖xn+1 − xn‖).(3.2)

Hence, (iv) implies c(‖xn+1 − xn‖) n→ 0 and, in turn, xn+1 − xn n→ 0. (vii) ⇒ (viii):
(∀n ∈ N)xn+1 ∈ Hn ⇒ ‖xn+1 − xn‖ ≥ d(xn, Hn).

Item (i) above shows that Algorithm 1.1 is an ascent method. On the other hand,
item (vi) guarantees the strong convergence of any orbit to the solution of (P) as long
as each of its weak cluster points satisfies all the constraints. In view of (1.3), for this
condition to hold, the control sequence (In)n≥0 determining the blocks of constraints
activated over the course of the iterations must sweep through the index set I in a
coherent fashion; three suitable control modes will be considered in Definition 3.1.
In addition, the constraint sets (Si)i∈I must be tightly approximated by the cuts
(Hn)n≥0 in a sense that will be made precise in Definition 3.2.

Definition 3.1. Algorithm 1.1 operates under

• admissible control if I is countable and there exist positive integers (Mi)i∈I
such that

(∀(i, n) ∈ I × N) i ∈
n+Mi−1⋃
k=n

Ik;(3.3)

• chaotic control if I is countable and

I = lim nIn ,
⋂
n≥0

⋃
k≥n

Ik;(3.4)
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• coercive control if(
∃(i(n))n≥0 ∈ ×

n≥0
In

)
lim ngi(n)(xn) ≤ 0⇒ lim n sup

i∈I
gi(xn) ≤ 0.(3.5)

In addition, Algorithm 1.1 is serial if (In)n≥0 reduces to a sequence of singletons
({i(n)})n≥0. The above admissibility and coercivity conditions then read

(∀i ∈ I)(∃Mi ∈ N∗)(∀n ∈ N) i ∈ {i(n), . . . , i(n+Mi − 1)}(3.6)

and

lim ngi(n)(xn) ≤ 0⇒ lim n sup
i∈I

gi(xn) ≤ 0,(3.7)

respectively.
The coercive control mode is found in [13] with (∀i ∈ I) gi : x 7→ d(x, Si). The

admissible and chaotic control modes have already been used at various levels of
generality in convex feasibility problems [4], [10], [13], [34], [42].

Definition 3.2. Let (xn)n≥0 be an arbitrary orbit of Algorithm 1.1. Then the
algorithm will be said to be

• tight if, for every i ∈ I and every increasing sequence (nk)k≥0 ⊂ N such that
i ∈ ⋂k≥0 Ink , we have lim kgi(xnk) ≤ 0;

• strongly tight if lim n maxi∈In gi(xn) ≤ 0.
It is clear that strong tightness implies tightness. We show below that, when I is

finite, the distinction between the two notions disappears.
Proposition 3.2. Suppose that I is finite. Then Algorithm 1.1 is tight if and

only if it is strongly tight.
Proof. To show necessity, take an arbitrary orbit (xn)n≥0 and suppose that the

algorithm is not strongly tight, i.e., that ε , lim n maxi∈In gi(xn) > 0. Define a
sequence (i(n))n≥0 ⊂ I by (∀n ∈ N) gi(n)(xn) = maxi∈In gi(xn). Then, since I is finite,
there exists an index i ∈ I and an increasing sequence (nk)k≥0 ⊂ N such that (∀k ∈
N) i(nk) = i and gi(xnk)

k→ ε, in contradiction of the tightness assumption.
We are now ready to state and prove the following strong convergence result.
Theorem 3.1. Let (xn)n≥0 be an arbitrary orbit of Algorithm 1.1 generated

under either of the following conditions:
(i) tightness, I countable, and admissible control;
(ii) strong tightness and coercive control.

Then xn
n→ x.

Proof. By virtue of Proposition 3.1(vi), it suffices to show W(xn)n≥0 ⊂ S. Fix

arbitrarily i ∈ I and x ∈W(xn)n≥0, say xnk
k
⇀ x. Then it is enough to show x ∈ Si,

i.e., that gi(x) ≤ 0. (i): By (3.3), there exist Mi ∈ N∗ and an increasing sequence
(pk)k≥0 ⊂ N such that

(∀k ∈ N) nk ≤ pk ≤ nk +Mi − 1 and i ∈ Ipk .(3.8)

Hence

(∀k ∈ N) ‖xpk − xnk‖ ≤
nk+Mi−2∑
l=nk

‖xl+1 − xl‖(3.9)
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and Proposition 3.1(vii) yields xpk − xnk k→ 0. Consequently, xpk
k
⇀ x. On the other

hand, the tightness condition gives lim kgi(xpk) ≤ 0 and (A3) then yields gi(x) ≤ 0, as
desired. (ii): The strong tightness condition gives lim n maxj∈In gj(xn) ≤ 0. However,
since the control is coercive, we obtain

lim n max
j∈In

gj(xn) ≤ 0⇒ lim ngi(n)(xn) ≤ 0

⇒ lim n sup
j∈I

gj(xn) ≤ 0

⇒ lim kgi(xnk) ≤ 0,(3.10)

where the sequence (i(n))n≥0 is as in (3.5). It then follows from (A3) that gi(x) ≤ 0,
which completes the proof.

We conclude this section by supplying a theoretical condition under which The-
orem 3.1(i) can be extended to the chaotic control mode (3.4).

Proposition 3.3. Suppose that Algorithm 1.1 is tight and that I is countable,
and let (xn)n≥0 be any of its orbits generated under chaotic control. Then, if (xn)n≥0

admits at most one weak cluster point, xn
n→ x.

Proof. It follows from Proposition 3.1(ii) and the weak compactness of C that if

(xn)n≥0 admits at most one weak cluster point, then it converges weakly, say xn
n
⇀ x.

Now, fix i ∈ I arbitrarily. According to Proposition 3.1(vi), it remains to show
gi(x) ≤ 0. By condition (3.4), there exists an increasing sequence (nk)k≥0 ⊂ N such

that i ∈ ⋂k≥0 Ink . In turn, tightness implies lim kgi(xnk) ≤ 0 and, since xnk
k
⇀ x,

(A3) yields gi(x) ≤ 0.
The execution of iteration n of Algorithm 1.1 necessitates the construction of a

cut Hn at Step 1 and of a base Dn+1 at Step 3 (see Definition 1.1). This question is
addressed in the next two sections.

4. Cut construction schemes. In this section, we describe two techniques
to construct cuts for Algorithm 1.1 and provide examples of families of constraint
functions (gi)i∈I that yield tight and strongly tight algorithms in each case.

4.1. Exact-constraint cuts. Here, Algorithm 1.1 is assumed to operate under
serial control, say (∀n ∈ N) In = {i(n)}. In view of Definition 1.1, the following
observation is self-evident.

Proposition 4.1. The set Hn = Si(n) is a cut for Algorithm 1.1 at iteration n.
When it operates under serial control with cuts generated as above, Algorithm 1.1

will be said to be implemented with exact-constraint cuts. We now proceed with some
examples of families (gi)i∈I that yield tight and strongly tight algorithms (see also
Proposition 3.2). In Propositions 4.2 and 4.3, γ is the diameter of C in (A2) and
Q = B(u, 2γ).

Proposition 4.2. Algorithm 1.1 with exact-constraint cuts is tight if, for every
i ∈ I, one of the following conditions holds.

(i) gi is uniformly continuous on Q.
(ii) gi is weakly continuous on Q.

(iii) X = RN and gi is finite and convex.
(iv) gi is the displacement function of an operator Ti : X → X which satisfies

condition (c) (in particular (d) or (e)) in Proposition 2.2(iv) with constant
ηi ∈ R∗+.

Proof. Given an arbitrary orbit (xn)n≥0, Propositions 3.1(viii) and 4.1 give

d(xn, Si(n))
n→ 0. Now take an index i ∈ I and an increasing sequence (nk)k≥0 ⊂ N
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such that, for every k ∈ N, i = i(nk). Then d(xnk , Si)
k→ 0 and, in view of Defini-

tion 3.2, it must be proved that lim kgi(xnk) ≤ 0. (i) is similar to Proposition 4.3(i)
and thus is omitted. (ii)⇒ (i) follows from the weak compactness of Q. (iii)⇒ (i): gi
is Lipschitzian on Q by [46, Thm. 10.4]. (iv): For every k ∈ N, let pi,k be a projection
of xnk onto Si and suppose that (c) in Proposition 2.2(iv) holds with constant ηi ∈ R∗+.

Then, there exists z′k ∈ ∆(xnk−Tixnk) such that ‖Tixnk−xnk‖2 ≤ η−1
i 〈xnk−pi,k, z′k〉.

Consequently, ‖Tixnk−xnk‖2 ≤ η−1
i ‖xnk−pi,k‖·‖z′k‖ = η−1

i d(xnk , Si) ·‖Tixnk−xnk‖
and we conclude gi(xnk) ≤ η−1

i d(xnk , Si).

Proposition 4.3. Algorithm 1.1 with exact-constraint cuts is strongly tight if
one of the following conditions holds.

(i) (gi)i∈I is uniformly equicontinuous on Q.
(ii) (gi)i∈I is weakly equicontinuous on Q: For every (x, ε) ∈ Q×R∗+, there exists

a weak neighborhood V of x such that (∀y ∈ V )(∀i ∈ I) |gi(x)− gi(y)| ≤ ε.
(iii) (gi)i∈I is a family of affine functions associated with a family of pointwise

bounded continuous linear functions.
(iv) X = RN and (gi)i∈I is a family of pointwise bounded convex functions.
(v) (gi)i∈I is a family of displacement functions of operators (Ti)i∈I as in Propo-

sition 4.2(iv) with η , infi∈I ηi > 0 (in particular, each Ti satisfies condition
(d) or (e) in Proposition 2.2(iv)).

Proof. Take an arbitrary orbit (xn)n≥0. Then, as above, d(xn, Si(n))
n→ 0 and,

in view of Definition 3.2, it must be proved that lim ngi(n)(xn) ≤ 0. (i): Fix ε ∈
R∗+, extract a subsequence (xnk)k≥0 such that (gi(nk)(xnk))k≥0 ⊂]0,+∞] (if no such
subsequence exists, the proof is complete), and let pk be a projection of xnk onto
Si(nk). Since u ∈ Si(nk) and (xnk , u) ∈ C2, we have

‖pk − u‖ ≤ ‖xnk − u‖+ ‖xnk − pk‖ ≤ 2‖xnk − u‖ ≤ 2γ(4.1)

and, in turn, pk ∈ B(u, 2γ) = Q. Next, as xnk − pk k→ 0 and ((xnk , pk))k≥0 ⊂ Q2, the
uniform equicontinuity of (gi)i∈I on Q gives, for k sufficiently large, supi∈I |gi(xnk)−
gi(pk)| ≤ ε and, therefore, 0 < gi(nk)(xnk) ≤ ε. Since ε can be arbitrarily small, strong
tightness ensues. (ii)⇒ (i) follows from the weak compactness of Q. (iii)⇒ (i): (∀i ∈
I)gi : x 7→ 〈x, z′i〉+αi, where (z′i, αi) ∈ X ′×R and (∀x ∈ X ) supi∈I |〈x, z′i〉| < +∞. The

uniform boundedness principle [1, Thm. 1.1.4] asserts that ζ , supi∈I ‖z′i‖ < +∞ and,
therefore, that (gi)i∈I is equi-Lipschitzian with constant ζ. (iv)⇒ (i): (gi)i∈I is equi-
Lipschitzian on Q by [46, Th. 10.6]. (v): Following the proof of Proposition 4.2(iv),
we obtain (∀n ∈ N) gi(n)(xn) ≤ η−1d(xn, Si(n)).

It should be remarked that in Hilbert spaces, projectors are nonexpansive [24,
Chap. 12]. Accordingly, the inequalities ‖pk − u‖ ≤ ‖xnk − u‖ ≤ γ can be used in
lieu of (4.1), and one can take Q = B(u, γ) in Propositions 4.2 and 4.3.

Next, we recover the framework proposed by Laurent and Martinet in [35].

Example 4.1. Under the strong tightness condition, Algorithm 1.1 implemented
with coercive control and exact-constraint cuts contains the setting of [35]. There, (P)
is investigated under assumptions (A1)–(A2) with E = X and the special instance
of (A3) when the functions (gi)i∈I are lower semicontinuous, convex, and satisfy the
condition

(∃Ω ∈ R∗+)
(∀(x, i) ∈ C × I) gi(x) ≤ Ωd(x, Si).(4.2)
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Furthermore, the serial control rule

(∀n ∈ N) gi(n)(xn) ≥ θ sup
i∈I

gi(xn)− ρn, where 0 < θ ≤ 1 and 0 ≤ ρn n→ 0(4.3)

is in force. Since d(xn, Si(n))
n→ 0, (4.2) ⇒ lim ngi(n)(xn) ≤ 0, which shows strong

tightness. On the other hand, since (4.3) ⇒ (3.7), the control is coercive. Hence, [35,
Thm. 1] is a corollary of Theorem 3.1(ii).

4.2. Surrogate cuts. In this section, the cut Hn at iteration n is constructed
as a surrogate half-space (this terminology appears in [23]). The basic idea is, for
every i ∈ In, to “linearize” gi by approximating it by a continuous affine function
gi,n (determined here geometrically via a projection onto a simple superset of Si). A
surrogate function g̃n is then formed as a convex combination of the family (gi,n)i∈In ,
and the cut is defined as Hn = lev≤γn g̃n for some γn ∈ R+. We formally define
surrogate cuts as follows.

Proposition 4.4. Fix (δ, ε) ∈]0, 1[2 and let

Hn =

{
x ∈ X |

∑
i∈In

wi,n〈x− pi,n, q′i,n〉 ≤ γn
}
,(4.4)

where the following conditions hold.
(C1) For every i ∈ In, pi,n is a projection of xn onto a set Si,n ∈ C(Si) and

q′i,n ∈ ∆(xn − pi,n) satisfies

(∀x ∈ Si,n) 〈x− pi,n, q′i,n〉 ≤ 0.(4.5)

(C2) (wi,n)i∈In ⊂ [0, 1],
∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(C3) 0 ≤ γn ≤ (1− ε)∑i∈In wi,nd(xn, Si,n)2.
Then Hn is a cut for Algorithm 1.1 at iteration n.

Proof. Let us show that (1.3) holds. First, it is clear that Hn is closed and convex.
Second, (C1) yields Si ⊂ Si,n ⊂ {x ∈ X | 〈x− pi,n, q′i,n〉 ≤ 0} for every i ∈ In. Hence,
by virtue of (C2) and (C3), Hn ∈ C(

⋂
i∈In Si).

The existence of (q′i,n)i∈In in (C1) is guaranteed by (2.4), while (2.1) yields

(∀i ∈ In) ‖q′i,n‖2 = d(xn, Si,n)2 = 〈xn − pi,n, q′i,n〉.(4.6)

On the other hand, (pi,n)i∈In and (q′i,n)i∈In are uniquely defined if X and X ′ are
strictly convex, respectively [1]. In particular, if X is a Hilbert space, one can identify
q′i,n = xn − pi,n hereafter, and (4.4) becomes

Hn =

{
x ∈ X |

∑
i∈In

wi,n〈x− pi,n, xn − pi,n〉 ≤ γn
}
.(4.7)
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Surrogate half-spaces have already been used—explicitly or implicitly—for solving
convex feasibility problems in Hilbert spaces. Thus, in the methods of [10], [12], [13],
[22], [32], [34], [40], [42], [45], the update xn+1 is obtained by (under/over) projecting
the current iterate xn onto a half-space whose general form is (4.7). This point will
be reexamined in section 7.2.

An important feature of Algorithm 1.1 with surrogate cuts is that it does not
require the ability to enforce exactly a constraint “gi(x) ≤ 0” selected at Step 1 but
merely the ability to move the current iterate xn toward Si by means of a projection
onto a superset Si,n. A wide range of approximating supersets are acceptable, and
the construction of Si,n can be adapted to the nature of the function gi. In the two
examples below, Si,n is constructed as an affine half-space and the expressions for
pi,n, q′i,n, and d(xn, Si,n) are derived from the following facts.

Lemma 4.1 (see [48, Lem. I.1.2]). Given a nonzero functional z′ ∈ X ′ and α ∈ R,
consider the closed affine half-space A = {y ∈ X | 〈y, z′〉 ≤ α}. Take x /∈ A and let
p = x + (α − 〈x, z′〉)z/‖z′‖2, where z ∈ ∆−1(z′). Then d(x,A) = (〈x, z′〉 − α)/‖z′‖
and p is a projection of x onto A.

Example 4.2. The function gi is convex and lower semicontinuous, and subdif-
ferentiable on C. Then, given t′i,n ∈ ∂gi(xn), the function x 7→ 〈x− xn, t′i,n〉+ gi(xn)
minorizes gi by (2.2). Thus

Si,n = {x ∈ X | 〈xn − x, t′i,n〉 ≥ gi(xn)}(4.8)

lies in C(Si). If xn /∈ Si, then pi,n = xn− gi(xn)ti,n/‖t′i,n‖2, q′i,n = gi(xn)t′i,n/‖t′i,n‖2,

and d(xn, Si,n) = gi(xn)/‖t′i,n‖, where ti,n ∈ ∆−1(t′i,n).

Approximations of type (4.8) go back to [31] and have been used extensively; see,
e.g., [4], [12], [29], [32], [34].

Example 4.3. The function gi is the displacement function of an operator Ti as
in Proposition 2.2(iv)(c) with constant ηi ∈ R∗+. Hence Si = FixTi and, for some
z′i,n ∈ ∆(xn − Tixn), we have 〈xn − x, z′i,n〉 ≥ ηi‖Tixn − xn‖2 for every x ∈ Si.
Therefore

Si,n =
{
x ∈ X | 〈x− xn − ηi(Tixn − xn), z′i,n〉 ≤ 0

}
(4.9)

lies in C(Si). Furthermore, pi,n = xn + ηi(Tixn−xn), q′i,n = ηiz
′
i,n, and d(xn, Si,n) =

ηi‖Tixn − xn‖.
Further examples can be derived from Example 4.3 by considering the special

cases (d) or (e) of (c) in Proposition 2.2(iv). For instance, if X is a Hilbert space and
Ti is firmly nonexpansive, (4.9) reads as

Si,n = {x ∈ X | 〈x− Tixn, xn − Tixn〉 ≤ 0}.(4.10)

This particular approximation appears implicitly in [4] and [10], and explicitly in [34].

We preface our study of the tightness of Algorithm 1.1 with surrogate cuts with
two basic facts.
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Proposition 4.5. (∀n ∈ N)
∑
i∈In wi,nq

′
i,n = 0⇔ xn ∈

⋂
i∈In Si,n ⇔ xn ∈ Hn.

Proof. Fix (n, x) ∈ N× S. Then (C2), (4.6), and (4.5) imply

δmax
i∈In

d(xn, Si,n)2 ≤
∑
i∈In

wi,nd(xn, Si,n)2 =
∑
i∈In

wi,n〈xn − pi,n, q′i,n〉

=
∑
i∈In

wi,n〈xn − x, q′i,n〉+
∑
i∈In

wi,n〈x− pi,n, q′i,n〉

≤
〈
xn − x,

∑
i∈In

wi,nq
′
i,n

〉
.(4.11)

Hence,
∑
i∈In wi,nq

′
i,n = 0 ⇒ maxi∈In d(xn, Si,n)2 = 0 ⇒ xn ∈

⋂
i∈In Si,n. The three

other implications are easily obtained.
Proposition 4.6. maxi∈In d(xn, Si,n)

n→ 0.
Proof. Fix n ∈ N and suppose xn /∈ ⋂i∈In Si,n. Then Proposition 4.5, the

convexity of ‖ · ‖, (C2), and (4.6) yield 0 6= ‖∑i∈In wi,nq
′
i,n‖ ≤

∑
i∈In wi,n‖q′i,n‖ ≤

maxi∈In d(xn, Si,n). Consequently, we derive from (4.4), Lemma 4.1, (4.6), and (4.11)
that

d(xn, Hn) =

∑
i∈In wi,n〈xn − pi,n, q′i,n〉 − γn

‖∑i∈In wi,nq
′
i,n‖

≥ ε
∑
i∈In wi,nd(xn, Si,n)2

maxi∈In d(xn, Si,n)

≥ δεmax
i∈In

d(xn, Si,n).(4.12)

On the other hand, if xn ∈
⋂
i∈In Si,n, then (4.12) is immediate. Since d(xn, Hn)

n→ 0
by Proposition 3.1(viii), the assertion is proved.

We observe in passing that when Algorithm 1.1 is implemented with surrogate
cuts and satisfies the tightness condition then, for every index i ∈ I and every suborbit

(xnk)k≥0 such that i ∈ ⋂k≥0 Ink , it follows from Proposition 4.6 that d(xnk , Si,nk)
k→ 0

and from (A3) that xnk
k
⇀ x ⇒ x ∈ Si. This is essentially the focusing property

introduced in [4].
We wind up this section by furnishing convenient criteria for tightness and strong

tightness.
Proposition 4.7. Algorithm 1.1 with surrogate cuts is tight if, for every i ∈ I

and every suborbit (xnk)k≥0 such that i ∈ ⋂k≥0 Ink , one of the following conditions
is fulfilled.

(i) It holds that

d
(
xnk , Si,nk

) k→ 0 ⇒ d
(
xnk , Si

) k→ 0(4.13)

and any of conditions (i)–(iii) in Proposition 4.2 is satisfied.
(ii) gi is as in Example 4.2 with the additional assumption that its subdifferential

is bounded on C, i.e., that(∃ζi ∈ R∗+)(∀x ∈ C) ∂gi(x) ⊂ B(0, ζi),(4.14)

and the sets (Si,nk)k≥0 are as in (4.8).
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(iii) gi is as in Example 4.3 and the sets (Si,nk)k≥0 are as in (4.9).
Proof. Take an arbitrary orbit (xn)n≥0. Proposition 4.6 asserts that maxi∈In

d(xn, Si,n)
n→ 0. Hence, given i ∈ I and an increasing sequence (nk)k≥0 ⊂ N such

that i ∈ ⋂k≥0 Ink , we have d(xnk , Si,nk)
k→ 0 and must show lim kgi(xnk) ≤ 0.

(i): (4.13) yields d(xnk , Si)
k→ 0. However, under condition (i) (and in particular

condition (ii) or (iii)) of Proposition 4.2, d(xnk , Si)
k→ 0 ⇒ lim kgi(xnk) ≤ 0. (ii):

(∀k ∈ N) max{0, gi(xnk)} = ‖t′i,nk‖ · d(xnk , Si,nk) ≤ ζid(xnk , Si,nk) by (4.14). (iii):

(∀k ∈ N) gi(xnk) = ‖Tixnk − xnk‖ = η−1
i d(xnk , Si,nk).

Proposition 4.8. Algorithm 1.1 with surrogate cuts is strongly tight if one of
the following conditions holds.

(i) For any of its orbits (xn)n≥0, we have

max
i∈In

d(xn, Si,n)
n→ 0 ⇒ max

i∈In
d(xn, Si)

n→ 0,(4.15)

and any of conditions (i)–(iv) in Proposition 4.3 is satisfied.
(ii) (gi)i∈I is as in Example 4.2 with the additional assumption that the subdif-

ferentials are equibounded on C, i.e., that(∃ζ ∈ R∗+)(∀i ∈ I)(∀x ∈ C) ∂gi(x) ⊂ B(0, ζ),(4.16)

and the sets ((Si,n)i∈In)n≥0 are as in (4.8).

(iii) (gi)i∈I is as in Example 4.3, with the additional assumption that η , infi∈I ηi
> 0, and the sets ((Si,n)i∈In)n≥0 are as in (4.9).

Proof. Take an arbitrary orbit (xn)n≥0. Then Proposition 4.6 entails maxi∈In
d(xn, Si,n)

n→ 0. Let us show lim n maxi∈In gi(xn) ≤ 0. (i): Define a sequence

(i(n))n≥0 ⊂ I by (∀n ∈ N) gi(n)(xn) = maxi∈In gi(xn). Then (4.15) ⇒ d(xn, Si(n))
n→

0. However, under condition (i) (and in particular any of conditions (ii)–(iv)) of

Proposition 4.3, d(xn, Si(n))
n→ 0 ⇒ lim ngi(n)(xn) ≤ 0, as desired. (ii) and (iii): Fix

n ∈ N. Following the proof of Proposition 4.7(ii) and (iii), we obtain, respectively,
maxi∈In gi(xn) ≤ ζ maxi∈In d(xn, Si,n) and maxi∈In gi(xn) = maxi∈In ‖Tixn − xn‖
≤ η−1 maxi∈In d(xn, Si,n).

It is readily noted that (4.13) and (4.15) are satisfied in particular when exact
projections onto the constraint sets are used instead of projections onto approximating
supersets.

4.3. Comments. When compared with exact-constraint cuts, surrogate cuts
display three advantages. First, they yield versatile block-iterative algorithms that
offer great latitude in the selection of the constraints retained at each iteration. Since
the pairs (pi,n, q

′
i,n)i∈In can be computed simultaneously prior to their aggregation

in (4.4), surrogate cuts therefore allow for flexible parallel implementations that can
fully take advantage of multiprocessor systems. Second, the processing of a constraint
does not require its exact enforcement. Rather, each constraint can be “linearized” by
means of a projection onto an outer approximation to the corresponding constraint
set. This procedure, illustrated in Examples 4.2 and 4.3, significantly lightens the
computational burden of the algorithm when nonaffine constraints are present. Third,
surrogate cuts are capable of producing deep cuts, as reported in various theoretical
and numerical studies, e.g., [11], [12], [32], [44], [45]. In this connection, the problem
of finding optimal weights (wi,n)i∈In in terms of maximizing d(xn, Hn) is addressed
in [32] and [33].
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5. Base construction schemes. Two approaches to the construction of bases
for Algorithm 1.1 are described in this section.

5.1. Cumulative bases. Steps 2 and 3 of Algorithm 1.1 suggest an obvious
candidate for a base at iteration n, namely, Dn+1 = Qn = E ∩Dn ∩Hn. This base
can be rewritten as

Dn+1 = E ∩
n⋂
k=0

Hk.(5.1)

In other words, the current base is the intersection of the initial base E with all the
previous cuts. This principle is the basis for the cutting plane methods originally
proposed in [8] and [31], and reconsidered from a more general viewpoint in [37]. As
noted in section 1, a drawback of (5.1) is that the number of cuts accumulated to
define the bases grows rapidly as the iterations proceed. In the next proposition,
it is pointed out that in the present framework this phenomenon can be mitigated
by discarding all the cuts that are inactive at iteration n in the construction of the
subsequent bases (Dn+k)k≥1.

Proposition 5.1. Let K−1 = Ø and, for every n ∈ N, An = {k ∈ Kn−1 ∪ {n} |
xn+1 ∈ bdHk}. Then the set

Dn+1 = E ∩
⋂
k∈Kn

Hk, where An ⊂ Kn ⊂ Kn−1 ∪ {n}(5.2)

is a base for Algorithm 1.1 at iteration n.

Proof. We need to check that (1.4) holds for Dn+1 as in (5.2). First, as E ∈ C(S)
and, by (1.3), (Hk)k∈Kn ⊂ C(S), (5.2) implies Dn+1 ∈ C(S). Next, to show xn+1 =
m(Dn+1), note that xn+1 = m(Qn) and Qn = E ∩Dn ∩Hn = E ∩⋂k∈Kn−1∪{n}Hk =

Dn+1∩Bn, where Bn =
⋂
k∈(Kn−1∪{n})rKn Hk. However, it follows from the definition

of An and the inclusion An ⊂ Kn that xn+1 ∈ B◦n and therefore that Bn is inactive at
xn+1. Accordingly, xn+1 = m(Dn+1 ∩Bn) = m(Dn+1). The proof is complete.

In particular, if at every iteration Kn = Kn−1∪{n}, then all the cuts are retained
and (5.2) relapses to (5.1). At the other end of the spectrum, the simplest bases are
obtained by discarding all the inactive cuts, i.e., by taking Kn = An at every iteration.

5.2. Instantaneous bases. The construction of Dn+1 described here was first
proposed for quadratic forms in Hilbert spaces by Haugazeau in [26] and extended to
the present setting in [35].

Proposition 5.2. Suppose that:

(A4) There exists a point v ∈ S ∩ dom J at which J is continuous.

Then, given t′n+1 ∈ ∂J(xn+1) such that (∀x ∈ Qn)〈xn+1 − x, t′n+1〉 ≤ 0, the set

Dn+1 =
{
x ∈ X | 〈xn+1 − x, t′n+1〉 ≤ 0

}
(5.3)

is a base for Algorithm 1.1 at iteration n.

Proof. Since S ⊂ Qn, (A4) asserts that J is continuous at v ∈ Qn ∩ dom J ,
whence, as xn+1 = m(Qn), the existence of t′n+1 is guaranteed by (2.3). Moreover,
the inclusion Qn ⊂ Dn+1 shows that Dn+1 ∈ C(S). Finally, for A = Dn+1, (2.3)
yields xn+1 = m(Dn+1). We have thus established (1.4).
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If t′n+1 is the zero functional (which may happen only when xn+1 = m(X )), then
Dn+1 = X . On the other hand, if the Gâteaux-derivative, ∇J(xn+1), of J at xn+1

exists, then

Dn+1 = {x ∈ X | 〈xn+1 − x,∇J(xn+1)〉 ≤ 0}.(5.4)

5.3. Comments. An advantage of cumulative bases is their wide applicability.
However, they lead to increasingly complex outer approximations as the algorithm
progresses. A partial remedy to this situation is to systematically discard all the
inactive cuts. One should, however, beware of its potential side-effect, namely, slower
convergence. By contrast, instantaneous bases are very attractive, for they take the
form of half-spaces under the relatively mild assumption (A4). Their efficacy can,
however, be limited by the search for an acceptable subgradient in (5.3). Of course,
this limitation vanishes altogether when J is Gâteaux-differentiable on C, the base
being then explicitly given by (5.4).

6. Examples. The analysis of the preceding sections gives rise to four general
realizations of Algorithm 1.1 according to whether one selects, on the one hand, exact-
constraint or surrogate cuts and, on the other hand, cumulative or instantaneous
bases. In this section, these four realizations are presented and the theorems stating
their strong convergence to the solution x of (P) under the standing assumptions
(A1)–(A3) are given. A variety of outer approximation methods are exhibited as
special cases and their convergence is deduced from the main theorems. Although we
have restricted ourselves to known methods, it is clear that further convergence results
can be generated by considering alternative schemes subsumed by Algorithms 6.1–6.4
below.

6.1. Exact-constraint cuts and cumulative bases. If the cuts are generated
as in Proposition 4.1 and the bases as in Proposition 5.1, Algorithm 1.1 reads as
follows.

Algorithm 6.1. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Set D0 = E, x0 = m(D0), K−1 = Ø, and n = 0.
Step 1. Take i(n) ∈ I.
Step 2. Set xn+1 = m(Dn ∩ Si(n)) and An = {k ∈ Kn−1 ∪ {n} | xn+1 ∈ bdSi(k)}.
Step 3. Take An ⊂ Kn ⊂ Kn−1 ∪ {n} and set Dn+1 = E ∩⋂k∈Kn Si(k).
Step 4. Set n = n+ 1 and go to Step 1.

The convergence result below is a direct application of Theorem 3.1.
Theorem 6.1. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.1 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

Example 6.1 (see [5, Thm. 2.4]). In Algorithm 6.1, X = RN , E is bounded, J
is finite and strictly convex, I is a compact metric space, (gi)i∈I is a family of finite
convex functions such that (i, x) 7→ gi(x) is continuous on I ×X , Kn = An at Step 3,
and the most violated constraint control mode

(∀n ∈ N) gi(n)(xn) = max
i∈I

gi(xn)(6.1)

is in force. Then xn
n→ x.
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Proof. The conditions of Proposition 2.1(ii)(b) are fulfilled, and (A1)–(A2) are
therefore satisfied. In addition, it follows from Proposition 2.2(ii) that (A3) is sat-
isfied. For every x ∈ X , the continuity of i 7→ gi(x) on the compact space I yields
supi∈I |gi(x)| < +∞. Proposition 4.3(iv) then ensures the strong tightness of the
algorithm, while (6.1) is a special instance of the coercive control mode (3.7). The
claim is therefore a consequence of Theorem 6.1(ii).

Examples 6.2 and 6.3 below are, respectively, infinite-dimensional formulations
of Kelley’s basic cutting plane algorithm [31] and of the Kaplan–Veinott supporting
hyperplane algorithm [30], [52]. These algorithms were already shown in [35] to be
special instances of the framework described in Example 4.1. The problem under
consideration is to find the minimizer x of a function J : X →]−∞,+∞] over a closed
convex set S under assumptions (A1)–(A2). By expressing S as a suitable intersection
of half-spaces (Si)i∈I , this problem will be recast in the form of (P).

Example 6.2. Suppose that S = lev≤0g, where g : X →] −∞,+∞] is a lower
semicontinuous convex function. Let E be a polyhedron and suppose that there exists
ζ ∈ R∗+ such that, for every x ∈ C, ∂g(x) ⊂ B(0, ζ). Let x0 = m(E) and define
(xn)n≥0 by the recursion

(∀n ∈ N) xn+1 = m

(
E ∩

n⋂
k=0

{x ∈ X | 〈xk − x, t′k〉 ≥ g(xk)}
)
, where t′n ∈ ∂g(xn).

(6.2)

Then xn
n→ x.

Proof. Let I = {(y, t′) ∈ X × X ′ | t′ ∈ ∂g(y)} be the graph of ∂g. For every
i = (y, t′) ∈ I, the continuous affine function gi : x 7→ 〈x− y, t′〉+ g(y) minorizes g by
virtue of (2.2) with gi(y) = g(y) and it defines a closed affine half-space Si = lev≤0gi.
We can then write S =

⋂
i∈I Si. Since at iteration n ∈ N the function i 7→ gi(xn)

is maximized for i(n) = (xn, t
′
n) where t′n ∈ ∂g(xn), (6.2) appears as a particular

realization of Algorithm 6.1 with Kn = Kn−1 ∪ {n} at Step 3 and control rule (6.1).
The control is therefore coercive since (6.1)⇒ (3.7). Moreover, if xn /∈ S, gi(n)(xn) =
g(xn) = ‖t′n‖ · d(xn, Si(n)) ≤ ζd(xn, Si(n)). However, Proposition 3.1(viii) states that

d(xn, Si(n))
n→ 0. Thus, lim ngi(n)(xn) ≤ 0 and the algorithm is strongly tight. The

announced result then follows from Theorem 6.1(ii).
Example 6.3. Suppose that X is a Hilbert space, that S is bounded with S◦ 6= Ø,

and that E is a polyhedron. Let x0 = m(E) and w ∈ S◦, and define (xn)n≥0 by the
recursion

(∀n ∈ N) xn+1 = m

(
E ∩

n⋂
k=0

Hk

)
,(6.3)

where Hn ∈ C(S) is either the whole space X or an affine half-space whose boundary
supports S at the point yn ∈ bdS ∩ [xn, w], according to whether xn lies in S or not.

Then xn
n→ x.

Proof. Let I = {i ∈ X | ‖i‖ = 1} be the unit sphere in X and σ : i 7→ supx∈S〈x, i〉
the support function of S. For every i ∈ I, define a closed affine half-space Si =
lev≤0gi, where gi : x 7→ 〈x, i〉 − σ(i). Then S =

⋂
i∈I Si. By assumption, B(w, γ) ⊂ S

for some γ ∈ R∗+. Now suppose xn /∈ S and let pn be the projection of xn onto
bdHn 3 yn. Then bdHn = {y ∈ X | 〈y − yn, pn − xn〉 = 0} and d(w,bdHn) =
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〈w−yn, pn−xn〉/‖pn−xn‖. However, yn ∈ [xn, w] and therefore w−yn = αn(yn−xn),
where αn = ‖w−yn‖/‖xn−yn‖. Hence, d(w,bdHn) = αn〈yn−xn, pn−xn〉/‖pn−xn‖
= αnd(xn, Hn). Consequently,

(∀i ∈ I) d(xn, Hn) =
d(w,bdHn)

‖w − yn‖ · ‖xn − yn‖ ≥ ηd(xn, Si),(6.4)

where η = γ/ supy∈bdS ‖w − y‖ > 0. In addition, for every i ∈ I, xn /∈ Si ⇒
d(xn, Si) = gi(xn). Hence, gi(n)(xn) ≥ η supi∈I gi(xn), where i(n) ∈ I and Si(n) = Hn,
from which it follows that (6.3) is a particular realization of Algorithm 6.1 with
Kn = Kn−1 ∪ {n} at Step 3 and coercive control rule (3.7). Since the affine fam-
ily (gi)i∈I is equi-Lipschitzian on X with constant 1, strong tightness follows from

Proposition 4.3(i) and Theorem 6.1(ii) yields xn
n→ x.

6.2. Exact-constraint cuts and instantaneous bases. Algorithm 6.2 below
is derived from Algorithm 1.1 by coupling the cuts of Proposition 4.1 together with
the bases of Proposition 5.2.

Algorithm 6.2. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Set D0 = E, x0 = m(D0), and n = 0.
Step 1. Take i(n) ∈ I.
Step 2. Set xn+1 = m(E ∩Dn ∩ Si(n)).
Step 3. Take t′n+1 ∈ ∂J(xn+1) such that (∀x ∈ E ∩Dn ∩ Si(n)) 〈xn+1 − x, t′n+1〉 ≤ 0

and set Dn+1 = {x ∈ X | 〈xn+1 − x, t′n+1〉 ≤ 0}.
Step 4. Set n = n+ 1 and go to Step 1.

Convergence follows at once from Theorem 3.1.
Theorem 6.2. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.2 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

Example 6.4 (see [26, Thm. 2]). In Algorithm 6.2, X is a Hilbert space, E = X ,
J is a coercive quadratic form, I = {0, . . . ,M − 1} is finite, (∀i ∈ I) gi : x 7→ d(x, Si),
and the periodic control mode

(∀n ∈ N) i(n) = n (moduloM),(6.5)

is in force. Then xn
n→ x.

Proof. The conditions of Proposition 2.1(iii) are satisfied and, consequently, so
are (A1) and (A2). In addition, (A3) is secured by Proposition 2.2(ii) since (gi)i∈I is
a family of continuous and—by the convexity of the sets (Si)i∈I—convex functions.

In addition, it follows from Proposition 3.1(viii) that gi(n)(xn) = d(xn, Si(n))
n→ 0

and therefore that the algorithm is tight. Finally, since (6.5) ⇒ (3.6), the control is
admissible. Hence, the assertion follows from Theorem 6.2(i).

Example 6.5 (see [41]). In Algorithm 6.2, X is a Hilbert space, E = X , J is
a coercive quadratic form, I is a compact metric space, (gi)i∈I is a family of affine
functions such that (i, x) 7→ gi(x) is continuous on I × X , and the most violated

constraint control mode (6.1) is in force. Then xn
n→ x.

Proof. (A1)–(A2) hold by Proposition 2.1(iii). Now fix i ∈ I. Then gi : x 7→
〈x, zi〉 + αi, where zi ∈ X and αi ∈ R, and (A3) holds. For every x ∈ X , the conti-
nuity of i 7→ 〈x, zi〉 on the compact space I implies supi∈I |〈x, zi〉| < +∞. Therefore,
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the algorithm is strongly tight by Proposition 4.3(iii) and, since (6.1) ⇒ (3.7), it op-
erates under coercive control. The desired conclusion is reached by invoking Theorem
6.2(ii).

Example 6.6 (see [39]). In Algorithm 6.2, X = RN , J is finite and strictly
convex, E is bounded, J is strongly convex (i.e., c : τ 7→ κτ2 with κ ∈ R∗+ in (A2)
[36]) and differentiable on E, I = {0, . . . ,M − 1} is finite, (∀i ∈ I) gi : x 7→ d(x, Si),
and either of the following conditions is fulfilled: (i) the periodic control mode (6.5)
is in force; or (ii) the most violated constraint control mode (6.1) is in force. Then

xn
n→ x.
Proof. The conditions of Proposition 2.1(ii)(b)—and therefore (A1)–(A2)—hold.

As in Example 6.4, (A3) also holds and the algorithm is (strongly) tight. Hence, (i)
and (ii) follow from Theorem 6.2(i) and (ii), respectively.

6.3. Surrogate cuts and cumulative bases. Algorithm 1.1 is implemented
with the cuts of Proposition 4.4 and the bases of Proposition 5.1.

Algorithm 6.3. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Take (δ, ε) ∈]0, 1[2 and set D0 = E, x0 = m(D0), K−1 = Ø, and n = 0.
Step 1. Take a finite index set Ø 6= In ⊂ I and set Hn = {x ∈ X | ∑i∈In wi,n〈x −

pi,n, q
′
i,n〉 ≤ γn}, where

(C1) For every i ∈ In, pi,n is a projection of xn onto a set Si,n ∈ C(Si) and
q′i,n ∈ ∆(xn − pi,n) is such that (∀x ∈ Si,n) 〈x− pi,n, q′i,n〉 ≤ 0.

(C2) (wi,n)i∈In ⊂ [0, 1],
∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(C3) 0 ≤ γn ≤ (1− ε)∑i∈In wi,nd(xn, Si,n)2.
Step 2. Set xn+1 = m(Dn ∩Hn) and An = {k ∈ Kn−1 ∪ {n} | xn+1 ∈ bdHk}.
Step 3. Take An ⊂ Kn ⊂ Kn−1 ∪ {n} and set Dn+1 = E ∩⋂k∈Kn Hk.
Step 4. Set n = n+ 1 and go to Step 1.

Theorem 3.1 now reads as follows.
Theorem 6.3. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.3 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

It is noteworthy that Kelley’s basic algorithm, presented in Example 6.2 as a
special case of Algorithm 6.1, can also be viewed as a special case of Algorithm 6.3
with a single constraint set and cuts as in (4.8). Along the same lines, we present
below a formulation of Kelley’s algorithm with a finite number of constraints [31]
under assumptions (A1)–(A2).

Example 6.7. In Algorithm 6.3, I is finite, (gi)i∈I is a family of finite continuous
convex functions satisfying (4.16), the approximations (4.8) are used, and the most

violated constraint control mode (6.1) is in force. Then xn
n→ x.

Proof. Proposition 4.8(ii) asserts that this particular realization of Algorithm
6.3 is strongly tight. Thus, since the control is coercive, the result follows from
Theorem 6.3(ii).

6.4. Surrogate cuts and instantaneous bases. The fourth implementation
of Algorithm 1.1 is obtained by generating the cuts as in Proposition 4.4 and the
bases as in Proposition 5.2.
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Algorithm 6.4. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Take (δ, ε) ∈]0, 1[2 and set D0 = E, x0 = m(D0), and n = 0.
Step 1. Take a finite index set Ø 6= In ⊂ I and set Hn = {x ∈ X | ∑i∈In wi,n〈x −

pi,n, q
′
i,n〉 ≤ γn}, where

(C1) For every i ∈ In, pi,n is a projection of xn onto a set Si,n ∈ C(Si) and
q′i,n ∈ ∆(xn − pi,n) is such that (∀x ∈ Si,n) 〈x− pi,n, q′i,n〉 ≤ 0.

(C2) (wi,n)i∈In ⊂ [0, 1],
∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(C3) 0 ≤ γn ≤ (1− ε)∑i∈In wi,nd(xn, Si,n)2.
Step 2. Set xn+1 = m(E ∩Dn ∩Hn).
Step 3. Take t′n+1 ∈ ∂J(xn+1) such that (∀x ∈ E ∩ Dn ∩ Hn)〈xn+1 − x, t′n+1〉 ≤ 0

and set Dn+1 = {x ∈ X | 〈xn+1 − x, t′n+1〉 ≤ 0}.
Step 4. Set n = n+ 1 and go to Step 1.

The convergence conditions below are furnished by Theorem 3.1.
Theorem 6.4. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.4 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

Example 6.8. In Algorithm 6.4, X is a Hilbert space, I is finite, J : x 7→ ‖x−
w‖2/2 where w ∈ X , E = X , (∀i ∈ I) gi : x 7→ d(x, Si), Si,n = Si in (C1), γn = 0 in
(C3), x0 = w, and one of the following conditions is fulfilled:

(i) [27, Thm. 3-2] The periodic control mode (6.5) is in force.
(ii) [44, Thm. V.1] The static control mode

(∀n ∈ N) In = I(6.6)

is in force and (∀i ∈ I) wi,n = 1/cardI in (C2).
(iii) [14] The control mode

(∀n ∈ N) In =
{
i ∈ I | d(xn, Si) = max

j∈I
d(xn, Sj)

}
(6.7)

is in force and (wi,n)i∈In ⊂]0, 1] in (C2).

Then xn
n→ x.

Proof. First, the above setting fits into that of Proposition 2.1(iii), and therefore
(A1)–(A2) hold. In addition, as in Example 6.4, (A3) holds. Furthermore, Proposi-

tion 4.6 yields maxi∈In gi(xn) = maxi∈In d(xn, Si,n)
n→ 0, which establishes the strong

tightness of this implementation of Algorithm 6.4. Accordingly, since in (i) and (ii)
the control conforms to the admissibility condition (3.3), the first two assertions follow
from Theorem 6.4(i). Finally, since (6.7) is an instance of the coercive control mode
(3.5) here, (iii) follows from Theorem 6.4(ii).

Example 6.9. In Algorithm 6.4, X = RN , J is finite, strictly convex, and
differentiable with bounded lower level sets, E = X , I is finite, (gi)i∈I is a family of
finite convex functions, the approximations (4.8) are used, and one of the following
conditions is fulfilled:

(i) [29, Thm. 1] The most violated constraint control mode (6.1) is in force.
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(ii) [29, Thm. 2] The serial admissible control mode (3.6) is in force.
(iii) [29, Thm. 3] The static control mode (6.6) is in force and (∀(n, i) ∈ N ×

I), xn ∈ Si ⇒ wi,n = 0.

Then xn
n→ x.

Proof. Note that the conditions of Proposition 2.1(ii)(a) are satisfied and that
(A1)–(A3) hold. Moreover, each gi is continuous and subdifferentiable on X and
(4.14) holds [46, Thm. 24.7]. Since I is finite, Propositions 3.2 and 4.7(ii) therefore
imply that the algorithm is strongly tight. Hence, (i) follows from Theorem 6.4(ii),
while (ii) and (iii) follow from Theorem 6.4(i).

It emerges from the discussions of sections 4.3 and 5.3 that Algorithms 6.3 and 6.4,
which employ surrogate cuts, are more advantageous numerically than Algorithms 6.1
and 6.2, which employ exact-constraint cuts. When instantaneous bases are easily
generated, as is the case when J is differentiable on C, Algorithm 6.4 stands out as
the most attractive implementation of Algorithm 1.1. Its chief asset is to generate
at every iteration a simple outer approximation, namely, the intersection of two half-
spaces (with the initial base E when E 6= X ). An application of Algorithm 6.4 to an
important concrete problem is demonstrated next.

6.5. Projection onto an intersection of convex sets. Algorithm 6.4 is ap-
plied to the problem of finding the projection x of a point w onto the intersection of
an arbitrary family of intersecting closed convex sets (Si)i∈I conforming to (A3) in a
real Hilbert space X . As J : x 7→ ‖x− w‖2/2 in (P), assumptions (A1) and (A4) are
clearly satisfied and, in light of Proposition 2.1(iii), so is (A2) with E = X .

Given (x, y, z) ∈ X 3, it will be convenient to define

H(x, y) = {h ∈ X | 〈h− y, x− y〉 ≤ 0}(6.8)

and to denote by q(x, y, z) the projection of x onto H(x, y)∩H(y, z). Thus, H(x, x) =
X and, if x 6= y, H(x, y) is a closed affine half-space onto which y is the projection
of x.

Algorithm 6.5. A sequence (xn)n≥0 is constructed as follows.

Step 0. Take (δ, ε) ∈]0, 1[2 and set x0 = w and n = 0.
Step 1. Take a finite index set Ø 6= In ⊂ I and set zn = xn + λn(

∑
i∈In wi,npi,n− xn), where

(B1) For every i ∈ In, pi,n is the projection of xn onto a set Si,n ∈ C(Si).
(B2) (wi,n)i∈In ⊂ [0, 1],

∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(B3) εLn ≤ λn ≤ Ln ,



∑
i∈In

wi,n‖pi,n − xn‖2∥∥∥∥∥∑
i∈In

wi,npi,n − xn
∥∥∥∥∥

2 , if xn /∈
⋂
i∈In

Si,n,

1 otherwise.

Step 2. Set πn = 〈x0 − xn, xn − zn〉, µn = ‖x0 − xn‖2, νn = ‖xn − zn‖2, ρn =
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µnνn − π2
n, and

(6.9) xn+1 = q(x0, xn, zn)

=


zn if ρn = 0 and πn ≥ 0,

x0 + (1 + πn/νn)(zn − xn) if ρn > 0 and πnνn ≥ ρn,
xn +

νn
ρn

(πn(x0 − xn) + µn(zn − xn)) if ρn > 0 and πnνn < ρn.

Step 3. Set n = n+ 1 and go to Step 1.
In this algorithm, the update xn+1 is obtained in (6.9) as the projection of x0 = w

onto the intersection of the half-spaces H(x0, xn) and H(xn, zn).
Proposition 6.1. In the present context, Algorithm 6.4 reduces to Algorithm

6.5.
Proof. Since E = X , we obtain x0 = m(X ) = w at Step 0 of Algorithm 6.4. Next,

recall that the cut Hn at Step 1 of Algorithm 6.4 is given by (4.7). We shall now show
Hn = H(xn, zn). Assume xn /∈ ⋂i∈In Si,n and define yn = xn −

∑
i∈In wi,npi,n (6= 0

by Proposition 4.5), σ2
n =

∑
i∈In wi,nd(xn, Si,n)2, and λn = (σ2

n − γn)/‖yn‖2. Then

zn = xn − λnyn, Ln = σ2
n/‖yn‖2, and (B3) ⇔ (C3). Moreover, for every x ∈ X , we

have

x ∈ Hn ⇔ 〈x, yn〉 ≤
∑
i∈In

wi,n〈pi,n, xn − pi,n〉+ γn

⇔ 〈x, yn〉 ≤ 〈xn, yn〉 − λn‖yn‖2
⇔ 〈x− zn, yn〉 ≤ 0

⇔ 〈x− zn, xn − zn〉 ≤ 0.(6.10)

Consequently, Hn = H(xn, zn). Next, observe that (5.4) yields Dn = H(x0, xn).
Hence, as E = X , (6.9) coincides with Step 2 of Algorithm 6.4; the expression for
q(x, y, z) in terms of x, y, and z is drawn from [27, Thm. 3-1]. Note that all the
possible cases are exhausted in (6.9) since ρn ≥ 0 and, as also shown in [27, Thm. 3-
1], H(x0, xn) ∩H(xn, zn) = Ø ⇔ ρn = 0 and πn < 0.

Naturally, Algorithm 6.5 contains those described in Example 6.8 as particular
instances. Unlike them, however, it can handle an infinite number of constraints, ap-
proximate projections, and flexible block-iterative control modes. Strong convergence
conditions are given in Theorem 6.4.

For comparison purposes, let us now review alternative iterative schemes that
generate sequences converging strongly to the sought projection x. From an algorith-
mic standpoint, these schemes are initialized with x0 = w and operate either in the
serial format

(∀n ∈ N) i(n) ∈ I and xn+1 = Ri(n),nxn(6.11)

or in the static parallel format

(∀n ∈ N) xn+1 =
∑
i∈I

wiRi,nxn with (wi)i∈I ⊂]0, 1] and
∑
i∈I

wi = 1,(6.12)

where I is assumed to be countable and (Ri,n)(i,n)∈I×N is a family of operators from X
into X . Henceforth, (Pi)i∈I designates the family of projectors onto the sets (Si)i∈I .
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(1) Periodic projection method. Suppose that (Si)i∈I is a finite family of M closed
vector subspaces and set Ri,n = Pi. Then it was shown in [25] that under
the periodic control mode (6.5) the serial projection method (6.11) converges
strongly to x. This result remains valid in the case of closed affine subspaces
and it coincides with von Neumann’s alternating projection theorem for M =
2 (see [18] for further details).

(2) Dykstra-like methods. In [6], an extension of the preceding periodic projec-
tion method to finite families of closed convex sets was obtained by setting
Ri,nxn = Pi(xn + yi,n), where yi,n is the outward normal vector resulting
from the previous projection onto Si. In [21], this serial algorithm was exam-
ined from a dual perspective and given an elegant and natural interpretation;
moreover, the convergence of its parallel counterpart (6.12) was established.
(See also [3] for further analysis.) New developments were reported in [28],
where a nonperiodic control mode was used in (6.11) and countably infinite
families of sets were considered.

(3) Anchor point methods. Suppose that, for every i ∈ I, Si = FixTi where
Ti : X → X is firmly nonexpansive, i.e., satisfies (2.15). (Note that if, for
some i ∈ I, Ti is merely nonexpansive, it can be replaced by the averaged
mapping T av

i = (Ti + Id)/2 which is firmly nonexpansive [24, Thm. 12.1] and
satisfies FixT av

i = FixTi.) Anchor point methods operate with Ri,nxn =
αnx0 + (1 − αn)Tixn, where (αn)n≥0 ⊂]0, 1] converges “slowly” to 0 (e.g.,
αn = 1/(n+1) in [2] and [10]). Strong convergence was established in [2] and
[38] for the serial version (6.11) under the periodic control rule (6.5) (and I
finite) and in [10] for the parallel version (6.12) with I countably infinite.

(4) Periodic quasi-projection method. This method, proposed in [26], was de-
scribed in Example 6.4 as an offspring of Algorithm 6.2. It is equivalent to
executing (6.11) under the periodic control mode (6.5) and with Ri(n),nxn
as the “quasi-projection” of xn onto Si(n), i.e., the projection of xn onto
Si(n) ∩H(x0, xn).

Overall, Algorithm 6.5 appears to enjoy more flexibility than the above methods in
terms of parallel implementation and more versatility in terms of the types of con-
straints it can handle. Indeed, Dykstra-like and anchor point methods are not well
suited for parallel block-processing due to their serial or static parallel structure. The
scope of Dykstra-like methods is further limited by the fact that they require the
ability to compute projections, which is possible only in special situations. In this
regard, anchor point methods are somewhat less restrictive, as any firmly nonexpan-
sive mapping admitting the set under consideration as fixed point set can be used. In
addition, Dykstra-like methods require that a normal vector be carried along for each
set (except for affine subspaces), which makes their implementation costly in terms
of memory allocation and management. Finally, it is noted that the quasi-projection
method is a rather conceptual one, the computation of quasi-projections being usually
a serious obstacle to its implementability in practice.

7. Further results. In this section, we present convergence results for two vari-
ants of (P) in which the original assumptions are altered. X is assumed to be a Hilbert
space.

7.1. Inconsistent constraints. It has been assumed so far that the constraints
are consistent, i.e., that S 6= Ø in (P). In this section, we place ourselves in the
following context: S may be empty and I is finite. As before, (Pi)i∈I are the projectors
onto the closed convex sets (Si)i∈I .
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As in the convex feasibility problems of [9] and [17], the exact, but possibly

empty, feasibility set S can be replaced by the set S̃ of points which best approximate
the constraints in an averaged squared-distance sense. Fix weights (wi)i∈I ⊂]0, 1]
such that

∑
i∈I wi = 1, define a (continuous and convex) proximity function Φ: x 7→

(1/2)
∑
i∈I wid(x, Si)

2, and let S̃ be the (closed and convex) set of minimizers of Φ
over X . (P) is then replaced by

find x̃ ∈ S̃ such that J(x̃) = inf
x∈S̃

J(x)(P̃)

under assumptions (A1) and

(A0) S̃ 6= Ø,

(Ã2) for some Ẽ ∈ C(S̃), there exists a point ũ ∈ S̃ ∩ dom J such that C̃ ,
Ẽ ∩ lev≤J(ũ)J is bounded and J is uniformly convex on C̃.

Some remarks are in order. First, if S 6= Ø, then S̃ = S. Second, if S = Ø, then
assumption (A0) holds when one of the sets in (Si)i∈I is bounded or when they are

all closed affine half-spaces [17]. Third, it follows from (A0), (A1), and (Ã2) that (P̃)
admits a unique solution x̃.

The next step is to regard (P̃) as a program of the general form (P) with a single

constraint set, namely S̃. Consequently, (P̃) can be solved via Algorithms 6.3 or 6.4

by constructing suitable surrogate cuts for S̃.
Theorem 7.1. Let (xn)n≥0 be an arbitrary orbit of Algorithms 6.3 or 6.4 in

which the cut at Step 1 is taken to be

Hn =

{
x ∈ X |

〈
x−

∑
i∈I

wiPixn, xn −
∑
i∈I

wiPixn

〉
≤ γn

}
,(7.1)

where 0 ≤ γn ≤ (1− ε)‖xn −
∑
i∈I wiPixn‖2. Then xn

n→ x̃.
Proof. The claim follows from Theorems 6.3(i) and 6.4(i). Indeed, the control

is admissible since only one constraint set is present. Next, let us show that (7.1)
is a valid cut at iteration n. To this end, let T =

∑
i∈I wiPi. Then T is firmly

nonexpansive and FixT = S̃ [9]. Hence (A3) holds by Proposition 2.2(iv)(e) and
(7.1) is drawn from (4.10). Finally, tightness follows from Proposition 4.7(iii).

7.2. Convex feasibility problems. If, instead of (A2), it is assumed that J is
constant on S, then (P) turns into the convex feasibility problem

(CFP) find x ∈ S =
⋂
i∈I

Si.

A general strategy for solving (CFP) is to construct a sequence (xn)n≥0 in which xn+1

is a relaxed projection of xn onto a cut Hn. An implementation of this outer approx-
imation scheme with surrogate cuts leads to the following block-iterative algorithm.

Algorithm 7.1. In Algorithm 6.5, pick x0 arbitrarily at Step 0, extend the
relaxation range in (B3) to “ε ≤ λn ≤ (2−ε)Ln,” and reduce Step 2 to “xn+1 = zn.”

Theorem 7.2. Let (xn)n≥0 be an arbitrary orbit of Algorithm 7.1 generated
under either of the following conditions: (i) tightness, I countable, and admissible
control or (ii) strong tightness and coercive control. Then (xn)n≥0 converges weakly
to a point in S.
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Proof. A slight modification of the results of [13, section 2] shows that xn+1 −
xn

n→ 0, maxi∈In d(xn, Si,n)
n→ 0, and (xn)n≥0 converges weakly to a point in S if

W(xn)n≥0 ⊂ S, from which, by arguing along the same lines as in Theorem 3.1(i)
(respectively, Theorem 3.1(ii)), we obtain (i) (respectively, (ii)).

It follows from Propositions 4.7 and 4.8 that Theorem 7.2 covers the weak con-
vergence results of [10], [12], and [13]. A closely related algorithm is proposed in [34,
section 11] with similar weak convergence results.

Acknowledgments. The author wishes to express his gratitude to the two
anonymous referees for their valuable remarks.
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Abstract. The concluding result of the paper states that variational problems are generically
solvable (and even well-posed in a strong sense) without the convexity and growth conditions always
present in individual existence theorems. This and some other generic well-posedness theorems
are obtained as realizations of a general variational principle extending the variational principle of
Deville–Godefroy–Zizler.
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1. Introduction. The Tonelli existence theorem in the calculus of variations [1]
and its subsequent modifications (e.g., [2, 3, 4, 6, 5, 7, 8]) are based on two funda-
mental hypotheses concerning the behavior of the integrand as a function of the last
argument (derivative): (1) the integrand should grow superlinearly at infinity and (2)
that it should be convex (or exhibit a more special convexity property in case of a
multiple integral with vector-valued functions) with respect to the last variable. The
first hypothesis guarantees relative weak compactness of level sets of the functional
and the second (together with the first) that it is lower semicontinuous (l.s.c.) in the
same weak topology. In the absence of the latter the existence can still be proved but
for the convexified or relaxed problem, while in the absence of the first no existence
can be established at all. A few exceptions (e.g., [9, 7, 10, 11]) with very restric-
tive additional requirements rather confirm the need of the assumptions for general
individual existence theorems.

Surprisingly, none of these two fundamental hypotheses is needed generically,
and not only for the existence but also for uniqueness of a solution and even for well-
posedness of the problem in a very strong sense (with respect to some special topology
in the space of integrands). This is the content of the concluding theorem of this paper
which we call the antirelaxation theorem. This theorem extends to multiple integrals
and to variational problems with extended-real-valued integrands, in particular, to
variational problems with explicit (nonfunctional) constraints on state variables and
their derivatives.

The possibility to get generic well-posedness (with respect to variations of the
integrand of the integral functional) without the convexity assumption was for the
first time established by the second author [12] for a class of optimal control problems
satisfying the Cesari growth condition.1 Meanwhile, the first author was for some
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time involved in a search of a general variational principle [14]. The main stimulus
for this study has come from understanding that a common ground for the quoted
result of [12] and some other generic well-posedness theorems (e.g., [15, 16]) should
be looked for in the form of some “universal” variational principle probably having
its prototype in the most recent variational principle of Deville–Godefroy–Zizler [17].

The variational principle of Deville–Godefroy–Zizler can also be interpreted as a
statement that for a certain class of functions the minimization problem is uniquely
solvable generically, and a closer look at its proof allows the generic well-posedness of
the problem to be distilled. In this interpretation, however, the principle applies to a
rather narrow class of minimization problems and it turns out that the main restriction
comes from the assumption that there must be a continuous bump function by which
(or certain transformations of which) we can perturb the functions to be minimized.
This assumption effectively excludes such classes of functions or problems as, say,
convex functions or problems of calculus of variations.

The key result of this paper, the generic variational principle of Theorem 2.2, is
a modification of Deville–Godefroy–Zizler’s variational principle which allows a sub-
stantially broader class of perturbations. As consequences of the theorem we get the
already mentioned antirelaxation theorem, the theorem of Beer–Lucchetti [15] about
generic well-posedness of minimization for convex l.s.c. functions, its extension to
quasi-convex functions (which is probably a new result), a simple proof of a genericity
theorem of Asplund [13] along with a characterization of Asplund spaces basically
due to Ekeland–Lebourg [18], extensions of some well-posedness theorems collected
in [16], in particular a theorem of Revalski [19] dealing with restrictions of continu-
ous functions to closed sets, and the variational principle of Deville–Godefroy–Zizler
itself. None of these results, with the obvious exception of the last, follows from
the principle of Deville–Godefroy–Zizler. (Note that our main results as well as the
variational principles of Ekeland, Borwein–Preiss, and Deville–Godefroy–Zizler apply
to arbitrary l.s.c. functions but need a metric or a uniform structure in the domain
space. We refer to [20] for a survey of results concerning generic well-posedness of
minimization for continuous functions on completely regular topological spaces. It is
to be observed that in the context of well-posedness continuity is often a restrictive
requirement. The calculus of variations is the most important example of that sort.)

The proofs of all mentioned applications of the main theorem are built according
to more or less the same scheme which consists in verification in each case of some
basic hypotheses (H) introduced in the next section. We understand that the same
scheme can easily be applied to get various variations and strengthenings of the results
presented in this paper. (For example, it is easy to extend the antirelaxation theorem
to variational problems over functions with values in infinite-dimensional spaces.)
But we have stated the main theorem with a number of more complicated and so
far unsolved problems in mind; first of all, problems with functional constraints (e.g.,
the problem of Lagrange in the calculus of variations or optimal control problems) in
which constraint functions and maps are also subjects of variation as well as the cost
function.

2. Generic variational principle. We shall consider two complete metric spaces
(X, ρ) and (A, d), the first being called the domain space and the second the data space.
We shall further assume that with every a ∈ A an l.s.c. function fa on X is associ-
ated with values in R = [−∞,∞] and none of these functions is identical +∞. The
following is the basic hypotheses about the functions which we adopt in the theorem:

(H) There is a dense subset B ⊂ A, such that for any a ∈ B, any ε > 0, and any
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γ > 0 there exist a nonempty open set U ⊂ A, x ∈ X, α ∈ R, and η > 0 such that for
any b ∈ U

(i) d(a, b) < ε and inf fb > −∞;
(ii) if z ∈ X is such that fb(z) ≤ inf fb + η, then ρ(z, x) ≤ γ and |fb(z)− α| ≤ γ.
Definition 2.1. Given an a ∈ A, we say that the problem of minimization of fa

on X is well-posed with respect to data in A (or just with respect to A) if
(1) inf fa is finite and attained at a unique point xa ∈ X;
(2) for any ε > 0 there is a δ > 0 such that inf fb > −∞ for any b ∈ A satisfying

d(a, b) < δ and, moreover, any z ∈ X for which fb(z) ≤ inf fb + δ satisfies ρ(z, xa) <
ε, |fb(z)− f(xa)| < ε.
(In a slightly different setting a similar property was introduced in [21].)

Theorem 2.2 (generic variational principle). Assume (H). Then, the minimiza-
tion problem for fa is well-posed with respect to A for a generic a ∈ A. In other
words, there is a dense Gδ subset A′ ⊂ A such that for any a ∈ A′ the minimization
problem for fa is well-posed with respect to A.

Proof. Take an a ∈ B. By (H) for any natural n = 1, 2, . . . there is a nonempty
open set U(a, n) ⊂ A, x(a, n) ∈ X, and numbers α(a, n) and η(a, n) > 0 such that
for any b ∈ U(a, n) we have

d(a, b) < 1/n; inf fb > −∞;(2.1)

and, whenever fb(z) ≤ inf fb + η(a, n),

ρ(z, x(a, n)) < 1/n, |fb(z)− α(a, n)| < 1/n.(2.2)

Consider the set

An =
⋃
a∈B
m≥n

U(a,m).

Clearly, this set is dense and open, so by the Baire category theorem A′ =
⋂An is a

dense Gδ subset of A.
Let a ∈ A′. Then there is a sequence {an} ⊂ B and a sequence {kn} → ∞ of

natural numbers such that a ∈ U(an, kn) = Un. Set xn = x(an, kn), αn = α(an, kn),
and ηn = η(an, kn). We assume without loss of generality that ηn → 0 decreasingly.
Let zn be such that fa(zn) < inf fa + ηn. Then fa(zn) < inf fa + ηm if m ≤ n, so
by (2.2) ρ(zn, xm) ≤ 1/m. It follows that ρ(zn, zn+k) ≤ 2/m whenever n ≥ m, that
is, {zn} is a Cauchy sequence. Set xa = lim zn. As fa is l.s.c., we have fa(xa) =
inf fa. Clearly, fa does not have another minimizer for otherwise we would be able to
construct a nonconvergent sequence {zn}. This proves the first part of the theorem.
We further note that by (2.2) fa(xa) = limαn.

To prove the second part, consider a sequence {bn} ⊂ A converging to a, and
let wn be such that ξn = fbn(wn) − inf fbn → 0. Choose n(m) such that bn ∈ Um
and ξn ≤ ηm for n ≥ n(m). For such n we have by (2.2) ρ(wn, xm) ≤ 1/m and
|fbn(wn)− αm| ≤ 1/m. As xm → xa and αm → fa(xa), it follows that wn → xa and
fbn(wn)→ fa(xa). This completes the proof.

Remark 2.3. As follows from the proof, there is no need to require that (A, d) be
a complete metric space; it is sufficient to assume that it is a Baire space, that is, a
space in which the Baire category theorem holds.

To conclude the section we observe that the variational principle of Deville–
Godefroy–Zizler [17] is an immediate consequence of the theorem. To prove this
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we consider a Banach space A of bounded continuous functions on a Banach space X
with the following three properties:

(a) the norm topology inA is not weaker than the topology of uniform convergence
on X: ‖a‖A ≥ sup{|a(x)| : x ∈ X};

(b) A contains compositions of its elements with translations and homotheties of
X and ‖a(t+ ·)‖A = ‖a‖A for each a ∈ A and each t ∈ X;

(c) A contains a bump function, that is to say, a function ϕ(x) supported on the
unit ball and satisfying 0 ≤ ϕ(x) ≤ 1 = ϕ(0).

Under these assumptions, the variational principle of Deville–Godefroy–Zizler
states that for any proper l.s.c. and bounded below function f on X the set of a ∈ A
for which f + a attains a unique minimum on X is a dense Gδ subset of A.

To prove the statement we set fa = f + a and, given a ∈ A, ε > 0, γ > 0, choose
ε0 ∈ (0,min{ε/4, γ/4}) such that ε0‖ψ‖A < 4−1ε, where ψ(x) = ϕ(γ−1x), x ∈ X,
take an x̄ ∈ X with fa(x̄) < inf fa + ε0/5, and set ā(x) = a(x) − (4ε0/5)ψ(x − x̄),
U = {b ∈ A : ‖b − ā‖A < ε0/10}, α = fā(x̄), and η = ε0/10. It is an easy matter,
then, to verify that for any b ∈ U and z ∈ X with fb(z) ≤ inf fb + η

α−ε0 ≤ fā(z) < fb(z)+ε0/10 ≤ inf fb+ε0/5 ≤ inf fā+3ε0/10 ≤ α+3ε0/10 ≤ inf fa,

which implies both |α − fb(z)| ≤ 2ε0 < γ and fā(z) < inf fa. Then ‖z − x̄‖ ≤ γ
because otherwise by the definition of ā fa(z) = fā(z), a contradiction.

We shall see that a similar chain of arguments works in many other cases.

3. Epi-distance topology. In what follows we shall fix a certain “zero element”
θ ∈ X, set ‖x‖ = ρ(θ, x), B(r) = {x : ‖x‖ ≤ r}, and agree to call a set C ⊂ X bounded
if C ⊂ B(r) for some r.

Let LSC(X) denote the collection of all l.s.c. functions on X with values in
R̄ = [−∞,∞] which are not identically equal to∞. We shall next introduce a suitable
topological structure in LSC(x) which will allow us to apply Theorem 2.2 to several
important classes of l.s.c. functions.

Definition 3.1 (see [22]). The epi-distance topology in LSC(X) is defined by the
uniform structure formed by the sets

U(ε,K) = {(f, g) : f, g ∈ LSC(X)
and |dist((α, x), epi f)− dist((α, x), epi g)| < ε, if |α| ≤ K, ‖x‖ ≤ K}.

Here we set dist((α, x), (β, u)) = |α− β|+ ρ(x, u).
Clearly, the uniform space LSC(X) is metrizable by a complete metric d(·, ·). (See

e.g., [22]—although the proof is given there only for the case when X is a Banach
space, the proof for an arbitrary metric space is not much different.) The following
lemma contains crucial information about the behavior of functions close in LSC(X).

Lemma 3.2. Let f̄ ∈ LSC(X ) be bounded below. Suppose δ ∈ (0, 1) and a λ ∈ R
are such that λ > inf f̄ + δ. Set

Lλ = {x : f̄(x) ≤ λ}.(3.1)

Then for any γ > 0, R > 0 there is an ε > 0 such that for any other f ∈ LSC(X )
with d(f, f̄) ≤ ε we have inf f ≤ λ− δ/2 and for any z ∈ X satisfying f(z) ≤ inf f + ε
either inf f̄ ≤ f(z) + γ and ρ(z,Lλ) ≤ γ or ‖z‖ ≥ R.

Proof. Taking if necessary a larger R, we may assume that R > |λ|+ | inf f̄ |+ 1.
Set σ = min{δ/4, γ/2}. Take an x with f̄(x) < inf f̄ + σ and choose ε ∈ (0, σ) so
small that for f with d(f, f̄) < ε we have

|dist((α, z), epi f)− dist((α, z), epi f̄)| < σ,(3.2)
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if |α| ≤ R+ ‖x‖, ‖z‖ ≤ R+ ‖x‖.
Clearly, x ∈ Lλ and for any f within ε of f̄ we have by (3.2) for α = inf f̄ + σ

dist((α, x), epi f) < σ,

which means that

f(x′) < α+ σ = inf f̄ + 2σ

with some x′. It follows that inf f < λ− δ/2.
Now let z be such that f(z) ≤ inf f + ε. If further ||z|| ≤ R, then by (3.2)

dist((max{f(z), inf f̄ − 1}, z), epi f̄) < σ.

It follows that

f̄(u) ≤ max{f(z), inf f̄ − 1}+ σ

for some u such that ρ(u, z) < σ. Thus (as f̄(u) > inf f̄ − 1 + σ)

f̄(u) ≤ f(z) + σ < inf f + ε+ σ ≤ inf f + δ/2 < λ.

This inequality gives u ∈ Lλ; hence ρ(z,Lλ) ≤ ρ(u, z) < σ ≤ γ and inf f̄ ≤ f̄(u) ≤
inf f + γ which completes the proof.

4. Generic well-posedness of minimization for three classes of l.s.c.
functions. We shall first apply our main theorem to the simplest case when elements
of the data space are the functions themselves. Namely, we are ready now to con-
sider the minimization problem for three important classes of l.s.c. functions, namely,
convex l.s.c. functions, quasi-convex l.s.c functions, and arbitrary l.s.c functions sat-
isfying a certain uniform growth condition. To this end we first fix some complete
metric d(f, g) in LSC(X) which is compatible with the epi-distance topology.

Theorem 4.1. In each of the following three cases the minimization problem for
a generic f ∈ A is well-posed with respect to the space A:

(a) X is a Banach space and A is the set of all convex l.s.c. functions on X;
(b) X is a Banach space and A is the set of all quasi-convex l.s.c. functions on

X;
(c) X is a complete metric space and A is a collection of elements of LSC(X)

satisfying f(x) ≥ ϕ(x) for all x, where ϕ ∈ LSC(X) satisfies ϕ(x)→∞ as ‖x‖ → ∞.
Proof. It is an easy matter to verify in either case that A is a closed subset of

LSC(X); hence a complete metric space itself.
Let Ã denote the collection of those elements of A which are bounded below. We

first observe that Ã is dense in A. Indeed, for each f ∈ A the functions fn(x) =
max{f(x),−n}, x ∈ X, n = 1, 2, . . . belong to Ã and converge to f in the epi-
distance topology. Let B denote the collection of those elements of Ã which attains
its minimum. It can easily be seen that B is dense in A. Indeed, for each f ∈ Ã
the functions fn(x) = max{f(x), f(xn)}, x ∈ X, n = 1, 2, . . . with xn ∈ X satisfying
f(xn) ≤ inf f + n−1 belong to B and converge to f . Therefore the theorem will be
proved if we verify that (H) holds with the B defined above.

Thus let f ∈ B, ε > 0, γ > 0. Let x̄ ∈ X, f(x̄) = inf f . Choose a small δ ∈ (0, 1)
and set

f̄(x) = sup{f(x), f(x̄) + δρ(x, x̄)}.
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We can choose δ so small that d(f, f̄) < ε/2.
Next we take a sufficiently big R—its value will be specified in each of the three

cases separately. Set λ = f(x̄) + δγ/2 and let, as above, Lλ = {x : f̄(x) ≤ λ}. Then
Lλ belongs to the closed ball of radius γ/2 around x̄ (as f̄(x) ≥ f(x̄) + δρ(x, x̄)). By
Lemma 3.2 we can find an ε̄ such that for any g ∈ LSC(X) with d(g, f̄) ≤ ε̄ and any
z satisfying g(z) ≤ inf g + ε̄ we have

inf g ≤ λ− δγ/8(4.1)

and either

ρ(z,Lλ) ≤ γ/2, g(z) ≥ inf f̄ − γ(4.2)

or

‖z‖ ≥ R.(4.3)

In the first case, when (4.2) holds, we have by (4.2) ρ(x̄, z) ≤ γ and g(z) ≥ f(x̄)−γ
as desired. (The inequality g(z) ≤ f(x̄) + γ follows from (4.1) and the definition of λ
if we assume that δ < 2/3 and ε̄ < γ/4 which, of course, is always possible.)

To complete the proof of the theorem we have to show that in each case R
can be chosen to make (4.3) impossible. Then (H) holds with U = {g ∈ LSC(X):
d(g, f̄) < ε̄}, η = ε̄, α = f(x̄).

In case (c) this is obvious (as ϕ(z) ≤ g(z) ≤ f(x̄) + γ). Therefore we concentrate
on (a) and (b). To simplify the calculation we may assume that all small numbers
involved are smaller than one and that g is so close to f̄ that

|dist((β, x), epi f̄)− dist((β, x), epi g)| < 1/2,(4.4)

if δ‖x− x̄‖ ≤ 2, |β| ≤ |f(x̄)|+ 2.
It follows that g(x) > f(x̄) + 1 whenever ‖x − x̄‖ = 2/δ. Indeed, assuming the

contrary, we get from (4.4) for some x and β = f(x̄) + 1 that dist((β, x), epi f̄) < 1/2;
that is, there is an x′ with ‖x− x′‖ < 1/2 such that f̄(x′) ≤ f(x̄) + 3/2. However,

f̄(x′) ≥ f(x̄) + δ‖x′ − x̄‖
≥ f(x̄) + δ(‖x− x̄‖ − ‖x− x′‖)
≥ f(x̄) + 2− δ/2 > f(x̄) + 3/2

and we arrive at a contradiction. Thus g(x) > f(x̄) + 1 for any x with ‖x− x̄‖ = 2/δ.
Now take R > ‖x̄‖ + 2/δ and assume that (4.3) holds. By the choice of z, we have
g(z) < f(x̄) + 1 and, as follows from (4.4) for β = f(x̄) = f̄(x̄),

dist((β, x̄), epi g) < 1/2,

which means that there is an x′ with ‖x′ − x̄‖ < 1/2 such that g(x′) < f(x̄) + 1/2.
As x′ lies within the ball of radius 1/2 around x̄, the line segment joining z and x′

contains a point x with ‖x− x̄‖ = 2/δ. For this point

g(x) > f(x̄) + 1 ≥ max{g(z), g(x′)},
which cannot be the case either in (a) or in (b). This completes the proof of the
theorem.

Remark 4.2. The first statement of the theorem was proved in [15].
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5. Perturbations by linear functions: A theorem of Asplund. It is well
known that genericity is not hereditary. In other words, a property which is generic on
a space may fail to be generic on a subspace. Therefore it is reasonable, in principle, to
consider minimization problems corresponding to more restricted collections of data.

The following result was proved in [13]. Let X be an Asplund space and X∗ its
dual; let g(x∗) be a norm l.s.c. extended-real-valued function on X∗; and let f(x) be
the restriction to X of the Fenchel conjugate of g. Assume that int dom f 6= ∅. Then
the problem of minimizing gx(x∗) = g(x∗) − 〈x∗, x〉 on X∗ is generically well-posed
with respect to x ∈ dom f .

Here g∗(x∗∗) = supx∗(〈x∗∗, x∗〉 − g(x∗)) is the Fenchel conjugate of g and for any
extended-real-valued function f on X, dom f = {x : |f(x)| <∞}.

Recall that X is called an Asplund space if every continuous convex function on X
is Fréchet differentiable on a dense Gδ-set. There are many known characterizations of
Asplund spaces. One of them (which is crucial in the proof in [18] is that a space with
a Fréchet differentiable bump function is Asplund) is that every continuous convex
function on X is ε-differentiable on a dense set. (A convex function f is ε-differentiable
at x̄ if there is an x∗ ∈ X∗ such that f(x) ≤ f(x̄) + 〈x∗, x− x̄〉+ ε‖x− x̄‖ for all x of
a neighborhood of x̄.)

We shall show that both the quoted well-posedness theorem and the characteri-
zation of Asplund spaces follow from the generic variational principle of Theorem 2.2.

Theorem 5.1. For any Banach space X the following three statements are equiv-
alent:

(a) X is an Asplund space;
(b) for any ε > 0, any continuous convex function on X is ε-differentiable on a

dense subset of X;
(c) for any norm l.s.c. function g on X∗ such that the domain of the restriction

of its Fenchel conjugate to X has nonempty interior, the problem of minimization of
gx(x∗) = g(x∗)− 〈x∗, x〉 is generically well-posed with respect to x ∈ dom g∗

⋂
X.

(We observe that under the assumptions, dom g∗
⋂
X belongs to the closure of

its interior; hence it is a Baire space—see Remark 2.3.)
Proof. The implication (a)⇒(b) is trivial; (c)⇒(a) follows from Šmulyan’s duality

between differentiability and rotundity [23]. Under the conditions of (c), if we denote,
as above, the restriction of g∗ to X by f , this duality reduces to equivalence of the
following two properties for any x̄ ∈ X and any x̄∗ ∈ X∗ (see [13]):

(i) there is a nonnegative convex l.s.c. function ξ(t) (extended-real-valued) on
[0,∞) such that ξ(t)/t→ 0 as t→ 0 and

f(x) ≤ f(x̄) + 〈x̄∗, x− x̄〉+ ξ(‖x− x̄‖)
for all x;

(ii) there exists a convex l.s.c. function δ(t) on [0,∞) equal to zero at zero and
positive for positive t, such that

g(x∗) ≥ g(x̄∗) + 〈x∗ − x̄∗, x̄〉+ δ(‖x∗ − x̄∗‖)
for all x∗.

We have, therefore, to show that (b)⇒(c). Thus assume that (b) holds and g
and f are as in (c). This means that f(x) = − infx∗ gx(x∗). We claim that for any x
belonging to int dom f there are ε > 0 and r > 0 such that for any u ∈ x + B(u, ε)
there is a minimizing sequence for gu which belongs to the ball of radius r (around
the origin) in X∗. Indeed, being weak l.s.c., f is continuous at x, so we can choose ε
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so small that the entire ball B(x, 2ε) (of radius 2ε around x) belongs to int dom f and
f is bounded above on the ball. If the claim is not true, then for any n we can find
un ∈ B(x, ε) within ε and {x∗n} such that gun(x∗n) ≤ inf gun + 1/n and ‖x∗n‖ → ∞.
But then we can take an h ∈ X with the norm less than ε such that 〈x∗n, h〉 → −∞
in which case −f(un) ≤ gun+h(x∗n)→ −∞, which (as un + h ∈ B(x, 2ε)) contradicts
to the fact that f is bounded above on the ball.

It follows that for any x ∈ int dom f there is an r > 0 such that the Fenchel
conjugate fr of the restriction of g to the ball of radius r around the origin (that
is, the function equal to g(x∗) if ‖x∗‖ ≤ r and +∞ otherwise) coincides with f in a
neighborhood of x. But fr, being conjugate to a function with bounded domain and
bounded below, is everywhere finite, hence continuous, and by (b) densely Fréchet
differentiable.

Thus, for any x ∈ dom f and any ε > 0 there is an x̄ such that ‖x̄−x‖ < ε and f
is Fréchet differentiable at x̄. Let x̄∗ be the derivative of f at x̄. Then the property
(i) above holds and therefore the property (ii).

Now, given a γ > 0, we choose a σ > 0 so small that σ < γ/2 and δ(t) > 2σt if
t > γ and define a neighborhood U as the open ball of radius σ around x̄. For any
u ∈ U we have by (ii)

gu(x∗) ≥ gu(x̄∗) + δ(‖x∗ − x̄∗‖)− 〈x∗ − x̄∗, u− x̄〉,

so that for u ∈ U we have gu(x∗) ≥ gu(x̄∗)+σ‖x∗−x̄∗‖ ≥ gu(x̄∗)+σγ if ‖x∗−x̄∗‖ > γ.
Now taking η < σγ/2, we verify (H).

Thus by Theorem 2.2 the problem of minimizing gx is generically well-posed with
respect to x ∈ dom f , that is, (c) is true.

6. Minimization subject to a nonfunctional constraint. This section is
devoted to minimization problems of the form

(P) minimize f(x) subject to x ∈ A,

with A ⊂ X closed and f continuous and bounded below. This problem of course re-
duces to minimization of the restriction f |A of f to A and therefore can be considered
in the framework of unconstrained minimization of l.s.c. extended-real-valued func-
tions. However it is more natural to consider the pair (f,A) as the given data, rather
than f |A, and in this context Theorem 4.1 does not allow one to make any conclusion
about generic solvability and well-posedness of the problem (as perturbations of f |A
in LSC(X) may not be represented as restrictions of continuous functions).

In this section we use the notation introduced in the beginning of section 3 with
‖x‖ standing for the distance from x to a specified “zero” element. Denote by S(X)
the collection of all closed subsets of X. We shall consider two complete metrics
in S(X): the metric h1(A,B) compatible with the Hausdorff topology (which is a
completely metrizable topology defined by the uniform structure with the base

W1(ε) = {(A,B) : ρ(x,B) ≤ ε, x ∈ A, ρ(y,A) ≤ ε, y ∈ B})

and a weaker metric h2(A,B) compatible with the bounded Hausdorff (Attouch–Wets)
topology (which is a completely metrizable topology defined by the uniform structure
with the base (see, e.g., [22])

W2(ε,R) = {(A,B) : |ρ(x,A)− ρ(x,B)| < ε ∀x ∈ X, ‖x‖ ≤ R}.
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Let C+(X) further be the collection of all continuous real-valued functions on X
bounded from below. As for sets, we shall consider two metric structures in C+(X);
the first (complete) metric r1(f, g) is compatible with the topology of uniform conver-
gence of elements of C+(X) on X and the second weaker metric r2(f, g) can be any
metric compatible with the topology of uniform convergence of elements of C+(X) on
bounded subsets of X (that is, on balls B(R) = {x : ‖x‖ ≤ R}).

Finally, let ϕ(x) be a function on X bounded below and such that ϕ(x)→∞ as
‖x‖ → ∞. Set

C(X,ϕ) = {f(·) ∈ C+(X) : f(x) ≥ ϕ(x) ∀x ∈ X}.
It is a trivial matter to verify that C(X,ϕ) is a complete subspace of (C+(X), r2).
(The latter itself may be incomplete.)

The data spaces to be considered consist of pairs a = (f,A) and we write fa for
f |A (so that for b = (g,B) we have fb = g|B). In the theorem below we consider two
data spaces of this kind: (A1, d1(a, b)), where A1 = C+(X)×S(X), and (A2, d2(a, b)),
where A2 = C(X,ϕ)× S(X) and for a = (f,A), b = (g,B) the ith distance (i = 1, 2)
di(a, b) is defined by di(a, b) = ri(f, g) + hi(A,B).

Theorem 6.1. The problem (P) is generically well-posed with respect to both A1

and A2.
Proof. We have to verify that in either case (H) holds. Therefore let a =

(f,A), γ > 0, and a neighborhood V of a, either in A1 or in A2 be given. We
may assume that in the first case

V = {b = (g,B) : |f(x)−g(x)| ≤ ε ∀x ∈ X, ρ(x,B) ≤ ε ∀x ∈ A, ρ(y,A) ≤ ε ∀y ∈ B}
with some ε > 0 and in the second case

V = {b = (g,B) : |f(x)− g(x)| ≤ ε, x ∈ B(K), (A,B) ∈W2(ε,K)}
with some ε,K > 0. We may assume that ε, γ < 1.

We choose positive numbers δ1, ε1, ε̄, and an x̄ ∈ X to make sure that

ε1, δ1 < (1/8) min{ε, γ};
ρ(x̄, A) < ε1; f(x̄) ≤ inf{f(x) : ρ(x,A) < ε1}+ δ1;
ε̄ < (ε1 − ρ(x̄, A))/4.

Let λ(x) be a continuous function on X assuming values between 1 and 0 and such
that λ(x) = 1 if ρ(x, (A ∪ {x̄})) ≤ ε̄ and λ(x) = 0 if ρ(x,A) ≥ ε1. Set

Ā = A
⋃{x̄};

f̄(x) = (1− λ(x))f(x) + λ(x) max{f(x), f(x̄) + 2δ1 min{1, γ−1ρ(x, x̄)}};
ā = (f̄ , Ā).

As in the previous section, we see that

(6.1)

fā(x̄) = f(x̄) = f̄(x̄) = min fā; f̄(x) ≥ f(x̄) + 2δ1, if ρ(x, x̄) ≥ γ and ρ(x, Ā) ≤ ε̄.
It also follows from the definition of f̄ and x̄ that

|f(x)− f̄(x)| ≤ 3δ1 ∀ x ∈ X.(6.2)
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Clearly, there exist a neighborhood U1 of f̄ and a neighborhood U2 of Ā such that
U1 × U2 ⊂ V . We will show that U1 and U2 can be chosen so small that (H) holds
with

U = U1 × U2, x = x̄; α = f(x̄); η = δ1.

Choose a positive number ε2 such that

|f̄(x̄)− f̄(u)| < δ1/4, if ρ(u, x̄) < ε2.

We can choose U1 and U2 sufficiently small to make sure that
(a) for g ∈ U1

|f̄(u)− g(u)| < δ1/4

for all u ∈ X in the first case and for all u within R of x̄ in the second case, where
R > 4 is big enough to make sure that ϕ(x) > f(x̄) + 8δ1 if ρ(x, x̄) > R. In the first
case we set R =∞,

(b) any B ∈ U2 contains a point u with ρ(u, x̄) < ε2 and
(c) for each B ∈ U2 and each u ∈ B satisfying ρ(u, x̄) ≤ R:

ρ(u, Ā) ≤ 2−1ε̄.(6.3)

Let b = (g,B) ∈ U . In either case there is u ∈ B such that ρ(u, x̄) < ε2 at which

inf fb ≤ g(u) ≤ f̄(u) + δ1/4 ≤ f̄(x̄) + δ1/2.

If now z ∈ B is such that g(z) ≤ inf fb + δ1, then

g(z) ≤ f̄(x̄) + δ1/2 + δ1, ρ(z, x̄) ≤ R, f̄(z) ≤ g(z) + δ1/4 < f̄(x̄) + 2δ1.

As follows from (6.3) and (6.1)

ρ(z, Ā) ≤ ε̄/2, ρ(z, x̄) ≤ γ.

Clearly, |g(z)− f(x̄)| ≤ 2δ1 < γ. The proof is completed.
Remark 6.2. For A1 the theorem was proved in [19].

7. Topology of uniform convergence modulo given growth. We shall now
pass to the last application of the generic variational principle, the antirelaxation
theorem. But before we have to consider in some details the space of integrands and
certain special topologies in this space.

We consider here the collection LSC+(X) of nonnegative l.s.c. proper functions
on X with another topology (or, more precisely, a series of topologies). Namely, for
any p ≥ 1 we introduce a uniform structure in LSC+(X) with the basis formed by
the sets

Up(ε) = {(f, g) : |f(x)− g(x)| ≤ ε(‖x‖p + 1) ∀ x ∈ X}

with the convention that ∞ −∞ = 0. (As above, ‖x‖ is the distance from x to a
“zero” element.) Verification that these sets form a basis of a uniform structure for
any p is an easy matter. We shall denote LSC+(X) with the corresponding topology
by LSCp

+(X).
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Observe that LSCp
+(X) is a “very” disconnected space. Indeed, fix an f0 ∈

LSCp
+(X) and let

Ũ =
⋃
ε>0

{g ∈ LSC(X) : (g, f0) ∈ Up(ε)}.

Clearly, Ũ is a open set. For any f 6∈ Ũ we have

sup
x

|f(x)− f0(x)|
‖x‖p + 1

=∞.

Therefore if (g, f) ∈ Up(ε) for some ε, the equality above will not change if we replace

f by g which means that g 6∈ Ũ . In other words, the complement of Ũ is also an open
set. The above argument actually proves the following.

Proposition 7.1. Functions f, g ∈ LSC(X) belong to the same connected com-
ponent of LSC+

p (X) if and only if (g, f) ∈ Up(ε) for some ε; in particular, in this case
dom f = dom g.

It is clear that LSCp
+(X) is metrizable. Moreover it is complete as follows from

the proposition below.
Proposition 7.2. The space LSCp

+(X) is complete.
Proof. Let {fm} be a fundamental sequence in LSCp

+(X). This means that there
is a sequence of positive numbers {εm} converging to zero such that (fn, fn+k) ∈
Up(εm) for all n ≥ m and all k. Let D be the common domain of all fm. Clearly, for
every x the sequence of values fm(x) converges. Denote the pointwise limit function
by f(x). Its domain is also D and for any m the inequality

|fm(x)− f(x)| ≤ εm(‖x‖p + 1)(7.1)

holds.
It remains to verify that f ∈ LSCp

+(X), that is to say, that f is proper and l.s.c.
The first is obvious. The second is an immediate consequence of the inequality (7.1)
as for any m any x and any sequence {xn} converging to x

lim inf
n→∞ f(xn) ≥ lim inf

n→∞ fm(xn)− εm(‖x‖p + 1)

≥ fm(x)− εm(‖x‖p + 1) ≥ f(x)− 2εm(‖x‖p + 1).

8. Spaces of integrands. Let (T,Ξ, µ) be a space with a positive measure
(which can be infinite). By I+

p (T,X) we denote the topological space whose elements
are nonnegative extended-real-valued functions f(t, x) on T × X with the following
properties:

(P1) f is L⊗B-measurable, that is to say, measurable with respect to the σ-
algebra generated by products of elements of Ξ and Borel subsets of X;

(P2) f(t, ·) is l.s.c. and proper for almost every t ∈ T ;
(P3) there is an x(·) ∈ Lp(T,X) such that f(t, x(t)) ∈ L1.

The topology in I+
p (T,X) is generated by the uniform structure whose basis is formed

by the sets

Vp(ε) = {(f, g) : ∃ ϕ ∈ B(T,Ξ, µ), ϕ(t) ≥ 0 such that
|f(t, x)− g(t, x)| < ε(‖x‖p + ϕ(t)) ∀x ∈ X almost everywhere on T},

where B(T,Ξ, µ) is the unit ball in L1(T,Ξ, µ).
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To be more precise, we have to define elements of I+
p (T,X) as classes of functions

equivalent in the sense that f ∼ f ′ if and only if f(t, ·) = f ′(t, ·) for almost every
t. Properties (P1) and (P2) of elements of I+

p (T,X) mean that they are normal
integrands [7].

In this definition, as above, we adopt the convention that ∞−∞ = 0; we also
observe that ϕ in the definition may depend on f and g. Again, it is an easy matter
to see that the sets Vp(ε) form a basis of a metrizable uniform structure.

Every integrand f ∈ I+
p (T,X) generates an integral functional

Jf (x(·)) =

∫
T

f(t, x(t))dt

on Lp(T,X).
Proposition 8.1. For any f ∈ I+

p (T,X) the functional Jf is a proper l.s.c.
function on Lp(T,X) and dom Jf = domJg whenever f and g belong to the same
connected component of I+

p (T,X).
Proof. Jf is a proper function by (P3). Lower semicontinuity is an immediate

consequence of Fatou’s lemma and the equality of domains is verified as in the proof
of Proposition 7.2.

Proposition 8.2. The space I+
p (T,X) is complete.

Proof. Let {fm} be a fundamental sequence in I+
p (T,X). This means that there is

a sequence {εm} of positive numbers converging to zero and a (triple indexed) sequence
{ϕmnk} of elements of the unit ball of L1(T,Ξ, µ) such that almost everywhere in T

|fn(t, x)− fk(t, x)| ≤ εm(‖x‖p + ϕmnk(t)) ∀x,(8.1)

whenever n ≥ m, k ≥ m. The strategy of the proof this time will be the following:
We shall show that any subsequence of {fm} contains a converging sub-subsequence
and limits of any two converging subsequences of {fm} may differ only on a set whose
projection to T has µ-measure zero.

Therefore consider an arbitrary subsequence {fms}. Taking a further subse-
quence if necessary (and writing for convenience gs instead of fms and δs instead
of εms), we may assume that the series

∑
δs converges. Then the functions ψs(t) =∑∞

r=s δrϕmrmrmr+1
decreasingly converge to zero in L1. As these functions are non-

negative, it follows from the theorem of B. Levi (see [24, p. 75]) that ψs(t)→ 0 on a
set T ′ ∈ Ξ whose complement has measure zero.

We have, setting γs =
∑∞
r=s δr,

|gs(t, x)− gs+k(t, x)| ≤ γs‖x‖p + ψs(t).

It follows that for every t ∈ T ′ the sequence {gs(t, ·)} is fundamental in LSCp
+(X).

Therefore by Proposition 7.2 the limit function g(t, ·) is well defined on T ′ ×X and
l.s.c. in x. Being a pointwise limit of L⊗B-measurable nonnegative functions, it is
also L⊗B-measurable and nonnegative. We have furthermore

|gs(t, x)− g(t, x)| ≤ γs‖x‖p + ψs(t)

from which we conclude that g has property (P3); hence g ∈ I+
p (T,X), and gs con-

verges to g in I+
p (T,X).

Now let g and g′ be limits of two subsequences of {fm}. It follows from (8.1)
that Jg ≡ Jg′ on Lp(T,X). If we had assumed now that g(t, x) 6= g′(t, x) on a
set whose projection to T has positive measure, then we would conclude using the
standard measurable selection arguments (e.g., [7]) that Jg(x(·)) 6= Jg′(x(·)) for some
x(·) ∈ Lp(T,X). This completes the proof of the proposition.
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9. Generalized Bolza problem: An antirelaxation theorem. We are ready
now to state and prove the concluding result quoted at the very beginning of the
introduction. Let Ω be a bounded domain in Rm with Lipschitz boundary. We shall
consider the space

Ap = I+
p (∂Ω,Rn)× I+

p (Ω,Rn × Rmn)

with the product topology. (Here Ω is considered with the Lebesgue measure and ∂Ω
with the (m − 1)-dimensional Lebesgue measure in Rm. As Ω is a bounded domain
with Lipschitz boundary, the (m− 1)-dimensional Lebesgue measure of ∂Ω is finite.)
With every a = (l, L) ∈ Ap we associate the generalized Bolza problem of minimizing

Ja(x(·)) =

∫
∂Ω

l(ξ, x(ξ))dξ +

∫
Ω

L(t, x(t),∇x(t))dt

over all x(·) ∈Wn
1,p(Ω), the latter being the standard Sobolev space. For convenience

we shall interpret it as the closure with respect to the norm

‖x(·)‖1,p =

(∫
∂Ω

|x(ξ)|pdξ +

∫
Ω

(|x(t)|p + |∇x(t)|p)dt
)1/p

of the collection of continuous Rn-valued functions on Ω
⋃
∂Ω which are continuously

differentiable on Ω. (Here we denote by | · | the Euclidean norms of vectors in Rm and
operators Rn 7→ Rm (see, e.g., Theorem 3.4.5 in [5]).)

As in the preceding sections we verify that, given a component of Ap, Ja is either
identically equal to ∞ or is proper with the same domain for all a of the component.
In the latter case we shall say, abusing the language slightly, that Ja is proper on the
corresponding component.

Theorem 9.1. The generalized Bolza problem of minimizing Ja on Wn
1,p is gener-

ically well-posed with respect to every component of Ap on which Jais proper.
Proof. Being a product of two complete metrizable uniform spaces, Ap is also a

complete metrizable uniform space. As a basis for the uniform structure in Ap we
can take the sets U(δ) of pairs (a, a′) having the property that there are functions
ϕ(·) ∈ L1(∂Ω) and ψ(·) ∈ L1(Ω) with norms not greater than one such that for almost
every t in ∂Ω and Ω, respectively, the inequalities below are valid:

|l(t, x)− l′(t, x)| < δ(|x|p + ϕ(t)) ∀x ∈ Rn,
|L(t, x, w)− L′(t, x, w)| < δ(|x|p + |w|p + ψ(t)) ∀x ∈ Rn, ∀w ∈ Rmn.

Fix a metric d(a, b) in Ap compatible with the structure. We have to show that
(H) is satisfied for (Ap, d), Ja, and X = Wn

1,p. As the set B of those a ∈ Ap for which
Ja(x(·)) → ∞ as ‖x(·)‖1,p → ∞ is dense in Ap, we need to verify properties (i), (ii)
of (H) only for a ∈ B .

Therefore let an ε > 0, a γ > 0, and an a ∈ B be given. Let K be such that
‖x(·)‖p1,p ≤ K if Ja(x(·)) ≤ inf Ja + 1. Let further 1 > δ1 > 22(p−1)δ2 > 0 be such
that

γ >
2δ2(2pK + 3)

2(1−p)δ1 − 2(p−1)δ2
and d(a, b) < ε/2, if (a, b) ∈ U(δ1(K + 1)).(9.1)

If a belongs to a component of Ap whose elements generate proper functionals on
Wn

1,p, then inf Ja <∞. Choose an x(·) ∈ X such that

Ja(x(·)) ≤ inf Ja + δ2(9.2)
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and set

α = Ja(x(·)).

Set further

l̄(t, x) = l(t, x) + 2(1−p)δ1|x− x(t)|p;
L̄(t, x, w) = L(t, x, w) + 2(1−p)δ1(|x− x(t)|p + |w −∇x(t)|p);
ā = (l̄, L̄).

Then for any y(·) ∈Wn
1,1

Jā(y(·)) = Ja(y(·)) + 21−pδ1‖y(·)− x(·)‖p1,p(9.3)

and (as ‖x− y‖p ≤ 2(p−1)(‖x‖p + ‖y‖p))

0 ≤ L̄(t, x, w)− L(t, x, w) ≤ δ1(|x|p + |w|p + |x(t)|p + |∇x(t)|p)
≤ δ1(K + 1)(|x|p + |w|p + (K + 1)−1(|x(t)|p + |∇x(t)|p));

0 ≤ l̄(t, x)− l(t, x) ≤ δ1(|x|p + |x(t)|p)
≤ δ1(K + 1)(|x|p + (K + 1)−1|x(t)|p).

The latter, in view of the choice of x(·) and δ1, implies that d(ā, a) < ε/2.
Now let U = {b ∈ A : (ā, b) ∈ U(δ2)}. Then U is an open set and by (9.1),

d(a, b) < ε for any b ∈ U . We have furthermore for any such b

|Jā(y(·))− Jb(y(·))| ≤ δ2(‖y(·)‖p + 2)(9.4)

(which is immediate from the definition of U(δ)).
Finally, choose a z(·) such that

Jb(z(·)) ≤ inf Jb + δ2.

Then by (9.4) (as Ja(x(·)) = Jā(x(·)))

Jb(z(·)) ≤ inf Jb + δ2 ≤ Jb(x(·)) + δ2
≤ Ja(x(·)) + δ2(K + 3).

(9.5)

On the other hand, by (9.3), (9.4) we get

Jb(z(·)) ≥ Jā(z(·))− δ2(‖z(·)‖p + 2)
≥ Ja(z(·)) + 2(1−p)δ1‖z(·)− x(·)‖p

−2(p−1)δ2(‖z(·)− x(·)‖p + ‖x(·)‖p + 2)
≥ Ja(z(·)) + (2(1−p)δ1 − 2(p−1)δ2)‖z(·)− x(·)‖p − δ2(2(p−1)K + 2).

(9.6)

Comparing (9.5) and (9.6), we get

2δ2(2p−1K + 3) ≥ (21−pδ1 − 2p−1δ2)‖z(·)− x(·)‖p

from which we conclude by (9.1) that ‖z(·)− x(·)‖p ≤ γ, and also

|Jb(z(·)− α| ≤ δ2(2p−1K + 3) < γ.

Thus, to conclude the proof, we need to take only η ≤ δ2.
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The last result of the paper relates to the standard boundary value problem of
calculus of variations:

(P) minimize

∫
Ω

L(t, x(t),∇x(t))dt, x(·) ∈Wn
1,p, x|∂Ω(·) = 0.

Let Ip(Ω,Rn × Rmn) stand for the subspace of I+
p (Ω,Rn × Rmn) consisting of in-

tegrands L(t, x, w) for which the infimum in (P) is finite. By Proposition 8.1 if
L ∈ Ip(Ω,Rn × Rmn), then the entire component of I+

p (Ω,Rn × Rmn) containing
L belongs to Ip(Ω,Rn×Rmn). Therefore, Ip(Ω,Rn×Rmn) is a union of components
of I+

p (Ω,Rn × Rmn); hence an open subspace and therefore a completely metrizable
uniform space.

Theorem 9.2. The standard boundary value problem (P) of calculus of variations
is generically well-posed with respect to Ip(Ω,Rn × Rmn).

Proof. Set

l0(t, x) =

{
0 if x = 0;
∞ otherwise.

Consider the family {Cα} of all subsets of A such that every Cα is the product of
the component of I+

p (∂Ω,Rn) containing l0 and a component of Ip(Ω,Rn × Rmn).
Then every Cα is a component of A, Ja is proper on every Cα, and the problem of
minimizing Ja is generically well-posed on Cα by Theorem 9.1.

Set A0 =
⋃ Cα, and let for any α, C′α be a dense Gδ-subset of Cα such that for

any a ∈ C′α the problem of minimizing Ja is well-posed with respect to Cα. For any
α, we have C′α =

⋂∞
i=1 Ui,α, where every Ui,α is an open set contained in Cα. Clearly,

A′0 =
⋃ C′α is a dense subset of A0 and on the other hand, as Ui,α

⋂
Uj,β = ∅ if α 6= β,

A′0 =
⋃
α

(⋂
i

Ui,α

)
=
⋂
i

(⋃
α

Ui,α

)
,

so that A′0 is also a Gδ subset of A.
Thus, the problem of minimization of Ja on Wn

1,1 is by Theorem 9.1 generically
well-posed with respect to A0. The theorem now follows from the observation that if l
belongs to the component of I+

p (∂Ω,Rn) containing l0, then l(t, 0) differs from l0(t, 0)
by a function ϕ(t) which is summable on ∂Ω and l(t, x) =∞ if x 6= 0. It follows that
dom Ja ⊂W 1,1

0 for any a ∈ A0, and for any x(·) ∈W 1,1
0

Ja(x(·))−
∫

Ω

L(t, x(t),∇x(t))dt =

∫
∂Ω

ϕ(t)dt,

that is to say, the functional of (P) has the same domain as Ja and differs from the
restriction of Ja to dom Ja by a constant.
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Abstract. In this paper a stochastic calculus is given for the fractional Brownian motions that
have the Hurst parameter in (1/2, 1). A stochastic integral of Itô type is defined for a family of
integrands so that the integral has zero mean and an explicit expression for the second moment. This
integral uses the Wick product and a derivative in the path space. Some Itô formulae (or change of
variables formulae) are given for smooth functions of a fractional Brownian motion or some processes
related to a fractional Brownian motion. A stochastic integral of Stratonovich type is defined and the
two types of stochastic integrals are explicitly related. A square integrable functional of a fractional
Brownian motion is expressed as an infinite series of orthogonal multiple integrals.
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1. Introduction. Since the pioneering work of Hurst [14], [15] and Mandelbrot
[18], the fractional Brownian motions have played an increasingly important role in
many fields of application such as hydrology, economics, and telecommunications.

Let 0 < H < 1. It is well known that there is a Gaussian stochastic process
(BHt , t ≥ 0) such that

E
(
BHt
)

= 0, E
(
BHt B

H
s

)
=

1

2

{|t|2H + |s|2H − |t− s|2H}(1.1)

for all s, t ∈ R+. This process is called a (standard) fractional Brownian motion with
Hurst parameter H.

If H = 1/2, then the corresponding fractional Brownian motion is the usual
standard Brownian motion. If H > 1/2, then the process (BHt , t ≥ 0) exhibits a
long-range dependence, that is, if r(n) = E[BH1 (BHn+1 − BHn )], then

∑∞
n=1 r(n) =∞.

A fractional Brownian motion is also self-similar, that is, (BHαt, t ≥ 0) has the same
probability law as (αHBHt , t ≥ 0). A process satisfying this property is called a
self-similar process with the Hurst parameter H.

Since in many problems related to network traffic analysis, mathematical finance,
and many other fields the processes under study seem empirically to exhibit the self-
similar properties, and the long-range dependent properties, and since the fractional
Brownian motions are the simplest processes of this kind, it is important to have a
systematic study of these processes and to use them to construct other stochastic
processes. One way to approach this study is to follow, by analogy, the methods for
Brownian motion. In the stochastic analysis, a Brownian motion can be used as the
input (white) noise and many other processes (e.g., general diffusion processes) can
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be constructed as solutions of stochastic differential equations. One powerful tool for
determining these solutions is the Itô formula.

However, it is also known that if a stochastic process (πt, t ≥ 0) has the property
that the stochastic integral

∫
Ft dπt is well defined for a large class of integrands

(Ft, t ≥ 0), then this process (πt, t ≥ 0) is a semimartingale, e.g., [20]. It is known
that the fractional Brownian motions are not semimartingales. Therefore the beautiful
classical theory of stochastic analysis [4] is not applicable to fractional Brownian
motions for H 6= 1/2. It is a significant and challenging problem to extend the results
in the classical stochastic analysis to these fractional Brownian motions. There have
been a few papers in this direction. Lin [17] and Dai and Heyde [2] introduced
stochastic integrals and extended the Itô formula to fractional Brownian motions.
Their definitions of a stochastic integral give a stochastic integral of Stratonovich
type, which is explained further in section 3. Their Itô formula is the usual chain rule
for differentiation.

The stochastic integral
∫ t

0
fsδB

H
s , with respect to the fractional Brownian motions

introduced by Lin, Dai, and Heyde, does not satisfy in general the following property:
E
∫ t

0
fsδB

H
s = 0. A new type of stochastic integral,

∫ t
0
fs dB

H
s , is introduced, satisfying

E
∫ t

0
fs dB

H
s = 0. This property seems to be important in the modeling problem by

stochastic differential equations with fractional Gaussian noise as the driving random
process. Consider the following type of differential equation:

dXt = b(Xt)dt+ σ(Xt)dB
H
t .(1.2)

It is natural to consider that b(Xt) is the mean rate of change of the system state Xt

at time t and σ(Xt)dB
H
t is the random perturbation. So the term σ(Xt)dB

H
t should

not contribute to the mean rate of change. The term b(Xt) is used to represent
the average or deterministic part of the problem and σ(Xt) is used to represent the
intensity of the random part of the problem. Therefore it is important to extend the
classical interpretation of b and σ to the differential equation (1.2).

To introduce the new integral
∫
f dBH , the Wick product or Wick calculus is

used. The use of the Wick product is not anomalous because in white noise analysis
the usual product has been associated with integrals of Stratonovich type and the
Wick product has been associated with integrals of Itô type (e.g., [8], [12]).

A brief outline of the paper is as follows. In section 2, some description and
terminology for the fractional Brownian motions are given. In section 3, a derivative
in special directions is defined and a stochastic integral of Itô type is defined using
the Wick product. Furthermore, a stochastic integral of Stratonovich type is defined
and the two types of stochastic integrals are related. In section 4, some change of
variables formulas (Itô formulas) are given for the two types of stochastic integrals. In
section 5, two applications of the Itô formula are given. In section 6, multiple integrals
of Itô type and Stratonovich type for a fractional Brownian motion are defined and
the Hu-Meyer formula is extended to these multiple integrals. The relation between
these two types of multiple integrals is given. A square integrable functional of a
fractional Brownian motion is represented as an infinite sum of orthogonal terms.

If the integrand of a stochastic integral of Stratonovich type for a fractional Brow-
nian motion with H ∈ (1/2, 1) is smooth, then the integral can be defined as a limit
of a sequence of Riemann sums, where the integrand can be evaluated at any point
between each pair of partition points. It is well known that this choice of evaluation
of the integrand is not valid if the integrator is Brownian motion, that is, H = 1/2.
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If f is smooth, then an application of an Itô formula is

f(BHt ) = f(0) +

∫ t

0

f ′(BHs )dBHs +H

∫ t

0

s2H−1f ′′(BHs )ds,

where prime denotes differentiation and H ∈ (1/2, 1). It is interesting to note that if
H = 1/2 is formally substituted in the equation, then the well-known Itô formula for
Brownian motion is obtained.

2. Fractional Brownian motion. Let Ω = C0(R+,R) be the space of real-
valued continuous functions on R+ with the initial value zero and the topology of
local uniform convergence. There is a probability measure PH on (Ω,F), where F
is the Borel σ-algebra such that on the probability space (Ω,F , PH) the coordinate
process BH : Ω→ R defined as

BHt (ω) = ω(t), ω ∈ Ω,

is a Gaussian process satisfying (1.1). The process (BHt , t ≥ 0) is called the canonical
(standard) fractional Brownian motion with Hurst parameter H. In this paper only
this canonical process and its associated probability space are used. Throughout this
paper it is assumed that H ∈ ( 1

2 , 1) is arbitrary but fixed. Clearly if H = 1/2, the
fractional Brownian motion is the standard Brownian motion.

It is elementary to verify that a fractional Brownian motion for H 6= 1/2 is not

a semimartingale. It is known [20] that if the (usual) stochastic integral
∫ b
a
fs dXs is

well defined for a large family of integrands with respect to a process (Xt, t ≥ 0), then
this process (Xt, t ≥ 0) is a semimartingale. Thus the well-developed classical theory
for semimartingales cannot be applied here, and the stochastic integral with respect
to fractional Brownian motions needs to be developed.

Let φ : R+ × R+ → R+ be given by

φ(s, t) = H(2H − 1)|s− t|2H−2.(2.1)

Many results of this paper can be extended to a more general φ(s, t) that is symmetric
and positive definite, so φ in (2.1) is given as a function of two variables and not their
difference. Let f : R+ → R be a Borel measurable (deterministic) function. The
function f belongs to the Hilbert space L2

φ(R+) if

|f |2φ :=

∫ ∞
0

∫ ∞
0

f(s)f(t)φ(s, t)ds dt <∞.(2.2)

The inner product on the Hilbert space L2
φ is denoted by 〈·, ·〉φ.

The stochastic (Wiener) integral with respect to fractional Brownian motions for
deterministic kernels is easily defined.

Lemma 2.1. If f, g ∈ L2
φ(R+), then

∫∞
0
fs dB

H
s and

∫∞
0
gs dB

H
s are well defined

zero mean, Gaussian random variables with variances |f |2φ and |g|2φ, respectively, and

E
(∫ ∞

0

fs dB
H
s

∫ ∞
0

gs dB
H
t

)
=

∫ ∞
0

∫ ∞
0

f(s)g(t)φ(s, t)dsdt = 〈f, g〉φ.(2.3)

This lemma is verified in [7]. It can be proved directly by verifying it for simple
functions

∑n
i=1 aiχ[ti,ti+1](s) and then proceeding with a passage to the limit.
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3. Stochastic integration for fractional Brownian motions. Let (Ω,F ,PH)
be the probability space from section 2 where a fractional Brownian motion with Hurst
parameter H is well defined. The probability measure PH depends on H. Throughout
this paper the Hurst parameter H is fixed such that 1/2 < H < 1. Since H is fixed,
the probability measure is denoted by P .

Let Lp(Ω,F , P ) = Lp be the space of all random variables F : Ω→ R such that

‖F‖p := (E|F |p)1/p
<∞

and let L2
φ(R+) = {f |f : R+ → R, |f |2φ :=

∫∞
0

∫∞
0
fsftφ(s, t)ds dt < ∞}. Often for

notational simplicity L2
φ(R+) is denoted by L2

φ. For any f ∈ L2
φ, define ε : L2

φ →
L1(Ω,F , P ) as

ε(f) : = exp

{∫ ∞
0

ft dB
H
t −

1

2

∫ ∞
0

∫ ∞
0

fsftφ(s, t)ds dt

}
= exp

[∫ ∞
0

ft dB
H
t −

1

2
|f |2φ

]
.(3.1)

If f ∈ L2
φ, then ε(f) ∈ Lp(Ω,F , P ) for each p ≥ 1 and ε(f) is called an exponential

function (e.g., [21]). The Hilbert space L2
φ is naturally associated with the Gaussian

process, fractional Brownian motion, from the formulation as an abstract Wiener
space. The Hilbert space plays a basic role for questions of absolute continuity [6]
and the exponential function (3.1) is a Radon–Nikodym derivative for a translate of
the fractional Brownian motion.

Let E be the linear span of the exponentials, that is,

E =

{
n∑
k=1

akε(fk), n ∈ N, ak ∈ R, fk ∈ L2
φ(R+) for k ∈ {1, . . . , n}

}
.(3.2)

Theorem 3.1. E is a dense set of Lp(Ω,F , P ) for each p ≥ 1. In particular, E
is a dense set of L2(Ω,F , P ).

Proof. A random variable F : Ω→ R is said to be a polynomial of the fractional
Brownian motion if there is a polynomial p(x1, x2, . . . , xn) such that

F = p
(
BHt1 , B

H
t2 , . . . , B

H
tn

)
for some 0 ≤ t1 < t2 < · · · < tn. Since (BHt , t ≥ 0) is a Gaussian process it is
well known that the set of all polynomial fractional Brownian functionals is dense in
Lp(Ω,F , P ) for p ≥ 1. In this case, the denseness of the polynomials follows from the
continuity of the process and the Stone–Weierstrass theorem. To prove the theorem it
is only necessary to prove that any polynomial can be approximated by the elements
in E . Since the Wick product of exponentials is still an exponential it is easy to see
that it is only necessary to show that for any t > 0, BHt can be approximated by
elements in E .

Let fδ(s) = χ[0,t](s)δ. It is clear that for δ > 0, fδ is in L2
φ, and ε(fδ) = c(δ)eδB

H
t

for some positive constant c(δ). It is easy to see that

Fδ =
ε(fδ)− c(δ)

c(δ)δ
=
eδB

H
t − 1

δ
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is in E . If δ → 0, then Fδ → BHt in Lp(Ω,F , P ) for each p ≥ 1. This completes the
proof.

Theorem 3.2. If f1, f2, . . . , fn are elements in L2
φ such that |fi − fj |φ 6= 0 for

i 6= j, then ε(f1), ε(f2), . . . , ε(fn) are linearly independent in L2
φ.

Proof. This theorem is known to be true if the fractional Brownian motion is
replaced by a standard Brownian motion (e.g., [21]).

Let f1, f2, . . . , fk be distinct elements in L2
φ. Let λ1, λ2, . . . , λk be real numbers

such that

|λ1ε(f1) + λ2ε(f2) + · · ·+ λkε(fk)|φ = 0.

Thus for any g ∈ L2
φ,

E[{λ1ε(f1) + λ2ε(f2) + · · ·+ λkε(fk)}ε(g)] = 0.

By an elementary computation for Gaussian random variables it follows that

λ1e
〈f1,g〉φ + λ2e

〈f2,g〉φ + · · ·+ λke
〈fk,g〉φ = 0.

Replace g by δg for δ ∈ R to obtain

λ1e
δ〈f1,g〉φ + λ2e

δ〈f2,g〉φ + · · ·+ λke
δ〈fk,g〉φ = 0.

Expand the above identity in the powers of δ and compare the coefficients of δp for
p ∈ {0, 1, · · · , k − 1} to obtain the family of equations

λ1〈f1, g〉pφ + λ2〈f2, g〉pφ + · · ·+ λk〈fk, g〉pφ = 0

for p = 0, 1, · · · , k − 1. This is a linear system of k equations and k unknowns. By
the Vandermonde formula, the determinant of this linear system is

det
(
〈fi, g〉pφ

)
=
∏
i<j

〈fi − fj , g〉pφ.

For every pair (i, j) with i 6= j, the set {g ∈ L2
φ : 〈fi − fj , g〉φ 6= 0} is the comple-

ment of a hyperplane in L2
φ. Since the intersection of finitely many complements of

hyperplanes in L2
φ is not empty, there is a g ∈ L2

φ such that 〈fi − fj , g〉φ 6= 0 for
all pairs i and j such that i 6= j. Thus λ1 = λ2 = · · · = λk = 0. This proves the
theorem.

The above two theorems reduce many verifications for functions in L2(Ω,F , P )
to verifications of exponentials in E .

The following result is an absolute continuity of measures for some translates of
fractional Brownian motion.

Theorem 3.3. If F : Ω→ R is a random variable such that F ∈ Lp(Ω,F , P ) for
some p ≥ 1, then

E
{
F

(
BH· +

∫ ·
0

(Φg)(s)ds

)}
= E

{
F (BH· )e

∫∞
0
gs dB

H
s − 1

2

∫∞
0

∫∞
0
φ(u,v)gugv du dv

}
,

(3.3)

where Φ is given by

(Φg)(t) =

∫ ∞
0

φ(t, u)gu du
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and g ∈ L2
φ.

Proof. The term F (BH· ) denotes F (ω). Let k ∈ L2
φ and

F (BH· ) = ε(k) = e
∫∞
0
ksdB

H
s − 1

2

∫∞
0

∫∞
0
φ(u,v)kukv du dv.

Then

F

(
BH· +

∫ ·
0

(Φg)s ds

)
= F (BH· )e

∫∞
0
ku(Φg)u du.

So

E
{
F

(
BH· +

∫ ·
0

(Φg)s ds

)}
= e

∫∞
0
ku(Φg)u du.

Furthermore, it follows that

E
{
F
(
BH·
)
ε(g)

}
= e

∫∞
0

∫∞
0
φ(u,v)kugv du dv = e

∫∞
0
ku(Φg)u du.

Thus the theorem is true if F is an exponential function ε(f) ∈ E . A limiting argument
completes the proof.

Let a Radon–Nikodym derivative dP̃
dP on (Ω,F , P ) be given by

dP̃

dP
= e

∫∞
0
gs dB

H
s − 1

2

∫∞
0

∫∞
0
φ(u,v)gugv du dv,

and denote the expectation with respect to P̃ by Ẽ; then (3.3) is given by

EF
(
BH· +

∫ ·
0

(Φg)s ds

)
= Ẽ(F (BH· )).

For a random variable F in Lp(Ω,F , P ) (p ≥ 1) and a function g ∈ L2
φ, the

random variable F (BH· +
∫ ·

0
(Φg)(v)dv) is well defined. An analogue of the Malliavin

derivative [23] is introduced.
Definition 3.4. The φ-derivative of a random variable F ∈ Lp in the direction

of Φg where g ∈ L2
φ is defined as

DΦgF (ω) = lim
δ→0

1

δ

{
F (ω + δ

∫ ·
0

(Φg)(u)du)− F (ω)

}
(3.4)

if the limit exists in Lp(Ω,F , P ). Furthermore, if there is a process (DφFs, s ≥ 0)
such that

DΦgF =

∫ ∞
0

DφFsgs ds almost surely (a.s.)

for all g ∈ L2
φ, then F is said to be φ-differentiable.

The higher order derivatives can be defined in a similar manner.
Definition 3.5. Let F : [0, T ] × Ω → R be a stochastic process. The process F

is said to be φ-differentiable if for each t ∈ [0, T ], F (t, ·) is φ-differentiable and Dφ
sFt

is jointly measurable.
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It is easy to verify an elementary version of a chain rule, that is, if f : R→ R is a
smooth function and F : Ω→ R is φ-differentiable, then f(F ) is also φ-differentiable
and

DΦgf(F ) = f ′(F )DΦgF

and

Dφ
s f(F ) = f ′(F )Dφ

sF

and the iterated directional derivatives

DΦg1DΦg2f(F ) = f ′(F )DΦg1DΦg2F + f ′′(F )DΦg1FDΦg2F.

The following rules for differentiation, which can be verified as in the proof of Propo-
sition 3.6, are useful later:

DΦg

∫ ∞
0

fs dB
H
s =

∫ ∞
0

∫ ∞
0

φ(u, v)fugv du dv = 〈f, g〉φ;(3.5)

Dφ
s

∫ ∞
0

fu dB
H
u =

∫ ∞
0

φ(u, s)fu du = (Φf)(s);(3.6)

DΦgε(f) = ε(f)

∫ ∞
0

∫ ∞
0

φ(u, v)fugv du dv = ε(f)〈f, g〉φ;(3.7)

Dφ
s ε(f) = ε(f)

∫ ∞
0

φ(u, s)fu du = ε(f)(Φf)(s),(3.8)

where f, g ∈ L2
φ.

Now the Wick product � of two functionals is introduced. To extend the theory
of stochastic calculus for Brownian motions to the fractional Brownian motions, the
Wick calculus for Gaussian processes (or Gaussian measures) is used. The Wick
product of two exponentials ε(f) and ε(g) is defined as

ε(f) � ε(g) = ε(f + g).(3.9)

Since for distinct f1, f2, . . . , fn in L2
φ, ε(f1), ε(f2), . . . , ε(fn) are linearly independent,

this definition can be extended to define the Wick product F � G of two functionals
F and G in E .

Note that
∫∞

0
gs dB

H
s is not an element in E . The Wick product is extended

to more general functionals, including the functionals of the form
∫∞

0
gs dB

H
s , where

g ∈ L2
φ.

Proposition 3.6. If g ∈ L2
φ, F ∈ L2(Ω,F , P ), and DΦgF ∈ L2(Ω,F , P ), then

F �
∫ ∞

0

gs dB
H
s = F

∫ ∞
0

gs dB
H
s −DΦgF.(3.10)

Proof. By the definition (3.9),

ε(f) � ε(δg) = ε(f + δg).(3.11)
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Differentiate the above identity with respect to δ, and evaluate at δ = 0 to obtain

ε(f) �
∫ ∞

0

gs dB
H
s = ε(f)

[∫ ∞
0

gs dB
H
s − 〈f, g〉φ

]
= ε(f)

∫ ∞
0

gs dB
H
s − ε(f)〈f, g〉φ.(3.12)

By (3.7), it follows that the last term of the above expression is DΦgε(f). Thus, the
following equality is satisfied:

ε(f) �
∫ ∞

0

gs dB
H
s = ε(f)

∫ ∞
0

gs dB
H
s −DΦgε(f).(3.13)

If F ∈ E is a finite linear combination of ε(f1), ε(f2), . . . , ε(fn), then extend (3.13)
by linearity

F �
∫ ∞

0

gs dB
H
s = F

∫ ∞
0

gs dB
H
s −DΦgF

= F

∫ ∞
0

gs dB
H
s −

∫ ∞
0

Dφ
sFgs ds.(3.14)

The proof of the proposition is completed by Theorem 3.1.
Now the second moment of (3.10) is computed. Note that by a simple computation

for Gaussian random variables, it follows that

E(ε(f)ε(g)) = exp{〈f, g〉φ}.

Thus

E{(ε(f) � ε(γg))(ε(h) � ε(δg))} = E{ε(f + γg)ε(h+ δg)}
= exp{〈f + γg, h+ δg〉φ}.

Both sides of this equality are functions of γ and δ. Taking the partial derivative
∂2

∂γ∂δ , evaluated at γ = δ = 0, it follows that

E
{(

ε(f) �
∫ ∞

0

gs dB
H
s

)(
ε(h) �

∫ ∞
0

gs dB
H
s

)}
= exp(〈f, h〉φ){〈f, g〉φ〈h, g〉φ + 〈g, g〉φ}
= E{DΦgε(f)DΦgε(h) + ε(f)ε(h)〈g, g〉φ}.

Thus

E
{(

ε(f) �
∫ ∞

0

gs dB
H
s

)(
ε(h) �

∫ ∞
0

gs dB
H
s

)}
= E(DΦgε(f)DΦgε(h) + ε(f)ε(h)〈g, g〉φ).

By bilinearity, for any F and G in E , the following equality is satisfied:

E
{(

F �
∫ ∞

0

gs dB
H
s

)(
G �

∫ ∞
0

gs dB
H
s

)}
= E{DΦgFDΦgG+ FG〈g, g〉φ}.
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Let F be equal to G. Then

E
(
F �

∫ ∞
0

gs dB
H
s

)2

= E
[
(DΦgF )2 + F 2|g|2φ

]
.

This result is stated in the following theorem.
Theorem 3.7. Let g ∈ L2

φ and let Eg be the completion of E under the norm

‖F‖2g = E
{

(DΦgF )2 + F 2
}
,

where F is a random variable. Then for any element F ∈ Eg, F � ∫∞
0
gs dB

H
s is well

defined and

E
(
F �

∫ ∞
0

gs dB
H
s

)2

= E
{

(DΦgF )2 + F 2|g|2φ
}
.(3.15)

By the polarization technique [21], there is the following corollary:
Corollary 3.8. Let g, h ∈ L2

φ and F,G ∈ E. Then

E
(
F �

∫ ∞
0

gs dB
H
s G �

∫ ∞
0

hs dB
H
s

)
= E[DΦgFDΦhG+ FG〈g, h〉φ].

This equality is the starting point for the definition of the stochastic integral
with respect to the fractional Brownian motions. Let F ∈ E . The stochastic integral∫ T

0
Fs dB

H
s is defined, and some properties associated with this stochastic integral are

studied.
Consider an arbitrary partition of [0, T ], π : 0 = t0 < t1 < t1 < · · · < tn = T .

First, the following Riemann sum is given using the Wick product introduced above:

S(F, π) =
n−1∑
i=0

Fti � (BHti+1
−BHti ).

From (3.9), it easily follows that for any F and G in E , E(F �G) = E(F )E(G). This
identity extends to more general F and G such that F � G is well defined (e.g. [8],
p. 83). Thus for any partition π,

E

(
n−1∑
i=0

Fti � (BHti+1
−BHti )

)
=
n−1∑
i=0

E
(
Fti � (BHti+1

−BHti )
)

=

n−1∑
i=0

E(Fti)E
(
BHti+1

−BHti
)

= 0.

To compute the L2 norm of S(F, π), denote

σij = E
{(
Fti � (BHti+1

−BHti )
)(

Ftj � (BHtj+1
−BHtj )

)}
.

By Corollary 3.8, it follows that

σij = E

{∫ ti+1

ti

Dφ
sFti ds

∫ tj+1

tj

Dφ
t Ftj dt+ FtiFtj

∫ ti+1

ti

∫ tj+1

tj

φ(u, v)dudv

}
.
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Thus

ES(F, π)2 =
n−1∑
i,j=0

E
{∫ ti+1

ti

Dφ
sFti ds

∫ tj+1

tj

Dφ
t Ftj dt

+ FtiFtj

∫ ti+1

ti

∫ tj+1

tj

φ(u, v)dudv

}
.

Denote |π| := maxi(ti+1 − ti) and Fπt = Fti if ti ≤ t < ti+1. Assume that as |π| → 0,
E|Fπ − F |2φ → 0 and

n−1∑
i=0

E
{∫ ti+1

ti

|Dφ
sFti −Dφ

sFs|ds
}2

converges to 0. Then from the above it is easy to see that if (πn, n ∈ N) is a sequence of
partitions such that |πn| → 0 as n→∞, then (S(F, πn), n ∈ N) is a Cauchy sequence

in L2(Ω,F , P ). The limit of this sequence in L2(Ω,F , P ) is defined as
∫ T

0
Fs dB

H
s :

that is, define ∫ T

0

Fs dB
H
s = lim

|π|→0

n−1∑
i=0

Fπti � (BHti+1
−BHti )(3.16)

so that

E

∣∣∣∣∣
∫ T

0

Fs dB
H
s

∣∣∣∣∣
2

= E


(∫ T

0

Dφ
sFs ds

)2

+ |F |2φ

 .

Let L(0, T ) be the family of stochastic processes on [0, T ] such that F ∈ L(0, T )
if E|F |2φ < ∞, F is φ-differentiable, the trace of (Dφ

sFt, 0 ≤ s ≤ T, 0 ≤ t ≤ T )

exists, E
∫ T

0
(Dφ

sFs)
2 ds < ∞, and for each sequence of partitions (πn, n ∈ N) such

that |πn| → 0 as n→∞, the quantities

n−1∑
i=0

E

{∫ t
(n)
i+1

t
(n)
i

|Dφ
sF

π

t
(n)
i

−Dφ
sFs|ds

}2

and

E|Fπ − F |2φ

tend to 0 as n→∞, where πn : 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n−1 < t

(n)
n = T .

The following result summarizes the above construction of a stochastic integral.
Theorem 3.9. Let (Ft, t ∈ [0, T ]) be a stochastic process such that F ∈ L(0, T ).

The limit (3.16) exists and this limit is defined as
∫ T

0
Fs dB

H
s . Moreover, this integral

satisfies E
∫ T

0
Fs dB

H
s = 0 and

E

∣∣∣∣∣
∫ T

0

Fs dB
H
s

∣∣∣∣∣
2

= E


(∫ T

0

Dφ
sFs ds

)2

+ |1[0,T ]F |2φ

 .(3.17)
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The following properties follow directly from the above theorem.
(1) If F,G ∈ L(0, T ), then∫ t

0

(
aFs + bGs

)
dBHs = a

∫ t

0

Fs dB
H
s + b

∫ t

0

Gs dB
H
s a.s.

for any constants a and b and t ∈ (0, T ].
(2) If F ∈ L(0, T ), E[sup0≤s≤T Fs]

2 < ∞, and sup0≤s≤T E|Dφ
sFs|2 < ∞, then

(
∫ t

0
Fs dB

H
s , 0 ≤ t ≤ T ) has a continuous version.

Property (1) is obvious. To show (2) let Yt =
∫ t

0
Fs dB

H
s , 0 ≤ t ≤ T . By the

equality (3.17), it follows that

E|Yt − Ys|2 = E
∣∣∣∣∫ t

s

Fu dB
H
u

∣∣∣∣2
≤ E

{(∫ t

s

Dφ
uFu du

)2

+

∫ t

s

∫ t

s

FuFvφ(u, v)dudv

}

≤ (t− s)
∫ t

s

E|Dφ
uFu|2 du+ E[ sup

0≤s≤T
Fs]

2

∫ t

s

∫ t

s

φ(u, v)dudv

≤ (t− s)2 + C(t− s)2H .

By the Kolmogorov lemma [22], property (2) is satisfied.
In Theorem 3.9, it is not assumed that the stochastic process (Fs, s ∈ [0, T ])

is adapted to the fractional Brownian motion. Now assume that Dφ
sFs = 0 for all

s ∈ [0, T ]. Thus in this case,

E

∣∣∣∣∣
∫ T

0

Fs dB
H
s

∣∣∣∣∣
2

= E

{∫ T

0

∫ T

0

FuFvφ(u, v)du dv

}
.

This fact is stated in the following theorem.

Theorem 3.10. If F ∈ L(0, T ) and if F satisfies E
∫ T

0
|Dφ

sFs|ds = 0, then

E

∣∣∣∣∣
∫ T

0

Fs dB
H
s

∣∣∣∣∣
2

= E{|1[0,T ]F |2φ}.

An analogue of the stochastic integral of Stratonovich type
∫ t

0
FsδB

H
s is also

introduced. This type of integral is related to the integrals introduced by Lin [17] and
Dai and Heyde [2].

Definition 3.11. Let (πn, n ∈ N) be a sequence of partitions of [0, t] such that

|πn| → 0 as n→∞. If
∑n−1
i=0 f(t

(n)
i )(BH(t

(n)
i+1)−BH(t

(n)
i )) converges in L2(Ω,F , P )

to the same limit for all such sequences (πn, n ∈ N), then this limit is called the

stochastic integral of Stratonovich type and the limit is denoted by
∫ t

0
f(s)δBH(s).

Theorem 3.12. If F ∈ L(0, t), then the stochastic integral of Stratonovich type∫ t
0
FsδB

H
s exists and the following equality is satisfied:∫ t

0

FsδB
H
s =

∫ t

0

Fs dB
H
s +

∫ t

0

Dφ
sFs ds a.s.
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Proof. By Proposition 3.6,

n−1∑
i=0

F
t
(n)
i

(
BH
(
t
(n)
i+1

)
−BH

(
t
(n)
i

))
=

n−1∑
i=0

F
t
(n)
i
�
(
BH
(
t
(n)
i+1

)
−BH

(
t
(n)
i

))
+
n−1∑
i=0

DΦχ[
t
(n)
i ,t

(n)
i+1

]F
t
(n)
i

=
n−1∑
i=0

[
F
t
(n)
i
�
(
BH
(
t
(n)
i+1

)
−BH

(
t
(n)
i

))
+

∫ t
(n)
i+1

t
(n)
i

Dφ
sFt(n)

i
ds

]
.

This equality proves the Theorem.
These two types of stochastic integrals are both interesting:
(1) The expectation of

∫ t
0
Fs dB

H
s is 0, but the chain rule for this type of integral

is more complicated than for the integral of Stratonovich type.
(2) The chain rule for the integral of Stratonovich type is simple, but

E
∫ t

0
FsδB

H
s 6= 0 in general.

An example is provided that shows that E{∫ t
0
FsδB

H
s } is not 0.

It is well known that if X is a standard normal random variable, X ∼ N(0, 1),
then

EXn =

{
n!

(
√

2)n(n/2)!
if n is even,

0 if n is odd.

Let f(x) = xn. If n is odd, then

E
∫ t

0

f(BHs )δBHs = E
∫ t

0

Dφ
s f(BHs )ds

= E
∫ t

0

f ′(BHs )Dφ
sB

H
s ds

= E
∫ t

0

f ′(BHs )

∫ s

0

φ(u, s)du ds

= H

∫ t

0

s2H−1Ef ′(BHs )ds

= nH

∫ t

0

s2H−1E((BHs )n−1)ds

= nH

∫ t

0

s2H−1E
(
BHs
sH

)n−1

snH−Hds

=
n!Ht(n+1)H

2
n−1

2 (n+ 1)H
(
n−1

2

)
!
,

which is not 0. If n is even, then by the same computation,

E
∫ t

0

(BHs )nδBHs = 0.

Now another interesting phenomenon is shown. Let π be a partition of the interval
[0, T ] : 0 = t0 < t1 < t2 < · · · < tn = T . Let (f(s), s ≥ 0) be a smooth stochastic
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process on the probability space (Ω,F , P ). For the Brownian motion (Bt, t ≥ 0), the

Itô integral can be defined as the limit of the Riemann sums
∑n−1
i=0 fti(Bti+1

− Bti)
as the partition |π| → 0. The Stratonovich integral is defined as the limit of the

Riemann sums
∑n−1
i=0

fti+fti+1

2 (Bti+1
−Bti) as the partition |π| → 0. It may seem to

be more natural to define the Stratonovich integral for a fractional Brownian motion
(BHt , t ≥ 0) in a similar way. It is shown that the above two limits are the same for
a large class of stochastic processes.

Initially the following lemma is given.
Lemma 3.13. Let p be a positive even integer. Then

E(BHt −BHs )p =
p!

2p/2(p/2)!
|t− s|pH .(3.18)

Proof. By (1.1) it follows that

E|BHt −BHs |2 = E(BHt )2 + E(BHs )2 − 2EBHt BHs
= t2H + s2H − (t2H + s2H − |t− s|2H) = |t− s|2H .

Thus
BHt −BHs
|t−s|H is a standard Gaussian random variable and

E|BHt −BHs |p = |t− s|pHE
(
BHt −BHs
|t− s|H

)p
=

p!

2p/2(p/2)!
|t− s|pH .

Corollary 3.14. For each α > 1, there is a Cα <∞ such that

E|BHt −BHs |α ≤ Cα|t− s|αH .(3.19)

Definition 3.15. The process (fs, 0 ≤ s ≤ T ) is said to be a bounded quadratic
variation process if there are constants p ≥ 1 and 0 < Cp < ∞ such that for any
partition π : 0 = t0 < t1 < t2 < · · · < tn = T ,

n−1∑
i=0

(E|fti+1
− fti |2p)1/p ≤ Cp.

Example. Let f : R → R be continuously differentiable with the first derivative
bounded by C. Then f(BHs ) is a bounded quadratic variation process. In fact, for
any p ≥ 1 and partition π,

n−1∑
i=0

{
E|f(BHti+1

)− f(BHti )|2p
}1/p

=
n−1∑
i=0

{
E
(∫ 1

0

f ′
(
BHti + θ(BHti+1

−BHti )
)
dθ(BHti+1

−BHti )

)2p
}1/p

≤ C
n−1∑
i=0

E
(
|BHti+1

−BHti |2p
)1/p

≤ C
n−1∑
i=0

|ti+1 − ti|2H ≤ CT.
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Theorem 3.16. Let (f(t), 0 ≤ t ≤ T ) be a bounded quadratic variation process.
Let (πn, n ∈ N) be a sequence of partitions of [0, T ] such that |πn| → 0 as n→∞ and

(
n−1∑
i=0

f
(
t
(n)
i

)(
BH

(
t
(n)
i+1

)
−BH

(
t
(n)
i

))
, n ∈ N

)

converges to a random variable G in L2(Ω,F , P ), where πn =
{
t
(n)
0 , . . . , t

(n)
n

}
. Then

(
n−1∑
i=0

f
(
t
(n)
i+1

)(
BH

(
t
(n)
i+1

)
−BH

(
t
(n)
i

))
, n ∈ N

)

also converges to G in L2(Ω,F , P ).

Proof. It suffices to show that
∑n−1
i=0 (fti+1

− fti)(BHti+1
− BHti ) converges to 0 in

L2(Ω,F , P ). Let p be a number as indicated in the definition of bounded quadratic
variation for (ft, 0 ≤ t ≤ T ):

(
E
{ n−1∑
i=0

(fti+1 − fti)
(
BHti+1

−BHti
)}2)1/2

≤
n−1∑
i=0

(
E(fti+1

− fti)2E
(
BHti+1

−BHti
)2
)1/2

≤
n−1∑
i=0

(
E(fti+1

− fti)2p
)1/2p(E(BHti+1

−BHti
)2q
)1/2q

≤
{
n−1∑
i=0

(
E(fti+1

− fti)2p
)1/p}1/2{n−1∑

i=0

(
E|BHti+1

−BHti |2q
)1/q

}1/2

≤ C
{
n−1∑
i=0

|ti+1 − ti|2H
}1/2

≤ C max
0≤i≤n−1

(ti+1 − ti)H−1/2

{
n−1∑
i=0

|ti+1 − ti|
}1/2

≤ C
√
T max

0≤i≤n−1
(ti+1 − ti)H−1/2 → 0 ( as |π| → 0),

where 1/p+ 1/q = 1.

It can also be shown with a slightly more lengthy argument that if (fs, s ≥ 0)
is a process with bounded quadratic variation and ξi is any point in [ti, ti+1], then

a sequence of the Riemann sums
∑n−1
i=0 fξi(B

H
ti+1
− BHti ) converges in L2(Ω,F , P ) to∫ T

0
fsδB

H
s , if it is true for any particular choice of such a family of points ξi.

4. An Itô formula. Now an analogue of the Itô formula is established, that
is, a chain rule for the integral introduced in the last section. Let f : R → R be a
twice continuously differentiable function with bounded second derivative. Then for
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a partition {t0, t1, . . . , tn} of [0, T ], it follows by Taylor’s formula that

f
(
BHT
)− f(0) =

n−1∑
i=0

[
f
(
BHti+1

)
− f (BHti )]

=

n−1∑
i=0

f ′
(
BHti
) [
BHti+1

−BHti
]

+
1

2

n−1∑
i=0

f ′′(ξi)
[
BHti+1

−BHti
]2

=
n−1∑
i=0

f ′
(
BHti
) � [BHti+1

−BHti
]

+
n−1∑
i=0

∫ ti+1

ti

Dφ
s f
′ (BHti ) ds

+
1

2

n−1∑
i=0

f ′′(ξi)
[
BHti+1

−BHti
]2

= I1 + I2 + I3,

where ξi ∈ (BHti , B
H
ti+1

). Since it is assumed that H > 1/2, it follows that I3 → 0 in

L2(Ω,F , P ). By the definition of the stochastic integral introduced in the preceding

section, the first term I1 converges to
∫ T

0
f ′(BHs )dBHs in L2. By a version of the chain

rule for the φ-differentiation operator, it follows that, for s ∈ [ti, ti+1),

Dφ
s f
′ (BHti ) = f ′′

(
BHti
)
Dφ
sB

H
ti

= f ′′
(
BHti
) ∫ ti

0

φ(u, s)du

= Hf ′′
(
BHti
)

[s2H−1 − (s− ti)2H−1].

Thus the second sum in the three sums from Taylor’s formula converges to

H
∫ T

0
s2H−1f ′′(BHs )ds in L2. The following chain rule formula is obtained.

Theorem 4.1. If f : R → R is a twice continuously differentiable function with
bounded derivatives to order two, then

f(BHT )− f(BH0 ) =

∫ T

0

f ′(BHs )dBHs +H

∫ T

0

s2H−1f ′′(BHs )ds a.s.(4.1)

It is interesting to note that this formula implies the usual Itô formula for Brow-
nian motion when H = 1/2 is formally substituted in (4.1).

The following theorem shows how to compute the φ-derivative of a stochastic
integral of Itô type. It can be verified from the product rule and the Riemann sum
approximations to the stochastic integral.

Theorem 4.2. Let (Ft, t ∈ [0, T ]) be a stochastic process in L(0, T ) and

sup0≤s≤T E|Dφ
sFs|2 < ∞, and let ηt =

∫ t
0
Fu dB

H
u for t ∈ [0, T ]. Then, for s, t ∈

[0, T ],

Dφ
s ηt =

∫ t

0

Dφ
sFu dB

H
u +

∫ t

0

Fuφ(s, u)du a.s.

Now a more general Itô formula is given.
Theorem 4.3. Let ηt =

∫ t
0
Fu dB

H
u , where (Fu, 0 ≤ u ≤ T ) is a stochastic process

in L(0, T ). Assume that there is an α > 1−H such that

E|Fu − Fv|2 ≤ C|u− v|2α,
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where |u− v| ≤ δ for some δ > 0 and

lim
0≤u,v≤t,|u−v|→0

E|Dφ
u(Fu − Fv)|2 = 0.

Let f : R+ × R → R be a function having the first continuous derivative in its first
variable and the second continuous derivative in its second variable. Assume that
these derivatives are bounded. Moreover, it is assumed that E

∫ T
0
|FsDφ

s ηs|ds < ∞
and (f ′(s, ηs)Fs, s ∈ [0, T ]) is in L(0, T ). Then, for 0 ≤ t ≤ T ,

f(t, ηt) = f(0, 0) +

∫ t

0

∂f

∂s
(s, ηs)ds+

∫ t

0

∂f

∂x
(s, ηs)Fs dB

H
s

+

∫ t

0

∂2f

∂x2
(s, ηs)FsD

φ
s ηs ds a.s.

(4.2)

Proof. Let π be a partition defined as above by replacing T by t. Then

f(t, ηt)− f(0, 0) =
n−1∑
k=0

[f(tk+1, ηtk+1
)− f(tk, ηtk)]

=

n−1∑
k=0

[f(tk+1, ηtk+1
)− f(tk, ηtk+1

)]

+

n−1∑
k=0

[f(tk, ηtk+1
)− f(tk, ηtk)].

By the mean value theorem, it is easy to see that the first sum converges to∫ t

0

∂f

∂s
(s, ηs)ds

in L2. Now consider the second sum. Using Taylor’s formula, it follows that

f(tk, ηtk+1
)− f(tk, ηtk) =

∂f

∂x
(tk, ηtk)(ηtk+1

− ηtk) +
1

2

∂2f

∂x2
(tk, η̃tk)

(
ηtk+1

− ηtk
)2
,

where η̃tk ∈ (ηtk , ηtk+1
). An upper bound is obtained for E

(
ηtk+1

− ηtk
)2

as follows:

E
(
ηtk+1

− ηtk
)2

= E
(∫ tk+1

tk

Dφ
sFs ds

)2

+ E
∫ tk+1

tk

∫ tk+1

tk

FuFvφ(u, v)dudv

≤ (tk+1 − tk)

∫ tk+1

tk

E(Dφ
sFs)

2 ds

+

∫ tk+1

tk

∫ tk+1

tk

(EF 2
u)1/2(EF 2

v )1/2φ(u, v)dudv

≤ C
[
(tk+1 − tk)2 +

∫ tk+1

tk

∫ tk+1

tk

φ(u, v)dudv

]
≤ C(tk+1 − tk)2 + C(tk+1 − tk)2H ≤ C(tk+1 − tk)2H ,

where ti+1− ti < 1 and C is a constant independent of the partition π that may differ
for different applications.
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Thus

E
n−1∑
k=0

∂2f

∂x2
(tk, η̃tk)

(
ηtk+1

− ηtk
)2 ≤ C n−1∑

k=0

E
(
ηtk+1

− ηtk
)2

≤ C
n−1∑
k=0

(tk+1 − tk)2H → 0 as |π| → 0.

On the other hand,

∂f

∂x
(tk, ηtk)

(
ηtk+1

− ηtk
)

=
∂f

∂x
(tk, ηtk)

(
Ftk �

(
BHtk+1

−BHtk
))

+
∂f

∂x
(tk, ηtk)

(∫ tk+1

tk

(Fs − Ftk)dBHs

)
.

The first term on the right-hand side can be expressed as

∂f

∂x
(tk, ηtk)

(
Ftk �

(
BHtk+1

−BHtk
))

=
∂f

∂x
(tk, ηtk)

(
Ftk

(
BHtk+1

−BHtk
)
−
∫ tk+1

tk

Dφ
sFtk ds

)
=
∂f

∂x
(tk, ηtk)Ftk

(
BHtk+1

−BHtk
)
− ∂f

∂x
(tk, ηtk)

∫ tk+1

tk

Dφ
sFtk ds

=

[
∂f

∂x
(tk, ηtk)Ftk

]
�
(
BHtk+1

−BHtk
)

+

∫ tk+1

tk

Dφ
s

(
∂f

∂x
(tk, ηtk)Ftk

)
ds

− ∂f

∂x
(tk, ηtk)

∫ tk+1

tk

Dφ
sFtk ds

=

[
∂f

∂x
(tk, ηtk)Ftk

]
�
(
BHtk+1

−BHtk
)

+

∫ tk+1

tk

FtkD
φ
s

∂f

∂x
(tk, ηtk)ds.

Thus,

n−1∑
k=0

∂f

∂x
(tk, ηtk)

(
ηtk+1

− ηtk
)

=

n−1∑
k=0

[
∂f

∂x
(tk, ηtk)Ftk

]
�
(
BHtk+1

−BHtk
)

+

n−1∑
k=0

∫ tk+1

tk

FtkD
φ
s

∂f

∂x
(tk, ηtk)ds.

As |π| → 0, the first term converges to∫ t

0

Fs
∂f

∂x
(s, ηs)dB

H
s

in L2, and the second term converges to∫ t

0

∂2f

∂x2
(s, ηs)D

φ
s ηsFs ds

in L2. To prove the theorem, it is only necessary to show that as |π| → 0,

n−1∑
k=0

E|∂f
∂x

(tk, ηtk)

∫ tk+1

tk

(Fs − Ftk)dBHs | → 0.
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Since f has a bounded second derivative, it follows that∣∣∣∣∂f∂x (tk, ηtk)

∣∣∣∣ ≤ C(1 + |ηtk |).

Thus

E|∂f
∂x

(tk, ηtk)|2 ≤ C.

Furthermore,

n−1∑
k=0

E
∣∣∣∣∂f∂x (tk, ηtk)

∫ tk+1

tk

(Fs − Ftk) dBHs

∣∣∣∣
≤ C

n−1∑
k=0

{
E
∣∣∣∣∫ tk+1

tk

(Fs − Ftk) dBHs

∣∣∣∣2
}1/2

= C
n−1∑
k=0

{
E
(∫ tk+1

tk

(
Dφ
s (Fs − Ftk)

)
ds

)2

+ E
∫ tk+1

tk

∫ tk+1

tk

(Fu − Ftk)(Fv − Ftk)φ(u, v)dudv

}1/2

≤ C
n−1∑
k=0

{
(tk+1 − tk)

∫ tk+1

tk

E
(
Dφ
s (Fs − Ftk)

)2
ds

+

∫ tk+1

tk

∫ tk+1

tk

{E(Fu − Ftk)2}1/2{E(Fv − Ftk)2}1/2φ(u, v)dudv

}1/2

≤ C
n−1∑
k=0

[
sup

tk≤s≤tk+1

E|Dφ
s (Fs − Ftk)|2(tk+1 − tk)2

+(tk+1 − tk)2H

{
sup

tk≤s≤tk+1

E(Fs − Ftk)2

}]1/2

≤ C
{

sup
tk≤s≤tk+1

E|Dφ
s (Fs − Ftk)|2

}1/2

+ C|π|H+α−1 → 0

as |π| → 0. This proves the theorem.
The equality (4.2) can be formally expressed as

df(t, ηt) =
∂f

∂t
(t, ηt)dt+

∂f

∂x
(t, ηt)Ft dB

H
t +

∂2f

∂x2
(t, ηt)FtD

φ
t ηt dt.

If F (s) = a(s) is a deterministic function, then (4.1) simplifies as follows.

Corollary 4.4. Let ηt =
∫ t

0
au dB

H
u , where a ∈ L2

φ and f : R+×R→ R satisfies

the conditions in Theorem 4.3. Let (∂f∂x (s, ηs)as, s ∈ [0, T ]) be in L(0, T ). Then

f(t, ηt) = f(0, 0) +

∫ t

0

∂f

∂s
(s, ηs)ds+

∫ t

0

∂f

∂x
(s, ηs)as dB

H
s

+

∫ t

0

∂2f

∂x2
(s, ηs)

∫ s

0

φ(s, v)av dvds a.s.,
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or formally,

df(t, ηt) =
∂f

∂t
(t, ηt)dt+

∂f

∂x
(t, ηt)at dB

H
t +

∂2f

∂x2
(t, ηt)

∫ t

0

φ(t, v)av dvdt.

If as ≡ 1, then Theorem 4.1 is obtained.
In the classical stochastic analysis, the stochastic integral can be defined for gen-

eral semimartingales and an Itô formula can be given. By the Doob–Meyer decom-
position [4], a semimartingale can be expressed as the sum of a martingale and a
bounded variation process. A semimartingale (Xt, t ≥ 0) with respect to a Brownian

motion can often be expressed as Xt = X0 +
∫ t

0
fs dBs +

∫ t
0
gs ds. An Itô formula

in the analogous form with respect to fractional Brownian motions is given. This
generalization of the Itô formula is useful in applications.

Theorem 4.5. Let (Fu, u ∈ [0, T ]) satisfy the conditions of Theorem 4.3, and let

E sup0≤s≤T |Gs| < ∞. Denote ηt = ξ +
∫ t

0
Gu du +

∫ t
0
Fu dB

H
u , ξ ∈ R for t ∈ [0, T ].

Let (∂f∂x (s, ηs)Fs, s ∈ [0, T ]) ∈ L(0, T ). Then, for t ∈ [0, T ],

f(t, ηt) = f(0, ξ) +

∫ t

0

∂f

∂s
(s, ηs)ds+

∫ t

0

∂f

∂x
(s, ηs)Gs ds

+

∫ t

0

∂f

∂x
(s, ηs)Fs dB

H
s +

∫ t

0

∂2f

∂x2
(s, ηs)FsD

φ
s ηs ds a.s.

The proof is the same as for the above theorem.
Now the Itô formula for Rn-valued processes is given.
Theorem 4.6. Let (F is , i = 1, . . . , n, s ∈ [0, T ]) satisfy the conditions of Theo-

rem 4.3 for F . Let ξkt =
∫ t

0
F ks dB

H
s , k = 1, 2, . . . , n for t ∈ [0, T ]. For k = 1, 2, . . . , n

let (fxk(s, ξ1
s , . . . , ξ

n
s )F ks , s ∈ [0, T ]) be in L(0, T ). Let f : R+ × Rn → R be twice

continuously differentiable with bounded derivatives to second order. Then

f(t, ξ1
t , . . . , ξ

n
t ) = f(0, 0, . . . , 0) +

∫ t

0

fs(s, ξ
1
s , . . . , ξ

n
s )ds

+

n∑
k=1

∫ t

0

fxk(s, ξ1
s , . . . , ξ

n
s )F ks dB

H
s

+
n∑

k,l=1

∫ t

0

fxkxl(s, ξ
1
s , . . . , ξ

n
s )F ks Dφ

s ξ
l
s ds a.s.

Proof. The theorem is verified for n = 2. To simplify the notation, let F 1 = F
and F 2 = G. Let π : 0 = t0 < t1 < t2 < · · · < tn = t be a partition of the interval
[0, t]. Then

f(t, ξt, ηt)− f(0, 0, 0) =
n−1∑
k=0

(
f(tk+1, ξtk+1

, ηtk+1
)− f(tk, ξtk+1

, ηtk+1
)
)

+

n−1∑
k=0

(
f(tk, ξtk+1

, ηtk+1
)− f(tk, ξtk , ηtk)

)
,(4.3)

where ξt =
∫ t

0
F dBH and ηt =

∫ t
0
GdBH . It is easy to see that the first sum converges

to
∫ t

0
∂f
∂t ds in L2 as |π| → 0. To determine the limit of the second sum, consider each
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term in the sum:

f(tk,ξtk+1
, ηtk+1

)− f(tk, ξtk , ηtk)

= fx(tk, ξtk , ηtk)
(
ξtk+1

− ξtk
)

+ fy(tk, ξtk , ηtk)
(
ηtk+1

− ηtk
)

+
1

2
fxx(tk, ξ̃tk , η̃tk)

(
ξtk+1

− ξtk
)2

+
1

2
fyy(tk, ξ̃tk , η̃tk)

(
ηtk+1

− ηtk
)2

+ fxy(tk, ξ̃tk , η̃tk)
(
ξtk+1

− ξtk
) (
ηtk+1

− ηtk
)
,

where ξ̃tk ∈ (ξtk , ξtk+1
) and η̃tk ∈ (ηtk , ηtk+1

). Thus

n−1∑
k=0

(
f(tk, ξtk+1

, ηtk+1
)− f(tk, ξtk , ηtk)

)
=

n−1∑
k=0

fx(tk, ξtk , ηtk)
(
ξtk+1

− ξtk
)

+
n−1∑
k=0

fy(tk, ξtk , ηtk)
(
ηtk+1

− ηtk
)

+
1

2

n−1∑
k=0

fxx(tk, ξ̃tk , η̃tk)
(
ξtk+1

− ξtk
)2

+
1

2

n−1∑
k=0

fyy(tk, ξ̃tk , η̃tk)
(
ηtk+1

− ηtk
)2

+
n−1∑
k=0

fxy(tk, ξ̃tk , η̃tk)
(
ξtk+1

− ξtk
) (
ηtk+1

− ηtk
)

= Iπ1 + Iπ2 + Iπ3 + Iπ4 + Iπ5 .

In a similar way as the proof of Theorem 4.3, it can be shown that as |π| → 0, Iπk
converges to 0 in L2 for k = 3, 4, 5:

fx(tk, ξtk , ηtk)
(
ξtk+1

− ξtk
)

= fx(tk, ξtk , ηtk)
(
Ftk �

(
BHtk+1

−BHtk
))

+ fx(tk, ξtk , ηtk)

(∫ tk+1

tk

(Fs − Ftk)dBHs

)
.

In a similar way to the proof of Theorem 4.3, the second sum does not contribute in
the limit as |π| → 0.

By the definition of the Wick product, it follows that

fx(tk,ξtk , ηtk)
(
Ftk �

(
BHtk+1

−BHtk
))

= fx(tk, ξtk , ηtk)

(
Ftk

(
BHtk+1

−BHtk
)
−
∫ tk+1

tk

Dφ
sFtk ds

)
= fx(tk, ξtk , ηtk)Ftk

(
BHtk+1

−BHtk
)
− fx(tk, ξtk , ηtk)

∫ tk+1

tk

Dφ
sFtk ds

= (fx(tk, ξtk , ηtk)Ftk) �
(
BHtk+1

−BHtk
)

+

∫ tk+1

tk

Dφ
s (fx(tk, ξtk , ηtk)Ftk)ds

− fx(tk, ξtk , ηtk)

∫ tk+1

tk

Dφ
sFtk ds

= (fx(tk, ξtk , ηtk)Ftk) �
(
BHtk+1

−BHtk
)

+

∫ tk+1

tk

fxx(tk, ξtk , ηtk)Dφ
s ξtkFtk ds
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+

∫ tk+1

tk

fxy(tk, ξtk , ηtk)Dφ
s ηtkFtk ds+

∫ tk+1

tk

fx(tk, ξtk , ηtk)Dφ
sFtk ds

− fx(tk, ξtk , ηtk)

∫ tk+1

tk

Dφ
sFtk ds

= (fx
(
tk, ξtk , ηtk)Ftk) �

(
BHtk+1

−BHtk
)

+

∫ tk+1

tk

fxx(tk, ξtk , ηtk)Dφ
s ξtkFtk ds

+

∫ tk+1

tk

fxy(tk, ξtk , ηtk)Dφ
s ηtkFtk ds.

In a similar way to the proof of Theorem 4.3, it can be shown that as |π| → 0,

Iπ1 →
∫ t

0

∂f

∂x
(s, ξs, ηs)Fs dB

H
s +

∫ t

0

∂2f

∂x2
(s, ξs, ηs)D

φ
s ξsFs ds

+

∫ t

0

∂2f

∂x∂y
(s, ξs, ηs)D

φ
s ηsFs ds

and

Iπ2 →
∫ t

0

∂f

∂y
(s, ξs, ηs)Gs dB

H
s +

∫ t

0

∂2f

∂y2
(s, ξs, ηs)D

φ
s ηsGs ds

+

∫ t

0

∂2f

∂x∂y
(s, ξs, ηs)D

φ
s ξsGs ds

in L2, proving the theorem.

The Itô formula for the integrals of Stratonovich type is simpler.

Theorem 4.7. Let (Ft, t ∈ [0, T ]) be a process such that the assumptions of

Theorem 4.3 are satisfied. Let ξt =
∫ t

0
FsδB

H
s . Let g : R+ × R → R be a twice

continuously differentiable function with bounded derivatives to second order. Let
( ∂g∂x (s, ξs)Fs, s ∈ [0, T ]) be in L(0, T ). Then, for t ∈ [0, T ],

g(t, ξt) = g(0, 0) +

∫ t

0

∂g

∂s
(s, ξs)ds+

∫ t

0

∂g

∂x
(s, ξs)FsδB

H
s a.s.(4.4)

Proof. Note that ξ̃t =
∫ t

0
Fs dB

H
s also exists and

ξt = ξ̃t +

∫ t

0

Dφ
sFs ds.

Using the Itô formula (4.2),

g(t, ξt) = g

(
t, ξ̃t +

∫ t

0

Dφ
sFs ds

)
= g(0, 0) +

∫ t

0

∂g

∂s
(s, ξs)ds+

∫ t

0

∂g

∂x
(s, ξs)D

φ
sFs ds

+

∫ t

0

∂g

∂x
(s, ξs)Fs dB

H
s +

∫ t

0

∂2g

∂x2
(s, ξs)D

φ
s ξsFs ds.(4.5)
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Now, ∫ t

0

∂g

∂x
(s, ξs)Fs dB

H
s =

∫ t

0

gx(s, ξs)FsδB
H
s −

∫ t

0

Dφ
s (gx(s, ξs)Fs)ds

=

∫ t

0

gx(s, ξs)FsδB
H
s −

∫ t

0

gxx(s, ξs)D
φ
s ξsFs ds

−
∫ t

0

gx(s, ξs)D
φ
sFs ds.(4.6)

Combining the above two equalities, it follows that

g(t, ξt) = g(0, 0) +

∫ t

0

∂g

∂s
(s, ξs)ds+

∫ t

0

∂g

∂x
(s, ξs)FsδB

H
s ,

proving the theorem.
Remark 1. The equation (4.4) can be expressed formally as

δg(t, ξt) = gt(t, ξt)dt+ gx(t, ξt)δξt

or more generally as

δg(t, ξ1
t , ξ

2
t , . . . , ξ

n
t ) =

∂g

∂t
(t, ξ1

t , ξ
2
t , . . . , ξ

n
t )dt+

∂g

∂x1
(t, ξ1

t , ξ
2
t , . . . , ξ

n
t )δξ1

t

+ · · ·+ ∂g

∂xn
(t, ξ1

t , ξ
2
t , . . . , ξ

n
t )δξnt .

5. Two applications of the Itô formula. Two applications of the Itô formula
for fractional Brownian motion are given. First, the so-called homogeneous chaos is
extended to a fractional Brownian motion. Second, an Lp estimate of the (Itô type)
stochastic integral for a fractional Brownian motion is given.

Let Hn(x) be the Hermite polynomial of degree n, that is,

etx−
1
2 t

2

=
∞∑
n=0

tnHn(x).

Let

|f |φ,t =

{∫ t

0

∫ t

0

φ(u, v)fufv dudv

}1/2

.

Define

f̃t = |f |−1
φ,t

∫ t

0

fs dB
H
s

and

Hφ,f
n (t) = |f |nφ,tHn

(
f̃t

)
.

Theorem 5.1. If f1[0,T ] ∈ L2
φ, then the following equality is satisfied:

dHφ,f
n (t) = nHφ,f

n−1(t)ft dB
H
t ,
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where d is the Itô type differential given in Theorem 4.3 and t ∈ [0, T ].
Proof. Fix n and denote Xt = Hφ,f

n (t) for t ∈ [0, T ]. Using the Itô formula
(Theorem 4.3) and prime for differentiation, it follows that

dXt = n|f |n−2
φ,t ft

∫ t

0

φ(u, t)fu duHn

(
f̃t

)
dt

− |f |nφ,tft
∫ t

0

φ(u, t)fu duH
′
n

(
f̃t

)
|f |−3

φ,t

(∫ t

0

fs dB
H
s

)
dt

+ |f |nφ,tH ′n
(
f̃t

)
|f |−1

φ,tft dB
H
t

+ |f |nφ,tft
∫ t

0

φ(u, t)fu duH
′′
n

(
f̃t

)
|f |−2

φ,t dt

= n|f |n−1
φ,t Hn−1

(
f̃t

)
ft dB

H
t

+ |f |n−2
φ,t ft

∫ t

0

φ(u, t)fudu ·
{
nHn(f̃t)− f̃tH ′n(f̃t) +H ′′n(f̃t)

}
dt.

It is well known that for each n ∈ N the Hermite polynomial satisfies

nHn(x)− xH ′n(x) +H ′′n(x) = 0

for each x ∈ R. Thus the sum of the terms in the above { } equals 0. The first term
is

nHφ,f
n−1(t)ft dB

H
t .

Thus

dHφ,f
n (t) = nHφ,f

n−1(t)ft dB
H
t ,

proving the theorem.
The following estimate for the Lp norm of a stochastic integral is useful in some

applications.
Theorem 5.2. Let (gs, s ∈ [0, t]) be a stochastic process satisfying the assump-

tions of Theorem 4.3 for F . Let Ft :=
∫ t

0
gs dB

H
s . If E

∫ t
0
|gs|p ds <∞,

∫ t
0
E|Dφ

sFs|p ds
<∞, and F p−1g ∈ L(0, t), then

EF pt ≤ pp
{∫ t

0

(
E|gsDφ

sFs|p/2
)2/p

ds

}p/2
.(5.1)

Proof. Applying the Itô formula (Theorem 4.3) to F pt (by the assumption that
F p−1g ∈ L(0, t), the restriction on the boundedness of f to its second derivative in
Theorem 4.3 can be removed), it follows that

F pt = p

∫ t

0

F p−1
s gs dB

H
s + p(p− 1)

∫ t

0

F p−2
s gsD

φ
sFs ds.

Thus

EF pt = p(p− 1)

∫ t

0

E(F p−2
s gsD

φ
sFs)ds.

EF pt ≤ p(p− 1)

∫ t

0

E|F p−2
s gsD

φ
sFs|ds

≤ p2

∫ t

0

(EF ps )
p−2
p

(
E|gsDφ

sFs|
p
2

) 2
p

ds.
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By an inequality of Langenhop, (e.g. [1]), there is the inequality

EF pt ≤ pp
{∫ t

0

(
E|gsDφ

sFs|
p
2

) 2
p

ds

} p
2

.

This completes the proof of the theorem.

Corollary 5.3. Let the conditions of Theorem 5.2 be satisfied, and let p ≥ 2.
Then

EF pt ≤ pp
{∫ t

0

(E|gs|p) 2
p ds+

∫ t

0

(E|Dφ
sFs|p)

2
p ds

} p
2

.

Proof. From |ab| ≤ a2 + b2, it follows that

E|gsDφ
sFs|

p
2 ≤ E|gs|p + E|Dφ

sFs|p.

Thus

(
E|gsDφ

sFs|
p
2

) 2
p ≤ (E|gs|p + E|Dφ

sFs|p)
2
p

≤ (E|gs|p) 2
p + (E|Dφ

sFs|p)
2
p .

This verifies the corollary.

6. Iterated integrals and multiple integrals. Let f ∈ L2
φ(R+) be such that

|f |φ = 1. Similar to [8] define (
∫∞

0
fs dB

H
s )�n as the nth Wick power of

∫∞
0
fs dB

H
s ,

that is, denote formally

(∫ ∞
0

fs dB
H
s

)�n
:=

(∫ ∞
0

fs dB
H
s

)�(n−1)

�
∫ ∞

0

fs dB
H
s , n = 2, 3, . . .

exp�
(∫ ∞

0

fs dB
H
s

)
:=

∞∑
n=0

1

n!

(∫ ∞
0

fs dB
H
s

)�n
;

log�
(

1 +

∫ ∞
0

fs dB
H
s

)
:=

∞∑
n=1

(−1)n−1

n

(∫ ∞
0

fs dB
H
s

)�n
.

Lemma 6.1. If |f |φ = 1, then (
∫∞

0
fs dB

H
s )�n is well defined for each n ∈ N and

(∫ ∞
0

fs dB
H
s

)�n
= Hn

(∫ ∞
0

fs dB
H
s

)
,(6.1)

where Hn denotes the Hermite polynomial of degree n.

Proof. The equality (6.1) is verified by induction.

It is easy to see that (6.1) is true for n = 1. Let (6.1) be true for 1, 2, . . . , n− 1.
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Then,(∫ ∞
0

fs dB
H
s

)�n
= Hn−1

(∫ ∞
0

fs dB
H
s

)
�
∫ ∞

0

fs dB
H
s

= Hn−1

(∫ ∞
0

fs dB
H
s

)∫ ∞
0

fs dB
H
s −DΦf

{
Hn−1

(∫ ∞
0

fs dB
H
s

)}
= Hn−1

(∫ ∞
0

fs dB
H
s

)∫ ∞
0

fsdB
H
s −H ′n−1

(∫ ∞
0

fs dB
H
s

)
|f |2φ

= Hn−1

(∫ ∞
0

fs dB
H
s

)∫ ∞
0

fs dB
H
s −H ′n−1

(∫ ∞
0

fs dB
H
s

)
= Hn

(∫ ∞
0

fs dB
H
s

)
by an identity for Hermite polynomials. This verifies (6.1).

For an arbitrary, nonzero f ∈ L2
φ(R+), the product defined in (6.1) is extended

as (∫ ∞
0

fs dB
H
s

)�n
= |f |nφ

(∫∞
0
fs dB

H
s

|f |φ

)�n
= |f |nφHn

(∫ ∞
0

∫∞
0
fs dB

H
s

|f |φ

)
.

Lemma 6.2. If f ∈ L2
φ(R+), then (

∫∞
0
fs dB

H
s )�n is well defined for each n ∈ N

and (∫ t

0

fs dB
H
s

)�n
= Hφ,f

n (t).

Since
∫∞

0
fs dB

H
s is a Gaussian random variable, it is easy to estimate its moments

and to show that the series defining exp�(
∫∞

0
fs dB

H
s ) is convergent in L2(Ω,F , P ).

Moreover there is the following corollary.
Corollary 6.3. If f ∈ L2

φ(R+), then

exp�
(∫ ∞

0

fs dB
H
s

)
= ε(f) = exp

(∫ ∞
0

fs dB
H
s −

1

2
|f |2φ

)
.

Proof. It follows that

exp�
(∫ ∞

0

fs dB
H
s

)
=
∞∑
n=0

1

n!

(∫ ∞
0

fs dB
H
s

)�n
=
∞∑
n=0

1

n!
|f |nφHn

(∫∞
0
fs dB

H
s

|f |φ

)

= exp

(
|f |φ

∫∞
0
fs dB

H
s

|f |φ − 1

2
|f |2φ

)

= exp

(∫ ∞
0

fs dB
H
s −

1

2
|f |2φ

)
.

This completes the proof of the lemma.
The following lemma is also easy to prove.
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Lemma 6.4. For any two functions f and g in L2
φ(R+) with 〈f, g〉φ = 0, the

following equality is satisfied:(∫ ∞
0

fs dB
H
s

)�n
�
(∫ ∞

0

gs dB
H
s

)�m
=

(∫ ∞
0

fs dB
H
s

)�n(∫ ∞
0

gs dB
H
s

)�m
= Hφ,f

n (∞)Hφ,g
m (∞).

Since
∫∞

0
fs dB

H
s /|f |φ and

∫∞
0
gs dB

H
s /|g|φ are Gaussian random variables with

mean 0 and variance 1, their covariance is

E
{(∫ ∞

0

fs dB
H
s /|f |φ

) (∫ ∞
0

gs dB
H
s /|g|φ

)}
= 〈f/|f |φ, g/|g|φ〉φ.

It follows that

E
{(∫ ∞

0

fs dB
H
s

)�n(∫ ∞
0

gs dB
H
s

)�m}
= E

{
|f |nφ|g|mφ Hn

(∫ ∞
0

fs dB
H
s /|f |φ

)
Hm

(∫ ∞
0

gs dB
H
s /|g|φ

)}

=

{
0 if m 6= n,

|f |nφ|g|nφ〈f/|f |φ, g/|g|φ〉nφ if m = n

=

{
0 if m 6= n,

〈f, g〉nφ if m = n.

By a polarization technique [21] it is easy to verify the following lemma.
Lemma 6.5. Let f1, . . . , fn, g1, . . . , gm ∈ L2

φ(R+). The following equality is
satisfied:

E
{(∫ ∞

0

f1
s dB

H
s � · · · �

∫ ∞
0

fns dB
H
s

)(∫ ∞
0

g1
s dB

H
s � · · · �

∫ ∞
0

gms dBHs

)}

=

{
0 if n 6= m,
1
n!

∑
σ〈f1, gσ(1)〉φ〈f2, gσ(2)〉φ · · · 〈fn, gσ(n)〉φ if n = m,

where
∑
σ denotes the sum over all permutations σ of {1, 2, . . . , n}.

Let e1, e2, . . . , en, . . . be a complete orthonormal basis of L2
φ(R+). Consider the

nth symmetric tensor product of L2
φ(R+): Lsφ(Rn+) := L2

φ(R+) ⊗ · · · ⊗ L2
φ(R+). It is

the completion of all functions of the following form:

f(s1, . . . , sn) =
∑

1≤k1,...,kn≤k
ak1···knek1

(s1)ek2
(s2) · · · ekn(sn),(6.2)

where f is a symmetric function of its variables s1, . . . , sn and k is a positive integer.
The set of all of the above finite sums is denoted Ln. For an element of the form
(6.2), its multiple integral is defined by

In(f) =
∑

1≤k1,... ,kn≤k
ak1···kn

∫ ∞
0

ek1
(s)dBHs �

∫ ∞
0

ek2
(s)dBHs � · · · �

∫ ∞
0

ekn(s)dBHs .

(6.3)
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By Lemma 6.5, the norm of (6.3) is given by

E|In(f)|2 =

∫
R2n

+

φ(u1, v1)φ(u2, v2) · · ·φ(un, vn)f(u1, u2, . . . , un)

f(v1, v2, . . . , vn)du1 du2 · · · dun dv1 dv2 · · · dvn.(6.4)

Thus for any element f in

L2
φ(Rn+) = {f : Rn+ → R; f is symmetric with respect to its arguments,

|f |2φ := 〈f, f〉φ <∞},
where

〈f, g〉φ =

∫
R2n

+

φ(u1, v1)φ(u2, v2) · · ·φ(un, vn)f(u1, u2, . . . , un)

g(v1, v2, . . . , vn)du1 du2 · · · dun dv1 dv2 · · · dvn.
The multiple integral In(f) can be defined by a limit from elements in Ln, and it
follows that

E(|In(f)|2) = |f |2φ.
The following lemma can also be shown by the polarization technique.

Lemma 6.6. If f ∈ L2
φ(Rn+) and g ∈ L2

φ(Rm+ ), then

E(In(f)Im(g)) =

{
〈f, g〉φ if n = m,

0 if n 6= m.
(6.5)

Let f ∈ L2
φ(Rn+). The iterated integral can be defined by the recursive formula∫

0≤s1<s2<···<sn≤t
f(s1, s2, . . . , sn)dBHs1 dB

H
s2 · · · dBHsn

=

∫ t

0

(∫
0≤s1<s2<···≤sn

f(s1, s2, . . . , sn−1, sn)dBHs1 dB
H
s2 · · · dBHsn−1

)
dBHsn .(6.6)

Theorem 6.7. If f ∈ L2
φ(Rn+), then the iterated integral (6.6) exists and

In(f) = n!

∫
0≤s1<s2<···<sn≤t

f(s1, s2, . . . , sn)dBHs1 dB
H
s2 · · · dBHsn .(6.7)

Proof. First let f have the special form f = g⊗n, that is, f(s1, s2, . . . , sn) =
g(s1)g2(s2) · · · g(sn). Then

In(f) = Hφ,g
n (t),

and

dIn(f) = dHφ,g
n (t)

= nHφ,g
n−1(t)g(t)dBHt

= nIn−1(g⊗(n−1))g(t)dBHt .
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This verifies (6.7) for the case where f = g⊗n. By the polarization technique [21], the
theorem follows easily.

Remark 2. For Brownian motion, a multiple integral was originally introduced
by Wiener [24]; Wiener’s original multiple integral is in fact a multiple integral of
Stratonovich type. The multiple integral of Itô type was introduced in [16].

For Brownian motion, the multiple Stratonovich integrals also have been widely
used in the applications. Since the work of [9] and [10], it is known that the definition
of multiple Stratonovich integrals is related to the definition of “trace.” There has
been much work on this topic. The reader is referred to [13] and the references therein.

A class of traces and multiple Stratonovich integrals are defined, and the Hu–Meyer
formula is extended to the fractional Brownian motions.

As in [11], introduce the φ-trace Trφ for simple functions. This new type of trace
extends the classical one and plays an important role in this section.

Let f1, f2, . . . , fm ∈ L2
φ(R+). Consider the simple functions in L2

φ(Rn+) of the
following form:

f(t1, t2, . . . , tn) =
∑

1≤i1,i2,...,in≤m
ai1,i2,...,infi1(t1)fi2(t2) · · · fin(tn).(6.8)

If f is given by (6.8), then for k ∈ {1, 2, . . . , [n2 ]}, define

Trkφ f(t1, . . . , tn−2k) =

∫ ∞
0

· · ·
∫ ∞

0

f(s1, s2, . . . , s2k−1, s2k, t1, . . . , tn−2k)

φ(s1, s2)φ(s3, s4) · · ·φ(s2k−1, s2k)ds1 · · · ds2k.

To define the trace for general functions, as in [11], let γε(s, t) be an approximation
of the Dirac function, that is,

lim
ε→0

∫
γε(s, t)f(s)ds = f(t)

in some sense. Assume that ∫ ∞
0

∫ ∞
0

γε(s, t)
2ds dt <∞.

For any function f ∈ L2
φ(Rn+), the approximation

fε(t1, t2, . . . , tn)

=

∫ ∞
0

· · ·
∫ ∞

0

f(s1, s2, . . . , sn)γε(s1, t1)γε(s2, t2) · · · γε(sn, tn)ds1 ds2 · · · dsn,

is a simple function of type (6.8), and if f is symmetric, then fε is also symmetric.
Let

ρε(s, t) =

∫ ∞
0

γε(s, u)γε(t, u)du.

According to the definition of fε,

Trkφ f
ε(t1, . . . , tn−2k) =

∫ ∞
0

· · ·
∫ ∞

0

f(s1, s2, . . . , sn)ρ(s1, s2) · · · ρ(s2k−1, s2k)

γε(s2k+1, t1) · · · γε(sn, tn−2k)ds1 ds2 · · · dsn.
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Definition 6.8. Let f ∈ L2
φ(Rn+). The kth trace of f is said to exist if

Trkφ f
ε(t1, . . . , tn−2k) converges to a function in L2

φ(Rn−2k
+ ) as ε → 0. The limiting

function is called the kth trace of f , that is,

Trkφ f(t1, . . . , tn−2k) = lim
ε→0

Trkφ f
ε(t1, . . . , tn−2k).

Now introduce the multiple Stratonovich integrals for fractional Brownian mo-
tions. Define (BHt )ε =

∫∞
0
γε(t, s)dB

H
s . Then (BHt )ε is differentiable. Let f ∈

L2
φ(Rn+). Consider

Sεn(f) :=

∫
Rn+
f(s1, s2, . . . , sn)(ḂHs1)ε(ḂHs2)ε · · · (ḂHsn)εds1 ds2 · · · dsn.

Definition 6.9. If Sεn(f) converges in L2(Ω,F , P ) as ε → 0, then the multiple
Stratonovich integral is said to exist and is denoted by

Sn(f) =

∫
Rn+
f(s1, s2, . . . , sn)δBHs1δB

H
s2 · · · δBHsn .

The remaining part of this section is devoted to giving conditions such that Sεn(f)
is convergent in L2(Ω,F , P ) as ε→ 0.

By the identity xn =
∑
k≤[n2 ]

n!
2kk!(n−2k)!

Hn−2k(x), it follows that

(∫ ∞
0

fsdB
H
s

)n
= |f |nφ

(∫∞
0
fs dB

H
s

|f |φ

)n

= |f |nφ
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
Hn−2k

(∫∞
0
fs dB

H
s

|f |φ

)

=
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
|f |nφ

(∫∞
0
fs dB

H
s

|f |φ

)�(n−2k)

=
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
|f |2kφ

(∫ ∞
0

fs dB
H
s

)�(n−2k)

=
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
|f |2kφ In−2k(f⊗(n−2k))

=
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
In−2k

(
Trkφ(f⊗n)

)
,

where f⊗n is the symmetric tensor product of f , that is, f⊗n(s1, s2, . . . , sn) =
f(s1)f(s2) · · · f(sn).

Let f1, f2, . . . , fn ∈ L2
φ(R+), and let f be the symmetrization of f1f2 · · · fn. Then

by a polarization technique,∫ ∞
0

f1(s)dBHs

∫ ∞
0

f2(s)dBHs · · ·
∫ ∞

0

fn(s)dBHs =
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
In−2k

(
Trkφ(f)

)
.
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Using this formula, it follows that

Sεn(f) =
∑
k≤[n2 ]

n!

2kk!(n− 2k)!

∫
Rn+
f(s1, s2, . . . , sn)ρε(s1, s2)ρε(s3, s4) · · · ρε(s2k−1, s2k)

γε(s2k+1, t1) · · · γε(sn, tn−2k)ds1 · · · dsn dBHt1 · · · dBHtn−2k
.

It is easy to verify the following result.
Theorem 6.10. Let f ∈ L2

φ(Rn+) be such that all of the traces exist in the
following sense: For 1 ≤ k ≤ [n2 ],∫

Rn+
f(s1, s2, . . . , sn)ρε(s1, s2)ρε(s3, s4) · · · ρε(s2k−1, s2k)γε(s2k+1, t1)

· · · γε(sn, tn−2k)ds1 · · · dsn(6.9)

converges to a function Trkφ f in L2
φ(Rn−2k

+ ) as ε→ 0. Then the sequence (Sεn(f), n ∈
N) converges in L2(Ω,F , P ), and the limit is given by the extended Hu-Meyer formula

Sn(f) =
∑
k≤[n2 ]

n!

2kk!(n− 2k)!
In−2k(Trkφ f).(6.10)

Remark 3. It should be noted that the analogue of this theorem and in particular
the formula (6.10) has been discussed extensively for the Brownian motion.

As a consequence of Theorem 6.10, (6.10), a chaos expansion theorem is de-
scribed. It is well known that the family of all polynomials in the random variables
BHt1 , . . . , B

H
tk

, for 0 ≤ t1 < · · · < tk and k ∈ N, is dense in L2(Ω,F , P ). Since each

of these polynomials is a finite sum of the monomials of the form
∫∞

0
f1(s1)δBHs1 · · ·∫∞

0
fn(sn)δBHsn , where f1, . . . , fn ∈ L2

φ, this product of integrals of Wiener type can be

expressed as a multiple Stratonovich integral:
∫∞

0
· · · ∫∞

0
(f1⊗ · · · ⊗ fn)(s1, · · · , sn)×

δBHs1 · · · δBHsn . By the equality (6.10), this multiple integral of Stratonovich type can
be expressed as a finite, linear combination of multiple integrals of Itô type. Thus
the family of all linear combinations of multiple integrals of the form

∫∞
0
· · · ∫∞

0
(f1⊗

· · · ⊗ fn)(s1, . . . , sn)dBHs1 · · · dBHsn is dense in L2(Ω,F , P ). Thus

L2(Ω,F , P ) =

{
F : F = F0 +

∞∑
n=1

∫ ∞
0

· · ·
∫ ∞

0

fn(s1, . . . , sn)dBHs1 · · · dBHsn ,

F0 ∈ R, fn ∈ L2(Rn+) and
∞∑
n=1

|fn|2φ <∞
}
.(6.11)

The equality (6.11) is described in the following theorem.
Theorem 6.11. If F ∈ L2(Ω,F , P ), then there is a sequence (fn ∈ L2

φ(Rn+), n ∈
N) such that

∑∞
n=1 |fn|2φ <∞ and

F = E(F ) +

∞∑
n=1

∫
Rn+
fn(s1, . . . , sn)dBHs1 · · · dBHsn .(6.12)

Remark 4. The expansion (6.12) is an analogue of the Itô–Wiener chaos expan-
sion which is extended to fractional Brownian motion. Replacing the multiple integrals
by the iterated multiple integrals and summing the infinite series gives a stochastic in-
tegral representation for F −EF . Note that the terms on the right-hand side of (6.12)
are orthogonal.
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C. Houdré et al., eds., Probab. Stochastics Ser., CRC, Boca Raton, FL, 1994, pp. 1–33.

[14] H. E. Hurst, Long-term storage capacity in reservoirs, Trans. Amer. Soc. Civil Eng., 116
(1951), pp. 400–410.

[15] H. E. Hurst, Methods of using long-term storage in reservoirs, Proc. Inst. Civil Engineers
Part 1, 1956, pp. 519–590.
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Abstract. Given a nonlinear function h separating a convex and a concave function, we provide
various conditions under which there exists an affine separating function whose graph is somewhere
almost parallel to the graph of h. Such results blend Fenchel duality with a variational principle and
are closely related to the Clarke–Ledyaev mean value inequality.
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1. Introduction. The central theorems in this paper blend two completely dis-
tinct types of result, both fundamental in optimization theory: Fenchel duality and
variational principles. The simplest version of Fenchel duality states that for any
convex functions f and g on Rn satisfying f ≥ −g, a regularity condition implies the
set

L
def
= {y ∈ Rn : f∗(y) + g∗(−y) ≤ 0}

is nonempty (where f∗ is the Fenchel conjugate of f). Geometrically, this means there
exists an affine function sandwiched between f and −g. On the other hand, one of
the easiest examples of a variational principle states that if h is a locally Lipschitz
function bounded below on Rn, then h has arbitrarily small Clarke subgradients:

0 ∈ cl (Im ∂h).

Geometrically, there are points where the graph of h is almost horizontal (in a certain
nonsmooth sense).

The theorems we discuss here combine the features of both results above. We
consider functions f , g, and h as before, now satisfying f ≥ h ≥ −g, and under
various regularity conditions we prove

L ∩ cl (Im ∂h) 6= ∅.
Geometrically, there are affine functions between f and −g whose graphs are some-
where almost parallel to the graph of h.

As we show by means of various examples, the existence of a suitable affine
separating function depends on both local and asymptotic properties of the three
functions. Hence the regularity conditions we need to impose combine assumptions
on the domains of the primal functions, f and g, and of their conjugates, f∗ and g∗,
as well as local and global growth conditions on h.
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The key tool for our results is a recent, somewhat surprising mean value inequality
of Clarke–Ledyaev [3], rephrased as a hybrid sandwich theorem in [6]. We illustrate the
application of this type of result with two apparently simple but rather remarkable
consequences. First, any convex function f and locally Lipschitz function h ≤ f
satisfy

domf∗ ∩ cl (Im ∂h) 6= ∅.

Second (a “squeeze theorem”), any locally Lipschitz functions p ≥ h ≥ q with p(0) =
h(0) = q(0) satisfy

∂p(0) ∩ ∂h(0) ∩ ∂q(0) 6= ∅.

We have not been able to find simple proofs or references for either of these two
results.1

With the exception of this last squeeze theorem, our results do not appear to be
substantially easier with the assumption that h is smooth (in which case ∂h reduces to
the singleton∇h). We believe they provide further evidence of the depth, applicability,
and fundamental nature of the Clarke–Ledyaev inequality in optimization theory.

2. Notation and preliminary results. We begin by reviewing some basic
ideas from convex analysis (see [7]). Given a convex set A ⊂ Rn, we denote by affA
the smallest affine space containing A and by riA the set of the internal points of
A ⊂ affA (with the induced topology). Observe that riA is a nonempty convex set.
Given a function f : Rn → [−∞,∞], we denote its effective domain by

dom f
def
= {x ∈ Rn : f(x) <∞}

and by epi f its epigraph, the set

epi f
def
= {(x, r) ∈ Rn ×R : r ≥ f(x)},

a convex set if and only if f is convex. The hypograph of the function −g is instead

hyp(−g)
def
= {(x, r) ∈ Rn ×R : r ≤ −g(x)},

again a convex set if and only if g is convex. The epigraph of f is closed if and only
if f is lower semicontinuous in the usual sense.

We shall write f ∈ Γ0 to mean that epi f is nonempty, closed, and convex and
does not contain vertical lines.

For a set A, let IA be the indicator function of the set A,

IA(x) =

{
0 if x ∈ A,
∞ otherwise.

In particular, IkB denotes the indicator function of the ball centered at 0 ∈ Rn and
with radius k.

1Subsequent investigations revealed alternative approaches to the last theorem independent of
the Clarke–Ledyaev result [1]. Nonetheless, the original approach we present here remains attractive
for its transparency.
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The Fenchel conjugate of a function f : Rn → [−∞,∞] is the function f∗ : Rn →
[−∞,∞] defined by

f∗(y)
def
= sup

x∈Rn

{〈y, x〉 − f(x)},

a convex lower semicontinuous function (even if f is not) which belongs to Γ0 if f
does. Furthermore, f = f∗∗, providing f ∈ Γ0.

The function f is said to be cofinite if its conjugate f∗ satisfies dom f∗ = Rn.

It is easy to see this is equivalent to saying that lim‖x‖→∞
f(x)
‖x‖ = ∞ [5, Chapter 10,

Proposition 1.3.8].
The subdifferential of a convex function f at a point x ∈ dom f is the closed

convex set

∂f(x)
def
= {y ∈ Rn : f(z) ≥ f(x) + 〈y, z − x〉 for all z ∈ Rn}.

The fundamental connection between the subdifferentials of a function and of its
Fenchel conjugate is shown by the following Fenchel identity:

y ∈ ∂f(x)⇐⇒ f(x) + f∗(y) = 〈y, x〉.
It follows, in particular, that y ∈ ∂f(x) if and only if x ∈ ∂f∗(y), providing f ∈ Γ0.

Given two functions p, q : Rn → [−∞,∞], we define the infimal convolution
between them by

(p2q)(x) = inf
y∈Rn

{p(y) + q(x− y)},

a convex function if p and q are, possibly assuming the value −∞, and that may fail
to be lower semicontinuous. Finally, for a function p ∈ Γ0, we denote by

pk
def
= p2k‖ · ‖,

the infimal convolution between p and k‖ · ‖: this function is the largest k-Lipschitz
function minorizing p. For more about convex functions, the interested reader is
invited to consult [4], [5], [7].

Next we briefly consider the subdifferential of a locally Lipschitz function h :
U → R, where U is an open subset of Rn. This notion is not uniquely defined in the
literature, and here we make the choice of the Clarke subdifferential (see [2]) which is
more suited for our scopes, as an example in the final section will show. To define it,
first let us introduce the notion of generalized directional derivative of h at the point
x in the direction v:

h◦(x, v)
def
= lim sup

z→x
t↘0

h(z + tv)− h(z)

t
.

The function v 7→ h◦(x, v) is everywhere finite, subadditive, and positively homoge-
neous; hence, in particular, it is continuous and convex. Then the subdifferential of h
at x is defined as

∂h(x)
def
= {y ∈ Rn : 〈y, v〉 ≤ h◦(x, v) for all v ∈ Rn},

a nonempty closed convex set. Moreover, if k is a Lipschitz constant for h, the sub-
differential is norm-bounded by k. In particular, the multifunction ∂h is bounded on
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bounded sets. Observe that the Clarke subdifferential of h at x is the same set as the
(convex) subdifferential of the function v 7→ h◦(x, v) at v = 0, a simple but useful
property we shall use throughout this paper.

For more about nonsmooth analysis for locally Lipschitz functions, the interested
reader is invited to consult [2].

In this paper we shall deal with two convex functions f, g ∈ Γ0 and a locally
Lipschitz function h such that f ≥ h ≥ −g. For a moment, let us focus on the
problem of nonemptyness of the set

L
def
= {y ∈ Rn : f∗(y) + g∗(−y) ≤ 0}.

This set can be characterized in a more geometric way, as the following easy propo-
sition states.

Proposition 2.1. Let f, g ∈ Γ0. Then, for y ∈ Rn,

f∗(y) + g∗(−y) ≤ 0

if and only if there exists a ∈ R such that

f(x) ≥ a+ 〈y, x〉 ≥ −g(x) for all x ∈ Rn.

Thus the problem of nonemptyness of L is equivalent to finding an affine separator
lying below f and above g. This can be stated in terms of a separation problem for
the sets epi f and hyp(−g). The assumption f ≥ −g ensures that

ri epif ∩ ri hyp(−g) = ∅,
(see [4, Chapter 4, Proposition 1.1.9]) and this in turn implies that epi f and hyp(−g)
can be separated by a hyperplane [4, Chapter 3, Theorem 4.1.4]. However, it can
happen that the only separating hyperplane is vertical, which unfortunately says
nothing about nonemptyness of L.

The first result stating that L is nonempty is the following well-known Fenchel
duality theorem [7, Theorem 31.1], which in our setting can be rephrased in the
following way.

Theorem 2.1. Let f, g ∈ Γ0 be such that f ≥ −g and suppose

ri (dom f) ∩ ri (dom g) 6= ∅.
Then there exists y ∈ Rn such that

f∗(y) + g∗(−y) ≤ 0.

We illustrate the role of the assumption on the domains of f and g with the help
of the following four examples, where the set L is always empty.

Example 2.1.

f(x) =

{ −√x if x ≥ 0,
∞ otherwise,

g(x) =

{
0 if x = 0,
∞ otherwise.

Here ri (dom f) ∩ ri (dom g) = ∅.
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Example 2.2.

f(u, v) =

{ −1 if uv ≥ 1, u ≥ 0,
∞ otherwise,

g(u, v) =

{
0 if u ≥ 0, v = 0,
∞ otherwise.

Here we have dom f ∩ dom g = ∅.
Example 2.3.

f(u, v) =

{
u if v = −1,
∞ otherwise,

g(u, v) =

{
0 if v = 0,
∞ otherwise.

Here the distance between dom f and dom g is 1.
In the last two examples the domains of f and g do not intersect, while in the

first example a crucial role is played by the fact that inf(f + g) = 0. In the following
example inf(f + g) > 0, and yet there is no affine separator. Observe that such an
example could not be provided in one dimension [4, Chapter 1, Remark 3.3.4].

Example 2.4.

f(u, v) =

{
1− 2

√
uv if u, v ≥ 0,

∞ otherwise,

g(u, v) =

{
1− 2

√−uv if u ≤ 0, v ≥ 0,
∞ otherwise.

A straightforward calculation shows

f∗(u∗, v∗) =

{ −1 if u∗ ≤ 0, u∗v∗ ≥ 1,
∞ otherwise,

g∗(u∗, v∗) =

{ −1 if u∗ ≥ 0, u∗v∗ ≤ −1,
∞ otherwise.

Thus the set L is empty.

3. Sandwich theorems. We turn now to the case of three functions f , g, and
h, such that f and g are convex, h is locally or globally Lipschitz, and f ≥ h ≥ −g.
Examples 2.2, 2.3, and 2.4 show that the existence of a locally Lipschitz function h
between f and −g (take h(x, y) = −xy in all cases) does not change the situation:
there is no affine separator.

First let us recall now some known results.
Theorem 3.1 (see [6, Theorem 2]). Let C be a nonempty convex compact set in

Rn. Let f, g ∈ Γ0 and with domains contained in C. Let h : Rn → R be Lipschitz on
a neighborhood of C. Suppose moreover f ≥ h ≥ −g on C.
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Then there exist c ∈ C and y ∈ ∂h(c) such that

f∗(y) + g∗(−y) ≤ 0.

Boundedness of C can be relaxed at the expense of requiring more about the
functions f and g and/or about the function h. Specifically, we have the following
two results.

Theorem 3.2 (see [6, Theorem 7]). Let C be a nonempty closed convex set in
Rn. Let f, g ∈ Γ0 be cofinite, with domains contained in C. Moreover suppose

int (dom f) ∩ int (dom g) 6= ∅.
Let h : Rn → R be locally Lipschitz on a neighborhood of C and suppose f ≥ h ≥ −g
on C.

Then there exist c ∈ C and y ∈ ∂h(c) such that

f∗(y) + g∗(−y) ≤ 0.

Theorem 3.3 (see [6, Theorem 8]). Let C be a nonempty closed convex set in
Rn. Let f, g ∈ Γ0 be cofinite, with domains contained in C. Let h : Rn → R be
globally Lipschitz on a neighborhood of C and suppose f ≥ h ≥ −g on C.

Then there exist c ∈ C and y ∈ ∂h(c) such that

f∗(y) + g∗(−y) ≤ 0.

Observe one does not need a qualification condition on the domains of f and g
if h is globally Lipschitz. In the last two theorems, however, cofiniteness is required,
which can be regarded as a (strong) qualification condition on the domains of the
conjugates.

The first result we want to prove deals simply with the existence of the affine
separator. To prove it, we need the following proposition about regularizing Fenchel
problems.

Proposition 3.1. Suppose p, q ∈ Γ0 and

(•) ri (dom p) ∩ ri (dom q) 6= ∅.
Then, for all large k, we have

inf(p+ q) = inf(pk + qk)

and

argmin(p+ q) = argmin(pk + qk).

Proof. To prove the first equality, we need to prove only inf(p+ q) ≤ inf(pk + qk).
There is nothing to prove if inf(p+ q) = −∞. Therefore, let us assume it is finite. (It
cannot be ∞ because of (•).) By Fenchel duality, there is y ∈ Rn such that

− inf(p+ q) = p∗(y) + q∗(−y).

Take k > ‖y‖. Then
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− inf(p+ q) = p∗(y) + q∗(−y) = (p∗ + IkB)(y) + (q∗ + IkB)(−y)

= (pk)∗(y) + (qk)∗(−y) ≥ inf
z∈Rn

((pk)∗(z) + (qk)∗(−z))

= − inf(pk + qk) ≥ − inf(p+ q).

This shows the first equality and also that y as above is optimal for the problem of
minimizing, on Rn, (pk)∗(·) + (qk)∗(−·).

Now, writing down optimality conditions, we obtain, using k > ‖y‖,

x ∈ argmin(p+ q)⇔ p(x) + q(x) = −p∗(y)− q∗(−y),

⇔ x ∈ ∂p∗(y) ∩ ∂q∗(−y),

⇔ x ∈ ∂(p∗ + IkB)(y) ∩ ∂(q∗ + IkB)(−y),

⇔ x ∈ ∂(pk)∗(y) ∩ ∂(qk)∗(−y),

⇔ x ∈ argmin(pk + qk).

We begin our sequence of main results by proving some variants of Fenchel du-
ality, where the usual regularity condition is replaced by the existence of a Lipschitz
separator.

Theorem 3.4. For f, g ∈ Γ0, suppose

ri (dom f∗) ∩ ri (–dom g∗) 6= ∅.

Suppose further there exists a locally Lipschitz function h such that f ≥ h ≥ −g.
Then there is y ∈ Rn such that

f∗(y) + g∗(−y) ≤ 0.

(Moreover, if inf(f + g) = 0, then such a y can be found in the range of ∂h.)
Proof. From Proposition 3.1, applied to p = f∗ and q(·) = g∗(−·), we have

inf((f∗)k(·) + (g∗)k(−·)) = inf(f∗(·) + g∗(−·))

and

argmin((f∗)k(·) + (g∗)k(−·)) = argmin(f∗(·) + g∗(−·))

for all large k. Apply Theorem 3.1 to the functions f + IkB , h, and g+ IkB , for large
k, and the set C = kB, to find yk ∈ Im ∂h such that

(f∗)k(yk) + (g∗)k(−yk) ≤ 0.

If

yk ∈ argmin((f∗)k(·) + (g∗)k(−·))

(as in the case when inf(f + g) = 0), then we deduce f∗(yk) + g∗(−yk) ≤ 0 and we
conclude. Otherwise, for all large k,

0 > inf((f∗)k(·) + (g∗)k(−·)) = inf(f∗(·) + g∗(−·)).
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Thus there is y ∈ Rn such that f∗(y) + g∗(−y) ≤ 0, as required.
We provided here the result when inf(f + g) = 0 for the sake of completeness.

However observe that under the assumptions of Theorem 3.4 inf f + g is attained. In
this circumstance the squeeze theorem in the next section will provide a more precise
result.

With respect to the role of the assumptions in Theorem 3.4, Example 2.1 shows
the set L can be empty if we do not assume the existence of a locally Lipschitz
function sandwiched between f and −g, while Example 2.2 shows the necessity of the
qualification condition

ri (dom f∗) ∩ ri (–dom g∗) 6= ∅.
We turn now to the problem of providing conditions under which the slope of an

affine separator can be found in the closure of the range of the Clarke subdifferential
of the separating function h. To do this, we prove first the following proposition.

Proposition 3.2. Suppose f, g ∈ Γ0 satisfy f ≥ −g. For k = 1, 2, . . ., define

Lk
def
= {y ∈ Rn : (f∗)k(y) + (g∗)k(−y) ≤ 0}

and

L
def
= {y ∈ Rn : f∗(y) + g∗(−y) ≤ 0}.

Then Lk is a decreasing collection of closed convex sets containing L, and

yk ∈ Lk, yk → y implies y ∈ L.
If moreover the condition

0 ∈ int (dom f− dom g)

holds, then the sets Lk for large k are all contained in a compact set.
Proof. Since (f∗)k ≤ (f∗)k+1 ≤ f∗, clearly L ⊂ Lk+1 ⊂ Lk, for all k > 0. Let us

prove that, if yk is such that yk → y and

(f∗)k(yk) + (g∗)k(−yk) ≤ 0 for all k,

then

f∗(y) + g∗(−y) ≤ 0.

From Proposition 2.1 there exists ak ∈ R such that

f(x) ≥ ak + 〈yk, x〉 ≥ −g(x) for all x ∈ kB.
It is easy to show the sequence {ak} is bounded, so it has some cluster a ∈ R. (Use
the boundedness of {yk} and the existence of an element x ∈ dom f ∩ dom g.) It
follows that

f(x) ≥ a+ 〈y, x〉 ≥ −g(x) for all x ∈ Rn,

so y ∈ L. We have proved the first part of the claim. Now define a function

v(w) = inf
x∈Rn

(f(x+ w) + g(x))
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and a sequence of functions decreasing pointwise to v,

vk(w) = inf
x∈Rn

((f + IkB)(x+ w) + (g + IkB)(x)).

Observe that (vk)∗(y) = (f∗)k(y) + (g∗)k(−y) and v∗(y) = f∗(y) + g∗(−y) and that
dom v = dom f − dom g, so that 0 ∈ int (dom v).

Since v is continuous at 0, there exist reals r > 0 and α and a cube C such that
rB ⊂ C ⊂ int(dom v) and v ≤ α− 1 on C. Hence, for large k we have vk ≤ α on each
vertex of C and hence on rB, so (vk)∗(w) ≥ r‖w‖ − α for all points w in Rn, and
therefore Lk ⊂ (α/r)B.

We are now ready for a new result.
Theorem 3.5. For f, g ∈ Γ0, and locally Lipschitz h : Rn → R satisfying

f ≥ h ≥ −g, suppose

0 ∈ int (dom f− dom g).

Then

∃y ∈ cl (Im ∂h) : f∗(y) + g∗(−y) ≤ 0.

Proof. Apply Theorem 3.1 to the functions f + IkB ≥ h ≥ −(g + IkB), for large
k. Then there exists

yk ∈ Im (∂h) : (f∗)k(yk) + (g∗)k(−yk) ≤ 0.

By Proposition 3.2 the sequence (yk) clusters and any cluster point satisfies the re-
quired property.

We intend now to prove that the constraint qualification in Theorem 3.5 can be
replaced by an assumption involving the growth of f and h at infinity. To do this, we
need the following proposition.

Proposition 3.3. For f ∈ Γ0 and locally Lipschitz h satisfying f ≥ h, suppose

lim inf
‖x‖→∞

f(x)

‖x‖ > max

{
lim sup
‖x‖→∞

h(x)

‖x‖ , 0
}
.

Then, for all large k, fk ≥ h.
Proof. Let 0 < a < b and c be such that

f(x)

‖x‖ ≥ b,
h(x)

‖x‖ ≤ a,

for all x such that ‖x‖ ≥ c. Then there exists rbf ∈ R such that

f(x) ≥ r + b‖x‖ for all x ∈ Rn,

and f has bounded level sets. For the sake of contradiction, suppose there exists, for
each k ∈ N, xk such that fk(xk) < h(xk). Two cases can occur.

(i) (xk) is unbounded. Taking a subsequence, we can suppose ‖xk‖ → ∞. For
k > b, we have fk(xk) ≥ r + b‖xk‖. It follows that

a‖xk‖ ≥ h(xk) > fk(xk) ≥ r + b‖xk‖,



622 A. S. LEWIS AND R. E. LUCCHETTI

a contradiction.
(ii) (xk) is bounded. Again taking a subsequence, we can suppose xk → x. Pick

m > ‖x‖ and r so that h is r-Lipschitz on mB. Since f has compact level sets, for
each k there is yk such that h(xk) > fk(xk) = f(yk) + k‖xk − yk‖. As h(xk)→ h(x),
for large k one has

f(yk) ≤ f(yk) + k‖xk − yk‖ ≤ h(x) + 1.

Thus (yk) is bounded and, taking another subsequence, we can suppose yk → y. Since

k‖xk − yk‖ ≤ h(x) + 1− inf f for all k,

we deduce y = x. Thus, for large k, xk, yk ∈ mB, so

h(xk) ≤ h(yk) + r‖xk − yk‖ ≤ f(yk) + k‖xk − yk‖ < h(xk),

a contradiction.
Theorem 3.6. For f, g ∈ Γ0 and locally Lipschitz h : Rn → R satisfying

f ≥ h ≥ −g, suppose

lim inf
x→∞

f(x)

‖x‖ > max

{
lim sup
x→∞

h(x)

‖x‖ , 0
}
.

Then

∃y ∈ cl (Im ∂h) : f∗(y) + g∗(−y) ≤ 0.

Proof. From Proposition 3.3, fk ≥ h ≥ −g for large k. Since we know dom fk −
dom g = Rn, Theorem 3.5 implies there exists y ∈ cl Im ∂h with

f∗(y) + g∗(−y) ≤ (fk)∗(y) + g∗(−y) ≤ 0.

The proof of the theorem above relies on the fact that we are able to construct
a function p ∈ Γ0 such that f ≥ p ≥ h and whose domain contains internal points.
However, to do this is not always possible, as the following example shows.

Example 3.1. Let

f(u, v) =

{
0 if v = 0,
∞ otherwise

and h(u, v) = |uv|. Suppose the convex function p satisfies f ≥ p ≥ h. Then clearly
p(u, 0) = 0 for all u. For any real u and v and positive integer r,

1

r
p(u, v) =

1

r
p(u, v) +

r − 1

r
p(u, 0)

≥ p
(
u,
v

r

)
= p

(
u,
v

r

)
+ p(r, 0)

≥ 2p

(
u+ r

2
,
v

2r

)
≥
∣∣∣∣ (u+ r)v

2r

∣∣∣∣
→ |v|

2
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as r →∞. Hence p(u, v) = +∞ whenever v 6= 0, so p = f .
The next result deals with the case of h being globally Lipschitz.
Theorem 3.7. For f, g ∈ Γ0 and globally Lipschitz h : Rn → R, suppose

f ≥ h ≥ −g. Then

∃y ∈ cl (Im ∂h) : f∗(y) + g∗(−y) ≤ 0.

Proof. Apply Theorem 3.3 to the functions f + IkB , h, and g+ IkB to obtain the
existence of yk ∈ Im ∂h such that

(f + IkB)∗(yk) + (g + IkB)∗(−yk) ≤ 0.

Since h is globally Lipschitz, (yk) has a cluster point y. Then we conclude with the
help of Proposition 3.2.

The next example shows that in general no y ∈ Im ∂h satisfies f∗(y)+g∗(−y) ≤ 0.
Example 3.2. Let f(x) = |x|,

g(x) =

{
1 + x2 if x ≥ 0,
∞ otherwise,

h(x) =

{
x− exp(−x) if x ≥ 0,
2x− 1 otherwise.

Then all the assumptions of Theorem 3.5 are fulfilled, and moreover h is globally
Lipschitz.

We end the section by proving a unilateral result which can be regarded as a
generalized variational principle.

Theorem 3.8. For f ∈ Γ0 and locally Lipschitz h : Rn → R, suppose f ≥ h.
Then

cl (Im ∂h) ∩ dom f∗ 6= ∅.

Proof. Choose any point z ∈ dom f and real k > ‖z‖. Define g(·) = IkB(·) −
infkB h and apply Theorem 3.5.

The special case f = 0 gives the well-known variational result that a locally
Lipschitz function h which is bounded above satisfies 0 ∈ cl (Im ∂h).

4. Squeeze theorems. In this section we specialize the situation studied before.
We shall make the further assumption that there is a point where the three functions
are equal. In this case, as we shall see, we are able to provide more precise results.

We shall start with the following easy proposition, that we state without proof.
Proposition 4.1. For f, g ∈ Γ0 satisfying f ≥ −g, suppose there exists x such

that f(x) = −g(x). Then

{y : f∗(y) + g∗(−y) ≤ 0} = ∂f(x) ∩ −∂g(x).

We prove now a “convex” squeeze theorem.
Theorem 4.1. For f, g ∈ Γ0 and locally Lipschitz h : Rn → R satisfying

f ≥ h ≥ −g, suppose there exists x ∈ Rn such that f(x) = −g(x). Then

∂f(x) ∩ ∂h(x) ∩ −∂g(x) 6= ∅.
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Proof. Without loss of generality, we can suppose x = 0. For each positive integer
r, as f ≥ h ≥ −g on 1

rB, we can apply Theorem 3.1 to find xr ∈ 1
rB and yr ∈ ∂h(xr)

with

(f + I 1
rB

)∗(yr) + (g + I 1
rB

)∗(−yr) ≤ 0.

By Proposition 4.1

yr ∈ ∂(f + I 1
rB

)(0) ∩ −∂(g + I 1
rB

)(0) = ∂f(0) ∩ −∂g(0).

Since ∂h is locally bounded, there exists a subsequence (yrk) of (yr) converging to
some y, and since xrk → 0 and ∂h is closed, y ∈ ∂h(0).

The next squeeze theorem deals instead with three locally Lipschitz functions. To
prove it, we need the following proposition.

Proposition 4.2. Let f : Rn → R be locally Lipschitz and suppose δ > 0. Then

f(0) + f◦(0, x) + δ‖x‖ > f(x)

for all small nonzero x.
Proof. Suppose that f(0) = 0, that f is k-Lipschitz near 0, and that, for the sake

of contradiction, there is a sequence (xr) such that xr 6= 0 for all r and xr → 0, with

f◦(0, xr) + δ‖xr‖ ≤ f(xr).

Thus

f◦
(

0,
xr
‖xr‖

)
+ δ ≤ f(xr)

‖xr‖ .

Suppose, without loss of generality, xr
‖xr‖ → d. Then

lim sup
r→∞

f◦
(

0,
xr
‖xr‖

)
+ δ ≤ lim sup

r→∞
f(xr)

‖xr‖
= lim sup

r→∞
f(‖xr‖d) + f(xr)− f(‖xr‖d)

‖xr‖
≤ lim sup

r→∞
f(‖xr‖d) + k‖xr − ‖xr‖d‖)

‖xr‖
≤ f◦(0, d).

It follows that

f◦(0, d) + δ ≤ f◦(0, d),

which is impossible.
Theorem 4.2. Suppose f, h, g : Rn → R are three locally Lipschitz functions

such that f ≥ h ≥ g. Moreover, suppose f(x) = g(x) for some x. Then

∂f(x) ∩ ∂h(x) ∩ ∂g(x) 6= ∅.
Proof. Suppose, without loss of generality, f(0) = h(0) = g(0) = 0. By Proposi-

tion 4.2, for each r ∈ N, there exists εr > 0 such that

f◦(0, x) +
‖x‖
r
≥ h(x) ≥ −

(
(−g)◦(0, x) +

‖x‖
r

)
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for all x such that ‖x‖ ≤ εr. Now, take ε < εr. Then

f◦(0, x) +
‖x‖
r

+ IεB(x) ≥ h(x) ≥ −
(

(−g)◦(0, x) +
‖x‖
r

+ IεB(x)

)
for all x ∈ Rn. We can then apply Theorem 4.1 to get an element yr such that

yr ∈ ∂
(
f◦(0, ·) +

‖ · ‖
r

+ IεB(·)
)

(0) ∩ ∂h(0)

∩ −∂
(

(−g)◦(0, ·) +
‖ · ‖
r

+ IεB(·)
)

(0)

=

(
∂f(0) +

1

r
B

)
∩ ∂h(0) ∩

(
∂g(0) +

1

r
B

)
.

Since yr ∈ ∂h(0), the sequence (yr) is bounded and any of its cluster points does the
job.

Corollary 4.1. Let f1 ≥ f2 ≥ · · · fk : Rn → R be locally Lipschitz. Suppose
f1(0) = · · · = fk(0). Then

k⋂
i=1

∂fi(0) 6= ∅,

provided at least one of the following conditions holds:
• k = 1, 2, 3;
• at least one fi is smooth;
• n = 1, 2.

Proof. The cases k = 2 and the case when fi is smooth follow from the sum rule
applied to f1 − f2 and fj − fi, respectively. The case k = 3 is Theorem 4.2 and the
cases n = 1, 2 are consequences of Theorem 4.2 and Helly’s theorem.

5. Final remarks. We have seen some sandwich and squeeze theorems, deal-
ing with convex and locally Lipschitz functions. While the convex subdifferential is
standard, there are several notions of subdifferential for locally Lipschitz functions.
Here we use the Clarke subdifferential rather than, for instance, the approximate sub-
differential, because the latter is not suitable for the results we seek. Consider the
following simple example.

Example 5.1. Let

f(x) = I[−1,1](x),

g(x) = |x|+ I[−1,1](x),

and

h(x) = −|x|.
Then f ≥ h ≥ −g and h is (globally) Lipschitz. However

L = {y : f∗(y) + g∗(y) ≤ 0} = {0},
while the approximate subdifferential of h is the set {−1, 1}.

Finally, here is a list of questions we leave to the interested reader.
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Question 1. Does

ri (dom f) ∩ ri (dom g) 6= ∅

imply

L ∩ cl (Im ∂h) 6= ∅?

Question 2. Does

ri (dom f∗) ∩ ri (–dom g∗) 6= ∅

imply

L ∩ cl (Im ∂h) 6= ∅?

Question 3.2 Does the nonsmooth squeeze result of Corollary 4.1 hold more gen-
erally for any n, k?
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A BEHAVIORAL APPROACH TO THE POLE STRUCTURE OF
ONE-DIMENSIONAL AND MULTIDIMENSIONAL LINEAR

SYSTEMS∗

J. WOOD† , U. OBERST‡ , E. ROGERS† , AND D. H. OWENS§

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 627–661

Abstract. We use the tools of behavioral theory and commutative algebra to produce a new
definition of a (finite) pole of a linear system. This definition agrees with the classical one and allows
a direct dynamical interpretation. It also generalizes immediately to the case of a multidimensional
(nD) system. We make a natural division of the poles into controllable and uncontrollable poles.
When the behavior in question has latent variables, we make a further division into observable and
unobservable poles. In the case of a one-dimensional (1D) state-space model, the uncontrollable and
unobservable poles correspond, respectively, to the input and output decoupling zeros, whereas the
observable controllable poles are the transmission poles.

Most of these definitions can be interpreted dynamically in both the 1D and nD cases, and
some can be connected to properties of kernel representations. We also examine the connections
between poles, transfer matrices, and their left and right matrix fraction descriptions (MFDs). We
find behavioral results which correspond to the concepts that a controllable system is precisely one
with no input decoupling zeros and an observable system is precisely one with no output decoupling
zeros. We produce a decomposition of a behavior as the sum of subbehaviors associated with various
poles. This is related to the integral representation theorem, which describes every system trajectory
as a sum of integrals of polynomial exponential trajectories.

Key words. pole, decoupling zero, behavioral approach, multidimensional systems, character-
istic variety, polynomial exponential function, associated primes, primary decomposition, integral
representation
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1. Introduction. This paper is about the pole structure of one-dimensional
(1D) and multidimensional (nD) linear systems. Although it is motivated by the need
to establish a cohesive theory of poles for nD systems, many of the results in the paper
give a new perspective to the classical 1D theory. Furthermore, this paper places all
of the classical results in the new and growing behavioral framework [39, 40, 41].
We consider only linear systems with constant coefficients; our results apply to both
continuous and discrete cases.

The systematic theory of poles (and zeros) of 1D systems originated in the work of
Rosenbrock [33] and others. Since then, a number of papers have reviewed, extended,
and refined the theory (e.g., [8, 23, 35]; see also the references at the end of this
paper).

An nD system is one in which information propagates in two or more indepen-
dent directions. Such systems arise as the solutions of partial differential or difference
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equations. Shankar and Sule [36, 37] have defined poles for SISO nD systems, using
the ring of stable causal rational functions. As yet, to our knowledge, no theory of
pole structure or even a definition of a pole has been proposed for nD MIMO systems.
The primary aim of this paper is to fill that gap. Our secondary aim is to extend the
behavioral theory of both 1D and nD systems by introducing into it concepts con-
cerned with pole structure. Thirdly, we intend to shed new light on the existing 1D
theory, both through our use of behaviors and by identifying correspondences between
system-theoretic concepts and algebraic ones.

In accordance with the behavioral paradigm, we define poles (decoupling zeros,
etc.) to be objects associated with a system’s behavior, rather than with any given
representation of it. One advantage of such definitions is that they are all intrinsic, as
is also the case with the recent definitions of Bourlès and Fliess [4] and of Pommaret
and Quadrat [31]. For example, the input decoupling zeros are not defined as the zeros
eliminated by a reduction procedure as in [33], but are instead defined directly.

The algebraic definitions of Bourlès and Fliess [4] have been extended to the case of
nD systems with variable coefficients by Pommaret and Quadrat [31]. Our definitions
are equivalent to these in the 1D/ nD constant coefficients case, the relationship being
given by module duality, which translates, for example, the definition of a pole given
in terms of the finitely generated system module into a corresponding one in terms
of the system’s behavior. Our definitions are not directly related to those of Shankar
and Sule [36].

One of our principal tools in this paper is the duality theory in [24] between finitely
generated modules over a polynomial ring and nD behaviors described by linear partial
differential or difference equations with constant coefficients. Consequently, we use
a considerable amount of commutative algebra; see, for example, [3, 5, 7, 10] for
background in this field.

The paper is structured as follows. We begin with an overview of relevant concepts
from behavioral theory, with special emphasis on module duality (see section 2).
Section 3 collects some results on nD behavioral theory which we need later in the
paper.

In section 4 we review the concepts of exponential trajectories and the charac-
teristic variety. Exponential trajectories are central to any understanding of system
poles, and the characteristic variety is a geometric object which captures the essential
structure of a behavior as regards its exponential trajectories. Based on these ideas,
we define the poles of an nD system in section 5. We also define the concepts of con-
trollable and uncontrollable poles. The controllable poles have properties which relate
strongly to those of the system’s transfer matrix, whereas the uncontrollable poles
play the role of input decoupling zeros.

Section 6 considers the case where the behavior in question is a latent variable
representation (e.g., a state-input-output behavior). We divide the system poles into
observable and unobservable poles, which have natural interpretations. This leads
naturally to a further breakdown in terms of controllable observable poles, etc., all of
which correspond naturally to known sets of poles in the classical 1D context.

Finally, in section 7 we consider a decomposition which is dual to the standard
algebraic concept of the primary decomposition of a module. This “polar decomposi-
tion” expresses the zero-input behavior of a system as the finite sum of subbehaviors
associated with the distinct poles of the system. Using a similar decomposition we
can write the system behavior itself as the sum of the controllable part and a finite
set of subbehaviors associated with the system’s uncontrollable poles (input decou-
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pling zeros). This latter decomposition is a refinement of the well-known controllable-
autonomous decomposition. Using the little-known but important integral representa-
tion theorem, it is possible to write any zero-input trajectory as a sum of integrals of
polynomial exponential trajectories. In the case of a finite-dimensional behavior, ev-
ery zero-input trajectory can be written as a sum of polynomial-weighted exponential
trajectories with frequencies corresponding to the system poles, as in the 1D case.

We leave a number of important issues untouched, for example, the definition of
multiplicity of a pole, the definition of an infinite pole, and the whole question of
zeros. However, the basic structures which we uncover in this work should prove a
good foundation for further developments of this type.

2. Behaviors, modules, and duality. This section provides an overview of
behavioral theory and the duality between finitely generated modules and behaviors
given by partial differential/difference equations.

2.1. The behavioral approach. The behavioral approach to 1D systems is due
to Willems [39, 40, 41], and centers on the concept of the system’s behavior, which
is the set of associated trajectories. Formally, we define a system as a triple (A, q,B),
where A is a set called the signal space, q ∈ Z+ is the number of components, and
B ⊆ Aq is the behavior. The elements of B are called trajectories. We will make little
distinction between a system and its behavior. Note that the standard behavioral
definition of a system as a triple (T,W,B) (where T is the signal domain, W the
signal value set, and B ⊆WT ) does not cover the important case of distributions.

In all cases of interest (as listed below), A will have the structure of a module
over a suitable ring of differential or difference operators; in particular, A is always
a vector space over a field k, which is taken to be R or C. Specifically, throughout
this paper A denotes one of the following signal spaces, with a module structure as
described.

1. The discrete signal space A = kN
n

, k = R,C, which is a module over the
polynomial ring R = k[z] = k[z1, . . . , zn], where the action of zi on a trajectory w ∈ A
is taken to be the shift operator σi, defined by

(σiw)(t1, . . . , tn) := w(t1, . . . , ti−1, ti + 1, ti+1, . . . , tn).(2.1)

By extension, any element of R has an action on A

for all p ∈ k[z], w ∈ A, p(z1, . . . , zn)w := p(σ1, . . . , σn)(w).(2.2)

2. The discrete signal space A = kZ
n

, k = R,C, which is a module over the
Laurent polynomial ring R = k[z, z−1] = k[z1, . . . , zn, z

−1
1 , . . . , z−1

n ], where zi acts as
the shift operator σi and z−1

i as the inverse shift σ−1
i .

3. The signal space A = C∞(Rn, k), k = R,C of all k-valued C∞ functions on
Rn, which is a module over R = k[z], where zi acts as the partial derivative operator
∂/∂ti. This action is extended to R by

for all p ∈ k[z], w ∈ A, p(z1, . . . , zn)w := p(∂/∂t1, . . . , ∂/∂tn)(w).(2.3)

4. The signal space A = D′(Rn, k), k = R,C of all k-valued distributions on
Rn, which is a module over R = k[z], where zi again acts as the partial derivative
operator ∂/∂ti.

Throughout the paper, we consider the behavior B ⊆ Aq to be the solution space
in Aq of a finite set of linear partial differential or difference equations in q dependent
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variables with constant coefficients. Such behaviors will be called differential behaviors
and difference behaviors, respectively. The term autoregressive (AR) behavior has for-
merly been used but is undesirable due to the inappropriate stochastic connotations.

The set of systems with differential/difference behaviors covers all linear time-
invariant systems dealt with by the classical 1D state-space framework and its nD
analogues. Differential and difference behaviors are, in particular, linear and shift-
invariant and in the continuous case are also closed under partial differentiation. In
each case any differential or difference behavior B is therefore a submodule of Aq; the
ring action is the componentwise application of (2.2) or (2.3).

It is convenient to describe differential/difference behaviors using polynomial ma-
trices (Laurent polynomial matrices when A = kZ

n

). Thus let E ∈ Rg,q; then the
behavior described by E is the submodule of Aq consisting of all w satisfying Ew = 0,
where the meaning of Ew is given by the action of the ring R on A. For example, the
three-dimensional (3D) difference behavior B in 2 variables described by the equations

w1(t1, t2, t3)− w1(t1, t2 + 1, t3 + 1) + 2w2(t1 + 1, t2, t3) = 0,

w1(t1 + 2, t2, t3 + 1)− w2(t1, t2, t3) + 3w2(t1, t2 + 1, t3) = 0

is given by the polynomial matrix

E =

(
1− z2z3 2z1

z2
1z3 −1 + 3z2

)
.

We say that E is a kernel representation of B, and we write B = kerA E. For any
matrix E ∈ Rg,q, we also define the following modules:1

KerR E := {v ∈ R1,g | vE = 0},(2.4)

ImR E := {v ∈ R1,q | v = xE for some x ∈ R1,g},(2.5)

CokerR E := R1,q/ ImR E,(2.6)

imA E := {w ∈ Ag | w = El for some l ∈ Aq}.(2.7)

Note the different subscripts used to denote different ring actions. Also, the modules
KerR E, ImR E, CokerR E are defined with respect to a left action of E, whereas
kerA E and imA E are defined with respect to a right action.

2.2. Module duality. In this section we describe the duality between finitely
generated R-modules and differential/difference behaviors [24]. For the purposes of
the next definition and the discussion immediately following only, the space A can be
thought of as an arbitrary module.

Definition 2.1. Let M be a finitely generated R-module and A an arbitrary
R-module. The dual of M with respect to A, denoted D(M), is defined by

D(M) := HomR(M,A).(2.8)

If φ : M 7→ N is a morphism of finitely generated R-modules, then the dual map
D(φ) : D(N) 7→ D(M) is given by

for all v ∈ D(N), (D(φ))(v) := v ◦ φ.(2.9)

1Note that the modules KerR E, ImR E, CokerR E are defined using row vectors and do not
therefore require transposition of E, contrary to the first author’s previous practice.
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The action of R on the dual module D(M) is given by

for all r ∈ R, w ∈ D(M), (rw)(m) := r · w(m) = w(rm)(2.10)

for all m ∈M .
Note for any q ∈ Z+ that D(R1,q) ∼= Aq. Furthermore, it turns out that we have

the following theorem.
Theorem 2.2 (see [24, pp. 19–21]). Differential/difference behaviors are pre-

cisely the dual modules of finitely generated R-modules. Specifically, if B = kerA E,
then B = D(M), where M is the finitely generated module CokerR E.

It is not hard to show [24, Cor. 2.57] that the dual action of a polynomial matrix
map E : R1,g 7→ R1,q, v 7→ vE is the map E : Aq 7→ Ag, w 7→ Ew given by the ring
action on A ((2.2) or (2.3) in our cases of interest).

Definition 2.3. A complex of modules is a set of maps φi : Fi 7→ Fi−1, i ∈ Z,
where φi ◦ φi+1 = 0 for all i. We represent a complex by a diagram of the form

· · ·
φi+2−−→ Fi+1

φi+1−−→ Fi
φi−−→ Fi−1

φi−1−−→ · · ·.

The complex is said to be exact and is called an exact sequence, if for every i we have
that ker φi = im φi+1.

Exact sequences are a compact way of expressing structural relationships. Ex-
actness of the following two sequences express the injectivity and surjectivity, respec-
tively, of the map φ:

0 −→M
φ−→ N M

φ−→ N −→ 0.

The next exact sequence expresses that K is (isomorphic to) the kernel of φ and L is
(isomorphic to) the cokernel:

0 −→ K
ι−→M

φ−→ N
ρ−→ L −→ 0.

Note that to any complex of modules, there is a corresponding dual complex,
obtained by reversing the arrows and dualizing each module and each map, and con-
versely. The following crucial result shows that, in our cases of interest, the same can
be said of exact sequences.

Theorem 2.4 (see [24, Thm. 2.54, Cor. 2.43, 2.46, 2.47]). Each module A listed
in section 2.1 is an injective cogenerator of the category of R-modules. This signifies
that duality is contravariant and faithfully exact. In other words, given a complex of
modules

· · ·
φi+2−−→ Fi+1

φi+1−−→ Fi
φi−−→ Fi−1

φi−1−−→ · · ·(2.11)

and its dual complex

· · ·
D(φi−1)

−−−−→ D(Fi−1)
D(φi)−−−−→ D(Fi)

D(φi+1)

−−−−→ D(Fi+1)
D(φi+2)

−−−−→ · · ·,(2.12)

we have that (2.11) is exact if and only if (2.12) is exact. In consequence, if B =
kerA E ⊆ Aq, then the orthogonal module B⊥ ⊆ R1,q (the module of all equations
satisfied by the system B) is equal to ImR E.
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The module duality gives rise to a lattice duality B 7→ B⊥ between differential/
difference behaviors and submodules of R1,q. This duality takes summation to inter-
section and vice versa [24, sect. 2.22], [42, Lem. 1]. Note also that B = D(M), where
M = R1,q/B⊥. For any R-matrix E it can easily be seen that (imA E)⊥ = KerR E.

Now if B = kerA E and B′ = kerA E are two behaviors with the same number of
system variables, then B′ ⊆ B if and only if there exists an R-matrix L with E = LE′

[24, sect. 2.61]. Another important consequence of Theorem 2.4 is that the dual of
a submodule is a factor module of the dual, and vice versa. More precisely, given a
finitely generated R-module M and a submodule N , we have an exact sequence

0 −→ N −→M −→M/N −→ 0.(2.13)

This dualizes to an exact sequence

0 −→ D(M/N) −→ D(M) −→ D(N) −→ 0,(2.14)

which we can interpret as meaning that D(M/N) is a submodule of D(M), with factor
module D(N). Indeed, we identify D(M/N) with the set of functions of D(M) which
are zero on N .

An immediate application of the duality theorem is the following [24, pp. 24–25].
Lemma 2.5. If E ∈ Rg,q, then imA E = Ag if and only if E has full row rank.
Proof. The map E : R1,g 7→ R1,q, v 7→ vE is monic if and only if the dual map

E : Aq 7→ Ag, w 7→ Ew is epic.
We investigate some of the links between the theory of differential/difference

behaviors and commutative algebra resulting from this duality in section 3.
Henceforth, B = kerA E denotes a differential or difference behavior with kernel

representation E, which is contained in Aq for one of the signal spaces A listed in
section 2.1, and M = CokerR E denotes the finitely generated module to which B is
dual:

E ∈ Rg,q, M = CokerR E, B = D(M) = kerA E ⊆ Aq.(2.15)

A similar behavioral and/or module-theoretic approach can be taken for linear
systems with variable coefficients, as shown in the 1D case, for example, in [12, 14, 16,
34], using noncommutative techniques. The algebraic approach has been extended to
nD variable coefficient systems by Pommaret and Quadrat [30, 31]. Recent work has
indicated that it may be possible to use behavioral tools in the analysis of nonlinear
systems [47].

Recall that the annihilator of a module M , denoted annM , is the ideal of all
r ∈ R such that rM = 0. We denote the set of all elements of B annihilated by an
ideal J (i.e., all elements w such that rw = 0 for all r ∈ J) by [B : J ]. The following
properties of duality will be useful.

Lemma 2.6. Let J be an ideal of R and M a finitely generated R-module with
dual B; then

D(M/JM) = [B : J ].(2.16)

Also, annM = ann B.
Proof. Equation (2.16) is given in [24, Cor. 2.101]. Considering the case J = (r)

for some r ∈ R\0, we now find that D(M/rM) = [B : (r)]. If r is in the annihilator of
M , then M/rM = M , so [B : (r)] = B, i.e., r is in the annihilator of B. The converse
is similar.
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3. Controllable, observable, and autonomous systems. In this section we
recount relevant results from [24, 42, 46] and other sources, some of which are extended
here from discrete to continuous systems. These results concern the characterization
of controllable systems, observable systems, and autonomous systems using algebraic
tools.

3.1. Free variables. The following definition is adapted from [15].
Definition 3.1. Let B ⊆ Aq. The set of variables {wi | i ∈ Φ} for some subset

Φ of {1, . . . , q} is said to be a set of free variables if the mapping ρ : Aq 7→ AΦ, which
projects a trajectory onto the components of Φ, is epic when restricted to B.

The maximum size of a set of free variables is called the number of free variables
of B and is denoted by m(B).

Thus a set of variables indexed by Φ is free if the corresponding components can
take any value in AΦ. Given a kernel representation B = kerAE of B, it can be shown
that the number of free variables is equal to q − rank E [24, Thm. 2.69]. It can also
be shown that the number of free variables is additive [42, remarks following Def. 6],
i.e., given an exact sequence

0 −→ B1 −→ B2 −→ B3 −→ 0

of differential/difference behaviors, we have m(B2) = m(B1) +m(B3). Consequently,
if B1,B2 ⊆ Aq for some q, then we have

m(B1) +m(B2) = m(B1 + B2) +m(B1 ∩ B2).(3.1)

3.2. Autonomous systems. In the behavioral framework, an autonomous dis-
crete system is defined as follows [15, 42].

Definition 3.2. A difference behavior B with signal domain T is called au-
tonomous if there exists T1 ⊆ T such that any trajectory of B is determined by its
values on T1, and also T\T1 contains an n-dimensional cone.

The main characterization of such behaviors [42, Thm. 2] follows; similar results
or special cases have also appeared in [15, 46].

Theorem 3.3 (see [15, 42, 46]). Let B = D(M) be a difference behavior. The
following are equivalent:

1. B is autonomous.
2. B has no free variables.
3. For any E with B = kerA E, E has full column rank.
4. ann B = annM 6= 0; equivalently, M is a torsion module.

In the continuous case, Pillai and Shankar [29] have defined an autonomous sys-
tem as one with a characteristic variety which is not equal to Cn [29, Def. 4.2]. We
will discuss characteristic varieties in section 4; for now, let us use the following defi-
nition, which is easily seen to be equivalent to this condition and to the conditions of
Theorem 3.3.

Definition 3.4. A differential behavior is called autonomous if ann B 6= 0.
Recall that a behavior is said to be finite-dimensional or strongly autonomous if

and only if it is finite-dimensional as a vector space over k [15, 29]. Note that this
has nothing to do with the traditional use of the term “finite-dimensional” in classical
systems theory.

3.3. Minimal left annihilators and generalized factor primeness. We will
also need the concepts of a minimal left annihilator [32, p. 24] and generalized factor
primeness [24, Thm. 7.21], [46].
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Definition 3.5. Let R = k[z] or k[z, z−1], and suppose that E ∈ Rg,q. Then E
is called a minimal left annihilator (of F ) if there exists a matrix F ∈ Rq,h for some
h for which the following conditions hold:

1. EF = 0.
2. For any E′ satisfying E′F = 0, there exists L with E′ = LE.

The matrix E is said to be factor left prime in the generalized sense (GFLP), if
the existence of a R-matrix factorization E = LE1 (L not necessarily square) with
rank E = rank E1 implies the existence of an R-matrix L′ with E1 = L′E.

It is shown in [24, Lem. 2.27], [42, Lem. 7] that E is a minimal left annihilator
of F if and only if kerA E = imA F , or equivalently, ImR E = KerR F . Every matrix
over R has a minimal left annihilator [24, Lem. 2.27], [42, Lem. 7]. A matrix over R
is a minimal left annihilator if and only if it is GFLP [42, Lem. 10].

3.4. Controllable systems. Any differential/difference behavior admits cer-
tain input/output structures. In this paper, as is traditional in control theory, the
“inputs” are assumed to be a maximal set of free variables, and in consequence the
outputs have no freedom once the inputs are determined. The more general situation,
in which an input/output structure is an arbitrary partitioning of the system vari-
ables and which may be better suited to certain applications, is not considered in this
paper. In [31], Pommaret and Quadrat extend some of the algebraic theory of this
paper to this general case.

Definition 3.6 (see [24, Thm. 2.69], [32, Def. IV.8], [42, Def. 12]). An input/
output structure on the behavior B is a partitioning of the system variables w = (u, y),
such that the set of variables u is free and the zero-input behavior B0,y, defined by

B0,y = {(u, y) ∈ B | u = 0}(3.2)

is autonomous.
Equivalently, we can consider a partitioning E = (−Q P ) of any kernel represen-

tation E of B (to within a permutation), where the columns of Q correspond to the
input variables u and the columns of P to the output variables y, and we have the
condition

rank E = rank P = number of columns of P .

It is easy to show that the number of inputs is equal to m, the number of free
variables. In particular, the number of inputs and number of outputs of a behavior is
independent of the input/output structure.

If B has a kernel representation (−Q P ), where P is the submatrix corresponding
to the output components, then B0,y is (trivially) isomorphic to kerA P . We usually
make no distinction between these two behaviors.

For a given admissible input/output structure, any behavior B has a unique trans-
fer (function) matrix G ∈ k(z)p,m characterized by the equation PG = Q; see [24,
Thm. 2.69] and also [32, p. 75] for the discrete case. Collecting together all behaviors
with a given input/output structure and the same transfer matrix with respect to
that input/output structure, we obtain a transfer class. The transfer class turns out
to be independent of the input/output structure and resulting transfer matrix, and
the transfer classes partition the set of behaviors. Furthermore, each transfer class has
a unique element which is minimal with respect to set inclusion [24, Thm. 7.21], [32,
p. 76]. Such a behavior will be called the minimal realization of the transfer matrix.
The minimal realization has properties which are closely linked to those of the transfer
matrix, as we will see later in the paper.



THE POLE STRUCTURE OF 1D AND nD LINEAR SYSTEMS 635

The concept of a minimal realization is related to controllability, which in the
behavioral context is defined as follows.

Definition 3.7 (see [29, 32, 42, 44]). A differential behavior B is controllable if,
for any two open sets T1, T2 ⊆ Rn with disjoint closures and for any two trajectories
w(1), w(2) ∈ B, there exists a w ∈ B such that

w(t) =

{
w(1)(t) if t ∈ T1,
w(2)(t) if t ∈ T2.

(3.3)

A difference behavior B with signal domain T = Zn or T = Nn is controllable if
there exists a real number ρ > 0 such that for any sets T1, T2 ⊆ T with d(T1, T2) > ρ,
for any b1, b2 ∈ T , and any two trajectories w(1), w(2) ∈ B, there exists a w ∈ B such
that

w(t) =

{
w(1)(t− b1) if t ∈ T1 and t− b1 ∈ T,
w(2)(t− b2) if t ∈ T2 and t− b2 ∈ T.

(3.4)

In the discrete case, we can take b1 = 0 without loss of generality, and for T = Zn,
we can also take b2 = 0. For both differential and difference behaviors, controllability
expresses the idea of being able to join with a system trajectory any two system
trajectories defined on regions which are sufficiently far apart.

The next result collects previous results in the literature on the characterization
of nD behavioral controllability. In the 1D case, the equivalence of controllability and
torsionfreeness is first due to Fliess [13], following an observation of Pommaret [30].
Special cases of the next result in the 1D and two-dimensional (2D) discrete cases are
due, respectively, to Willems [40] and to Rocha [32].

Theorem 3.8. Let B = D(M) = kerA E. The following are equivalent:

1. B is controllable.
2. B is minimal in its transfer class.
3. B has an image representation.
4. E is GFLP.
5. B is a divisible module.
6. M is a torsionfree module.
7. B has no proper differential/difference subbehaviors with the same number of

free variables.

Proof. The equivalence of Parts 1 and 3 is given in [29, Prop. 3.4, Thm. 3.9] for
differential behaviors, in [42, Thm. 5] for difference behaviors on Zn, and in [44] for
general difference behaviors. The equivalence of Parts 3 and 4 is given in [42, Lem. 10]
and also [46]. The equivalence of Parts 3 and 6 has been given in [30, Prop. VII.A.10],
and the equivalence of Parts 2, 4, and 6 in [24, Thm. 7.21]. The equivalence of Parts
5 and 6 can be proved easily using the exactness of duality. Condition 7 is a direct
interpretation of condition 4, as discussed following Definition 10 in [42].

Note that any differential/ difference behavior has a “controllable-autonomous
decomposition” B = Bc + Ba [42, Thm. 7]; the argument given in that paper applies
equally well to continuous systems. In this decomposition, the controllable behavior
Bc ⊆ B is uniquely determined as the minimal element of the transfer class of B;
henceforth we call this behavior the controllable part of B. It is shown in [24, Thm.
7.21] that if B = D(M), then

Bc = D(M/tM),(3.5)
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where tM denotes the torsion submodule of M . We will also find the behavior B/Bc
interesting. This behavior is dual to tM , as can be seen from (3.5) using basic duality
principles (see (2.13) and (2.14)). Given a representation Ec for Bc, we can see by
considering the restriction of the map Ec to B that the behavior EcB is naturally
isomorphic to B/Bc.

The controllable-autonomous decomposition as defined above is in fact slightly
more general (and less rich in structure) for a 1D system than as originally defined
for 1D systems (see, e.g., [41]). This is because we do not require that the sum should
be direct.

The controllable part of B has the same input/output structures as B itself (in-
evitably, since it can be defined with respect to any such input/output structure via
the transfer matrix G). As we will see later in the paper, the zero-input behavior of
the controllable part, (Bc)0,y, has an interesting structure. It has already been shown
in [24, Cor. 7.29] that the corresponding orthogonal module has the following form:

((Bc)0,y)⊥ = {v ∈ R1,p | vG ∈ R1,m},(3.6)

where we treat (Bc)0,y as a subbehavior of Ap rather than of Aq, p being the number
of outputs.

The next result has not been explicitly proved in the literature before.
Lemma 3.9. Let B be a behavior with zero-input behavior B0,y according to

some input/output structure. Then B0,y is an autonomous part of B in a controllable-
autonomous decomposition.

Proof. For any (u, y) ∈ B, since the variables u are free in Bc, there must exist
a yc with (u, yc) ∈ Bc. As (0, y − yc) ∈ B0,y, we have the required decomposition
(u, y) = (u, yc) + (0, y − yc).

Definition 3.10. A matrix E ∈ Rg,q is called zero left prime if its gth order
minors generate R. A behavior B is called strongly controllable if it has a zero left
prime kernel representation.

It is a straightforward consequence that B = D(M) is strongly controllable if
and only if M is free. Definition 3.10 is not the definition originally given for strong
controllability [32], which has not yet been usefully extended from the 2D to nD or
to the continuous case.

3.5. Observable systems. We use the behavioral concept of observability [32,
Defn. 19], [40]: given a behavior Bl,w involving two sets of variables l and w, the
variables l are said to be observable from the variables w if for any two trajectories
(l1, w1), (l2, w2) ∈ Bl,w, it holds that w1 = w2 implies l1 = l2. When the variables l
are latent variables in a latent variable description of the behavior Bw (see section
6.1), we say that the behavior Bl,w is observable if the latent variables l are observable
from the manifest ones w. We have that Bl,w is observable if and only if Bl,0 = 0.

4. Exponential trajectories and the characteristic variety. We commence
our main discussion by explaining the notion of the characteristic variety of a behavior,
which is a geometric object describing the exponential trajectories contained in the
behavior. To motivate this analysis, we first review the classical interpretation of a
pole of a 1D continuous system (see, e.g., [8, 20]).

The point a is a pole of the system Σ if, when zero input u(t) is fed to the system,
there exists a nonzero initial condition x(0) such that the resulting state trajectory
has the form x(t) = x(0)eat [20]. This is sometimes rephrased by allowing u(t) to be a
finite sum of generalized delta functions which “kick the system” into the appropriate
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initial condition x(0). Note that as y(t) is determined linearly by x(t) (u(t) being
zero), y(t) must also be of the form y(0)eat.

This trajectory interpretation of a pole can be formalized in behavioral theory as
follows. Let Bx,u,y denote the state-input-output behavior of our given state space
representation of the system. Then a is a pole of the system (of Bx,u,y) if there exists
a nonzero trajectory of the form v0e

at in Bx,0,y, the set of zero-input trajectories. Ex-
ponential trajectories therefore play a crucial role in describing the poles of a system,
indeed they are the motive for considering poles.

4.1. Polynomial exponential trajectories. The algebraic significance of a
trajectory such as w(t) = v0e

at is that it is killed by the differential operator d/dt−a.
In the module formalism we are using, w(t) is annihilated by the maximal ideal
(z − a). The characterization of trajectories annihilated by maximal ideals, or more
generally by powers of maximal ideals, has been done in full detail in [25, Eqs. (1.25–
26), (5.26–29), (6.6), (6.10)]. Such trajectories turn out to be exponential trajectories,
or more generally, polynomial exponential trajectories, in a sense appropriate to the
underlying signal space. These are precisely the trajectories in which we are interested
in our study of poles.

The description of exponential trajectories in [25] can be reformulated as in the
next two results.

Theorem and Definition 4.1 (see [25]). Consider a scalar trajectory w(t) in
A, where A is one of the signal spaces listed in section 2.1, which is a module over
the ring R = k[z] or k[z, z−1]. Let a ∈ Cn or (C\0)n, respectively, according to R,
and let I(a) denote the maximal ideal of all elements of R which vanish at a. (Note
that we may have a 6∈ kn, but I(a) is still meaningful.)

Then w(t) is annihilated by I(a) if and only if it is of the following form (depen-
dent on the signal space):

1. For A = CNn or A = CZn ,

w(t) = αat11 · · · atnn
for some α ∈ C.

2. For A = RNn , write ai = rie
ıθi , θi := 0 for ai = 0, i = 1, . . . , n;

w(t) = rt11 · · · rtnn (α cos(θ1t1 + · · ·+ θntn) + β sin(θ1t1 + · · ·+ θntn))

for some α, β ∈ R.
3. For A = RZn , write ai = rie

ıθi , i = 1, . . . , n;

w(t) = rt11 · · · rtnn (α cos(θ1t1 + · · ·+ θntn) + β sin(θ1t1 + · · ·+ θntn))

for some α, β ∈ R.
4. For A = C∞(Rn,C) or A = D′(Rn,C),

w(t) = αea1t1+···+antn

for some α ∈ C.
5. For A = C∞(Rn,R) or A = D′(Rn,R), with ai = gi + ıhi, i = 1, . . . , n,

w(t) = eg1t1+···+gntn(α cos(h1t1 + · · ·+ hntn) + β sin(h1t1 + · · ·+ hntn))

for some α, β ∈ R.
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A trajectory of Aq is annihilated by I(a) if and only if every component is of the
above form. Such a trajectory is called an exponential trajectory with frequency a.

The full exponential-type properties of a behavior can however only be captured
by considering trajectories of a more general form, as described in the next result.
A trajectory w ∈ A is called locally finite if the submodule R · w generated by w is
finite-dimensional over k [25]. The R-submodule of A consisting of all locally finite
trajectories is denoted by Alf.

Theorem and Definition 4.2 (see [25]). Define a, I(a) as above. A trajectory
w(t) ∈ A is annihilated by some power of I(a) if and only if it is of the following form
(dependent on the signal space):

1. For A = CNn , write S = {i ∈ {1, . . . , n} : ai 6= 0};

w(t) = p(t)
∏
i∈S

atii

for some p(t) which is the componentwise product of a polynomial function p(1)(t) of
the parameters ti, i ∈ S only, and a finitely supported function p(2)(t) of the parameters
tj , j 6∈ S only.

2. For A = CZn ,

w(t) = p(t)at11 · · · atnn
for some p(t) ∈ C[t].

3. For A = RNn , write S = {i ∈ {1, . . . , n} : ai 6= 0}, and, for i ∈ S, define
ri, θi ∈ R by ai = rie

ıθi . For i 6∈ S, set θi = 0.

w(t) = p(t)

(∏
i∈S

rtii

)
(α cos(θ1t1 + · · ·+ θntn) + β sin(θ1t1 + · · ·+ θntn))

for some α, β ∈ R and some p(t) which is the componentwise product of a real poly-
nomial function p(1)(t) of the parameters ti, i ∈ S only, and a finitely supported real
function p(2)(t) of the parameters tj , j 6∈ S only.

4. For A = RZn , for i = 1, . . . , n, define ri, θi ∈ R by ai = rie
ıθi , i = 1 . . . , n;

w(t) = p(t)rt11 · · · rtnn (α cos(θ1t1 + · · ·+ θntn) + β sin(θ1t1 + · · ·+ θntn))

for some α, β ∈ R and some p(t) ∈ R[t].
5. For A = C∞(Rn,C) or A = D′(Rn,C),

w(t) = p(t)ea1t1+···+antn

for some p(t) ∈ C[t].
6. For A = C∞(Rn,R) or A = D′(Rn,R), write ai = gi + ıhi, gi, hi ∈ R,

i = 1, . . . , n;

w(t) = p(t)eg1t1+···+gntn(α cos(h1t1 + · · ·+ hntn) + β sin(h1t1 + · · ·+ hntn))

for some p(t) ∈ R[t].
Moreover,

Alf =
⊕
a

w ∈ A
∣∣∣∣∣∣ I(a)l annihilates w for some l ∈ Z+

 ,(4.1)
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where for k = C the direct sum runs over all a in either Cn or (C\0)n, according to R;
for k = R the direct sum runs over a set of representatives of the one- or two-element
subsets {a, a}, a ∈ Cn. Here a denotes the componentwise complex conjugate of a.

The locally finite trajectories in Aqlf for any q are called polynomial exponential
functions/trajectories.

Note that a finite-dimensional behavior consists entirely of polynomial exponential
trajectories, as it contains Rw for each trajectory w, and so all trajectories are locally
finite.

As discussed in [25], the space Alf is itself an injective cogenerator of the category
of R-modules, i.e., Theorem 2.4 applies with D(M) = HomR(M,A) replaced by
Dlf(M) = HomR(M,Alf). This enables the vast majority of the duality theory of [24]
to be applied to differential/difference behaviors in Aqlf. In particular, the equation

(B ∩ Aqlf)⊥ = ImR E = B⊥

for any B = kerA E shows that the subbehavior B ∩ Aqlf of polynomial exponential
trajectories determines B uniquely. More specifically, in the case of a C∞ differential
behavior, Hörmander gives the following result [18, Thm. 7.6.14].

Theorem 4.3. Let B be a differential behavior with signal space C∞(Rn,C). Then
B is equal to the closure of the set of its polynomial exponential trajectories.

Even in the general case, we have seen that a differential or difference behavior
is described fully by those trajectories annihilated by some power of an ideal I(a),
a ∈ Cn. As any differential/difference behavior containing such a trajectory must also
contain a trajectory annihilated by I(a) itself, from section 4.2 to section 6 we will
discuss only exponential trajectories. In section 7 we will look briefly at the integral
representation theorem, which for a behavior with signal space C∞(Rn,C) describes
how any system trajectory can be written as an integral of polynomial exponential
trajectories.

4.2. The characteristic variety. We now look at the concept of the character-
istic variety, which contains the essential information on the exponential trajectories
of a behavior.

Let J ⊆ k[z], k = R,C. Then we define the variety V (J) as

V (J) := {a ∈ Cn | p(a) = 0 for all p ∈ J}.(4.2)

Note that V (J) is defined as a subset of Cn even when k = R. In the case
where the ring of interest is R = k[z, z−1], the definition is the same, except that
only points a ∈ (C\0)n are considered. Henceforth we write a ∈ Cn ((C\0)n), on
the understanding that the former applies except when working with the signal space
A = kZ

n

.

The next result and definition are fundamental to the paper and come from the
theory of PDEs; see [2, p. 200, p. 340] and also [28, p. 138–139], where the term variety
associated with the finitely generated module M is used. The characteristic variety is
also investigated in [30, 31].

Theorem and Definition 4.4. Let B = D(M) be a behavior with kernel rep-
resentation E. Let a be a point in Cn ((C\0)n). The following are equivalent:

1. a ∈ V (ann B) = V (annM).
2. E(a) has less than full column rank.
3. B contains a nonzero exponential trajectory w with frequency a.
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If a satisfies these conditions, then it is called a characteristic point of B or of M .
The variety V (ann B) of all such points is called the characteristic variety of B or of
M .

Proof. Let g be the number of rows of E. By Lemma 2.6, duality preserves the
annihilator, so V (ann B) = V (annM). Write I(a) for the set of all polynomials of R
which vanish at the complex point a. I(a) is a maximal ideal of R. The equivalence of
the first two conditions follow since annM and Fitt0 M , the ideal of qth order minors
of E, are known to have the same radical [10, Prop. 20.6] and therefore vanish at the
same points. Now we have that (R/I(a))1,q/(R/I(a))1,gE(a) = M/I(a)M , and by
Lemma 2.6 we also have

D(M/I(a)M) = [B : I(a)],

the set of trajectories of B annihilated by I(a). Hence E(a) has less than full column
rank if and only if D(M/I(a)M) 6= 0, or if and only if B contains a nonzero trajectory
annihilated by I(a). Finally, apply Theorem 4.1.

The first condition of Theorem 4.4 has the advantage of being succinct, algebraic,
and representation-independent. The second condition, which considers the points
where the kernel representation has less than full column rank, is familiar from the
classical theory of poles. The third condition gives a dynamic (trajectory) interpreta-
tion of the point, the details of which depend upon the signal space. The equivalence
of the first two conditions of Theorem 4.4 is well known.

The characteristic variety is interesting only for autonomous behaviors, for it is
different from Cn ((C\0)n) precisely when B is autonomous.

In fact, for a given characteristic point a of a behavior B = kerA E, it is possible
to construct explicitly a nonzero exponential trajectory with frequency a in B. Such
a trajectory is given, for example, in the continuous complex case by v0e

a1t1+···+antn ,
where v0 is any nonzero element of the kernel of E(a), acting on Cq on the right.
Conversely, over the field C if v0e

a1t1+···+antn ∈ B, then E(a)v0 = 0, because when
working over C we can easily show for any exponential trajectory w that E(z)w =
E(a)w.

Note that the characteristic points are defined over the algebraic closure C of k.
In the case k = R, the subset of characteristic points in Rn or (R\0)n correspond to
exponential trajectories of the form v0e

a1t1+···+antn (continuous case) or v0a
t1
1 · · · atnn

(discrete case). However, the information contained in this subset of the characteristic
variety is insufficient to describe the exponential phenomena which the system may
exhibit.

Example 4.5. Consider the 1D behavior over C∞(R,R) given by the kernel rep-
resentation:

B = kerA E, E =

(
z − 5 −2
z z − 1

)
.

Now E loses rank nowhere in R, for its determinant is z2− 4z+ 5, which has no roots
in R. Over C, we have the roots 2 + ı, 2− ı, and indeed, B admits the trajectory

w(t) =

(
e2t(3 sin t− cos t)
e2t(3 cos t− 4 sin t)

)
,

which is exponential with frequency 2 + ı. However, B has no trajectories of the form
w(t) = αeat, a ∈ R, and the exponentially increasing/decreasing trajectories can only
be found by considering the characteristic points in C\R.
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4.3. Associated and coassociated primes. We will find it useful to consider
objects which describe the structure of a behavior B in a similar but slightly more
detailed manner than ann B and its corresponding variety.

Recall that an R-module M and a prime ideal J give rise to the localization
MJ = {ms | m ∈ M, s ∈ R\J}, which is a module over the local ring RJ = { rs | r ∈R, s ∈ R\J}.

Definition 4.6. Let M be an R-module. The support supp M of M is the set
of prime ideals J such that MJ 6= 0. The set AssM of associated primes of M is the
set of prime ideals of R which are annihilators of elements of M . These will also be
called the coassociated primes of B = D(M).

The following standard result can be found in, e.g., [3, Prop. II.4.17, Thm. IV.1.2]
or [10, Cor. 2.7, Thm. 3.1].

Theorem 4.7. Let M be a finitely generated nonzero R-module. Then the sup-
port of M is the set of all prime ideals containing annM . The set AssM is finite,
nonempty, contained in supp M , and contains all the minimal prime divisors of
annM .

From the first claim of Theorem 4.7, a point a is a characteristic point of B =
D(M) if and only if annM ⊆ I(a), or equivalently, if and only if MI(a) 6= 0. In-
deed, much of the theory in this paper can be expressed formally in the language of
localization; we will however use it sparingly.

From the last claim of Theorem 4.7, we can write the characteristic variety of B
as the union of the varieties V (J), J a coassociated prime of B. There is redundancy
in this decomposition, as it is also possible to write the characteristic variety as
the union of the varieties corresponding to the minimal prime divisors of annM ,
called the minimal primes of M , only. The remaining associated primes of M , called
embedded primes, correspond to proper subvarieties of those corresponding to the
minimal primes. It is however necessary to consider all associated primes, since this
makes available the primary decomposition theorem, which will be applied in section
7. In general, the coassociated primes of a behavior contain more information than
the characteristic variety.

The next standard result will prove invaluable in breaking down the set of poles
into subsets (e.g., controllable poles) with certain properties.

Lemma 4.8. Let M,M ′,M ′′ denote finitely generated R-modules which form an
exact sequence

0 −→M ′ −→M −→M ′′ −→ 0.

Then V (annM) = V (annM ′) ∪ V (annM ′′) and AssM ′ ⊆ AssM ⊆ (AssM ′) ∪
(AssM ′′).

Proof. The first claim is found in [3, Chap. II, sect. 4.4] and the second in [3,
Chap. IV, sect. 1.2] or [10, p. 92].

5. Controllable and uncontrollable poles. In this section we present our
new definition of a pole of an nD system and provide a decomposition of the set of
poles into controllable and uncontrollable poles. The controllable poles are poles of
the controllable part of the system and are associated with the transfer matrix. The
uncontrollable poles play the role of input-decoupling zeros.

5.1. Controllable and uncontrollable poles. In our motivational discussion
at the beginning of section 4, we discussed the classical interpretation of a pole,
as a frequency a for which the zero-input behavior contains a nonzero exponential
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trajectory. We then discussed the characterization of such points a using the notion
of the characteristic variety. We now use this notion to define a pole (point) in the
obvious way. However, we do not yet consider states; these are introduced under the
guise of latent variables in section 6. Note also the distinction between “poles,” which
are prime ideals, and “pole points,” which are points in real or complex space.

Definition 5.1. Let B = D(M) be a behavior with a given input/output structure
and controllable part Bc.

1. The pole variety, pole points, and poles of B are defined to be the char-
acteristic variety, characteristic points, and coassociated primes, respectively, of the
zero-input behavior B0,y.

2. The controllable pole variety, controllable pole points, and controllable poles
of B are defined to be the characteristic variety, characteristic points, and coassociated
primes, respectively, of the behavior (Bc)0,y.

3. The uncontrollable pole variety, uncontrollable pole points, and uncontrol-
lable poles of B are defined to be the characteristic variety, characteristic points, and
coassociated primes, respectively, of the behavior B/Bc.

These definitions are all new and are not trivially equivalent to any previously
given definitions of which we are aware. The behaviors concerned in Definition 5.1,
and the corresponding finitely generated modules, can be captured in a dual pair of
commutative exact diagrams (5.1)–(5.2); compare with the diagrams on page 14 of
[31].

0 0y y
F === Fy y

0 −→ tM −→ M −→ M/tM −→ 0

‖
y y .

0 −→ tM −→ M/F −→ M/(F ⊕ tM) −→ 0y y
0 0

(5.1)

In the diagram (5.1), F denotes a maximal free submodule of M , for example,
that generated by the elements ei + B⊥, where ei is the ith natural basis vector in
R1,q, for each index i corresponding to an input component. The dual of M/F is
B0,y, the dual of M/tM is Bc, as already discussed, and the dual of M/(tM ⊕ F ) is
Bc ∩ B0,y = (Bc)0,y. Diagram (5.1) dualizes to (5.2).

0 0y y
0 −→ (Bc)0,y −→ B0,y −→ B/Bc −→ 0y y ‖ .

0 −→ Bc −→ B −→ B/Bc −→ 0y y
Am === Amy y
0 0

(5.2)
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Note that it is important not to confuse the zero-input behavior (Bc)0,y with the
behavior (B0,y)c. The latter is uninteresting as it is always zero, whereas the former
in general is not, and we will henceforth write Bc0,y for (Bc)0,y.

It is possible to regard the behavior B0,y as the “pole module” of the system,
though we feel that it would be more appropriate to give this name to the finitely
generated module M/F to which B0,y is dual. This terminology ties in loosely with
that of Kalman [21], Conte and Perdon [6], and Wyman and Sain [45], and we could
extend it to an “input decoupling zero module,” etc., though there does not seem
to be a strong link between the two sets of definitions. The significance of a “pole
module” is that the pole points themselves are the points where the annihilator of
the pole module vanishes. This interpretation is also possible in the earlier work of
Kalman and others. The term “pole module,” etc., has also been used by Bourlès and
Fliess [4], where it is equivalent (for 1D systems) to the definition we have suggested;
see also Pommaret and Quadrat [31].

One important consequence of our definitions is that the number of poles (and also
the number of controllable poles and the number of uncontrollable poles) is finite. This
follows from Theorem 4.7. Also, for any pole J , V (J) is contained in the pole variety,
and indeed the pole variety is the union of such V (J)’s, similarly for controllable and
uncontrollable poles.

The following characterization of pole points is immediate from Theorem 4.4.
Corollary 5.2. Let B be a behavior with a given input/output structure, and let

a be a point in Cn ((C\0)n). Let (−Q P ) be a kernel representation of B, where the
submatrix P corresponds to the output variables. Then the following are equivalent:

1. a is a pole point of B.
2. P (a) has less than full column rank.
3. B0,y contains a nonzero exponential trajectory of frequency a.

5.2. Controllable poles. The controllable poles (pole points, etc.) of B are
poles (pole points, etc.) of the controllable part Bc of B. Hence for any controllable
pole point a, there is an exponential trajectory w(t) ∈ Bc0,y ⊆ B0,y which can be
concatenated with the zero trajectory in the sense of behavioral controllability, i.e.,
such a w(t) can be controlled.

Recall that Bc is the unique minimal element of the transfer class of B. Since
there is a strong relationship between Bc and the transfer matrix G of B, it is not
surprising that the controllable pole points of a behavior are captured in the structure
of its transfer matrix.

Not only the variety V (ann Bc0,y) but also the ideal ann Bc0,y can be described via
the transfer matrix, and this gives ann Bc0,y and also the corresponding coassociated
primes a special structure.

Theorem 5.3.Let B be a behavior with a given input/output structure and trans-
fer matrix G. Then we have

ann Bc0,y = {r ∈ R | rG is a polynomial matrix}.(5.3)

In particular, ann Bc0,y is principal, and indeed generated by the least common denom-
inator of the entries of G. The controllable poles of B are also principal.

Proof. Recall (3.6)

(Bc0,y)⊥ = {v ∈ R1,p | vG ∈ R1,m}.
For any element v of R1,p, we therefore have

ann (v + (Bc0,y)⊥) = {r ∈ R | (rv)G ∈ R1,m}.(5.4)
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Taking the intersection of these sets for all v ∈ R1,p gives us annR1,p/(Bc0,y)⊥ =
ann Bc0,y, and thus we obtain (5.3). Furthermore, (5.4) also tells us that the annihi-

lator of any v + (Bc0,y)⊥ is equal to (d), where d is the least common denominator
of the entries of vG. In particular, each such annihilator is principal, including the
coassociated primes of Bc0,y, which are the controllable poles.

Corollary 5.4. Let B be a behavior with a given input/output structure and
transfer matrix G. Let (−Qc P c) be a GFLP matrix such that P cG = Qc, e.g., P c is
square and (P c)−1Qc = G is a minor left coprime matrix fraction description of G,
if such exists. Let a ∈ Cn ((C\0)n). Then the following are equivalent:

1. a is a controllable pole point of B.
2. P c(a) has less than full column rank.
3. The denominator of some entry of G vanishes at a.
4. Bc0,y contains a nonzero exponential trajectory with frequency a.

Proof. If (−Qc P c) is GFLP and P cG = Qc, then (−Qc P c) is a kernel repre-
sentation of a controllable behavior with transfer matrix G, which is therefore the
controllable part of B. From [43, Cor. 7.9], any minor left prime matrix is GFLP, and
therefore this situation particularly applies when (P c)−1Qc is a minor left coprime
matrix fraction description of G.

P c is then a kernel representation of Bc0,y (up to trivial isomorphism), and the
equivalence of 1, 2, and 4 now follows from Theorem 4.4. Condition 3 is immediate
from (5.3) in Theorem 5.3.

Note that the condition “the denominator of some entry of G vanishes at a” can
be expressed formally by the localization condition: G 6∈ Rp,mI(a), where I(a) is the

maximal ideal corresponding to the point a.
Corollary 5.4 also characterizes controllable pole points in terms of left matrix

fraction descriptions (MFDs) of G; these must be minor left coprime for the char-
acterization to apply, and not every transfer matrix has a minor left coprime MFD.
The same characterization can be applied to right MFDs, since it is known that if

P−1Q = QP
−1

are minor left coprime and minor right coprime MFDs of a transfer
matrix, then |P | = |P | to within a unit [19, Thm. 2.12].

This correspondence between the controllable pole points and the transfer ma-
trix is similar to the classical 1D characterization of transmission poles. However,
transmission poles are defined with respect to a state-space representation, and so it
is not accurate to identify controllable pole points with transmission poles. The nD
behavioral equivalent of the classical transmission poles will be discussed in section
6.2.

5.3. Uncontrollable poles. The uncontrollable poles are defined independently
of any input/output structure, i.e., a system has the same uncontrollable poles regard-
less of the input/output structure imposed. This is interesting only if we have a proper
interpretation of an uncontrollable pole, but we will see that it corresponds in appro-
priate cases to the idea of an input decoupling zero.

The uncontrollable poles can be characterized as follows.
Lemma 5.5. Let B = D(M) be a behavior with a given input/output structure.

The uncontrollable poles are the coassociated primes of

B/Bc ∼= B0,y/Bc0,y ∼= D(tM).(5.5)

The uncontrollable poles of B are precisely the nonzero coassociated primes of B.
Furthermore, a behavior is controllable if and only if it has no uncontrollable poles.
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Proof. The duality B/Bc ∼= D(tM) is known (see (3.5) and the discussion fol-
lowing), and the isomorphism B/Bc ∼= B0,y/Bc0,y comes from the standard module
isomorphism theorems; see also diagram (5.2). The uncontrollable poles of B are the
associated primes of tM , and it is easy to see that these are the nonzero associated
primes of M , i.e., the nonzero coassociated primes of B. Finally, B has no uncontrol-
lable poles if and only if tM has no associated primes, i.e., if and only if tM = 0, i.e.,
B = Bc.

The last result of Lemma 5.5 is reminiscent of the result that a controllable
state-space representation of a 1D system is precisely one with no input decoupling
zeros. However it is not appropriate to identify the uncontrollable poles with input
decoupling zeros, since the concept of an input decoupling zero only has meaning
when inputs, outputs, and states are involved; we will develop this connection further
in section 6.2.

We now consider the characterization of uncontrollable pole points in terms of
properties of B and its representations.

Theorem 5.6. Let B = D(M) be a behavior with kernel representation E. Then

1. B is controllable if and only if it has no uncontrollable pole points.
2. Let a ∈ Cn ((C\0)n), and write I(a) ⊆ R for the ideal of polynomials vanish-

ing at a. We have that B\Bc contains a nonzero exponential trajectory with frequency
a:
⇒ a is an uncontrollable pole point of B
⇒ E loses rank at a, i.e., rank E(a) � rank E, or equivalently,

the localization MI(a) is not free.
3. The statements in claim 2 are equivalent when Bc is strongly controllable,

and, in particular, for a 1D system. More generally, if Ec is a kernel representation
of Bc, then the statements are equivalent for points a at which Ec does not lose rank.
In particular, these statements are equivalent for points a which are not controllable
pole points.

4. Suppose that a is not an uncontrollable pole point of B. Then E loses rank
at a if and only if Ec loses rank at a.

Proof.

1. B has no uncontrollable pole points if and only if ann B/Bc = R, i.e., B = Bc.
2. Write J = I(a), and suppose that B\Bc contains a nonzero exponential

trajectory w with frequency a. Then Jw = 0 ∈ Bc, so w + Bc is an element of B/Bc
which is annihilated by J . By Theorem 4.4, a is a characteristic point of B/Bc, i.e., an
uncontrollable pole point of B. From this it follows that ann tM ⊆ J , or equivalently,
by Theorem 4.7 that t(MJ) = (tM)J 6= 0, i.e., MJ is not torsionfree. Hence MJ is
not free, which by [24, Thm. 7.69] means that E loses rank at a.

3. Now suppose that E loses rank at a but that Ec does not. Equivalently,
(M/tM)J is free but MJ is not. Due to the exact sequence

0 −→ (tM)J −→MJ −→ (M/tM)J −→ 0,(5.6)

we must have (tM)J 6= 0, and so by Theorem 4.7 ann tM ⊆ J , from which a is an
uncontrollable pole point of B. Next, if a is such a point, and furthermore Ec does not
lose rank at a, we again have the exact sequence (5.6). Since again (M/tM)J is free,
(5.6) splits, and so we can tensor with RJ/JJ = R/J to obtain the exact sequence

0 −→ tM/JtM −→M/JM −→M c/JM c −→ 0,
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where M c denotes M/tM and its dual

0 −→ [Bc : J ] −→ [B : J ]
ρ−→ [B/Bc : J ] −→ 0.(5.7)

Since a is an uncontrollable pole point of B, by Theorem 4.4 there exists a nonzero
element v in [B/Bc : J ]. From the exactness of (5.7), there must be an element
w ∈ [B : J ] with ρ(w) = w + Bc = v. Since v 6= 0, we must have w 6∈ Bc, and as
J annihilates w, it is an exponential trajectory with frequency a, as required. This
proves the equivalence of the three conditions in claim 2 for points a at which Ec

does not lose rank. If Ec = (−Qc P c) is a decomposition of Ec with respect to an
input/output structure, so that P c is a kernel representation of Bc0,y, then we know
that rank Ec = rank P c. Now if a is not a controllable pole point of B, so that by
Corollary 5.4 P c does not lose rank at a, then Ec does not lose rank at a, and the
equivalence of the given statements applies.

If Bc is strongly controllable, then Ec is zero left prime, and so Ec loses rank
nowhere. For a 1D system, Bc is always strongly controllable.

4. Again we have an exact sequence

0 −→ (tM)J −→MJ −→ (M/tM)J −→ 0.

As in the proof of the previous claim, the condition that a is not an uncontrollable
pole point of B means that (tM)J = 0, from which MJ

∼= (M/tM)J . Hence MJ is
free if and only if (M/tM)J is free. By [24, Thm. 7.69], an equivalent statement is
that E loses rank at a if and only if Ec loses rank at a.

It is not true in general that an uncontrollable pole point of B = kerAE is precisely
a point where E loses rank. Consider the example

E =

(
z1 0 z2

0 z2 z3

)
and the corresponding behavior B with signal space A = C∞(R3,C). The matrix
E has a rank-loss point (0, 0, a3) for any a3 ∈ C, but it is minor left prime (i.e.,
the second-order minors have no common factor), and therefore GFLP by [43, Cor.
7.9]. B is therefore controllable by Theorem 3.8, and so by Theorem 5.6 it has no
uncontrollable pole points.

Uncontrollable pole points can also be characterized in terms of other behaviors
and representations.

Theorem 5.7. Let B = kerA E be any behavior with controllable part Bc =
kerAEc. Let K be any polynomial matrix with E = KEc, and let C be a minimal left
annihilator of Ec; write

L =

(
K
C

)
.

Then L is a kernel representation of EcB ∼= B/Bc, and the following are equiv-
alent for any point a ∈ Cn ((C\0)n):

1. a is an uncontrollable pole point of B.
2. L(a) has less than full column rank.
3. EcB contains a nonzero exponential trajectory with frequency a.

Proof. Given E,Ec,K,C, and L as described, it is easy to see that LEc is a
kernel representation of B, and we also have kerA L ⊆ imA Ec. Now w ∈ EcB implies
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Lw = 0, and conversely w ∈ kerA L implies that w = Ecv for some v, so (LEc)v = 0,
i.e., v ∈ B. Hence kerA L = EcB. As EcB ∼= B/Bc, the uncontrollable pole points
are the characteristic points of EcB, and the remaining assertions follow on applying
Theorem 4.4.

5.4. The uncontrollable–controllable decomposition. As implied by the
nomenclature, poles are either uncontrollable poles or controllable poles (or possibly
both), and similarly for pole points.

Theorem 5.8.
1. The union of the uncontrollable pole variety and the controllable pole variety

is the pole variety.
2. The union of the set of uncontrollable poles and the set of controllable poles

is the set of poles.
Proof. From the commutative exact diagram (5.2), we have an exact sequence

0 −→ (Bc)0,y −→ B0,y −→ B / Bc −→ 0,

which is dual to a corresponding sequence of finitely generated modules in reverse
order in the diagram (5.1). Applying Lemma 4.8 gives us the first claim concerning
pole points immediately, and also the following:

{uncontrollable poles} ⊆ {poles} ⊆ {uncontrollable poles, controllable poles}.
It remains to show that every controllable pole is a pole. Write M0,y and M c

0,y, respec-
tively, for the modules to which B0,y and Bc0,y are dual. We now have the following:

AssM c
0,y ⊆ supp M c

0,y ⊆ supp M0,y.

As annM0,y 6= 0 (its dual is autonomous), 0 6∈ supp M0,y. Now by Theorem 5.3, every
element of AssM c

0,y is principal and therefore has height 1. Each such element must
therefore be minimal in supp M0,y, and so by Theorem 4.7 is therefore in AssM0,y.
This proves that AssM c

0,y ⊆ AssM0,y, i.e., the controllable poles are also poles, as
required.

In the proof above, the fact that every controllable pole is a pole relies on the
fact that every controllable pole is principal (from Theorem 5.3). In section 6 we will
encounter decompositions of sets of poles where such an observation does not apply,
and therefore only partial results of this nature can be obtained.

Note that, contrary to the implication of the nomenclature, it is possible for a
pole to be both a controllable pole and an uncontrollable pole, and similarly for pole
points! A complete partitioning of poles into controllable and uncontrollable ones
would require a suitable notion of multiplicity, which is beyond the scope of this
paper.

5.5. The dimension of the characteristic variety. Another important ques-
tion for an nD system is how “large” the poles are, in a geometric sense. For a 1D
system, the pole variety is just a set of isolated points. For a 2D system, the pole
variety may be a set of isolated points, or it may include curves. For a 3D system,
there is the additional possibility that the pole variety may contain a 2D surface.
The dimensions of the pole variety, controllable pole variety, and uncontrollable pole
variety, or more generally of the characteristic variety, are therefore of interest.

Lemma 5.9. Let B = kerA E. Then
1. For B 6= 0, the dimension of the characteristic variety of B is n minus the

“right primeness degree” [43] of E.
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2. B is finite-dimensional if and only if it has a finite number of characteristic
points.

3. The controllable pole variety has dimension either −1 (it is empty) or n− 1.
The former case occurs if and only if the transfer matrix is a polynomial matrix. In
the latter case, each maximal irreducible subvariety of the controllable pole variety has
dimension n− 1.

4. If the transfer matrix is not a polynomial matrix, the pole variety has dimen-
sion n− 1.

Proof. The first claim is immediate from Theorem 4.4 and the definition of the
right primeness degree. The second claim is given in [26, 29].

From Theorem 5.3, ann Bc0,y is principal, and it must therefore be either R or an
ideal of height 1. Hence V (ann Bc0,y) is either empty or of dimension n− 1. Again by
Theorem 5.3, the former occurs precisely when the transfer matrix is polynomial. In
the other case, Theorem 5.3 says further that every coassociated prime of Bc0,y, includ-
ing the minimal prime divisors of ann Bc0,y, has height 1, so the maximal irreducible
subvarieties of V (ann Bc0,y) have dimension n− 1.

Claim 4 follows from claim 3, as the pole variety contains the controllable pole
variety.

The dimension of the characteristic variety (pole variety, etc.) can be found al-
gorithmically, as discussed in [43]. For a system with signal space kN

n

, this quantity
can also be interpreted as a measure of the order of magnitude of the system’s initial
condition set, the “autonomy degree” [43]. The interpretation for systems with other
signal spaces is still open.

When the transfer matrix is not a polynomial matrix, Lemma 5.9 states that
every maximal irreducible subvariety of the controllable pole variety has dimension
n − 1. In consequence, every maximal irreducible subvariety of the pole variety hav-
ing dimension less than n − 1 must also be a maximal irreducible subvariety of the
uncontrollable pole variety. This is also trivially true when the transfer matrix is a
polynomial matrix.

6. Observable and unobservable poles. In this section we will look at the
additional structure which occurs when the behavior is a latent variable representation
of some other behavior. The principal example of this is when the latent variables are
“state variables,” e.g., in the context of the classical 1D theory. When the behavior is
defined through a Rosenbrock system matrix (or “polynomial matrix description”),
this additional structure allows us to relate certain submatrices to various sets of
poles.

6.1. Observable and unobservable poles. Consider now a behavior Bl,w
which is a latent variable description of some other behavior Bw. The behavior Bw
is called the manifest behavior of the full behavior Bl,w, the variables of w are called
manifest variables, and the variables of l are called latent variables. These ideas are
described in [40] for the 1D case and [22, 32] for the 2D case. Formally, we have the
following for some polynomial matrices E,F :

Bl,w =

{(
l
w

)
∈ Ad+q

∣∣∣∣ Ew = Fl

}
,(6.1)

Bw =

{
w ∈ Aq

∣∣∣∣ ∃ l ∈ Ad such that

(
l
w

)
∈ Bl,w

}
.(6.2)
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It is easy to derive a kernel representation of Bw: we construct a minimal left annihi-
lator L of F , and we have Bw = kerA (LE) [22], [24, p. 27]. There is also the behavior
Bl,0, which we will call the unobservable behavior, consisting of all elements of Bl,w
with w = 0. Bl,0 is isomorphic to kerA F , and vanishes precisely when the latent
variables are observable (in the behavioral sense) from the manifest variables. We can
show that Bw is the factor module of Bl,w by Bl,0, so we have an exact sequence

0 −→ Bl,0 −→ Bl,w −→ Bw −→ 0.(6.3)

Now consider the pole structure of these behaviors. Take an input/output struc-
ture on Bl,w for which the number of inputs which are in the variables w is maximized.
(When the latent variables are state variables, all the input variables can of course
be taken to be manifest variables.) We will refer to such an input/output structure
on Bl,w as a maximally manifest input/output structure. Divide the components w
and l into input and output components, so w = (wT1 , w

T
2 )T and l = (lT1 , l

T
2 )T , where

(lT1 , w
T
1 )T is a complete input vector for Bl,w. It follows that (w1, w2) is an input/

output structure on Bw and (l1, l2) is one on Bl,0. (It is for this reason that we restrict
our consideration to input/output structures which are maximally manifest.) These
input/output structures are called the induced input/output structures on Bw and Bl,0.

The poles of Bl,w fall naturally into two categories. The first is the set of poles
which are observable from the behavior Bw and the second is the set of poles which
cannot be determined from the manifest behavior. (They are poles of the unobservable
behavior.)

Definition 6.1. Let Bl,w be a behavior with latent variables l and a maximally
manifest input/output structure with input variables (w1, l1) and output variables
(w2, l2). Take the induced input/output structures on Bw and Bl,0.

1. The unobservable pole variety, unobservable pole points, and unobservable
poles of Bl,w are defined to be the pole variety, pole points, and poles of the unobserv-
able behavior Bl,0.

2. The observable pole variety, observable pole points, and observable poles of
Bl,w are defined to be the pole variety, pole points, and poles of the manifest behavior
Bw.

In effect we have defined the unobservable poles as the coassociated primes of
the behavior Bl1=0,l2,w1=0,w2=0 (notation interpreted in the obvious way) and the
observable poles as those of the behavior Bw1=0,w2 ⊆ Bw. The poles of Bl,w itself
are the coassociated primes of Bl1=0,l2,w1=0,w2 , and Bw1=0,w2 is the factor module of
Bl1=0,l2,w1=0,w2

by Bl1=0,l2,w1=0,w2=0, so we have an exact sequence

0 −→ Bl1=0,l2,w1=0,w2=0 −→ Bl1=0,l2,w1=0,w2
−→ Bw1=0,w2

−→ 0.(6.4)

Theorem 6.2. Let Bl,w be a behavior with latent variables l and a maximally
manifest input/output structure. Then the poles/pole points of the full behavior Bl,w
have the following properties:

1. A point a is an observable pole point if and only if there exists (l, w) ∈ Bl,w
such that w1 = 0 and w2 is nonzero and exponential with frequency a.

2. A point a is an unobservable pole point if and only if there exists (l, w) ∈ Bl,w
such that w = 0, l1 = 0 and l2 is nonzero and exponential with frequency a.

3. Suppose that the latent variables l contain no free variables, i.e., Bl,0 is au-
tonomous. Then Bl,w is observable if and only if it has no unobservable poles or,
equivalently, no unobservable pole points.
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4. The union of the unobservable pole variety and the observable pole variety is
the pole variety.

5. Every observable pole is a pole. Every pole is either an unobservable pole or
an observable pole (or both).

Proof. The first two claims follow on applying Theorem 4.4 and the last two
are immediate from Lemma 4.8 together with the exact sequence (6.4). For claim 3,
the condition that Bl,w is observable is equivalent to the condition Bl,0 = 0, or al-
ternatively, to the vanishing of the module to which Bl,0 is dual. The result follows
since a finitely generated module M is 0 precisely when it has no associated primes
(Theorem 4.7), or equivalently, when V (annM) = ∅.

We do not claim that every unobservable pole is a pole. Claim 3 of Theorem 6.2
is similar to the classical 1D result that a system in state-space form is observable
if and only if it has no output decoupling zeros. Note that the condition on this last
result is satisfied if the latent variables l are interpreted as states.

6.2. Complete classification of poles. We can combine the partitioning of
pole points into unobservable and observable pole points with the partitioning into
uncontrollable and controllable pole points. This involves the controllable part of
Bl,w and its associated unobservable and manifest behaviors. We denote by Bcl,w the
controllable part of Bl,w, by Bcl,0 the unobservable behavior of Bcl,w, by Bcw the manifest
behavior of Bcl,w, and so on. Care must be taken with this notation, as it is not
generally the case that Bcl,0 = (Bl,0)c.

Our final refinement of the pole structure is defined as follows.

Definition 6.3. Let Bl,w be a behavior with latent variables l and a maximally
manifest input/output structure. Then

1. The unobservable uncontrollable pole variety, unobservable uncontrollable
pole points, and unobservable uncontrollable poles are the characteristic variety, char-
acteristic points, and coassociated primes of Bl,0 / Bcl,0.

2. The unobservable controllable pole variety, unobservable controllable poles
points, and unobservable controllable poles are the pole variety, pole points, and poles
of Bcl,0.

3. The observable uncontrollable pole variety, observable uncontrollable pole
points, and observable uncontrollable poles are the characteristic variety, character-
istic points, and coassociated primes of Bw / Bcw.

4. The observable controllable pole variety, observable controllable pole points,
and observable controllable poles are the pole variety, pole points, and poles of Bcw.

To show that the unobservable uncontrollable poles are meaningfully defined, we
have to show that (Bc)l,0 is a subbehavior of Bl,0, which is evident from the fact that
(Bc)l,0 = Bl,0∩Bc. To show that the observable uncontrollable poles are meaningfully
defined, we have to show that (Bc)w is a subbehavior of Bw, which follows by definition.
In fact, a stronger claim is possible.

Theorem 6.4. Let Bl,w be a behavior with latent variables l. Then the manifest
behavior of the controllable part of Bl,w is equal to the controllable part of the manifest
behavior of Bl,w.

Proof. We write B = Bl,w as usual. Clearly (Bc)w is a subbehavior of Bw. It is also
clear from the definition of controllability that as Bc is controllable, so is (Bc)w. Now
write E for any kernel representation of B and Ec for any kernel representation of Bc.
Since B and Bc have the same input/output structures, any submatrices comprised
of corresponding columns of E and of Ec must have the same rank. In particular,
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0 0 0x x x
0 −→ Bl1=0,l2,w=0+Bcl,w

Bc
l,w

−→ Bl,w
Bc
l,w

−→ Bl,w
Bl1=0,l2,w=0+Bc

l,w
−→ 0x x x

0 −→ Bl1=0,l2,w=0 −→ Bl1=0,l2,w1=0,w2
−→ Bw1=0,w2

−→ 0x x x
0 −→ Bcl1=0,l2,w=0 −→ Bcl1=0,l2,w1=0,w2

−→ Bcw1=0,w2
−→ 0x x x

0 0 0

Fig. 6.1. Exact commutative diagram for complete classification of poles. Note that the columns
of this diagram are read upwards, contrary to convention; this is to achieve symmetry in Figure 6.2.

m(Bl,0) = m((Bc)l,0). Now we use the additivity of the number of free variables:

m((Bc)w) = m((Bc)l,w)−m((Bc)l,0)

= m(Bl,w)−m(Bl,0)

= m(Bw).

Summarizing, (Bc)w is a subbehavior of Bw which has the same number of free vari-
ables and is controllable. This suffices to prove that (Bc)w is the controllable part of
Bw.

Theorem 6.4 proves that the observable controllable poles are equal to the control-
lable poles of the manifest behavior (if you like, the “controllable observable poles”).
This result also shows that we can use the notation Bcw without fear of ambiguity.

Currently we have a pair of exact sequences of autonomous behaviors whose
coassociated primes correspond to various sets of poles:

0 −→ Bl1=0,l2,w1=0,w2=0 −→ Bl1=0,l2,w1=0,w2
−→ Bw1=0,w2 −→ 0,(6.5)

0 −→ Bcl1=0,l2,w1=0,w2=0 −→ Bcl1=0,l2,w1=0,w2
−→ Bcw1=0,w2

−→ 0,(6.6)

and each module in the sequence (6.6) is a submodule of the corresponding module
in the upper sequence (6.5). Let us look at the corresponding factor modules. Since
Bcl1=0,l2,w1=0,w2=0 = Bl1=0,l2,w1=0,w2=0 ∩ Bcl1,l2,w1,w2

, the factor module is

Bl1=0,l2,w1=0,w2=0

Bl1=0,l2,w1=0,w2=0 ∩ Bcl1,l2,w1,w2

∼= Bl1=0,l2,w1=0,w2=0 + Bcl1,l2,w1,w2

Bcl1,l2,w1,w2

.(6.7)

This is obviously a submodule of Bl1,l2,w1,w2
/ Bcl1,l2,w1,w2

, which by (5.5) is isomorphic
to Bl1=0,l2,w1=0,w2

/Bcl1=0,l2,w1=0,w2
. These behaviors are all shown in Figure 6.1. By

the Snake lemma (e.g., [10, Ex. A3.10]), we also have an isomorphism

Bl1,l2,w1,w2

Bl1=0,l2,w1=0,w2=0 + Bcl1,l2,w1,w2

∼= Bw1=0,w2

Bcw1=0,w2

,(6.8)

and the diagram in Figure 6.1 is commutative and exact.
Reading the nontrivial behaviors in Figure 6.1 from left to right and from top

to bottom, we see that the coassociated primes are, respectively, the following: the
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unobservable uncontrollable poles, the uncontrollable poles, the observable uncontrol-
lable poles, the unobservable poles, the poles, the observable poles, the unobservable
controllable poles, the controllable poles, and the observable controllable poles.

We now apply Lemma 4.8 again. This gives us the basic structure of the poles of
a behavior given by a latent variable description.

1. The union of the unobservable uncontrollable pole variety and the observ-
able uncontrollable pole variety is the uncontrollable pole variety. Every observable
uncontrollable pole is an uncontrollable pole. Every uncontrollable pole is either an
unobservable uncontrollable pole or an observable uncontrollable pole.

2. The union of the unobservable pole variety and the observable pole variety is
the pole variety. Every observable pole is a pole. Every pole is either an unobservable
pole or an observable pole.

3. The union of the unobservable controllable pole variety and the observable
controllable pole variety is the controllable pole variety. Every observable control-
lable pole is a controllable pole. Every controllable pole is either an unobservable
controllable pole or an observable controllable pole.

4. The union of the unobservable uncontrollable pole variety and the unobserv-
able controllable pole variety is the unobservable pole variety. Every unobservable
uncontrollable pole is an unobservable pole. Every unobservable pole is either an
unobservable controllable pole or an unobservable uncontrollable pole.

5. The union of the uncontrollable pole variety and the controllable pole vari-
ety is the pole variety. The union of the set of uncontrollable poles and the set of
controllable poles is the set of poles.

6. The union of the observable uncontrollable pole variety and the observable
controllable pole variety is the observable pole variety. The union of the set of ob-
servable uncontrollable poles and the set of observable controllable poles is the set of
observable poles.

In general, we do not expect the inclusions of sets of poles missing from the list
above to hold (e.g., we do not expect every unobservable uncontrollable pole to be an
uncontrollable pole). Note however that we are able to make a full decomposition in
the last case of observable poles. This is possible because the observable controllable
poles are a subset of the controllable poles, and are therefore principal by Theorem 5.3.
We can therefore apply the same argument as in the proof of Theorem 5.8 to deduce
that every observable controllable pole is an observable pole. This reasoning cannot
be applied to cases 1–4.

We summarize the relationships between the various sets of poles in a conceptual
exact diagram (Figure 6.2). This diagram should be interpreted as follows: if 0 −→
Set 1 −→ Set 2 −→ Set 3 −→ 0 is a row or column, then the union of the pole variety
of Set 1 and the pole variety of Set 3 is the pole variety of Set 2. The corresponding
statements for the poles themselves is slightly weaker, except for the middle and
right-hand columns, for which an analogous law holds.

Example. Take the 2D behavior given by the following polynomial matrix:

Bl,u,y = kerA E1,

E1 =

(
(z2

1 − z2)(z1 + z2)(z1 − 1)z2 0 z2
2(z2

1 − z2) −(z2
1 + z2

2 − 1)
(z2

1 − z2)(z1 + z2)(z1 − 1)z1 (z1 + z2)2 z1z2(z2
1 − z2) (z2

1 + z2
2 − 1)

)
.

The signal space A can be taken as kN
n

, C∞(Rn, k), or D′(Rn, k) for k = R or C;
the ring R = k[z]. The behavior Bl,u,y has 2 inputs, 1 output, and 1 latent variable.



THE POLE STRUCTURE OF 1D AND nD LINEAR SYSTEMS 653

0 0 0x x x
0 −→ unobs. unctrl. poles −→ unctrl. poles −→ obs. unctrl. poles −→ 0x x x
0 −→ unobs. poles −→ poles −→ obs. poles −→ 0x x x
0 −→ unobs. ctrl. poles −→ ctrl. poles −→ obs. ctrl. poles −→ 0x x x

0 0 0

Fig. 6.2. Relationships between sets of poles.

We will now find the 9 pole varieties of this behavior. This requires constructing
representations for 9 related behaviors—those appearing in Figure 6.1. To begin with,
we have the zero-input and unobservable behaviors:

Bl,u=0,y
∼= kerA E2, E2 =

(
(z2

1 − z2)(z1 + z2)(z1 − 1)z2 −(z2
1 + z2

2 − 1)
(z2

1 − z2)(z1 + z2)(z1 − 1)z1 (z2
1 + z2

2 − 1)

)
,

Bl,u=0,y=0
∼= kerA E3, E3 =

(
(z2

1 − z2)(z1 + z2)(z1 − 1)z2

(z2
1 − z2)(z1 + z2)(z1 − 1)z1

)
.

Next, observe that we can write E1 = LE4, where L and E4 are given by

L =
( z2 −1
z1 1

)
,

E4 =

(
(z2

1 − z2)(z1 + z2)(z1 − 1) (z1 + z2) z2(z2
1 − z2) 0

0 (z1 + z2)z2 0 (z2
1 + z2

2 − 1)

)
.

Since E4 is minor left prime, kerA E4 = Bcl,u,y. Hence we have the following represen-
tations:

Bcl,u=0,y
∼= kerA E5, E5 =

(
(z2

1 − z2)(z1 + z2)(z1 − 1) 0
0 (z2

1 + z2
2 − 1)

)
,

Bcl,u=0,y=0
∼= kerA E6, E6 =

(
(z2

1 − z2)(z1 + z2)(z1 − 1)
0

)
.

For the manifest behaviors of Bl,u,y and Bcl,u,y, we need minimal left annihilators
of E3 and E6, and these are easily found to be the matrices E7 = (z1 − z2) and
E8 = (0 1), respectively. The zero-input manifest behaviors are now found by taking
the appropriate submatrices of E7E1 and E8E4, respectively:

Bu=0,y
∼= kerA E9, E9 = (−(z2

1 + z2
2 − 1)(z1 + z2)),

Bcu=0,y
∼= kerA E10, E10 = (z2

1 + z2
2 − 1).

Since E4 has full row rank, Theorem 5.7 tells us that a kernel representation of
E4Bl,u,y ∼= Bl,u,y/Bcl,u,y is the matrix L. Similarly, the representation found for Bcu,y
also has full row rank, and so a kernel representation for Bu,y/Bcu,y is the matrix E11 =
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(System)

(System)

Unobservable Observable

Controllable

Uncontrollable

Fig. 6.3. Example of pole varieties.

(−(z1 + z2)). Using a similar trick, a kernel representation for Bl,u=0,y=0/Bcl,u=0,y=0

is

E12 =
( z2

z1

)
.

Now the 9 sets of pole points, 9 behaviors of relevance, and 9 kernel representations
are listed as follows:

Pole point set Behavior Rep. matrix
Unobservable uncontrollable pole points Bl,u=0,y=0/Bcl,u=0,y=0 E12

Uncontrollable pole points Bl,u,y/Bcl,u,y L

Observable uncontrollable pole points Bu,y/Bcu,y E11

Unobservable pole points Bl,u=0,y=0 E3

(System) pole points Bl,u=0,y E2

Observable pole points Bu=0,y E9

Unobservable controllable pole points Bcl,u=0,y=0 E6

Controllable pole points Bcl,u=0,y E5

Observable controllable pole points Bcu=0,y E10

For this example, it is now easy to plot the various pole varieties as the rank-loss vari-
eties of the corresponding matrices. (However in general we suspect that computation
of the annihilator is a more efficient method.) These varieties are shown in Figure 6.3.

Note that the behavior Bl,u=0,y=0/Bcl,u=0,y=0 giving the unobservable uncontrol-
lable pole points has a single pole (z1, z2). We have conjectured that not every un-
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observable uncontrollable pole is an uncontrollable pole. We can confirm this using
the current example; we have to show that (z1, z2) is not an associated prime of
CokerR L, where L is the matrix given above. Equivalently, we show that no element
of R1,2\ImRL is taken into ImRL by the actions of z1 and z2. Let N denote the set of
all elements x of R1,2 such that z1x ∈ ImR L and z2x ∈ ImR L. Then N is the set of
polynomial vectors corresponding to the first two components of the kernel (natural
left action) of the matrix

K =


z1 0 z2 z1 0 0
0 z1 −1 1 0 0
z2 0 0 0 z2 z1

0 z2 0 0 −1 1


T

.

However, it is possible to show that the kernel of this matrix is equal to the image of
the matrix (

z2 −1 −z1 0 −z2 0
z1 1 0 −z1 0 −z2

)
,

and hence N = ImRL. This proves that (z1, z2) is not an associated prime of CokerRL,
and hence is not an uncontrollable pole of the behavior, although it is an unobservable
uncontrollable pole.

6.3. Rosenbrock system matrices. One important class of representations of
1D and nD systems is the class of Rosenbrock system matrices, also called polynomial
matrix descriptions; see, e.g., [33] for the 1D case and [19] for the nD case.

We write here x for the latent variables, u for the (manifest) free variables, and y
for the remaining manifest variables. We can think of u as the input, x as the state,
and y as the output. Since x is to be interpreted as a vector of state variables, it
is assumed to contain no free variables, i.e., the behavior with zero input and zero
output is assumed to be autonomous. We consider state-input-output behaviors given
by the following classical system of equations:

T (z)x(t) = U(z)u(t),(6.9)

y(t) = V (z)x(t) +W (z)u(t).(6.10)

We can write the resulting behavior in kernel form as follows:

Bx,u,y = kerA

(
T −U 0
V W −I

)
.(6.11)

The submatrix
(
T −U
V W

)
is called a Rosenbrock system matrix. We define the pole

points of the Rosenbrock system matrix to be the points where T fails to have full
column rank. This is the definition previously given in the 1D case (e.g., in [20]).

Note that the standard input/output structure on Bx,u,y is trivially a maximally
manifest input/output structure, with the states being treated as additional outputs
in the behavioral sense.

Lemma 6.5. Let Bx,u,y be a differential or difference behavior given by a Rosen-
brock system matrix (6.9–6.10). Then

1. The pole points of Bx,u,y are precisely the pole points of the Rosenbrock system
matrix.
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2. The unobservable pole points of Bx,u,y are precisely the points where the ma-
trix (TT V T )T has less than full column rank.

3. Each uncontrollable pole point of Bx,u,y is a point where (T − U) has less
than its normal rank; the converse holds for 1D systems.

4. The observable controllable pole points of Bx,u,y are precisely the points a
such that the denominator of some entry of the input-to-output transfer matrix of the
Rosenbrock system matrix vanishes at a.

Proof.
1. A kernel representation of Bx,0,y is

(
T O
V −I

)
(to within isomorphism). By

Corollary 5.2, the pole points are the points where this matrix, or equivalently T ,
fails to have full column rank.

2. The unobservable pole points are the characteristic points of Bx,0,0 ∼= kerA(
T
V

)
. By Theorem 4.4, the unobservable pole points are the points where this matrix

fails to have full column rank.
3. By Theorem 5.6, in the 1D case the uncontrollable pole points are the points

where the whole matrix
(
T −U 0
V W −I

)
has less than its normal rank. These are equal

to the rank-loss points of (T − U).
4. By Theorem 6.4, the observable controllable pole points are the controllable

pole points of Bu,y, the transfer matrix of which is the input-to-output transfer matrix
of the PMD. The claim now follows from Corollary 5.4.

Lemma 6.5 is enough to prove that, in the 1D case, the pole points, unobservable
pole points, uncontrollable pole points, and observable controllable pole points of
Bx,0,y correspond, respectively, to the poles, output decoupling zeros, input decoupling
zeros, and transmission poles of the system, as defined classically. Note also that, in
the general nD case, we have proved in Theorems 5.6 and 6.2 that a behavior is
controllable (resp., observable) if and only if it has no uncontrollable pole points
(resp., no unobservable pole points).

We can readily apply our theory to characterize the pole points of special classes
of nD systems, for example, systems governed by the Roesser or Fornasini–Marchesini
state space models. In these cases we find that the pole points are the points where the
“characteristic polynomial” vanishes, as has been anticipated by many other authors.
Such an analysis is however beyond the scope of this paper.

7. Polar decomposition and integral representation. In this section we
discuss a decomposition of a behavior that emerges from the theory of poles, and also
the related integral representation theorem.

7.1. Polar and decoupling zero decompositions. In a 1D system, any tra-
jectory with zero input can be written as a sum of polynomial exponential trajectories
with frequencies corresponding to the system poles. This results from a decomposition
of the behavior as a sum of certain subbehaviors, a decomposition which is dual to
the classical algebraic “primary decomposition.” We can apply the same principles in
the nD case.

Consider the ring R = k[z] or R = k[z, z−1] (or more generally any Noetherian
ring) and a finitely generated R-module L. Given a proper submodule N of L, N has
a primary decomposition (e.g., [3, 5, 10]) into submodules of L containing N :

N =

l⋂
i=1

Ni,(7.1)

where each quotient L/Ni is Ji-coprimary for some prime Ji, i.e., Ass (L/Ni) consists
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of the single prime Ji, and the Ji’s include all the associated primes of L/N . The
intersection can be taken to be such that the Ji’s are precisely the associated primes
of L/N , each occurring precisely once, in which case it is called a minimal primary
decomposition. Such a decomposition is in general nonunique.

The dual of (7.1) allows us to express any behavior B as the sum of subbehaviors
Bi, where each Bi has a single coassociated prime, and these primes are precisely the
coassociated primes of B. This idea has two interesting applications.

Theorem 7.1. Let B be a differential or difference behavior. Then the zero-input
behavior has a decomposition

B0,y =

l∑
i=1

Bi,(7.2)

where each behavior Bi has only a single coassociated prime Ji, and the Ji’s are
precisely the poles of B. We call this decomposition a polar decomposition of B0,y.

The behavior B itself also has a decomposition

B = Bc +
r∑
l=1

B′l,(7.3)

where each behavior B′l has only a single coassociated prime J ′l , and the J ′l ’s are
precisely the uncontrollable poles of B.

Proof. The first claim follows immediately by application of the dual version of
(7.1) to the zero-input behavior B0,y. For the second part, assume first that B is not
autonomous, since otherwise Bc = 0, the uncontrollable poles are the coassociated
primes of B, and the result is immediate by the dual of (7.1). Hence by Theorem 3.3
M is not a torsion module and so 0 is an associated prime. Thus B⊥ has a minimal
primary decomposition: B⊥ =

⋂r
l=0Nl, where, in particular, N0 is the module such

that Ass (R1,q/N0) = {0}. Define B′l = (Nl)
⊥ for l = 0, 1, . . . , r. This gives us

B =

r∑
l=0

B′l.(7.4)

Now by Lemma 5.5, the uncontrollable poles of B = D(M) are precisely the coasso-
ciated primes of the behaviors B′l for l = 1, . . . , r. Finally, R1,q/N0 is 0-primary, or
equivalently, torsionfree (e.g., on applying [10, Prop. 3.4]), and so by Theorem 3.8 B′0
is controllable. The sum

∑r
l=1 B′l is autonomous as the sum of autonomous behaviors,

and so by the controllable–autonomous decomposition B′0 is the controllable part of
B. This completes the proof.

Note that the polar decomposition also leads to a decomposition of B itself, by
combination with the controllable–autonomous decomposition. However such a de-
composition of B must be redundant, since by (7.3) it is possible to do this using
only the uncontrollable poles. Indeed, the uncontrollable pole decomposition of B is
a refinement of the controllable–autonomous decomposition. The 2D polar decom-
position is also similar to a decomposition discussed by Valcher [38], in which any
2D autonomous behavior can be decomposed into the sum of a finite-dimensional
behavior and a behavior with a square kernel representation.

The annihilator of a finitely generated module M can be computed using Gröbner
basis techniques; an algorithm has been presented in [43]. This is in general the closest
we can get to computing the characteristic variety of a behavior. The decompositions
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in Theorem 7.1 can be computed via the primary decomposition, algorithms for which
have been given in the algebraic literature, for example, [1, 11, 17]. The construction
of a primary decomposition necessarily includes an identification of the associated
primes, i.e., the poles or uncontrollable poles.

7.2. The integral representation theorem. The integral representation the-
orem was originally formulated by Ehrenpreis in 1961 [9] and then proven in full
generality by Palamodov [28, Thm. VI.4.1]. A simplified special case was presented
by Björk in [2, Thm. 8.1.3]. Roughly, the integral representation theorem gives an
explicit form for any C∞ behavior, in which each trajectory is expressed as a sum of
integrals of polynomial exponential functions which also lie in the behavior. In the
following, we write 〈a, t〉 for the inner product of two vectors a, t. Using the language
of the behavioral approach, Björk’s statement of the theorem reads as follows.

Theorem 7.2 (integral representation theorem). Let B be a differential behavior
with signal space C∞(Rn,C). Then there exist polynomial vectors p1, . . . , pL in 2n
variables with the following property. For any compact and convex subset H of Rn with
nonempty interior K, and for any trajectory w ∈ B, there exists measures µ1, . . . , µL
on Cn for which

w(t) =
L∑
i=1

∫
Cn
pi(a, t)e

〈a,t〉 dµi(a)(7.5)

for all t ∈ H, and for which the following conditions also hold:
1. Each function pi(a, t)e

〈a,t〉 is a polynomial exponential trajectory of B for any
a in the support of the measure µi. In particular, the support of µi is contained in the
characteristic variety of B.

2. We have ∫
Cn
eH(a)(1 + ||a||c) d|µi|(a) < ∞

for all c, where H(a) = supt∈H(〈<e(a), t〉). In particular, the integrals on the right of
(7.5) are absolutely convergent and can be differentiated with respect to t under the
integral sign for t ∈ K.

The integral representation (7.5) can be broken down by first applying the decom-
position (7.3) in Theorem 7.1 in order to write B as a sum of subbehaviors Bi each with
a single coassociated prime. For each Bi, we then obtain an integral representation,
and when summed these give a representation of B.

Assume therefore that B has a single coassociated prime J , or equivalently, that
R1,q/B⊥ is a J-coprimary. Then according to [28, Cor. IV.4.2] or [2, Thm. 8.4.5], there
is a q×L matrix A(z, ∂/∂z) of differential operators with polynomial coefficients such
that

B⊥ = {v ∈ R1,q | AT (a, ∂/∂a)vT (a) = 0 for all a ∈ V },
where V denotes the characteristic variety of B. Such a matrix A is called a Noetherian
operator for B⊥ ⊆ R1,q, and we can show that, for all a ∈ V ,

E(∂/∂t)(A(a, t)e〈a,t〉) = (AT (a, ∂/∂a)ET (a)e〈a,t〉)T = 0,

i.e., that A(a, t)e〈a,t〉 is a trajectory of B. The columns of A(a, t) then become the
polynomial vectors pi(a, t) in the right-hand side of (7.5); see [2, proof of Thm. 8.1.3].
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It is easy to construct a Noetherian operator in the special case when we know
in addition that annR1,q/B⊥ is a radical ideal, i.e., when the annihilator of R1,q/B⊥
is equal to its single associated prime. In this case, M = R1,q/B⊥ is a torsionfree
R/J-module. We write R = R/J , and for any matrix Q over R we use the notation
Q for the matrix over R obtained by projection of each entry. Now consider a kernel
representation E ∈ Rg,q of B, and construct an A ∈ Rq,L such that

ImR E = KerR A,

which is possible as CokerR E is torsionfree over R. We now have

B⊥ = ImR E

= {v ∈ R1,q | vA = vA = 0 ∈ R1,L}
= {v ∈ R1,q | AT (a)vT (a) = 0 for all a ∈ V (ann B)}.

This proves that A(z, ∂/∂z) = A(z) is a Noetherian operator for M . The polynomial
vectors in the integral representation are then extracted as the columns of A.

The preceding argument can be applied in the case where B is controllable (and
with no other conditions). For it then holds that B has the single coassociated prime
{0}, which is equal to ann B. The ring R is simply equal to R, and so the Noetherian
operator A is just any matrix such that ImR E = KerR A or equivalently kerA E =
imAA, i.e., A is any image representation of B. Thus in the controllable case we obtain
the following corollary.

Corollary 7.3. Let B be a controllable differential behavior with signal space
C∞(Rn,C) and an image representation F . Let F1, . . . , FL denote the columns of F .
Then for any a ∈ Cn, Fi(a)e〈a,t〉 is an exponential trajectory of B, and every trajectory
w of B can be written

w(t) =
L∑
i=1

∫
Cn
Fi(a)e〈a,t〉 dµi(a)(7.6)

for suitable measures µ1, . . . , µL as in Theorem 7.2.
Corollary 7.4. Let u ∈ Am, y ∈ Ap satisfy

P (z)y = u,

where A = C∞(Rn,C) and P is a square nonsingular matrix. Then there are measures
µ1, . . . , µp on Cn such that

yj(t) =

∫
Cn
e〈a,t〉 dµj(a), j = 1, . . . , p,

u(t) =

p∑
i=1

∫
Cn
Pi(a)e〈a,t〉 dµi(a)and

as in Theorem 7.2, where Pi denotes the ith column of P .
Proof. This result is immediate from Corollary 7.3, since (UT Ip)

T is an image
representation of kerA (−Ip U), the given controllable behavior.

In the case of a finite-dimensional behavior B, the characteristic variety is finite
(see Lemma 5.9), and each integral in the summation of (7.5) can be taken as an
evaluation of the integrand at a given characteristic point, multiplied by a suitable
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constant. In this situation we can recover the result that every trajectory is a poly-
nomial exponential trajectory [26], which generalizes the well-known decomposition
of trajectories of 1D systems. Results for the case of a zero-dimensional characteristic
variety are also given in [2, p. 365]. The general construction of Noetherian operators
is addressed in [27].
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The proofs of Lemma 2.1 and Theorem 3.2 of [1] have a common error, the correc-
tion of which needs additional conditions: the use of l’Hôpital’s rule in both equates
the limiting ratio of derivatives of functions with the limiting ratio of the functions
themselves, but this presupposes that the latter exist. Of these, the conclusions of
Lemma 2.1 can simply be adopted as an additional assumption on stepsizes (a harm-
less one, as it is satisfied by all the usual examples). The proof of Theorem 3.2 will
continue to hold if we make the following additional assumption.

For all x > 0 and

N(n, x) = min

{
m > n :

m∑
k=n+1

ã(k) > x

}
,

the limit

(1) lim
n→∞

∑ν(N(n,x),i)
k=ν(n,i) a(k, i)∑ν(N(n,x),j)
k=ν(n,j) a(k, j)

exists almost surely (a.s.) for all i, j.
Intuitively, this implies that the updating of different components is ”evenly

spread.” Under this condition,

lim
t→∞

∫ x
0
µt+y(j)dy∫ x

0
µt+y(i)dy

is guaranteed to exist a.s. a priori, justifying the use of l’Hôpital’s rule.
Since {ã(n)} were defined after the artificial ”unfolding” of iterates, (1) may look

a little contrived. One can alternatively use the following condition defined in terms
of the original stepsizes: for all x > 0 and

N(n, x) = min

{
m > n :

m∑
k=n+1

∑
i

ā(k, i)I{i ∈ Yn} > x

}
,

the limit

lim
n→∞

∑ν(N(n,x),i)
k=ν(n,i) a(k, i)∑ν(N(n,x),j)
k=ν(n,j) a(k, j)

exists a.s. for all i, j.
Under this, an appropriate variant of Theorem 3.2 can be proved without the

unfolding. See also Lemma 4.8, [2].

∗Received by the editors October 12, 1998; accepted for publication (in revised form) May 11,
1999; published electronically February 9, 2000.

http://www.siam.org/journals/sicon/38-2/34591.html
†School of Technology and Computer Science, Tata Institute of Fundamental Research, Homi

Bhabha Road, Mumbai 400005, India (borkar@tifr.res.in).

662



ERRATUM 663

REFERENCES

[1] V.S. Borkar, Asynchronous stochastic approximations, SIAM J. Control Optim., 36 (1998),
pp. 840–851.

[2] V.R. Konda and V.S. Borkar, Actor-critic–type learning algorithms for Markov decision pro-
cesses, SIAM J. Control Optim., 38 (1999), pp. 94–123.



DYNAMIC Lp-HEDGING IN DISCRETE TIME UNDER CONE
CONSTRAINTS∗
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Abstract. We consider a general discrete time process of a financial market with cone constraints
on trading strategies. In this framework, we study the problem of minimizing the expected lp-loss
function of the shortfall of a given contingent claim in Lp. This stochastic control problem is solved
by using results on superhedging and a convex duality approach.
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1. Introduction. In a frictionless financial market which is free of arbitrage
opportunities and complete, the problem of pricing and hedging is well understood.
Any contingent claim H is attainable: starting from an initial wealth v0, an agent can

find a trading strategy θH that will allow his (self-financed) wealth V v0,θ
H

to achieve

exact replication of the claim at the expiration date T , V v0,θ
H

T = H, almost surely
(a.s.). The cost of replication v0 is given by the expected value of the contingent claim
under the unique equivalent martingale measure.

In an incomplete market and/or with constraints on trading strategies, not every
contingent claim is attainable. However, it is still possible to hedge without risk the
contingent claim H at time T , whenever one starts with a large enough initial wealth
x:

V x,θT ≥ H, a.s. for some trading strategy θ.(1.1)

The least initial wealth v0 allowing (1.1) is called superreplication cost of the contin-

gent claim, and the corresponding strategy θH such that V v0,θ
H

T ≥ H, a.s. is called
superhedging strategy of H. The superreplication cost v0 is given by the supremum
of the expected values over a suitable set of equivalent martingale measures; see El
Karoui and Quenez [13], Kramkov [26], Schäl [36], Föllmer and Kabanov [14] in an
incomplete market context, and Cvitanić and Karatzas [5] and Föllmer and Kramkov
[15] in a continuous time model with convex constraints on trading strategies. But in
many situations, the superhedging strategy is the trivial buy-and-hold strategy and
the superreplication cost is too high; see, e.g., Eberlein and Jacod [11] and Cvitanić,
Pham, and Touzi [7].

We consider the position of an agent who is unwilling to commit the initial amount
required for a superhedging strategy. Then the contingent claim carries an intrinsic
risk and the question is how to quantify this risk. Various criteria have been pro-
posed in the literature. The mean-variance hedging approach, initiated by Duffie and
Richardson [10] and studied by Schäl [35], Schweizer [38, 39], Monat and Stricker [29],
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Gouriéroux, Laurent, and Pham [18], and Rheinländer and Schweizer [31], among oth-
ers, consists of approximating in L2(P )-norm the contingent claim H by the terminal
value of a self-financed wealth process:

inf
θ
E

[(
H − V x,θT

)2
]
.(1.2)

Expectation in (1.2) is under the objective probability P . The main criticism of
this criterion is that it gives equal weight to upside and downside risks. In a general
continuous time semimartingale model, Föllmer and Leukert [16] consider the problem
of maximizing the probability of a hedge without risk,

sup
θ
P
[
V x,θT ≥ H

]
,(1.3)

by making use of the Neyman–Pearson lemma. This criterion does not take into
account the size of the shortfall (H−V x,θT )+ but only the probability of its occurrence.
In the context of a complete diffusion model and in the spirit of the paper of Artzner
et al. [1], Cvitanić and Karatzas [6] study the following measure of the risk of the
contingent claim H,

inf
θ
E

[(
H − V x,θT

)+
]
,(1.4)

by adopting a convex duality approach. Notice that in both papers of Föllmer and
Leukert [16, 17] and in Cvitanić and Karatzas [6], wealth processes have to satisfy a
fixed lower bound requirement.

In this paper, we consider a general discrete time price process of a financial
market. We also impose cone constraints on trading strategies. This includes the
incomplete market case as well as the case of no short-selling constraints on portfolios.
Given a contingent claim H in Lp(P ) and a loss function lp(x) = xp/p, x ≥ 0, p ∈
(1,∞), we propose to measure the intrinsic risk of H by the quantity

J(x) = inf
θ
E

[
lp

((
H − V x,θT

)+
)]

.(1.5)

This is the smallest expected lp-loss function of the shortfall of the contingent claim
that can be achieved by trading in the financial market. Our purpose is to study this
stochastic control problem (1.5) by deriving some properties of the value function
J and by characterizing the trading strategy, if it exists, that attains the infimum.
Recently, Föllmer and Leukert [17] have studied the problem of minimizing E[l(H −
V x,θT )+] for a general loss function l and in a general continuous time incomplete
model, focusing on the Neyman–Pearson approach. In Cvitanić [3], convex duality
approach is applied for a linear loss function, l(x) = x, in the context of an incomplete
or constrained diffusion model.

We present in section 2 the model and the precise formulation of the problem.
Within this Lp(P )-framework with cone constraints, we introduce in section 3 sets of
martingale measures related to the no arbitrage condition and we state duality results
on the superreplication cost. In section 4, we combine the technique of superhedging
and a convex duality approach to solve the stochastic control problem (1.5). Our main
result states that the optimal hedging strategy is given by the superhedging strategy
of the modified contingent claim H − l′q(y∗(x)Z∗(y∗(x)), where q is the conjugate of
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p; i.e., 1/p + 1/q = 1, y∗(x) > 0 is some Lagrange multiplier, and Z∗(y∗(x)) is a
martingale measure, depending on H in general, solution of a dual problem whose
existence is proved. Section 5 contains applications and examples of our results.
We first show that the well-known equivalence between uniqueness of a martingale
measure and attainability of every contingent claim in an unconstrained market can
be extended to the case of symmetrical cone constraints on trading strategies. The
determination of the optimal hedging strategy in this framework of complete market
model is illustrated with the example of the Cox–Ross–Rubinstein model. In a second
application, we note a case where H is attainable in a model with symmetrical cone
constraints. Then, the dual problem leads to the problem of the so-called Lq(P )-
optimal martingale measure, which does not depend on H. Finally, we consider the
problem of hedging a riskless asset and we give an explicit example of computation
of the optimal hedging strategy in a no short-selling constraints model.

2. Formulation of the problem. Let (Ω,F , P ) be a probability space with
a filtration F = {Fk, k = 0, . . . , T} for some T ∈ N. For simplicity, we assume
that F0 is trivial. The evolution of the discounted price process of d risky assets is
modeled by an Rd-valued F-adapted stochastic process S = {Sk, k = 0, . . . , T}. A
trading strategy is an Rd-valued process θ = {θk, k = 1, . . . , T}, F-predictable; i.e.,
θk is Fk−1-measurable ∀k = 1, . . . , T . Here θk represents the number of units of risky
assets held by the investor during (k − 1, k] ∀k = 1, . . . , T . We denote by Θ the set
of all trading strategies. Given an initial wealth x ∈ R and a trading strategy θ ∈ Θ,
we define the discounted (self-financed) wealth process V x,θ by

V x,θk = x+
k∑
j=1

θj .∆Sj , k = 1, . . . , T,

V x,θ0 = x,

where ∆Sj = Sj−Sj−1. Here given two elements a, b ∈ Rd, a.b denotes their Euclidean
scalar product. When using discounted prices and a discounted self-financed wealth
process, we assume there is an additional bank account whose interest rate is zero.
This reduced form is explained in detail in Harrison and Kreps [19]. Notice that
by considering discounted prices, we leave aside all problems related to the case of
stochastic interest rate. These questions typically arise in the context of foreign
exchange markets. This would certainly be an important extension of our model but
is beyond the scope of the present paper.

Let us consider a nonempty closed convex cone C in Rd. A trading strategy θ is
called C-constrained if

θk ∈ C, k = 1, . . . , T, P a.s.

We denote by Θ(C) the set of all C-constrained trading strategies. The role of the
convex cone C is to model some constraints on the trading strategies. We denote by
Co the polar cone of C. Since C is a cone, we have (see [32])

Co = {b ∈ Rd : a.b ≤ 0 ∀a ∈ C}.
The following are some examples of such constraints:

(a) Unconstrained case: C = Rd. Then Co = {0}.
(b) Prohibition of short-selling of some risky assets: C = {a ∈ Rd : ai ≥ 0 ∀i ∈ I},

where I is some subset of {1, . . . , d}. Then Co = {b ∈ Rd : bi ≤ 0 ∀i ∈ I, bi =
0 otherwise}.
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Consider now a contingent claim given by an FT -measurable random variable H.
Given an initial wealth x and a trading strategy θ, the resulting shortfall of H, defined
as the excess of the contingent claim over the final portfolio value, is (H − V x,θT )+.
We are interested in the problem of minimizing the Lp(P )-norm (1 < p < ∞) of
the shortfall of a contingent claim H ∈ Lp(P ). We introduce the subset of trading
strategies

Θp(C) =
{
θ ∈ Θ(C) : ∃X ∈ Lp(P ), V 0,θ

T ≥ X, P a.s.
}
,

and we consider the following optimization problem:

(Pp(x))J(x) = inf
θ∈Θp(C)

E

[
lp

((
H − V x,θT

)+
)]

, x ∈ R,

where lp is a loss function defined on R+ by lp(y) = yp/p. In this Lp-framework, we
shall assume that Sk ∈ Lp(P ), k = 0, . . . , T . We mention that the main result of the
paper remains valid under the more general case when S is locally in Lp(P ) (see Re-
mark 3.1). We analyze problem (Pp(x)) by combining the technique of superhedging
in a Lp-framework under cone constraints with a convex duality approach.

Remark 2.1. Föllmer and Leukert [17] study the problem of minimizing E[l(H−
V x,θT )+] for a general loss function l and in a general continuous time incomplete model.
They focus mainly on the Neyman–Pearson lemma approach as in their previous paper
[16]. Cvitanić and Karatzas [6] and Cvitanić [3] analyze a similar problem for a linear
loss function, l(x) = x, in a diffusion model including also constraints on strategies
and margin requirements. Notice that in these papers a nonnegativity constraint
and, more generally, a given lower bound constraint on the wealth process is imposed.
Here, since we allow for contingent claims with a nonconstant sign, we consider a
more general admissibility condition by requiring only a lower bound on the terminal
wealth value by some arbitrary Lp(P ) random variable.

3. Martingale measures, arbitrage, and superhedging strategy. In an
incomplete market model, there is a known duality relation between the superrepli-
cation cost of a contingent claim H, defined as the least initial wealth for hedging H
without risk, and the largest arbitrage-free prices defined as the supremum of expec-
tations of H under a set of martingale measures; see, e.g., Delbaen and Schachermayer
[9], El Karoui and Quenez [13], Kramkov [26], Schäl [36], and Föllmer and Kabanov
[14]. In markets with convex constraints on trading strategies, analogous results are
generalized by Cvitanić and Karatzas [5] in a diffusion model and by Föllmer and
Kramkov [15] in a general continuous time semimartingale model; see also Brannath
[2] in a discrete time framework. Most of the cited papers consider the case of nonneg-
ative contingent claims. For the sake of completeness and the purpose of our paper,
we state similar results in a general discrete time model with cone constraints and for
a contingent claim in Lp(P ).

Let us introduce some notations. By L0,d(Fk, P ), we denote the space of all Rd-
valued Fk-measurable random variables. When d = 1, we shall omit exponent d. We
consider the convex cone K of L0(P ) := L0(FT , P ),

K =
{
V 0,θ
T : θ ∈ Θ(C)

}
,

and we say that there is no arbitrage opportunity if

(NA) K ∩ L0
+(P ) = {0}.
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In the unconstrained case on trading strategies, there is a basic result relating the
no arbitrage condition (NA) to the existence of some equivalent martingale measure.
This duality result, known as the fundamental theorem of asset pricing, was proved
by Dalang, Morton and Willinger [8], Schachermayer [34], Kabanov and Kramkov
[24], and Rogers [33] in a discrete time framework. Extensions of this result to the
constrained case are proved by Jouini and Kallal [23] and Schürger [37] in a no short-
selling constraints model, by Pham and Touzi [30] in the case of cone constraints on
portfolios, and by Brannath [2] in the case of convex constraints. For the sake of
completeness, we briefly recall these results.

In the rest of this paper, for any p ∈ [1,∞], we denote by q ∈ [1,∞] its conjugate,
i.e., 1/p + 1/q = 1. Given p ∈ [1,∞], we introduce the following set of martingale
measures:

Mq(P ) =

{
Q� P :

dQ

dP
∈ Lq(P ), and

EQ[∆Sk|Fk−1] ∈ Co, k = 1, . . . , T, Q a.s.

}
,

Me
q(P ) = {Q ∼ P : Q ∈Mq(P )} .

In the unconstrained case C = Rd, Me
q(P ) is the set of equivalent probability mea-

sures with density in Lq(P ) under which S is a martingale. In the no short-selling
constraints case C = (0,∞)d, Me

q(P ) is the set of equivalent probability measures

with density in Lq(P ) under which S is a supermartingale. Writing that V 0,θ
k = V 0,θ

k−1

+ θk.∆Sk, it is easily seen that for any θ ∈ Θp(C), V 0,θ is a supermartingale under
any Q ∈ Mq(P ). Since ∆Sk ∈ Lp(P ), k = 1, . . . , T , it is clear that Mq(P ) is closed
in Lq(P ) (when identifying a probability measure Q � P with its Radon–Nikodym
dQ/dP ).

Remark 3.1. In the case where S is assumed only to be local in Lp(P ), one
introduces the set

Mloc
q (P ) =

{
Q� P :

dQ

dP
∈ Lq(P ), EQ[|∆Sk||Fk−1] <∞, and

EQ[∆Sk|Fk−1] ∈ Co, k = 1, . . . , T, Q a.s.

}
,

which is equal to Mq(P ) when S ∈ Lp(P ). It can be proved that Mloc
q (P ) is closed

in Lq(P ).
As is now standard in the literature on arbitrage and superreplication, a key result

is to state the closedness property of the set of dominated final payoffs, K − L0
+(P )

for the topology of convergence in probability. While this property is satisfied in
the unconstrained case (see, e.g., Schachermayer [34]), this does not hold true in
the presence of constraints on strategies (see Brannath [2]). We shall then make a
nondegeneracy assumption on the price process in order to ensure this closedness
property. Let us introduce, ∀k = 1, . . . , T , the subsets of L0,d(Fk−1, P ):

N(k − 1) =
{
η ∈ L0,d(Fk−1, P ) : η.∆Sk = 0, P a.s.

}
.

We assume that
(B) N(k − 1) = {0} ∀k = 1, . . . , T .
Remark 3.2. Notice that if S ∈ L2(P ), then condition (B) is obviously implied

by the nondegeneracy condition on the price process:
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(B′) Var(Sk|Fk−1) is invertible ∀k = 1, . . . , T .
Condition (B′) is satisfied by most models considered in the financial literature. For
instance, suppose that {Sk, k = 1, . . . , T} is obtained from the geometric Brownian
motion dSt = St(µdt+σdWt) as in the Black–Scholes model. Then, a straightforward
calculation shows that

Var (Sk|Fk−1) = S2
k−1e

2µ
(
eσ

2 − 1
)
,

and the validity of the hypothesis of invertibility of Var (St|Ft−1) is guaranteed when-
ever σ > 0. It is also easy to check that condition (B′) is satisfied in the Cox–Ross–
Rubinstein model (see section 5).

Under condition (B), we have the dual characterization of the no arbitrage con-
dition (NA): there is no arbitrage opportunity if and only if Me

∞(P ) 6= ∅ (see Pham
and Touzi [30], Brannath [2]).

We define the superreplication cost of a contingent claim H ∈ Lp(P ), p ∈ [1,∞],
by

v0 = inf
{
x ∈ R : ∃θ ∈ Θp(C), V x,θT ≥ H, P a.s.

}
.

The next result provides a dual characterization of the superreplication cost in
terms of martingale measures within a Lp(P )-framework in a general discrete time
model with cone constraints portfolios. In what follows, to alleviate notations, we
write Mq = Mq(P ).

Theorem 3.1. Assume that condition (NA) is satisfied and assumption (B)
holds. Then the superreplication cost of a contingent claim H ∈ Lp(P ), p ∈ [1,∞], is
given by

v0 = sup
Q∈Me

q

EQ[H].(3.1)

In (3.1), the supremum can also be taken with respect to Mq. Moreover, we have the
following assertions:

(1) Suppose that supQ∈Me
q
EQ[H] < ∞; then there exists θH ∈ Θp(C) such that

V v0,θ
H

T ≥ H, P a.s. θH is called superhedging strategy for H.

(2) Suppose that the supremum in (3.1) is attained for some Q̂ ∈ Me
q. Then the

superhedging strategy θH is actually a replicating strategy, i.e., V v0,θ
H

T = H, P a.s.
Proof. See Appendix A.

4. Lp(P )-hedging and dual formulation. In a first step, we reformulate the
dynamic problem (Pp(x)) into an equivalent static problem by using results of section
3 on superhedging strategy. For p ∈ (1,∞), x ∈ R, and a given contingent claim H
in Lp(P ), we denote

Cp(x) = {X ∈ Lp(P ) : X ≤ H, P a.s. and E[ZX] ≤ x ∀Z ∈Mq} .
Here we identify a probability measure Q in Mq with its Radon–Nikodým density Z
= dQ/dP . We consider then the static problem

(Sp(x)) inf
X∈Cp(x)

E [lp (H −X)] .

Proposition 4.1. Assume that condition (NA) is satisfied and assumption (B)
holds.
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(1) The value functions of problems (Pp(x)) and (Sp(x)), x ∈ R, coincide:

J(x) = inf
θ∈Θp(C)

E

[
lp

((
H − V x,θT

)+
)]

= inf
X∈Cp(x)

E [lp (H −X)] ∀ x ∈ R.

(2) Assume that X∗(x) is a solution to problem (Sp(x)). Then there exists a
superhedging strategy θ∗(x) for X∗(x) and θ∗(x) solves the dynamic problem (Pp(x)).

(3) Conversely, assume that θ∗(x) is a solution to problem (Pp(x)). Then X∗(x)

= H − (H − V x,θ∗(x)
T )+ solves problem (Sp(x)).

Proof. (1) Let θ ∈ Θp(C). Then X = H − (H −V x,θT )+ = min(H,V x,θT ) ∈ Lp(P ).

We have X ≤ H and X ≤ V x,θT , so that by the supermartingale property of V x,θ

under Q = Z.P ∈ Mq, E[ZX] ≤ x. It follows that X ∈ Cp(x). Denoting by J̄ the
value function of problem (Sp(x)), x ∈ R, we have

E

[
lp

((
H − V x,θT

)+
)]

= E [lp (H −X)] ≥ J̄(x),

and therefore J(x) ≥ J̄(x). Conversely, let X ∈ Cp(x). We then have

x0 := sup
Z∈Mq

E[ZX] ≤ x <∞.

We deduce by Theorem 3.1 that there exists θX ∈ Θp(C), superhedging strategy for
X, such that

V x,θ
X

T ≥ V x0,θ
X

T ≥ X,(4.1)

and therefore, recalling that X ≤ H,(
H − V x,θXT

)+

≤ H −X.(4.2)

Now, since the function lp is nondecreasing, we obtain

J(x) ≤ E

[
lp

((
H − V x,θXT

)+
)]
≤ E [lp (H −X)] ,

which proves that J(x) ≤ J̄(x) and finally the equality J = J̄ .
(2) As in (4.1)–(4.2), there exists a superhedging strategy θ∗(x) for X∗(x), and

we have (
H − V x,θ∗(x)

T

)+

≤ H −X∗(x);

hence,

E

[
lp

((
H − V x,θ∗(x)

T

)+
)]
≤ E [lp (H −X∗(x))] = J(x),

which proves that θ∗(x) solves problem (Pp(x)).

(3) As in the proof of (1), the random variable X∗(x) = H − (H −V x,θ∗(x)
T )+ lies

in Cp(x) and we have

E [lp (H −X∗(x))] = E

[
lp

((
H − V x,θ∗(x)

T

)+
)]

= J(x),

which proves that X∗(x) solves problem (Sp(x)).
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Remark 4.1. A trivial case where problem (Pp(x)) is directly solved arises when
the investor has an initial wealth larger than the superreplication cost of the contingent
claim; i.e., x ≥ v0 = supZ∈Mq

E[ZH]. Then the solution to problem (Sp(x)) is
obviously X∗(x) = H and a solution to problem (Pp(x)) is the superhedging strategy
θH for H. In this case, the resulting shortfall of H is zero and J(x) = 0.

In Föllmer and Leukert [17], wealth processes are required to be nonnegative.
This admissibility condition is crucial for solving the static problem associated to
(1.3) thanks to the Neyman–Pearson lemma. Here in our Lp-framework, we do not
impose a fixed lower bound on wealth process so that the static problem (Sp(x)) can
not be solved by using the Neyman–Pearson lemma. In what follows, we fix p ∈
(1,∞), H ∈ Lp(P ), and we study the static problem (Sp(x)) for an initial capital x <
v0, by adopting a convex duality approach. Starting with the strictly convex function
x 7→ lp(H − x), defined on the random interval (−∞, H], we consider its stochastic
Fenchel–Legendre transform:

L̃(y, ω) = max
x≤H

[−lp(H − x)− xy] = lq(y)− yH, y > 0.(4.3)

The maximum in expression (4.3) is attained by the random FT -measurable function:

χ(y, ω) = H − l′q(y), y > 0.(4.4)

We consider then the dual problem of (Sp(x)):

(Dq(y))J̃(y) = inf
Z∈Mq

E
[
L̃(yZ, ω)

]
.

Notice that compared to the dual problem arising in the problem of maximizing the
expected utility of terminal wealth in an incomplete market (see Karatzas et al. [25],
He and Pearson [21], Cvitanić and Karatzas [4], and Kramkov and Schachermayer
[27]), there is an additional term depending on the contingent claim in the formulation
of the dual problem (Dq(y)). We mention that Föllmer and Leukert [17] also use a
convex duality approach in their context of nonnegative wealth processes.

The next proposition states the existence of a unique solution to the dual problem.
Proposition 4.2. Assume that Mq 6= ∅. Then ∀y > 0, there exists a unique

solution Z∗(y) to the dual problem (Dq(y)). Moreover, the function J̃ is differentiable
and strictly convex on (0,∞), and we have

J̃ ′(y) = −E [Z∗(y)χ(yZ∗(y), ω))] , y > 0.(4.5)

Proof. Let (Zn)n be a sequence in Mq such that

lim
n→∞E

[
L̃(yZn, ω)

]
= J̃(y).(4.6)

Then, for n sufficiently large, we have

E [lq(yZn)− yZnH] ≤ J̃(y) + 1.(4.7)

Since Mq 6= ∅, we have J̃(y) < ∞ ∀ y > 0. By Hölder inequality and since H ∈
Lp(P ), we deduce from (4.7) that

‖ Zn ‖qLq(P ) ≤ const.
(
1+ ‖ Zn ‖Lq(P )

)
,(4.8)
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where const. is a positive constant independent of n. Since q > 1, inequality (4.8)
proves that (Zn)n is bounded in Lq(P ). This implies that Zn converges weakly in
Lq(P ) to some Z∗(y), possibly along a subsequence. By Mazur’s theorem (see Ekeland
and Temam [12, Chap. I], there exists a sequence Z̃n ∈ conv(Zn, Zn+1, . . .) such that
Z̃n converges to Z∗(y) in Lq(P )-norm. It is clear that Z̃n ∈ Mq. Moreover, Mq is
closed in Lq(P ) and so Z∗(y) ∈ Mq. From the convexity of the function z ∈ R+ 7→
L̃(yz, ω), P a.s., we have

E
[
L̃(yZ̃n, ω)

]
≤ sup
k≥n

E
[
L̃(yZk, ω)

]
,

so that by (4.6), and since L̃(yZ̃n, ω) converges to L̃(yZ∗(y), ω) in L1(P ),

E
[
L̃(yZ∗(y), ω)

]
= lim

n→∞E
[
L̃(yZ̃n, ω)

]
= J̃(y),

which proves that Z∗(y) is solution to (Dq(y)). The uniqueness of the solution to

(Dq(y)) follows from the strict convexity of the function z ∈ R+ 7→ L̃(yz, ω), P

a.s. ∀ y > 0. The strict convexity of J̃ is proved by same arguments as in Kramkov
and Schachermayer [27, Lemma 3.5] by using the strict convexity of the function x ∈
R+ 7→ L̃(x, ω), P a.s.

Let y > 0. Then ∀ h > 0, we have

J̃(y + h)− J̃(y)

h
≤ 1

h
E
[
L̃((y + h)Z∗(y), ω)− L̃(yZ∗(y), ω)

]
=
lq(y + h)− lq(y)

h
E [Z∗(y)q]− E [Z∗(y)H] .

This shows that

lim sup
h↘0+

J̃(y + h)− J̃(y)

h
≤ −E [Z∗(y)χ(yZ∗(y), ω)] .(4.9)

Similarly, ∀h < 0, y + h > 0, we have

J̃(y + h)− J̃(y)

h
≥ lq(y + h)− lq(y)

h
E [Z∗(y)q]− E [Z∗(y)H] ,

which shows that

lim inf
h↗0−

J̃(y + h)− J̃(y)

h
≥ −E [Z∗(y)χ(yZ∗(y), ω)] .(4.10)

Finally, (4.9)–(4.10) and convexity of the function J̃ imply the differentiability of J̃
and provides the expression (4.5) of J̃ ′.

Remark 4.2. Cvitanić [3] also uses a convex duality approach in the case of a
linear loss function. In this context, the value function of the dual problem fails to be
everywhere differentiable.

Lemma 4.1. Under the assumptions of Proposition 4.2, ∀x < v0, there exists a
unique y∗(x) > 0 satisfying J̃ ′(y∗(x)) = −x, i.e.,

E [Z∗(y∗(x))χ (y∗(x)Z∗(y∗(x)), ω)] = x.(4.11)
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Proof. The function y 7→ fx(y) = J̃(y) + xy is (strictly) convex on (0,∞). We
have fx(0+) = 0. Moreover, by Jensen’s inequality and since E[Z∗(y)] = 1, we have

J̃(y) ≥ lq(y)− yE [Z∗(y)H] ;

hence,

fx(y) ≥ lq(y)− y (E [Z∗(y)H]− x) .

Since q > 1, this shows that fx(y) → ∞ as y goes to infinity. Let us now check that
there exists y0 > 0 such that fx(y0) < 0. If not, we should have

E [lq(yZ)− yZH] + xy ≥ 0 ∀y > 0, ∀Z ∈Mq;

hence,

lq(y)

y
E [Zq] + x ≥ E [ZH] ∀y > 0, ∀Z ∈Mq.

By sending y to zero, and from Theorem 3.1, we obtain

x ≥ sup
Z∈Mq

E [ZH] = v0,

which is in contradiction to the fact that x < v0. We have thus proved the existence
of y∗(x) > 0 which attains the infimum of fx(y) over y > 0. The uniqueness of y∗(x)
follows from the strict convexity of fx. Finally, since J̃ (and so fx) is differentiable,
we have f ′x(y∗(x)) = 0 or J̃ ′(y∗(x)) = −x, which provides the relation (4.11) by
(4.5).

We now state the main result of this paper by proving the existence of a unique
solution to the dynamic problem (Pp(x)) and relating it to the solution of a dual prob-
lem. Recall that when x ≥ v0, a solution to the problem (Pp(x)) is the superhedging
strategy for H; see Remark 4.1. In the case x < v0, we have the following result.

Theorem 4.1. Assume that condition (NA) is satisfied and assumption (B)
holds.

(1) For all x < v0, there exists a unique solution X∗(x) to problem (Sp(x)), and
we have the dual relation

X∗(x) = χ (y∗(x)Z∗(y∗(x)), ω) = H − (y∗(x)Z∗(y∗(x)))
q−1

,(4.12)

where y∗(x) is given by (4.11) and Z∗(y∗(x)) is the solution to the dual problem
(Dq(y∗(x))). Let θ∗(x) denote the superhedging strategy for the contingent claim
X∗(x) ∈ Lp(P ). Then θ∗(x) is a solution to problem (Pp(x)).

(2) The function J is differentiable, strictly decreasing, and strictly convex on
(−∞, v0), and we have the dual relations

J(x) = max
y>0

[
−J̃(y)− xy

]
, x < v0,(4.13)

J̃(y) = max
x<v0

[−J(x)− xy] , y > 0,(4.14)

J ′(x) = −y∗(x), x < v0.(4.15)



Lp-HEDGING IN DISCRETE TIME 675

Proof. (1) Fix some y > 0 and let Z be an arbitrary element of Mq. Denote

Zε = (1− ε)Z∗(y) + εZ, ε ∈ (0, 1).

We have Zε ∈ Mq so that

0 ≤ 1

ε
E
[
L̃(yZε, ω)− L̃(yZ∗(y), ω)

]
≤ yE [(l′q(yZε)−H) (Z − Z∗(y))

]
,

where the second inequality follows from the convexity of the function y 7→ L̃(y, ω)
and the fact that its derivative is equal to l′q(y)− yH. Therefore we obtain

E
[
l′q(yZε) (Z∗(y)− Z)

] ≤ E [H (Z∗(y)− Z)] .(4.16)

Notice that l′q(yZε) (Z∗(y)− Z) ≥ l′q(yZ) (Z∗(y)− Z) ≥ −l′q(y)Zq which is integrable.
Hence, by Fatou’s lemma, sending ε to zero in (4.16), we get

E
[
l′q(yZ

∗(y)) (Z∗(y)− Z)
] ≤ E [H (Z∗(y)− Z)] .

This last relation shows that

E [Zχ(yZ∗(y), ω)] ≤ xy := E [Z∗(y)χ(yZ∗(y), ω)] ∀Z ∈Mq.(4.17)

Therefore, χ(yZ∗(y), ω) ∈ Cp(xy). Moreover, by (4.3)–(4.4), we have ∀X ∈ Cp(xy)

L̃(yZ∗(y), ω) = −lp(H − χ(yZ∗(y), ω))− yZ∗(y)χ(yZ∗(y), ω),(4.18)

≥ −lp(H −X)− yZ∗(y)X;(4.19)

hence,

E [lp(H − χ(yZ∗(y), ω))] ≤ E [lp(H −X)] ,(4.20)

since E[Z∗(y)X] ≤ xy. This shows that χ(yZ∗(y), ω) is solution to problem (Sp(xy)).
Now, by noting that for y = y∗(x), we have xy∗(x) = x (see relation (4.11)) and
χ(y∗(x)Z∗(y∗(x)), ω) = X∗(x), we have proved that X∗(x) is a solution to the static
problem (Sp(x)). The uniqueness of the solution to problem (Sp(x)) follows from the
strict convexity of the function x ≤ H 7→ lp(H − x). Now, from Proposition 4.1(2),
there exists a superhedging strategy θ∗(x) for X∗(x), and θ∗(x) is a solution to the
dynamic problem (Pp(x)).

(2) Proof of the duality results (4.13)–(4.15) is standard in utility optimization
problem and is proved by same arguments as in Föllmer and Leukert [17, Thm. 7.3]
or Kramkov and Schachermayer [27].

Part (1) of Theorem 4.1 states that the problem of Lp(P )-hedging a contingent
claim H, when one has in hand an initial wealth strictly smaller than the superrepli-
cation cost of H, is solved by superhedging a modified option X∗(x) given in (4.12)
and expressed as the difference of H and a nonnegative contingent claim related to
the density of an appropriate martingale measure. In Föllmer and Leukert [17] where
wealth processes are required to be nonnegative, the optimal hedging strategy is the
superhedging strategy for a modified option of the form (X∗(x))+. Part (2) of The-
orem 4.1 gives some properties of the measure of risk J , related to those of Artzner
et al. [1].
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5. Applications and examples.

5.1. The complete market case. We say that a contingent claim H ∈ Lp(P )

is attainable if there exist x ∈ R and θ ∈ Θp(C) such that H = V x,θT . In this case, θH

is called perfect replicating strategy for H. In the unconstrained case, C = Rd, it is
well known that if the set of equivalent martingale measures is reduced to a singleton,
then every contingent claim is attainable, and vice versa; see, e.g., Harrison and Pliska
[20] and Jacka [22]. We extend such results in the case of cone constraints. We say
that C is a symmetrical cone if ∀y ∈ C, −y ∈ C. An example of a symmetrical cone
in the case d = 2 is C = {(x, y) ∈ R2 : xy ≥ 0}. This means that the investor is
constrained to have either short or long positions in both assets.

Proposition 5.1. Let p ∈ [1,∞] and assume that (B) holds.
(1) Suppose that Me

q = {P̂}. Then every contingent claim H ∈ Lp(P ) is attain-
able.

(2) Assume that C is a symmetrical cone and condition (NA) is satisfied. Suppose
that every contingent claim H ∈ Lp(P ), with p ≤ 2, is attainable. ThenMe

q is reduced

to a singleton and Me
q = Mq = {P̂}.

Proof. (1) By Theorem 3.1, since x0 := supQ∈Me
q
EQ[H] = EP̂ [H] < ∞, there

exists θH ∈ Θp(C) such that

V x0,θ
H

T ≥ H.(5.1)

By the supermartingale property of V x,θ under P̂ , we have

EP̂
[
V x0,θ

H

T −H
]
≤ x0 − EP̂ [H] = 0.(5.2)

Relations (5.1) and (5.2) imply that H = V x0,θ
T , P a.s.

(2) Let P̂ ∈ Me
q, which is nonempty by condition (NA), and suppose that there

exists Q 6= P̂ in Mq. Setting Ẑ = dP̂ /dP and ZQ = dQ/dP , it follows that the

contingent claim H = Ẑ−ZQ ∈ Lq(P ) ⊂ Lp(P ) (since p ≤ 2). Hence H is attainable
and there exist x ∈ R and θ ∈ Θp(C) such that

Ẑ − ZQ = V x,θT , P a.s.(5.3)

Under the condition that C is a symmetrical cone and by noting that V −x,−θT = −H
∈ Lp(P ), we deduce that −θ ∈ Θp(C). Therefore by the supermartingale property of

V x,θ and V −x,−θ under P̂ and Q, we obtain that V x,θ is a martingale under P̂ and
Q. Using (5.3), this implies that

EP̂
[
Ẑ − ZQ

]
= EQ

[
Ẑ − ZQ

]
= x,

and therefore that E[(Ẑ − ZQ)2] = 0, which proves that Q = P̂ , which is a
contradiction.

Remark 5.1. This last proposition means that when C is a symmetrical cone and
under condition (NA) and assumption (B), the following assertions, for p ∈ [1, 2], are
equivalent:

(i) Me
q = {P̂},

(ii) every contingent claim H ∈ Lp(P ) is attainable.
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Notice also that in this case, Mq = Me
q = {P̂}. We shall say that the market is

complete. This extends the characterization of market completeness of Harrison and
Pliska [20] and Jacka [22] to the symmetrical cone constraints.

In the complete market case, when x ≥ v0 = EP̂ [H], a solution to problem (Pp(x))
is the perfect replicating strategy for H. When x < v0, we have the following result
for the Lp(P )-hedging of a contingent claim H in Lp(P ).

Theorem 5.1. Assume that C is a symmetrical cone and assumption (B) holds,

and suppose that Mq = Me
q = {P̂}, p ∈ (1,∞). Let x < v0 = EP̂ [H]. Then the

solution to problem (Pp(x)) is the perfect replicating strategy for the contingent claim:

X∗(x) = H −
(
y∗(x)Ẑ

)q−1

,(5.4)

where Ẑ = dP̂ /dP and

y∗(x) =

(
v0 − x
E[Ẑq]

) 1
q−1

.(5.5)

Proof. Since Mq = {P̂}, the solution to the dual problem (Dq(y)) is Z∗(y) =

Ẑ = dP̂ /dP ∀ y > 0. Hence y∗(x) in (4.11) is explicitly given by (5.5) and the
solution X∗(x) to problem (Sp(x)) is given by (5.4). By Proposition 5.1(1), X∗(x) ∈
Lp(P ) is attainable and so the superhedging strategy θ∗(x) for X∗(x) is in fact the
perfect replicating strategy, and it is the solution to the dynamic problem (Pp(x)) by
Theorem 4.1.

Remark 5.2. By Remark 5.1, ifMe
q = {P̂}, with p ≤ 2, thenMq =Me

q = {P̂}.
In the unconstrained case, C = Rd, the perfect replicating strategy for X∗(x) is

θ∗(x) = θH − θ̃(x), where θH is the perfect replicating strategy for H and θ̃(x) is the
perfect replicating strategy for (y∗(x)Ẑ)q−1.

Example: The Cox–Ross–Rubinstein model. Given the price Sk at date k,
the price Sk+1 at date k+1 can jump either upward to the value Sku with a probability
π ∈ (0, 1) or downward to the value Skd, where d < 1 < u. The probability space
is then Ω = {u, d}T and for any ω = (ω1, . . . , ωT ) ∈ Ω, the price process is defined

by Sk(ω) = S0

∏k
j=1 ωj . Fk is the filtration σ(S1, . . . , Sk) generated by the random

variables S1, . . . , Sk. It is clear that condition (B′) is satisfied. It is well known that
in the unconstrained case, C = R, the market is complete and there is a unique
equivalent martingale measure P̂ whose probability transition is given by

P̂ [Sk+1 = Sku|Fk] =
1− d
u− d ,P̂ [Sk+1 = Skd|Fk] =

u− 1

u− d .

The density of P̂ with respect to the objective probability P is then written as

Ẑ =
dP̂

dP
=

(
1− d

π(u− d)

)N (
u− 1

(1− π)(u− d)

)T−N
,

where N(ω) =
∑T
k=1 1{ωk=u} follows a binomial law B(T, π). A straightforward cal-

culation shows that

E
[
Ẑq
]

=
1

(u− d)qT

(
π

(
1− d
π

)q
+ (1− π)

(
u− 1

1− π
)q)T

.
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By Theorem 5.1 and Remark 5.2, the solution to problem (Pp(x)), for x < EP̂ [H], is

θH − θ̃(x), where θH is the perfect replicating strategy for H and θ̃(x) is the perfect
replicating strategy for (y∗(x)Ẑ)q−1.

5.2. The case of attainable contingent claims. In this paragraph, we assume
that C is a symmetrical cone and we consider the Lp(P )-hedging of an attainable
contingent claim H ∈ Lp(P ). There exist c ∈ R and θ ∈ Θp(C) such that H =

V c,θT . Since C is a symmetrical cone and V −c,−θT = −H, we have −θ ∈ Θp(C). By
the supermartingale property of V c,θ and V −c,−θ under any martingale measure in
Mq, we deduce that E[ZH] = E[ZV c,θT ] = c ∀Z ∈ Mq. Therefore the dual problem
(Dq(y)) can be written equivalently as

inf
Z∈Mq

E[Zq].

Hence, the solution Z∗q of the dual problem does not depend on y and H. Notice
that in the unconstrained case and for q = 2, Z∗2 is the variance-optimal martingale
measure introduced by Schweizer [39]. We refer to this paper and to Laurent and
Pham [28] for explicit computations of the variance-optimal martingale measure in
different models of an incomplete market. By analogy, we call Z∗q the Lq(P )-optimal
martingale measure.

For x < supZ∈Mq
E[ZH], the Lagrange multiplier in (4.11) is explicitly given by

y∗(x) =

(
E[Z∗qH]− x
E[(Z∗q )q]

) 1
q−1

,

and the solution to problem (Pp(x)) is the superhedging strategy for the contingent
claim

X∗(x) = H − (y∗(x)Z∗q
)q−1

.

Remark 5.3. In the case of attainable claims, the solution of the primal opti-
mization problem (Sp(x)) can be directly solved without using the convex duality
approach (see Appendix B).

5.3. Lp(P )-hedging of a riskless asset. In this paragraph, we consider the
Lp(P )-hedging of the riskless asset H = 1. As in the previous paragraph, since E[ZH]
= E[Z] = 1 ∀ Z ∈ Mq, the dual problem (Dq(y)) can be written equivalently as

inf
Z∈Mq

E[Zq],

and the solution Z∗q of this problem is still called Lq(P )-optimal martingale mea-
sure. The solution to problem (Pp(x)), for x < supZ∈Mq

E[ZH] = 1, is given by the
superhedging strategy for the contingent claim:

X∗(x) = 1− 1− x
E[(Z∗q )q]

(
Z∗q
)q−1

.

Example. We consider the case of no short-selling constraints, C = [0,∞), in a
one-period binomial model. Given the initial value S0 = 1, S1 takes the values u and
d, d < u, with objective probability π and 1− π, π ∈ (0, 1). The probability space is
Ω = {u, d} and F1 = σ(S1). In this context, problem (Pp(x)) is written as

(Pp(x)) inf
θ≥0

E
[
lp

(
(1− x− θ∆S1)

+
)]
.
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Obviously, for x ≥ 1, the solution of this problem is θ∗(x) = 0. Fix now x < 1. A
probability measure Q on (Ω,F1) is characterized by ρ = Q(u) ∈ [0, 1] and Q ∈ Mq

if and only if EQ[S1] ≤ S0, i.e., ρ ≤ π̂ := (1 − d)/(u − d). Assuming that d < 1, it
follows that Me

q 6= ∅. The dual problem is written as

min
0≤ρ≤π̂

[
π
( ρ
π

)q
+ (1− π)

(
1− ρ
1− π

)q]
,

whose solution is given by

ρ∗ =

{
π if π ≤ π̂,
π̂ if π > π̂.

We shall therefore distinguish two cases:
Case 1. π ≤ π̂. The Lq(P )-optimal martingale measure is Q∗ = P and Z∗ =

dQ∗/dP = 1. Therefore X∗(x) = x and so the solution to problem (Pp(x)) is θ∗(x)
= 0.

Case 2. π > π̂. This case implies that, in particular, we must have u > 1.
The Lq(P )-optimal martingale measure is Q∗ = P̂ , where P̂ is the unique martingale
measure in the unconstrained case and is characterized by P̂ (u) = π̂. We have Z∗(u)
= π̂/π, Z∗(d) = (1 − π̂)/(1 − π). The solution θ∗(x) to problem (Pp(x)) is the
superhedging strategy of X∗(x) = 1 − (1−x)(Z∗)q−1/E[(Z∗)q], i.e., x + θ∗(x)∆S1 ≥
X∗(x). A straightforward calculation shows that θ∗(x) is in fact the perfect replicating
strategy for X∗(x) and is explicitly given by

θ∗(x) =
(π(u− 1))q−1 − ((1− π)(1− d))q−1

πq−1(u− 1)q − (1− π)q−1(1− d)q
(1− x).

Appendix A. Proof of Theorem 3.1. Let x ∈ R and θ ∈ Θp(C) such that

V x,θT ≥ H, P a.s. Then, by the supermartingale property of V x,θ under any Q ∈ Mq,
we have supQ∈Mq

EQ[H] ≤ x and therefore

sup
Q∈Mq

EQ[H] ≤ v0.(A.1)

Consider now an arbitrary x ∈ R such that x < v0. Then by definition of v0, the
element H − x does not belong to Kp, where Kp := (K − L0

+(P )) ∩ Lp(P ). Now,
by condition (B), the set K − L0

+(P ) is closed for the topology of convergence in
probability (see Brannath [2]) and so Kp is a closed convex cone in Lp(P ) containing
0. Therefore, by the Hahn–Banach separation theorem, there exists Z ∈ Lq(P ) \ {0}
such that ∀θ ∈ Θ(C), Y ∈ L0

+(P ) with V 0,θ
T − Y ∈ Lp(P ),

E[Z(V 0,θ
T − Y )] ≤ 0 < E[Z(H − x)].(A.2)

As usual, we can assume, without loss of generality, that ∆Sk ∈ L1(P ) ∀k = 1, . . . , T .
Indeed, if this is not the case, we can change P to an equivalent probability measure
P̄ with bounded density such that ∆Sk ∈ L1(P̄ ) ∀ k (take, for example, dP̄ /dP =
exp(−maxk |∆Sk|)/E[exp(−maxk |∆Sk|)]). Relation (A.2) for θ = 0 and Y = 1A, A
∈ F , implies that E[Z1A] ≥ 0; hence Z ≥ 0, P a.s. Let a be an arbitrary element
of C, A ∈ Fk−1 and θ ∈ Θ(C) defined by θj = 0 for j 6= k and θk = a1A. Then

V 0,θ
T = a.∆Sk1A ∈ Lp(P ). Then, (A.2) and arbitrariness of A ∈ Fk−1 imply that
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a.E[Z∆Sk|Fk−1] ≤ 0 ∀a ∈ C and k = 1, . . . , T . Defining the probability measure Q
by dQ/dP = Z/E[Z], it follows that Q ∈ Mq and by the right-hand side of (A.2), we
have

x < EQ[H].(A.3)

Now, from condition (NA),Me
∞ 6= ∅. Choose some Q̃ ∈ Me

∞ and set Qε = (1− ε)Q
+ εQ̃, ε ∈ (0, 1). It is clear that Qε ∈ Me

q. Moreover, we have EQε [H]→ EQ[H] as ε

goes to zero. Then, from (A.3), for a sufficiently small ε, we have x < EQε [H]. From
the arbitrariness of x < v0, this proves that

v0 ≤ sup
Q∈Me

q

EQ[H].(A.4)

This last inequality combined with (A.1) proves (3.1), and also that the supremum
can be taken over absolutely continuous martingale measures.

By noting that v0 can also be written as

v0 = inf
{
x ∈ R : ∃U ∈ K − L0

+(P ), x+ U = H, P a.s.
}
,(A.5)

and since (K −L0
+(P )) ∩ Lp(P ) is closed in Lp(P ), we conclude that the infimum in

(A.5) is attained whenever v0 is finite, which proves assertion (1). Finally suppose that
the supremum in (3.1) is attained for some Q̂ ∈Me

q. Then v0 is finite and there exists

a superhedging strategy θH for H: V v0,θ
H

T − H ≥ 0 P a.s. By the supermartingale

property of V v0,θ
H

under Q̂, we have EQ̂[V v0,θ
H

T −H] ≤ v0 −EQ̂[H] = 0. Since Q̂ is

equivalent to P , we then conclude that V v0,θ
H

T = H P a.s.

Appendix B. Direct resolution in the case of attainable claims. In this
paragraph, we directly derive the solution to the Lp(P )-hedging of an attainable
contingent claim H ∈ Lp(P ), which then satisfies E[ZH] = c ∀Z ∈ Mq. For x ≥
c = supZ∈Mq

E[ZH], we already know that X∗(x) = H is a solution to the static
problem (Sp(x)) associated to the Lp(P )-hedging problem (Pp(x)). Fix now x < c,
and consider the Lq-optimal martingale measure Z∗q solution of

inf
Z∈Mq

E[Zq].

One easily obtains

E[(Z∗q )q] ≤ E[Z(Z∗q )q−1] ∀Z ∈Mq.(B.1)

Now, let X ∈ Cp(x). By the Hölder inequality, we have E[Z∗q (H −X)] ≤ (E[Z∗q ]q)
1
q

(E[H −X]p)
1
p and so

(c− x)p(
E[Z∗q ]q

) p
q

≤ E[H −X]p.(B.2)

Now, set y∗(x) = ( c−x
E[Z∗q ]q )

1
q−1 , and define X∗(x) = H − (y∗(x)Z∗q

)q−1
. Then X∗(x)

≤ H and E[ZX∗(x)] = c − (y∗(x))q−1 E[Z(Z∗q )q−1] ≤ c − (y∗(x))q−1 E[Z∗q ]q = x,
by using (B.1) and definition of y∗(x). Hence X∗(x) ∈ Cp(x). Moreover, we have

E[H −X∗(x)]p = (y∗(x))qE[Z∗q ]q =
(c− x)p(
E[Z∗q ]q

) p
q

≤ E[H −X]p,

by (B.2). This proves that X∗(x) solves (Sp(x)).
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[4] J. Cvitanić and I. Karatzas, Convex duality in convex portfolio optimization, Ann. Appl.
Probab., 2 (1992), pp. 767–818.
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1. Introduction. This paper is concerned with an algorithm for construction
of viscosity solutions of a certain Hamilton–Jacobi–Bellman (HJB) equation. The
solution of this partial differential equation (PDE) is a necessary step in the appli-
cation of certain filtering techniques (such as robust filtering) to nonlinear systems.
This will be discussed further below. First, we note that the PDE is first-order but
nonlinear—possessing a term which is quadratic in the gradient. However, in the
max-plus algebra, the solution operator is linear. The algorithm takes advantage of
this linearity by using a max-plus basis representation of the solution. Propagation
of the solution is reduced to a max-plus matrix multiplication on the coefficients of
the basis representation.

We consider the problem of estimating the state of some system evolving contin-
uously in time. The state space is <n. The problem of estimating the current state
based on knowledge (or lack thereof) of the initial state and the measurements up
to the current moment is the filtering problem. One approach to the problem is to
model the system via stochastic differential equations. This leads to the stochastic
nonlinear filtering problem (we assume that the extended linear Kalman filter is not
appropriate). The key step becomes the solution of a second-order stochastic partial
differential–integral equation—the Kushner equation [19]—or a linear, second-order
stochastic partial differential equation (SPDE)—the Zakai equation [6]. Alternatively,
this can be reformulated via pathwise filtering, leading to a deterministic PDE pa-
rameterized by the measurement process [6], [11], [28].

One particular approach to the solution of the Zakai SPDE is the splitting method
(see, for instance, [21]). If the measurements occur at discrete times, this approach
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takes advantage of the linearity of the solution operator via a basis function represen-
tation of the solution of the SPDE. In the continuous-time measurements case, one
takes a limit [21], [16].

An alternate approach is taken by robust/H∞ filters [24], [9], [5] and the Morten-
sen filter [29]. In this case, the noise in the system dynamics is modeled by an L2

process that is unknown a priori, but to which we do not associate a probability mea-
sure. The measurement process is also affected by an a priori unknown disturbance.
In contrast to the Kalman filter approach, for nonlinear systems this problem neces-
sitates solution of a first-order PDE. (Note that in the formulations considered here
this is a finite-dimensional PDE.) This first-order nature has certain implications.
The foremost is that one has a “range-of-dependence” property: a change in initial
conditions at one point does not instantaneously affect the solution everywhere in <n;
the solution propagates with finite speed. This has certain numerical advantages, the
most obvious of which is the applicability of generalized characteristic methods [24],
[27]. Second, the solution, even in nondegenerate cases, is likely to be nonsmooth,
leading to the use of viscosity solution definitions of solution. However, this first-order
PDE is not linear; it possesses a quadratic term in the gradient.

In the max-plus algebra (which may more correctly be termed a commutative
semifield), the “addition operation” is defined by a⊕ b = max{a, b}, and the “multi-
plication operation” is defined by a ⊗ b = a + b. Interestingly, the solution operator
for the PDE associated with the robust/H∞ filter is linear in the max-plus algebra.
As noted above, the algorithm described herein takes advantage of this linearity and
a max-plus basis representation of the solution. This approach is analogous to the
splitting method described above for the Kalman filter. In fact, that method provided,
by analogy, an early influence on this work.

Both the case of discrete-time measurements and the case of continuous-time
measurements are considered. In the discrete-time measurements case, the solution
of the PDE between measurement times (2.14b) is of the form discussed just above,
and the above approach is used, leading to the algorithm discussed in section 6. In
the case of continuous-time measurements, a proof of convergence of this algorithm
as the measurement time-step goes to zero is presented in section 7.

Section 2 reviews the robust/H∞ filter (and Mortensen filter) and provides mo-
tivation for the solution of the relevant HJB equations. In section 3, the max-plus
algebra is described, and the max-plus linearity of the solution operator is proved. The
basis representation will be obtained in the class of continuous, semiconvex functions.
Proofs of the semiconvexity of the solution of the PDE (under two sets of assumptions)
are given in section 4. A semiconvex duality-based representation of the solution is
also included there. In section 5, the semiconvex duality representation is used to
obtain the basis representation, and certain properties of this representation are also
presented. Sections 6 and 7 are as discussed above.

2. Review of the robust filter. In this section, the robust filter (as well as
the Mortensen filter) are briefly reviewed. For a fuller discussion, see [24], [9], [10],
[29].

Let x(t) denote the state to be estimated at time t ≥ 0, with x(t) ∈ <n. The
state dynamics are

dx

dt
= f(x) + σ(x)w,(2.1)

where w ∈ Lloc2 ([0,∞);<m) is the disturbance in the dynamics and σ is an n × m
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matrix-valued function. First we will describe the case of continuous-time measure-
ments. Let the observations, taking values in <k, be given by

y(t) = h(x(t)) + ρ(x(t))v(t),(2.2)

where v ∈ Lloc2 ([0,∞);<l) is the observation disturbance, ρ is a k × l matrix-valued
function, and k ≤ l. Let φ(x0) be a measure of our uncertainty about the initial state
x(0) = x0.

We will assume that

f, σ, h, and ρ are C2;

f, σ, and h are globally Lipschitz in x.
(A1)

The differentiability assumptions are required in certain calculus of variations argu-
ments. We assume that there exists M <∞ such that

|σ(x)| ≤M ∀x ∈ <n(A2)

and define a
.
= σσT . We will also assume that

Range(ρ(x)) = <k ∀x ∈ <n,(A3a)

which guarantees that for any y, x there exists some v satisfying (2.2).
Finally, we define ρ−1 by

ρ−1(x)b = argmin{|v| : ρ(x)v = b}.(2.3)

Assume that ρ−1 is uniformly bounded, that is, that there exists Cρ <∞ such that

|ρ−1(x)b| ≤ Cρ|b| ∀x ∈ <n ∀ b ∈ <l,
ρ−1 ∈ C2.

(A3b)

Note also that these assumptions imply that if we view the integral version of (2.1),

xT
.
= x(T ) = x0 +

∫ T

0

f(x(t)) + σ(x(t))w(t) dt,(2.4)

as a mapping from x0 to xT , then this mapping is one-to-one and onto for any w ∈ L2.
Let φ(x0) be a measure of our uncertainty about the initial state x0, and suppose

there exists D1 <∞ such that

φ(x) ≤ D1 ∀x ∈ <n,
φ is locally Lipschitz.

(A4)

It should be noted here that the algorithm described in this paper will produce the
solution of the HJB equation corresponding to the robust/H∞ and Mortensen filters.
The algorithm could also be used to solve similar HJB equations arising from different
applications. If it is not obvious that the desired solution is the same as the solution for
the robust filter, then one would want a result indicating uniqueness of the (viscosity)
solution of the HJB equation in some class. This uniqueness is known under the
additional assumption that φ satisfies a quadratic growth assumption (references are
given below). Since this uniqueness is not required for the specific result here, we did
not include a quadratic growth assumption on φ in the above.
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Suppose we wish to estimate the state at time T . Consider a cost criterion of the
form

J(T, xT , w(·)) = φ(x0)− 1

2

∫ T

0

|w(t)|2 + |v(t)|2 dt(2.5a)

= φ(x0)− 1

2

∫ T

0

|w(t)|2 + |ρ−1(x(t))[y(t)− h(x(t))]|2 dt,(2.5b)

where x0 is given by (2.4) for any particular w. The information state is given by

P (T, xT ) = sup
w∈L2

J(T, xT , w).(2.6)

We now briefly discuss the extraction of filter estimates from the information state.
After this, we will return to a detailed discussion of aspects of (and representations
for) the above information state. Further details may be found in the references
included below. Readers who are interested mainly in the computational algorithm
may choose to skip this discussion.

Mortensen [29] developed an estimator based on this information state in the
1960s. Mortensen’s estimate is x̂T ∈ argmaxx P (T, x) (the existence of which follows
easily under reasonable assumptions [24], [9]).

For a robust filter, one is interested in a state estimate for which one has a
bound on the effect of the disturbances on our estimate error by the product of some
constant and the disturbance energy (where one hopes that this constant is small).
In particular, one would like an estimate, êT , such that for some γ2 <∞ [24],

|x(T )− êT |2 ≤ γ2

[
−φ(x0) +

1

2

∫ T

0

[|wt|2 + |vt|2
]
dt

]
(2.7)

for all x0, w, v in the case of continuous-time measurements with an analogous in-
equality for discrete-time measurements. (Of course this would require an additional
assumption that φ(x) ≤ −k|x − x|2 for some k > 0 and x ∈ <n; see [24].) Under
reasonable assumptions (see [24]), there exists γ∗ <∞ such that for all γ ≥ γ∗, such
a robust estimator is given by

êT
.
= argmine max

x

[|x− e|2 + γ2P (T, x)
]
.(2.8)

It should perhaps be noted that there will generally be multiple estimates that yield
disturbance attenuation (2.7), and in fact, under certain conditions, the Mortensen
estimator is a robust estimator in this sense [9]. We also note that êT (given by (2.8))
is the risk-averse limit of a risk-sensitive stochastic filter [10]. Some readers may
note that the above information state differs from some which include an integral
running cost term. Such an information state is particularly suited to the problem
of H∞ control under partial information as opposed to the problem of robust state
estimation considered here; see [1], [17].

Now we turn to the promised further discussion of the information state, P , itself.
It will be convenient to note the following.

Lemma 2.1. Let T,R < ∞, |xT | ≤ R. There exists M1 (depending on T,R)
such that for ε ≤ 1, ε-optimal w for problem (2.6) satisfies ‖w‖2L2[0,T ] ≤M1. Further,

there exists an optimal w∗ and M2 (depending on T,R) such that |w∗(t)| ≤ M2 for
all t ∈ [0, T ].
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Proof. The first assertion follows by the standard technique of comparison with
w0 ≡ 0. Let x0(·) be the solution of (2.1) corresponding to w0 and x0(T ) = xT . By
(A1), there exist K,Kh <∞ such that |f(x)| ≤ K(1 + |x|) and |h(x)| ≤ Kh(1 + |x|).
Then d

dt |x0|2 ≤ K(3|x0|2 + 1), and by Gronwall’s inequality, one obtains |x0(t)|2 ≤
R2

1
.
= (R2 +KT )(1 + 3KTe3KT ) for all t ∈ [0, T ].

Let µ(ρ) = min{φ(x) : |x| ≤ ρ} and note that µ(ρ) > −∞ for all ρ <∞ by (A4).
Then

J(T, xT , w
0(·)) ≥ µ(R1)− C2

ρ

2

[
2K2

h(1 +R2
1) + ‖y‖2L2[0,T ]

]
.
= M1.

Consequently, for ε-optimal wε, −1
2

∫ T
0
|wε|2 dt ≥M1− ε, which yields the first asser-

tion. The second assertion then follows by the proof of [9, Lemma 2.1(a)].

The following theorem and remark are easily obtained in the case where y(·) is
continuous, and we outline the proof in that case. They are not directly needed in
the sequel, and so we do not prove them in the case where y ∈ L2 \ C. (Of course,
they could be needed in an adaptation of this algorithm to the solution of PDEs not
necessarily arising from this application.) Extensions of viscosity solutions to cases
where the time-dependency of the Hamiltonian is only measurable are well known but
more technical (see, for instance, [4], [14], [22], [32]).

Theorem 2.2. P is a continuous viscosity solution of the HJB equation

0 = PT + fT (x)∇xP − 1

2
∇xPTa(x)∇xP +

1

2
|ρ−1(x)(y(T )− h(x))|2,

P (0, x) = φ(x).
(2.9)

Proof. Fix R <∞ and let |xT | ≤ R. By Lemma 2.1, the optimal trajectory x∗(·)
terminating at xT satisfies |x∗(t)| ≤ R1 for some R1 < ∞ (depending on T,R) for
any xt ∈ BR .

= {x ∈ <n : |x| ≤ R}. Let

φ̃(x) =

{
φ(x) if |x| ≤ R1,

φ(R1x/|x|) if |x| > R1.

Let P̃ be the value given by (2.6) with φ̃ replacing φ. Then, by standard results (for

instance, [26]), P̃ is a viscosity solution of (2.9) with φ̃ replacing φ. Since P̃ = P

on [0, T ] × BR and φ̃ = φ on BR1
, P is a viscosity solution of (2.9) on [0, T ] × BR.

Letting R→∞, one obtains the result.

Remark 2.3. In the case where φ(x) ≥ −D2(1 + |x|2) for some D2 <∞ and σ is
constant, uniqueness among the class of continuous, quadratically growing viscosity
solutions was obtained in [25]. Recent results of Da Lio and McEneaney [7], Bardi
and Da Lio [2], and Ishii [15] allow the removal of the constant σ assumption.

Let us also develop the information state in the discrete-time measurement case.

In the discrete-time measurement case, the dynamics (2.1) are unchanged, but
the measurement model is as follows. Suppose that at each measurement time, tj > 0,
we receive an observation that is modeled as

yj = h(x(tj)) + ρ(x(tj))vj .(2.10)

Let the number of measurements in time [0, T ] be N . One may adapt the cost criterion
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(2.5) and information state (2.6) in the following manner. Let the cost criterion be

J(T, xT , w(·)) = φ(x0)− 1

2

∫ T

0

|w(t)|2 dt− δ

2

N∑
j=1

|vj |2(2.11a)

= φ(x0)− 1

2

∫ T

0

|w(t)|2 dt− δ

2

N∑
j=1

|ρ−1(x(tj))[yj − h(x(tj))]|2,(2.11b)

where δ is the time interval between measurements, and let the value again be given by

P (T, xT ) = sup
w∈L2

J(T, xT , w).(2.12)

Due to the discrete nature of the measurements, it is helpful to recall the form of
the dynamic programming principle for such a system. Let P (t+j , x) be the value at

time tj just after measurement j, and P (t−j , x) be the value at time tj just before the
measurement. If T is not a measurement time, and t ∈ (tk−1, tk), we have

(2.13a) P (T, x) = sup
w∈L2([t,T ];<m)

{
P (t, x(t))− 1

2

∫ T

t

|w(r)|2 dr

− δ

2

N∑
j=k

|ρ−1(x(tj))[yj − h(x(tj))]|2
}
,

and when T occurs at the time of measurement j, we have

P (T+, x) = P (T−, x)− δ

2
|ρ−1(x)[yj − h(x)]|2.(2.13b)

The corresponding dynamic programming equations are

P (0, x) = φ(x), t = 0,(2.14a)

0 = Pt − sup
w∈<m

{
−[f(x) + σ(x)w]T∇xP − 1

2
|w|2

}
, t ∈ (tj , tj+1),

= Pt + fT (x)∇xP − 1

2
(∇xP )Ta(x)∇xP, t ∈ (tj , tj+1),(2.14b)

P (t+j , x) = P (t−j , x)− δ

2
|ρ−1(x)[yj − h(x)]|2, t = tj for some j.(2.14c)

As in the continuous-time measurements case, we have the following [24]. (Since
y does not appear on the right-hand side of (2.14b), there is no difficulty with dis-
continuous y in this case.)

Theorem 2.4. The information state, P , given by (2.13), is continuous and is
a viscosity solution of (2.14) between measurement times.

In the case where φ satisfies a quadratic growth condition, uniqueness follows in
a similar manner as that discussed in Remark 2.3.

As in the continuous-time measurement case, one obtains the robust estimator
from (2.8), and an attenuation inequality similar to (2.7) follows (with summation of
vj replacing the integral of vt).

Finally, see [1], [5], and [18] for related work.
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3. Max-plus linearity. Recall the definition of max-plus addition, ⊕, and mul-
tiplication, ⊗, for elements of < as

a⊕ b .= max{a, b},
a⊗ b .= a+ b.

(3.1)

Define these operations for −∞ in the obvious way. It is well known that (< ∪
{−∞},⊕,⊗) is a commutative semifield which is referred to as the max-plus algebra.
See [3], [20], [13] for a fuller discussion. We remark that, although the commutative
semifield lacks additive inverses, there is an extension which allows one to solve linear
systems in a certain sense. This extension is accomplished via the notion of a “bal-
ance”; see [3]. However, for the robust/H∞ and Mortensen filter applications, we are
interested only in real-valued quantities, and so nothing is gained by this extension.
Consequently, we will not pursue this here.) The authors have recently learned that
Theorem 3.1 was previously reported in 1987 [23].

As noted earlier, we are interested only in the discrete-time measurements case
in this section; the continuous-time measurements case will be discussed in section 7.
Let ST be the solution operator for HJB equation (2.14b). Specifically, given initial
condition P (t0, ·), the solution to (2.14b) at time t0 + T is given by

P (t0 + T, x) = ST [P (t0, ·)](x).(3.2)

From the dynamic programming principle (2.13a) (noting that there are no measure-
ments in (t0, t0 + T ) in order for (2.14b) to be applicable), one has

ST [P (t0, ·)](x) = P (t0 + T, x)(3.3)

= sup
w∈L2([t0,t0+T ];<m)

P (t0, x(t0))− 1

2

t0+T∫
t0

|w(r)|2 dr
 ,

where x(t0) is given by (2.1) with x(t0 + T ) = x.

We now prove that ST is linear in the max-plus algebra. Let c ∈ < and let
φ, ψ : <n → < be locally Lipschitz and bounded from above. By (3.3), one easily sees
that for any x ∈ <n

ST [c⊗ φ](x) = ST [c+ φ](x) = c+ ST [φ] = c⊗ ST [φ](x).(3.4)

Also, for any x ∈ <n,

ST [φ⊕ ψ](x) = sup
w∈L2([0,T ];<m)

{
max[φ(x(0)), ψ(x(0))]− 1

2

∫ T

0

|w(r)|2 dr
}

≥ sup
w∈L2([0,T ];<m)

{
φ(x(0))− 1

2

∫ T

0

|w(r)|2 dr
}

= ST [φ](x).

(3.5)

By symmetry, one obtains an analogous inequality for ψ. Consequently,

ST [φ⊕ ψ](x) ≥ max{ST [φ](x),ST [ψ](x)} = ST [φ](x)⊕ ST [ψ](x).(3.6)
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Now let w∗ be optimal in (3.5). (The existence of the optimizer is discussed in
section 2.) Then

ST [φ⊕ ψ](x) = max[φ(x(0)), ψ(x(0))]− 1

2

∫ T

0

|w∗(r)|2 dr,

and, in the case where φ(x(0)) ≥ ψ(x(0)),

= φ(x(0))− 1

2

∫ T

0

|w∗(r)|2 dr
≤ ST [φ](x).

Considering also the case where φ(x(0)) < ψ(x(0)), one obtains

ST [φ⊕ ψ](x) ≤ ST [φ](x)⊕ ST [ψ](x).

Combining this with (3.6) yields

ST [φ⊕ ψ](x) = ST [φ](x)⊕ ST [ψ](x).(3.7)

By (3.4) and (3.7), one has the following theorem.
Theorem 3.1. The solution operator for (2.14b) is linear in the max-plus alge-

bra.

4. Semiconvexity. A function ψ is called semiconvex if for every R <∞, there
exists CR such that

ψ̂(x)
.
= ψ(x) +

CR
2
|x|2(4.1)

is convex on the ball BR
.
= {x ∈ <n : |x| ≤ R}. The infimum over such CR will

be known as the semiconvexity constant for ψ over BR. Note that any real-valued
semiconvex function is locally Lipschitz. In fact, if ψ̂ is convex on the ball BR, then
ψ̂ is Lipschitz on BR/2 with a Lipschitz constant depending only on max|x|≤R ψ̂(x)−
min|x|≤R ψ̂(x) (see [8, p. 111]).

In this section, it will be shown that if either the initial information state is
semiconvex, or if σ is nondegenerate, then the information state will be semiconvex
for all T > 0. Next, the convex duality representation for convex functions is adapted
to the semiconvex case. Then, since the information state is semiconvex, one sees
that this provides a semiconvex duality representation for the information state. This
representation will be used in section 5 to obtain the basis representation.

Recall from section 3 that the solution operator (in the absence of observations)
is defined as

ST [φ](x) = sup
w∈L2([0,T ];<m)

J0(T, x;w(·)),

J0(T, x;w(·)) = φ(x0)− 1

2

∫ T

0

|w(t)|2 dt,
(4.2)

where x0 = x(0) given x(T ) = x and dynamics (2.1).
Theorem 4.1. If φ is semiconvex, then ST [φ] is semiconvex for each T > 0. In

fact, there exists ΓR(T ) such that for 0 ≤ τ ≤ T , R > 0, Sτ [φ](x) + ΓR(T )|x|2 is
convex on the ball BR.
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Proof. Let

J̃(τ, x;w(·)) = J0(τ, x;w(·)) + Γ|x|2,
J0(τ, x, w(·)) = φ(x0)− 1

2

∫ τ

0

|w(t)|2 dt,

where Γ = ΓR(T ) is to be chosen suitably. Since the supremum of any family of

convex functions is a convex function, it suffices to show that J̃(τ, ·;w(·)) is convex
on BR for each w(·).

By smoothing via convolution with approximations to the identity, we may assume
that φ is smooth. Then semiconvexity of φ is equivalent to vTφxx(x)v ≥ −CR|v|2 for

all v ∈ <n, when |x| ≤ R. To show convexity of J̃ it suffices to show that

vTJ0
xx(τ, x;w(·))v ≥ −2Γ(4.3)

whenever |x| ≤ R, |v| = 1, and ‖w‖2 ≤ M1(T,R) (see Lemma 2.1). Let ζ1(t), ζ2(t)
denote the first and second derivatives of x(t) in the direction v (considered as a
function of x = x(τ)). Then

vTJ0
xx(τ, x;w(·))v = φx(x0) · ζ2(0) + (ζ1(0))Tφxx(x0)ζ1(0).

By the “range-of-dependence” property (which follows directly from Lemma 2.1),
|x0| ≤ R1 for suitable R1. If we can also obtain bounds on |ζ1(0)|, |ζ2(0)| depending
only on T,R, then we will have (4.3) for suitable Γ = ΓR(T ), which will complete the
proof. (In fact, one could explicitly compute ΓR(T ) from these bounds if so desired.)
Bounds on ζ1(0), ζ2(0) are obtained as follows. Let

ẋh = f(xh) + σ(xh)w,
xh(τ) = x+ hv.

Then with ζ1(t)
.
= d

dhx
h(t)

∣∣
h=0

, one has

ζ̇1 = fx(x0)ζ1 + [σx(x0)ζ1]w,
ζ1(τ) = v.

By Lemma 2.1, one has bounds on x0, w, and then by (A1), this last equation yields
a bound on |ζ1(0)|.

Also, letting ζ1,h(t) = d
dhx

h(t) for h not necessarily zero, one has ζ2(t) =
d
dhζ

1,h(t)
∣∣
h=0

. Then

ζ̇2 = fxx(x0)ζ1 · ζ1 + fx(x0)ζ2 + [σxx(x0)ζ1 · ζ1 + σx(x0)ζ2]w,
ζ2(τ) = 0.

Again, employing bounds from Lemma 2.1 and (A1) with this equation leads to a
bound for |ζ2(0)|.

Fundamental solutions. If we assume nondegeneracy of the disturbance term
in (2.1), then ST [φ] is semiconvex for T > 0 without assuming semiconvexity of φ.
(The authors wish to thank P. Dupuis for pointing this out.) By nondegeneracy we
mean that m ≥ n and

σ−1(x) is bounded uniformly in x, and also assume σ−1 ∈ C2,(A5)
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where we define the inverse by

σ−1(x)b
.
= argmin{|a| : σ(x)a = b}

for any b ∈ <n. Note that assumption (A5) is only required if the initial information
function, φ, is not semiconvex.

Let us introduce the following function, V (T, x0, xT ), which we call a fundamental
solution of the PDE (2.14b). For x0, xT ∈ <n, T > 0, let

V (T, x0, xT ) = sup
w∈L2([0,T ];<m)

{
−1

2

∫ T

0

|w(t)|2 dt : x(0) = x0, x(T ) = xT

}
,(4.4)

where x(·) satisfies (2.1). From (4.2),

ST [φ](x) = sup
x0∈<n

{φ(x0) + V (T, x0, x)}.(4.5)

We can rewrite V in terms of the following calculus of variations problem with
fixed end conditions. Let

L(x, ẋ) = 1
2 |σ−1(x)(ẋ− f(x))|2,

I(T, x0, xT ;x(·)) = − ∫ T
0
L(x(t), ẋ(t)) dt.

Then

V (T, x0, xT ) = sup{I(T, x0, xT ;x(·)) : x(0) = x0, x(T ) = xT }

with x(·) given by (2.1). Equivalence of (4.4) and this calculus of variations version
follows easily by noting that for each path, x(·), there is a corresponding unique
minimal-norm w(·) given in feedback form with this definition of σ−1.

Lemma 4.2. Assume (A5). Then V (T, x0, ·) is semiconvex. In fact, given
0 < T1 < T2 < ∞, R, R0, there exists ∆ (depending on T1, T2, R,R0) such that
V (T, x0, x)+∆|x|2 is convex on the ball BR

.
= {x ∈ <n : |x| ≤ R} for any T ∈ [T1, T2]

and any |x0| ≤ R0.
Proof. Given x0, x, there exists x∗(·) such that x∗(0) = x0, x∗(T ) = x, and

V (T, x0, x) = I(T, x0, x;x∗(·)).

Now suppose 0 < T1 ≤ T ≤ T2, |x0| ≤ R0, and |x| ≤ R. Some “range-of-
dependence” estimates will be obtained. For comparison with the optimal trajectory,
let x(t)

.
= x0 + (t/T )(x − x0). Then there exists C < ∞ (depending on R0, R, T1)

such that ∣∣ẋ− f(x(t))
∣∣ ≤ C ∀ t ∈ [0, T ],

and then by (A5), there exists Mi <∞ such that

−L(x, ẋ) ≥ −1

2
M2
i C

2.

Then by the optimality of x∗,

I(T, x0, x;x∗(·)) ≥ −1

2
M2
i C

2T,
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and using (A2), this yields∫ T

0

|ẋ∗ − f(x∗(t))|2 dt ≤M2M2
i C

2T.(4.6)

Then note that by (A1), there exists K <∞ such that

d

dt
|x∗|2 = 2(x∗)T (f(x∗) + (ẋ∗ − f(x∗)))

≤ 3K|x∗|2 +K + 2|x∗||ẋ∗ − f(x∗)|
≤ (3K + 1)|x∗|2 +K + |ẋ∗ − f(x∗)|2.

Employing Gronwall’s inequality and (4.6), one finds that there exist R1,M <∞ (de-
pending on R0, R, T1, T2) such that |x∗(t)| ≤ R1 for all t ∈ [0, T ] and ‖ẋ∗(·)‖L2[0,T ] ≤
M .

Next, consider any direction v ∈ <n (|v| = 1) and scalar h ∈ [−1, 1]. Let

xh(t)
.
= x∗(t) +

t

T
hv.

Then xh(0) = x0 and xh(T ) = x+ hv. Moreover,

d2

dh2
I(T, x0, x+ hv;xh(·)) = vTΛhv,

Λh
.
=

1

T 2

∫ T

0

[
t2Lhxx + 2tLhxẋ + Lhẋ,ẋ

]
dt,

Lhxx = Lxx(xh(t), ẋh(t)), and the other derivatives defined similarly. Since |xh(t)| and
‖ẋh(·)‖L2[0,T ] are uniformly bounded,

d2

dh2
I(T, x0, x+ hv;xh(·)) ≥ −2∆

for some constant ∆ depending on T1, T2, R,R0. Then I(T, x0, x + hv;xh(·)) + ∆h2

is a convex function of h for |h| ≤ 1. Then

V (T, x0, x+ hv) + V (T, x0, x− hv)− 2V (T, x0, x)

≥ I(T, x0, x+ hv;xh(·)) + I(T, x0, x− hv;x−h(·))− 2I(T, x0, x;x∗(·))
≥ −2∆h2.

This implies that V (T, x0, x) + ∆|x|2 is convex on the ball {x ∈ <n : |x| ≤ R}.
Theorem 4.3. Assume (A5). For any φ ≤ 0, T > 0, ST [φ] is semiconvex.
Proof. If |xT | ≤ R, by the “range-of-dependence” property, it suffices to consider

those x(·) such that |x(t)| ≤ R1, where x0 = x(0). If x = xT , then by (4.5)

ST [φ](x) = sup
x0∈<n

{φ(x0) + V (T, x0, x)} ,

ST [φ](x) + ∆|x|2 = sup
x0∈<n

{
φ(x0) + V (T, x0, x) + ∆|x|2} ,

with ∆ as in Lemma 4.2 Since the supremum of any family of convex functions is
convex, ST [φ](x) + ∆|x|2 is convex on the ball {x ∈ <n : |x| ≤ R}.
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Theorems 4.1 and 4.3 imply (under different assumptions) that the information
state (in the absence of measurement updates) will be semiconvex. To complete this
discussion, one also needs to show that the measurement updates (2.14c) maintain
semiconvexity.

Lemma 4.4. Suppose ψ is semiconvex. Then ψ(x) − 1
2 |ρ−1(x)[y − h(x)]|2 is

semiconvex for any y ∈ <k.
Proof. Let G(x)

.
= |ρ−1(x)[y − h(x)]|2. Fix R <∞. Then, since ψ is semiconvex,

there exists CR < ∞ such that ψ(x) + CR
2 |x|2 is convex. But by (A1) and (A3b),

there exists CR,y < ∞ such that |Gxx(x)| ≤ CR,y for all x ∈ BR. Consequently

ψ(x)− 1
2 |ρ−1(x)[y − h(x)]|2 +

CR+CR,y
2 |x|2 is convex.

By Theorem 2.4, Lemma 4.4, and either Theorem 4.1 or Theorem 4.3, we know
that, under the given assumptions, the information state, P , will be continuous and
semiconvex. Consequently, we define

P .
= {ψ : <n → < : ψ is continuous and semiconvex}.

The algorithm to follow will depend on a max-plus basis representation of any ψ ∈ P.
The starting point for this representation will be the convex dual.

Let R > 0 and (as above) BR
.
= {x ∈ <n : |x| ≤ R}. Let ψ̂ : BR → < be

convex and Lipschitz over BR with Lipschitz constant L(R), and let ψ̂(x) = +∞ for
all x /∈ BR. The following result is a minor variation of a standard result in convex
duality (see, for instance, [30], [31]). The slight variation here is that, in this case,
one has existence of the maximizers in the statement of the lemma, which is a result
of the restrictive class of functions, ψ̂, being considered here.

Lemma 4.5 (convex duality representation).

ψ̂(x) = max
p∈BL(R)

[pTx+ ap] ∀x ∈ BR,

where

ap = − max
x∈BR

[pTx− ψ̂(x)],

and note that ap may be −∞.
Consider any ψ ∈ P over some ball BR. Let c > 0 be a constant such that

ψ̂(x)
.
=

{
ψ(x) + c

2 |x|2 if x ∈ BR
+∞ otherwise

is convex.(4.7)

(The existence of c is guaranteed by ψ ∈ P.) As noted above, by [8, p. 111], ψ̂ is
Lipschitz over BR with some constant L(R). Further, if |ψ(x)| ≤ D2(1 + |x|2) for
some D2, then it can be shown using the explicit local Lipschitz bound in [8] that

L(R) ≤ D3(1 + R) for some D3. The convex duality representation of ψ̂ in Lemma
4.5 leads easily to the following representation for ψ.

Theorem 4.6 (semiconvex duality representation).

ψ(x) = max
x̃∈BL(R)/c

[
− c

2
|x− x̃|2 + ax̃

]
= max
x̃∈<n

[
− c

2
|x− x̃|2 + ax̃

]
∀x ∈ BR,

where

ax̃ = − max
x∈BR

[
− c

2
|x− x̃|2 − ψ(x)

]
.
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Proof. For any x ∈ BR,

ψ(x) = ψ̂(x)− c

2
|x|2,

which by Lemma 4.5

= max
p∈BL(R)

[
pTx− c

2
|x|2 + ap

]
= max
p∈BL(R)

[
− c

2
|x− p/c|2 +

1

2c
|p|2 + ap

]
,

which by letting x̃ = p/c becomes

= max
x̃∈BL(R)/c

[
− c

2
|x− x̃|2 +

c

2
|x̃|2 + acx̃

]
= max
x̃∈BL(R)/c

[
− c

2
|x− x̃|2 + ax̃

]
,

where

ax̃ =
c

2
|x̃|2 + acx̃

= − max
x∈BR

[
(cx̃)Tx− ψ̂(x)− c

2
|x̃|2
]
,

which by (4.7)

= − max
x∈BR

[
(cx̃)Tx− ψ(x)− c

2
|x|2 − c

2
|x̃|2
]

= − max
x∈BR

[
− c

2
|x− x̃|2 − ψ(x)

]
.

5. Basis representation. In this section we modify the representation of ψ ∈ P
given by Theorem 4.6 to obtain a countable basis representation. Again, let ψ ∈ P
and R > 0 with corresponding c such that (4.7) holds.

Suppose we have some countable dense subset {xi}∞i=1 ⊆ <n. Let ĉ ∈ (c,∞). Let

gi(x) = − ĉ
2
|x− xi|2(5.1a)

and

ai = − max
x∈BR

[gi(x)− ψ(x)].(5.1b)

Let c ∈ (ĉ,∞) and

gx̃(x) = − c
2
|x− x̃|2.

By Theorem 4.6,

ψ(x) = max
x̃∈BL(R)/c

[gx̃(x) + ax̃] ∀x ∈ BR,
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where ax̃ is given in Theorem 4.6. It will next be shown that, in fact,

ψ(x) = sup
i

[ai + gi(x)] =
∞⊕
i=1

[ai ⊗ gi(x)] ∀x ∈ BR,

where
⊕∞

i=1 indicates max-plus summation. Some additional properties of this basis
function representation will also be obtained. Lemma 5.1 will be useful in the two
theorems to follow.

Lemma 5.1. Given x̃ ∈ BL(R)/c and ε > 0, there exists i such that

ψ(x) ≥ gi(x) + ai ≥ gx̃(x) + ax̃ − ε ∀x ∈ BR.
Further, for any δ > 0 one may specify |xi − x̃| ≤ c−ĉ

cĉ (cR+ L(R)) + δ.
Proof. Let x̃ and ε > 0 be given. By Theorem 4.6, there exists x ∈ BR such that

ax̃ − c

2
|x− x̃|2 = ψ(x).(5.2)

Choose x̂ ∈ <n such that

−ĉ(x− x̂) = −c(x− x̃)(5.3)

(so that the gradient of − ĉ
2 |x − x̂|2 matches that of gx̃ at x). Note that this implies

|x̂− x̃| ≤ c−ĉ
cĉ (cR+ L(R)). By the density of {xi}∞i=1, given δ > 0, there exists i such

that

|xi − x̂| < δ.(5.4)

Let âi be such that

ψ(x) = âi − ĉ

2
|x− xi|2.(5.5)

Define

ψ0(x) =

{
ψ(x) + c

2 |x− x|2 if x ∈ BR,
+∞ if x /∈ BR,

so that ψ0 is convex. By the definition of x,

−c(x− x̃)T ∈ ∂ψ0(x),

and so by (5.3)

−ĉ(x− x̂)T ∈ ∂ψ0(x),

which, by the definition of subgradient and that ψ0(x) = ψ(x), implies

ψ(x)− ĉ(x− x̂)T (x− x) ≤ ψ0(x) ∀x ∈ <n.(5.6)

It will next be shown that the ai given by (5.1b) is not much smaller than âi
given by (5.5). Define

F (x)
.
= âi − ĉ

2
|x− xi|2 +

c

2
|x− x|2 − [ψ(x)− ĉ(x− x̂)T (x− x)].(5.7)
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The maximum of F occurs at

x0 = x+
ĉ

ĉ− c (xi − x̂),

and the maximum value is

F (x0) =
ĉ2

2(ĉ− c) |xi − x̂|
2,

which by (5.4)

<
ĉ2

2(ĉ− c)δ
2.(5.8)

We choose δ > 0 sufficiently small such that

ĉ2

2(ĉ− c)δ
2 <

ε

2
.(5.9)

Then, by (5.7), (5.8), and (5.9),

âi − ĉ

2
|x− xi|2 +

c

2
|x− x|2 < ψ(x)− ĉ(x− x̂)T (x− x) +

ε

2
∀x ∈ <n,

and so by (5.6),

âi − ĉ

2
|x− xi|2 +

c

2
|x− x|2 < ψ0(x) +

ε

2
∀x ∈ <n,

which, by the definition of ψ0, implies

âi − ĉ

2
|x− xi|2 < ψ(x) +

ε

2
∀x ∈ BR.

Consequently, with ai given by (5.1b), one has

ai > âi − ε

2
.(5.10)

Now it will be shown that ai − ĉ
2 |x− xi|2 = ai + gi(x) is not more than ε below

ax̃ + gx̃(x) (for sufficiently small δ). Define

H(x) = ax̃ − c

2
|x− x̃|2 −

(
ai − ĉ

2
|x− xi|2

)
.(5.11)

By (5.2),

H(x) = ψ(x)−
(
ai − ĉ

2
|x− xi|2

)
,

which by (5.10) and (5.5)

<
ε

2
.
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By (5.11)

dH

dx
(x) = −c(x− x̃)T + ĉ(x− xi)T ,

which by (5.3)

= −ĉ(x− x̂)T + ĉ(x− xi)T ,

so that ∣∣∣dH
dx

(x)
∣∣∣ ≤ ĉ|x̂− xi|.

Also,

d2H

dx2
(x) = (ĉ− c)I < 0

(whereby the last inequality, we mean that (ĉ−c)I is negative definite). Consequently,

H(x) <
ε

2
+ ĉ|x̂− xi||x− x| − c− ĉ

2
|x− x|2 ∀x ∈ <n,

and taking the maximum of the right-hand side yields

H(x) <
ε

2
+

ĉ2

2(c− ĉ) |x̂− xi|
2 ∀x ∈ <n,

which by (5.4)

≤ ε

2
+

ĉ2

2(c− ĉ)δ
2 ∀x ∈ <n,

and by possibly reducing the size of δ from that in (5.9), one can make this

< ε.(5.12)

By (5.11) and (5.12),

ai − ĉ

2
|x− xi|2 ≥ ax̃ − c

2
|x− x̃|2 − ε ∀x ∈ <n.

This is the desired right inequality, and the desired left inequality is a direct conse-
quence of (5.1b).

Theorem 5.2.

ψ(x) = sup
i

[ai + gi(x)] =
∞⊕
i=1

[ai ⊗ gi(x)] ∀x ∈ BR.(5.13)

Further, for any δ > 0 it is sufficient to consider only a set of {xi} which is a dense
subset of Bδ+L(R)/c.

Proof. Let x ∈ BR. By Theorem 4.6, there exists x̃ ∈ <n such that

ψ(x) = gx̃(x) + ax̃
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and by Lemma 5.1, given ε > 0, there exists i such that

≤ gi(x) + ai + ε.

Since ε > 0 was arbitrary,

ψ(x) ≤ sup
i

[gi(x) + ai],

and the reverse follows by the definition of the ai. Also, the last assertion follows
from Theorem 4.6 and the density of the xi.

For the remainder of the section, let {xi} be dense over all of <n in order to reduce
complication. One has the countable basis function representation (5.13) for any such
countable dense set {xi} and particular choice of constant ĉ ∈ (c,∞), where c is any
constant such that (4.7) holds. Some further guidance on appropriate choices of ĉ will
now be obtained. Consider several possible choices of basis function sets indexed by j,

Bj .
=

{
gj,i(x) = − ĉj

2
|x− xi|2 : {xi}∞i=1

}
.(5.14)

From Theorem 5.2, we know that

ψ(x) =
∞⊕
i=1

[ai ⊗ gj,i(x)](5.15)

for any j such that ĉj > c. Conceptually then, given some ψ ∈ P and R > 0, one
could choose any set of basis functions Bj ∈ {Bj} such that

ĉj > c.(5.16)

It will now be shown that it is in some sense optimal to choose the set Bj with the
smallest (loosely speaking) ĉj which satisfies (5.16). This may be rigorously stated as
follows.

Theorem 5.3. Suppose R > 0 and ψ ∈ P with semiconvexity constant c (so
that (4.7) is satisfied). Let Bj1 ,Bj2 ∈ {Bj} be such that ĉj2 > ĉj1 > c. Then, for any
n <∞ and ε > 0, there exists {ki}ni=1 such that

ψ(x) ≥
n⊕
i=1

aj1,ki ⊗ gj1,ki(x) ≥
n⊕
i=1

aj2,i ⊗ gj2,i(x)− ε ∀x ∈ BR,

where aj1,i, aj2,i are given by (5.1b) for all i.
Before proceeding with the proof, note that this implies that one can always do

arbitrarily close to better by choosing the smaller choice of ĉj , but that the particular
order of xi and the function ψ may affect this. Typically, of course, one would expect
better performance with the smaller choice of ĉj since the result is obviously not true
if ĉj2 < ĉj1 .

Proof. Let 1 ≤ i ≤ n < ∞ and ε > 0. It is sufficient to show that there exists
ki <∞ such that

ψ(x) ≥ aj1,ki ⊗ gj1,ki(x) ≥ aj2,i ⊗ gj2,i(x)− ε ∀x ∈ BR.(5.17)

But this is simply Lemma 5.1.
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Finally, we turn to motivation for the choice of coefficients ai in the expansion.
Specifically we motivate the choice given by (5.1b). Note that this theorem will be
true independent of the particular choice of basis functions {gi} in (5.1a).

Theorem 5.4. Let {ai}∞i=1 be given by (5.1b) and let {ãi}∞i=1 be an alternative
set of coefficients. If ãi0 > ai0 for some i0, then

max
x∈BR

∣∣∣∣ ∞⊕
i=1

ãi ⊗ gi(x)− ψ(x)

∣∣∣∣ > 0.(5.18)

Alternatively, if ãi ≤ ai for all i, then

max
x∈BR

∣∣∣∣ n⊕
i=1

ãi ⊗ gi(x)− ψ(x)

∣∣∣∣ ≥ max
x∈BR

∣∣∣∣ n⊕
i=1

ai ⊗ gi(x)− ψ(x)

∣∣∣∣ ∀n.(5.19)

Remark 5.5. Before proceeding to the proof, let us note that this theorem implies
that of the possible choices for {ai}∞i=1 such that (5.13) holds, the choice given by
(5.1b) is optimal. However, this does not imply that for any fixed n <∞,

max
x∈BR

∣∣∣∣ n⊕
i=1

ai ⊗ gi(x)− ψ(x)

∣∣∣∣ ≤ max
x∈BR

∣∣∣∣ n⊕
i=1

ãi ⊗ gi(x)− ψ(x)

∣∣∣∣.
That is, there may be better choices of {ai}ni=1 for finite approximations, but such a
choice cannot be extended to yield ψ in the limit without changing the ai’s for i ≤ n.

Proof. For the first part, note that by (5.1a), there exists x0 ∈ BR such that

ψ(x0)− ai0 ⊗ gi0(x0) = 0,

and consequently,

ψ(x0)−
∞⊕
i=1

ãi ⊗ gi(x0) ≤ ψ(x0)− ãi0 ⊗ gi0(x0),

which since ãi0 > ai0

< ψ(x0)− ai0 ⊗ gi0(x0) = 0.

For the second part, note that for any n ≥ 1 and any x ∈ BR,

ψ(x) ≥⊕n
i=1 ai ⊗ gi(x) = max

1≤i≤n
[ai + gi(x)]

≥ max
1≤i≤n

[ãi + gi(x)] =
n⊕
i=1

ãi ⊗ gi(x).

6. Algorithm. Before explicitly describing the computational algorithm, we dis-
cuss how one may combine basis representation (5.13) with the max-plus linearity of
the solution operator (Theorem 3.1) to update the information state between mea-
surement times. This is actually a general algorithm for solving HJB equations of
the form (2.14b) with semiconvex initial conditions, and so is more general than the
particular application considered in this paper.

Specific error estimates have not been included in this section. The goal of this
paper is to outline a new approach to computations for the Mortensen and robust
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nonlinear filters. Since this is a new and unusual approach, and since the paper is
already of substantial length, error estimates are delayed to a future paper, where
computational comparisons could also be examined.

Recall the discrete-time filter discussed in section 2. Suppose P (t+l , ·) is semi-
convex, and that we approximate it over some ball, BR, by some finite number of
elements of the basis representation (5.13), that is,

P (t+l , x) =
∞⊕
i=1

[ai ⊗ gj1,i(x)] '
n⊕
i=1

[ai ⊗ gj1,i(x)] ∀x ∈ BR,

where

gj1,i = − ĉj1
2
|x− xi|2

with appropriate choice of ĉj1 and with ai given by (5.1b). Then P (tl+1
−, x) is given

by Sδ[P (t+l , ·)](x), where Sδ is the solution operator for (2.14b), where δ = tl+1 − tl.
We know by Theorem 3.1 that

P (tl+1
−, x) = Sδ[P (t+l , ·)](x)

' Sδ
[

n⊕
i=1

[ai ⊗ gj1,i(·)]
]

(x)

=
n⊕
i=1

{ai ⊗ Sδ[gj1,i](x)}.(6.1)

It is assumed that one has precomputed Sδ[gj,i] for all appropriate j, i, where the
solutions are represented in the form

Sδ[gj,i](x) '
n⊕
k=1

bk,i ⊗ gj2,k(x),(6.2)

where gj2,k(x) = − ĉj22 |x−xk|2, ĉj2 is greater than the largest semiconvexity constant
over the set {Sδgj1,i}ni=1, and bk,i is given by (5.1b), i.e., bk,i = −maxx∈BR [gj2,k(x)−
Sδ[gi](x)]. (Note that one might choose to vary the set of interest, BR, from one
time to another, but for simplicity of notation, we do not include that here.) In other
words, one has precomputed and stored the matrices [bk,i] for all appropriate j1, j2.
Then by (6.1), (6.2)

P (tl+1
−, x) '

n⊕
i=1

{ai ⊗ Sδ[gj1,i](x)}

'
n⊕
i=1

{
ai ⊗

[
n⊕
k=1

bk,i ⊗ gj2,k(x)

]}

=
n⊕
i=1

n⊕
k=1

[bk,i ⊗ ai ⊗ gj2,k(x)]

=

n⊕
k=1

[(
n⊕
i=1

(bk,i ⊗ ai)
)
⊗ gj2,k(x)

]
.(6.3)
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Let B be the n×n matrix [bk,i], and let A be the vector [ai]. Define max-plus matrix
multiplication in the natural way; that is, let C = B⊗A be given by C = [ck], where
ck =

⊕n
i=1[bk,i ⊗ ai]. Then,

P (t−l+1, x) =
n⊕
i=1

[ci ⊗ gj2,i(x)],

where

C = B ⊗A.(6.4)

In other words, the update P (t−l+1, x) = Sδ[P (t+l , ·)](x) is performed simply by the
max-plus matrix multiplication (6.4).

Now we will outline the structure of the information state propagation numerical
algorithm for the discrete-time measurement case. Assume that the measurements
occur at fixed time intervals tl = lδ for l = 1, 2, . . . . Assume that P (0+, ·) = φ(·) is
semiconvex. (If not, then we know from Theorem 4.3 that P (δ, ·) will be semiconvex
for δ > 0, under the nondegeneracy assumption discussed there.)

Let l = 0.
(1) Compute an estimate of the semiconvexity constant, c, for P (t+l , ·) over BR.

(Since P (t+l , ·) will be known only on some finite set, this is estimated by second-order
differences.)

(2) Choose a set of basis functions Bj1 with ĉj1 > c. (In actual operations, one may
choose to use more than one set, {Bj1 ,Bj2 , . . . ,Bjn}, but we require maxjm ĉjm > c.)
Also, determine the particular subset {xi}ni=1 ⊂ {xi}∞i=1 to use.

(3) Compute Al = [ali] for i = 1, 2, . . . , n from (5.1b). One now has the approxi-
mation

P (t+l , x) '
n⊕
i=1

[ali ⊗ gj1,i(x)],

where gj1,i(x) = − ĉj12 |x − xi|2, and so the information state P (t+l , ·) is represented
simply by the vector Al.

(4) Propagate the solution of (2.14b) forward in time to time tl+1. From the
above discussion, we see that this takes the form of the max-plus matrix multiplication

Al+1 = B ⊗Al.
(5) Compute P (tl+1

−, ·) from

P (tl+1
−, x) =

n⊕
i=1

[
al+1
i ⊗ gj2,i(x)

]
.

This step takes the representation of the information state in the form Al+1 and
converts it back to a function of x (actually evaluated only on some grid over BR).

(6) Given measurement yl+1, perform the measurement update

P (tl+1
+, x) = P (tl+1

−, x)− 1

2
|ρ−1(x)[yl+1 − h(x)]|2

(for all points on the grid over BR).
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(7) Increment l, and return to step 1.

It is interesting to note that in the absence of measurement updates, the solution
could be propagated forward in time simply by a series of max-plus matrix multipli-
cations. This would be the case if there were other applications where one was only
interested in solution of an HJB equation of the form (2.14b) with semiconvex initial
conditions or nondegenerate σ. However, in the robust filter application, the largest
portion of the computational effort is likely to be expended in step 3, where one needs
to compute the coefficients in the expansion. In many other types of expansions, the
coefficients are computed by integration. Here, we see that the integration step is
replaced by a maximization over the relevant portion of the state space, BR.

7. Continuous-time measurements. Let us return to the case of continuous-
time measurements satisfying (2.2), and let P (T, x) be the information state given by
(2.6). Let P δ(T, x) be the discrete-time measurement information state with time-step
δ. (To be specific, we take P δ(t, ·) to be P (t+, ·) at the measurement times, although
P (t−, ·) would work as well.) In this section, we will show that P is the limit of P δ as
δ ↓ 0 (Theorem 7.3). Section 6 described a numerical algorithm for finding P δ(T, x)
approximately, and hence for approximate solution of the HJB equation (2.9) for
P (T, x).

We use the simplest discretization of the problem, letting tl = lδ for l = 0, 1, 2 . . . .
At each l ≥ 1, the discrete approximation model receives a measurement yl given by

yl =
1

δ

∫ tl

tl−1

y(t) dt.(7.1)

Given T , let N be the largest integer such that tN ≤ T , and let

Jδ(T, x, w) = φ(x0)− 1

2

∫ T

0

|w(t)|2 dt− δ

2

N∑
l=1

|ρ−1(x(tl))[yl − h(x(tl))]|2,(7.2)

where x0 = x(0) given x(T ) = x and dynamics (2.1), and

P δ(T, x) = sup
w∈L2

Jδ(T, x, w).(7.3)

Note that if T = Nδ, one has P δ(T, x) being what was denoted as P (T+, x) in (2.13b)
rather than P (T−, x).

It will first be shown that the semiconvexity constants for the approximations P δ

(which we recall affect the choice of basis functions in the algorithm of section 6) do
not blow up as δ ↓ 0.

Theorem 7.1. Assume that φ is semiconvex. Then for any T 0, R, there exists
a constant Γ̂ (depending on T 0, R) such that for any T ∈ [0, T 0], P δ(T, x) + Γ̂|x|2 is
convex on BR.

Proof. Let

Jδ,0(T, x, w) = φ(x0)− 1

2

∫ T

0

|w(t)|2 dt,

Jδ,1(T, x, w) = −δ
2

N∑
l=1

|ρ−1(x(tl))[yl − h(x(tl))]|2,
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so that Jδ = Jδ,0 + Jδ,1. In the proof of Theorem 4.1, one finds that given T 0, R,
there exists Γ such that

vTJδ,0xx (x, T, w)v ≥ −2Γ(7.4)

for all |x| ≤ R, T ∈ [0, T 0], |v| = 1, and ε0-optimal w with ε0 ≤ 1. In particular,
Γ = ΓR(T 0) is independent of δ. All that remains is to prove a similar result for Jδ,1.
It will now be shown that there exists Γ (depending on T 0, R) such that

vTJδ,1xx (x, T, w)v ≥ −2Γ

for all |x| ≤ R, T ∈ [0, T 0], |v| = 1, and ε0-optimal w with ε0 ≤ 1.
As in the proof of Theorem 4.1, let ζ1(t), ζ2(t) denote the first and second deriva-

tives of x(t) in the direction v (considered as a function of x = x(T )). Then

vTJδ,1xx (x, T, w)v = −δ
2

N∑
l=1

{(|ρ−1(x)[yl − h(x)]|2)
x

∣∣∣
x=x(tl)

ζ2(tl)

+

[(|ρ−1(x)[yl − h(x)]|2)
xx

∣∣∣
x=x(tl)

ζ1(tl)

]
· ζ1(tl)

}
.

(7.5)

From Lemma 2.1, we know that there exists R1 = R1(T 0, R) such that |x(t)| ≤
R1 ∀t ∈ [0, T ], which leads, via (A1), to bounds on all x-dependent terms in (7.5).
That is, there exists M1 = M1(T 0, R) such that

vTJδ,1xx (x, T, w)v ≥ −δ
2

N∑
l=1

C2
ρ

{(
M1 + |yl|2

)
(|ζ2(tl)|+ |ζ1(tl)|2)

}
.

But as shown in the proof of Theorem 4.1, |ζ2(t)|, |ζ1(t)| are bounded with bounds
only dependent on T 0, R. Therefore, there exists M2 = M2(T 0, R) such that

vTJδ,1xx (x, T, w)v ≥ −δ
2

N∑
l=1

{
M2(1 + |yl|2)

}
= −δ

2

N∑
l=1

M2

1 +

∣∣∣∣∣1δ
∫ tl

tl−1

y(t) dt

∣∣∣∣∣
2


≥ −δ
2

N∑
l=1

{
M2

(
1 +

1

δ

∫ tl

tl−1

|y(t)|2 dt
)}

≥ −M2

2

(
T + ‖y‖2L2[0,T ]

)
,

which we define to be

.
= −2Γ.(7.6)

Combining (7.4) and (7.6), one has

vTJδxx(x, T, w)v ≥ −2(Γ + Γ)

for all |x| ≤ R, ε0-optimal w with ε0 ≤ 1, where Γ,Γ are independent of δ. This
implies the desired result.
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Remark 7.2. The P δ satisfy a uniform (in δ) local Lipschitz condition in x. That
is, given R, T < ∞, there exists K = K(T,R) such that |P δ(T, x) − P δ(T, x̃)| ≤
K|x− x̃| for all x, x̃ ∈ BR. This follows directly from the uniform semiconvexity; see
[8, p. 111]

Finally, we obtain the convergence result.

Theorem 7.3. P δ(T, x)→ P (T, x) as δ ↓ 0 for all (T, x) ∈ [0,∞)×<n.

Proof. Fix T,R < ∞ and x ∈ BR. Let ε0 ∈ [0, 1]. Let J be given by (2.5) and
Jδ by (7.2). By Lemma 2.1 (and a similar result for the discrete case), we know
ε0-optimal w for either problem satisfies ‖w‖L2[0,T ] ≤MR,T for appropriate MR,T .

Let ‖w‖L2[0,T ] ≤MR,T . It is sufficient to show that

|J(T, x, w)− Jδ(T, x, w)| → 0

as δ ↓ 0 (with an estimate that is independent of w). We have

2|J(T, x, w)− Jδ(T, x, w)| =
∣∣∣∣∣
∫ T

0

|ρ−1(x(t))[y(t)− h(x(t))]|2 dt

− δ
N∑
l=1

|ρ−1(x(tl))[yl − h(x(tl))]|2
∣∣∣∣∣.

(7.7)

We now show that given ε > 0, the right-hand side of (7.7) can be made < ε for
δ > 0 sufficiently small. The proof will involve first an approximation of y by an L∞
function, and then a mollification.

Let R > 0 and

yR(t)
.
=

{
y(t) if |y(t)| ≤ R,
0 otherwise.

Let ΞR = {t ∈ [0, T ] : |y(t)| > R}. Then

∫ T

0

[
|ρ−1(x(t))[y(t)− h(x(t))]|2

− |ρ−1(x(t))[yR(t)− h(x(t))]|2
]
dt =

∫
ΞR

|ρ−1(x(t))[y(t)− h(x(t))]|2dt,

which by (2.3), (A1), and Lemma 2.1

≤ 2C2
ρ

∫
ΞR

(M1 + |y(t)|2) dt

for the proper choice of M1, and then for R sufficiently large,

<
ε

4
.(7.8)
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Also,

δ

N∑
l=1

∣∣∣∣∣
∣∣∣∣∣ρ−1(x(tl))

[
1

δ

∫ tl

tl−1

y(t) dt− h(x(tl))

]∣∣∣∣∣
2

−
∣∣∣∣∣ρ−1(x(tl))

[
1

δ

∫ tl

tl−1

yR(t) dt− h(x(tl))

]∣∣∣∣∣
2∣∣∣∣∣

≤ δC2
ρδ

N∑
l=1

∣∣∣∣∣1δ
∫ tl

tl−1

(y(t) + yR(t)) dt− 2h(x(tl))

∣∣∣∣∣
∣∣∣∣∣1δ
∫ tl

tl−1

(y(t)− yR(t)) dt

∣∣∣∣∣ ,
and using Lemma 2.1 and Cauchy–Schwarz, one finds that for proper choice of M2,

≤ δC2
ρδ

N∑
l=1

{
1√
δ

[∫ tl

tl−1

|y(t) + yR(t)|2 dt
] 1

2
1√
δ

[∫ tl

tl−1

|y(t)− yR(t)|2 dt
] 1

2

+
M2

δ

∫ tl

tl−1

|y(t)− yR(t)| dt
}
,

which, using 2ab ≤ ca2 + b2/c for any c > 0,

≤ C2
ρ

{
c

2

∫ T

0

|y + yR|2 dt+
1

2c

∫ T

0

|y − yR|2 dt+M2

∫ T

0

|y − yR| dt
}
,

which for c sufficiently small and then R sufficiently large

<
ε

4
.(7.9)

From (7.7),

2|J(T, x, w)− Jδ(T, x, w)|

≤
∣∣∣∣∣
∫ T

0

|ρ−1(x(t))[y(t)− h(x(t))]|2 − |ρ−1(x(t))[yR(t)− h(x(t))]|2, dt
∣∣∣∣∣

+

∣∣∣∣∣
∫ T

0

|ρ−1(x(t))[yR(t)− h(x(t))]|2 dt

−
N∑
l=1

∫ tl

tl−1

∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(t))

]∣∣∣∣∣
2

dt

∣∣∣∣
+

∣∣∣∣∣
N∑
l=1

∫ tl

tl−1

{∣∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(t))

]∣∣∣∣∣
2

−
∣∣∣∣∣ρ−1(x(tl))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(tl))

]∣∣∣∣∣
2}

dt

∣∣∣∣∣
+

∣∣∣∣∣
N∑
l=1

δ

{∣∣∣∣∣ρ−1(x(tl))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(tl))

]∣∣∣∣∣
2

−
∣∣∣∣∣ρ−1(x(tl))

[
1

δ

∫ tl

tl−1

y(r) dr − h(x(tl))

]∣∣∣∣∣
2}

dt

∣∣∣∣∣,
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which by (7.8), (7.9), and some rearrangement is

<

∣∣∣∣∣
N∑
l=1

∫ tl

tl−1

{
|ρ−1(x(t))[yR(t)− h(x(t))]|2

−
∣∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(t))

]∣∣∣∣∣
2}

dt

∣∣∣∣
+

∣∣∣∣∣
N∑
l=1

∫ tl

tl−1

{∣∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(t))

]∣∣∣∣∣
2

−
∣∣∣∣∣ρ−1(x(tl))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(tl))

]∣∣∣∣∣
2}

dt

∣∣∣∣∣
+

∫ T

tN

|ρ−1(x(t))[yR(t)− h(x(t))]|2 dt+
ε

2
,

which by the continuity of x(·) over [0, T ] for ‖w‖ < MR,T

<

∣∣∣∣∣
N∑
l=1

∫ tl

tl−1

{
|ρ−1(x(t))[yR(t)− h(x(t))]|2

−
∣∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(t))

]∣∣∣∣∣
2}

dt

∣∣∣∣∣+M3δ +
3ε

4

=

∣∣∣∣∣
N∑
l=1

∫ tl

tl−1

{∣∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(t) dr − h(x(t))

]∣∣∣∣∣
2

−
∣∣∣∣∣ρ−1(x(t))

[
1

δ

∫ tl

tl−1

yR(r) dr − h(x(t))

]∣∣∣∣∣
2}

dt

∣∣∣∣∣+M3δ +
3ε

4
,

which for proper choice of ξ(t) ∈ BR for all t,

< 2C2
ρ

N∑
l=1

∫ tl

tl−1

|ξ(t)− h(x(t))|
∣∣∣∣∣1δ
∫ tl

tl−1

(yR(t)− yR(r)) dr

∣∣∣∣∣ dt+M3δ +
3ε

4
,

which for proper choice of M4 = M4(R, T )

< M4

N∑
l=1

∫ tl

tl−1

∣∣∣∣∣1δ
∫ tl

tl−1

(yR(t)− yR(r)) dr

∣∣∣∣∣ dt+M3δ +
3ε

4
.(7.10)

Now let yR,ρ be a C∞ mollification of yR such that ‖yR,ρ − yR‖L1[0,T ] → 0 as
ρ ↓ 0. Rearranging (7.10) yields
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2|J(T, x, w)− Jδ(T, x, w)|

< M4

N∑
l=1

∫ tl

tl−1

∣∣∣∣∣1δ
∫ tl

tl−1

(yR,ρ(t)− yR,ρ(r)) dr
∣∣∣∣∣ dt

+M4

N∑
l=1

∫ tl

tl−1

∣∣∣∣∣
∣∣∣∣∣1δ
∫ tl

tl−1

(yR(t)− yR(r)) dr

∣∣∣∣∣−
∣∣∣∣∣1δ
∫ tl

tl−1

(yR,ρ(t)− yR,ρ(r)) dr
∣∣∣∣∣
∣∣∣∣∣ dt

+M3δ +
3ε

4
,

and letting µρ(·) be the modulus of continuity of yR,ρ, and using the inequality
∣∣|a−

b| − |c− d|∣∣ ≤ |a− c|+ |b− d| on the second sum, one finds that this is

≤M4Tµ
ρ(δ) +M4δ

N∑
l=1

[∫ tl

tl−1

|yR(t)− yR,ρ(t)| dt+

∫ tl

tl−1

|yR(r)− yR,ρ(r)| dr
]

+M3δ +
3ε

4
,

= M4Tµ
ρ(δ) + 2M4‖yR − yR,ρ‖L1[0,T ] +M3δ +

3ε

4
,

which for ρ sufficiently small

< M4Tµ
ρ(δ) +M3δ +

7ε

8
,

which for δ sufficiently small

< ε.

Remark 7.4. In the case where y(·) is continuous, one can obtain an explicit esti-
mate of the convergence rate. Specifically, using only the bound ‖w‖L2[0,t] ≤MR,T , for
ε0-optimal disturbances for both continuous- and discrete-time problems with δ ≤ 1,
one can obtain an estimate of the form |P δ(T, x) − P (T, x)| ≤ M[

√
δ + µ(δ)], where

µ(·) is the modulus of continuity for y. We expect that with additional effort, one
can obtain a uniform L∞ bound on the optimal disturbances for the discrete-time
problems (in analogy with the continuous-time bound of Lemma 2.1). This would
lead to an estimate of the form |P δ(T, x) − P (T, x)| ≤ M[δ + µ(δ)]. However, the
effort would likely require more journal space than would seem appropriate for this
initial exploration.
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CONTROLLABILITY AND STABILIZATION OF A CANAL
WITH WAVE GENERATORS∗
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Abstract. This paper deals with a physical system that can be represented by an abstract wave
equation: a canal with wave generators.

We first study the various degrees of controllability that this system can enjoy, with two kinds of
input operators and associated control spaces, corresponding to “flexible” and “rigid” generators. A
counterexample to the exact controllability and a positive result for the approximate controllability
are given for the flexible generator case. In the rigid case, we show that approximate controllability
in finite time does not hold.

We also study the stability of the system when the elevation of the surface is measured at x = 0,
and a static feedback is used to control a rigid generator. We show that strong stability holds (but
with a nonuniform decay), although the perturbation caused by the feedback on the system operator
is not dissipative in the natural topology.

Key words. boundary control, hyperbolic system, nonharmonic Fourier series, hydrodynamics

AMS subject classifications. 76B15, 35B37, 93C20, 93D15

PII. S0363012998347134

1. Statement of the problem. The physical system under consideration is a
canal where the behavior of floating bodies is studied from an experimental point of
view. In such a canal, waves are created by means of plane generators which can be
controlled.

This paper deals with the mathematical analysis of control problems involving
this system and, more precisely, of various degrees of controllability and feedback
stabilization.

Practical control problems involving this system have been studied, from a nu-
merical and experimental point of view. For these aspects we refer to [14], [15], [7].

The paper is organized as follows : in section 2 we briefly introduce the model of
the canal (for a more complete discussion of the model see [14]). In section 3 we refor-
mulate the original model in the framework of Riesz-spectral systems. This will allow
us to use the standard tools concerning these systems, especially for controllability
tests.

In section 4 we focus on controllability problems, with two types of input op-
erators, concerning two types of generators. For the case where the generator is
“flexible,” the input space is infinite-dimensional and we give a positive result for the
approximate controllability and a counterexample to the exact controllability. For
the case where the generator is “rigid,” the input space is R and we will see that the
spectral properties of the system operator are such that approximate controllability
in finite time does not hold. This result has been obtained by means of results on the
nonharmonic Fourier series.

In section 5 we consider a feedback stabilization problem which has been already
set in [14], but the only type of stability we obtained was input-output stability. We
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http://www.siam.org/journals/sicon/38-3/34713.html
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give here a strong stability result, which has been obtained by means of an ad hoc
energy functional.

2. Model of the canal. We consider the rectangular canal in Figure 2.1. This
canal is supposed to be wide enough to consider that the waves created by generators
located at each end are plane waves. This allows us to use a bidimensional model,
where the domain Ω is the rectangle [0, L] × [0, h], represented in Figure 2.1. The
boundary Γ = Γs ∪ Γf ∪ Γ1 ∪ Γ2 is represented by

• the free surface Γs = {(x, h) | 0 < x < L},
• the bottom of the canal Γf = {(x, 0) | 0 < x < L},
• the left end Γ1 = {(0, y) | 0 < y < h},
• the right end Γ2 = {(L, y) | 0 < y < h}.

2Γ Γ

1Γ

s

Ω

fΓ

Fig. 2.1. Definition of domain Ω.

The fluid is supposed to be perfect, incompressible, and irrotational. Let ~V (x, y, t)

be the velocity field at time t. From the hypothesis curl ~V = 0, there exists a potential
ψ defined by

~V (x, y, t) =
→
∇ ψ(x, y, t).

We now study the boundary conditions on Γ. The boundary condition on Γs is
a dynamic condition. Let us call η(x, t) the elevation of a point M(x, h) of Γs with
respect to its equilibrium position. From the hypothesis we have made the static
pressure P (x, y, t) is related to the velocity potential ψ by the Bernoulli condition

P

ρ
+ 1/2| →∇ ψ|2 + ψ̇ + g0η =

Pa
ρ
, on Γs,

where ρ is the (constant) volumic mass, g0 is the acceleration of gravity, and Pa is the
atmospheric pressure (supposed to be constant). The Bernoulli condition expresses
the continuity of pressure across the free surface and takes the following form:

1/2| →∇ ψ|2 + ψ̇ + g0η = 0, on Γs.
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Once linearized under the hypothesis of small fluid motion, this condition takes the
form

ψ̇ + g0η = 0, on Γs.(2.1)

The kinematic condition, which expresses the fact that the vertical component of the
velocity of a fluid particle M(x, h) of the free surface is equal to the time derivative
of η(x, t), takes the form

η̇ = ∂nψ, on Γs.(2.2)

One can eliminate η between (2.1) and (2.2) and obtain the so-called free surface
condition,

ψ̈ + g0∂nψ = 0, on Γs,(2.3)

where ψ̈ is the second time derivative of ψ with respect to time, and η(x, t) takes the
form

η(x, t) = − 1

g0
ψ̇(x, h, t).(2.4)

The condition on the bottom Γf expresses the fact that the normal velocity of
the fluid on Γf is zero. If one calls ~n the outer normal to Γ, we have

∂nψ≡
→
∇ ψ.~n = 0, on Γf .(2.5)

Finally, we obtain the following equations:
∆ψ = 0, in Ω× [0, τ ],

ψ̈ + g0∂nψ = 0, on Γs × [0, τ ],
∂nψ = 0, on Γf × [0, τ ],
∂nψ = v1, on Γ1 × [0, τ ],
∂nψ = v2, on Γ2 × [0, τ ].

As we will see in what follows, we only need to specify initial conditions on Γs:

ψ(0) = ϕ0, ψ̇(0) = ϕ1, on Γs.(2.6)

The boundary conditions on Γ1 and Γ2 take into account the action of generators
which can produce desired velocities v1(y, t) and v2(y, t). This kind of control will
allow us to consider in section 4.1 an exact controllability problem. The devices to
produce these velocities have to be some kind of “flexible” generators.

When the generators have a fixed “shape” described by the function f(y), we
consider the following form for the controls:

v1(y, t) = f(y)u1(t),

v2(y, t) = f(y)u2(t).

In this case, we will speak of “rigid” generators. We have scalar controls u1(t) and
u2(t). When f(y) = y these boundary conditions represent plane generators being
able to rotate around an axis located at the bottom of the canal, with small angular
velocities u1(t) and u2(t).

To simplify the notations in what follows and without loss of generality, we will
take g0 = 1, L = π, h = 1 and we will consider only one generator, at the left end of
the canal; thus we will note

v := v1, u := u1,

and we will take v2 = 0.
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3. Mathematical analysis.

3.1. Regularity results. We now consider the following equations, correspond-
ing to a canal of longitudinal section Ω =]0, π[×]0, 1[, with one generator on the left
side:

∆ψ = 0, in Ω× [0, τ ],(3.1)

ψ̈ + ∂nψ = 0, on Γs × [0, τ ],(3.2)

∂nψ = 0, on (Γf ∪ Γ2)× [0, τ ],(3.3)

∂nψ = v, on Γ1 × [0, τ ].(3.4)

Let D denote the “Dirichlet map,” i.e., the continuous map D :H1/2(Γs)→ H1(Ω)
defined by Dϕ = Φ where ∆Φ = 0, in Ω,

Φ = ϕ, on Γs,
∂nΦ = 0, on Γf ∪ Γ1 ∪ Γ2.

(3.5)

Let N denote the “Neumann map,” i.e., the continuous map N : H−1/2(Γs)→ H1(Ω)
defined by Nv = Ψ where 

∆Ψ = 0, in Ω,
Ψ = 0, on Γs,

∂nΨ = 0, on Γf ∪ Γ2,
∂nΨ = v, on Γ1.

(3.6)

If we define ϕ = ψ|Γs , then the original problem can be transformed in a one-
dimensional problem on Γs, ϕ̈+Aϕ = Bv, on Γs × [0, τ ],

ϕ(x, 0) = ϕ0(x),
ϕ̇(x, 0) = ϕ1(x),

(3.7)

where the operators A and B are defined by

Aϕ = ∂nDϕ|Γs , Bv = − ∂nNv|Γs .(3.8)

It is easy to see that this abstract formulation is related to the original equations
by the fact that the velocity potential ψ and the two functions ϕ and v verify

ψ = Dϕ+ Nv.(3.9)

The application of elementary theorems for elliptic problems allows us to claim
that A is a linear unbounded operator in H−1/2(Γs) with domain H1/2(Γs). If we ap-
ply the results of Grisvard (see [5]) for ϕ ∈ H3/2(Γs) and the additional compatibility
conditions

x−1/2ϕ′(x) ∈ L2(Γs), (π − x)−1/2ϕ′(x) ∈ L2(Γs),(3.10)

we have Dϕ ∈ H2(Ω) (we will note this space H
3/2
c (Γs)). Thus we can consider A as

a linear unbounded operator in H1/2(Γs) with domain H
3/2
c (Γs).

As far as the operator B is concerned, the application of classical trace theorems
(see [11]) and some basic inequalities allow us to claim that B is a bounded operator
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from H−1/2(Γ1) into H−1/2(Γs). We have the same kind of compatibility requirement
for the boundary conditions of (3.6) : for v ∈ H1/2(Γ1) with the additional condition

(we will use the notation H
1/2
c (Γ1) to denote this space)

(1− y)−1/2v(y) ∈ L2(Γ1),(3.11)

we have Nv ∈ H2(Ω), and so B is also bounded from H
1/2
c (Γ1) into H1/2(Γs).

Results of interpolation theory (see [11]) allow us to finally obtain the following
theorem.

Theorem 3.1.
i. The operator A is a linear unbounded operator in L2(Γs) with domain H1(Γs).
ii. The operator B is a linear bounded operator from L2(Γ1) into L2(Γs).

When the generator is rigid with a shape f ∈ L2(Γ1), the control u(t) is a scalar
and the state equation (3.7) takes the form

ϕ̈+Aϕ = β(x)u(t),

where β = Bf . In this case the control operator is of rank one and bounded. In
the particular case of rotating plane generators, i.e., f(y) = y, we can show from its
Fourier coefficients that β ∈ H1/2−ε(Γs) ∀ ε > 0.

For some reasons that will appear clearly in what follows, we will work with zero
mean functions. We define the Hilbert space

H =

{
ϕ ∈ L2(Γs)

∣∣∣∣ ∫
Γs

ϕ(x) dx = 0

}
≡ L̃2(Γs)

and the domain of operator A

D(A) =

{
ϕ ∈ H1(Γs)

∣∣∣∣ ∫
Γs

ϕ(x) dx = 0

}
≡ H̃1(Γs).

The fact that D(A) is actually H̃1(Γs) results from the fact that the results of inter-
polation theory we used before remain valid for quotiented spaces (see [11]).

We have the following results on A.
Proposition 3.2. The operator A : D(A) ⊂ H → H is strictly positive, self-

adjoint, and R(λI +A) = H for λ > 0.
Proof. We have

〈Aϕ , ϕ〉 = ‖∇Dϕ‖2L2(Ω) ≥ 0,

where ϕ ∈ D(A). Moreover Aξ = 0 ⇒ ξ = 0 because of the particular choice of
D(A). This shows that A is strictly positive (the symmetry of A easily results from
its definition).

For λ > 0, the operator λI + A is trivially a bijection from H̃1/2(Γs) to
H̃−1/2(Γs), and with the results of [5], we show that λI +A is also a bijection from

H̃
3/2
c (Γs) to H̃1/2(Γs). We obtain the final result by applying interpolation theory

(see [11]).
This result ensures that the operator A1/2 is also well defined and we have

D(A1/2) = [D(A), H]1/2 = H̃1/2(Γs).

Unfortunately we don’t have an explicit representation of A1/2, but we have for ϕ
and w in H̃1/2(Γs)

〈Aϕ , w〉H̃−1/2,H̃1/2 =
〈
A1/2ϕ , A1/2w

〉
=

∫
Ω

∇Dϕ.∇Dw.
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3.2. Spectral analysis. The eigenvalues and associated eigenfunctions of A,
i.e., the nonzero functions wk(x) ∈ D(A) and the numbers λk such that Awk = λk wk
for k > 0 integer, are obtained by solving the Steklov problem ∆Wk = 0, in Ω,

∂nWk = λkWk, on Γs,
∂nWk = 0, on Γf ∪ Γ1 ∪ Γ2,

(3.12)

where wk = Wk|Γs . By separation of variables one easily obtains the following form
for Wk:

Wk = α cosh ky cos kx,

where α 6= 0 is an arbitrary constant. Thus we can choose

wk(x) = cos kx, x ∈ [0, π], k = 1, 2, . . . ,

and the eigenvalues λk are given by

λk = k tanh k, k = 1, 2, . . . .

In what follows, we will also consider the pair (w0 = 1, λ0 = 0) which is not an
eigenpair of A due to the choice of D(A).

3.3. Formulation as a first-order system. We adopt the following abstract
formulation of the original system: ξ̇ = Aξ +Bv,

η = Cξ,
ξ(0) = ξ0 ∈ X.

(3.13)

The variable ξ is related to the original variables ϕ = ψ|Γs and ϕ̇ in (3.7) by

ξ =

 ΠHϕ
ΠH ϕ̇
ΠRϕ̇

 ,(3.14)

where ΠH denotes the orthogonal projection on H and ΠR the orthogonal projection
on the space of constant functions of x, i.e.,

ΠRϕ =
1

π

∫ π

0

ϕdx, ΠHϕ = ϕ−ΠRϕ.

The state space X is the following:

X = D(A1/2)×H ×R

= H̃1/2(Γs)× L̃2(Γs)×R.

The operators A, B, and C are defined as follows:

Aξ =

 ξ2
−Aξ1

0

 , Bv =

 0
ΠHBv
ΠRBv

 ,(3.15)
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Cξ = −(ξ2 + ξ3),(3.16)

and the domain of A is given by

D(A) = D(A)×D(A1/2)×R

= H̃1(Γs)× H̃1/2(Γs)×R.

We define the inner product in X by

〈ξ , ζ〉X =
〈
A1/2ξ1 , A1/2ζ1

〉
+ 〈ξ2 + ξ3 , ζ2 + ζ3〉

=

∫
Ω

∇Dξ1.∇Dη1 +

∫
Γs

(ξ2 + ξ3)(ζ2 + ζ3).(3.17)

We adopt the notation ‖.‖X for the associated norm, which is defined by

‖ξ‖2X = |A1/2ξ1|2 + |ξ2 + ξ3|2

=

∫
Ω

|∇Dξ1|2 +

∫
Γs

|ξ2 + ξ3|2.

This norm is related in some sense to the natural energy, in terms of the original
potential ψ,

E(ψ, ψ̇) =
1

2

∫
Ω

|∇ψ|2 +
1

2

∫
Γs

ψ̇2,

which is equal to the sum of kinetic and potential energies of the fluid.
Indeed, if we consider the definition of ξ given by (3.14) and the relation ψ =

Dϕ+ Nv, then we can show that∫
Ω

|∇ψ|2 =

∫
Ω

|∇Dξ1|2 +

∫
Ω

|∇Nv|2.

Thus we will have 1
2‖ξ‖2X = E(ψ, ψ̇), only if v = 0.

The main advantage of our abstract formulation is that the chosen energy is
coercive on X, i.e., the only element such that ‖ξ‖2X = 0 is ξ = 0, whereas the natural
energy is not coercive on the original energy space, since all solutions of the type

ψ = c, t ∈ [0,∞)

verify E(ψ, ψ̇) = 0.

3.4. Spectral analysis and semigroup generation. One can show that the
eigenpairs (µk, φk)k∈Z of operator A are given by µk = iωk, where ωk =

√
λk for

k > 0, ωk = −√λ−k for k < 0, and

φk =
1√
π

 1
µk
wk
wk
0


for k ∈ Z∗ and µ0 = 0,

φ0 =

 0
0
1√
π

 .
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The family φk can be shown to be an orthonormal basis of X, with ‖φk‖X = 1. This
means that A is a Riesz-spectral operator (for a complete theory of Riesz-spectral
systems see [3]).

Remark 3.3. This property of spectrality would have been lost if we had consid-
ered the system ξ̇ = A0ξ with ξ = (ϕ̇, ϕ) ∈ H1/2(Γs)× L2(Γs), where

A0 =

(
0 I
−A 0

)
,

with domain D(A0) = H1(Γs)×H1/2(Γs), since in this case the eigenfunctions of A0

do not form a basis of H1/2(Γs) × L2(Γs). Another possibility could have been to
consider Ã with the domain H̃1(Γs) × H̃1/2(Γs), but in this case, the mean value of
ϕ̇ is constrained to be zero, in spite of its contribution to the surface elevation η. In
the system theoretic terminology, this corresponds to remove an observable part of
the state ξ, which results in an alteration of the input-output map (from the control
v to the surface elevation η). Thus, this other choice is not admissible either.

We have the following proposition.
Proposition 3.4. The operator A is the infinitesimal generator of a strongly

continuous semigroup of contractions T (t) on X = H̃1/2(Γs)× L̃2(Γs)×R, given by
the formula

T (t)ξ =
∑
k∈Z

eiωkt 〈ξ , φk〉X φk,

where ω2
k = λk.

Proof. Since A is skew-adjoint for the inner product 〈. , .〉X , i.e., A∗ = −A, we
have for ξ ∈ D(A)

Re 〈Aξ , ξ〉X = 0,

and the semigroup generation easily follows from the fact that A is Riesz-spectral (see
[3, Theorem 2.3.5]).

In the next two paragraphs we focus on controllability problems.

4. Controllability problems. We focus on the theoretical study of the follow-
ing problem: given a control space U and a time τ > 0, is it possible to find a control
v ∈ L2(0, τ ;U) such that the surface of the canal is in a given state at time τ? We will
consider the strong version of this question, where the state is to be reached exactly,
and the weak version, where the state is reached approximately. The first version is
an exact controllability problem. We will see that exact controllability can eventually
be obtained if we consider flexible generators. In the case where the generators are
rigid, only approximate controllability can eventually be obtained.

Let us first recall some definitions. Consider the system{
ξ̇ = Aξ +Bv,

ξ(0) = ξ0,
(4.1)

where A is an infinitesimal generator of a strongly continuous semigroup T (t) on a
Hilbert space X, and B is a bounded operator from U to X. At a given time t, the
control v(t) belongs to an infinite or finite dimensional space U .

Definition 4.1. The controllability map of system (4.1) on [0, τ ] (for a finite
τ > 0) is the bounded map Hτ : L2(0, τ ;U)→ X defined by

Hτv =

∫ τ

0

T (τ − s)Bv(s) ds.
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The natural definition of exact controllability follows.
Definition 4.2. The system (4.1) is exactly controllable on [0, τ ] if every element

of X can be reached from the origin at time τ , equivalently

ran Hτ = X.

There are various methods to obtain this result. The classical approach works by
showing an inverse inequality [3], [10].

Theorem 4.3. The system (4.1) is exactly controllable on [0, τ ] if there exists
γ > 0 such that ∫ τ

0

‖B∗T ∗(s)ξ‖2U ds ≥ γ‖ξ‖2X(4.2)

for every ξ ∈ X.
When U is a finite dimensional space and B is bounded, exact controllability

cannot hold, because in this case the map Hτ is compact (see [3]).
The concept of exact controllability is often too strong, and sometimes the concept

of approximate controllability is more adequate. It is defined as follows.
Definition 4.4. The system (4.1) is approximately controllable on [0, τ ] (for a

finite τ > 0) if for ε > 0, it is possible to steer from the origin at a distance ε from
all elements of X in a finite time τ , say

ran Hτ = X.(4.3)

To show (4.3) one usually tries to show that H∗τ is one-to-one [3, Theorem 4.1.7]:

B∗T (t)∗ξ = 0 on [0, τ ]⇒ ξ = 0.(4.4)

In our application, we are first going to focus on the case where the generators are
flexible.

4.1. Controllability with a flexible generator. In [14] and [6], we tried to
attack the exact controllability problem by separating it in two subproblems. The first
problem treated the same system with a distributed control on Γs, which was shown
to be exactly controllable for any τ > 0. The second problem is an elliptic problem,
which was not exactly controllable, but only approximately (see Lemma 4.6).

This just allowed us to prove the approximate controllability of the original system
in a rather complicated way. In this section we show that in fact exact controllability
does not hold. We also give a simpler proof for the approximate controllability result.

In the following we will need to use the operator B∗, the adjoint of B. Let us
recall that for v ∈ L2(Γ1), Bv is defined by Bv = − ∂nNv|Γs , where N is the Neumann

map defined by (3.6). In order to define B∗z for some z ∈ L2(Γs), let us take the
auxiliary function Θ solution of ∆Θ = 0, in Ω,

Θ = z, on Γs,
∂nΘ = 0, on Γf ∪ Γ1 ∪ Γ2.

(4.5)

We write that 〈∆Nv , Θ〉L2(Ω) = 0, and applying Green’s formula twice, we obtain

that B∗z = Θ|Γ1
, and if we consider the definition of the Dirichlet map given by (3.5),

we have in fact

B∗z = Dz|Γ1
.
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4.1.1. Counterexample to the exact controllability on [0, τ ]. We have the
following theorem.

Theorem 4.5. Consider the system

ξ̇ = Aξ +Bv,(4.6)

where the definition of A and B has been given in section 3.3, and v ∈ L2(0, τ ;L2(Γ1)).
Exact controllability on [0, τ ] does not hold in X for any τ > 0.

Proof. The classical approach consists in using Theorem 4.3. We first need to
identify B∗ : using the definition of B given by (3.15) and the definition of the inner
product 〈. , .〉X given by (3.17), we have for some ξ ∈ X and some v ∈ L2(Γ1)

〈Bv , ξ〉X =

〈 0
ΠHBv
ΠRBv

 ,

 ξ1
ξ2
ξ3

〉
X

= 〈ΠHBv + ΠRBv , ξ2 + ξ3〉
= 〈Bv , ξ2 + ξ3〉
= 〈v , B∗(ξ2 + ξ3)〉L2(Γ1) .

Thus the operator B∗ : L2(Γs)→ U = L2(Γ1) is given by

B∗ξ = B∗(ξ2 + ξ3)

for ξ ∈ X. One considers the sequence

ξ(n) = φn, n > 0,

where φn is the nth eigenfunction of A. This sequence has the property ‖ξ(n)‖2X = 1,
and one can easily show that

B∗T ∗(t)ξ(n) =
∑
k∈Z

e−iωkt
〈
ξ(n) , φk

〉
X
B∗φk

= B∗φne−iωnt

=
1√
π
B∗wne−iωnt,

where wn is the nth eigenfunction of A. Using the definition of B∗, one can express
B∗wn by using the problem (3.12) that has been used to obtain the eigenpairs of A :
this gives

B∗wn =
coshny

coshn
.(4.7)

It is easy to see that B∗wn → 0 almost everywhere (a.e.) in L2(Γ1), and a simple
calculation applied to (4.7) gives

‖B∗wn‖2L2(Γ1) = O(n−1) as n→∞.
Hence for fixed τ > 0 one has

lim
n→∞

∫ τ
0
‖B∗T ∗(s)ξ(n)‖2U ds
‖ξ(n)‖2X

= 0.

So there does not exist γ > 0 such that (4.2) is verified.
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It is easy to see that the result B∗wn → 0 would have been lost if we had considered
convergence in H1(Γ1). This could give some directions of search to identify the
exactly controllable subspace. Similar problems have been addressed in [13].

4.1.2. Approximate controllability on [0, τ ]. We first show the following
lemma.

Lemma 4.6. The range of B is dense in L2(Γs), or equivalently,

B∗z = 0⇒ z = 0, in L2(Γ1).

Proof. Let us take z ∈ L2(Γs) such that B∗z = 0. From (4.5), we have that
∆Θ = 0, in Ω,

Θ = z, on Γs,
Θ = 0, on Γ1,

∂nΘ = 0, on Γf ∪ Γ1 ∪ Γ2.

(4.8)

Since Θ is smooth enough (we have taken z in L2(Γs)), the Holmgren’s uniqueness
theorem implies that Θ = 0, since Θ = ∂nΘ = 0 on Γ1. So z = Θ|Γs = 0. This ends
the proof.

We are now able to show the following theorem.
Theorem 4.7. The system

ξ̇ = Aξ +Bv,(4.9)

with v ∈ L2(0, τ ;L2(Γ1)), is approximately controllable on [0, τ ] for any τ > 0.
Proof. To show approximate controllability one has to show that the operator H∗τ

is one-to-one, i.e.,

B∗T ∗(s)ξ0 = 0, s ∈ [0, τ ]⇒ ξ0 = 0.(4.10)

Since T ∗(s) = T (−s), this is the same as showing that the solution of system −ξ̇ = Aξ, t ∈ [0, τ ],
B∗ξ = 0,
ξ(0) = ξ0 ∈ X,

(4.11)

with the supplementary condition

B∗ξ = 0, t ∈ [0, τ ],(4.12)

is identically zero, i.e., ξ0 = 0.
In order to clarify the abstract formulation, the system (4.11)–(4.12) can be

rewritten in terms of the original equations (3.2)–(2.6) under the following form:
∆ψ = 0, in Ω× [0, τ ],

ψ̈ + ∂nψ = 0, on Γs × [0, τ ],
∂nψ = 0, on Γf ∪ Γ1 ∪ Γ2 × [0, τ ],

(4.13)

with initial conditions

ψ(0) = ϕ0 ∈ H̃1/2(Γs), ψ̇(0) = ϕ1 ∈ L2(Γs), on Γs,
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and the supplementary condition

ψ̇ = 0, on Γ1 × [0, τ ].

We recall that ξ and ψ are related by ϕ = ψ|Γs and

ξ =

 ΠHϕ
ΠH ϕ̇
ΠRϕ̇

 , ξ0 =

 ΠHϕ0

ΠHϕ1

ΠRϕ1

 .

For the rest of the proof, we will use the abstract formulation (4.11)–(4.12). We
first check what kind of information on ξ is given by (4.12), which is equivalent to

B∗(ξ2 + ξ3) = 0.

By Lemma 4.6 this implies that ξ2 + ξ3 = 0. Since ξ2 and ξ3 belong to orthogonal
subspaces (ξ2 has zero mean and ξ3 is a constant), we must have ξ2 = 0 and ξ3 = 0.
From (4.11) we have that −ξ̇1 = ξ2 = 0, so (4.11) reduces to

Aξ1 = 0, t ∈ [0, τ ],

with ξ1 only depending of x. Since the kernel of A is reduced to {0}, this implies that
ξ1 = 0 ∀t ∈ [0, τ ], and we can conclude that ξ = 0 ∀t ∈ [0, τ ].

As it is proved in [12, p. 522, Appendix B], the following theorem is an immediate
corollary of Theorem 4.7 (the result in [12] is very general and can be directly applied
to our case).

Theorem 4.8. Let E be any finite dimensional subspace of X. For any τ > 0,
for any ε > 0, and for any ξ0, ξd ∈ X, there exists a control v ∈ L2(0, τ ;L2(Γ1)) such
that the solution of {

ξ̇ = Aξ +Bv, t ∈ [0, τ ],
ξ(0) = ξ0

satisfies {
ΠE(ξ(τ)− ξd) = 0,
||ξ(τ)− ξd||X < ε,

where ΠEξ denotes the orthogonal projection of ξ over E.

4.2. Controllability with a rigid generator. We consider again the first
order form of our system, but this time with a scalar control u(t),

ξ̇ = Aξ +Bu.(4.14)

We take this new definition for B :

Bu = bu, b =

 0
ΠHβ
ΠRβ

 ∈ X,(4.15)

where, as before, β = Bf . In what follows we will consider the set of generators with
a “strategic” shape function f . This set is defined as follows.
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Definition 4.9. We say that a shape function f ∈ L2(Γ1) is strategic if the
corresponding operator B, defined by ways of (3.8)–(3.6) and (4.15), is such that
B∗φk 6= 0 ∀ k ∈ Z.

As it is shown in the following lemma, the positivity of the shape function f on
[0, 1], which includes the case of f(y) = y (plane rotating generators), is a sufficient
condition for f to be strategic.

Lemma 4.10. If the shape function f(y) is positive for y ∈ [0, 1], then

B∗φk > 0 ∀k ∈ Z.

Proof. One has for k ≥ 0

B∗φk = 〈φk , b〉X
=

1√
π
〈wk , β〉 ,

and B∗φ−k = B∗φk. From the definition of β we have

〈wk , β〉 = 〈wk , Bf〉
= 〈B∗wk , f〉L2(Γ1) ,

where B∗wk is given by (4.7). Thus we have

B∗φk = 1√
π cosh k

∫ 1

0
cosh ky f(y) dy, k ≥ 0.(4.16)

Since f(y) is a positive function on [0, 1], then it is obvious from (4.16) that B∗φk >
0 ∀k.

Remark 4.11. The strategic set is not limited to positive shapes. For example,
if we consider a plane rotating generator with an axis located at y = a, a ∈ [0, 1],
we can verify by means of (4.16) that the corresponding shape fa(y) = y − a will be
strategic for a ∈ [0, 1] \ ({ 1

2

} ∪ { 1− 1
k tanh k

2 , k ∈ N∗
})

.
In the following, we will need to know how f influences the regularity of β. For

this purpose we define for an integer p > 0 the space

Hp
c (Γ1) = {f ∈ Hp(Γ1), f (q)(1) = 0, q = 0 . . . p− 1},

and we take the convention H0
c (Γ1) = L2(Γ1). We have the following lemma.

Lemma 4.12. If f ∈ Hp
c (Γ1), then there exists C > 0 such that the operator B

has the property

|B∗φk| ≤ C

kp+
1
2

.

If f ∈ Hp(Γ1)\Hp
c (Γ1) for some p > 0 then there exists C > 0 and an integer q with

0 < q ≤ p such that

kq|B∗φk| → C

as k →∞.
Proof. We obtain the two results by means of repeated integration by parts on

(4.16) and the Cauchy–Schwarz inequality.
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4.2.1. Lack of approximate controllability on an interval [0, τ ]. In fact
the system (4.14) is not approximately controllable on [0, τ ] for any τ > 0. This result
was claimed in [6], but the proof was incomplete. The following lemma is crucial in
the proof of our main result.

Lemma 4.13.
1. For any τ > 0, the system

{
eiwkt

}
k∈Z

is complete and linked in L2(0, τ).

2. For any τ > 0, there exists a subset Sτ ⊂ Z such that
{
eiwkt

}
k∈Sτ is a Riesz

basis of L2(0, τ).
For k > 0, ωk is given by ωk =

√
λk, where λk > 0 are the eigenvalues of A, given

by λk = k tanh k. Notice that we have taken ωk = −ω−k for k < 0 and ω0 = 0. We
recall that the terminology “linked system” means that every element of the system
is in the closed subspace spanned by the other elements.

Before giving the proof, let us recall the following theorem which is due to Young
[18].

Theorem 4.14 ( 1
4 -theorem). If {ωk} is a sequence of real numbers for which

|ωk − k| < 1

4
, k ∈ Z,

then the system {eiωkt} is a (Riesz) basis of L2(0, 2π).
This result can be applied in L2(0, τ), in which case the inequality to obtain is∣∣∣∣ωk − 2kπ

τ

∣∣∣∣ < π

2τ
.

We also need the following theorem.
Theorem 4.15. Let {fn}n∈Z be a Riesz basis of L2(0, τ). Consider the family

{f̃n} where f̃n = gn for n < n0 and f̃n = fn otherwise, where the gn are such that
{f̃n} remains a basis of L2(0, τ). Then {f̃n} remains a Riesz basis of L2(0, τ).

Proof. Since {fn}n∈Z is a Riesz basis of L2(0, τ), there exists an isomorphism T
and an orthonormal basis {en} of L2(0, τ) such that Ten = fn, n ∈ Z. Since T is an
isomorphism there exists ρ > 0 such that ‖Tf‖ ≥ ρ‖f‖ ∀ f ∈ L2(0, τ). Then we have

∞ >
∑
‖fn − f̃n‖2 =

∑
‖Ten − f̃n‖2 ≥ ρ2

∑
‖en − T−1f̃n‖2,

showing that {en} and {T−1f̃n} are quadratically close. Then by Bari’s theorem (see
[18], p. 45), since {T−1f̃n} is a basis, it is also a Riesz basis, and so is {f̃n} since T−1

is an isomorphism.
Proof of Lemma 4.13. We take the sequence of integers {ck} with

ck = Int

(
4k2π2

τ2

)
, k ≥ 0,

(the notation Int (.) denotes the integer part function) and we define µk =
√
ck for

k ≥ 0 and µk = −√ck for k < 0. It can be easily shown that this sequence has the
property ∣∣∣∣µk − 2kπ

τ

∣∣∣∣ < 1

2|µk| ∀k ∈ Z,

which shows that for a sufficiently large k, say k0, one has
∣∣µk − 2kπ

τ

∣∣ < π
2τ ∀|k| ≥ k0,

since {|µk|} is an increasing sequence. Since ωp =
√
p tanh p, one has

ωp√
p
→ 1, as p→∞,
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which means that there exists k1 ≥ k0 such that∣∣∣∣ωck − 2kπ

τ

∣∣∣∣ < π

2τ
, ∀|k| ≥ k1.

Let us define the sequence {µk}k∈Z by

µk =


2kπ
τ , |k| < k1,
ωck , k ≥ k1,
−ωck , k ≤ −k1.

One has by construction |µk − 2kπ
τ | < π

2τ ∀k ∈ Z, so by Theorem 4.14 the system
{eiµkt} is a Riesz basis of L2(0, τ). If one replaces a finite number of µk by other
numbers distinct from µk [16, Theorem 7, p. 135] the system remains a basis, and
from Theorem 4.15 it is also a Riesz basis.

So one replaces µk by ωdk for |k| < k1, where each dk, |k| < k1 are distinct and
can be chosen such that dk 6= cl for any l with |l| ≥ k1. We then define the set

Sτ = {dk, |k| < k1} ∪ {ck, |k| ≥ k1}.
By construction, the system {eiωkt}k∈Sτ is a Riesz basis. Hence, the system {eiωkt}k∈Z

cannot be linearly independent in L2(0, τ) since it strictly contains a basis, and by a
result of Schwartz [16, Theorem 4, p. 102], this system is linked.

As announced above, we have the following controllability theorem.
Theorem 4.16. Suppose that the shape function f ∈ Hp(Γ1)\Hp

c (Γ1) is strategic.
Then, the system (4.14)–(4.15) is not approximately controllable on [0, τ ] for any
τ > 0.

Proof. Since f ∈ Hp(Γ1)\Hp
c (Γ1) there exists an integer q and a constant C > 0

such that kq|B∗φk| → C. Moreover, we have shown in Lemma 4.13 that the system
{eiωkt}k∈Sτ is a Riesz basis of L2(0, τ) and the set Z\Sτ is not finite. Hence we can
apply a result of Avdonin and Ivanov (see [1, Theorem II.6.6, p. 141], to claim that
there exists a nonzero sequence {ak}k∈Z such that

∑
k∈Z |ak|2|ωk|4q <∞ and∑

k∈Z

ake
iωkt = 0, in L2(0, τ).

Since ωk = (k tanh k)
1
2 is equivalent to k

1
2 , the series

∑
k∈Z |ak|2|k|2q is convergent.

Hence, if we consider the vector ξ defined by

ξ =
∑
k∈Z

ak
B∗φk

φk,

we have ξ ∈ X since the series

∑
k∈Z

|〈ξ , φk〉|2 =
∑
k∈Z

∣∣∣∣ ak
B∗φk

∣∣∣∣2
is convergent. Finally, we have by construction

B∗T ∗(t)ξ =
∑
k∈Z

B∗φk 〈ξ , φk〉 eiωkt = 0, in L2(0, τ).(4.17)

This ends the proof.
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This result is essentially due to the fact that there is no asymptotic gap between
ωk and ωk+1, i.e., one has limk→∞ |ωk+1 − ωk| = 0. Nevertheless, the hypothesis of
“maximal regularity” for f is fundamental because the result of Avdonin and Ivanov
cannot be applied if {ak}k∈Z is expected to have an exponential decay (see Theorem
II.6.5, page 140 in [1]). Such a decay would be required if |B∗φk| already had an
exponential decay. Lemma 4.12 shows that if f ∈ Hp

c (Γ1) for any p > 0, then the
decay rate of |B∗φk| will be faster than any polynomial, but it is not clear whether
this decay rate can be exponential or not.

In the next section we show that the system (4.14)–(4.15) is approximately con-
trollable in the sense of a weaker definition.

4.2.2. Generic approximate controllability. One can define a generic con-
cept of approximate controllability on [0,∞). This is the concept used by Curtain
and Zwart [3]. Its definition follows.

Definition 4.17. Let us call R the reachable subspace

R =
⋃

τ∈R+

RanHτ .

The system is approximately controllable on [0,∞) if R = X.
As for the case where the controllability time is finite, this type of approximate

controllability corresponds to an observability property on the dual system, i.e., ap-
proximate controllability on [0,∞) will hold if

B∗T ∗(t)ξ = 0 ∀t > 0 =⇒ ξ = 0.(4.18)

Since we have shown that A is a Riesz-spectral operator, we can use Theorem 4.2.3
in [3] which claims that (4.18) will hold if

B∗φk 6= 0 ∀k ∈ Z,

where φk, k ∈ Z are the eigenfunctions of operator A. The following proposition
follows directly from Definition 4.9.

Proposition 4.18. Suppose that the shape function f is strategic. Then the
system (4.14)–(4.15) is approximately controllable on [0,∞).

4.3. Interpretation of controllability results. Since we have established
some controllability results on an abstract formulation of the original problem, it
is necessary to explain the meaning of these results in terms of the original system,
posed in the bidimensional domain Ω,

∆ψ = 0, in Ω× [0, τ ],

ψ̈ + ∂nψ = 0, on Γs × [0, τ ],
∂nψ = v, on Γ1 × [0, τ ],
∂nψ = 0, on Γf ∪ Γ2 × [0, τ ].

(4.19)

It must be well understood that the unknown of this system is not the pair (ψ, ψ̇),
but the pair (ψ, ψ̇|Γs), as it is clearly expressed in the natural energy norm

E(ψ, ψ̇) =
1

2

∫
Ω

|∇ψ|2 +
1

2

∫
Γs

ψ̇2,(4.20)

and we will take this into account in the following.
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We have obtained an approximate controllability result for the abstract system,
posed on the free surface Γs, {

ξ̇ = Aξ +Bv,
ξ(0) = ξ0,

(4.21)

where ξ is related to the original velocity potential ψ by

ξ =

 ΠHψ|Γs
ΠH ψ̇|Γs
ΠRψ̇|Γs

 .

This abstract system is well posed, and for v ∈ L2(0, τ ;L2(Γ1)) and ξ0 ∈ X we have
ξ ∈ C(0, τ ;X). This means that the pair (ψ|Γs , ψ̇|Γs) is continuous in time for the
norm of X while in general the pair (ψ, ψ̇|Γs) is not continuous for the energy norm
since it would require that v is also continuous. We will see that it is not a problem
in the context of approximate controllability.

Let us consider a target

(ψd, ηd) ∈ H1(Ω)× L2(Γs),

with ∆ψd = 0, which is to be reached approximately in the sense of the energy norm,
at t = τ by (ψ, ψ̇|Γs), i.e., we seek for a v such that

E(ψ(τ)− ψd, ψ̇(τ)|Γs − ηd) ≤ ε.(4.22)

In terms of the abstract system the target (ψd, ηd) corresponds to the abstract
target

ξd =

 ΠHψd|Γs
ΠHηd
ΠRηd

 .

Hence, the meaning of Theorem 4.7 is that, given ε > 0, we can find a v ∈ L2(0, τ ;L2(Γ1))
such that 1

2‖ξ(τ)− ξd‖X ≤ ε, i.e.,

1

2

∥∥∥∥∥∥
 ΠH(ψ(τ)− ψd)|Γs

ΠH(ψ̇(τ)|Γs − ηd)
ΠR(ψ̇(τ)|Γs − ηd)

∥∥∥∥∥∥
X

≤ ε.(4.23)

We have shown that the approximately reachable space for ξ(τ) is

H̃1/2(Γs)× L̃2(Γs)×R,

and thus

the approximately reachable space for ΠHψ(τ)|Γs is H̃1/2(Γs),(4.24)

and since the approximately reachable space for the pair (ΠH ψ̇(τ)|Γs ,ΠRψ̇(τ)|Γs) is
L̃2(Γs)×R, and ψ̇(τ)|Γs = ΠH ψ̇(τ)|Γs + ΠRψ̇(τ)|Γs , then

the approximately reachable space for ψ̇(τ)|Γs is L2(Γs).(4.25)
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We can note that the final value of ψ|Γs is only reached up to an additive constant.
This is related to the fact that in the whole domain Ω, the velocity potential ψ is
itself defined up to an additive constant.

We must be very careful in extending the results (4.24) and (4.25) to the pair
(ψ, ψ̇|Γs) in the whole domain Ω. Since we are only concerned with approximate
controllability, by a density argument it is always possible to find

v ∈ Ũ = {u ∈ C(0, τ ;L2(Γ1)), u(τ) = 0},

such that the solution of (4.19) verifies (4.23). Moreover, when v ∈ Ũ then the energy
norm and the abstract norm of the pair (ψ(τ), ψ̇(τ)|Γs) coincide, i.e.,

v ∈ Ũ ⇒ 1

2
‖ξ(τ)− ξd‖X = E(ψ(τ)− ψd, ψ̇(τ)|Γs − ηd).

Thus, we can finally claim that when v ∈ Ũ , the approximately reachable space for
ψ(τ) is the set{

ψd ∈ H1(Ω) such that ∆ψd = 0 in Ω, ∂nψd|Γ1∪Γ2∪Γf = 0,

∫
Γs

ψd = 0

}
.

5. Stabilization. As in the previous sections, we take g0 = 1, L = π, h = 1,
and we will consider only one generator at the left of the canal. We consider a “rigid”
generator: we recall that the corresponding boundary condition is

∂nψ = f(y)u, on Γ1,

where u is the velocity of the generator and f ∈ L2(Γ1) is the “shape” of the generator.
For the moment we will only require that f is a positive function on Γ1.

It makes sense to measure the elevation of the surface at x = 0, i.e.,

η(0, t) = −ψ̇(0, 1, t),

and practically speaking, this requires a sensor installed on the generator itself. We
use this measurement to construct a very simple feedback, under the form

u(t) = η(0, t).

This kind of feedback will require enough regularity for ψ̇ on Γs, and this point
will be clarified in section 5.1. Anyway, we are interested by the choices of f(y) which
will make the system (at least) strongly stable.

In terms of the original system (3.2)–(3.4), this feedback leads to the following
equations: 

∆ψ = 0, in Ω× [0,∞),

∂nψ + ψ̈ = 0, on Γs × [0,∞),

∂nψ + f(y)ψ̇(0, 1) = 0, on Γ1 × [0,∞),
∂nψ = 0, on Γf ∪ Γ2 × [0,∞),

(5.1)

with initial conditions

ψ(0) = ϕ0, ψ̇(0) = ϕ1, on Γs.
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We can already see that initial data of the form

ψ(0) = c, ψ̇(0) = 0, on Γs,

will stay invariant, i.e., we will have

ψ = c, in Ω× [0,∞).

Moreover, if we consider the natural energy of the system, i.e.,

E(ψ, ψ̇) =
1

2

∫
Ω

|∇ψ|2 +
1

2

∫
Γs

ψ̇2,

we have E(ψ, ψ̇) = 0 for such a solution. In order to have a correct framework for the
stability analysis of the system (5.1), we will eliminate such initial data by choosing
spaces adequately.

In the following we will show that for some choices of f(y) the solution of the sys-
tem (5.1) is strongly stable, although the natural energy is not decreasing: multiplying
by ψ̇ the first equation in (5.1) and integrating in Ω, we formally get that

Ė(ψ, ψ̇) = −ψ̇(0, 1)

∫
Γ1

f(y)ψ̇.

For the case of a plane rotating generator, we have f(y) = y and if we take for example
ψ such that for some t, ψ̇(t)|Γ1

= ε− 1 + y for a sufficiently small ε > 0, it is easy to
show that Ė(ψ, ψ̇) > 0 (for any f(y) it is obviously possible to construct such a ψ(t)).

As a first intermediate step, and with the same notations as in section 3, we can
reformulate (5.1) on Γs with a single unknown

ϕ = ψ|Γs ,

which is the solution of

ϕ̈+Aϕ+ βϕ̇(0) = 0 on Γs × [0,∞),(5.2)

with initial conditions

ϕ(0) = ϕ0, ϕ̇(0) = ϕ1,(5.3)

where the operator A has the same definition as in section 3, i.e., Aϕ = ∂nDϕ|Γs ,
where D is the Dirichlet map defined by (3.5). The function β ∈ L2(Γs) is defined
by β = Bf = ∂nNf |Γs , where N is the Neumann map defined by (3.6). Finally, the
original potential ψ is related to ϕ and f by the relation

ψ = Dϕ+ ϕ̇(0)Nf,

and of course we still have ϕ = ψ|Γs .
The next step consists in using the first order formulation of (5.2): as in section

3.3 we define a new unknown ξ, related to ϕ and ϕ̇ by

ξ =

 ΠHϕ
ΠH ϕ̇
ΠRϕ̇

 , ξ0 =

 ΠHϕ0

ΠHϕ1

ΠRϕ1

 .(5.4)
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In order to exhibit the very general aspect of the method we will use to obtain our
main result, we need to define an observation operator C such that η(0), the elevation
of the free surface at x = 0 (which is a feedback to the control), is obtained by
η(0) = Cξ. Since we have η(0) = −ϕ̇(0), then (5.4) implies that C is defined by

Cξ = −(ξ2(0) + ξ3).

If we also consider the control operator B defined for u ∈ R by

Bu = bu, with b =

 0
ΠHβ
ΠRβ

 ∈ X,
and the definition of the operator A given by

Aξ =

 ξ2
−Aξ1

0

 ,

then the problem (5.2), in terms of the new unknown ξ, is equivalent to the problem{
ξ̇ = (A+BC)ξ, t > 0,

ξ(0) = ξ0,
(5.5)

which appears as a perturbation of the original open-loop system. In the following,
we will use the notation Af = A+BC.

The stability of system (5.5) has been already studied in [14], for the case f(y) = y
(plane rotating generator), where it is shown that the eigenvalues of Af have strictly
negative real parts (in fact it is easily shown that this results will always hold if f(y)
is a positive function). But this reference does not give any result on the eventual
generation of a semigroup.

The result on the real parts of Af itself is not sufficient to conclude to strong
stability, because we don’t know if the eigenfunctions of Af form a Riesz basis. One
could apply a result of Lasiecka and Triggiani [9], [17] but the criterion is hard to
apply, since one has to know the eigenvalues of Af explicitly.

In the following we show that the solution of (5.5) is strongly stable by means of
an ad hoc energy, and we will have to restrict ourselves to a particular choice of f ,
since the regularity of β will directly determine the energy space in which the stability
result will hold.

5.1. Ad hoc energy. The ad hoc energy we propose is based on the bilinear
form

B(ξ, ζ) =
∑
k∈Z

dk 〈ξ , φk〉X 〈ζ , φk〉X ,(5.6)

where the bar denotes the complex conjugate, φk denotes the kth eigenfunction of A,
and

dk = − Cφk
〈φk , b〉X

.

The definitions of C and b give

dk = d−k =
wk(0)

〈β , wk〉 for k ≥ 0.
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Since we only consider the case where f(y) is positive, the positivity of dk follows
directly from Lemma 4.10.

Remark 5.1. The bilinear form B(ξ, ζ) is a reweighted form of the classical inner
product associated with the open-loop system ξ̇ = Aξ, i.e.,

〈ξ , ζ〉X =
〈
A1/2ξ1 , A1/2ζ1

〉
+ 〈ξ2 + ξ3 , ζ2 + ζ3〉

=
∑
k∈Z

〈ξ , φk〉X 〈ζ , φk〉X .

The positivity of dk allows us to claim that the bilinear form B(., .) defines a
scalar product and

B(ξ, ξ) =
∑
k∈Z

dk| 〈ξ , φk〉X |2(5.7)

can be used as a norm defined on the associated energy space, which is to be identified.
Remark 5.2. The regularity of f will condition the asymptotic behavior of dk,

which will obviously determine the energy space. From an engineering point of view,
it could be interesting to consider the case f(y) = y, since this corresponds to the
most widely used device for wave generators. In this case the energy space can be
identified as

H1 ×H1/2 ×R,

but b 6∈ H1 × H1/2 ×R, since for f(y) = y we only have β ∈ H1/2−ε(Γs) ∀ ε > 0.
This remark explains the particular choice we will make for f in what follows.

In the following, we will focus on the particular case when the “shape” of the
generator is given by

fε(y) =

{
1

1−εy, if 1− ε ≥ y ≥ 0,
1
ε − 1

εy, if 1 ≥ y > 1− ε,

where ε > 0. We can see that fε(y) is arbitrary close to the original shape, since

fε(y)→ y in L2(Γ1), as ε→ 0. For this particular choice we have fε ∈ H1/2
c (Γ1), and

one can show from formulas (4.16) that

B∗φk = 〈φk , b〉X =
1√
π
〈wk , β〉(5.8)

=
1

ε
√
π k2

+
cosh k(ε− 1)− ε

ε(ε− 1)
√
π k2 cosh k

, k > 0,(5.9)

which gives

k2B∗φk → 1

ε
√
π
,

when k →∞. Thus β ∈ D(A).
Proposition 5.3. The energy space defined by the convergence of the series in

(5.7) is equal to

Xf = H̃3/2
c (Γs)× H̃1(Γs)×R.
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Proof. We recall that the natural energy space was

X = D(A1/2)×H ×R,

and that the eigenvalues of A are given by λk = ktanh k, for k > 0. If we use the
expression of the eigenfunctions of A we have

B(ξ, ξ) =
1

π
d0ξ

2
3 +

2

π

∑
k>0

dk

(
λk 〈ξ1 , wk〉2 + 〈ξ2 , wk〉2

)
,(5.10)

and since we can easily show that

lim
k→∞

dk
λ2
k

=
1

ε
,

the series (5.10) is equivalent to the series

1

π
d0ξ

2
3 +

2

π

∑
k>0

λ3
k 〈ξ1 , wk〉2 + λ2

k 〈ξ2 , wk〉2 .

Thus (5.10) will be convergent provided ξ ∈ D(A3/2)×D(A)×R, and we have

D(A3/2) =
{
ϕ ∈ D(A), Aϕ ∈ D(A1/2)

}
= H̃3/2

c (Γs).

Proposition 5.4. The domain of Af is

D(Af ) = H̃2
c (Γs)× H̃3/2

c (Γs)×R,

where the space H2
c (Γs) is defined by

H̃2
c (Γs) =

{
ϕ ∈ H̃2(Γs), ϕ

′(0) = ϕ′(π) = 0
}
.

Proof. The domain of Af is by definition

D(Af ) = {ξ ∈ Xf , Afξ ∈ Xf}
= D(A2)×D(A3/2)×R,

where D(A2) = {ϕ ∈ D(A), Aϕ ∈ D(A)}. We can identify D(A2) by making the
following analysis: we will have ϕ ∈ D(A2) if∑

k>0

λ4
k 〈ϕ , cos kx〉2 < +∞.(5.11)

It is well known that the operator − d
dx2 in H = L̃2(Γs) with the boundary conditions

ϕ′(0) = ϕ′(π) = 0 has the eigenpairs (k2, cos kx) for k > 0. Since λ4
k is equivalent to

k4, we can claim that the series in (5.11) will be convergent provided that ϕ is in the
domain of this latter operator, which is exactly H̃2

c (Γs).
Hence, in the following, the space Xf will be endowed with the norm

‖ξ‖2f ≡ B(ξ, ξ),

where B(., .) is defined by (5.6), and for ξ, ζ ∈ Xf , the associated inner product will
be
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〈ξ , ζ〉f ≡ B(ξ, ζ),

and the superscript ∗ will denote adjoint operators with respect to 〈. , .〉f .
The last part of the paper relies on the following observation.
Lemma 5.5. The operators B and C verify

B∗ = −C,
where B∗ is the adjoint operator of B, with respect to the inner product 〈. , .〉f .

Proof. Let us take ξ ∈ Xf . We have

B∗ξ = 〈ξ , b〉f , with b =

 0
ΠHβ
ΠRβ

 .

But we have also

〈ξ , b〉f =
∑
k∈Z

dk 〈ξ , φk〉 〈b , φk〉

= −
∑
k∈Z

Cφk
〈b , φk〉 〈ξ , φk〉 〈b , φk〉

= −
∑
k∈Z

Cφk 〈ξ , φk〉

= −Cξ,
where we have used the fact that 〈b , φk〉 is a real quantity.

The situation where B∗ = −C is often denoted by “collocation” of the sensor and
the actuator, and there are many examples in the literature where such a property
corresponds to a realizable actuator/sensor device (see e.g. [4] for the case of a beam
with a piezoelectric actuator/sensor). It is interesting to see that the change of inner
product has revealed a rather favorable situation, which was hidden in the original
topology.

5.2. Strong stability. We note that the result given by Lemma 5.5 shows that
C is bounded for the topology of Xf , although this operator was unbounded in the
“natural” topology. We will use this fact in the proof of our main result.

Theorem 5.6. The system{
ξ̇ = Afξ, t > 0,

ξ(0) = ξ0,
(5.12)

with an initial data ξ0 in Xf , is strongly stable, i.e.,

limt→∞‖ξ(t)‖f = 0,

moreover, the decay rate of ‖ξ(t)‖f cannot be uniform.
Proof. We first recall that Af = A + BC = A − BB∗, and we can easily show

that A∗ = −A for the inner product 〈. , .〉f . Hence we have for ξ ∈ D(Af )

Re 〈Afξ , ξ〉f = Re 〈Aξ , ξ〉f − 〈BB∗ξ , ξ〉f(5.13)

= −|B∗ξ|2 ≤ 0,

so that A−BB∗ is dissipative.
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We then apply the result given in [2]: if A generates a contraction semigroup in
Xf and has a compact resolvent, then A−BB∗ generates a strongly stable semigroup
provided that the pair (A,B) is approximately controllable in the sense of Definition
4.14, i.e., B∗φk 6= 0 ∀k ∈ Z.

First, we see that A−λI is maximal in Xf for λ > 0, if A+λ2I is onto from D(A)
to D(A2). Proposition 3.2 together with the definition of D(A2) show that this last
result is true. Hence, the resolvent (λI − A)−1: Xf → D(Af ) is bounded. It is also
compact, since the injection of D(Af ) = D(A2)×D(A3/2)×R into Xf = D(A3/2)×
D(A) × R can be easily shown to be compact. Thus A generates a contraction
semigroup in Xf and has a compact resolvent in Xf .

Second, for any k ∈ Z we have B∗φk = −Cφk = 1√
π

.

Finally, the decay rate cannot be uniform since BB∗ is compact in Xf (bounded
and one-dimensional range in our case).

Remark 5.7. The approach we have used to show the stability result cannot
be applied if we use the real “shape” of the plane rotating generator, i.e., f(y) = y.
In this case the perturbation operator BC is not A-bounded (see [8]) in the natural
topology. This may suggest that uniform stability could eventually hold, but in this
case, even the well-posedness of the feedback system seems not to be a trivial issue.

Acknowledgment. The author would like to thank Professor Hans Zwart for
helpful discussions concerning the controllability problem in section 4.2.1.
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1993), Lecture Notes in Control and Inform. Sci. 197, Springer-Verlag, London, UK, 1994,



CONTROLLABILITY AND STABILIZATION OF A CANAL 735

pp. 716–726.
[16] L. Schwartz, Etude des sommes d’exponentielles, Hermann, Paris, 1959.
[17] R. Triggiani, Finite rank, relatively bounded perturbations of semi-groups generators, part

III: A sharp result on the lack of uniform stabilization, Differential Integral Equations,
3 (1990), pp. 503–522.

[18] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York,
1980.



EXACT BOUNDARY CONTROLLABILITY OF A MAXWELL
PROBLEM∗
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Abstract. We consider the problem of steering some initial state of the time-dependent Maxwell
equations to rest by controlling the lateral boundary condition. Depending on the topology (Betti
numbers) of the given domain Ω, we identify completely those subspaces which can be steered to
rest and those which cannot. In the positive case it is shown that each time interval which is longer
than diam Ω suffices. This result is almost sharp for the class of regions Ω which contain a segment
of length diam Ω.

Key words. exact boundary controllability, Maxwell

AMS subject classifications. 93B05, 35B37, 35Q60, 78A25, 93C20

PII. S0363012998347559

1. Introduction. Consider a bounded domain Ω ⊂ R3. An initial boundary
value problem for Maxwell’s equations may be written (formally) as follows:

ε∂tE + curlxH = 0
µ∂tH − curlxE = 0

}
in R+ × Ω,

ν ∧H = −J in R+ × ∂Ω,

E(0, ·) = E0, H(0, ·) = H0 in Ω.

Here ε, µ are given positive constants and ν is the exterior unit normal of Ω.
We want to investigate the problem whether it is possible to choose the “boundary

control” J such that the given “initial state” (E0, H0) is driven to some desired “final
state” (E1, H1) in a time interval [0, T ]. This problem has been discussed for special
regions Ω with restricted controls by D. L. Russell [23] and K. A. Kime [11] as well
as for general regions and general controls by J. E. Lagnese [14], A. Bensoussan [5],
O. Nalin [17], V. Komornik [12], and B. V. Kapitonov [10]. (Restricting controls gives
a stronger result; therefore the last five results do not imply the first two.) For related
results on corresponding stabilization problems see also [3] and [4].

However, the first three general results ([14], [5], and [17]) are based on an in-
equality in [13, Thm. 7.1] which does not hold in general. Nevertheless, the first two
results are essentially true because by control-theoretic considerations the authors are
led to consider mainly the special case of star-shaped domains where it does hold.
The fourth [12] and fifth [10] address only the star-shaped and so-called “sub-star-
shaped” cases trying to find an optimal time for exact controllability. On the other
hand, spherical shells and tori are counterexamples, and these lead to interesting
control-theoretic problems.

In the present paper we shall completely identify those initial states which can be
controlled and those which cannot. Furthermore we shall show that in the positive
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case any time interval of length larger than diam Ω suffices. Even in the star-shaped
case this is at least as good as the result in [12], improves it in a variety of cases, and
is almost sharp for a class of regions (see Remark 5 below).

We shall make extensive use of the theory of the Maxwell system as exhibited
in [15] (and the literature therein). Though we shall not dwell upon this point, we
remark that this theory would enable us to treat more general problems (nonsmooth
boundaries, inhomogeneous anisotropic media, H. Weyl’s [29] generalization of the
Maxwell system to differential forms of arbitrary rank in Ω ⊂ RN ). For another
suitable source of reference for our present simple setting see [6].

In order to keep the analytical efforts low we choose states and controls from
convenient spaces. In particular, we strive to use only standard elliptic theory and
standard results of the spectral calculus for the self-adjoint time-independent Maxwell
operator (or semigroup theory [1, Thms. 4.8.1 and 4.8.2]). Concerning control theory,
we use only the analogue of D. L. Russell’s trick to obtain suitable boundary controls
for the wave equation [20], [22].

Compared to [14], [5], [17], and [12] we need a slightly larger space of controls
(with respect to regularity) or, conversely, have to impose stronger regularity upon
the states. However, the simplicity of our argument as well as the more precise nature
of our results seems to justify our approach. Furthermore, recent regularity results
(see [24] and the literature cited there) give hope that this gap can be closed.

We introduce the following modifications and simplifications of our problem:
(i) (E1, H1) = (0, 0) (without loss of generality because the family of evolution

operators is a group);
(ii) ε = µ = 1 (for the case of constant scalar dielectricity ε and permeability

µ—which is considered in the previous literature—this may be achieved by a
standard transformation);

(iii) as in [14] and [5], we assume Ω to be a bounded open set “lying on one side”
of its C∞-boundary ∂Ω =: Γ with exterior unit normal ν : Γ→ S2 (although
C2-regularity would be sufficient).

Hence (interchanging the roles of E and H) we say that (E,H) solves P(E0, H0;J)
in the “time interval” I := [ 0 , T ] or I := [ 0 , ∞ ) if (in a sense to be defined below)

(IBVP)

∂tE = ∇x ∧H, ∂tH = −∇x ∧ E in I × Ω

(E(0, ·), H(0, ·)) = (E0, H0)

ν ∧ E = J on I × Γ

 .

2. Notation and a solution theory for the direct problem. For the conve-
nience of the reader we want to exhibit an easily accessible theory of the direct prob-
lem tailored to fit the need of having a convenient description of the map “control to
state.” So we strive to use only the fact that the Maxwell operator is self-adjoint plus
the corresponding spectral calculus. As mentioned in the introduction, this approach
could be generalized in various directions.

We shall use the notation of [15]. In particular, spaces of C-valued functions
will be denoted by roman letters whereas script letters indicate spaces of C3-valued
functions. Usually Ω will be fixed, so we shall indicate the dependence of our function
spaces on the domain S only if it is different from Ω. Hence

L2 := {f : Ω→ C | f measurable and square integrable } ,
L2 :=

{
v : Ω→ C3

∣∣ v1, . . . , v3 ∈ L2
}
.
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Similarly, for s ∈ R we denote L2-Sobolev spaces by Hs and Hs in the scalar, respec-
tively, vector valued case and in the same spirit

C∞(S) := C∞(S,C), C∞(S) := C∞(S,C3).

Furthermore, following [15] we introduce

R :=
{
v ∈ L2

∣∣ ∇∧ v := curl v ∈ L2
}
,

D :=
{
v ∈ L2

∣∣ 〈∇, v〉 := div v ∈ L2
}
,

R0 := {v ∈ R | ∇ ∧ v = 0} ,
D0 := {v ∈ D | 〈∇, v〉 = 0} .

The following spaces,
0

R,
0

D, and
0

H
1, generalize the boundary conditions ν ∧ v|Γ = 0,

〈ν, v|Γ〉 = 0, and f |Γ = 0, respectively:

0

R := {v ∈ R | 〈∇ ∧ v, ϕ〉 = 〈v, ∇∧ ϕ〉 for all ϕ ∈ R} ,
0

D :=
{
v ∈ D | 〈div v, ϕ〉 = −〈v, ∇ϕ〉 for all ϕ ∈ H1

}
,

0

H
1 :=

{
f ∈ H1

∣∣ 〈∇f, ϕ〉 = −〈f, div ϕ〉 for all ϕ ∈ D} .
Here the natural scalar product both in L2 and L2 is denoted by 〈·, ·〉 (and by 〈·, ·〉S
if the domain S needs to be specified).

The space
0

H
1 coincides with the closure of the test functions

0

C
∞ in H1 and this

is used to define
0

H
s(S) for an arbitrary s ∈ R.

Lemma 2.1 (see [15, pp. 144 ff.]). The operator

A :
0

R ×R ⊂ L2 × L2 −→ L2 × L2,
(E,H) 7−→ (i∇∧H,−i∇∧ E)

is self-adjoint with respect to the natural scalar product

〈〈(E1, H1), (E2, H2)〉〉 := 〈E1, E2〉+ 〈H1, H2〉.

For each (Φ0,Ψ0) ∈ D(A) =
0

R ×R the family

(Φ(t),Ψ(t)) := exp(−itA)(Φ0,Ψ0), t ∈∧I := [ 0 , ∞ )

defines a strong solution

(Φ,Ψ) ∈ C0(
∧
I,D(A)) ∩ C1(

∧
I,L2 × L2)

of (IBVP) with J = 0.
The strong solutions (Φ,Ψ) defined in Lemma 2.1 will be used as test functions in

order to define weak solutions to (IBVP) with J 6= 0 in some finite interval I := [ 0 , T ].
We introduce

M := M(T ) := ( 0 , T )× Γ, Z := Z(T ) := ( 0 , T )× Ω

and for simplicity take the control from

U := U(T ) := H1/2
τ (M(T )).
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Here (and in what follows) the index τ denotes spaces consisting of “tangential” vector
fields, i.e., we require

〈ν(y), J(t, y)〉 = 0 for (t, y) ∈M, J ∈ U ,
in view of the boundary condition in (IBVP). Each J ∈ U may be represented by

∧
J∈ H1(Z)

in the sense that Tτ
∧
J := ν ∧ T ∧

J= J (on M), where here and in what follows T
denotes the ordinary trace operator [25, Prop. 4.5].

Lemma 2.2. Let (E0, H0) ∈ L2 × L2 and J ∈ U . Then there exists a unique
(E,H) ∈ C0(I,L2 × L2) such that

〈〈(E(t), H(t)), (Φ(t),Ψ(t))〉〉 − 〈〈(E0, H0), (Φ0,Ψ0)〉〉

= −
∫ t

0

∫
Γ

〈J(s, y), Ψ(s, y)〉do(y)ds
(1)

for all t ∈ I and all (Φ,Ψ) defined by

(Φ(t),Ψ(t)) := exp(−itA)(Φ0,Ψ0), (Φ0,Ψ0) ∈ D(A).

Proof. First of all, we need an interpretation of the right-hand side of (1). This
may be achieved with the aid of [8, Lem. VII.4.2] saying that there exists a unique
continuous trace operator

Tτ : R −→ H−1/2
τ (Γ)

which extends the map ψ 7→ ν ∧ ψ|Γ from C∞(Ω) into C∞τ (Γ), say. Therefore, from
Lemma 2.1,

t 7→ TτΨ(t) ∈ C0(I,H−1/2
τ (Γ)) ⊂ H−1/2

τ (M),

and the right-hand side of (1) may be interpreted as 〈ν ∧ TτΨ, J〉X′,X , where 〈·, ·〉
denotes the duality between the Banach space X := H1/2

τ (M) and its topological

dual. Furthermore, H−1/2(M) is identified with the dual of
0

H 1/2(M) = H1/2(M)

(see [25, Ex. 4.1.16]). Finally, the index τ in H−1/2
τ is defined in the weak sense:

Ψ ∈ H−1/2
τ (M) :⇔ 〈Ψ, ϕ · ν〉 = 0 for all ϕ ∈ H1/2(M).

Uniqueness of (E,H) is clear because D(A) is dense in L2 × L2 and t 7→ exp(−itA)
is a group.

As to existence, we introduce a representation
∧
J∈ H1(Z) ⊂ C0(I,L2) of J (i.e.,

J = Tτ
∧
J) and make the ansatz

(E,H) = (Ẽ+
∧
J, H̃),

which (formally) leads to

∂tẼ = ∇x ∧ H̃ − ∂t
∧
J,

∂tH̃ = −∇x ∧ Ẽ −∇x∧
∧
J,

ν ∧ Ẽ
∣∣∣
Γ

= 0,

(Ẽ(0, ·), H̃(0, ·)) !
= (E0− ∧J (0, ·), H0) =: (Ẽ0, H̃0).(2)
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So we try

(E(t), H(t)) := (
∧
J (t, ·), 0)

+ exp(−itA)(Ẽ0, H̃0)(3)

+

∫ t

0

exp(−i(t− s)A)(F (s), G(s))ds

with

(F,G) := (−∂t
∧
J,−∇x∧

∧
J) ∈ L2(I,L2 × L2).(4)

The spectral calculus (or semigroup theory) shows that indeed

(E,H) ∈ C0(I,L2 × L2).

It remains to prove (1). To this end we put

(Φ(t),Ψ(t)) := exp(−itA)(Φ0,Ψ0), (Φ0,Ψ0) ∈ D(A)

and note that

〈〈exp(−itA)(Ẽ0, H̃0), (Φ(t),Ψ(t))〉〉 = 〈〈(Ẽ0, H̃0), (Φ0,Ψ0)〉〉(5)

because exp(−itA) is unitary. Furthermore,〈〈∫ t

0

exp(−i(t− s)A)(F (s), G(s))ds, (Φ(t),Ψ(t))

〉〉
=

〈〈∫ t

0

exp(isA)(F (s), G(s))ds, (Φ0,Ψ0)

〉〉
=

∫ t

0

〈〈(F (s), G(s)), exp(−isA)(Φ0,Ψ0)〉〉ds

=

∫ t

0

(
〈−∂s

∧
J (s, ·), Φ(s, ·)〉 − 〈∇x∧

∧
J (s, ·), Ψ(s, ·)〉

)
ds

=

∫ t

0

(
〈∧J (s, ·), ∂sΦ(s, ·)〉 − 〈∇x∧

∧
J (s, ·), Ψ(s, ·)〉

)
− 〈∧J (t, ·), Φ(t, ·)〉+ 〈∧J (0, ·), Φ(0, ·)〉.

Because of ∂sΦ = ∇x∧Ψ, the last integral yields the right-hand side of (1). Therefore,
combining our last computation with (3) and (5) gives (1).

In the following we shall refer to the solution (E,H) just introduced (defined by
(3) and (2),(4)) as “the solution to P(E0, H0;J) in I.” Two simple applications of
the spectral calculus will be useful later on.

Lemma 2.3. Let (Φ0,Ψ0) ∈ N(A) (the null-space of A). Then

(Φ(t),Ψ(t)) := exp(−itA)(Φ0,Ψ0) = (Φ0,Ψ0)

does not depend on t, and we have

〈〈(E(t), H(t)), (Φ0,Ψ0)〉〉 − 〈〈(E0, H0), (Φ0,Ψ0)〉〉

= −
∫ t

0

∫
Γ

〈J(τ, y), Ψ0(y)〉do(y)dτ
(6)
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for all t ∈ I and all solutions (E,H) of P(E0, H0;J) in I.
Lemma 2.4. Let (F,G) ∈ C1(I,L2 × L2). Then (E(T ), H(T )) ∈ D(A) for

(E(T ), H(T )) :=

∫ T

0

exp(itA)(F (t), G(t))dt.

In particular, if (E,H) solves P(E0, H0;J) in I with (E0, H0) ∈ D(A) and J which is

represented by
∧
J∈ C2(I,L2) ∩C1(I,R) with

∧
J (T ) ∈ 0

R, then (E(T ), H(T )) ∈ D(A).

3. Hodge–Helmholtz decompositions. Results on exact controllability are
related to the topological nature of Ω via Hodge–Helmholtz decompositions. Further-
more, there are also some decompositions on ∂Ω which are needed to give a precise
account of the space of controllable states. So in this section we shall provide these
decompositions in classical terms. But as mentioned in the introduction, H. Weyl’s
generalization of the Maxwell system could be investigated in the same spirit. For
references from the vast literature on this topic, see, e.g., [18], [19], or [6] and their
references.

Here and in what follows, the symbols ⊕, ª, and ⊥ indicate orthogonality in L2.
We recall the following.

Lemma 3.1 (Hodge–Helmholtz decomposition). With HD := R0 ∩ D0∩
0

R and

HN := R0 ∩ D0∩
0

D we have the following orthogonal decompositions:

L2 = (∇∧R)⊕HD ⊕ (∇ 0

H
1) = D0 ⊕ (∇ 0

H
1),(7)

L2 = (∇∧ 0

R)⊕HN ⊕ (∇H1) = (D0∩
0

D)⊕∇H1.(8)

Proof . Theorem 8.4 of [15] says that these decompositions hold in an arbitrary
open set if we replace the intervening subspaces ∇∧R, etc. by their respective closures
∇∧R, etc. However, if Ω enjoys the “Maxwell compactness property” (which is cer-
tainly true if ∂Ω is smooth [15, Thm. 8.6]), then ∇∧R = ∇∧R, etc. (cf. [16]).

Let us also mention that there are larger classes of (nonsmooth) regions for which
this property holds [28], [26], [15], [30] and that Lemma 3.1 is a special case of a more
general theory (cf., e.g., [25, section 5.9]).

The orthogonal projectors onto ∇ ∧ R and ∇∧ 0

R will be denoted by PD and
PN , respectively. They may be constructed by solving appropriate coercive boundary
value problems which enjoy regularity properties (cf. [16]).

Lemma 3.2. The following boundary value problem is coercive:

(PD)

Find v ∈ VD := (∇∧ 0

R) ∩R such that

〈curl v, curl ϕ〉 = 〈E, curl ϕ〉

for all ϕ ∈ VD.


Let

GD : L2 −→ VD,
E 7−→ v

denote its solution operator. Then PDE = curl GDE.
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The problem (PD) has the regularity property: E ∈ Hk implies GDE ∈ Hk+1.
Lemma 3.3. The following boundary value problem is coercive:

(PN )

Find w ∈ VN := (∇∧R)∩ 0

R such that

〈curl w, curl ψ〉 = 〈E, curl ψ〉

for all ψ ∈ VN .


Let

GN : L2 −→ VN ,
E 7−→ w

denote its solution operator. Then PNE = curl GNE.
The problem (PN ) has the regularity property: E ∈ Hk implies GNE ∈ Hk+1.
In order to obtain precise controllability results it is necessary to recall the con-

struction and properties of the spaces HD and HN as well as to decompose ∇H1 even
further.

Standard elliptic theory (see, e.g., [25, Prop. 1.7]) shows the following.
Lemma 3.4. For s ∈ [ 1/2 , ∞ ) and g ∈ Hs(Γ), define u as the solution of the

Dirichlet problem ∆u = 0, T u = g. Then u ∈ Hs+1/2 and the operator
∧
G defined by

∧
G : Hs(Γ) −→ Hs−1/2 ∩∇H1,

g 7−→ ∇u
is continuous. Its null-space consists of Lin {1}—the constant functions—and its

range equals Hs−1/2 ∩ (∇H1 ª∇ 0

H
1). Therefore, the operator

G :
•
H
s(Γ) := {u ∈ Hs(Γ): 〈u, 1〉Γ = 0} −→ Hs−1/2 ∩ (∇H1 ª∇ 0

H
1),

g 7−→ ∇u
is a topological isomorphism.

Let K(Γ) denote the locally constant functions on Γ. Then HD may be described
in terms of G (cf. [16], [6]).

Lemma 3.5. We have HD = G(K(Γ)). More precisely (in the notation of Lemma
3.4),

G0 :
•
H
s(Γ) ∩K(Γ) −→ HD,

g 7−→ ∇u
is a topological isomorphism. Therefore, the space HD of “Dirichlet fields” is finite-
dimensional (dimHD = β1 if there are β1 + 1 connected components of Γ) and con-
tained in C∞(Ω).

Similar results are known for HN . We only need the following lemma which may
be deduced from [27, Thm. 2.2] (or cf. [9], [16], [6]).

Lemma 3.6. The space HN of “Neumann fields” is finite-dimensional and con-
tained in C∞(Ω).

Remark 1. There are elementary examples of regions Ω where HD or HN are
nontrivial:
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(i) If ∂Ω has two connected components Γ0,Γ1 (e.g., in the case of a spherical
shell Ω := {x ∈ R3: 1 < |x| < 2}), then ∇u ∈ HD \ {0} if u is a solution to
Dirichlet’s boundary value problem for ∆u = 0 with u|Γ0

= 0 and u|Γ1
= 1.

(ii) If Ω is invariant under rotations around the x3-axis A and A ∩ Ω = ∅, e.g.,
in the case of a torus

Ω :=

{
x =

[
x′

x3

]
∈ R3:

∣∣∣|x′|x−Rx′∣∣∣ < r |x′|
}
, 0 < r < R,

then v ∈ HN \ {0} for

v(x) := (x2
1 + x2

2)−1

 −x2

x1

0

 .
These examples disprove the claims made in [13, Thm. 7.1], [14, section 2], [5, sec-
tion 1.2], and [17, section 1].

Definition 3.7. For ϕ ∈ C∞(Γ) we define the “surface gradient” ∇oϕ ∈ C∞(Γ)

by extending ϕ arbitrarily to some
∧
ϕ∈ C∞(R3) and using the tangential components

of ∇ ∧ϕ:

∇oϕ := −ν ∧ (ν ∧∇ ∧ϕ).

The continuous extension of ∇o to H1(Γ) will also be denoted by ∇o and its adjoint
(with respect to

∫
Γ
. . . do) by divo.

Remark 2. Of course, both ∇o and divo may be defined intrinsically without
reference to the embedding into R3. In fact, identifying scalar functions and tangential
vector fields with differential forms of rank 0 and 1, respectively, we see that ∇o and
divo correspond to the differential d and codifferential ∗d∗.

A compactness argument shows that ∇oH1(Γ) is closed in L2(Γ). This proves the
following lemma.

Lemma 3.8. With D0(Γ) := {U ∈ L2
τ (Γ): divoU = 0} we have the following

orthogonal decomposition:

L2
τ (Γ) = D0(Γ)⊕∇oH1(Γ).

For u ∈ Ht (t > 3/2), we may define

•
∂ u := 〈T ∇u, ν〉 ∈ Ht−3/2(Γ).

In particular,

Y := Ys :=
•
H
s(Γ) ∩ {•∂ u: ∇u ∈ HD}⊥ (orthogonal complement in L2(Γ))

is a well-defined closed subspace of
•
H
s(Γ) for s ≥ 0.

Lemma 3.9. Let s ∈ [ 1/2 , ∞ ). Then

G1 : Ys −→ Xs := Hs−1/2 ∩
(
∇H1 ª (∇ 0

H
1 ⊕HD)

)
,

g 7−→ ∇u
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is a topological isomorphism. In particular,

∇H1 = X1/2 ⊕HD ⊕∇
0

H
1.(9)

Proof. Let g ∈ •H s(Γ) and c ∈ K(Γ) and define ∇v := Gg and ∇u := Gc. By
Green’s formula,

〈∇v, ∇u〉 = 〈g, •∂ u〉Γ,
which implies (using Lemma 3.4)

GYs ⊂ Xs and G−1Xs ⊂ Ys
and thus our assertion.

4. Boundary controllability. We now turn to the question of boundary con-
trollability:

Given (E0, H0), (E1, H1) ∈ L2 × L2 and T ∈ R+, can we find J ∈ U such that
(E(T ), H(T )) = (E1, H1) for the solution (E,H) of P(E0, H0;J) in I := [ 0 , T ]?

If this is possible we say that “the state (E0, H0) can be steered into (E1, H1) in
time T .” In the special case (E1, H1) = (0, 0) we say that “the state (E0, H0) can
be steered to rest.” It will be decisive for the analysis of this problem to decompose
(E0, H0) according to the material of the preceding section. So we write

E0 = ∇∧D + U +∇e,(10)

H0 = ∇∧B +W +∇v + V +∇h(11)

with uniquely determined

D ∈ (∇∧ 0

R) ∩R, U ∈ HD, e ∈ 0

H
1,

B ∈ (∇∧R)∩ 0

R, W ∈ HN
and (cf. Lemma 3.9)

∇v = Gg ⊂ X1/2(Ω) (g ∈ H1/2(Γ)), V ∈ HD, h ∈ 0

H
1.

We start with a negative answer.

Theorem 4.1. Let
∧
U∈ HD. Then 〈E, ∧U〉 and 〈H, ∧U〉 as well as divE and

divH are not influenced by our boundary controls. More precisely: Let J ∈ U and
(E0, H0) ∈ L2 × L2. Then, for all t,

〈E(t),
∧
U〉 = 〈E0,

∧
U〉,

〈H(t),
∧
U〉 = 〈H0,

∧
U〉,

divE(t) = divE0,

divH(t) = divH0

for the solution (E,H) to P(E0, H0;J) in I.
In particular, no state (E0, H0) for which any of the underlined components in

(10), (11) is different from zero can be steered to rest in any time.
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Proof. The states (
∧
U, 0) and (0,

∧
U) belong to N(A). Therefore, by Lemma 2.3,

〈E(t),
∧
U〉 − 〈E0,

∧
U〉 = 0,

〈H(t),
∧
U〉 − 〈H0,

∧
U〉 =

∫ t

0

∫
Γ

〈J(s, y), ν(y) ∧ (ν(y)∧ ∧U (y))〉do(y)ds.

But the integral vanishes because ν∧ ∧U= 0. This proves the first two assertions. The
next two are proved analogously with the aid of Lemma 2.3 by looking at

(∇ϕ, 0), (0,∇ϕ) ∈ N(A) for ϕ ∈ C∞0 .

Finally, the negative conclusion follows from (10),(11) and Lemma 3.1.
Remark 3. This result disproves previous claims in the literature which do not

assume star-shapedness [14, section 4.3], [17].
For a positive result it is necessary to require that the underlined components

(which in what follows will be called “noncontrollable components”) in (10), (11)
should vanish. Furthermore, in order to keep the analytical efforts low, we require
some additional regularity of the initial states. Thus we introduce the following spaces
of states:

S2 := (∇∧R)×
(

(∇∧ 0

R)⊕HN ⊕X1/2(Ω)

)
,

S1 := (∇∧R)×
(

(∇∧ 0

R)⊕HN
)
,

S0 := (∇∧R)× (∇∧ 0

R),

S1
k :=

(H1 ×H1
) ∩ Sk, k = 0, 1, 2,

SDk := D(A) ∩ S1
k , k = 0, 1, 2.

We are ready to formulate our main result.
Main Theorem. Let T > diam(Ω). Then each state in S1

2 can be steered to rest
in time T . In particular, each divergence-free state can be steered to rest in time T if
∂Ω is connected.

This will be proved in four steps: The initial state (E0, H0) ∈ S1
2 may not be an

element of D(A). First we show that it takes arbitrarily short time to steer it into a
state which is in SD2 . In the second and third steps we remove extra components of
H0 by steering into SD1 and then into SD0 , again in arbitrarily short time. Finally,
granted time T > diam(Ω), the resulting state (E0, H0) ∈ SD0 may be steered to rest
by using the trick invented by D. L. Russell for the wave equation.

Theorem 4.2. Each state (E0, H0) ∈ S1
2 may be steered into a state in SD2 in

arbitrarily short time.
Proof. Given T ∈ R+ choose χ ∈ C∞(R) such that suppχ ⊂ (−∞ , T ) and

χ(0) = 1. Then

J(s, y) := χ(s) · TτE0(y), (s, y) ∈M,

defines an element of U . Furthermore, J is represented by
∧
J∈ C∞(I,H1), where

∧
J (s, x) = χ(s) · E0(x), (s, x) ∈ Z.
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For t = T , the components of the solution formula (3) either vanish by construction
or belong to D(A) by Lemmas 2.1 and 2.4. Furthermore, according to Theorem 4.1,
no noncontrollable components have been introduced by this control process.

It remains to be shown that the state stays in H1 ×H1: From E(T ) ∈ 0

R ∩D0 we
obtain E(T ) ∈ H1 [15, Thm. 8.6].

Concerning H(T ), we decompose

H0 = ∇∧B + V +∇h, B ∈ 0

R, V ∈ HN , h ∈ H1.

Lemma 3.3 shows that additionallyB ∈ H2 and therefore h ∈ H2 (because V ∈ C∞(Ω)
by Lemma 3.6). We apply Lemma 2.3 with (Φ0,Ψ0) := (0,∇ψ) and an arbitrary
ψ ∈ H1 to obtain

〈H(T )−H0, ∇ψ〉 = −
∫ T

0

χ(s)

(∫
Γ

〈TτE0(y), ∇ψ(y)〉do(y)

)
ds.

Assuming additionally—as we may—that
∫ T

0
χ(s)ds = 0, we see that in the decom-

position

H(T ) = ∇∧ B̃ + Ṽ +∇h, B̃ ∈ 0

R, Ṽ ∈ HN ,
the third component remains unchanged in H1, whereas the second is still in C∞(Ω)

by Lemma 3.6. The first belongs to D0∩
0

D and also to R (because of (E(T ), H(T )) ∈
D(A)). This implies ∇∧ B̃ ∈ H1 (by the analogue of [15, Thm. 8.6] or cf. [9, Lem. 4.2
and section 8]) and hence H(T ) ∈ H1.

Theorem 4.3. Each state (E0, H0) ∈ SD2 may be steered into a state in SD1 in
arbitrarily short time.

Proof. We have

H0 = ∇∧B +W +X, B ∈ 0

R, W ∈ HN , X = ∇v ∈ X1/2.

The sesquilinear form

B(h, ϕ) := 〈∇oh, ∇oϕ〉Γ
is continuous and positive semidefinite on H1(Γ) with null-space K(Γ). Furthermore,
Y1 and K(Γ) are complementary closed subspaces of H1(Γ) by Lemmas 3.4, 3.5, and

3.9. A standard compactness argument (using the compact embedding of
•
H

1(Γ) in
L2(Γ)) shows that B is strictly coercive on Y1. Therefore, the problem to find h ∈ Y1

such that

〈∇oh, ∇oϕ〉Γ = −〈X, Gϕ〉 for all ϕ ∈ Y1

is uniquely solvable. Lemma 3.4 shows that the right-hand side defines a continu-
ous antilinear functional on H1/2(Γ) and thus may be considered as an element of
H−1/2(Γ). Therefore, elliptic regularity theory tells us that the solution h belongs to
H3/2(Γ) and thus to Y3/2. (In fact, a closer look using H0 ∈ H1 would show that

h ∈ H5/2(Γ).) Let χ ∈ C∞(R) with

suppχ ⊂ ( 0 , T ) and

∫ T

0

χ(t)dt = 1.
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Then

J(t, y) := −χ(t)∇oh(y), (t, y) ∈M,

defines an element of U . By the trace theorem, we may extend ν ∧∇oh ∈ H1/2(Γ) to
some j ∈ H1 such that J is represented by

∧
J (t, x) := χ(t)j(x), (t, x) ∈ Z,

which satisfies

∧
J∈ C∞([ 0 , T ],R),

∧
J (0, ·) =

∧
J (T, ·) = 0.(12)

Let (E,H) be the solution to P(E0, H0;J). Theorem 4.1 implies that (E(T ), H(T ))
does not contain any noncontrollable components and (12) and Lemma 2.4 show that
(E(T ), H(T )) ∈ D(A).

Let us apply Lemma 2.3 with (Φ0,Ψ0) := (0, Gϕ),ϕ ∈ Y3/2 (hence Gϕ ∈ H1).
We compute

〈H(T ), Gϕ〉

= 〈H0, Gϕ〉+

∫ T

0

χ(t)〈∇oh, T Gϕ〉Γdt
= 〈X, Gϕ〉 − 〈ν ∧ (ν ∧∇oh), T Gϕ〉Γ
= 〈X, Gϕ〉 − 〈∇oh, ν ∧ (ν ∧ T Gϕ)〉Γ
= 〈X, Gϕ〉+ 〈∇oh, ∇oϕ〉Γ = 0.

We conclude (using Lemma 3.9 as well as the fact that Y3/2 is dense in Y1/2)

H(T ) = ∇∧ B̃ + W̃ ∈ R, B̃ ∈ 0

R, W̃ ∈ HN .

Thus H(T ) ∈ H1 from Lemma 3.6 and [27, Thm. 2.2] and (E(T ), H(T )) ∈ SD1 .
Theorem 4.4. Each state (E0, H0) ∈ SD1 may be steered into a state in SD0 in

arbitrarily short time by a control J ∈ C∞τ (Γ).
Proof. Let π denote the orthogonal projector in L2

τ (Γ) onto D0(Γ) along∇oH1(Γ).
Then

σ(V,W ) := 〈πT V, πTW 〉Γ
is a true scalar product on HN . Namely, if πT V = 0, then we have

T V = ∇og, g ∈ C∞(Γ).

We solve Dirichlet’s problem

∆u = 0, u|Γ = g

and find by direct computation

V −∇u ∈ HD.

Therefore, Lemma 3.5 implies V ∈ ∇H1 and thus V = 0 by Lemma 3.1.
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So we can choose a basis {Wk: k = 1, . . . , β2} of HN which is orthonormal with
respect to σ. We choose the control J ∈ C∞τ (M) defined by

J(t, y) := χ(t) ·
β2∑
k=1

〈H0, Wk〉πTWk(y), (t, y) ∈M,

with χ as in the preceding proof and denote the solution to P(E0, H0;J) by (E,H).
Again (by Theorem 4.1 and Lemma 2.4) no noncontrollable components are intro-
duced and (E(T ), H(T )) ∈ D(A). So (E(T ), H(T )) ∈ SD0 as desired if we can show
(recalling Lemma 3.9 and the regularity result [27, Thm. 2.2])

〈H(T ), Wl〉 = 0 for all l ∈ {1, . . . , β2},(13)

〈H(T ), Gϕ〉 = 0 for all ϕ ∈ Y3/2.(14)

For (13) we apply Lemma 2.3 with (Φ0,Ψ0) := (0,Wl) and compute

〈H(T )−H0, Wl〉
= −

∑
k

〈H0, Wk〉〈πTWk, TWl〉Γ

= −
∑
k

〈H0, Wk〉〈πTWk, πTWl〉Γ = −〈H0, Wl〉.

For (14) we use Lemma 2.3 with (Φ0,Ψ0) := (0, Gϕ) and compute

〈H(T ), Gϕ〉
= 〈H0, Gϕ〉 −

∑
k

〈H0, Wk〉〈πTWk, T Gϕ〉Γ

= 0 +
∑
k

〈H0, Wk〉〈πTWk, ν ∧ (ν ∧ T Gϕ)〉Γ

= −
∑
k

〈H0, Wk〉〈πTWk, ∇oϕ〉Γ = 0

because πTWk ∈
(∇oH1(Γ)

)⊥
.

Theorem 4.5. Let T > diam(Ω) and I := [ 0 , T ]. Then each (E0, H0) ∈ SD0
can be steered to rest in time T by a control J ∈ C0(I,H1/2

τ (Γ)) ∩ U .
Proof. We have

(E0, H0) = (∇∧D,∇∧B) ∈ H1 ×H1, (D,B) ∈ R× 0

R,
and additionally (in view of Lemmas 3.2 and 3.3) D,B ∈ H2. We use Calderon’s

extension theorem to extend D,B to
∧
D,
∧
B∈ H2(R3) and with a cutoff technique we

may assume that
∧
D,

∧
B are supported in

Ωρ := Ω + U(0, ρ), ρ := T − diam(Ω).

Let (
∧
E,
∧
H) be the solution of the Cauchy problem

∂t
∧
E= +∇x∧

∧
H

∂t
∧
H= −∇x∧

∧
E

}
in [ 0 , ∞ )× R3,

(
∧
E (0, ·), ∧H (0, ·)) = (∇∧ ∧D,∇∧

∧
B).
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We have divE(t, ·) = 0 because divE(0, ·) = 0. Using ∆ = −curlcurl +∇div, we may

look upon
∧
E as the solution to a Cauchy problem for the wave equation:

∂2
t

∧
E −∆x

∧
E = 0,

∧
E (0, ·) = ∇∧ ∧D∈ H1,

∂t
∧
E (0, ·) = ∇∧ (∇∧ ∧B) ∈ H0.

The regularity of the initial data implies that
∧
E is a “solution with finite energy”

(cf. [31, p. 20]) and therefore
∧
E∈ C0([ 0 , ∞ ),H1(R3))∩H1(Z). An application of the

trace theorem shows

J := Tτ
∧
E∈ C0(I,H1/2(Γ)) ∩ U .

Furthermore, by Huygens’ principle [15, section 5.3],

supp(
∧
E (T, ·), ∧H (T, ·)) ∩ Ω = ∅.

Restricting everything to [ 0 , T ]× Ω shows that J steers (E0, H0) into rest.
Remark 4. Replacing the trace theorem by the more sophisticated regularity

result of [24] would enable us to work with controls in the space H3/4
τ .

Remark 5. Consider the class of regions Ω for which there exists an open segment

S := {∧x +τp: τ ∈ ( 0 , L )}, ∧
x∈ Ω, p ∈ S2,

such that S ⊂ Ω and length(S) = L = diamΩ. Then one can show that our Main
Theorem is almost optimal in the sense that for T < diam(Ω), even in SD0 there are
states which cannot be steered to rest in time T . This may be shown using the argument
of [7, Thm. 2.1] and the sequence uk from [2, Thm. 3.2] on a ray γ ⊂ [ 0 , T ] × Ω
corresponding to S. Namely, defining

Wk := ∇x ∧
 uk

0
0

 , Ek := ∇x ∧Wk, Hk := ∂tWk

yields a sequence which contradicts exact controllability of SD0 .
Remark 6. Our results show that more precise topological criteria (“Betti num-

bers”) rather than star-shapedness decide about null-controllability of divergence-free
states. In the case of Remark 1(i) (“spherical shell”) the initial state (∇u, 0) is not
null-controllable whereas in case (ii) (“torus”) each divergence-free initial state is null-
controllable because for this region HD = {0}.

Remark 7. Our methods also allow us to obtain “partial controllability” results
for problems where the control J is only allowed to be supported on part of the boundary
(cf. [21], [2], [17]).
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Abstract. Finite-time stability is defined for equilibria of continuous but non-Lipschitzian
autonomous systems. Continuity, Lipschitz continuity, and Hölder continuity of the settling-time
function are studied and illustrated with several examples. Lyapunov and converse Lyapunov re-
sults involving scalar differential inequalities are given for finite-time stability. It is shown that the
regularity properties of the Lyapunov function and those of the settling-time function are related.
Consequently, converse Lyapunov results can only assure the existence of continuous Lyapunov func-
tions. Finally, the sensitivity of finite-time-stable systems to perturbations is investigated.

Key words. stability, finite-time stability, non-Lipschitzian dynamics

AMS subject classifications. 34D99, 93D99

PII. S0363012997321358

1. Introduction. The object of this paper is to provide a rigorous foundation
for the theory of finite-time stability of continuous autonomous systems and motivate
a closer examination of finite-time stability as a possible objective in control design.

Classical optimal control theory provides several examples of systems that ex-
hibit convergence to the equilibrium in finite time [17]. A well-known example is the
double integrator with bang-bang time-optimal feedback control [2]. These examples
typically involve dynamics that are discontinuous. Discontinuous dynamics, besides
making a rigorous analysis difficult (see [9]), may also lead to chattering [10] or excite
high frequency dynamics in applications involving flexible structures. Reference [8]
considers finite-time stabilization using time-varying feedback controllers. However, it
is well known that the stability analysis of time-varying systems is more complicated
than that of autonomous systems. Therefore, with simplicity as well as applications
in mind, we focus on continuous autonomous systems.

Finite-settling-time behavior of systems with continuous dynamics is considered
in [3], [4], [11], [19], [21]. However, a detailed analysis of such systems has not been
carried out. In particular, a precise formulation of finite-time stability is lacking, while
little is known about the settling-time function. Furthermore, while references [3], [4],
[11], [19] present Lyapunov conditions for finite-time stability, neither rigorous proofs
nor converse results can be found. Reference [21] suggests, based on a scalar example,
that systems with finite-settling-time dynamics possess better disturbance rejection
and robustness properties. However, no precise results exist for multidimensional
systems. This paper attempts to fill these gaps.

In section 2, we define finite-time stability for equilibria of continuous autonomous
systems that have unique solutions in forward time. Continuity and forward unique-
ness render the solutions continuous functions of the initial conditions, so that the
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solutions define a continuous semiflow on the state space. Uniqueness also makes it
possible to define the settling-time function. Certain useful properties of the settling
time function are established. It is shown by example that it is possible for the set-
tling time to be unbounded in every neighborhood of the origin even if all solutions
converge to the origin in finite time. A different example shows that the settling-time
function may be continuous without being Hölder continuous at the origin.

In section 3 we define finite-time repellers (called terminal repellers in [7], [23]),
which are a special class of unstable equilibria that arise only in non-Lipschitzian
systems. We show that a system having a finite-time repeller possesses multiple
solutions starting at the finite-time repeller.

In section 4, we give a Lyapunov theorem for finite-time stability. Dini derivatives
are used since Lyapunov functions are assumed to be only continuous. A converse
result is shown to hold under the assumption that the settling-time function is continu-
ous. In general, the converse result cannot be strengthened in its conclusion regarding
the regularity of the Lyapunov function; that is, a system with a finite-time-stable
equilibrium may not admit a Hölder continuous Lyapunov function. This is because
Hölder continuity of the Lyapunov function necessarily implies Hölder continuity of
the settling-time function at the origin. On the other hand, as mentioned above,
there exist finite-time-stable systems with settling-time functions that are not Hölder
continuous at the origin.

The existence of a Hölder continuous Lyapunov function assumes importance in
section 5 where we investigate the sensitivity of stability properties to perturbations
of systems with a finite-time-stable equilibrium under the assumption of the existence
of a Lipschitz continuous Lyapunov function. Both persistent and vanishing pertur-
bations are considered. It is shown that under certain conditions, finite-time-stable
systems may exhibit better rejection of bounded persistent disturbances than Lip-
schitzian exponentially stable systems. It is also shown that finite-time stability is
preserved under perturbations that are Lipschitz in the state.

2. Finite-time stability. Let ‖ · ‖ denote a norm on Rn. The notions of open-
ness, convergence, continuity, and compactness that we use refer to the topology
generated on Rn by the norm ‖ · ‖. We use R, R+, and R+ to denote the extended,
nonnegative, and extended nonnegative, real numbers, respectively. We also use A
and bd A to denote the closure and the boundary of the set A, respectively. We will
call a set A ⊂ Rn bounded if A is compact. Finally, we denote the composition of
two functions U : A → B and V : B → C by V ◦ U : A → C.

Consider the system of differential equations

ẏ(t) = f(y(t)),(2.1)

where f : D → Rn is continuous on an open neighborhood D ⊆ Rn of the origin and
f(0) = 0. A continuously differentiable function y : I → D is said to be a solution of
(2.1) on the interval I ⊂ R if y satisfies (2.1) for all t ∈ I. The continuity of f implies
that, for every x ∈ D, there exist τ0 < 0 < τ1 and a solution y(·) of (2.1) defined on
(τ0, τ1) such that y(0) = x [12, Thm. I.1.1]. A solution y is said to be right maximally
defined if y cannot be extended on the right (either uniquely or nonuniquely) to a
solution of (2.1). Every solution of (2.1) has an extension that is right maximally
defined [12, Thm. I.2.1]. For later use, we state the following result on bounded
solutions of (2.1). For a proof, see [12, pp. 17–18] or [22, Thm. 3.3, p. 12].

Proposition 2.1. If y : [0, τ)→ D is a right maximally defined solution of (2.1)
such that y(t) ∈ K for all t ∈ [0, τ), where K ⊂ D is compact, then τ =∞.
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We will assume that (2.1) possesses unique solutions in forward time for all initial
conditions except possibly the origin in the following sense: for every x ∈ D\{0}
there exists τx > 0 such that, if y1 : [0, τ1) → D and y2 : [0, τ2) → D are two right
maximally defined solutions of (2.1) with y1(0) = y2(0) = x, then τx ≤ min{τ1, τ2}
and y1(t) = y2(t) for all t ∈ [0, τx). Without any loss of generality, we may assume
that for each x, τx is chosen to be the largest such number in R+. In this case,
we denote by ψ(·, x) or, alternatively, ψx(·) the unique solution of (2.1) on [0, τx)
satisfying ψ(0, x) = x. Note that ψx cannot be extended on the right uniquely to a
solution of (2.1) because if τx < ∞, then as t → τx, either ψ(t, x) approaches bd D
[12, Thm. I.2.1], in which case ψx cannot be extended on the right to a solution of
(2.1), or ψ(t, x) approaches 0 with (2.1) having nonunique solutions starting at 0, in
which case ψx can be extended on the right to a solution of (2.1) in more than one
way. If (2.1) has nonunique solutions in forward time for the initial condition 0, then
ψ is defined on a relatively open subset of R+×D\{0} onto D\{0}. If (2.1) possesses
a unique solution in forward time for the initial condition 0, then ψ is defined on a
relatively open subset of R+ ×D onto D and for each x ∈ D, ψx : [0, τx) → D is the
unique right maximally defined solution of (2.1) for the initial condition x. Uniqueness
in forward time and the continuity of f imply that ψ is continuous on its domain of
definition [12, Thm. I.3.4] and defines a local semiflow [6], [20, Ch. 2] on D\{0} or
D, as the case may be. Various sufficient conditions for forward uniqueness in the
absence of Lipschitz continuity can be found in [1], [9, sect. 10], [14], [22, sect. 1].

Definition 2.2. The origin is said to be a finite-time-stable equilibrium of (2.1)
if there exists an open neighborhood N ⊆ D of the origin and a function T : N\{0} →
(0,∞), called the settling-time function, such that the following statements hold:

(i) Finite-time convergence: For every x ∈ N\{0}, ψx is defined on [0, T (x)),
ψx(t) ∈ N\{0} for all t ∈ [0, T (x)), and limt→T (x) ψ

x(t) = 0.
(ii) Lyapunov stability: For every open neighborhood Uε of 0 there exists an

open subset Uδ of N containing 0 such that, for every x ∈ Uδ\{0}, ψx(t) ∈ Uε for all
t ∈ [0, T (x)).

The origin is said to be a globally finite-time-stable equilibrium if it is a finite-time-
stable equilibrium with D = N = Rn.

The following proposition shows that if the origin is a finite-time-stable equilib-
rium of (2.1), then (2.1) has a unique solution on R+ for every initial condition in an
open neighborhood of 0, including 0 itself.

Proposition 2.3. Suppose the origin is a finite-time-stable equilibrium of (2.1).
Let N ⊆ D and let T : N\{0} → (0,∞) be as in Definition 2.2. Then, ψ is defined

on R+ ×N and ψ(t, x) = 0 for all t ≥ T (x), x ∈ N , where T (0)
4
= 0.

Proof. It can be shown that Lyapunov stability of the origin implies that y ≡ 0
is the unique solution y of (2.1) satisfying y(0) = 0. This proves that R+ × {0} is
contained in the domain of definition of ψ and ψ0 ≡ 0.

Now, let N ⊆ D and T be as in Definition 2.2 and let x ∈ N\{0}. Define

y(t) = ψ(t, x), 0 ≤ t < T (x),
= 0, T (x) ≤ t.(2.2)

By construction, y is continuously differentiable on R+\{T (x)} and satisfies (2.1) on
R+\{T (x)}. Also, it follows from the continuity of f that

lim
t→T (x)−

ẏ(t) = lim
t→T (x)−

f(y(t)) = 0 = lim
t→T (x)+

ẏ(t),
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so that y is continuously differentiable at T (x) and satisfies (2.1). Thus y is a solution
of (2.1) on R+. To prove uniqueness, suppose z is a solution of (2.1) on R+ satisfying
z(0) = x. Then by the uniqueness assumption, y and z agree on [0, T (x)). By
continuity, y and z must also agree on [0, T (x)] so that z(T (x)) = 0. Lyapunov
stability now implies that z(t) = 0 for t > T (x). This proves uniqueness. By the
definition of ψ, it follows that ψx ≡ y. Thus ψx is defined on R+ and satisfies
ψx(t) = 0 on [T (x),∞) for every x ∈ N . This proves the result.

Proposition 2.3 implies that if the origin is a finite-time-stable equilibrium of
(2.1), then the solutions of (2.1) define a continuous global semiflow [20] on N ; that
is, ψ : R+ ×N → N is a (jointly) continuous function satisfying

ψ(0, x) = x,(2.3)

ψ(t, ψ(h, x)) = ψ(t+ h, x)(2.4)

for every x ∈ N and t, h ∈ R+. In addition, ψ satisfies

ψ(T (x) + t, x) = 0(2.5)

for all x ∈ N and t ∈ R+.
Proposition 2.3 also indicates that it is reasonable to extend T to all of N by

defining T (0) = 0. With a slight abuse of terminology, we will also call this extension
the settling-time function. It is easy to see from Definition 2.2 that, for all x ∈ N ,

T (x) = inf{t ∈ R+ : ψ(t, x) = 0}.(2.6)

To illustrate finite-time stability, as well as for later use, we consider a scalar
system with a finite-time-stable equilibrium.

Example 2.1. The right-hand side of the scalar system

ẏ(t) = −ksign(y(t))|y(t)|α,(2.7)

where sign(0) = 0, k > 0, and α ∈ (0, 1), is continuous everywhere and locally
Lipschitz everywhere except the origin. Hence every initial condition in R\{0} has
a unique solution in forward time on a sufficiently small time interval. The global
semiflow for (2.7) is easily obtained by direct integration as

µ(t, x) = sign(x)
[|x|1−α − k(1− α)t

] 1
1−α , t < 1

k(1−α) |x|1−α, x 6= 0,

= 0, t ≥ 1
k(1−α) |x|1−α, x 6= 0,

= 0, t ≥ 0, x = 0.

(2.8)

It is clear from (2.8) that (i) in Definition 2.2 is satisfied with D = N = R and the
settling-time function T : R→ R+ given by

T (x) =
1

k(1− α)
|x|1−α.(2.9)

Lyapunov stability follows by considering, for instance, the Lyapunov function V (x) =
x2. Thus the origin is a globally finite-time-stable equilibrium for (2.7). Note that T
is Hölder continuous but not Lipschitz continuous at the origin.

The following proposition investigates the properties of the settling-time function
of a finite-time-stable system.

Proposition 2.4. Suppose the origin is a finite-time-stable equilibrium of (2.1).
Let N ⊆ D be as in Definition 2.2 and let T : N → R+ be the settling-time function.
Then the following statements hold.
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(i) If x ∈ N and t ∈ R+, then

T (ψ(t, x)) = max{T (x)− t, 0}.(2.10)

(ii) T is continuous on N if and only if T is continuous at 0.
(iii) For every r > 0, there exists an open neighborhood Ur ⊂ N of 0 such that,

for every x ∈ Ur\{0},

T (x) > r‖x‖.(2.11)

Proof. (i) The result follows from (2.6), (2.4), and (2.5).
(ii) Necessity is immediate. To prove sufficiency, suppose that T is continuous at

0.
Let z ∈ N and consider a sequence {zm} in N that converges to z. Let τ− =
lim infm→∞ T (zm) and τ+ = lim supm→∞ T (zm). Note that both τ− and τ+ are in
R+ and

τ− ≤ τ+.(2.12)

Next, let {z+
l } be a subsequence of {zm} such that T (z+

l )→ τ+ as l →∞. The
sequence {(T (z), z+

l )} converges in R+ ×N to (T (z), z). By continuity and equation
(2.5), ψ(T (z), z+

l ) → ψ(T (z), z) = 0 as l → ∞. Since T is assumed to be continuous
at 0, T (ψ(T (z), z+

l ))→ T (0) = 0 as l →∞. Using (2.10) with t = T (z) and x = z+
l ,

we obtain max{T (z+
l ) − T (z), 0} → 0 as l → ∞. Thus max{τ+ − T (z), 0} = 0, that

is,

τ+ ≤ T (z).(2.13)

Now, let {z−l } be a subsequence of {zm} such that T (z−l ) → τ− as l → ∞. It
follows from (2.12) and (2.13) that τ− ∈ R+. Therefore, the sequence {(T (z−l ), z−l )}
converges in R+×N to (τ−, z). Since ψ is continuous, it follows that ψ(T (z−l ), z−l )→
ψ(τ−, z) as l → ∞. Equation (2.5) implies that ψ(T (z−l ), z−l ) = 0 for each l. Hence
ψ(τ−, z) = 0 and, by (2.6),

T (z) ≤ τ−.(2.14)

From (2.12), (2.13), and (2.14) we conclude that τ− = τ+ = T (z) and hence T (zm)→
T (z) as m→∞.

(iii) Let r > 0. The function ‖f(·)‖ is continuous on D and f(0) = 0 so that the
set Ωr =

{
x ∈ N : ‖f(x)‖ < 1

r

}
is open and contains 0. By Lyapunov stability, there

exists an open set Ur such that 0 ∈ Ur ⊂ N and ψ(t, x) ∈ Ωr for every t ∈ R+ and
x ∈ Ur. Letting x ∈ Ur\{0}, we have

0 = ψ(T (x), x) = x+

∫ T (x)

0

f(ψ(t, x))dt,

so that

‖x‖ =

∥∥∥∥∥−
∫ T (x)

0

f(ψ(t, x))dt

∥∥∥∥∥ ≤
∫ T (x)

0

‖f(ψ(t, x))‖dt < T (x)

r
,

which proves the result.
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Fig. 2.1. Finite-time stability with discontinuous settling-time function.

Proposition 2.4 (ii) is significant because, in general, finite-time stability does
not imply that the settling-time function T is continuous at the origin. Indeed, as
the following example shows, the settling-time function can be unbounded in every
neighborhood of the origin.

Example 2.2. Consider the system (2.1) where the vector field f : R2 → R2 is
defined on the quadrants

QI = {x ∈ R2\{0} : x1 ≥ 0, x2 ≥ 0}, QII = {x ∈ R2 : x1 < 0, x2 ≥ 0},
QIII = {x ∈ R2 : x1 ≤ 0, x2 < 0}, QIV = {x ∈ R2 : x1 > 0, x2 < 0},

as shown in Figure 2.1, with f(0) = 0, r > 0, θ ∈ [0, 2π), and x = (x1, x2) =
(r cos θ, r sin θ). It is easy to show that the vector field f is continuous on R2 and
locally Lipschitz everywhere on R2 except on the positive x1-axis, denoted by X+

1 ,
the negative x2-axis, denoted by X−2 , and the origin. Since the derivative of x2

2 along
the solutions of (2.1) is nonpositive in a sufficiently small neighborhood of every point
x ∈ X+

1 , every solution y(·) of (2.1) that satisfies y(0) ∈ X+
1 satisfies y(t) ∈ X+

1 for
t > 0 sufficiently small, while on X+

1 , f is simply given by ẋ1 = −√x1, ẋ2 = 0 which
is easily seen to have unique solutions for initial conditions in X+

1 . In fact, by Example
2.1, solutions starting in X+

1 converge to the origin in finite time. The vector field
f is also transversal to X−2 at every point in X−2 . Hence it follows from [14, Prop.
2.2] or [9, Lem. 2, p. 107] that initial conditions in X−2 possess unique solutions in
forward time. Thus (2.1) possesses a unique solution in forward time for every initial
condition in R2\{(0, 0)}.

We show that the system given in Figure 2.1 has a globally finite-time-stable
equilibrium at the origin and demonstrate a sequence {xm} in R2 such that xm → 0
and T (xm)→∞, where T is the settling-time function.

Lyapunov stability of the origin is easily verified using the Lyapunov function
x2

1 + x2
2. To show global finite-time convergence, we show that solutions starting in

QIV and QIII ∪ QII enter QIII and QI, respectively, in a finite amount of time, while
solutions starting in QI converge to the origin in finite time.

On QIV, ẋ2 = 0 and ẋ1 ≤ −x2
2 < 0 so that after a finite amount of time (that

depends on the initial condition) every solution starting in QIV enters QIII. Since
r cos θ −√π

2 sin θ ≤ max
{−√π

2 ,−r
}

for r > 0 and θ ∈ [π2 , π], it follows that ṙ = 0

and θ̇ ≤ max
{−√π

2 ,−r
}
< 0 on QIII∪QII so that every solution starting in QIII∪QII

enters QI after a finite amount of time. Now, QI is positively invariant. Hence, if
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a solution y starting in QI does not converge to the origin for a sufficiently long
time, then, since the scalar equation θ̇ = −√θ has the origin as a finite-time-stable
equilibrium by Example 2.1, y converges to X+

1 in finite time. We have already seen
that solutions in X+

1 converge to the origin in finite-time. Thus the origin is a globally
finite-time-stable equilibrium.

Now consider the sequence {xm}, where xm = (xm1, xm2) =
(
0,− 1

m

)
, m =

1, 2, . . ., in X−2 . Thus {xm} lies in X−2 and xm → 0 as m → ∞. Since θ̇ = −r on
QIII, for every m, the time taken by the solution ym starting at xm to enter QII is
equal to π

2
√
x2
m1+x2

m2

= mπ
2 . Since ym must enter QII before converging to the origin,

it follows that T (xm) ≥ mπ
2 for every m and hence T (xm)→∞.

Proposition 2.4 (iii), which is equivalent to the statement that ‖x‖T (x) → 0 as x →
0, implies that the settling-time function is not Lipschitz continuous at the origin.
This is consistent with Example 2.1 where the settling-time function is not Lipschitz
continuous. However, as noted earlier, the settling-time function in Example 2.1 is
Hölder continuous at the origin. In contrast, the following example shows that even
if the settling-time function is continuous, it may not be Hölder continuous at the
origin.

Example 2.3. Consider the system (2.1) with D = {x ∈ R : |x| < 1} and
f : D → R given by

f(x) = −x(ln |x|)2, x ∈ D\{0},
= 0, x = 0.

(2.15)

The system defined by (2.15) is continuous and has the global semiflow

µ(t, x) = sign(x)e
ln |x|

1+t ln |x| , t < − 1
ln |x| , x ∈ D\{0},

= 0, t ≥ − 1
ln |x| , x ∈ D\{0},

= 0, t ≥ 0, x = 0.

(2.16)

From the solution (2.16), it is clear that 0 is a finite-time-stable equilibrium in the
neighborhood N = D and the settling-time function, which is continuous, is given by

T (x) = − 1

ln |x| , x ∈ D\{0},
= 0, x = 0.

(2.17)

Since limh→0+ hγ | lnh| = 0 for every γ > 0, it follows that for every γ > 0, T (·)
|·|γ is

unbounded in every deleted neighborhood of 0. Thus T is not Hölder continuous at
the origin.

3. Finite-time repellers. The results of this section do not depend upon the
assumption of forward uniqueness.

If the origin is not Lyapunov stable, then there exists an open neighborhood U of
the origin and solutions that start arbitrarily close to the origin and eventually leave
U . However, in the case of Lipschitzian dynamics, solutions are continuous in the
initial condition over bounded time intervals so that solutions with initial conditions
sufficiently close to the origin stay in U for arbitrarily large amounts of time. In the
non-Lipschitzian case, where solutions need not be continuous in the initial condition
even over a bounded time interval, it is natural to expect the existence of solutions
that start arbitrarily close to the origin and yet leave a certain neighborhood in a
fixed amount of time. We therefore have the following definition.
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Definition 3.1. The origin is said to be a finite-time repeller if there exists a
neighborhood U ⊂ D of the origin and τ > 0 such that, for every open neighborhood
V ⊆ U of the origin, there exists h ∈ (0, τ ] and a solution y : [0, h]→ D of (2.1) such
that y(0) ∈ V and y(h) 6∈ U . The origin is said to be a finite-time saddle if the origin
is a finite-time repeller in forward as well as reverse time.

Definition 3.1 implies that solutions of (2.1) with initial conditions sufficiently
close to a finite-time repeller do not depend continuously on the initial conditions
over the bounded time interval [0, τ ]. In other words, a system is extremely sensitive
to perturbations close to a finite-time repeller. As noted in section 2, under the
assumption of uniqueness, solutions are continuous functions of the initial conditions
and hence nonuniqueness is necessary for the existence of a finite-time repeller. The
following proposition gives the precise connection between nonuniqueness and finite-
time repellers.

Proposition 3.2. The origin is a finite-time repeller if and only if there exist
more than one solution of (2.1) originating at the origin.

Proof. Note that z ≡ 0 is a solution of (2.1) satisfying z(0) = 0. To prove
sufficiency, suppose y : [0, τ ] → D, τ > 0, is a solution of (2.1) such that y(0) = 0
and y(τ) 6= 0. Then there exists an open set U ⊂ D such that 0 ∈ U and y(τ) 6∈ U .
If V ⊆ U is an open neighborhood of the origin, then 0 = y(0) ∈ V and y(h) 6∈ V for
h = τ . Thus the origin is a finite-time repeller.

To prove necessity, suppose that the origin is a finite-time repeller and let U and
τ be as in Definition 3.1. There exists a sequence {hm} of real numbers in (0, τ ]
and a sequence of solutions ym : [0, hm] → D of (2.1) such that, ym(0) → 0 as
m → ∞ and ym(hm) 6∈ U . Now suppose that z ≡ 0 is the unique solution of (2.1)
satisfying z(0) = 0. Then there exists N > 0 such that for every m > N , ym can be
extended to a solution ŷm of (2.1) defined on [0, τ ] and ŷm → z uniformly on [0, τ ]
[12, Lem. I.3.1]. However, this contradicts the fact that, for every m, hm ∈ [0, τ ] and
ŷm(hm) = ym(hm) 6∈ U . Hence we conclude that z ≡ 0 is not the unique solution of
(2.1) satisfying z(0) = 0.

Finite-time repellers are called terminal repellers in [7], [23] and some of the refer-
ences therein. Reference [5] gives an example of a one-degree-of-freedom Lagrangian
system having a finite-time saddle, while in [4] finite-time saddles arise in the con-
trolled double integrator. Proposition 3.2 implies that a system exhibits spontaneous
and unpredictable departure from an equilibrium state that is a finite-time repeller.
This property of finite-time repellers was used in [5] as an example of indeterminacy
in classical dynamics, while [23] and some of the references contained therein postu-
late finite-time repellers as models of irreversibility and unpredictability in complex
systems. Finally, [7] proposed a fast global optimization algorithm which utilizes the
tendency of solutions to rapidly escape from a neighborhood of a finite-time repeller.

Sections 3.25 and 3.26 in [1] contain sufficient conditions for (2.1) to possess
multiple solutions with the initial value 0. In view of Proposition 3.2, these conditions
can also be used to deduce whether the origin is a finite-time repeller. Therefore,
sufficient Lyapunov conditions for the origin to be a finite-time repeller will not be
considered in this paper.

4. Lyapunov theory. The upper right Dini derivative of a function g : [a, b)→
R, b > a, is the function D+g : [a, b)→ R given by

(D+g)(t) = lim sup
h→0+

1

h
[g(t+ h)− g(t)], t ∈ [a, b).(4.1)
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The function g is nonincreasing on [a, b) if and only if (D+g)(t) ≤ 0 for all t ∈ [a, b)
[13, p. 84], [16, p. 347]. If g is differentiable at t, then (D+g)(t) is the ordinary
derivative of g at t.

If the scalar differential equation ẏ(t) = w(y(t)) has the global semiflow µ :
R+ × R → R, where w : R → R is continuous, and g : [a, b) → R is a continuous
function such that (D+g)(t) ≤ w(g(t)) for all t ∈ [a, b), then g(t) ≤ µ(t, g(a)) for
all t ∈ [a, b). Proofs and more general versions of this result, which is known as the
comparison lemma, can be found in [13, sect. 5.2], [15, sect. 2.5], [16, Chap. IX], and
[22, sect. 4]. The comparison lemma will be used along with the scalar system of
Example 2.1 in the proofs of the main results of this section and the next.

The following lemma will prove useful in the rest of the development.
Lemma 4.1. Let V : A → R be a continuous function defined on the open set

A ⊆ Rn. Let B be an open set such that B ⊂ A, let Ωκ = {x ∈ B : V (x) < κ}, where
κ < infz∈bd B V (z), and let p : R → R be a continuous function satisfying p(κ) > 0.
If y : [a, b)→ A is a continuous function that satisfies y(a) ∈ Ωκ and satisfies

(D+(V ◦ y))(t) ≤ −p(V ◦ y(t))(4.2)

for every t ∈ [a, b) such that y(t) ∈ B, then y(t) ∈ Ωκ for all t ∈ (a, b).
Proof. The assertion is vacuously true if Ωκ is empty. Therefore, let y : [a, b)→ A

be a continuous function satisfying the hypotheses in the statement of the lemma.
Note that by the choice of κ and the continuity of V , bd Ωκ ⊆ {x ∈ B : V (x) = κ}.

First suppose that y(a) ∈ bd Ωκ. Since p, V , and y are continuous and p(V (y(a)))
= p(κ) > 0, it follows that there exists s > 0 such that p(V (y(t))) > 0 for all
t ∈ [a, a + s). Moreover, s may be chosen such that y(t) ∈ B for all t ∈ [a, a + s).
Equation (4.2) now implies that V ◦ y is strictly decreasing on [a, a + s) so that
y(t) ∈ Ωκ for all t ∈ (a, a+ s).

Now suppose y(h) ∈ Ωκ for some h ∈ [a, b). If y(t) 6∈ Ωκ for some t ∈ [h, b), then,
by continuity, there exists τ ∈ (h, b) such that y(τ) ∈ bd Ωκ and y(t) ∈ Ωκ for all
t ∈ [h, τ). Therefore, y satisfies (4.2) on [h, τ). Since p, V , and y are continuous and
p(V (y(τ))) = p(κ) > 0, it follows that there exists s > 0 such that p(V (y(t))) > 0 for
all t ∈ [τ − s, τ). Equation (4.2) now implies that V ◦ y is nonincreasing on [τ − s, τ)
so that κ = V (y(τ)) ≤ V (y(τ − s)) < κ, which is a contradiction. Hence we conclude
that y(t) ∈ Ωκ for all t ∈ [h, b).

It follows from the above two facts that if y(a) ∈ Ωκ, then y(t) ∈ Ωκ for all
t ∈ (a, b).

Given a continuous function V : D → R, the upper-right Dini derivative of V
along the solutions of (2.1) is a R-valued function V̇ given by

V̇ (x) = (D+(V ◦ ψx))(0).(4.3)

V̇ (x) is defined for every x ∈ D for which ψx is defined. It is easy to see that V̇ (0), if
defined, is 0. Also, since ψ is a local semiflow, it can be shown that if ψx(t) is defined,
then

V̇ (ψx(t)) = (D+(V ◦ ψx))(t).(4.4)

It can also be shown that if V is locally Lipschitz at x ∈ D\{0}, then [13, sect. 5.1],
[16, p. 353], [22, p. 3]

V̇ (x) = lim sup
h→0+

1

h
[V (x+ hf(x))− V (x)].(4.5)
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If V is continuously differentiable on D\{0}, then (4.3) and (4.5) both yield the Lie
derivative

V̇ (x) =
d(V ◦ ψx)

dt
(0) =

∂V

∂x
(x)f(x), x ∈ D\{0}.(4.6)

A function V : D → R is said to be proper if V −1(K) is compact for every compact
set K ⊂ R. Note that if D = Rn and V is radially unbounded, then V is proper.

We are now ready to state the main result of this paper. Versions of this result
have either appeared without proof or have been used implicitly in [3], [4], [11], [18],
[19].

Theorem 4.2. Suppose there exists a continuous function V : D → R such that
the following conditions hold:

(i) V is positive definite.
(ii) There exist real numbers c > 0 and α ∈ (0, 1) and an open neighborhood

V ⊆ D of the origin such that

V̇ (x) + c(V (x))α ≤ 0, x ∈ V\{0}.(4.7)

Then the origin is a finite-time-stable equilibrium of (2.1). Moreover, if N is as in
Definition 2.2 and T is the settling-time function, then

T (x) ≤ 1

c(1− α)
V (x)1−α, x ∈ N ,(4.8)

and T is continuous on N . If in addition D = Rn, V is proper, and V̇ takes negative
values on Rn\{0}, then the origin is a globally finite-time-stable equilibrium of (2.1).

Proof. Since V is positive definite and V̇ takes negative values on V\{0}, it follows
that y ≡ 0 is the unique solution of (2.1) on R+ satisfying y(0) = 0 [1, sect. 3.15] [22,
Thm. 1.2, p. 5]. Thus every initial condition in D has a unique solution in forward
time. Moreover, V̇ (0) = 0 and thus (4.7) holds on V.

Let U ⊆ V be a bounded open set such that 0 ∈ U and U ⊂ D. Then bd U
is compact and 0 6∈ bd U . The continuous function V attains a minimum on bd U
and by positive definiteness, minx∈bd U V (x) > 0. Let 0 < β < minx∈bd U V (x) and
N = {x ∈ U : V (x) < β}. N is nonempty since 0 ∈ N , open since V is continuous,
and bounded since U is bounded.

Now, consider x ∈ N and let c and α be as in the theorem statement above. By
uniqueness, ψx : [0, τx) → D is the unique right maximally defined solution of (2.1)
for the initial condition x. For every t ∈ [0, τx) such that ψx(t) ∈ U , (4.4) and (4.7)
yield

(D+(V ◦ ψx))(t) ≤ −c(V ◦ ψx(t))α.(4.9)

Thus y = ψx satisfies the hypotheses of Lemma 4.1 with A = D, B = U , κ = β,
Ωκ = N , and p(h) = chα for h ∈ R+. Therefore, by Lemma 4.1, ψx(t) ∈ N for all
t ∈ [0, τx). Now ψx satisfies the hypotheses of Proposition 2.1 with K = N . Therefore,
by Proposition 2.1, ψx is defined and satisfies (4.9) on R+. Thus ψ : R+ ×N → N is
a continuous global semiflow satisfying (2.3) and (2.4).

Next, applying the comparison lemma to the differential inequality (4.9) and the
scalar differential equation (2.7) yields

V (ψ(t, x)) ≤ µ(t, V (x)), t ∈ R+, x ∈ N ,(4.10)
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where µ is given by (2.8) with k = c. From (2.8), (4.10), and the positive-definiteness
of V , we conclude that

ψ(t, x) = 0, t ≥ 1

c(1− α)
(V (x))1−α, x ∈ N .(4.11)

Since ψ(0, x) = x and ψ is continuous, inf{t ∈ R+ : ψ(t, x) = 0} > 0 for x ∈
N\{0}. Also, it follows from (4.11) that inf{t ∈ R+ : ψ(t, x) = 0} < ∞ for x ∈ N .
Define T : N → R+ by using (2.6). It is a simple matter to verify that T and N
satisfy (i) of Definition 2.2 and thus T is the settling-time function on N . Lyapunov
stability follows by noting from (4.7) that V̇ takes negative values on V\{0}. Equation
(4.8) follows from (4.11) and (2.6). Equation (4.8) implies that T is continuous at the
origin and hence, by Proposition 2.4, continuous on N .

If D = Rn and V is proper, then global finite-time-stability is proven in the same
way that global asymptotic stability is proven using radially unbounded Lyapunov
functions. See, for instance, [15, Thm. 3.2], [22, Thm. 11.5].

Remark 4.1. It is difficult to compute V̇ by using (4.3) unless solutions to (2.1)
are known. Thus, in practice, it will often be more convenient to apply Theorem 4.2
with a Lipschitz continuous or a continuously differentiable function V so that V̇ is
given by (4.5) or (4.6), respectively.

Theorem 4.2 implies that for a system with a finite-time-stable equilibrium and
a discontinuous settling-time function, such as the system considered in Example 2.2,
there does not exist a Lyapunov function satisfying the hypotheses of Theorem 4.2. In
the case that the settling-time function is continuous, the following theorem provides
a converse to the previous one.

Theorem 4.3. Suppose the origin is a finite-time-stable equilibrium of (2.1) and
the settling-time function T is continuous at 0. Let N be as in Definition 2.2 and let
α ∈ (0, 1). Then there exists a continuous function V : N → R such that the following
conditions are satisfied:

(i) V is positive definite.
(ii) V̇ is real valued and continuous on N and there exists c > 0 such that

V̇ (x) + c(V (x))α ≤ 0, x ∈ N .

Proof. By Proposition 2.4, the settling-time function T : N → R+ is continuous.

Define V : N → R+ by V (x) = (T (x))
1

1−α . Then V is continuous and positive
definite and, by (2.5), V̇ (0) = 0. For x ∈ N\{0}, (2.10) implies that V ◦ ψx is
continuously differentiable on [0, T (x)) so that (4.3) can be easily computed as V̇ (x) =
− 1

1−α (T (x))
α

1−α = − 1
1−α (V (x))α. Thus V̇ is real valued, continuous, and negative

definite on N and satisfies V̇ (x) + c(V (x))α = 0 for all x ∈ N with c = 1
1−α .

Equation (4.8) implies that if V in Theorem 4.2 is Hölder continuous at 0 then
so is T . However, as shown by Example 2.3, the settling-time function need not
be Hölder continuous at the origin. Thus the conclusion regarding the continuity of
V in Theorem 4.3 cannot be strengthened to Hölder continuity. In particular, the
scalar system considered in Example 2.3, where T is not Hölder continuous, does
not admit a continuously differentiable or Lipschitz continuous Lyapunov function
that satisfies the hypotheses of Theorem 4.2, since either Lipschitz continuity or dif-
ferentiability implies Hölder continuity. As the next section shows, the existence of
Lipschitz continuous Lyapunov functions is of importance in studying the behavior of
finite-time-stable systems in the presence of perturbations.
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5. Sensitivity to perturbations. In a realistic problem, (2.1) might represent
a nominal model that is valid only under ideal conditions, while a more accurate
description of the system might be provided by the perturbed model

ẏ(t) = f(y(t)) + g(t, y(t)),(5.1)

where the perturbation term g results from disturbances, uncertainties, parameter
variations, or modelling errors. In this section we investigate the sensitivity to per-
turbations of systems with a finite-time-stable equilibrium by studying the behavior
of solutions of the perturbed system (5.1) in a neighborhood of the finite-time-stable
equilibrium of the nominal system (2.1).

For simplicity, we consider only continuous perturbation terms g : R+ ×D → Rn
so that the local existence of solutions of the perturbed system (5.1) is guaranteed.
Right maximally defined solutions of (5.1) are defined as in section 2. We will need
the following extension of Proposition 2.1 to time-varying systems. Proofs appear in
[12, pp. 17–18], [22, Thm. 3.3, p. 12].

Proposition 5.1. If y : [0, τ)→ D is a right maximally defined solution of (5.1)
such that y(t) ∈ K for all t ∈ [0, τ), where K ⊂ D is compact, then τ =∞.

If y : [0, τ) → D is a solution of (5.1) and V : D → R is Lipschitz continuous on
D with Lipschitz constant M , then it can be shown that

(D+(V ◦ y))(t) ≤ V̇ (y(t)) +M‖g(t, y(t))‖, t ∈ [0, τ),(5.2)

where V̇ is computed along the solutions of the unperturbed system (2.1) using equa-
tion (4.3). See, for instance, the proof of Lemma X.5.1 in [12].

The following theorem concerns the behavior of finite-time-stable systems un-
der bounded perturbations. Such perturbations, include, as a special case, bounded
persistent disturbances of the form g(t, y(t)) = v(t).

Theorem 5.2. Suppose there exists a function V : D → R such that V is positive
definite and Lipschitz continuous on D, and satisfies (4.7), where V ⊆ D is an open
neighborhood of the origin, c > 0 and α ∈ (0, 1

2

)
. Then there exist δ0 > 0, l > 0,

Γ > 0, and an open neighborhood U of the origin such that, for every continuous
function g : R+ ×D → Rn with

δ = sup
R+×D

‖g(t, x)‖ < δ0,(5.3)

every right maximally defined solution y of (5.1) with y(0) ∈ U is defined on R+ and
satisfies y(t) ∈ U for all t ∈ R+ and

‖y(t)‖ ≤ lδγ , t ≥ Γ,(5.4)

where γ = 1−α
α > 1.

Proof. By Theorem 4.2, the origin is a finite-time-stable equilibrium for (2.1).
Let N be as in Definition 2.2 and let T : N → R+ be the settling-time function.
By Proposition 2.4, there exists r > 0 and an open neighborhood Ur ⊂ N ∩ V
of 0 such that T (x) ≥ r‖x‖ for x ∈ Ur. Also, by Theorem 4.2, T satisfies (4.8).
Without any loss of generality, we assume that Ur is compact and Ur ⊂ N ∩ V. Let
U = {x ∈ Ur : V (x) < β}, where 0 < β < minz∈bd Ur V (z). Then U is nonempty,
open, and bounded.

Let M > 0 be the Lipschitz constant of V and let δ0 > 0 satisfy cβα− 2Mδ0 > 0.
Suppose g : R+ ×D → Rn is a continuous function that satisfies (5.3) and consider a



FINITE-TIME STABILITY 763

right maximally defined solution y : [0, τ)→ D of (5.1) with x = y(0) ∈ U . Equations
(4.7), (5.2), and (5.3) imply that for every t ∈ [0, τ) such that y(t) ∈ Ur,

(D+(V ◦ y))(t) ≤ −c(V (y(t)))α +Mδ.(5.5)

Since cβα −Mδ > cβα − 2Mδ > cβα − 2Mδ0 > 0, (5.5) implies that y satisfies the
hypotheses of Lemma 4.1 with A = D, B = Ur, κ = β, Ωκ = U , and p(h) = chα−Mδ
for h ∈ R+. Therefore, Lemma 4.1 implies that y(t) ∈ U for t ∈ [0, τ). The right
maximally defined solution y satisfies the hypotheses of Proposition 5.1 with K = U .
Thus, by Proposition 5.1, y is defined on R+ and (5.5) holds on R+.

Now, let W = {x ∈ U : V (x) < ( 2Mδ
c )

1
α }. If y(τ) ∈ W for some τ > 0, then (5.5)

implies that y satisfies the hypotheses of Lemma 4.1 on [τ,∞) with A = Ur, B = U ,

κ =
(

2Mδ
c

) 1
α , Ωκ =W, and p(h) = chα −Mδ for h ∈ R+, and hence y(t) ∈ W for all

t > τ . Therefore, suppose y(0) = x 6∈ W so that y−1(W), which is open by continuity,
is of the form (tx,∞) with tx > 0. Since y(t) 6∈ W for all t ∈ [0, tx], it follows that

V (y(t)) ≥ ( 2Mδ
c

) 1
α for all t ∈ [0, tx]. Equation (5.5) now implies that

(D+(V ◦ y))(t) ≤ −1

2
c(V (y(t)))α, t ∈ [0, tx).(5.6)

Applying the comparison principle to the differential inequality (5.6) and the scalar
differential equation (2.7) we obtain

(V ◦ y)(t) ≤ µ(t, V (x)), t ∈ [0, tx),(5.7)

where µ is given by (2.8) with k = 1
2c. By continuity, the inequality (5.7) also holds

for t = tx. Since V (y(tx)) ≥ ( 2Mδ
c

) 1
α > 0, the comparison (5.7) yields µ(tx, V (x)) >

0. Equation (2.8) now gives tx < 2
c(1−α) (V (x))1−α < 2

c(1−α)β
1−α. Thus V (y(t))

<
(

2Mδ
c

) 1
α for t ≥ Γ

4
= 2

c(1−α)β
1−α. It now follows from (2.11) and (4.8) that for

t > Γ,

‖y(t)‖ ≤ 1

rc(1− α)
(V (y(t)))1−α ≤ 1

rc(1− α)

(
2Mδ

c

) 1−α
α

.

Equation (5.4) now follows by choosing l
4
= 1

rc(1−α)

(
2M
c

) 1−α
α > 0.

Note that in Theorem 4.3, α can be chosen to be arbitrarily small. Hence the
requirement in Theorem 5.2 that α lie in

(
0, 1

2

)
is not restrictive. This choice of α

leads to γ > 1 in (5.4) which implies that for δ in equation (5.3) sufficiently small,
the ultimate bound (5.4) on the state is of higher order than the bound on the per-
turbation. In analogous theorems on exponential stability for Lipschitzian systems, α
in equation (4.7) is at least 1 [15, Thm. 3.12], [22, Thm. 19.2] while γ in (5.4) is at
most 1 [15, Lemma 5.2]. Thus for a Lipschitzian system with an exponentially stable
equilibrium at the origin, the ultimate bound on the state can only be guaranteed to
be of the same order of magnitude as the perturbation and not less. Consequently,
finite-time stability of the origin leads to improved rejection of low-level persistent
disturbances.

The following theorem deals with perturbations that are globally Lipschitz in
the state variables uniformly in time. Such perturbations might represent model
uncertainties.
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Theorem 5.3. Suppose there exists a function V : D → R such that V is positive
definite and Lipschitz continuous on D, and satisfies (4.7), where V ⊆ D is an open
neighborhood of the origin, c > 0 and α ∈ (0, 1

2

)
. Then, for every L ≥ 0, there

exists an open neighborhood U of the origin and Γ > 0 such that, for every continuous
function g : R+ ×D → Rn satisfying

‖g(t, x)‖ ≤ L‖x‖, (t, x) ∈ R+ ×D,(5.8)

every right maximally defined solution y of (5.1) with y(0) ∈ U is defined on R+ and
satisfies y(t) ∈ U , for all t ∈ R+, and y(t) = 0 for all t ≥ Γ.

Proof. By Theorem 4.2, the origin is a finite-time-stable equilibrium for (2.1).
Let N be as in Definition 2.2 and let T : N → R+ be the settling-time function. Fix
L ≥ 0 and let r > 0 be such that c[r(1 − α)]α > (2ML)1−α, where M > 0 is the
Lipschitz constant of V . By Proposition 2.4, there exists an open set Ur ⊂ N ∩V such
that r‖x‖ ≤ T (x) for all x ∈ Ur. Also, by Theorem 4.2, T satisfies (4.8). Without
any loss of generality, we may assume that ‖x‖ < 1 for x ∈ Ur and Ur ⊂ N ∩ V. Let
U = {x ∈ Ur : V (x) < β}, where 0 < β < minz∈bd Ur V (z). Note that U is nonempty,
open, and bounded. Also, α

1−α < 1 so that ‖x‖ ≤ ‖x‖ α
1−α for ‖x‖ < 1. Therefore,

(2.11) and (4.8) yield

2ML‖x‖ ≤ c[rc(1− α)‖x‖] α
1−α ≤ c[c(1− α)T (x)]

α
1−α ≤ c(V (x))α, x ∈ Ur.(5.9)

Next, let x ∈ U and let g : R+ × D → Rn be a continuous function satisfying
(5.8). Consider a right maximally defined solution y : [0, τ) → D of (5.1) such that
y(0) = x. For every t ∈ [0, τ) such that y(t) ∈ Ur, (4.7), (5.2), and (5.8) yield

(D+(V ◦ y))(t) ≤ −c(V ◦ y(t))α +ML‖y(t)‖.(5.10)

Using (5.9) in (5.10) we obtain

(D+(V ◦ y))(t) ≤ − c
2

(V ◦ y(t))α, y(t) ∈ Ur.(5.11)

Lemma 4.1 now applies with A = D, B = Ur, κ = β, Ωκ = U , and p(h) = c
2h

α for
h ∈ R+ so that y(t) ∈ U for t ∈ [0, τ). The hypotheses of Proposition 5.1 are now
satisfied by the right maximally defined solution y of (5.1) with K = U . Hence, by
Proposition 5.1, τ = ∞ and (5.11) holds on R+. Applying the comparison principle
to the differential inequality (5.11) and the scalar differential equation (2.7) yields

(V ◦ y)(t) ≤ µ(t, V (x)), t ∈ R+,(5.12)

where µ is given by (2.8) with k = 1
2c. Equation (2.8) and the inequality (5.12) imply

that y(t) = 0 for t ≥ Γ
4
= 2β1−α

c(1−α) .

The following theorem specializes Theorem 5.3 to time-invariant perturbations
and shows that finite-time stability is preserved under Lipschitzian perturbations.

Theorem 5.4. Suppose there exists a function V : D → R such that V is positive
definite and Lipschitz continuous on D and satisfies (4.7), where V ⊆ D is an open
neighborhood of the origin, c > 0, and α ∈ (0, 1

2

)
. Let g : D → Rn be Lipschitz
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continuous on D and such that the differential equation

ẏ(t) = f(y(t)) + g(y(t))(5.13)

possesses unique solutions in forward time for initial conditions in D\{0}. Then the
origin is a finite-time-stable equilibrium of (5.13).

Proof. Using steps similar to those used in deriving (5.11) above, it can be shown
that V̇ (x) ≤ − c

2 (V (x))α for all x in some open neighborhood of the origin, where V̇
denotes the upper-right Dini derivative of V along the solutions of (5.13). Finite-time
stability now follows from Theorem 4.2.

The existence of a Lipschitz continuous function satisfying the hypotheses of The-
orem 5.4 is sufficient but not necessary for the conclusions to hold. For instance, con-
sider a scalar system of the form (5.13) where the nominal dynamics f are given by
(2.15) in Example 2.3, and g : D → R is Lipschitz continuous on D = {x ∈ R : |x| < 1}
with Lipschitz constant L. As noted at the end of section 4, the nominal dynamics
do not admit a Lipschitz continuous Lyapunov function satisfying the hypotheses of
Theorem 5.4. However, the origin is still a finite-time-stable equilibrium for the per-
turbed system. This can be verified by considering the continuous Lyapunov function
V (x) = (ln |x|)−2, x ∈ D\{0}, V (0) = 0. It is easy to compute V̇ along the solutions
of the perturbed system (5.13) for x 6= 0 and establish that V̇ (x) < −√V (x) for

0 < |x| < e−
√

2L, thus proving finite-time stability by Theorem 4.2. This indicates
that the main results of this section may be valid under the weaker assumption of
finite-time stability with a continuous settling-time function. From the point of view
of stability theory, proofs of these results under such weaker hypotheses are certainly
of interest. However, as observed in Remark 4.1, the Lyapunov functions used to
verify stability properties are often continuously differentiable in practice. In such a
case, the results of this section are immediately applicable.

6. Conclusions. The notion of finite-time stability can be precisely formulated
within the framework of continuous autonomous systems with forward uniqueness.
These assumptions, however, do not imply any regularity properties for the settling-
time function, which may be discontinuous or continuous yet Hölder discontinuous.

Lyapunov and converse Lyapunov results for finite-time stability naturally involve
finite-time scalar differential inequalities. The regularity properties of a Lyapunov
function satisfying such an inequality strongly depend on the regularity properties of
the settling-time function.

Under the assumption of the existence of a Lipschitz continuous Lyapunov func-
tion, finite-time stability leads to better rejection of persistent as well as vanishing
perturbations. Such an assumption, however, is not strictly necessary, as the discus-
sion at the end of section 5 shows.

The paper thus raises certain questions that are important from the point of view
of stability theory. In particular, conditions on the dynamics for the settling-time
function to be Hölder continuous and conditions on the settling-time function that
lead to a stronger converse result than Theorem 4.3 are of interest. Also of interest
are results similar to those given in section 5 but with weaker hypotheses.

As mentioned earlier, a control system under the action of a time-optimal feedback
controller yields a closed-loop system that exhibits finite-time convergence. Hence it
would be interesting to explore the connections between finite-time-stability and time
optimality and relate the results of this paper to results on the time-optimal control
problem.



766 SANJAY P. BHAT AND DENNIS S. BERNSTEIN

REFERENCES

[1] R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordi-
nary Differential Equations, Ser. Real Anal. 6, World Scientific, Singapore, 1993.

[2] M. Athans and P. L. Falb, Optimal Control: An Introduction to the Theory and Its Appli-
cations, McGraw-Hill, New York, 1966.

[3] S. P. Bhat and D. S. Bernstein, Lyapunov Analysis of Finite-Time Differential Equations,
in Proceedings of the American Control Conference, Seattle, WA, 1995, pp. 1831–1832.

[4] S. P. Bhat and D. S. Bernstein, Continuous, finite-time stabilization of the translational
and rotational double integrators, IEEE Trans. Automat. Control, 43 (1998), pp. 678–682.

[5] S. P. Bhat and D. S. Bernstein, Example of indeterminacy in classical dynamics, Internat.
J. Theoret. Phys., 36 (1997), pp. 545–550.

[6] N. P. Bhatia and O. Hajek, Local Semi-Dynamical Systems, Lecture Notes in Math. 90,
Springer-Verlag, Berlin, 1969.

[7] B. C. Cetin, J. Barhen, and J. W. Burdick, Terminal repeller unconstrained subenergy
tunneling (TRUST) for fast global optimization, J. Optim. Theory Appl., 77 (1993), pp. 97–
126.

[8] J.-M. Coron, On the stabilization in finite time of locally controllable systems by means of
continuous time-varying feedback law, SIAM J. Control Optim., 33 (1995), pp. 804–833.

[9] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Math. Appl.,
Kluwer Academic Publishers, Dordrecht, the Netherlands, 1988.
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LAGRANGIAN-SQP METHOD IN HILBERT SPACES∗
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Abstract. An augmented Lagrangian-SQP algorithm for optimal control of differential equa-
tions in Hilbert spaces is analyzed. This algorithm has second-order convergence rate provided that
a second-order sufficient optimality condition is satisfied. The internal approximation of this method
is investigated, and convergence results are presented. A mesh-independence principle for the aug-
mented Lagrangian-SQP method is proved, which asserts that asymptotically the infinite dimensional
algorithm and finite dimensional discretizations have the same convergence property. More precisely,
for sufficiently small mesh-size there is at most a difference of one iteration step between the number
of steps required by the infinite dimensional method and its discretization to converge within a given
tolerance ε > 0. The theoretical results are demonstrated by two optimal control problems for the
Burgers equation.

Key words. nonlinear programming, multiplier methods, internal approximation, mesh-inde-
pendence, Burgers equation
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1. Introduction. The numerical treatment of optimal control problems for non-
linear partial differential equations arising in diverse areas of science has received an
increasing amount of attention in the recent past. We mention optimal control prob-
lems in combustion (see [Lio85] for control of parabolic explosive systems), in phase
field modeling [CH91, HS94], in superconductivity [GHS91, Tin75], and in fluid dy-
namics (see [Gun95] and references therein). There is great interest for the numerical
treatment of such problems.

In this work we study a general class of optimal control problems for nonlinear
differential equations of the following type

(P) minimize J(x) subject to e(x) = 0,

where J : X → R and e : X → Y are sufficiently smooth functions; X and Y are
Hilbert spaces. We assume that (P) has a local solution x∗ and denote by λ∗ the
associated Lagrange multiplier.

To solve (P) we use the augmented Lagrangian-SQP (sequential quadratic pro-
gramming) technique as developed in [IK96b]. In this method the differential equation
is treated as an equality constraint which is realized by a Lagrangian term together
with a penalty functional. We present an algorithm which has second-order con-
vergence rate and depends upon a second-order sufficient optimality condition. In
comparison with SQP methods, the augmented Lagrangian-SQP method has the ad-
vantage of a more global behavior. For certain examples we found it to be less sensitive
with respect to the starting values, and the region for second-order convergence rate
was reached earlier. We shall point out that the penalty term of the augmented La-
grangian functional need not to be implemented but rather that it can be realized by
a first-order Lagrangian update.
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Since the algorithm cannot be executed in infinite dimensional spaces, (P) is re-
placed by a family of internal approximations

(Ph) minimize Jh(xh) subject to eh(xh) = 0,

indexed by some mesh-size parameter h, where now Jh : Xh → R, eh : Xh → Yh,
{Xh}h>0, and {Yh}h>0 are given families of finite dimensional real Hilbert spaces.
We propose the corresponding finite dimensional discretization of the augmented
Lagrangian-SQP method. Using convergence properties in subspaces of X and Y , the
existence of x∗ solving (P) implies the existence of a solution to (Ph) for sufficiently
small h. Convergence and rate of convergence results of the discretized algorithm
are proved. Moreover, when the augmented Lagrangian-SQP algorithm and its fi-
nite dimensional discretization are stopped after the nth step, the difference between
the iterates of the finite and the infinite dimensional methods can be estimated by
the discretization error of the approximation scheme used. Since we have to solve a
saddle-point problem at each level of the iteration process, these results depend on
the discrete Babuška–Brezzi condition for the saddle-point problem.

We prove a mesh-independence principle for the augmented Lagrangian-SQP
method. The proof is essentially based on the proof of the mesh-independence prin-
ciple for the Newton method given in [ABPR86]. The mesh-independence principle
asserts that, when the augmented Lagrangian-SQP method is applied to an optimal
control problem in Hilbert spaces as well as to some finite dimensional discretization
of that problem, then the behavior of the discretized process is asymptotically the
same as that for the original problem. We shall give sufficient conditions for mesh-
independence, provided the mesh-size is smaller than an explicitly given threshold
parameter. The sufficient assumptions for mesh-independence are strongly related to
the assumptions that are sufficient for the convergence of the discretized augmented
Lagrangian-SQP algorithm.

Mesh-independence allows us to predict the convergence of the method applied
to the discretized problem when the method has been analyzed for the infinite dimen-
sional problem. Further, it can be used to improve the performance of the method.
Since we are interested in the solution of an infinite dimensional problem, it is usu-
ally necessary to choose reasonably fine discretizations. This leads to a large number
of variables in the discrete minimization problem and therefore to a large amount
of work per iteration. If the method is fixed, the only possibility for reducing the
total amount of work consists of a good choice in the starting value. For these prob-
lems it is obvious that we must use information from the coarse grids to obtain good
starting values for the finer discretizations, which leads to mesh-refinement strategies.
Mesh-independence is a theoretical justification for mesh-refinement strategies and,
moreover, it can be used to design the refinement process and to predict the overall
performance of the algorithm.

Let us put the present work into perspective with related research efforts. Polyak
and Tret’yakov [PT73] give an elegant treatise of the augmented Lagrangian method.
In the book of Fortin and Glowinski [FG83] augmented Lagrangian methods are de-
veloped systematically for equality constraints as a technique for solving nonlinear
partial differential equations. In [IK90b] Ito and Kunisch apply a technique realized
by an augmented Lagrangian formulation for parameter estimation in elliptic partial
differential equations. An augmented Lagrangian method for the minimization of a
nonlinear functional in the presence of an equality and an affine inequality constraint
is considered in [IK90a]. Ito, Kroller, and Kunisch discuss their numerical experience
with an augmented Lagrangian method for estimating the coefficient in an elliptic
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equation from some given measurement [IKK91]. We refer to the paper [KP91], where
Kunisch and Peichl develop an estimation procedure for the diffusion coefficient in a
parabolic partial differential equation from the knowledge of the state. In [IK96b] Ito
and Kunisch continue their efforts to develop stable and efficient techniques to solve
parameter estimation problems formulated as nonlinear optimization problems. Such
problems are ill-posed in the sense of a possible lack of continuous dependence of the
minimizers with respect to perturbations of the problem. The authors concentrate on
second-order methods and analyze the augmented Lagrangian-SQP technique with
a second-order update of the Lagrange multiplier in a general Hilbert space setting.
Quadratical convergence for smooth optimization problems satisfying the second-order
sufficient optimality condition is proved. In [IK96a] the second-order sufficient opti-
mality condition is analyzed and numerical test examples are given. We refer to the
paper [KV97], where Kunisch and Volkwein study two augmented Lagrangian-SQP
algorithms for optimal control of partial differential equations. The approximation of
one of these methods is analyzed. Examples illustrate the theoretical investigations.
Further, in [Vol99] the application of the augmented Lagrangian-SQP algorithm to op-
timal control problems for the stationary Burgers equation is studied. For some classes
of nonlinear boundary value problems the mesh-independence principle for Newton’s
method is proved in [AM78] and [AMP79], and in [AM78], [ABM81], and [McC78] it
is used for the construction of some mesh-refinement strategies. In [ABPR86] a proof
of the mesh-independence principle for Newton’s method is presented in its sharpest
formulation for a general class of discretizations of nonlinear operator equations un-
der fairly general and natural conditions on the operator and the discretizations. The
paper combines the results of [AB87] with the procedure in [PR84]. Argyros extends
the validity of the mesh-independence principle for nonlinear equations and their dis-
cretizations to include operators whose derivatives are only Hölder-continuous [Arg90].
In [Arg92] Argyros proved a mesh-independence principle for operator equations and
the secant method. A mesh-independence result of Newton’s method for generalized
equations is achieved by Alt in [Alt95]. Kelley and Sachs prove a mesh-independence
result for the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method in Hilbert spaces
and apply it to a class of unconstrained optimal control problems in [KS87]. In [KS91]
Kelley and Sachs consider globally convergent modifications of Newton’s method, such
as the Armijo rule. It is shown that for proper discretization schemes the convergence
behavior of the iteration is the same for the discrete problems as it is for the in-
finite dimensional problem. Optimal control problems and their discretizations are
considered by Kelley and Sachs in [KS92]. To solve such discretized problems by
the gradient projection method the finite identification of active constraints will be
necessary. These authors prove a mesh-independence result using a proper condition
on the convergence of the gradients. In [Hei93] Heinkenschloss extends the results
of [ABPR86] to a norm constrained Gauss–Newton method using a somewhat differ-
ent discretization scheme based on Galerkin approximations. Deuflhard and Potra
present a theoretical characterization of the asymptotic mesh-independence of New-
ton’s method [DP92]. The theory does not need any uniform Lipschitz assumptions.
The results are obtained by means of a refined Newton–Mysovskii theorem in an
affine invariant formulation. A theoretical refinement discussion is given in [Rhe80].
Further, refinement strategies are presented in [Axe93] for Newton-type methods, in
[KS90] for quasi-Newton methods, and in [HLS91] for the Gauss–Newton method.

The paper is organized as follows. In section 2 the augmented Lagrangian-SQP
method is proposed and a convergence result is presented, which states the second-
order rate of convergence. In section 3 we treat the internal approximation of the
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algorithm. We prove the converge and rate of convergence for the discretized ver-
sion of the augmented Lagrangian-SQP method. The mesh-independence principle
is developed in section 4. As an application we present numerical examples for op-
timal control problems for the Burgers equation in sections 5 and 6, where the cost
functional is of tracking type.

It is appropriate to introduce some notations that will be used throughout the
paper. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be a normed linear space. The set B(v; r)
denotes an open ball of radius r > 0 centered at the point v ∈ V . The open set
U ⊂ V is called a neighborhood of v ∈ U if B(v; r) ⊂ U for some r > 0. By L(V,W )
we denote the normed linear space of all bounded linear operators from V into W
and set L(V ) = L(V, V ). For A ∈ L(V,W ) the set A(V ) ⊆ W is called the range of
A and is denoted by ran A. The set {v ∈ V : Av = 0} is called the kernel of A and
is denoted by ker A. For arbitrary T > 0 and B a Banach space L2(0, T ;B) denotes
the (equivalence class of) square integrable functions in the sense of Bochner.

2. The augmented Lagrangian-SQP method. We consider the constrained
minimization problem

(P) minimize J(x) subject to e(x) = 0,

where J : X → R, e : X → Y with X and Y real Hilbert spaces. For brevity we
set Z = X × Y . The space Z is endowed with the Hilbert space product topology.
The Fréchet-derivatives with respect to the variable x will be denoted by primes.
We do not distinguish by notation between a functional in the dual and its Riesz
representation in the Hilbert space. Let us start with two examples that motivate our
work.

Example 2.1. Let Ω = (0, 1), Ω◦ a nonempty subset of Ω with positive measure,
and f ∈ L2(Ω). For a control u ∈ L2(Ω◦) the state y ∈ H1(Ω) is given by the solution
of the stationary Burgers equation{ −νy′′ + yy′ = f +Bu in Ω,

y(0) = yl, y(1) = yr,

where B ∈ L(L2(Ω◦), L2(Ω)) is an extension operator defined by

Bq =

{
q in Ω◦,
0 in Ω \ Ω◦.

For controls u ∈ L2(Ω◦) we associate the cost of tracking type

J(y, u) =
1

2

∫
Ω

|y − z|2 dx+
α

2

∫
Ω◦
|u|2 dx,

where z ∈ L2(Ω) and α > 0 is fixed. We introduce the operator e = (e1, e2, e3) :
H1(Ω)× L2(Ω◦)→ H1

0 (Ω)× R2 by

e(y, u) =
(
(−∆)−1(−νy′′ + yy′ − f −Bu), y(0)− yl, y(1)− yr

)
,

where ∆ denotes the Laplace operator from H1
0 (Ω) to H−1(Ω). The resulting optimal

control problem is in the form (P) with X = H1(Ω)×L2(Ω◦) and Y = H−1(Ω)×R2.
Example 2.2. Let Ω be the interval (0, 1) and Q = (0, T ] × Ω for given T > 0.

Moreover, let f ∈ L2(0, T ;L2(Ω)) and φ ∈ L2(Ω). We define the space W (0, T ) by

W (0, T ) =
{
ϕ : ϕ ∈ L2(0, T ;H1

0 (Ω)), ϕt ∈ L2(0, T ;H−1(Ω))
}
,
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which is a Hilbert space endowed with the common inner product. For a control
u ∈ L2(0, T ;L2(Ω)) the state y ∈ W (0, T ) is given by the weak solution of the
unsteady Burgers equation

yt − νyxx + yyx = f + u in Q,
y(t, 0) = y(t, 1) = 0 for t ∈ (0, T ) a.e.,

y(0, x) = φ(x) for all x ∈ Ω,
(2.1)

where ν > 0 denotes the viscosity parameter. This equation was extensively devel-
oped by Burgers as a simplified fluid flow model which nevertheless exhibits some of
the important aspects of turbulence [Bur40]. Later it was derived by Lighthill as a
second-order approximation to the one-dimensional unsteady Navier–Stokes equations
[Lig56].

With controls u ∈ L2(0, T ;L2(Ω)) we associate the cost of tracking type

J(y, u) =
1

2
‖y − z‖2L2(0,T ;L2(Ω)) +

α

2
‖u‖2L2(0,T ;L2(Ω)),

where z ∈ W (0, T ) and α > 0 is fixed. Setting X = W (0, T ) × L2(0, T ;L2(Ω)) and
Y = L2(0, T ;H1

0 (Ω))× L2(Ω) and defining e = (e1, e2) by

e(y, u) =
(
(−∆)−1 (yt − yxx + yyx − f − u) , y(0, ·)− φ) ,

where the Laplace operator ∆ was introduced in Example 2.2, the optimal control
problem can be written in the form (P).

Assumption 1. Problem (P) has a local solution x∗; i.e., there exists an ε > 0
such that J(x) ≥ J(x∗) for all x ∈ B(x∗; ε) satisfying e(x) = 0. Further, J and e are
twice continuously Fréchet-differentiable, and the mappings J ′′ and e′′ are Lipschitz-
continuous in the neighborhood U1 ⊂ X of x∗.

Remark 2.3. It is proved in [Vol97] that Assumption 1 holds for Example 2.2 and
Example 2.1.

The Lagrangian functional L : Z → R associated with (P) is given by

L(x, λ) = J(x) + 〈e(x), λ〉Y ,
where 〈· , ·〉Y denotes the inner product in Y .

Assumption 2. The linearization e′(x∗) of e at x∗ is surjective.
Remark 2.4. Assumption 2 is satisfied for Examples 2.2 and 2.1; see [Vol97].
With Assumption 2 holding there exists a Lagrange multiplier λ∗ ∈ Y such that

the following first-order necessary optimality condition is satisfied [Lue69]:

L′(x∗, λ∗) = 0 , e(x∗) = 0.(2.2)

We also make use of the second-order sufficient optimality condition.
Assumption 3. The operator L′′(x∗, λ∗) is coercive on the kernel of e′(x∗); i.e.,

there exists a constant κ > 0 such that

〈L′′(x∗, λ∗)v, v〉X ≥ κ ‖v‖2X for all v ∈ ker e′(x∗),

where 〈· , ·〉X denotes the inner product in X.
Remark 2.5. For Example 2.2 and Example 2.1 it is shown in [Vol97] that the

second-order sufficient optimality condition is satisfied if the residues ‖y∗ − z‖L2(Q)

and ‖y∗ − z‖L2(Ω), respectively, are sufficiently small.
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Let J and e be twice continuously Fréchet-differentiable in U1. With Assumption 3
holding, the solution x∗ of (2.2) is a locally unique solution to (P) [MZ79]. Due to
Assumption 2 we can further assume that there exists a neighborhood U2 ⊆ U1 of
x∗ such that e′(x) is surjective for all x ∈ U2. Assumption 3 implies that there is a
neighborhood U3 ⊂ Z of (x∗, λ∗) such that

〈L′′(x, λ)v, v〉X ≥ κ◦ ‖v‖2X for all v ∈ ker e′(x)

for (x, λ) ∈ U3 and for a constant κ◦ > 0. Henceforth we denote by U = UX × UY
with UX ⊂ X and UY ⊂ Y a neighborhood of (x∗, λ∗) such that

(a) J and e are twice Fréchet-differentiable on UX and their second Fréchet-
derivatives are Lipschitz-continuous,

(b) e′(x) is surjective, and
(c) L′′(x, λ) is coercive on the kernel of e′(x) for all (x, λ) ∈ U .
For any c ≥ 0 the augmented Lagrangian functional is defined by

Lc(x, λ) = L(x, λ) +
c

2
‖e(x)‖2Y .

It will be convenient to introduce the matrix of operators

M(x, λ) =

(
L′′(x, λ) e′(x)∗

e′(x) 0

)
for all (x, λ) ∈ U,(2.3)

where e′(x)∗ : Y → X denotes the adjoint of e′(x) in UX . To find x∗ numerically we
observe that the first-order necessary optimality condition (2.2) implies that (x∗, λ∗)
is a solution to

(OS) L′c(x, λ) = L′(x, λ+ ce(x)) = 0, e(x) = 0 for all c ≥ 0.

Remark 2.6. With Assumptions 1–2 holding, (x∗, λ∗) is a locally unique solution
to (OS).

We solve problem (OS) by the Newton method, where we avoid the explicit cal-
culation of the augmented Lagrangian functional and its derivatives [IK96b].

Algorithm 1.
(a) Choose (x0, λ0) ∈ U , c ≥ 0 and put n = 0.
(b) Set λ̃n = λn + ce(xn).
(c) Solve for (x̄, λ̄)

M(xn, λ̃n)

(
x̄− xn
λ̄− λ̃n

)
= −

(
L′(xn, λ̃n)
e(xn)

)
.(2.4)

(d) Set (xn+1, λn+1) = (x̄, λ̄), n = n+ 1 and go back to (b).
Remark 2.7.
(a) Since X and Y are Hilbert spaces, it can be shown that the update (x̄, λ̄) of

Algorithm 1 can equivalently be obtained from(
L′′c (xn, λn) e′(xn)∗

e′(xn) 0

)(
x̄− xn
λ̄− λn

)
= −

(
L′c(x

n, λn)
e(xn)

)
,

which corresponds to a Newton step applied to (OS). This form of the itera-
tion requires the implementation of e(xn)∗e′(xn), whereas steps (b) and (c)
of Algorithm 1 do not. In the case of Examples 2.1 and 2.2 this implies an
additional solve of the Poisson equation.
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(b) If we set c = 0, Algorithm 1 becomes the SQP-method.
In each iteration of Algorithm 1 the saddle-point problem (2.4) needs to be solved.

With Assumptions 2 and 3 holding, problem (2.4) has a unique solution (x̄, λ̄) for all
(xn, λ̃n) ∈ U (see [BF91]) and there exists a constant η > 0 satisfying

‖M−1(x, λ)‖L(Z) ≤ η for all (x, λ) ∈ U.

To formulate the convergence result for Algorithm 1 we introduce the following
constants. Let rmax > 0 denote the largest radius of a ball centered at (x∗, λ∗) and
contained in the neighborhood U , γe stands for the uniform Lipschitz-constant of e
in UX , and γM denotes the uniform Lipschitz-constant of M in U . Moreover, we set

r∗ = min

(
rmax√

max(2, 1 + 2c2γ2
e )
,

2

γMηmax(2, 1 + 2c2γ2
e )

)
.(2.5)

For the proof of the next theorem we refer the reader to [IK96b].
Theorem 2.8. Let Assumptions 1, 2, and 3 hold and let the starting value

(x0, λ0) belong to the open ball B((x∗, λ∗); r∗). Then Algorithm 1 is well-defined and

‖(xn+1, λn+1)− (x∗, λ∗)‖Z ≤ C̃ ‖(xn, λn)− (x∗, λ∗)‖2Z ,(2.6)

where C̃ = 1
2 γMηmax(2, 1 + 2c2γ2

e ).
Remark 2.9.
(a) With Assumptions 1–3 holding, Algorithm 1 has second-order rate of conver-

gence, where the convergence rate factor C̃ depends quadratically on c.
(b) We shall need the radius r∗ in the formulation of Corollary 3.19.
(c) From (2.5) and (2.6) we derive that (xn, λn) ∈ U holds for all n = 0, 1, . . .

and that the sequence {‖(xn, λn)− (x∗, λ∗)‖Z}n∈N is strictly decreasing.

3. Internal approximation and convergence theorems. This section is de-
voted to the internal approximation of Algorithm 1. In many applications X and
Y are infinite dimensional Hilbert spaces, which have to be discretized for numerical
realization of (P); see Examples 2.2 and 2.1. For this purpose we suppose that we
are given a family {h}, h > 0, with accumulation point zero and families {Xh}h and
{Yh}h of Hilbert spaces with finite dimension. In practice, the parameter h is called
the mesh-size of the finite dimensional spaces and h varies over a sequence. To shorten
notation we set Zh = Xh × Yh for every h.

Let pXh ∈ L(Xh, X) and pYh ∈ L(Yh, Y ) be given injective prolongations. In
addition, we introduce surjective restrictions rXh ∈ L(X,Xh) and rYh ∈ L(Y, Yh). For
brevity we set ph = (pXh , p

Y
h ) and rh = (rXh , r

Y
h ). For every h the data (Xh, p

X
h , r

X
h ),

(Yh, p
Y
h , r

Y
h ), and (Zh, ph, rh) are called approximations of the spaces X, Y , and Z,

respectively.
Remark 3.1. Let us turn to Example 2.1. For m ∈ N the mesh-size h = h(m) and

the associated grid-points xi ∈ [0, 1] are given by h = 1
m and xi = ih for i = 0, . . . ,m,

respectively. Let ϕ0, . . . , ϕm ∈ H1(0, 1) denote the well-known piecewise linear finite
elements satisfying ϕi(xj) = δij for 0 ≤ i, j ≤ m. We will restrict our discussions
to the case that the set Ω◦ = (a, b) ⊆ Ω is an open interval. The numbers ia, ib ∈
{1, . . . ,m− 1} are defined by

a < xia < xia+1 < · · · < xib < b.
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For the approximation of the Hilbert spaces we set

Xh = Span {ϕ0, . . . , ϕm} × Span {ϕia , . . . , ϕib},
Yh = Span {ϕ1, . . . , ϕm−1} × R2,
Zh = Xh × Yh.

Now we are going to define the prolongations and restrictions. We set

ph(yh, uh, λh, µ, ξ) = (yh, uh, λh, µ, ξ) for (yh, uh) ∈ Xh and (λh, µ, ξ) ∈ Yh.

Hence, the finite dimensional Hilbert spaces Xh and Yh are endowed with the inner
products and norms introduced in X and Y , respectively. We introduce the restriction

rh(y, u, λ, µ, ξ) =

(
m∑
i=0

y(xi)ϕi,
1

h

ib∑
i=ia

∫ xi+
h
2

xi−h2
u dxϕi,

m−1∑
i=1

λ(xi)ϕi, µ, ξ

)

for (y, u) ∈ X and (λ, µ, ξ) ∈ Y . Note that u ∈ L2(Ω◦) holds so that u(xi) need not
be meaningful.

With the prolongations we define discrete inner products and discrete norms in
the following way.

Definition 3.2. We introduce the discrete inner product in Xh by

〈xh, x̄h〉Xh = 〈pXh xh, pXh x̄h〉X
and the discrete norm in Xh by

‖xh‖Xh = ‖pXh xh‖X
for all xh, x̄h ∈ Xh. Analogously, for all λh, λ̄h ∈ Yh we define by

〈λh, λ̄h〉Yh = 〈pYh λh, pYh λ̄h〉Y , ‖λh‖Yh = ‖pYh λh‖Y
the discrete inner product and discrete norm in Yh. In Zh the corresponding inner
product is the sum of the inner products 〈· , ·〉Xh and 〈· , ·〉Yh and the discrete norm is

‖(xh, λh)‖Zh = ‖ph(xh, λh)‖Z for all (xh, λh) ∈ Zh.

Remark 3.3. For these discrete norms pXh , pYh , and ph have norm 1.
Let us introduce the restriction r̂Xh = (pXh )∗ ∈ L(X,Xh), i.e.,

〈r̂Xh x, xh〉Xh = 〈x, pXh xh〉X for all x ∈ X and xh ∈ Xh.

Analogously, r̂Yh is defined, and we put r̂h = (r̂Xh , r̂
Y
h ). As ph is injective and ran r̂h

has finite dimension, we infer that r̂h is surjective.
Lemma 3.4. For every h the restriction r̂h has the following properties:
(a) r̂hph(xh, λh) = (xh, λh) for all (xh, λh) ∈ Zh and
(b) phr̂h is the orthogonal projector of Z onto the subspace ran ph, i.e.

‖(x, λ)− phr̂h(x, λ)‖Z = inf
(xh,λh)∈Zh

‖(x, λ)− ph(xh, λh)‖Z for all (x, λ) ∈ Z.
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Proof.
(a) We derive from r̂h = (ph)∗ and Definition 3.2 that

〈r̂hph(xh, λh), (x̄h, λ̄h)〉Zh = 〈(xh, λh), (x̄h, λ̄h)〉Zh
for all (xh, λh), (x̄h, λ̄h) ∈ Zh. Hence, part (a) is shown.

(b) Any (x, λ) ∈ Z can be expressed as

(x, λ) = [(x, λ)− phr̂h(x, λ)] + phr̂h(x, λ).

From r̂h = (ph)∗ and part (a) we infer that

〈(x, λ)− phr̂h(x, λ), phr̂h(x, λ)〉Z = 0

such that phr̂h is the orthogonal projector of Z onto the subspace
ran ph.

Remark 3.5. The restrictions r̂Xh , r̂Yh , and r̂h are called the optimal restrictions
associated with the prolongations pXh , pYh , and ph, respectively [Aub72]. Remark 3.3
implies that the norms of the optimal restrictions are equal to 1 [DL88].

Definition 3.6. The approximations (Xh, p
X
h , r

X
h ) of X are called convergent if

lim
h→0
‖x− pXh rXh x‖X = 0 for all x ∈ X.

Convergence of (Yh, p
Y
h , r

Y
h ) and (Zh, ph, rh) is defined analogously.

Assumption 4. The approximations (Zh, ph, rh) of the Hilbert space Z are con-
vergent, and phrh(x, λ) ∈ U holds for (x, λ) ∈ U and all h sufficiently small.

Remark 3.7. In Remark 3.1 we introduced approximations for Example 2.1, which
are convergent [Aub72]. Hence, Assumption 4 is satisfied.

Remark 3.8. With Assumption 4 holding, ‖phrh(x, λ)‖Z is bounded for all
(x, λ) ∈ Z. According to the principle of uniform boundedness [Wou79] there ex-
ists a constant c◦ > 0 such that ‖phrh‖L(Z) ≤ c◦ for all h.

Definition 3.6 leads directly to the following corollary.
Corollary 3.9. The approximations (Zh, ph, rh) of Z are convergent if and only

if the approximations (Xh, p
X
h , r

X
h ) of X and (Yh, p

Y
h , r

Y
h ) of Y are convergent.

Now we define the following internal approximations of the cost functional J and
the constraint e [Aub72]:

Jh = J pXh : Xh → R , eh = r̂Yh e p
X
h : Xh → Yh.(3.1)

Remark 3.10. Using (3.1) and r̂Yh = (pYh )∗ we have

〈eh(xh), λh〉Yh = 〈e(pXh xh), pYh λh〉Y for all (xh, λh) ∈ Xh × Yh.(3.2)

From (3.2) we observe that the restriction r̂h is more a theoretical tool, whereas the
operator rh is used in the numerical implementation.

Together with (P) we investigate the finite dimensional discrete problems

(Ph) minimize Jh(xh) subject to eh(xh) = 0.

Assumption 5. For every h there exist neighborhoods Vh ⊂ Xh of rXh x
∗ and

Wh ⊂ Yh of rYh λ
∗ and a constant rmin > 0 independent of h such that ph(Uh) ⊂ U

and B(rh(x∗, λ∗); rmin) is a subset of Uh = Vh ×Wh for all h.
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The Lagrangian for (Ph) is given by

Lh(xh, λh) = Jh(xh) + 〈eh(xh), λh〉Yh .

From r̂Yh = (pYh )∗ and (3.1) we derive that Lh = Lph. Since all restrictions and
prolongations are linear, we are able to differentiate the Lagrangian Lh with respect
to the variable xh for all xh ∈ Vh and λh ∈ Yh:

L′h(xh, λh) = r̂Xh L
′(ph(xh, λh)).

Both L′h(xh, λh) and eh(xh) are also continuously Fréchet-differentiable with re-
spect to the variable xh and their Fréchet-derivatives are Lipschitz-continuous. Ex-
plicitly, we get

L′′h(xh, λh) = r̂Xh L
′′(ph(xh, λh))pXh , e′h(xh) = r̂Yh e

′(pXh xh)pXh(3.3)

for all xh ∈ Vh and λh ∈ Yh. Further, we derive that

e′h(xh)∗ = r̂Xh e
′(pXh xh)∗pYh for all xh ∈ Vh.

For every h the matrix of operators M given in (2.3) is approximated by

Mh(xh, λh) = r̂hM(ph(xh, λh)) ph =

(
L′′h(xh, λh) e′h(xh)∗

e′h(xh) 0

)
(3.4)

for all (xh, λh) ∈ Uh. Since L′′ is a self-adjoint operator in U we conclude that L′′h is
self-adjoint in Uh. Hence Mh is self-adjoint in Uh.

The approximation of (OS) is formulated as

(OSh) L′h(xh, λ+ ceh(xh)) = 0, eh(xh) = 0 for all c ≥ 0,

which is the first-order necessary optimality condition for (Ph).
We shall require a uniform Babuška–Brezzi condition in Vh.
Assumption 6. There exists a constant β∗ > 0 independent of h with

inf
λ̄h∈Yh

sup
x̄h∈Xh

〈e′h(xh)∗λ̄h, x̄h〉Xh
‖x̄h‖Xh ‖λ̄h‖Yh

≥ β∗ for all xh ∈ Vh and for all h.(3.5)

Remark 3.11. By closed range theory [Bre87] the uniform Babuška–Brezzi con-
dition implies that the operator e′h(yh, uh) is surjective on Vh. Note that (3.5) leads
to

‖e′h(xh)∗λh‖Xh ≥ β∗ ‖λh‖Yh for all λh ∈ Yh.
We refer the reader to [Vol99] for the proof of the uniform Babuška–Brezzi condition
in the case of Example 2.1 and the piecewise linear approximations introduced in
Remark 3.1.

We shall also make use of a uniform second-order sufficient optimality condition
in Uh.

Assumption 7. There exists κ∗ > 0 independent of h such that

〈L′′h(xh, λh)x̄h, x̄h〉Xh ≥ κ∗ ‖x̄h‖
2
Xh

for all x̄h ∈ ker e′h(xh)

for all (xh, λh) ∈ Uh and for all h.
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Remark 3.12. Using (3.3) we have

〈L′′h(rh(x∗, λ∗))xh, xh〉Xh = 〈L′′(phrh(x∗, λ∗))pXh xh, p
X
h xh〉X for all xh ∈ Xh.

If the operator L′′(x∗, λ∗) is coercive on the whole space X and Assumption 4 holds,
then Assumption 7 is satisfied in a neighborhood of rh(x∗, λ∗) if h is sufficiently small.

Now we consider the internal approximation of Algorithm 1.
Algorithm 2.
(a) Choose (x0

h, λ
0
h) ∈ Uh, c ≥ 0 and put n = 0.

(b) Set λ̃nh = λnh + ceh(xnh).
(c) Solve for (x̄h, λ̄h)

Mh(xnh, λ̃
n
h)

(
x̄h − xnh
λ̄h − λ̃nh

)
= −

(
L′h(xnh, λ̃

n
h)

eh(xnh)

)
.(3.6)

(d) Set (xn+1
h , λn+1

h ) = (x̄h, λ̄h), n = n+ 1, and go back to (b).
Remark 3.13. Since the matrix Mh has the same structure as M we have to solve

a saddle-point problem in (3.6). But now the linear system (3.6) has finite dimension.
Lemma 3.14. With Assumption 6 holding, the saddle-point problem

Mh(xh, λh)

(
x̄h − xh
λ̄h − λh

)
= −

(
L′h(xh, λh)
eh(xh)

)
has a unique solution (x̄h, λ̄h) for every (xh, λh) ∈ Uh.

For the proof we refer the reader to [GR92].
Remark 3.15. With Assumption 6 holding there exists a bound η∗ > 0, which

may depend on β∗ or κ∗, but is independent of h satisfying

‖M−1
h (rh(x∗, λ∗))‖L(Zh)

≤ η∗ for all h.(3.7)

Using Remark 3.5 and (3.1) we derive

‖eh(xh)− eh(x̄h)‖Yh ≤ γe ‖xh − x̄h‖Xh ,

and from (3.4) we infer that

‖Mh(xh, λh)−Mh(x̄h, λ̄h)‖L(Zh) ≤ γM ‖(xh, λh)− (x̄h, λ̄h)‖Zh
for all (xh, λh), (x̄h, λ̄h) ∈ Uh. As a consequence, uniform Lipschitz-constants of eh
in Vh and Mh in Uh can be chosen of the uniform Lipschitz-properties of e and M in
UX and U , respectively.

In many applications it turns out that the solution (x∗, λ∗) of (OS) as well as
the iterates (xn, λn) of Algorithm 1 have “better smoothness” properties than the
elements of Z. This is a motivation for the following assumption.

Assumption 8. There are bounded subsets V ⊂ X and W ⊂ Y such that

x∗, xn, xn − x∗, xn+1 − xn ∈ V

and

λ∗, λn, λn − λ∗, λn+1 − λ̃n ∈W

holds for all n = 0, 1, . . . .



778 S. VOLKWEIN

Moreover, there exists a bounded function ρ : [0, 1] → [0,∞) which is right-con-
tinuous at h = 0 with ρ(0) = 0 satisfying

‖(x, λ)− phrh(x, λ)‖Z ≤ ρ(h)

for all (x, λ) ∈ V ×W and for all h > 0.
Let

F (x, λ) =

(
L′(x, λ)
e(x)

)
and Fh = r̂hFph.(3.8)

The next lemma shows that the internal approximations of F and M given by Fh
and Mh, respectively, are consistent of order ρ(h).

Lemma 3.16. With Assumptions 4 and 8 holding, there exists a constant C̃ > 0
independent of h such that

‖r̂hF (x, λ)− Fh(rh(x, λ))‖Zh ≤ C̃ρ(h)

and

‖r̂hM(x, λ)(x̄, λ̄)T −Mh(rh(x, λ))[rh(x̄, λ̄)]T ‖Zh ≤ C̃ρ(h)

for all (x, λ) ∈ (V ×W ) ∩ U , (x̄, λ̄) ∈ V ×W and for all h > 0.
Proof. Let x, x̄ ∈ V and λ, λ̄ ∈W . By Assumption 8 we conclude

‖(x, λ)− phrh(x, λ)‖Z ≤ ρ(h) and ‖(x̄, λ̄)− phrh(x̄, λ̄)‖Z ≤ ρ(h)

and ‖(x̄, λ̄)‖Z ≤ c̄ for a constant c̄ > 0. Using Remark 3.5 and setting C̃ =
max (γF , c̄γM + ηM ), where γF > 0 denotes the Lipschitz-constant of F in U and
ηM is a uniform upper bound of M in U , we derive from (3.8) that

‖r̂hF (x, λ)− Fh(rh(x, λ))‖Zh ≤ γF ‖(x, λ)− phrh(x, λ)‖Z ≤ C̃ρ(h)

and by triangle inequality and (3.4) that

‖r̂hM(x, λ)(x̄, λ̄)T −Mh(rh(x, λ))[rh(x̄, λ̄)]T ‖Zh
≤ γM ‖(x, λ)− phrh(x, λ)‖Z ‖(x̄, λ̄)‖Z + ηM ‖(x̄, λ̄)− phrh(x̄, λ̄)‖Z ≤ C̃ρ(h).

Now we are going to formulate the convergence results.
Theorem 3.17. Let Assumptions 1–8 hold. Then there is a constant h̄ ∈ (0, 1]

so that (OSh) has a locally unique solution satisfying

(x∗h, λ
∗
h) = rh(x∗, λ∗) +O (ρ(h)) for all h ∈ (0, h̄].(3.9)

Proof. Since Algorithms 1 and 2 are equivalent to the Newton method applied
to the operator equations (OSh) and (OS), respectively, the theorem follows directly
from Theorem 2 in [ABPR86].

Remark 3.18. Since ρ is right-continuous at h = 0 with ρ(0) = 0, we derive from
(3.9) that

lim
h→0
‖(x∗h, λ∗h)− rh(x∗, λ∗)‖Zh = 0

holds.
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From existence of (x∗h, λ
∗
h) the second-order convergence of Algorithm 2 is proved

for starting values (x0
h, λ

0
h) = rh(x0, λ0), where (x0, λ0) is the starting value of Al-

gorithm 1 chosen in an appropriate neighborhood of (x∗, λ∗). This is formulated
precisely in the next corollary. Note that we introduced the radius r∗ in (2.5).

Corollary 3.19. Let the assumptions of Theorem 3.17 hold. Then there exist
h̃ ∈ (0, h̄] and r1 ∈ (0, r∗] such that Algorithm 2 converges to (x∗h, λ

∗
h) for starting

values (x0
h, λ

0
h) = rh(x0, λ0) with (x0, λ0) ∈ (V ×W )∩B((x∗, λ∗); r1), and the iterates

satisfy

‖(xn+1
h , λn+1

h )− (x∗h, λ
∗
h)‖

Zh
≤ C ‖(xnh, λnh)− (x∗h, λ

∗
h)‖2Zh

for a constant C > 0 independent of h ∈ (0, h̃] and n.
Proof. We shall apply Theorem 2.8 to the discrete Algorithm 2 in order to prove

the claim of the corollary. From Theorem 3.17 we conclude the existence of a locally
unique (x∗h, λ

∗
h) solving (OSh), of a constant C̃ > 0, and of h̄ > 0 such that

‖(x∗h, λ∗h)− rh(x∗, λ∗)‖Zh ≤ C̃ ρ(h) for every h ∈ (0, h̄].(3.10)

Applying the perturbation lemma (see [OR70]) we obtain that

‖M−1
h (xh, λh)‖L(Zh)

≤ η∗

1− η∗γM ‖(xh, λh)− rh(x∗, λ∗)‖Zh
<
η∗

2

for all (xh, λh) ∈ B(rh(x∗, λ∗), 1
2η∗γM

). Let (x0, λ0) ∈ U denote a starting value of
Algorithm 1 satisfying

‖(x0, λ0)− (x∗, λ∗)‖Z < min

(
r∗, 3rmin

8c◦
√

max(2,1+c2γ2
e )
, 2
c◦γMη∗max(2,1+c2γ2

e )

)
,(3.11)

where the constant c◦ is specified in Remark 3.8. Since ρ is right-continuous at h = 0
there exists h̃ ∈ (0, h̄] such that

ρ(h) ≤ min

(
rmin

4C̃
, 3rmin

8C̃
√

max(2,1+c2γ2
e )
, 2
γMη∗C̃max(2,1+c2γ2

e )

)
(3.12)

for all h ∈ (0, h̃]. Applying (3.11) yields

‖(x0, λ0)− (x∗, λ∗)‖Z <
3rmin

8c◦
√

max(2, 1 + c2γ2
e )
<
rmin

2c◦
.(3.13)

From (3.10), (3.12), and (3.13) we infer that

‖(x0
h, λ

0
h)− (x∗h, λ

∗
h)‖Zh + ‖(x∗h, λ∗h)− rh(x∗, λ∗)‖Zh

≤ c◦ ‖(x0, λ0)− (x∗, λ∗)‖Z + 2 ‖(x∗h, λ∗h)− rh(x∗, λ∗)‖Zh ≤ rmin .

By Assumption 5 it follows that

B((x∗h, λ
∗
h); ‖(x0

h, λ
0
h)− (x∗h, λ

∗
h)‖Zh) ⊆ Uh.

To apply Theorem 2.8 we set

r̄∗ = min

(
3rmin

4
√

max(2, 1 + c2γ2
e )
,

4

γMη∗max(2, 1 + c2γ2
e )

)
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(compare with (2.5)). From (3.10) and (3.12) we conclude that

‖(x∗h, λ∗h)− rh(x∗, λ∗)‖Zh ≤
rmin

4

for every h ∈ (0, h̄]. Moreover, it follows that r̄∗ < 3
4 rmin. Consequently, we have

B((x∗h, λ
∗
h); r̄∗) ⊂ Uh.

Then Theorem 2.8 yields

lim
n→∞ ‖(x

n
h, λ

n
h)− (x∗h, λ

∗
h)‖Zh = 0

and

‖(xn+1
h , λn+1

h )− (x∗h, λ
∗
h)‖

Zh

≤ 1

γMη∗
max(2, 1 + c2γ2

e ) ‖(xnh, λnh)− (x∗h, λ
∗
h)‖2Zh

(3.14)

for the sequence {(xnh, λnh)}n∈N, which is generated by Algorithm 2 with initial value
rh(x0, λ0), if ‖rh(x0, λ0)− (x∗h, λ

∗
h)‖Zh < r̄∗; i.e.,

‖rh(x0, λ0)− (x∗h, λ
∗
h)‖Zh <

3rmin

4
√

max(2, 1 + c2γ2
e )

(3.15)

and

‖rh(x0, λ0)− (x∗h, λ
∗
h)‖Zh <

4

γMη∗max(2, 1 + c2γ2
e )
.(3.16)

Using Remark 3.8, (3.11), (3.10), and (3.12) we derive that

‖rh(x0, λ0)− (x∗h, λ
∗
h)‖Zh ≤ ‖rh[(x0, λ0)− (x∗, λ∗)]‖Zh

+‖rh(x∗, λ∗)− (x∗h, λ
∗
h)‖Zh

≤ c◦ ‖(x0, λ0)− (x∗, λ∗)‖Z + C̃ρ(h)

<
3rmin

4
√

max(2, 1 + c2γ2
e )
.

(3.17)

Analogously, estimate (3.16) follows.
Remark 3.20. We infer from the proof of Corollary 3.19 that the choice of r1

guarantees that the sequence {‖(xnh, λnh)− (x∗h, λ
∗
h)‖Zh}n∈N is strictly decreasing.

When Algorithm 2 and Algorithm 1 are stopped after the nth step, the difference
between the iterates of the finite dimensional and the infinite dimensional methods
can be estimated by the discretization error of the approximation scheme used. This is
the assertion of the following corollary following from Theorem 3.17 (see [ABPR86]).

Corollary 3.21. Let the assumptions of Corollary 3.19 hold. By {(xn, λn)}n∈N
we denote the sequence generated by Algorithm 1. Then there exist ĥ ∈ (0, h̃] and a
constant r2 ∈ (0, r1] such that

(xnh, λ
n
h) = rh(xn, λn) +O (ρ(h)) ,(3.18)

Fh(xnh, λ̃
n
h) = r̂hF (xn, λ̃n) +O (ρ(h)) ,(3.19)

(xnh − x∗h, λnh − λ∗h) = rh(xn − x∗, λn − λ∗) +O (ρ(h))(3.20)
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for n = 0, 1, . . . , for starting values (x0, λ0) ∈ (V × W ) ∩ B((x∗, λ∗); r2), for the
sequence {(xnh, λnh)}n∈N generated by Algorithm 2 using the starting value rh(x0, λ0)

with h ∈ (0, ĥ].
Remark 3.22. We emphasize that the results presented also hold for c = 0. Hence

the convergence is proved for internal approximations of SQP-methods in Hilbert
spaces.

4. Mesh-independence. Now we present the mesh-independence principle in
its sharpest formulation; i.e., we give sufficient conditions for mesh-independence pro-
vided the mesh-size is smaller than an explicitly given threshold parameter. The proof
is based on Corollary 2 in [ABPR86]. Since c = 0 is allowed, the mesh-independence
principle also applies to internal approximations of SQP methods.

Let ε > 0. We define

`(ε) = min {`0 ∈ N| for ` ≥ `0 : ‖(x`, λ`)− (x∗, λ∗)‖Z < ε} ,
`h(ε) = min {`0 ∈ N| for ` ≥ `0 : ‖(x`h, λ`h)− (x∗h, λ

∗
h)‖Zh < ε} .

Let us point out that `(ε) and `h(ε) depend on the starting values (x0, λ0) and
(x0
h, λ

0
h) = rh(x0, λ0) of the infinite and finite dimensional method.

Theorem 4.1. Suppose that the hypotheses of Corollary 3.21 hold. Let ε > 0 be
chosen. Then there exist h∗ ∈ (0, ĥ] and r3 ∈ (0, r2], so that

|`(ε)− `h(ε)| ≤ 1(4.1)

for all h ∈ (0, h∗] and (x0, λ0) ∈ (V ×W ) ∩B((x∗, λ∗); r3).
Remark 4.2. The constant h∗ depends of course on the given tolerance ε.

5. Numerical example for Example 2.1. We present a numerical example
which illustrates that mesh-independence can be observed numerically choosing the
control interval Ω◦ = (0, 0.1), the viscosity parameter ν = 1

25 , the regularity parameter
α = 1, the right-hand side f(x) = x, and the desired state z(x) = x. The boundary
values are given by yl = 0 and yr = 1. Then the optimal solution of (P) is (y∗, u∗) =
(z, 0). It follows from (2.2) that (λ∗, µ∗, ξ∗) = (0, 0, 0) hold. Note that (y∗h, u

∗
h) = (z, 0)

is also the optimal solution of the finite dimensional problem (Ph).
Assumptions 1–5 are satisfied; see sections 2 and 3. For the proof of the uniform

Babuška–Brezzi condition we refer the reader to [Vol99]. Now we are going to verify
the uniform second-order sufficient optimality condition (Assumption 7).

Lemma 5.1. Let (vh, qh) ∈ ker e′h(z, 0). Then we have

‖vh‖2H1 ≤ cker ‖qh‖2L2(Ω◦)

for a constant cker > 0.
Proof. Using z(x) = x the property (vh, qh) ∈ ker e′h(z, 0) implies that vh ∈ H1

0 (Ω)
and

0 = 〈e′h(z, 0)(vh, qh), (vh, 0, 0)〉Yh = 〈e′(z, 0)(vh, qh), (vh, 0, 0)〉Y
= ν ‖v′h‖2L2 +

∫ 1

0

(zvh)′vh dx−
∫

Ω◦
qhvh dx

= ν ‖v′h‖2L2 + ‖vh‖2L2 +
1

2
xv2
h

∣∣∣x=1

x=0
− 1

2
‖vh‖2L2 −

∫
Ω◦
qhvh dx

≥ min

(
ν,

1

2

)
‖vh‖2H1 − ‖qh‖L2(Ω◦) ‖vh‖H1 .

Setting cker = [min(ν, 1
2 )]−2 the claim follows.
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Table 5.1
`h(ε) for different tolerance ε and mesh-size h.

m 200 250 300 350 400 450 500 1000 1800

ε = 100 13 14 13 13 13 13 13 13 13
ε = 10−2 14 15 14 14 14 14 14 14 14
ε = 10−4 15 15 15 15 15 15 15 15 15
ε = 10−6 15 16 15 15 15 15 15 15 15
ε = 10−8 16 16 16 16 16 15 15 15 15
ε = 10−10 16 16 16 16 16 16 16 16 16

Proposition 5.2. The uniform second-order sufficient optimality condition is
satisfied.

Proof. We have phrh(y∗, u∗, λ∗, µ∗, ξ∗) = (z, 0, 0, 0, 0). Hence,

〈L′′h(rh(y∗, u∗, λ∗, µ∗, ξ∗))(vh, qh), (vh, qh)〉Xh = 〈L′′(z, 0, 0, 0, 0)(vh, qh), (vh, qh)〉X
= ‖vh‖2L2 + ‖qh‖2L2(Ω◦)

≥ min

(
1

2
,

1

2cker

)
‖(vh, qh)‖Xh

by Lemma 5.1. Thus, the operator L′′h(rh(y∗, u∗, λ∗, µ∗, ξ∗)) is coercive on the kernel
of e′h(rh(y∗, u∗)).

Proposition 5.3. The optimal solution of (OS) satisfies (y∗, u∗, λ∗) ∈ H2(Ω)×
H2(Ω◦)×H2(Ω). If (y0, u0, λ0) ∈ H2(Ω)×H2(Ω◦)×H2(Ω) holds, then we have yn ∈
H2(Ω), un ∈ H2(Ω◦), and λn ∈ H2(Ω). Furthermore, Assumption 8 is satisfied.

Proof. Since the optimal solution solves (OS), the regularity result for (y∗, u∗, λ∗)
follows. The second claim is proved by induction. Let (yn, un, λn) ∈ H2(Ω)×H2(Ω◦)×
H2(Ω) for n ≥ 0. Then we have e(yn, un) ∈ H2(Ω) × R2, which implies that λ̃n ∈
H2(Ω). The saddle-point problem (2.4) implies that

−ν(λn+1)′′ = −yn+1 + (λ̃n)′yn+1 + yn(λn+1)′ + x− yn(λ̃n)′ in Ω,

un+1 = λn+1 in Ω◦,

−ν(yn+1)′′ = −(ynyn+1)′ + un+1 + x+ yn(yn)′ in Ω.

(5.1)

The first and third equations imply that yn+1, λn+1 ∈ H2(Ω) hold. Using the second
equation of (5.1) we see that un+1 ∈ H2(Ω◦). As we use piecewise linear finite
elements, we obtain

‖(y, u, λ, µ, ξ)− rh(y, u, λ, µ, ξ)‖Z ≤ Čh ‖(y′′, u′, λ′′)‖L2×L2(Ω◦)×L2

for all (y, u, λ, µ, ξ) ∈ H2(Ω)×H2(Ω◦)×H2(Ω)×R2, where the constant Č > 0 does
not depend on (y, u, λ, µ) and h. If the starting value y0 is close to y∗, then ‖yn‖H1 ≤
C∗ + ‖y∗‖H1 for all n. Thus, we infer from (5.1) that ‖(yn)′′‖L2 is bounded for all
n. Analogously, we derive that ‖(λn)′′‖L2 is bounded for all n. Since un = λn in Ω◦,
the sequence ‖(un)′′‖L2(Ω◦) is also bounded for all n. We conclude that Assumption 8
holds.

Remark 5.4. Note that the previous proposition also holds for arbitrary f ∈
L2(Ω).

The program was written in MATLAB version 5.1, and we used an IBM RS/6000
590-workstation. We chose c = 1, y0(x) = −x2, u0(x) = 0, λ0(x) = −1.5x, µ0 = 0,
and ξ0 = 0. For c = 0 divergence was observed numerically. Table 5.1 yields that
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Table 6.1
`h(ε) for different tolerance ε and mesh-size h.

1/h 30 40 60 80 100 160 200 250
ε = 100 3 3 3 3 3 4 4 4
ε = 10−2 5 5 6 6 6 6 5 5
ε = 10−4 6 6 7 7 7 7 6 6
ε = 10−6 6 7 7 7 7 7 7 6
ε = 10−8 7 7 8 8 8 7 7 7
ε = 10−10 7 7 8 8 8 8 7 7

there is at most a difference of one between the number of steps required to converge
within a given tolerance ε > 0. We emphasize that the mesh-independence principle
is satisfied for h ≤ 0.005.

6. Numerical example for Example 2.2. Let l ∈ N be given. We introduce a
discretization of the time interval [0, T ] by setting k = T

l and tj = jk for j = 0, . . . , l.
We used the implicit Euler method for the time integration and piecewise linear finite
elements introduced in Remark 3.1.

Let T = 1, Ω = (0, 1), α = 0.1, and ν = 0.01. Further, we put

z(t, x) =

((
x− 1

2

)2

− 1

4

)((
t− 1

2

)2

− 1

4

)

and f = zt−νzxx+zzx. Clearly, (y∗, u∗) = (z, 0) is the optimal solution of the optimal
control problem. For the augmented Lagrangian-SQP method we chose c = 50. In
the computations we used a uniform mesh h for the time as well as for the spatial
discretization. To solve the linear system (3.6) we applied the MATLAB function
gmres with preconditioning. The starting values of Algorithm 2 were chosen to be
y0
h = −z, u0

h = λ0
h = 0. Note that the iteration ynh has to “pass through” 0. In Table

6.1 we specify the smallest iteration number ` = `h(ε) such that

‖(y`h, u`h, λ`h)− (y∗h, u
∗
h, λ
∗
h)‖Zh < ε.

We proved in Theorem 4.1 that a strong mesh-independence principle is valid for
`h(ε) and the corresponding iteration count `(ε) of the infinite dimensional method.
But the approximation scheme used does not generally satisfy the assumptions of
Theorem 4.1. However, Table 6.1 illustrates that the asymptotic mesh-independence
can be observed numerically for h ≤ 1

30 .
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Abstract. The graph representation of a system (the set of all input-output pairs) has gained
considerable attention in the control literature in view of its usefulness for the analysis of feedback
systems. In this paper it is shown that the graph of any stabilizable, linear, periodically time-varying
(LPTV), continuous-time system can be expressed as the range and kernel of bounded, causal, LPTV
systems that are, respectively, left and right invertible by bounded, causal, LPTV systems. These
so-called strong-right and strong-left representations are closely related to the perhaps more common
notion of coprime factor representations. As an example of their usefulness, a neat characterization
of closed-loop stability is obtained in terms of strong-right and strong-left representations of the plant
and controller graphs. This in turn leads to a Youla-style parametrization of stabilizing controllers.
All of the results obtained accommodate possibly infinite-dimensional input and output spaces and
apply, as a special case, to sampled-data control-systems. Furthermore, they are particularly useful
for robustness analysis in terms of the gap metric.
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1. Introduction. Fractional system representations are useful for the analysis
and design of feedback systems [7, 24, 6]. For example, it is well known that the
fundamental objective of closed-loop stability can be neatly characterized in terms of
the coprime factors (taken over a set of stable systems) of a closed-loop’s component
systems [23]. Furthermore, the coprime factorization framework is closely related to
robustness analysis in the graph topology [22, 11, 19, 25], and it also lies at the heart
of the H∞-loopshaping design paradigm for linear, time-invariant systems [14].

The existence of coprime factors has been linked to stabilizability for several
classes of systems. For linear, time-invariant systems that evolve in either continuous
or discrete time, this result is often expressed in terms of the corresponding frequency-
domain transfer-function and a factorization of this over the Hardy space H∞ (see
[20, 23] and references therein). Existence results are also available for linear, time-
varying systems described by finite-dimensional, stabilizable, and detectable state-
space realizations [18, 16].

In [5], an input-output perspective is taken to study linear, time-varying, discrete-
time systems. More specifically, it is shown in [5] that a causal, linear, time-varying,
discrete-time system is stabilizable if and only if its graph (the set of all input-output
pairs) can be expressed as the range (respectively, kernel) of a bounded, causal, linear
system that is left (respectively, right) invertible by another bounded, causal, linear
system. This so-called strong-right (respectively, strong-left) representation of the
graph is notionally equivalent to the representation of the system as the ratio of
right-coprime (respectively, left-coprime) factors, because a strong-right (respectively,

∗Received by the editors October 29, 1998; accepted for publication (in revised form) March 22,
1999; published electronically March 8, 2000. This research was supported in part by the Gledden
Studentship of the University of Western Australia and the Engineering and Physical Sciences Re-
search Council (EPSRC), UK.

http://www.siam.org/journals/sicon/38-3/34660.html
†Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK (mwc@eng.

cam.ac.uk, kg@eng.cam.ac.uk).
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strong-left) representation of the graph can be constructed straightforwardly from any
right-coprime (respectively, left-coprime) factorization. Unfortunately, the results as
developed in [5] do not extend directly to accommodate continuous-time systems.

In this paper, the input-output perspective described above is employed to study
linear, periodically time-varying (LPTV), continuous-time systems. Such systems
arise in sampled-data control [3] and the analysis of nonlinear systems along specified
periodic trajectories, for example. The main results presented in this paper imply that
the graph of a stabilizable, LPTV, continuous-time system can be expressed as the
range (respectively, kernel) of a bounded, causal, LPTV system that is left (respec-
tively, right) invertible by a bounded, causal, LPTV system. These so-called strong-
right and strong-left representations of the graph facilitate a neat characterization of
closed-loop stability, a parametrization of stabilizing controllers and, correspondingly,
gap-metric robustness analysis of LPTV feedback-systems (see [4]). All of the results
obtained accommodate possibly infinite-dimensional input and output spaces, and as
such, apply to systems that are spatially distributed.

The paper has the following structure. Preliminary results from functional anal-
ysis and general systems theory are presented in the next section. Underpinning
many of the results developed in this paper is the equivalence of LPTV, continuous-
time systems to linear, shift-invariant (LSI), discrete-time systems. This equivalence
implies that the graph of an LPTV system is isomorphic to a shift-invariant sub-
space of the Hardy space H2. As such, section 3 is devoted to the characterization
of shift-invariant subspaces. There, it is shown that if a shift-invariant subspace is
shift-invariantly coordinatizable, then it can be expressed as the range and kernel of
multiplication operators with symbols in H∞. It is also shown that these range and
kernel representations are, respectively, left and right invertible by multiplication op-
erators with symbols in H∞. Once certain causality issues have been addressed (as
described in section 4), this extension of the Beurling–Lax–Halmos theorem is used
to prove the existence of strong-right and strong-left representations of the graph for
stabilizable, LPTV systems. Finally, in section 5 a neat characterization of closed-
loop stability and a Youla-style parametrization of stabilizing, LPTV controllers for
LPTV plants are given in terms of strong-right and strong-left representations of the
plant and controller graphs.

2. Preliminaries. In this section, general notation and definitions used through-
out the paper are introduced. Let R, Z, R

+, Z
+, D, and T denote the reals, integers,

nonnegative reals, nonnegative integers, open unit-disc, and unit-circle, respectively.
For convenience, given a real number h > 0, the interval [0, h) ⊂ R is denoted by
H. In any Hilbert space H, the inner-product is denoted by 〈·, ·〉H and the norm by
‖ · ‖H. For a subspace U ⊂ H, the orthogonal complement of U in H is denoted by
H � U (or U⊥ when the ambient space H is clear from context) and the orthogonal
projection onto U is denoted by ΠU.

Consider two closed subspaces G and F of a Hilbert space H. If G ∩ F = {0} and
G+F = H, then G and F are said to induce a coordinatization of H. In this case, any
h ∈ H can be uniquely decomposed as the sum h = g+f , where g ∈ G and f ∈ F (see
[8], for example). The bounded, linear operator ΠG‖F : h �→ g is called the parallel
projection onto G along F. Similarly, ΠF‖G : h �→ f is called the parallel projection
onto F along G.

Let U and Y be Hilbert spaces and consider a linear operator P : DP ⊂ U → Y,
where DP :={u ∈ U : Pu ∈ Y} is called the domain of P . The range of P is defined
to be RP :={Pu : u ∈ DP }, and KP :={u ∈ DP : Pu = 0} is called the kernel of P .
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The graph of P is defined to be the set of all input-output pairs

GP :=

[
I
P

]
DP ⊂ U⊕ Y,

and for notational convenience the inverse graph is denoted by G�

P :=[ 0 I
I 0 ]GP . Note

that a (linear) subspace G ⊂ U⊕Y corresponds to the graph of a linear operator if and
only if

[
0
y

] ∈ G implies that y = 0. The symbol BU,Y is used to denote the Banach
space of all bounded, linear operators P : U → Y, that is, all such operators with
DP = U and finite induced-norm

‖P‖:= sup
u∈DP
u �=0

‖Pu‖Y
‖u‖U <∞.

Given an operator P ∈ BU,Y, there exists a unique operator P ∗ ∈ BY,U such that for
all u ∈ U and y ∈ Y,

〈y, Pu〉Y = 〈P ∗y, u〉U.
The operator P ∗ is called the (Hilbert space) adjoint. Note that for any P ∈ BU,Y,
P = (P ∗)∗ and RP is orthogonal to KP∗ . An operator P ∈ BU,Y is called an isometry
if 〈Pu, Pu〉Y = 〈u, u〉U for all u ∈ U (or equivalently, P ∗P = I).

2.1. Signals and systems. In this paper, a system is simply considered to
be an operator mapping between signal-spaces. Primarily, attention is focused on
systems mapping between continuous-time spaces of signals with finite-energy. Math-
ematically such signals can be thought of as functions in L2

R+(H), the Hilbert space
of H-valued, (Lebesgue) square-integrable functions f : R

+ → H. By virtue of
the class of systems considered in the sequel and the analysis technique employed
to study these systems, the following signal-spaces also play an important role: the
discrete-time signal-space � 2

Z+(H) of square-summable sequences f : Z
+ → H; and the

frequency-domain signal-space H2
D
(H) of functions ϕ : D→ H that are analytic in D

and satisfy

∫ 2π

0

〈
ϕ(rejω), ϕ(rejω)

〉
H
dω < M

for some M < ∞ and all 0 ≤ r < 1. Note that H2
D
(H) is isomorphic to � 2

Z+(H) via
the Z-transform isomorphism [21, pp. 184–185], defined for all f ∈ � 2

Z+(H) by

(Zf)(λ):=
∞∑
i=0

fkλ
k, λ ∈ D.

Let U and Y be Hilbert spaces. For a linear, continuous-time system P : DP ⊂
L2

R+(U) → L2
R+(Y), the standard notion of causality can be expressed as follows: P

is causal if for all τ ∈ R
+, TτGP corresponds to the graph of a linear operator,

where Tτ is the projection that truncates a signal to zero after time τ . Given a real
number h > 0, such a system P is called periodically time-varying (with period h)
if UkhGP ⊂ GP for all k ∈ Z

+, where Uτ denotes the unilateral (forward) shift on
L2

R+(·).1

1According to this definition a linear, time-invariant system is also LPTV, since such a system
must, by definition, satisfy UτGP ⊂ GP for all τ ∈ R

+.
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The following technical definitions are necessary to facilitate a precise defini-
tion of the class of systems considered in that which follows. A causal, linear,
continuous-time system P : DP ⊂ L2

R+(U)→ L2
R+(U) is said to be causally extendible

if TτDP = TτL
2
R+(U) for all τ <∞. In this way, the input to P can be chosen arbi-

trarily over any finite interval [0, τ) and then continued into DP . Since P is causal,
the corresponding output over [0, τ) is defined uniquely by the input up to time τ . Ac-
cordingly, when P is causally extendible there is a one-to-one correspondence between
P and a system Pe : L2,e

R+(U) → L2,e
R+(Y) such that for all ue ∈ L2,e

R+(U) and τ < ∞,
TτPeue = TτPeTτue:=TτPu for any u ∈ DP that satisfies Tτue = Tτu, where
L2,e

R+(H):={f : R
+ → H : Tτf ∈ L2

R+(H) ∀ τ <∞} denotes the extended space as-
sociated with L2

R+(H) for any Hilbert space H. If P and Pe are related in this way, Pe
is called the (causal) extension of P and it is said that P is induced by Pe. When P is
causally extendible, its causal extension Pe is said to be locally Lipschitz-continuous
if for all τ ∈ R

+,

sup
u1,u2∈L2,e

R+
(U)

Tτu1 �=Tτu2

‖Tτ (Pu1 − Pu2)‖L2

R+
(Y)

‖Tτ (u1 − u2)‖L2

R+
(U)

<∞.

Definition 2.1. Given two Hilbert spaces U and Y, let PU,Y denote the set of
causal, LPTV (with period h), continuous-time systems

P : DP ⊂ L2
R+(U)→ L2

R+(Y),

with closed graphs.2 Furthermore, let Pe
U,Y ⊂ PU,Y denote the subset of causally

extendible systems with locally Lipschitz-continuous extensions.
A continuous-time system P : DP ⊂ L2

R+(U) → L2
R+(Y) is said to be stable if it

is causal and DP = L2
R+(U). If the system also has a closed graph, then ‖P‖ < ∞

by the closed graph theorem [2, p. 80]. Note that any stable system P ∈PU,Y is an
element of Pe

U,Y.
Importantly, each system in PU,Y is equivalent (via the time-lifting isomorphism

defined next) to a discrete-time system that is shift invariant [1]. Let W : L2
R+(H)→

� 2
Z+(L2

H
(H)) denote the time-lifting isomorphism defined for each f ∈ L2

R+(H) by

�
f k(θ):=(Wf)k = f(kh+ θ), θ ∈ H,

where L2
H
(H):=ThL2

R+(H). Then given any system P ∈PU,Y, the time-lifted equiv-
alent, discrete-time system

P:=WPW−1 : DP ⊂ � 2
Z+(L2

H
(U))→ � 2

Z+(L2
H
(Y))

is causal and LSI in the sense that its graph is a shift-invariant (linear) subspace,
meaning SGP ⊂ GP = WGP , and TkGP corresponds to the graph of a linear operator
for all k ∈ Z

+ (implying causality), where S denotes the unilateral (forward) shift
on � 2

Z+(·), and Tk denotes the truncation to zero after time k.3 The key here is that

SkW = WUkh for all k ∈ Z
+, so that a shift by h in the continuous-time signal

2That a linear system has a closed graph is necessary for it to be stabilizable [10]. Hence, this is
assumed.

3Throughout, the sans serif font (e.g., P) is used to distinguish objects associated with discrete-
time signals/systems from continuous-time objects, for which Roman italics are used (e.g., P ).
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space L2
R+(·) corresponds to a shift by a single time-step in the isomorphic, discrete-

time signal-space � 2
Z+(L2

H
(·)). Note that by representing each signal in � 2

Z+(L2
H
(·)) as

a column vector with kth entry corresponding to the value of the signal at time k,
the time-lifted equivalent system P(:=WPW−1) has lower-triangular, block-Toeplitz
structure 


P[0] 0 · · · · · · · · ·
P[1] P[0] 0 · · · · · ·
P[2] P[1] P[0] 0 · · ·

...
. . .

. . .
. . .

. . .


 ,

which can be uniquely identified with the sequence {P[i]}∞i=0. This representation plays
a significant role in that which follows. If the original LPTV system P is causally
extendible to a locally Lipschitz-continuous system, then each P[i] ∈ BL2

H
(U),L2

H
(Y).

Remark 2.2. Given an LSI system P : DP ⊂ � 2
Z+(L2

H
(U)) → � 2

Z+(L2
H
(Y)),4

the equivalent continuous-time system P :=W−1PW may not be locally causal in each
[kh, (k+1)h) interval of time. The equivalent system P is causal if and only if P[0] (the
first element of the sequence uniquely identifiable with the block-Toeplitz representation
of P) is a causal mapping from L2

H
(U) to L2

H
(Y), in the sense that TτGP[0]

corresponds
to the graph of a linear operator for all τ ∈ H.

An LSI system P : DP ⊂ � 2
Z+(U)→ � 2

Z+(Y) is said to be stable if DP = � 2
Z+(U). If

in addition GP is closed, then ‖P‖ <∞ by the closed graph theorem. Related to such
operators is the Hardy space H∞

D
(BU,Y) of functions Φ : D→ BU,Y that are bounded

and analytic in the open unit-disc. Given a function Φ ∈ H∞
D

(BU,Y), boundary values
can be defined almost everywhere on the unit-circle T, and the resulting boundary
values Φ(ejω) are essentially bounded. A function Φ ∈ H∞

D
(BU,Y) is said to be inner if

Φ(ejω) is an isometry almost everywhere on T. Corresponding to each Φ ∈ H∞
D

(BU,Y)
is a multiplication operator MΦ : H2

D
(U)→ H2

D
(Y), defined by (MΦϕ)(λ):=Φ(λ)ϕ(λ)

for all ϕ ∈ H2
D
(U) and λ ∈ D.

Proposition 2.3 (see [9, p. 235]). Given a stable, LSI system P : � 2
Z+(U) →

� 2
Z+(Y) with a closed graph, there exists a function P̂ ∈ H∞

D
(BU,Y) such that P =

Z−1MP̂Z. Furthermore, P is an isometry if and only if the corresponding symbol P̂
is inner.

2.2. Feedback systems. Consider the feedback configuration shown in Figure
2.1, and suppose that P ∈Pe

U,Y and C ∈Pe
Y,U. Denote by Pe and Ce the respective

locally Lipschitz-continuous causal extensions (which exist by assumption), and for
notational convenience let V:=U ⊕ Y. The closed-loop, denoted by [P,C], is said to
be well posed if the following three conditions hold:

(i)
[
I Ce

Pe I

]
: L2,e

R+(V) → L2,e
R+(V), the system mapping [ u1

u2
] to

[
d1
d2

]
, is bijective,

implying the existence of a unique solution to the functional equations that
describe the closed-loop;

(ii) He(P,C):=
[
I Ce

Pe I

]−1
is causal and locally Lipschitz-continuous;

(iii) The solution to the functional equations that describe the closed-loop is in-
sensitive to very high frequency modeling errors, such as small transmission
delays.

For further details and a discussion of the physical significance of well-posedness, the
reader is referred to the seminal work of Willems [26, Chap. 4]. In addition to well-

4Since this system is only defined for positive time, shift-invariance implies causality.
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C

P

✛ ❄❥✛

✲
✻
❥✲d1 u1 y1

d2u2y2

−

+

+

−

Fig. 2.1. Standard feedback configuration.

posedness, it is desirable for the system H(P,C) : DH(P,C) ⊂ L2
R+(V) → L2

R+(V)
induced by He(P,C), to satisfy DH(P,C) = L2

R+(V). In this case, the closed-loop is
said to be stable and P is said to be stabilized by C. Since P and C are both linear, it
can be shown that this also implies closed-loop stability with finite-gain [26, p. 117];
that is, ‖H(P,C)‖ <∞.

Given a plant P ∈Pe
U,Y and a controller C ∈Pe

Y,U, note that

[
I C
P I

]
: DP ⊕DC → GP + G�

C .

Thus, if [P,C] is well posed, then GP ∩ G�

C = {0}. Furthermore, observe that
DH(P,C) = GP + G�

C and hence that the closed-loop is stable if and only if GP + G�

C =
L2

R+(V) (with GP ∩ G�

C = {0}). This useful geometric characterization of closed-
loop stability is summarized in the following proposition, which has also appeared in
[10, 12, 15] for other classes of systems.

Proposition 2.4. Given a well-posed plant/controller pair P ∈ Pe
U,Y and

C ∈ Pe
Y,U, the closed-loop [P,C] is stable if and only if GP and G�

C induce a co-

ordinatization of L2
R+(V). In this case, the parallel projections ΠGP ‖G�

C
and ΠG�

C
‖GP

are stable systems in Pe
V,V.

Remark 2.5. Let the systems P ∈ Pe
U,Y and C ∈ Pe

Y,U constitute a well-posed

plant/controller pair, and recall that GP and G�

C are isomorphic to shift-invariant

subspaces ĜP:=ZWGP ⊂ H2
D
(L2

H
(V)) and Ĝ�

C:=ZWG�

C ⊂ H2
D
(L2

H
(V)), respectively. It

follows directly by Proposition 2.4 that the corresponding closed-loop [P,C] is stable if

and only if ĜP and Ĝ�

C induce a coordinatization of H2
D
(L2

H
(V)).

3. Shift-invariant subspaces. In view of Remark 2.5, shift-invariant subspaces
arise somewhat naturally in the study of LPTV, continuous-time systems. Accord-
ingly, this section is concerned with the characterization of shift-invariant subspaces.5

To this end, the Beurling–Lax–Halmos theorem [13, 17, 9] is used, which states that
any shift-invariant subspace of H2

D
can be expressed as the range of a multiplication

operator with inner symbol. This result is extended here, to show that if the shift-
invariant subspace is also shift-invariantly coordinatizable, then it can be expressed as
the kernel of a multiplication operator with symbol in H∞

D
. Furthermore, it is shown

5A subspace of a Hilbert space is linear by definition. Furthermore, a shift-invariant subspace G
satisfies SG ⊂ G, by definition.
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that these range and kernel representations are, respectively, right and left invertible
by multiplication operators with symbols in H∞

D
. Using this result, strong-right and

strong-left representations of the graph of an LPTV, continuous-time system may be
constructed as shown in section 4, provided the system is stabilizable.

Let G ⊂ H2
D
(H) be a closed, shift-invariant subspace, where H is a Hilbert space.

Then G is said to be shift-invariantly coordinatizable if there exists a closed, shift-
invariant subspace F ⊂ H2

D
(H) such that G and F induce a coordinatization of H2

D
(H);

that is, such that G ∩ F = {0} and G + F = H2
D
(H). Recall that when two (closed)

subspaces, G and F say, induce a coordinatization of H2
D
(H), any η ∈ H2

D
(H) can be

uniquely decomposed as the sum η = γ + ϕ, where γ ∈ G and ϕ ∈ F. Furthermore,
recall that the operator ΠG‖F:= η �→ γ is called the parallel projection onto G along
F and similarly, that ΠF‖G:= η �→ ϕ is called the parallel projection onto F along G.
Since G and F are closed subspaces it follows that the graphs of the parallel-projection
operators are closed and thus, that the parallel-projection operators are bounded, by
the closed graph theorem [2, p. 80]. If G and F are shift-invariant subspaces, then it
follows immediately that the parallel-projection operators are LSI.

Proposition 3.1 (Beurling–Lax–Halmos theorem [13, 17, 9]). Given a shift-
invariant subspace L ⊂ H2

D
(H), there exists an inner function Λr ∈ H∞

D
(BH1,H) such

that L = ΛrH
2
D
(H1), where H1 can be any Hilbert space isomorphic to L� SL.

Let G and F be two shift-invariant subspaces that induce a coordinatization of
H2

D
(H). Then in view of Proposition 3.1, there exist inner functions Γr ∈ H∞

D
(BH1,H)

and Φr ∈ H∞
D

(BH2,H) such that G = ΓrH
2
D
(H1) and F = ΦrH

2
D
(H2), where H1 is any

Hilbert space isomorphic to G�SG and H2 is any Hilbert space isomorphic to F�SF.
Note that since MΓr

and MΦr are isometries (because their symbols are inner), the
orthogonal projections ΠG onto G and ΠF onto F can be expressed as MΓr

(MΓr
)∗

and MΦr (MΦr )∗, respectively. This fact and the following technical result are used
in the proof of the main theorem of this section.

Lemma 3.2. Given two closed, shift-invariant subspaces G and F that induce
a coordinatization of H2

D
(H), let Γr ∈ H∞

D
(BH1,H) and Φr ∈ H∞

D
(BH2,H) be in-

ner functions that satisfy G = ΓrH
2
D
(H1) and F = ΦrH

2
D
(H2). Then the operators

(MΓr
)∗ΠG‖F and (MΦr

)∗ΠF‖G are bounded and LSI.

Proof. It is only shown that (MΓr )∗ΠG‖F is bounded and LSI. The proof that
(MΦr )∗ΠF‖G is also bounded and LSI follows similarly. (MΓr )∗ΠG‖F is clearly linear
and bounded on H2

D
(H), since it is the product of two bounded, linear operators. To

see that it is also shift invariant, note that any η ∈ H2
D
(H) is uniquely expressible

as η = γ + ϕ, where γ = ΠG‖Fη ∈ G and ϕ = ΠF‖Gη ∈ F, and since MΓr is
an isometry, that there exists a unique ζ ∈ H2

D
(H1) such that γ = MΓrζ. In fact,

ζ = (MΓr
)∗ΠG‖Fη. Now using the relationships Sη = Sγ + Sϕ, Sγ = MΓrSζ ∈ G

and Sϕ ∈ F, it follows that

(MΓr )∗ΠG‖FSη = (MΓr )∗Sγ = Sζ = S(MΓr )∗ΠG‖Fη.

That is, (MΓr )∗ΠG‖F is also shift invariant.

The following theorem is the main result of this section. It is essentially an
extension of the Beurling–Lax–Halmos theorem, in that it guarantees the existence
of a kernel representation of a shift-invariant subspace if it is also shift-invariantly
coordinatizable.

Theorem 3.3. Given a closed, shift-invariant subspace G ⊂ H2
D
(H) that is shift-

invariantly coordinatizable, there exist functions Γr ∈ H∞
D

(BH1,H), Γl ∈ H∞
D

(BH,H2),
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Φr ∈ H∞
D

(BH2,H), and Φl ∈ H∞
D

(BH,H1
) such that

G = RMΓr
= KMΓl

,

[
MΓr MΦr

][MΦl

MΓl

]
= I and

[
MΦl

MΓl

][
MΓr MΦr

]
=

[
I 0
0 I

]
,

where H1 can be any Hilbert space isomorphic to G � SG, H2 any Hilbert space iso-
morphic to F�SF and F any closed, shift-invariant subspace that in conjunction with
G induces a coordinatization of H2

D
(H).

Proof. By assumption there exists a shift-invariant subspace F ⊂ H2
D
(H) such

that G and F induce a coordinatization of H2
D
(H). Furthermore, by the Beurling–Lax–

Halmos theorem, there exist inner functions Γr ∈ H∞
D

(BH1,H) and Φr ∈ H∞
D

(BH2,H),
with H1 ∼ G� SG and H2 ∼ F � SF, such that G = RMΓr

and F = RMΦr
.

Now by Lemma 3.2, (MΓr
)∗ΠG‖F and (MΦr

)∗ΠF‖G are bounded, LSI operators
on H2

D
(H). As such, by Proposition 2.3, there exist functions Φl ∈ H∞

D
(BH,H1) and

Γl ∈ H∞
D

(BH,H2), so that

MΦl
= (MΓr )∗ΠG‖F and MΓl

= (MΦr )∗ΠF‖G.(3.1)

Since RΠG‖F
(= RMΓr

) is orthogonal to K(MΓr )∗ , it follows from (3.1) that KMΦl
=

KΠG‖F
= F. Similarly, KMΓl

= G. Consequently it remains to show that

[
MΓr

MΦr

][MΦl

MΓl

]
=

[
MΦl

MΓl

][
MΓr

MΦr

]
=

[
I 0
0 I

]
.

To see this, first note that

ΠG‖F = ΠGΠG‖F = MΓr (MΓr )∗ΠG‖F = MΓrMΦl

and

ΠF‖G = ΠFΠF‖G = MΦr (MΦr )∗ΠF‖G = MΦrMΓl
.

Using the relationship ΠG‖F + ΠF‖G = I, it is then immediate that

[
MΓr MΦr

][MΦl

MΓl

]
= I.(3.2)

Now since G = RMΓr
= KMΓl

, F = RMΦr
= KMΦl

and the subspaces G and F induce

a coordinatization of H2
D
(H), both

[
MΓr MΦr

]
and [ MΦl

MΓ1

] have zero kernel. Thus,

they are the inverse of each other (see (3.2)) and

[
MΦl

MΓl

][
MΓr MΦr

]
=

[
I 0
0 I

]
.

This completes the proof.
Remark 3.4. The multiplication operator symbols in the last theorem are not

unique. In fact, given any functions Θ0 ∈ H∞
D

(BH2,H1), Θ1(Θ
−1
1 ) ∈ H∞

D
(BH1,H1) and

Θ2(Θ
−1
2 ) ∈ H∞

D
(BH2,H2

), the functions

Γr�:=ΓrΘ1, Γl�:=Θ−1
2 Γl, Φr�:=(Φr − ΓrΘ0)Θ2,
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and

Φl�:=Θ−1
1 (Φl + Θ0Γl)

satisfy G = RMΓr	
= KMΓl	

,

[
MΓr	 MΦr	

][MΦl	

MΓl	

]
= I, and

[
MΦl	

MΓl	

][
MΓr	 MΦr	

]
=

[
I 0
0 I

]
.

4. Stabilizability and existence of strong-right/left representations. Re-
call the standard closed-loop configuration shown in Figure 2.1, which is denoted by
[P,C]. Also recall that a system P ∈ Pe

U,Y is said to be stabilizable if there exists
a system C ∈ Pe

Y,U such that the closed-loop [P,C] is stable. In this section, it
is shown that provided an LPTV system is stabilizable, there exist strong-right and
strong-left representations of its graph. That is, it is shown that the graph of any
stabilizable, LPTV system can be expressed as the range (respectively, kernel) of a
stable, LPTV system that is left (respectively, right) invertible by a stable, LPTV
system. In view of Proposition 2.4 and Remark 2.5, this result follows almost imme-
diately by Theorem 3.3. The difficulty, however, is that the relevant multiplication
operators shown to exist in Theorem 3.3 may correspond (via the Z-transform and
time-lifting isomorphisms) to systems that are not locally causal in each [kh, (k+1)h)
interval of continuous-time (see Remark 2.2). Fortunately though, it is possible to
exploit the nonuniqueness of these range and kernel representations (see Remark 3.4)
to ensure causality, as detailed in the proof of the following theorem.

Theorem 4.1. Let U and Y be Hilbert spaces and for notational convenience
define V:=U⊕ Y. If P ∈Pe

U,Y can be stabilized by some C ∈Pe
Y,U, then there exist

stable systems Gr ∈Pe
U,V, Gl ∈Pe

V,Y, Kl ∈Pe
V,U, and Kr ∈Pe

Y,V such that

GP = RGr = KGl

and

[
Gr Kr

][Kl
Gl

]
=

[
Kl
Gl

][
Gr Kr

]
=

[
I 0
0 I

]
.

Proof. Let C ∈ Pe
Y,Y be a stabilizing controller for the plant P . Then by Re-

mark 2.5 it follows that the shift-invariant subspaces ĜP:=ZWGP ⊂ H2
D
(L2

H
(V)) and

Ĝ�

C:=ZWG�

C ⊂ H2
D
(L2

H
(V)) induce a coordinatization of H2

D
(L2

H
(V)). Correspondingly,

there exist, by Theorem 3.3, functions

Ĝr ∈ H∞
D

(BH1,L2
H
(V)), Ĝl ∈ H∞

D
(BL2

H
(V),H2

), K̂l ∈ H∞
D

(BL2
H
(V),H1

),

and K̂r ∈ H∞
D

(BH2,L2
H
(V)) such that

ĜP = RMĜr
= KMĜl

and

[
MĜr

MK̂r

][MK̂l

MĜl

]
=

[
MK̂l

MĜl

][
MĜr

MK̂r

]
=

[
I 0
0 I

]
,
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where H1 is any Hilbert space isomorphic to ĜP � SĜP and H2 is any Hilbert space
isomorphic to Ĝ�

C � SĜ�

C. In fact, H1 may be taken to be L2
H
(U) and H2 to be L2

H
(Y),

as is done in the rest of the proof. That this is possible is shown in Appendix A.
Now define

Gr:=Z−1MĜr
Z, Gl:=Z−1MĜl

Z, Kl:=Z−1MK̂r
Z,

and

Kr:=Z−1MK̂l
Z.

Then GP = WGP = RGr = KGl
and

[
Gr Kr

][Kl
Gl

]
=

[
Kl
Gl

][
Gr Kr

]
=

[
I 0
0 I

]
.

Furthermore, given any stable, LSI system

Q0 : � 2
Z+(L2

H
(U))→ � 2

Z+(L2
H
(Y))

and stable, LSI systems

Q1 : � 2
Z+(L2

H
(U))→ � 2

Z+(L2
H
(U)) and Q2 : � 2

Z+(L2
H
(Y))→ � 2

Z+(L2
H
(Y))

with stable inverses, observe (as in Remark 3.4) that the stable, LSI systems

Gr�:=GrQ1, Gl�:=Q−1
2 Gl, Kr�:=(Kr − GrQ0)Q2,

and Kl�:=Q−1
1 (Kl + Q0Gl) satisfy

GP = RGr	 = KGl	

and

[
Gr� Kr�

][Kl�
Gl�

]
:=
[
GrQ1 (Kr − GrQ0)Q2

][Q−1
1 (Kl + Q0Gl)

Q−1
2 Gl

]

=

[
Q−1

1 (Kl + Q0Gl)
Q−1

2 Gl

][
GrQ1 (Kr − GrQ0)Q2

]

=

[
Q−1

1 Q−1
1 Q0

0 Q−1
2

][
Kl
Gl

][
Gr Kr

][Q1 −Q0Q2

0 Q2

]

=

[
I 0
0 I

]
.(4.1)

Consequently, if it were possible to choose Q0, Q1, and Q2 to ensure that (GrQ1)[0],

(Q−1
2 Gl)[0], (Q−1

1 (Kl + Q0Gl))[0], and ((Kr + GrQ0)Q2)[0] are all causal mappings on
the finite horizon H, it would follow by Remark 2.2 that

Gr�:=W−1Gr�W, Gl�:=W−1Gl�W, Kr�:=W−1Kr�W,

and Kl�:=W−1Kl�W are all stable, LPTV systems satisfying

GP = RGr	
= KGl	
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and

[
Gr� Kr�

][Kl�
Gl�

]
=

[
Kl�
Gl�

][
Gr� Kr�

]
=

[
I 0
0 I

]
.

Accordingly, the rest of the proof is dedicated to showing that this is possible.
Let [

Mr[0]

Nr[0]

]
:=Gr[0] and

[−Nl[0] Ml[0]

]
:=Gl[0],

where the partitioning is conformal with that of GP and the subscript [0] denotes
the first element of the sequence uniquely identifiable with the associated block-
Toeplitz representation. Now recall that, by definition, P ∈ Pe

U,Y is causally ex-
tendible with locally Lipschitz-continuous extension. As such, it follows that both
Mr[0] ∈ BL2

H
(U),L2

H
(U) and Ml[0] ∈ BL2

H
(Y),L2

H
(Y) are bijective and hence, boundedly in-

vertible by the open mapping theorem [2, p. 79]. To see this, first note that since P
is causally extendible,

RMr[0]
= ThDP = L2

H
(U).

Consequently, Mr[0] is surjective. Suppose now that there exists some nonzero �q ∈
L2

H
(U) such that Mr[0]

�q = 0. Then by causality of P it follows that Nr[0]
�q must also

be zero. Since Kl[0]Gr[0] = I, this implies that

0 = Kl[0]

[
Mr[0]

Nr[0]

]
�q = �q ,

which is a contradiction. Hence, the linear operator Mr[0] must be injective. This,
and the fact that it is also surjective, implies that Mr[0] is bijective as claimed. Now
consider Ml[0], and suppose that there exists a nonzero �q ∈ L2

H
(Y) such that Ml[0]

�q =
0. Then since

K[−Nl[0] Ml[0]

] = ThGP ,

it follows that
[

0
�q

]
∈ ThGP . But this contradicts the causality of P and hence �q

must be 0. Consequently, Ml[0] has zero kernel and is thereby injective. Moreover,
since Gl[0]Kr[0] = I,

R[−Nl[0] Ml[0]

] = L2
H
(Y).

So for all �e ∈ L2
H
(Y), there exists a �g =

[ �g 1
�g 2

]
∈ L2

H
(V) such that

�e =
[−Nl[0] Ml[0]

][�g 1
�g 2

]
.

In fact,

�e =
[−Nl[0] Ml[0]

][ �g 1 + �u
�g 2 + P[0]

�u

]
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for all �u ∈ ThDP . Since ThDP = L2
H
(U), �u can be set to −�g 1. Doing this gives �e =

Ml[0](
�g 2 − P[0]

�g 1), from which it is evident that RMl[0]
= L2

H
(Y). Correspondingly,

Ml[0] is bijective as claimed.

Having shown that both Mr[0] and Ml[0] are boundedly invertible, it is possible

to construct the required Q0, Q1, and Q2. Let Q1 satisfy Q1[0] = M−1
r[0] and Q1[i] = 0

for i �= 0, where {Q1[i]}∞i=0 denotes the sequence uniquely identifiable with the block-
Toeplitz representation of Q1. Then

(GrQ1)[0] =

[
I

Nr[0]M
−1
r[0]

]
,

which is causal on L2
H
(U), since P is a causal system. Now let

[
Yl[0] Xl[0]

]
:=Kl[0],

where the partition is conformal with GP, and construct Q0 so that Q0[0] = −Xl[0]M
−1
l[0]

and Q0[i] = 0 for i �= 0. Then since Nr[0]M
−1
r[0] = M−1

l[0]Nl[0] = P[0] and Yl[0]Mr[0] +

Xl[0]Nr[0] = I, it follows that

(Q−1
1 (Kl + Q0Gl))[0] = (Q−1

1 )[0]
(
Kl[0] + Q0[0]

[−Nl[0] Ml[0]

])
= Mr[0]

[
Yl[0] + Xl[0]M

−1
l[0]Nl[0] 0

]

= Mr[0]

[
M−1
r[0] 0

]
=
[
I 0

]
,

which is obviously causal on L2
H
(V), as required. Finally, let [−Xr[0]

Yr[0]
]:=Kr[0]. Then from

(4.1), it follows that Mr[0]Xl[0] − Xr[0]Ml[0] = 0 and hence, that Q0[0] = −Xl[0]M
−1
l[0] =

M−1
r[0]Xr[0]. Defining Q2 to satisfy Q2[0] = Ml[0] and Q2[i] = 0 for i �= 0, gives

(Q−1
2 Gl)[0] = [−M−1

l[0]Nl[0] I] and ((Kr + GrQ0)Q2)[0] = [ 0
I ]. As required, each is

respectively causal on L2
H
(V) and L2

H
(Y), completing the proof.

Remark 4.2. Since Gr and Gl in Theorem 4.1 are, respectively, left and right
invertible by stable, LPTV systems, they are called strong-right and strong-left repre-
sentations of GP , respectively. Note that they are only unique up to invertible factors.
That is, for any stable systems Q1(Q

−1
1 ) ∈ Pe

U,U, and Q2(Q
−1
2 ) ∈ Pe

Y,Y, the sys-

tems GrQ1 and Q
−1
2 Gl are also strong-right and strong-left representations of GP ,

respectively.

5. Closed-loop stability and stabilizing controllers. The next result con-
stitutes a useful characterization of closed-loop stability in terms of range and kernel
representations of GP and G�

C . In turn, this result leads to a Youla-style parametriza-
tion of stabilizing controllers.

Lemma 5.1. Given a well-posed plant/controller pair P ∈Pe
U,Y and C ∈Pe

Y,U,
let Gr ∈ Pe

U,V be any stable system with zero kernel such that GP = RGr , and

Kl ∈ Pe
V,U be any stable system such that RKl

= L2
R+(U) and G�

C = KKl
. Then the

following are equivalent:

(i) The closed-loop system [P,C] is stable.
(ii) The stable, LPTV system KlGr is bijective (and hence boundedly invertible,

although the inverse may not be causal).

Furthermore, if [P,C] is stable and Gr and Kl are, respectively, strong-right and
strong-left representations of GP and G�

C , then (KlGr)
−1 is a stable system in Pe

U,U.
That is, the inverse is also causal.
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Proof. Since the closed-loop is well posed by assumption, it follows by Proposi-
tion 2.4 and the identities GP = RGr and G�

C = KKl
that

[P,C] is stable ⇔ RGr
+ KKl

= L2
R+(V) and RGr

∩KKl
= {0}.

Since RKl
= L2

R+(U) and KGr = {0}, it is clear that

RGr + KKl
= L2

R+(V) and RGr ∩KKl
= {0}

⇓
RKlGr = L2

R+(U) and KKlGr
= {0}.

To see that the converse is also true, let RKlGr
= L2

R+(U) and KKlGr = {0}. That
RGr ∩KKl

= {0} is immediate. Now suppose that there exists a v ∈ L2
R+(V) such that

v �∈ RGr + KKl
, and define e:=Klv. Then since RKlGr

= L2
R+(U) and KKlGr = {0},

there exists a unique q ∈ L2
R+(U) such that e = KlGrq = Klg, where g:=Grq.

Consequently, Kl(g − v) = 0, which implies either v = g or (g − v) ∈ KKl
. But

this contradicts v �∈ RGr
+ KKl

, since g ∈ RGr . Consequently, it follows that [P,C]
is stable if and only if the bounded linear operator KlGr is bijective (and hence,
boundedly invertible by the open mapping theorem [2, p. 79]). Note that (KlGr)

−1

is periodically time-varying but that it may not be locally causal on L2
H
(U).

It is now shown that if [P,C] is stable and Gr and Kl are, respectively, strong-
right and strong-left representations of GP and G�

C , then (KlGr)
−1 ∈ Pe

U,U. First
note that for any Kl and Gr that satisfy the original conditions of the lemma,

ΠGP ‖G�
C

= Gr(KlGr)
−1Kl.(5.1)

To see this, note that since [P,C] is stable, the subspaces GP and G�

C induce a coor-
dinatization of L2

R+(V). Thereby, any g ∈ L2
R+(V) can be written uniquely as the sum

g = p+ c, where p ∈ GP and c ∈ G�

C . Furthermore, since KGr
= {0} and RGr

= GP ,
there exists a unique q ∈ L2

R+(U) such that p = Grq. Consequently,

(
ΠGP ‖G�

C
−Gr(KlGr)−1Kl

)
g = p−Gr(KlGr)−1Klp

= p−Gr(KlGr)−1KlGrq

= p−Grq = 0

for all g ∈ L2
R+(U), implying that ΠGP ‖G�

C
= Gr(KlGr)

−1Kl. Now take Gr and Kl to

be strong-right and strong-left representations. Then, Gr and Kl satisfy the original
conditions of the lemma and there exist stable systems Kl� ∈Pe

V,U and Gr� ∈Pe
U,V

such that Kl�Gr = I and KlGr� = I. Now from (5.1),

(KlGr)
−1 = Kl�ΠGP ‖G�

C
Gr�,

which since ΠGP ‖G�
C
∈ Pe

V,V (see Proposition 2.4) implies that (KlGr)
−1 ∈ Pe

U,U.

This completes the proof.
Remark 5.2. Note that by interchanging the roles of P and C in Lemma 5.1,

given any stable system Gl ∈ Pe
V,Y such that RGl

= L2
R+(U) and GP = KGl

, and

any stable system Kr ∈Pe
Y,V with zero kernel such that G�

C = RKr , the following are
equivalent:

(i) The closed-loop system [P,C] is stable.
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(ii) The stable, LPTV system GlKr is bijective (and hence boundedly invertible,
although the inverse may not be causal).

Furthermore, if Gl and Kr are, respectively, strong-left and strong-right representa-
tions of GP and G�

C , and [P,C] is stable, then (GlKr)
−1 is a stable system Pe

Y,Y.
Interestingly, given a system P ∈ Pe

U,Y and a stabilizing controller C ∈ Pe
Y,U,

strong-right and strong-left representations of G�

C can be constructed from strong-
right and strong-left representations of GP and the respective stable left and right
inverses. This is analogous to necessity of the well-known Youla parametrization of
stabilizing controllers for certain classes of systems [27, 7, 6, 5], as summarized in the
following theorem.

Theorem 5.3. Given a stabilizable system P ∈ Pe
U,Y and stable systems Gr ∈

Pe
U,V, Gl ∈Pe

V,Y, Kl ∈Pe
V,U, and Kr ∈Pe

Y,V such that

GP = RGr
= KGl

and

[
Gr Kr

][Kl
Gl

]
=

[
Kl
Gl

][
Gr Kr

]
=

[
I 0
0 I

]
,

a system C ∈Pe
Y,U stabilizes P only if there exists a stable Q ∈Pe

Y,U such that

Kr −GrQ
is a strong-right representation of G�

C and

Kl +QGl

is a strong-left representation of G�

C .
Proof. Let C ∈ Pe

Y,U denote a stabilizing controller for P . Then it follows by
Theorem 4.1 that there exist stable systems Gr ∈Pe

U,V, Gl ∈Pe
V,Y, Kl ∈Pe

V,U, and
Kr ∈Pe

Y,V such that

GP = RGr = KGl

and

[
Gr Kr

][Kl
Gl

]
=

[
Kl
Gl

][
Gr Kr

]
=

[
I 0
0 I

]
.(5.2)

Furthermore, for any stable system Q ∈Pe
Y,U,

[
Gr (Kr −GrQ)

][(Kl +QGl)
Gl

]

=

[
(Kl +QGl)

Gl

][
Gr (Kr −GrQ)

]
=

[
I 0
0 I

]
.(5.3)

Now from (5.3),

(Kl +QGl)(Kr −GrQ) = 0,

implying that R(Kr−GrQ) ⊂ K(Kl+QGl). To see that the opposite inclusion also holds,
note from (5.3) that

(Kl +QGl)
[
Gr (Kr −GrQ)

]
=
[
I 0

]
.(5.4)
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Now suppose there exists a nonzero x ∈ K(Kl+QGl) that is not in R(Kr−GrQ). Then
since

K[Gr (Kr −GrQ)
] = {0} and R[Gr (Kr −GrQ)

] = L2
R+(V),

there exists a unique u =: [ u1
u2

] ∈ L2
R+(V) such that

x =
[
Gr (Kr −GrQ)

][u1

u2

]
.

Furthermore, 0 = (Kl +QGl)x = u1, which using (5.4), implies that x ∈ R(Kr−GrQ).
This is a contradiction and, therefore, K(Kl+QGl) ⊂ R(Kr−GrQ).

Since [P,C] is stable (or equivalently C is stabilized P ), it follows by Theo-
rem 4.1 that there exist strong-right and strong-left representations of GC . Noting
that G�

C :=[ 0 I
I 0 ]GC , these give rise to strong-right and strong-left representations of

G�

C . Denote these by Kr� ∈ Pe
Y,V and Kl� ∈ Pe

V,U, respectively. It then follows by
Lemma 5.1 that Kl�Gr is boundedly invertible in Pe

U,U. Now define

Q:=− (Kl�Gr)
−1Kl�Kr,

noting that Q is a stable system in Pe
Y,U. Then using (5.2),

Kl −QGl = Kl + (Kl�Gr)
−1Kl�KrGl

= Kl + (Kl�Gr)
−1Kl�(I −GrKl)

= Kl −Kl + (Kl�Gr)
−1Kl� = (Kl�Gr)

−1Kl�,

implying that K(Kl−QGl) = KKl	
. Since R(Kr+GrQ) = K(Kl−QGl) and RKr	 = KKl	

,
it also follows that R(Kr+GrQ) = RKr	 . That is, the strong-right and strong-left
representations of G�

C are in the form required.
Remark 5.4. If in Theorem 5.3 the choice of Q was restricted to the stable

systems in Pe
U,Y for which the subspace R(Kr−GrQ) = K(Kl+QGl) corresponds to the

inverse graph of a system C ∈Pe
U,Y such that the closed-loop [P,C] is well posed, then

C would stabilize P . That is, Theorem 5.3 would also be sufficient. To see this, note
from (5.3) that for such a Q, the system (Kl +QGl) is a strong-left representation of
G�

C . So by arguments similar to those used in the proof of Lemma 5.1, and the fact
that (Kl +QGl)Gr = I is obviously invertible, it follows that [P,C] is stable. Again
from (5.3), and since R(Kr−GrQ) = K(Kl+QGl) = G�

C , it also follows that (Kr −GrQ)
is a strong-right representation of the inverse graph of a stabilizing controller.

Appendix A. Supplement to the proof of Theorem 4.1. As required in
Theorem 4.1, it is shown here that L2

H
(U) is isomorphic to ĜP � SĜP and that L2

H
(Y)

is isomorphic to Ĝ�

C�SĜ�

C, where all of these objects are defined as in the proof of the

theorem. Recall that there exists a function Ĝr ∈ H∞
D

(BH1,L2
H
(V)) such that

ĜP = ĜrH
2
D
(H1),

where H1 is a Hilbert space isomorphic to ĜP � SĜP. Note that since P ∈ PU,Y is
causally extendible, ThDP = L2

H
(U) and hence

Gr[0]H1 =

[
I

P[0]

]
L2

H
(U),(A.1)
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where Gr[0](= Ĝr(0)) and P[0] denote the first elements of the sequences uniquely iden-

tifiable with the block-Toeplitz representations of Gr:=Z−1MĜr
Z and P:=WPW−1,

respectively. Also recall that MĜr
has a left-inverse MK̂l

with K̂l ∈ H∞
D

(BL2
H
(V),H1

).

As such, Kl[0] = K̂l(0) is a bounded left-inverse of Gr[0].
6 Define

Q:=Kl[0]

[
I

P[0]

]
: L2

H
(U)→ H1.

Then since
[

I
P[0]

]
has zero kernel and Kl[0]Gr[0] = I, it follows from (A.1) that Q is

a bijective mapping. Hence, Q(Q∗Q)−
1
2 is an isomorphism between L2

H
(U) and H1.

Correspondingly, L2
H
(U) is isomorphic to ĜP�SĜP ∼ H1. It can be shown in a similar

manner that L2
H
(Y) is isomorphic to Ĝ�

C � SĜ�

C.
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Abstract. Quantitative robust stability results are established in this paper for feedback systems
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1. Introduction. The motivation for this paper stems from a desire to charac-
terize the robustness properties of sampled-data (SD) control systems. Such systems
are invariably time-varying, but often the time-variation is periodic [6]. As such, the
approach taken here is to study general linear, periodically time-varying (LPTV)
feedback systems.

Most systematic frameworks for control system design are model based. Corres-
pondingly, it is imperative to account for the uncertainty that may be associated
with any mathematical model of a physical process. Importantly, feedback systems
can be made robust to uncertainty of this kind. In fact, this property is the principal
reason for using feedback in control systems. The uncertainty that feedback systems
can tolerate may be qualified mathematically by introducing a suitable topology on
the set of systems concerned and quantified in terms of any metric that induces such
a topology. Consider the standard closed-loop configuration shown in Figure 1.1. This

is said to be stable if H(P,C):=[ I CP I ]
−1

is causal and bounded. A topology suitable
for robustness analysis is defined in [25, 23] (for quite clear reasons) as one that
satisfies the following properties: Given any plant P in some set of interest and a
stabilizing controller C, there exists a neighborhood of P (in this topology on the
set of plants) such that all plants in this neighborhood are also stabilized by C and
the mapping P �→ H(P,C) is continuous at P (with respect to this topology and
the induced-norm topology on the corresponding set of stable closed loops). That
is, for any sequence {Pi}∞i=0 converging to P (with respect to a topology with these
properties), all but a finite number of the plants in the sequence must be stabilized
by C and H(Pi, C) → H(P,C) in the induced-norm topology. Put more simply,
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Fig. 1.1. Standard closed-loop configuration.

closed-loop stability is maintained in sufficiently small neighborhoods and closed-loop
performance changes gradually in the face of tolerable uncertainty.

For stable systems, a topology suitable for studying robustness is the induced-
norm topology. This framework lies at the heart of H∞ control theory as developed
in the seminal paper of Zames [30]. A shortcoming of the induced-norm topology
is the inability to consider (explicitly) unstable components of a given closed loop.
This shortcoming was addressed by defining the so-called graph topology as described
below (see also [31, 23, 24]). For certain classes of system, a topology satisfying the
properties described above can be characterized explicitly in terms of the graph rep-
resentation of systems (the subspace of all input-output pairs) [23]. Such a topology
is correspondingly referred to as the graph topology. Qualitatively, two systems are
“close” in the graph topology if their graph subspaces are “close.” For systems known
to admit fractional representations that are coprime (such as LTI systems [24, 21],
for example), a basis for the graph topology can be constructed by additively per-
turbing range and kernel representations of the graph, which can be constructed from
the coprime factors [24]. It is also shown in [24] that for such systems, the graph
topology (defined in terms of the basis described above) is the weakest with respect
to which closed-loop performance varies continuously and closed-loop stability is a
robust property.

The topological aspects of robustness analysis described so far qualify the types
of uncertainty that are tolerable in a feedback sense. To quantify a level of robustness
in these terms, a metric to induce the graph topology is required. For LTI systems
a number of metrics have this property, including the graph metric [23], the gap
metric [13], and the ν-gap metric [26]. Correspondingly, there are many well-known
quantitative robustness results expressed in terms of these metrics for LTI systems
[23, 31, 9, 13, 14, 19, 26].

All of the robust stability results derived in this paper for LPTV feedback systems
are expressed in terms of the gap metric. Given two systems, the gap between them
is defined to be the aperture between their corresponding graph subspaces [16]. It is
well known that the gap between two subspaces is the maximum of two directed gaps
[17] and, correspondingly, the gap between two systems is also the maximum of two
directed gaps. In this paper, a formula is derived for the directed gap between two
LPTV systems. The formula characterizes the directed gap in terms of a two-block
H∞-optimization problem involving a particular representation of the graph. As such,
it is essentially a generalization of that given in [13] for LTI systems. The formula
derived is used in a key step of the main robustness result further on, and, importantly,
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it can be used to derive an algorithm for computing the gap [4, Chap. 5].

The quantitative robust stability results derived in this paper for LPTV feedback
systems are, to a large extent, analogous to the results of [14] for LTI systems and
to those of [12] for linear, time-varying (LTV) systems. However, the LPTV results
do not follow directly from either the LTI or the LTV results. In particular, problems
concerning causality are not addressed in [12], and although the periodic nature of
the time-variation considered here imparts a high degree of structure to the analysis,
it is somewhat more involved than in the time-invariant case. As for LTI systems, it
can be shown that for a general class of LPTV systems, the gap metric induces the
weakest topology with respect to which closed-loop performance varies continuously
and closed-loop stability is a robust property. This result is not presented explicitly
here but can be found in [4, Chap. 4]. All of the results obtained accommodate possibly
infinite-dimensional input and output spaces and, importantly, can be applied to
LPTV SD control systems as a special case.

The paper has the following structure. In section 2, the notation, terminology,
and preliminary mathematics used throughout the paper are introduced. Section 3
is devoted to the gap metric, with the main result being a formula for the directed
gap between two LPTV systems. In section 4, quantitative robustness results are
obtained in terms of the gap metric. The main result characterizes the largest gap-
ball of LPTV plants centered at a nominal plant that a nominal stabilizing LPTV
controller is guaranteed to stabilize. In addition to this, robustness to simultaneous
gap-perturbations of both the nominal plant and the controller is considered. To
conclude this section, the main robustness result is specialized to SD control systems
in which the sampling and hold devices are synchronized and periodic.

2. Preliminaries. In this section, general notation and definitions used through-
out the paper are introduced. Let R, Z, R

+, Z
+, D, and T denote the reals, integers,

nonnegative reals, nonnegative integers, open unit-disc, and unit-circle, respectively.
For convenience, given a real number h > 0, the interval [0, h) ⊂ R is denoted by H.
In any Hilbert space H, the inner-product is denoted by 〈·, ·〉H and the norm by ‖·‖H.
For a subspace U ⊂ H, the orthogonal complement of U in H is denoted by H
U (or
U⊥, when the ambient space H is clear from context), and the orthogonal projection
onto U is denoted by ΠU.

Consider two closed subspaces G and F of a Hilbert space H. If G ∩ F = {0} and
G + F = H, then G and F are said to induce a coordinatization of H. In this case, any
h ∈ H can be uniquely decomposed as the sum h = g +f, where g ∈ G and f ∈ F (see
[7], for example). The bounded, linear operator ΠG‖F : h �→ g is called the parallel
projection onto G along F. Similarly, ΠF‖G : h �→ f is called the parallel projection
onto F along G.

Let U and Y be arbitrary Hilbert spaces and consider a linear operator P : DP ⊂
U → Y, where DP :={u ∈ U : Pu ∈ Y} is called the domain of P . The range of P is
defined to be RP :={Pu : u ∈ DP } and KP :={u ∈ DP : Pu = 0} is called the kernel
of P . The graph of P is defined to be the totality of all input-output pairs

GP :=

[
I
P

]
DP ⊂ U⊕ Y,

and for notational convenience the inverse graph is denoted by G�

P :=[ 0 I
I 0 ]GP . Note

that a (linear) subspace G ⊂ U ⊕ Y corresponds to the graph of a linear operator
if and only if

[
0
y

] ∈ G implies that y = 0. The symbol BU,Y is used to denote the
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Banach space of all bounded, linear operators P : U → Y; that is, all such operators
with DP = U and finite induced-norm

‖P‖:= sup
u∈DP
u �=0

‖Pu‖Y
‖u‖U <∞.

Given an operator P ∈ BU,Y, there exist a unique operator P ∗ ∈ BY,U such that for
all u ∈ U and y ∈ Y,

〈y, Pu〉Y = 〈P ∗y, u〉U.

The operator P ∗ is called the (Hilbert space) adjoint. Note that for any P ∈ BU,Y,
P = (P ∗)∗ and RP is orthogonal to KP∗ . An operator P ∈ BU,Y is called an isometry
if 〈Pu, Pu〉Y = 〈u, u〉U for all u ∈ U (or equivalently, P ∗P = I).

2.1. Signals and systems. In this paper, a system is simply considered to be
an operator mapping between signal-spaces. Primarily, attention is focused on systems
mapping between continuous-time spaces of signals with finite energy. Mathematically
such signals can be thought of as functions in L2

R+(H), the Hilbert space of H-valued,
(Lebesgue) square-integrable functions f : R

+ → H. By virtue of the class of sys-
tems considered in what follows and the analysis technique employed to study these
systems, the following signal-spaces also play an important role: the discrete-time
signal-space � 2

Z+(H) of square-summable sequences f : Z
+ → H, and the frequency-

domain signal-space H2
D
(H) of functions ϕ : D→ H that are analytic in D and satisfy

∫ 2π

0

〈
ϕ(rejω), ϕ(rejω)

〉
H

dω < M

for some M < ∞ and all 0 ≤ r < 1. Note that H2
D
(H) is isomorphic to � 2

Z+(H) via
the Z-transform isomorphism [22, pp. 184–185], defined for all f ∈ � 2

Z+(H) by

(Zf)(λ):=
∞∑
i=0

fkλ
k, λ ∈ D.

Let U and Y be Hilbert spaces. For a linear, continuous-time system P : DP ⊂
L2

R+(U) → L2
R+(Y), the standard notion of causality can be expressed as follows: P

is causal if for all τ ∈ R
+, TτGP corresponds to the graph of a linear operator,

where Tτ is the projection that truncates a signal to zero after time τ . Given a real
number h > 0, such a system P is called periodically time-varying (with period h)
if UkhGP ⊂ GP for all k ∈ Z

+, where Uτ denotes the unilateral (forward) shift on
L2

R+(·).1
The following technical definitions are necessary to facilitate a precise defini-

tion of the class of systems considered in what follows. A causal, linear, continuous-
time system P : DP ⊂ L2

R+(U) → L2
R+(U) is said to be causally extendible if

TτDP = TτL
2
R+(U) for all τ < ∞. In this way, the input to P can be chosen ar-

bitrarily over any finite interval [0, τ) and then continued into DP . Since P is causal,
the corresponding output over [0, τ) is defined uniquely by the input up to time τ .
Accordingly, when P is causally extendible there is a one-to-one correspondence be-
tween P and a system Pe : L2,e

R+(U) → L2,e
R+(Y) such that for all ue ∈ L2,e

R+(U) and

1According to this definition an LTI system is also LPTV, since such a system must, by definition,
satisfy UτGP ⊂ GP ∀ τ ∈ R

+.
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τ < ∞, TτPeue = TτPeTτue:=TτPu for any u ∈ DP that satisfies Tτue = Tτu,
where L2,e

R+(H):={f : R
+ → H : Tτf ∈ L2

R+(H) for all τ <∞} denotes the extended
space associated with L2

R+(H) for any Hilbert space H. If P and Pe are related in
this way, Pe is called the (causal) extension of P, and it is said that P is induced
by Pe. When P is causally extendible, its causal extension Pe is said to be locally
Lipschitz-continuous if for all τ ∈ R

+,

sup
u1,u2∈L2,e

R+
(U)

Tτu1 �=Tτu2

‖Tτ (Peu1 − Peu2)‖L2

R+
(Y)

‖Tτ (u1 − u2)‖L2

R+
(U)

<∞.

Furthermore, a causally extendible system P is said to be strongly causal if its causal
extension Pe satisfies the following property: Given any τ ∈ R

+, ε > 0 and τ1 ≤ τ
(τ1 ∈ R

+), there exists a δ > 0 such that for all u1, u2 ∈ L2,e
R+(U) with Tτu1 = Tτu2,

‖T(τ1+δ)(Peu1 − Peu2)‖L2

R+
(Y) ≤ ε‖T(τ1+δ)(u1 − u2)‖L2

R+
(U).

Basically, a strongly causal system cannot respond instantaneously to inputs. Natu-
rally, similar definitions to those above hold for systems defined on the discrete-time
signal-space � 2

Z+(·).
Definition 2.1. Given two Hilbert spaces U and Y, let PU,Y denote the set of

causal LPTV (with period h, say) continuous-time systems

P : DP ⊂ L2
R+(U)→ L2

R+(Y)

with closed graphs.2 Furthermore, let Pe
U,Y ⊂ PU,Y denote the subset of causally

extendible systems with locally Lipschitz-continuous extensions, and let Pe,sc
U,Y denote

the subset of systems that are also strongly causal.
A continuous-time system P ∈PU,Y is said to be stable if it is causal and DP =

L2
R+(U). Since it is assumed (by definition) that all systems in PU,Y have closed

graphs, this implies that ‖P‖ <∞ by the closed graph theorem [3, p. 80]. Note that
any stable system P ∈PU,Y is an element of Pe

U,Y.
Importantly, each system in PU,Y is equivalent (via the time-lifting isomorphism

defined next) to a discrete-time system that is shift invariant [2]. Let W : L2
R+(H)→

� 2
Z+(L2

H
(H)) denote the time-lifting isomorphism defined for each f ∈ L2

R+(H) by

�
f k(θ):=(Wf)k = f(kh + θ), θ ∈ H,

where L2
H

(H):=ThL
2
R+(H). Then given any system P ∈PU,Y, the time-lifted equiv-

alent, discrete-time system

P:=WPW−1 : DP ⊂ � 2
Z+(L2

H
(U))→ � 2

Z+(L2
H

(Y))

is causal and linear shift-invariant (LSI) in the sense that its graph is a shift-invariant
subspace, meaning SGP ⊂ GP = WGP , and TkGP corresponds to the graph of a linear
operator for all k ∈ Z

+ (implying causality), where S denotes the unilateral (forward)
shift on � 2

Z+(·) and Tk denotes the truncation to zero after time k.3The key here is

2That a linear system has a closed graph is necessary for it to be stabilizable [12]. Hence, this is
assumed.

3Throughout, the sans serif font (e.g., P) is used to distinguish objects associated with discrete-
time signals and systems from continuous-time objects, for which italics are used (e.g., P ).
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that SkW = WUkh for all k ∈ Z
+, so that a shift by h in the continuous-time signal

space L2
R+(·) corresponds to a shift by a single time-step in the isomorphic, discrete-

time signal-space � 2
Z+(L2

H
(·)). Note that by representing each signal in � 2

Z+(L2
H

(·)) as
a column vector with kth entry corresponding to the value of the signal at time k,
the time-lifted equivalent system P(:=WPW−1) has lower-triangular, block-Toeplitz
structure 


P[0] 0 · · · · · · · · ·
P[1] P[0] 0 · · · · · ·
P[2] P[1] P[0] 0 · · ·

...
. . .

. . .
. . .

. . .


 ,

which can be uniquely identified with the sequence {P[i]}∞i=0. This representation plays
a significant role in the sequel. If the original LPTV system P is causally extendible
to a locally Lipschitz-continuous system, then each P[i] ∈ BL2

H
(U),L2

H
(Y).

Remark 2.2. Given a (causal) LSI system P : DP ⊂ � 2
Z+(L2

H
(U))→ � 2

Z+(L2
H

(Y)),4

the equivalent continuous-time system P :=W−1PW may not be locally causal in each
[kh, (k+1)h) interval of time. The equivalent system P is causal if and only if P[0] (the
first element of the sequence uniquely identifiable with the block-Toeplitz representation
of P) is a causal mapping from L2

H
(U) to L2

H
(Y), in the sense that TτGP[0]

corresponds
to the graph of a linear operator for all τ ∈ H.

A (causal) LSI system P : DP ⊂ � 2
Z+(U)→ � 2

Z+(Y) is called stable if DP = � 2
Z+(U).

If in addition GP is closed, then ‖P‖ < ∞ by the closed-graph theorem. Related to
such operators is the Hardy space H∞

D
(BU,Y) of functions Φ : D → BU,Y that are

bounded and analytic in the open unit-disc. The norm of a function Φ ∈ H∞
D

(BU,Y)
is defined as

‖Φ‖∞:= sup
λ∈D

‖Φ(λ)‖.

Given a function Φ ∈ H∞
D

(BU,Y), boundary values can be defined almost everywhere
on the unit-circle T. The resulting boundary values Φ(ejω) are essentially bounded on
T, and ‖Φ‖∞ = ess supω∈[0,2π)‖Φ(ejω)‖. A function Φ ∈ H∞

D
(BU,Y) is called inner if

Φ(ejω) is an isometry almost everywhere on T. Corresponding to each Φ ∈ H∞
D

(BU,Y)
is a multiplication operator MΦ : H2

D
(U)→ H2

D
(Y), defined by (MΦϕ)(λ):=Φ(λ)ϕ(λ)

for all ϕ ∈ H2
D
(U) and λ ∈ D.

Proposition 2.3 (see [11], p. 235). Let U and Y be arbitrary Hilbert spaces.
Then given a stable, LSI system P : � 2

Z+(U) → � 2
Z+(Y) with closed graph, there exists

a function P̂ ∈ H∞
D

(BU,Y) such that P = Z−1MP̂Z. Furthermore, P is an isometry if

and only if the corresponding symbol P̂ is inner. Moreover, given any Φ ∈ H∞
D

(BU,Y),
the multiplication operator MΦ : H2

D
(U)→ H2

D
(Y) is bounded and LSI 5 with ‖MΦ‖ =

‖Φ‖∞.
2.2. Feedback systems. Consider the closed-loop configuration shown in Fig-

ure 1.1, and suppose that P ∈ Pe
U,Y and C ∈ Pe

Y,U. Denote by Pe and Ce the
respective locally Lipschitz-continuous causal extensions, and for notational conve-
nience, let V:=U ⊕ Y. The closed loop, denoted by [P,C], is said to be well-posed if
the following three conditions hold.

4Since this system is defined only for positive time, shift-invariance implies causality.
5The unilateral shift S on H2

D
(·) corresponds to multiplication by λ.
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(i)
[
I Ce

Pe I

]
: L2,e

R+(V) → L2,e
R+(V), the system mapping [ u1

u2
] to

[
d1
d2

]
, is bijective,

implying the existence of a unique solution to the functional equations that
describe the closed loop.

(ii) He(P,C):=
[
I Ce

Pe I

]−1
is causal and locally Lipschitz-continuous.

(iii) The solution to the functional equations that described the closed loop is
insensitive to very high frequency modeling errors, such as small transmission
delays.

A sufficient condition for well-posedness is that P or C is strongly causal.6 For further
details and a discussion of the physical significance of well-posedness, the reader is
referred to the seminal work of Willems [28, Chap. 4]. In addition to well-posedness,
it is desirable for the system H(P,C) : DH(P,C) ⊂ L2

R+(V) → L2
R+(V) induced by

He(P,C) to satisfy DH(P,C) = L2
R+(V). In this case, the closed loop is said to be

stable and P is said to be stabilized by C. Since P and C are both linear it can be
shown that this also implies closed loop stability with finite gain [28, p. 117]; that is,
‖H(P,C)‖ <∞.

Given a plant P ∈Pe
U,Y and a controller C ∈Pe

Y,U, note that

[
I C
P I

]
: DP ⊕DC → GP + G�

C .

Thus, if [P,C] is well-posed, then GP∩G�

C = {0}. Furthermore, observe that DH(P,C) =
GP + G�

C and hence that the closed loop is stable if and only if GP + G�

C = L2
R+(V)

(with GP ∩ G�

C = {0}). This useful geometric characterization of closed-loop stability
is summarized in the following proposition, which has also appeared in [12, 15, 19] for
other classes of systems.

Proposition 2.4. Given a well-posed plant/controller pair P ∈ Pe
U,Y and C ∈

Pe
Y,U, the closed-loop [P,C] is stable if and only if the graph of the plant and the

inverse graph of the controller induce a coordinatization of L2
R+(V), that is, if and

only if GP ∩ G�

C = {0} and GP + G�

C = L2
R+(V). In this case,the parallel projections

ΠGP ‖G�
C
and ΠG�

C
‖GP

are stable systems in Pe
V,V. In fact,

ΠGP ‖G�
C

=

[
I 0
0 −I

]
H(P,C) +

[
0 0
0 I

]

and

ΠG�
C
‖GP

=

[−I 0
0 I

]
H(P,C) +

[
I 0
0 0

]
.

2.3. Representations of the graph. The following results, concerning the
existence of particular representations of the graph, are fundamental to all of the
results presented in the sequel. These results can be found in [5], and accordingly
they are stated here without proof.

Theorem 2.5. If P ∈ Pe
U,Y can be stabilized by some C ∈ Pe

Y,U, then there
exist stable systems Gr ∈Pe

U,V, Gl ∈Pe
V,Y, Kl ∈Pe

V,U, and Kr ∈Pe
Y,V such that

GP = RGr = KGl

6This is not the weakest such condition. For example, that the product of the instantaneous gains
is strictly less than 1 is also sufficient [28, Chap. 4].
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and

[
Gr Kr

][Kl
Gl

]
=

[
Kl
Gl

][
Gr Kr

]
=

[
I 0
0 I

]
.

Gr and Gl in Theorem 2.5 are called strong-right and strong-left representations
of GP , respectively. Note that they are unique only up to invertible factors. That is,
for any stable systems Q1(Q−1

1 ) ∈ Pe
U,U, and Q2(Q−1

2 ) ∈ Pe
Y,Y, the systems GrQ1

and Q−1
2 Gl are also strong-right and strong-left representations of GP , respectively.

Lemma 2.6. Given a well-posed plant/controller pair P ∈Pe
U,Y and C ∈Pe

Y,U,
let Gr ∈ Pe

U,V be any stable system with zero kernel such that GP = RGr , and let

Kl ∈ Pe
V,U be any stable system such that RKl

= L2
R+(U) and G�

C = KKl
. Then the

following are equivalent.
(i) The closed-loop [P,C] is stable.
(ii) The stable, linear system KlGr is bijective (and hence boundedly invertible,

although the inverse may not be causal).
Furthermore, if [P,C] is stable and Gr and Kl are, respectively, strong-right and
strong-left representations of GP and G�

C , then (KlGr)
−1 is a stable system in Pe

U,U.
A similar result to Lemma 2.6 holds with the right representation of GP replaced

by a left representation, and similarly for the inverse graph of the controller.
Remark 2.7. Note that with P, C, Gr, and Kl defined as in the first part of

Lemma 2.6, the following useful identity holds:

ΠGP ‖G�
C

= Gr(KlGr)
−1Kl.

Now, let

P:=WPW−1, C:=WCW−1, Gr:=WGrW
−1, and Kl:=WKlW

−1

so that GP = RGr
, RKl

= � 2
Z+(L2

H
(U)), and G�

C = KKl
. Then the closed-loop [P,C]

is stable if and only if the bounded linear operator KlGr is boundedly invertible. In
this case, (KlGr)

−1 is a stable LSI system and hence equivalent (via Z) to a multi-
plication operator with symbol in H∞

D
(BL2

H
(U),L2

H
(U)) (cf. Proposition 2.3). Moreover,

ΠGP‖G�
C

= Gr(KlGr)
−1Kl.

3. The gap metric. In this section, the gap metric is formally introduced. The
main result of the section is a formula for the directed gap between LPTV systems.
The formula is essentially a generalization of Georgiou’s result for LTI systems [13],
and it facilitates the use of function theoretic arguments in a key step of the proof of
the main robustness result in the next section.

The gap (or aperture) between two (closed) subspaces H0 and H1 of a Hilbert
space H is defined by (see [16, pp. 197–200], for example)

δ(H0,H1):=‖ΠH0
−ΠH1

‖.
From this it follows that δ(·, ·) is a metric. It can be shown, as in [17, Sect. 15.3], that

δ(H0,H1) = max{�δ(H0,H1), �δ(H1,H0)},
where

�δ(Hi,Hj) = ‖ΠH⊥
j
ΠHi‖ (i, j = 0, 1)
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is called the directed gap. Note hence that 0 ≤ δ(H0,H1) ≤ 1.
Proposition 3.1 (see [17]). For i = 0, 1 let Hi be a closed subspace of a Hilbert

spaceH. ThenΠH1 is a bijective mapping fromH0 toH1 if and only if δ(H0,H1) < 1.
Moreover, if δ(H0,H1) < 1, then

δ(H0,H1) = �δ(H0,H1) = �δ(H1,H0).

The gap between two (closed) operators P0 and P1 is defined to be the gap between
their graphs as follows:

δg(P0, P1):=δ(GP0 ,GP1),

with the directed gap being defined similarly [16, pp. 197–200]. Measuring the distance
between systems in this way was first introduced into the control literature in [31] and
considered further in the work of several others, notably [13, 14, 20, 12, 10].

Consider a system P0 ∈PU,Y and recall that GP0 is isomorphic to both GP0
and

ĜP0 :=ZGP0 , where P0:=WP0W
−1. Now given another system P1 ∈PU,Y,

δg(P0, P1) = δ(GP0
,GP1

) = δ(ĜP0
, ĜP1

)

holds for the gap and

�δg(Pi, Pj) = �δ(GPi ,GPj ) = �δ(ĜPi
, ĜPj

) (i, j = 0, 1)

holds for the directed gap. The next corollary of Proposition 3.1 constitutes a useful
characterization of when the gap between two systems is strictly less than 1 (see [20]
and [27] for the LTI analogue).

Corollary 3.2. Given two systems P0 and P1 in PU,Y for i = 0, 1 let Ĝri be

any inner function in H∞
D

(BL2
H
(U),L2

H
(V)) such that ĜPi

:=ZWGPi = ĜriH
2
D
(L2

H
(U)).7

Then the following are equivalent.
(i) δg(P0, P1) = δ(ĜP0

, ĜP1
) < 1.

(ii) The bounded linear operator (MĜr1
)∗MĜr0

is bijective (and hence boundedly
invertible).

Proof. Since ΠĜPi
= MĜri

(MĜri
)∗, ĜPi

= RMĜri
, and KMĜri

= {0}, it follows by

Proposition 3.1 that δ(ĜP0 , ĜP1) < 1 if and only if MĜr1
(MĜr1

)∗MĜr0
is a bijective

mapping from H2
D
(L2

H
(U)) to ĜP1 (see also [18, p. 201] for a similar result). Using again

the fact that ĜPi = RMĜri
and KMĜri

= {0}, this is equivalent to

R(MĜr1
)∗MĜr0

= H2
D
(L2

H
(U)) and K(MĜr1

)∗MĜr0
= {0}.

That is, δ(ĜP0
, ĜP1

) < 1 if and only if (MĜr1
)∗MĜr0

is bijective (and hence boundedly
invertible by the open mapping theorem [3, p. 79]).

Importantly, it is possible to express the directed gap between two LPTV systems
in terms of a two-block optimization problem over H∞

D
and a specific representation

of the corresponding graphs. This formula is essentially a generalization of Georgiou’s
[13] for the directed gap between two finite-dimensional LTI systems (see also [29,
Thm. 1] and [20, Cor. 4.4]). The resultant formula is fundamental to the robust

7Such Ĝri exist by the Beurling–Lax–Halmos theorem. See [5] for further details.
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stability results derived in the next section, and it gives rise to an algorithm for
computing the gap between LPTV systems [4, Chap. 5].

Theorem 3.3. Given two systems P0 and P1 in PU,Y for i = 0, 1 let Ĝri be an

inner function in H∞
D

(BL2
H
(U),L2

H
(V)) such that ĜPi = ZWGPi = ĜriH

2
D
(L2

H
(U)). Then

�δg(P0, P1) := �δ(ĜP0
, ĜP1

) = inf
Q̂∈H∞

D
(B

L2
H
(U),L2

H
(U)

)
‖Ĝr0 − Ĝr1Q̂‖∞.

Proof. The proof follows that of an H∞ optimization result in [11, p. 248], using
the commutant lifting theorem. For the full proof see Appendix A.

4. Quantitative robustness analysis. An important property of feedback sys-
tems is that closed-loop stability can be desensitized to reasonable perturbations of
the plant and the controller. In the subsections to follow, this property is quantita-
tively analyzed in terms of the gap metric for LPTV, feedback systems that evolve
in continuous-time. First gap-metric perturbations to the plant alone are considered.
Then robustness in the face of simultaneous gap-metric perturbations to both the
plant and the controller is investigated.

4.1. Plant perturbations. In this subsection, the robustness of closed-loop
stability is studied within the context of plant perturbations measured in the gap
metric. Before going on, however, it is convenient to make the following definition.

Definition 4.1. Given a stable closed-loop [P,C] with P ∈Pe
U,Y and C ∈Pe

Y,U,
define

b−1
P,C :=‖ΠGP ‖G�

C
‖ = ‖ΠGP‖G�

C
‖.(4.1)

For reasons that will become apparent shortly, bP,C is called the robust-stability mar-
gin.

The robust stability result derived next characterizes the largest gap-ball of LPTV
plants centered at a nominal plant that a nominal stabilizing LPTV controller is
guaranteed to stabilize. To a large extent, the result is analogous to the LTI result of
[14] and the general LTV result of [12]. Note, however, that it does not follow directly
from either of these. In particular, considerable effort is required to prove necessity,
where the approach taken is to construct a causal plant P1 of appropriate gap distance
from the nominal plant so that [P1, C] is well-posed but not stable.

Theorem 4.2. Let [P0, C] be a stable, closed-loop system, where P0 ∈Pe
U,Y and

C ∈Pe,sc
Y,U. Then, the following are equivalent.

(i) bP0,C ≥ β.
(ii) [P1, C] is stable for all P1 ∈Pe

U,Y that satisfy δg(P0, P1) < β.

Proof of (i)⇒ (ii). Assume that (i) holds so that b−1
P0,C

≤ β−1. Now consider any

system P1 ∈ Pe
U,Y such that δg(P0, P1):=δ(GP0 ,GP1) < β, where Pi = WPiW

−1 for
i = 0, 1. Since Pi is LPTV, Pi is LSI and, correspondingly, GPi

is a shift-invariant
subspace of � 2

Z+(L2
H

(V)).8 Thus, it follows by the Beurling–Lax–Halmos theorem (see
[11, p. 239]) that for each i = 0, 1, there exists an LSI isometry Gri : � 2

Z+(L2
H

(U)) →
� 2
Z+(L2

H
(V)) such that GPi = RGri .

9 As Gri is an isometry, ΠGPi
= Gri(Gri)

∗ and hence

8Recall that for notational convenience V:=U ⊕ Y.
9For a discussion on the existence of such representations of the graph, see [5].
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δ(GP0
,GP1

) = ‖ΠGP0
−ΠGP1

‖ = ‖Gr0G∗
r0 − Gr1G

∗
r1‖ < β.(4.2)

Now since [P0, C] is stable, it follows by Theorem 2.5 that there exists a stable LSI
system Kl : � 2

Z+(L2
H

(V)) → � 2
Z+(L2

H
(U)) satisfying KKl

= G�

C and RKl
= � 2

Z+(U).
Furthermore, ΠGP0

‖G�
C

= Gr0(KlGr0)−1Kl (see Remark 2.7). Correspondingly,

b−1
P0,C

= ‖(KlGr0)−1Kl‖ ≤ β−1,(4.3)

since Gr0 is an isometry. Combining equations (4.2) and (4.3) yields

‖(KlGr0)−1Kl(Gr0G
∗
r0 − Gr1G

∗
r1)‖ < 1.

This implies that

‖I− (KlGr0)−1KlGr1G
∗
r1Gr0‖ ≤ ‖G∗

r0 − (KlGr0)−1KlGr1G
∗
r1‖ · ‖Gr0‖ < 1

and hence that (KlGr0)−1KlGr1(G∗
r1Gr0) has bounded inverse. Since δg(P0, P1) < 1,

the operator G∗
r1Gr0 has bounded inverse (see Corollary 3.2) and, correspondingly, it

follows that KlGr1 is also boundedly invertible. By Lemma 2.6 and Remark 2.7, this
implies stability of the closed-loop [P1, C], completing the proof of (i)⇒ (ii).

Proof of (i)⇐ (ii). Suppose that (ii) holds for some 1 ≥ β > bP0,C .10 Under this
hypothesis it is sufficient to construct a system P1 ∈ Pe

U,Y such that δg(P0, P1) < β
and [P1, C] is well-posed but not stable. Now let Gr0 and Kl be defined as in the proof
of (i) ⇒ (ii). Then by Proposition 2.3, Gr0 and Kl are equivalent (via Z) to multipli-

cation operators with symbols Ĝr0 ∈ H∞
D

(BL2
H
(U),L2

H
(V)) and K̂l ∈ H∞

D
(BL2

H
(V),L2

H
(U)),

respectively. Furthermore, (K̂lĜr0)−1 ∈ H∞
D

(BL2
H
(U),L2

H
(U)) (see Lemma 2.6). Hence,

K̂l�:=(Ĝr0K̂l)
−1K̂l ∈ H∞

D

(
BL2

H
(V),L2

H
(U)

)

and Kl�:=Z
−1MK̂l�

Z : � 2
Z+(L2

H
(V)) → � 2

Z+(L2
H

(U)) is a stable LSI system satisfying

KKl�
= G�

C and RKl�
= � 2

Z+(L2
H

(U)). In fact, by definition,

b−1
P0,C

:=‖Gr0Kl�‖ = ‖Kl�‖ = ‖K̂l�‖∞ = sup
λ∈D

‖K̂l�(λ)‖,(4.4)

where the second equality holds because Gr0 is an isometry. Since the function K̂l�(λ)

is analytic in D, ‖K̂l�(λ)‖ satisfies a maximum principle on any connected, open subset
of D (see [1]). Using this property and (4.4), it follows that for any ε0 > 0 and ε1 > 0,
there exists a λ0,ε0 ∈ Aε0 :={λ : (1− ε0) ≤ |λ| < 1} such that

(bP0,C + ε1)−1 ≤ ‖K̂l�(λ0,ε0)‖ ≤ b−1
P0,C

.

Now for any ε2 > ε1 it is possible to construct an operator ∆0,ε2 ∈ BL2
H
(U),L2

H
(V) such

that

‖∆0,ε2‖ ≤ (bP0,C + ε2)(4.5)

10Since δg(P0, P1) ≤ 1 for all P1 ∈ Pe
U,Y, it is without loss of generality that β is taken to be less

than or equal to 1; otherwise there is an obvious contradiction to what is being proved.
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and (I + K̂l�(λ0,ε0)∆0,ε2) is not invertible in BL2
H
(U),L2

H
(U).

11 Defining

∆̂ε2(λ):=
λ

λ0,ε0

∆0,ε2 ∈ H∞
D

(
BL2

H
(U),L2

H
(V)

)
,(4.6)

it follows that

‖(I + K̂l�(λ)∆̂ε2(λ))−1‖ → ∞

as λ → λ0,ε0 , since (I + K̂l�∆̂) is continuous on D and (I + K̂l�(λ0,ε0)∆0,ε2) is not

invertible.12 Clearly then, (I + K̂l�∆̂ε2) is not invertible in H∞
D

(BL2
H
(U),L2

H
(U)).

For some Q̂1(Q̂−1
1 ) ∈ H∞

D
(BL2

H
(U),L2

H
(U)) let

Ĝr1:=(Ĝr0 + ∆̂ε2)Q̂1,

and note that

K̂l�Ĝr1 = (I + K̂l�∆̂ε2)Q̂1.

Clearly, the function K̂l�Ĝr1 is not invertible in H∞
D

(BL2
H
(U),L2

H
(U)). Consequently, with

Gr1:=Z−1MĜr1
Z, the stable LSI system Kl�Gr1 : � 2

Z+(L2
H

(U)) → � 2
Z+(L2

H
(U)) is not

boundedly invertible. So provided that
(a) KGr1 = {0},
(b) RGr1

is isomorphic (via W) to the graph of a system P1 ∈Pe
U,Y, and

(c) δg(P0, P1) < β,
a contradiction to the initial hypothesis that (ii) holds for some 1 ≥ β > bP0,C can
be established using Lemma 2.6 and Remark 2.7. Accordingly, the remainder of the
proof is devoted to showing that by appropriate choice of ε0, ε2, and Q̂1, conditions
(a), (b), and (c) can be satisfied.

First note that Gr1 = (Gr0 + ∆ε2)Q1, where

Gr0:=Z−1MĜr0
Z, ∆ε2 :=Z−1M∆̂ε2

Z, and Q1:=Z−1MQ̂1
Z.

Furthermore, note that ∆̂ε2(λ) has continuous extension to the closed unit-disc and
hence that ‖∆̂ε2‖∞ = maxω∈[0,2π)‖∆̂ε2(ejω)‖. As such, it follows by Proposition 2.3
and from (4.5) and (4.6) that

‖∆ε2‖ = ‖∆̂ε2‖∞ =
1

|λ0,ε0 |
‖∆0,ε2‖ ≤

bP0,C + ε2
1− ε0

.

11To see this, let A denote a bounded, linear operator in BU,Y. Then for any ε > 0, it follows by
definition of the induced norm that there exists a u ∈ U (which is taken to have unit norm) such
that with y:=Au,

‖A‖ ≥ ‖y‖Y ≥ ‖A‖ − ε.

Defining ∆ : Y → U to be the operator that maps αy to −αu for all α ∈ C and every other direction
orthogonal to this in Y to 0, it follows that

‖∆‖ ≤ 1

‖A‖ − ε
,

and that y ∈ K(I+A∆). Correspondingly, (I +A∆) is not invertible.
12See [8, Lemma 4.3] (only if part) for a similar result.
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By hypothesis (β − bP0,C) > 0 and setting ε2 = (β − bP0,C)/2 > 0, ε1 < ε2 and
ε0 < ε2/2β, gives

‖∆ε2‖ < β ≤ 1.(4.7)

Hence, since Gr0 is an isometry, it follows that there exists a constant c > 0 such that
‖Gr1 �q ‖� 2

Z+
(L2

H
(V)) ≥ c‖�q ‖� 2

Z+
(L2

H
(U)) for all �q ∈ � 2

Z+(L2
H

(U)). Correspondingly, RGr1 is

closed and KGr1 = {0}. That is, condition (a) is satisfied.

Q̂1 ∈ H∞
D

(BL2
H
(U),L2

H
(U)) is now constructed so that RGr1 is isomorphic (via W) to

the graph of a system P1 ∈Pe
U,Y. First let

[
Mr1
Nr1

]
:=Gr1 and

[
Mr0
Nr0

]
:=Gr0,

where the partitioning is conformal with GP0 . By construction, ∆[0] = 0, where the
subscript [0] denotes the first term in the sequence uniquely identifiable with the
block-Toeplitz representation of ∆. Thus, Gr1[0] = (Gr0Q1)[0] and

[
Mr1[0]
Nr1[0]

]
=

([
Mr0
Nr0

]
Q1

)
[0]

=

[
Mr0[0]
Nr0[0]

]
Q1[0].(4.8)

Since RGr0 is isomorphic to GP0 and P0 ∈ Pe
U,Y, it can be shown that Mr0[0] ∈

BL2
H
(U),L2

H
(U) is boundedly invertible (for the details of this see the proof of Theorem

4.1 in [5]). So by the assumed invertibility of Q1 and (4.8), Mr1[0] is also invertible
in BL2

H
(U),L2

H
(U). Consequently, Mr1 has zero kernel, which confirms that RGr1 is the

graph of a linear operator. In fact, it is isomorphic to the graph of an LPTV system
P1 defined on a subspace of L2

R+(U). It is sufficient therefore to select Q̂1 to ensure
that P1 is causal and that it has locally Lipschitz-continuous extension. To this end,
set Q̂1 = M−1

r0[0] (which is clearly an invertible element in H∞
D

(BL2
H
(U),L2

H
(U))) so that

Q1[0] = M−1
r0[0] and

Gr1[0] =

[
Mr1[0]
Nr1[0]

]
= (Gr0Q1)[0] =

[
I

Nr0[0]M
−1
r0[0]

]
.

Since P0[0] = Nr0[0]M
−1
r0[0] is causal on L2

H
(U), this implies that Gr1[0] is a causal map

on L2
H

(U). So in view of Remark 2.2,
[
Mr1

Nr1

]
:=Gr1 = W−1Gr1W is a stable system in

Pe
U,V. This, in turn, implies that P1 is itself causal. To see this, suppose that P1 is

not causal. Then by definition, there exists a point [ uy ] ∈ GP1 = RGr1 and a τ1 ∈ R
+

such that

Tτ1

[
u
y

]
=

[
0

ỹ �= 0

]
.

That is, there exists a q ∈ L2
R+(U) such that ỹ = Tτ1Nr1q and 0 = Tτ1Mr1q. Since
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Mr1 is causal,

Tτ1Mr1q = Tτ1W
−1TnMr1Wq

= Tτ1W
−1







Mr1[0](= I) 0 · · · 0

Mr1[1]
. . .

. . .
...

...
. . .

. . . 0
Mr1[n] · · · Mr1[1] Mr1[0]




︸ ︷︷ ︸
:=M̃n




�q 0
�q 1
...
...

�q n




0
...




,(4.9)

where �q (=: k �→ �q k):=Wq, n =
⌊
τ1
h

⌋
and �·� denotes the integer part of a real

number. Note that M̃i is boundedly invertible for all finite i and, correspondingly,
that it has zero kernel and full range.13 So if 0 = Tτ1Mr1q, it follows from (4.9)
that �q 0 = �q 1 = · · · = �q n−1 = 0 and T(τ1−nh)

�q n = 0. Equivalently, Tτ1q = 0.
Now since Nr1 is causal, this implies that ỹ = Tτ1Nr1q = 0, which is a contradiction.
Consequently, P1 must be causal. This line of reasoning also leads to the conclusion
that P1 is causally extendible to a locally Lipschitz-continuous operator on L2,e

R+(U).

To see this note that, since M̃i has full range for all finite i, given any τ <∞

TτDP1 = TτRMr1 = TτW
−1

[
RM̃n

0

]
= TτL

2
[0,(n+1)h)(U) = TτL

2
R+(U),

where n =
⌊
τ
h

⌋
. Correspondingly, P1 is causally extendible (by definition). Now denote

the extension of P1 by P1e and observe that

sup
u1,u2∈L2,e

R+
(U)

Tτu1 �=Tτu2

‖Tτ (P1eu1 − P1eu2)‖L2

R+
(Y)

‖Tτ (u1 − u2)‖L2

R+
(U)

≤ sup
u∈Tn�

2

Z+ (L2
H
(U))

u�=0

‖ÑnM̃−1
n u‖Tn� 2

Z+
(L2

H
(Y))

‖u‖Tn� 2
Z+

(L2
H
(U))

,

where

Ñn:=




Nr1[0] 0 · · · 0

Nr1[1]
. . .

. . .
...

...
. . .

. . . 0
Nr1[n] · · · Nr1[1] Nr1[0]


 .

Then, since Ñi and M̃−1
i are both bounded for all finite i, it follows (by definition)

that P1e is locally Lipschitz-continuous as claimed.
It remains to show that δg(P0, P1) < β. First it is shown that �δg(P0, P1) < β

and then that δg(P0, P1) = �δg(P0, P1) < β. Note that ĜP1 :=ZWGP1 is a shift-
invariant subspace of H2

D
(L2

H
(V)). Correspondingly, by the Beurling–Lax–Halmos

theorem [11, p. 239], there exists an inner function Ĝr� ∈ H∞
D

(BL2
H
(U),L2

H
(V)) such

that ĜP1 = Ĝr1�H
2
D
(L2

H
(U)). Moreover, since RMĜr1

= RMĜr1�
and KMĜr1

= {0}, there

13In fact M̃−1
i here is block-lower-triangular with identities down the diagonal.
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exists a Q̂�(Q̂
−1
� ) ∈ H∞

D
(BL2

H
(U),L2

H
(U)) such that Ĝr1�Q̂� = Ĝr1 = (Ĝr0 + ∆̂)Q̂1 (see

Corollary IX.2.2 of the Beurling–Lax–Halmos theorem in [11]). Now by Theorem 3.3,

�δg(P0, P1) = �δ(ĜP0
, ĜP1

) = inf
Q̂∈H∞

D
(B

L2
H
(U),L2

H
(U)

)
‖Ĝr0 − Ĝr1�Q̂‖∞

= inf
Q̂∈H∞

D
(B

L2
H
(U),L2

H
(U)

)
‖Ĝr0 − (Ĝr0 + ∆̂ε2)Q̂1Q̂

−1
� Q̂‖∞

≤ ‖∆̂ε2‖∞ < β,

where the third inequality follows from the fact that Q̂�Q̂
−1
1 ∈ H∞

D
(BL2

H
(U),L2

H
(U)) and

the last inequality follows from (4.7).

Now for any ϕ ∈ H2
D
(L2

H
(U)), consider the projection of MĜr1

ϕ ∈ ĜP1 onto ĜP0 .
Since MĜr0

is an isometry, ΠĜP0
= MĜr0

(MĜr0
)∗ and the projection described above

can be expressed as

MĜr0

(
MĜr0

)∗ (
MĜr0

+ M∆̂ε2

)
MQ̂1

ϕ = MĜr0
ζ,

where

ζ:=
(

I +
(
MĜr0

)∗
M∆̂ε2

)
MQ̂1

ϕ.

Furthermore,

‖
(
MĜr0

)∗
M∆̂ε2

‖ ≤ ‖MĜr0
‖ · ‖M∆̂ε2

‖ < β ≤ 1.

Thus, (I + (MĜr0
)∗M∆̂ε

) is a one-to-one mapping onto H2
D
(L2

H
(U)) and since MQ̂1

is bijective, it follows that the projection described above is also bijective. So by
Proposition 3.1,

�δ(ĜP0 , ĜP1) = �δ(ĜP1 , ĜP0) = δ(ĜP0 , ĜP1)

and hence δg(P0, P1) = δ(ĜP0 , ĜP1) = �δ(ĜP0 , ĜP1) < β, as required. This completes
the proof.

Consider a closed-loop [P0, C] with P0 ∈Pe,sc
U,Y and C ∈Pe

Y,U. Since the plant P0

is strongly causal, the closed-loop [P0, C] is well-posed. Similarly, if the set of permis-
sible perturbed plants were restricted to be a subset of Pe,sc

U,Y , well-posedness would
be maintained. Now note that by the way the destabilizing plant P1 is constructed in
the proof of Theorem 4.2, P0[0] = P1[0]. Correspondingly, the instantaneous behavior
of the nominal plant and the plant constructed to destabilize the closed loop is the
same. As such, if P0 were strongly causal, then P1 would also be strongly causal. Con-
sequently, (ii) ⇒ (i) in Theorem 4.2 would still hold if permissible perturbed plants
were restricted to strongly causal ones only. This is summarized below.

Corollary 4.3. Given a stable, closed-loop system [P0, C] with P0 ∈Pe,sc
U,Y and

C ∈Pe
Y,U, the following are equivalent.

(i) bP0,C ≥ β.
(ii) [P1, C] is stable for all P1 ∈Pe,sc

U,Y that satisfy δg(P0, P1) < β.
Similarly, although it is very difficult to characterize analytically, restricting the

set of permissible perturbations to all of those which do not cause ill-posedness14 leads
to the following restatement of Theorem 4.2.

14This is necessary for (i) ⇒(ii) to hold.
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Corollary 4.4. Given a stable, closed-loop system [P0, C] with P0 ∈Pe
U,Y and

C ∈Pe
Y,U, the following are equivalent.

(i) bP0,C ≥ β.
(ii) [P1, C] is stable for all P1 ∈ Pe

U,Y such that δg(P0, P1) < β and [P1, C] is
well-posed.

4.2. Simultaneous plant and controller perturbations. The maximum com-
bined perturbation to both P and C that does not cause instability is quantified in
terms of the gap metric in this subsection. As a corollary of Theorem 4.2, it is first
shown that a given controller C stabilizes a gap-ball centered at P if and only if P is
stabilized by all controllers in a gap-ball of the same radius and centered at C. The
maximum combined gap-perturbation (as a sum) to P and C that the closed loop can
tolerate is then considered. The results presented are analogous to the LTI results of
[14, Sect. VI] and the LTV results of [12, Sect. 4]. Before continuing, it is instructive
to recall the following results.

Proposition 4.5 (see [7]). Suppose that two (closed) manifolds F and G induce
a coordinatization of a Hilbert space H. If F is linear, then

‖ΠF‖G‖ = ‖ΠG‖F‖.
Corollary 4.6. Given a stable closed-loop [P,C] with P ∈ PU,Y and C ∈

PY,U,

bP,C = bC,P .

Proof. Note that (see Definition 4.1)

bC,P := ‖ΠGC‖G�
P
‖ =

∥∥∥∥
[
0 I
I 0

]
ΠG�

C
‖GP

[
0 I
I 0

]∥∥∥∥ = ‖ΠG�
C
‖GP
‖.

Now since [P,C] is stable, GP and G�

C induce a coordinatization of L2
R+(V) (see Propo-

sition 2.4). So by Proposition 4.5, bC,P = ‖ΠG�
C
‖GP
‖ = ‖ΠGP ‖G�

C
‖ = bP,C .

In view of Corollary 4.6, the following result, which characterizes robustness to
gap-metric perturbations of the controller, is an immediate consequence of Theo-
rem 4.2.

Corollary 4.7. Let [P0, C0] be a stable, closed-loop system with P0 ∈Pe,sc
U,Y and

C0 ∈Pe
Y,U. Then the following are equivalent.

(i) [P1, C0] is stable for all P1 ∈Pe,sc
U,Y such that δg(P0, P1) < β.

(ii) [P0, C1] is stable for all C1 ∈Pe
Y,U such that δg(C0, C1) < β.

Remark 4.8. As with Corollaries 4.3 and 4.4, Corollary 4.7 can be restated with
various constraints on the strength of causality of the plants and the controllers.

Now, with this established, it is possible to quantitatively characterize robustness
to perturbations of both P and its stabilizing controller C.

Theorem 4.9. Consider a stable closed-loop system [P0, C0] with P0 ∈ Pe,sc
U,Y

and C0 ∈Pe
Y,U. The following are equivalent.

(i) β ≤ bP0,C0
.

(ii) [P1, C1] is stable for all P1 ∈Pe,sc
U,Y and C1 ∈Pe

Y,U such that

δg(P0, P1) + δg(C0, C1) < β.

Proof. The proof follows directly from Corollary 4.3 of Theorem 4.2 and Corollary
4.7, in exactly the same way as the corresponding result [14, Thm. 7]. Assume that
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(i) holds, so that by Corollaries 4.3 and 4.7, [P0, C1] is stable for all C1 ∈ Be
δg

(C0, β),
where

Be
δg (F, ε):={F̀ ∈Pe

Y,U : δg(F, F̀ ) < ε}.

Consider a controller C1 ∈ Pe
Y,U, which satisfies τ :=δg(C0, C1) < β. By the metric

property of the gap, it follows that Be
δg

(C1, β − τ) ⊂ Be
δg

(C0, β) and hence that

[P0, C2] is stable for all C2 ∈ Be
δg

(C1, β − τ). Using Corollary 4.7, it is then possible

to conclude that [P1, C1] is stable for all P1 ∈ Be,sc
δg

(P0, β − τ), where

Be,sc
δg

(F, ε):={F̀ ∈Pe,sc
Y,U : δg(F, F̀ ) < β}.

Since this holds for any C1 ∈ Pe
U,Y satisfying δg(C0, C1) < β, it is clear that (ii)

holds. That (ii) ⇒ (i) is immediate, since (ii) here implies (i) in Corollary 4.3. This is
precisely β ≤ bP0,C0 .

C

P

✛ ❄❤✛

✲
✻
❤✲

DA AD F✛✛ ✛

d1 u1 y1

d2u2y2

−
+

+

−

Fig. 4.1. Sampled-data control system.

4.3. Robustness of SD control systems. In this subsection, the robustness
results obtained in preceding subsections are specialized to the SD case. Set U = R

m

and Y = R
p, and consider the feedback configuration shown in Figure 4.1. Let the

plant P be in Pe
U,Y; the controller C : DC ⊂ � 2

Z+(Y) → � 2
Z+(U) be an LSI, discrete-

time system; AD be an ideal h-periodic sampling-device; DA be a zero-order hold
device synchronized with AD; and F be a stable, low-pass LTI filter required to
ensure boundedness of the sampling device. Note that F ∈ Pe,sc

Y,Y and hence that

Csd:=DACADF ∈ Pe,sc
Y,U . Accordingly, Theorem 4.2 applies as summarized in the

following corollary.
Corollary 4.10. Consider the stable closed-loop system [P0, C

sd] described above.
The following are equivalent.

(i) bP0,Csd ≥ β.
(ii) [P1, C

sd] is stable for all P1 ∈Pe
U,Y that satisfy δg(P0, P1) < β.

Remark 4.11. The results presented in subsection 4.2 concerning simultaneous
perturbations to the plant and controller also apply. Such a result is a useful for
characterizing the effect of approximating an LTI continuous-time controller with an
SD controller, for example.

Appendix A. Proof of Theorem 3.3. As mentioned, the proof of Theorem
3.3 follows that of an H∞ optimization result in [11, p. 248], using the commutant

lifting theorem. Note that (for i = 0, 1) ĜPi is a shift-invariant subspace of H2
D
(L2

H
(V)).

As such, it follows by the Beurling–Lax–Halmos theorem (see [11, p. 239]) that there

exist inner functions Ĝri ∈ H∞
D

(BL2
H
(U),L2

H
(V)) such that ĜPi

= ĜriH
2
D
(L2

H
(U)) (i =
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0, 1).15 Correspondingly (for i = 0, 1), MĜri
is an isometry and hence it follows that

ΠĜPi
= MĜri

(MĜri
)∗. Correspondingly,

�δ(ĜP0
, ĜP1

) = ‖ΠĜ⊥
P1

MĜr0

(
MĜr0

)∗
‖ = ‖ΠĜ⊥

P1

MĜr0
‖,

where the last equality follows from the fact that MĜr0
is an isometry. Now recall

that Ĝ⊥
P1

:=H2
D
(L2

H
(V))
 ĜP1

and take any η ∈ H2
D
(L2

H
(V)), which may be expressed as

η = γ + ϕ, where γ = ΠĜP1
η and ϕ = ΠĜ⊥

P1

η. Note that Sη = Sγ + Sϕ and that

ΠĜ⊥
P1

Sη = ΠĜ⊥
P1

Sγ + ΠĜ⊥
P1

Sϕ

= ΠĜ⊥
P1

Sϕ,

where the second equality follows from the fact that SĜP1
⊂ ĜP1

. That is,

ΠĜ⊥
P1

Sη = ΠĜ⊥
P1

SΠĜ⊥
P1

η = S�ΠĜ⊥
P1

η,(A.1)

where

S�:=ΠĜ⊥
P1

S|Ĝ⊥
P1

: Ĝ⊥
P1
→ Ĝ⊥

P1
.

The unilateral shift S is an isometric dilation (lifting) of S� in that Sn� = ΠĜ⊥
P1

Sn|Ĝ⊥
P1

for all n ≥ 0. In fact, by the way Ĝ⊥
P1

is defined and since ĜP1
is shift-invariant, it

follows that S is the minimal, isometric dilation of S� in the sense that H2
D
(L2

H
(V))

is the smallest shift-invariant space that contains Ĝ⊥
P1

.16 Furthermore, from (A.1) it
follows that

S�ΠĜ⊥
P1

= ΠĜ⊥
P1

S.

Consequently, with the generalized Hankel operator HĜr0
defined to be

HĜr0
:=ΠĜ⊥

P1

MĜr0
,(A.2)

it follows that

S�HĜr0
= ΠĜ⊥

P1

SMĜr0
= HĜr0

S.

Since S is a minimal, isometric dilation of S�, it follows by the commutant lifting the-
orem (cf. [11, Chap. VII] and [22]) that there exists an LSI operator H : H2

D
(L2

H
(U))→

H2
D
(L2

H
(V)), which satisfies ΠĜ⊥

P1

H = HĜr0
and

‖H‖ = ‖HĜr0
‖.(A.3)

Furthermore, by Proposition 2.3, the operator H can be expressed as a multiplication
operator with symbol Ĥ ∈ H∞

D
(BL2

H
(U),L2

H
(V)), and

‖H‖ = ‖Ĥ‖∞.(A.4)

15See [5] for a more detailed discussion concerning representations of the graph.
16See [11, Chap. VI] or [22, Chaps. I–II] for a precise definition and treatment of minimal dilations.
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Thus,

ΠĜ⊥
P1

MĤ = HĜr0
= ΠĜ⊥

P1

MĜr0
,

which implies that ΠĜ⊥
P1

(MĤ −MĜ0r
) = 0. Equivalently, since ĜP1

= Ĝr1H2
D
(L2

H
(U))

(Ĥ− Ĝr0)H2
D

(
L2

H
(U)
) ⊂ Ĝr1H2

D

(
L2

H
(U)
)
.

Correspondingly, by Corollary IX.2.2 in [11, pp. 239–240] (a corollary of the Beurling–

Lax–Halmos theorem) and since Ĝr1 is inner, there exists a Q̂� ∈ H∞
D

(BL2
H
(U),L2

H
(U))

such that

Ĥ− Ĝr0 = −Ĝr1Q̂�.

Hence, Ĥ = Ĝr0 − Ĝr1Q̂� and

‖Ĝr0 − Ĝr1Q̂�‖∞ = ‖HĜr0
‖ = ‖HĜr0−Ĝr1Q̂‖ ≤ inf

Q̂∈H∞
D

(B
L2

H
(U),L2

H
(U)

)
‖Ĝr0 − Ĝr1Q̂‖∞,

where the first equality follows from (A.3) and (A.4), the second by the fact that

HĜr1Q̂ = ΠĜ⊥
P1

MĜr1Q̂ = 0 for all Q̂, and (finally) the third inequality follows by the

fact that ‖ΠĜ⊥
P1

‖ ≤ 1. Clearly, equality holds when Q̂ = Q̂�. In conclusion,

‖ΠĜ⊥
P1

ΠĜP0
‖ = ‖ΠĜ⊥

P1

MĜr0
‖ = ‖HĜr0

‖ = inf
Q̂∈H∞

D
(B

L2
H
(U),L2

H
(U)

)
‖Ĝr0 − Ĝr1Q̂‖∞,

which completes the proof.
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Abstract. We derive a generalized local maximum principle which gives necessary conditions for
optimality of abnormal trajectories in optimal control problems. In this theorem the multiplier asso-
ciated with the objective is nonzero. Our results provide a complete hierarchy of primal constructions
of high-order approximating cones (consisting of tangent directions for equality constraints, feasible
directions for inequality constraints, and directions of decrease for the objective) and dual charac-
terizations of empty intersection properties of these cones. The essential tool in our construction
is a generalization of the Lyusternik theorem which describes the structure of high-order tangent
directions to an operator equality constraint in a Banach space at a point where the operator is not
regular (i.e., its Fréchet derivative is not onto). The results and procedure are illustrated with several
examples.

Key words. optimal control, maximum principle, high-order approximations, nonregular equal-
ity constraints, abnormal trajectories
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1. Introduction. We consider an optimal control problem on R
n with fixed ter-

minal time and terminal constraints. The control set is a closed and convex subset of
R
m with nonempty interior. We develop necessary conditions for optimality of abnor-

mal extremals. Recall that an abnormal extremal is an admissible input-trajectory
pair which satisfies the conditions of the Pontryagin maximum principle [28] for which
the multiplier at the objective vanishes. Although the word “abnormal,” which has
its origins in the calculus of variations [7], seems to suggest that these types of ex-
tremals are an aberration, for optimal control problems this is not the case. The
phenomenon is quite general and can be observed in a multitude of problems, and
abnormal extremals cannot be excluded from optimality a priori. For instance, there
exist optimal abnormal trajectories for the standard textbook problem of stabilizing
the harmonic oscillator time optimally in minimum time, a simple time-invariant lin-
ear system. Recently there has been a strong interest in locally length minimizing
abnormal geodesics in sub-Riemannian manifolds, and it has been found that abnor-
mal minimizers are ubiquitous rather than exceptional. These have been investigated
from an optimal control perspective for instance by Liu and Sussmann [23, 24] and
by Agrachev and Sarychev [1, 2].

In the abnormal case conventional necessary conditions for optimality provide
conditions which only describe the structure of the constraints. For example, if there
are no control constraints, then these conditions only involve the equality constraint
defined by the dynamics and terminal conditions as zero set of an operator F : Z →
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Y between Banach spaces. If the Fréchet derivative F ′(z∗) at a point z∗ ∈ Z is
onto (the so-called surjectivity or regularity condition), then the classical Lyusternik
theorem describes the tangent space to the equality constraint at z∗ as the kernel of
F ′(z∗). Together with approximations of the inequality constraints (feasible cones)
and the directions of decrease for the functional to be minimized (cones of decrease),
Lagrange multiplier type necessary conditions for optimality in terms of a generalized
Euler–Lagrange function can be derived (see, for instance [12]). If F ′(z∗) is not onto
but closed (and this is always the case for the optimal control problem), then these
multiplier rules can be satisfied trivially by choosing a multiplier which annihilates the
image of F ′(z∗) and setting all other multipliers to zero. However, the corresponding
necessary conditions are independent of the objective and describe only the structure
of the constraint, yielding little information about the optimality of the abnormal
trajectory. Although in some cases these conditions may be helpful, in general this
situation is unsatisfactory, and it seems relevant to find other necessary conditions
for optimality which are specifically tailored to abnormal processes and involve the
objective in a nontrivial way.

The main reason why conventional necessary conditions fail for abnormal cases is
that they, like the maximum principle, use only linear approximations for the equality
constraint. This is woefully inadequate near abnormal points z∗ when the kernel of
the operator F ′(z∗) contains many directions which are not tangent to the equality
constraint. Much of the difficulty in analyzing abnormal points in extremum problems
can be traced back to the fact that the equality constraint is typically no longer a
manifold near abnormal points. For illustrative purposes, simply consider the problem
to minimize a functional I : R

n → R, z �→ I(z), subject to F (z) = 0, where F :
R
n → R

k. The trivial example to minimize a function I(z1, z2) subject to z1z2 = 0
illustrates the point perfectly well. Clearly the origin is a local minimizer if and only if
zero is a local minimizer for both functions I(z1, 0) and I(0, z2). Hence, if one aims to
develop necessary and/or sufficient conditions for optimality of abnormal extremals,
it is imperative to analyze different branches of the zero-set of F . In an ideal situation
one can hope that the subproblems of minimizing I over the branches are regular and
thus can be analyzed with standard methods. But finding these branches precisely is
at the heart of the matter.

In our research we have pursued this direction. Generalizing a result of Avakov
[4, 5] in [21], we derived a high-order generalization of the classical Lyusternik theorem
which for general p ∈ N describes the structure of p-order tangent directions to an
operator equality constraint in a Banach space also for nonregular operators under a
more general surjectivity assumption involving the first p derivatives of the operator.
The underlying idea is simply to analyze the operator F further using higher-order
derivatives and thus to replace linear approximations by polynomial approximations
of degree p if the Fréchet derivative F ′(z∗) is not onto. Based on the results in [21],
p-order tangent cones to the equality constraint can explicitly be calculated along
critical directions which comprise the low-order terms. Combining these cones with
standard constructions of high-order cones of decrease for the functional and high-
order feasible cones to inequality constraints, all taken along critical directions, we
can derive generalized necessary conditions for optimality for extremum problems in
Banach spaces which allow incorporation of the objective with a nonzero multiplier. In
[22] an abstract formulation of these results was presented for minimization problems
in Banach spaces. Characteristic of these results is that they are parametrized by
critical directions as it is natural near abnormal points. The main result of [22,
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Theorem 7.1] gives a dual characterization for the empty intersection property of the
various approximating cones along critical directions, but primal arguments using the
cones themselves are often equally effective. The dependence of our results on critical
directions, however, is viewed as a necessity of the problem rather than a weakness of
the results.

In this paper we apply the abstract results of [22] to the optimal control problem,
but we only consider the so-called weak or local version of the maximum principle.
This result is weaker than the Pontryagin maximum principle [28] in the sense that the
Pontryagin maximum principle asserts that the Hamiltonian of the control problem
is indeed minimized over the control set at every time along the reference trajectory
by the reference control. The local version only gives the necessary conditions for
optimality for this property. However, it is well known how to use an argument of
Dubovitskii to derive the Pontryagin maximum principle from the local version [12,
Lecture 13], and in this sense the local maximum principle can be considered a first
step in the derivation of the complete result. We will consider strong formulations of
our results elsewhere. (A preliminary version is given in [20].)

Our research is part of a currently active research direction which aims at devel-
oping theories which are tailored to abnormal processes. Milyutin [25] introduced a
method known as “weakening equality constraints” which has been developed further
by Dmitruk [8]. In the papers by Avakov [4, 5] and by Arutyunov [3] both neces-
sary and sufficient conditions for optimality of abnormal extremals are given based
on quadratic approximations. In earlier papers we embedded Avakov’s work into
a Dubovitskii–Milyutin framework using the concept of second-order approximating
cones [17] and derived a second-order generalized maximum principle [18]. Izmailov
[15] also considers quadratic approximations, but for problems with inequality con-
straints. While mostly optimization related techniques are used in these papers, on
a different level Agrachev and Sarychev [1] use differential geometric techniques to
develop a theory of the second variation for abnormal extremals. They give both
necessary and sufficient conditions for so-called corank 1 abnormal extremals (ex-
tremals for which there exists a unique multiplier) in terms of the Jacobi equation
and related Morse indices and nullity theorems. While our results are not as far
reaching, Agrachev and Sarychev’s underlying necessary condition for optimality [1,
Theorem 3.4] naturally fits into our framework, and we show how it can be rederived
with our methods. Also, our results do apply to arbitrary abnormal extremals, and
we give examples to show how our main result provides nontrivial conditions also
in cases when the multiplier is no longer unique. In these examples the reference
extremals have both normal and abnormal multipliers, but this is of no consequence
for our approximations. In one of the examples we derive the classical accessory type
necessary condition for optimality for the normal multiplier, i.e., L′′

xx(λ0, λ, z∗) ≥ 0,
where L(λ0, λ, z∗) = λ0I

′(z∗)+λF ′(z∗) denotes the standard Lagrangian, but only on
a subspace of kerF ′(z∗) which consists of actual tangent directions. In general, it is
easily seen that it is not a necessary condition for optimality of z∗ that L′′

xx is positive
semidefinite on kerF ′(z∗) when the multiplier is not unique. Second-order necessary
conditions for optimality in the type of accessory problem results without normality
assumptions have first been given by Gilbert and Bernstein [11]. Stefani and Zezza
[29] also derive results without making normality assumptions.

This brief survey of the literature given focuses on research on the maximum
principle related to normality conditions. Obviously the Pontryagin maximum princi-
ple has literally hundreds of extensions too numerous to be discussed here. We want
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to mention only a few, among them a recently developed general formulation of the
theorem by Sussmann which is valid under very weak differentiability assumptions
and applies to many even classical problems for which the standard version is inad-
equate [30]. High-order approximations also have a long history in connection with
the maximum principle and we mention only the papers by Krener [16] and Gabasov
and Kirillova [9] for the smooth case or the recent papers by Páles and Zeidan [26, 27]
under nonsmooth assumptions.

The main result of this paper, a p-order local maximum principle has been an-
nounced in [19], but no proof is given there. Also, the formulation in [19] allows
for p-order abnormality in the sense that it includes the more degenerate case when
the multiplier for the objective is allowed to vanish. Here we give conditions un-
der which this multiplier will be nonzero which guarantee the nontriviality of this
p-order extension. Our results provide a complete hierarchy of primal constructions of
high-order approximating directions and dual characterizations of empty intersection
properties of these approximating cones. Thus the theory developed in [22] and here
gives necessary conditions for optimality for increasingly more degenerate structures.

2. Problem formulation. We consider an optimal control problem in Bolza
form with fixed terminal time: (OC) Minimize the functional

I(x, u) =

∫ T

0

L(x(t), u(t), t)dt+ �(x(T ))(2.1)

subject to the constraints

ẋ(t) = f(x(t), u(t), t),(2.2)

x(0) = 0, q(x(T )) = 0,(2.3)

u(·) ∈ U = {u ∈ Lr∞(0, T ) : u(t) ∈ U almost everywhere (a.e.)}.(2.4)

The terminal time T is fixed and we make the following regularity assumptions on the
data: L : R

n × R
m × [0, T ] → R and f : R

n × R
m × [0, T ] → R

n are C∞ in (x, u)
for every t ∈ [0, T ]; both functions and their derivatives are measurable in t for every
(x, u) and the functions and all partial derivatives are bounded on compact subsets of
R
n ×R

m × [0, T ]; � : R
n → R and q : R

n → R
k are C∞ and the rows of the Jacobian

matrix qx (i.e., the gradients of the equations defining the terminal constraint) are
linearly independent; U ⊂ R

m is a closed and convex set with nonempty interior.
We model this problem in the framework of optimization theory as a minimization

problem in a Banach space under equality and inequality constraints. Let Wn
11(0, T )

denote the Banach space of all absolutely continuous functions x : [0, T ] → R
n with

norm |x| = ||x(0)|| + ∫ T
0
||ẋ(s)||ds and let W

n

11(0, T ) = Wn
11(0, T ) ∩ {x ∈ Wn

11(0, T ):
x(0) = 0}. Then the problem is to minimize the functional I over a class A of input-
trajectory pairs (x, u) ∈W

n

11(0, T )×Lm∞(0, T ) which is defined by equality constraints
and the convex inequality constraint u ∈ U . The equality constraints can be modelled
as F = {(x, u) ∈W

n

11(0, T )× Lm∞(0, T ): F (x, u) = 0}, where F is the operator

F : W
n

11(0, T )× Lm∞(0, T )→W
n

11(0, T )× R
k,(2.5)

(x, u) �→ F (x, u) =

(
x(·)−

∫ (·)

0

f(x(s), u(s), s)ds, q(x(T ))

)
.
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It is easy to see that the operator F has continuous Fréchet derivatives of arbitrary
order. For instance,

F ′(x, u)(η, ξ) =

(
η(·)−

∫ (·)

0

fx(x, u, s)η + fu(x, u, s)ξds, qx(x(T ))η(T )

)
(2.6)

acting on (η, ξ) ∈ W
n

11(0, T ) × Lm∞(0, T ). All partial derivatives of f are evaluated
along a reference input-trajectory pair (x, u) ∈ A. The formulas for higher-order
derivatives are given by equally straightforward multilinear forms.

3. Regularity of the operator. We first describe the image of the operator
F ′(x∗, u∗) for a reference input-trajectory pair (x∗, u∗). For notational simplicity, let

A(t) = fx(x∗(t), u∗(t), t), B(t) = fu(x∗(t), u∗(t), t),(3.1)

and denote the fundamental matrix of the variational equation by Φ(t, s), i.e.,

∂

∂t
Φ(t, s) = A(t)Φ(t, s), Φ(s, s) = Id.(3.2)

Furthermore, let R ⊂ R
n denote the reachable subspace of the linearized system

ḣ(t) = A(t)h+B(t)v, h(0) = 0,(3.3)

at time T , i.e.,

R =

{
η(T ) =

∫ T

0

A(s)η(s) +B(s)ξ(s)ds =

∫ T

0

Φ(T, s)B(s)ξ(s)ds : ξ ∈ Lm∞(0, T )

}
.

(3.4)

It is well known that R is a linear subspace of R
n and that R = R

n if and only if (3.3)
is completely controllable. In general we have the following.

Lemma 3.1.

ImF ′(x∗, u∗) =

{
(a, b) ∈W

n

11(0, T )× R
k : b ∈ qx(x∗(T ))

(∫ T

0

Φ(T, s)ȧ(s)ds+R

)}
.

(3.5)

ImF ′(x∗, u∗) is closed and of finite codimension given by

co dim ImF ′(x∗, u∗) = k − dim
[
R ∩ ker qx(x∗(T ))⊥

]
.

In particular, F ′(x∗, u∗) is onto if and only if

ker qx(x∗(T )) +R = R
n.(3.6)

Proof. Given an arbitrary function a ∈ W
n

11(0, T ), the unique solution h ∈
W

n

11(0, T ) to the equation

h(t)−
∫ t

0

A(s)h(s)ds = a(t) =

∫ t

0

ȧ(s)ds
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is given by h(t) =
∫ t
0
Φ(t, s)ȧ(s)ds. This function can be superimposed with any other

solution h to (3.3), say

h(t) =

∫ t

0

A(s)h(s) +B(s)v(s)ds,

without changing the first component of ImF ′(x∗, u∗). Thus, if η = h+ h and ξ = v,
then

F ′(x∗, u∗)(η, ξ) =

(
a, qx(x∗(T ))

(∫ T

0

Φ(T, s)ȧ(s)ds+ h(T )

))

and h(T ) ∈ R. Conversely, if (a, b) = F ′(x∗, u∗)(η, ξ), then b = qx(x∗(T ))η(T ), and

η(T )−
∫ T

0

Φ(T, s)ȧ(s)ds =

∫ T

0

[A(t)η(t) +B(t)ξ(t)]dt+ a(T )

−
∫ T

0

[A(t)h(t) + ȧ(t)]dt

=

∫ T

0

A(t)[η(t)− h(t)] +B(t)ξ(t)dt ∈ R,

verifying (3.5). It follows that ImF ′(x∗, u∗) is the direct sum of the closed subspace

W̃ =

{(
a, qx(x∗(T ))

∫ T

0

Φ(T, s)ȧ(s)ds

)
∈W

n

11(0, T )× R
k : a ∈W

n

11(0, T )

}
,

which is isomorphic to W
n

11(0, T ) and the finite-dimensional subspace R̃ = {0} ×
qx(x∗(T ))R. Thus ImF ′(x∗, u∗) is closed and of finite codimension given by the codi-
mension of qx(x∗(T ))R. Since the linear map qx(x∗(T )) : R

n → R
k is an isomorphism

when it is restricted to the orthogonal complement of ker qx(x∗(T )), it follows that
the codimension is given by

co dim ImF ′(x∗, u∗) = k − dim(R ∩ ker qx(x∗(T ))⊥).(3.7)

In particular, F ′(x∗, u∗) is onto if and only if R contains kerψx(x∗(T ))⊥ which is
equivalent to (3.6).

The operator F gives the state-space representation of the dynamical system for
the optimal control problem. Equivalently, and this is used for instance by Agrachev
and Sarychev in [1], one could use the input-output map

Q : Lm∞(0, T )→ R
k, u �→ q(x(T )),(3.8)

where x is the solution to ẋ = f(x, u(t), t), x(0) = 0. These formulations are equivalent
and it is easily seen that the codimension of ImQ′(u) is given by (3.7). The input-
output map has the advantage that it is clear that the image of Q′(u) is closed, in fact
finite dimensional. The state-representation leads to calculations which, although not
intrinsic, are quite transparent and require only simple differentiations of data directly
given.

It is well known how to characterize that (3.3) is not completely controllable. If h
is a solution of (3.3) corresponding to control v and λ is a solution to the corresponding
adjoint equation

λ̇(t) = −λ(t)A(t),(3.9)
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(which we write as row-vector λ ∈ (Rn)∗ denoting the space of row-vectors in R
n by

(Rn)∗), then

λ(T )h(T ) =

∫ T

0

λ̇(t)h(t) + λ(t)ḣ(t)dt =

∫ T

0

λ(t)B(t)v(t)dt.(3.10)

Hence, if (3.3) is not completely controllable, then any vector λ(T )⊥R defines a
solution λ of (3.9) which satisfies λ(t)B(t) ≡ 0 on [0, T ], and, conversely, any solution
λ with this property satisfies λ(T )⊥R. Thus the codimension of R is given by the
number of linearly independent solutions to λ̇(t) = −λ(t)A(t) which satisfy λ(t)B(t) ≡
0 on [0, T ]. Consequently, we have the following well-known characterization.

Proposition 3.2. The codimension of F ′(x∗, u∗) is given by the number of
linearly independent solutions to λ̇(t) = −λ(t)A(t) which satisfy λ(t)B(t) ≡ 0 on
[0, T ] and for which λ(T ) is orthogonal to ker qx(x∗(T )).

The nonregularity of the operator F at an input-trajectory pair (x∗, u∗) can be
characterized in terms of the conditions of the so-called local maximum principle. Let

H(λ0, λ, x, u, t) = λ0L(x, u, t) + λf(x, u, t)(3.11)

be the Hamiltonian for the control problem. If the input-trajectory pair (x∗, u∗) is
optimal for problem (OC), then the local maximum principle [12] states that there
exists a constant λ0 ≥ 0, an absolutely continuous function λ : [0, T ]→ (Rn)∗, and a
row-vector ν ∈ (Rk)∗ such that the following conditions hold:

1. nontriviality of the multipliers: (λ0, λ(t)) �= 0 for all t ∈ [0, T ];
2. adjoint equation:

λ̇(t) = −λ0Lx(x∗(t), u∗(t), t)− λ(t)fx(x∗(t), u∗(t), t)(3.12)

= −Hx(λ0, λ(t), x∗(t), u∗(t), t);

3. transversality condition:

λ(T ) = λ0�x(x∗(T )) + νqx(x∗(T ));(3.13)

4. local minimum condition:

〈Hu(λ0, λ(t), x∗(t), u∗(t), t), v − u∗(t)〉 ≥ 0 for all v ∈ U.(3.14)

We call input-trajectory pairs (x∗, u∗) for which multipliers λ0, λ, and ν exist such
that these conditions are satisfied (weak) extremals. If λ0 > 0, then it is possible to
normalize λ0 = 1 and the extremal is called normal while extremals with λ0 = 0 are
called abnormal.

Proposition 3.3. The operator F is nonregular at Γ = (x∗, u∗) if and only if Γ
is an abnormal weak extremal which satisfies Hu(0, λ(t), x∗(t), u∗(t), t) ≡ 0 on [0, T ].

Proof. If F is nonregular at Γ = (x∗, u∗), then there exists a nontrivial solution
λ to the equation λ̇(t) = −λ(t)A(t) which satisfies λ(t)B(t) ≡ 0 on [0, T ] and λ(T ) is
orthogonal to ker qx(x∗(T )). Since the rows of qx(x∗(T )) are linearly independent, it
follows that λ(T ) is a linear combination of the rows of qx(x∗(T )), i.e., there exists a
row-vector ν ∈ (Rk)∗ such that λ(T ) = νqx(x∗(T )). If we choose λ0 = 0, it follows that
Γ is an abnormal weak extremal which satisfies Hu(0, λ(t), x∗(t), u∗(t), t) ≡ 0 on [0, T ].
Conversely, if Γ is an abnormal weak extremal which satisfies Hu(0, λ(t), x∗(t), u∗(t), t)
≡ 0 on [0, T ], then λ satisfies the conditions of Proposition 3.2 since νqx(x∗(T ) is
orthogonal to ker qx(x∗(T )).
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For variational type problems where the control set is the full space, U = R
m, or

more generally when the extremal control takes values in the interior of the control set,
the condition Hu ≡ 0 is automatically satisfied and nonregular equality constraints
thus correspond to abnormal extremals. For example, if the problem is also in Mayer
form, i.e., L ≡ 0, then every terminal point x∗ where �x(x∗) is a linear combina-
tion of the rows of qx(x∗) generates an abnormal extremal with nonregular equality
constraint.

4. High-order directional derivatives. We introduce a formalism to describe
higher derivatives [21]. Let F : Z → Y be an operator between Banach spaces which
is sufficiently often continuously Fréchet differentiable in a neighborhood of z∗ ∈ Z,
and consider the Taylor expansion of F along a curve γ(ε) = z∗+

∑m
i=1 εihi. We have

F

(
z∗ +

m∑
i=1

εihi

)
= F (z∗) +

m∑
i=1

εi∇iF (z∗)(h1, . . . , hi) + r̃(ε),(4.1)

where

∇iF (z∗)(h1, . . . , hi)
.
=

i∑
r=1

1

r!


 ∑
j1+···+jr=i

F (r)(z∗)(hj1 , . . . , hjr )


(4.2)

and r̃(ε) is a function of order o(εm) as ε→ 0. Note that ∇iF (z∗)(h1, . . . , hi) simply
collects the εi terms in this expansion. These terms, which we call the ith-order
directional derivatives of F along the sequence Hi = (h1 . . . , hi), 1 ≤ i ≤ m, are
easily calculated by straightforward Taylor expansions. For example,

∇1F (z∗)(H1) = F ′(z∗)h1, ∇2F (z∗)(H2) = F ′(z∗)h2 +
1

2
F ′′(z∗)(h1, h1),

∇3F (z∗)(H3) = F ′(z∗)h3 + F ′′(z∗)(h1, h2) +
1

6
F ′′′(z∗)(h1, h1, h1),

and so on. The higher-order directional derivative ∇iF (z∗) is homogeneous of degree
i in the directions in the sense that

∇iF (z∗)(εh1, . . . , ε
ihi) = εi∇iF (z∗)(h1, . . . , hi).(4.3)

In particular, no indices j1 and j2 with j1 + j2 > i can occur together as arguments
in any of the terms in ∇iF (z∗). Thus all the vectors hj whose index satisfies 2j > i
appear linearly in ∇iF (z∗) and are multiplied by terms which are homogeneous of
degree i − j. In fact, there exist linear operators Gk = Gk[F ](z∗;Hk−1), k ∈ N,
depending on the derivatives up to order k of F in the point z∗ (the k-jet of F in z∗)
and on the vectors Hk−1 = (h1, . . . , hk−1), which describe the contributions of these
components. We have G1[F ](z∗) = F ′(z∗) and in general Gk = Gk[F ](z∗;Hk−1):
Z → Y, v �−→ Gk(v) is given by

Gk[F ](z∗;Hk−1)(v) =

k−1∑
r=1

1

r!


 ∑
j1+···+jr=k−1

F (r+1)(z∗)(hj1 , . . . , hjr , v)


 .(4.4)

These operators Gk[F ](z∗;Hk−1) are simply the Fréchet derivatives of the (k − 1)th
directional derivative of F at z∗ along Hk−1. Note that these terms are homogeneous
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of degree k − 1. For simplicity of notation we often suppress the arguments. For
example, we write

G1 (v) = F ′(z∗)v, G2 (v) = F ′′(z∗)(h1, v),

G3(v) = F ′′(z∗)(h2, v) +
1

2
F ′′′(z∗)(h1, h1, v).

Given an order p ∈ N, it follows that we can separate the linear contributions of the
vectors hp, . . . , h2p−1 in derivatives of orders p through 2p − 1, and for i = 1, . . . , p,
we have an expression of the form

∇p−1+iF (z∗)(Hp−1+i) =

i∑
k=1

Gk[F ](z∗;Hk−1)hp+i−k +Rp−1+i[F ](z∗;Hp−1).(4.5)

Here, amongst all terms which are homogeneous of degree p−1+ i, the sum gives the
terms which contain one of the vectors hp, . . . , hp−1+i, and the remainder R combines
all other terms which only include vectors of index ≤ p− 1. Similar to the operators
Gk, the remainders R depend on the (p− 1+ i)-jet of the operator F at z∗, but if the
map is clear we omit it in the notation. The general structure of these remainders is
given by

Rq[F ](z∗;H) =

q∑
r=2

1

r!




∑
j1+···+jr=q,

1≤jk≤, 1≤k≤r

F (r)(z∗)(hj1 , . . . , hjr )


 .(4.6)

Thus Rq(H) consists of the terms which are homogeneous of degree q, but only involve
vectors from H. For example,

R4[F ](z∗;H2) =
1

2
F ′′(z∗)(h2, h2) +

1

2
F (3)(z∗)(h1, h1, h2) +

1

24
F (4)(z∗)(h1, h1, h1, h1).

Note that the remainders only have contributions from derivatives of at least order
two. These operators allow to formalize high-order approximations to an equality
constraint at nonregular points [22]. In the next section we give the conditions under
which such approximations exist.

5. Critical directions. We first describe the set of critical directions along
which high-order tangent approximations to the equality constraint F can be set
up. For a given admissible process z∗ = (x∗, u∗) ∈ A and a finite sequence Hp−1 =
(h1, . . . , hp−1) ∈ Zp−1, let

Yi =

i∑
k=1

ImGk[F ](z∗;Hk−1), i = 1, . . . , p.(5.1)

We need to impose the following conditions:
(i) the first p− 1 directional derivatives of F along Hp−1 vanish,

∇iF (z∗)(Hi) = 0 for all i = 1, . . . , p− 1;(5.2)

(ii) and the compatibility conditions

Rp−1+i[F ](z∗;Hp−1) ∈ Yi, i = 1, . . . , p− 1,(5.3)

are satisfied.
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In these equations all partial derivatives of f are evaluated along the reference trajec-
tory. Both conditions (i) and (ii) are necessary for the existence of a p-order tangent
vector along Hp−1. For instance, if p = 2, then (i) says F ′(z∗)h1 = 0 and (ii) states
that F ′′(z∗)(h1, h1) ∈ ImF ′(z∗). If the second condition does not hold, then the
quadratic term in

F (z∗ + εh1 + ε2h1 + · · · ) = F (z∗) + εF ′(z∗)h1

+ε2

(
F ′(z∗)h2 +

1

2
F ′′(z∗)(h1, h1)

)
+ · · ·

cannot be made zero with any choice of h2 ∈ Z. Conditions (i) and (ii) are sufficient
for the existence of p-order approximations along Hp−1 under the following regularity
condition.

Definition 5.1. Let F : Z → Y be an operator between Banach spaces. We
say the operator F is p-regular at z∗ in direction of the sequence Hp−1 ∈ Zp−1if the
following conditions are satisfied:

(A1) F : Z → Y is (2p − 1) times continuously Fréchet differentiable in a neigh-
borhood of z∗;

(A2) the subspaces Yi, i = 1, . . . , p, are closed;
(A3) the map Gp = Gp[F ](z∗;Hp−1)

Gp : Z → Y1 × Y2/Y1 × · · · × Y/Yp−1(5.4)

v �→ Gp(v) = (G1(v), π1G2(v), . . . , πp−1Gp(v)) ,

where πi : Yi+1 → Yi+1/Yi denotes the canonical projection onto the quotient
space, is onto.

In the sense of this definition, 1-regularity corresponds to the classical Lyusternik
condition while 2-regularity is similar to Avakov’s definition [5]. It is shown in [21,
Theorem 1] and [22, Corollary 3.3] that the set of all directions hp for which Hp =
(h1, . . . , hp−1;hp) is tangent to {z ∈ Z : F (z) = 0} at z∗ is a nonempty affine subspace
if F is p-regular in direction of Hp−1 = (h1, . . . , hp−1) and Hp−1 satisfies (i) and (ii).

Example (see [1]). Suppose ImF ′(z∗) has codimension 1 and let λ∗ be the (up to
nonzero multiples) unique annihilator of ImF ′(z∗), λ∗F ′(z∗)h = 0 for all h ∈ Z. If
the quadratic form λ∗F ′′(z∗)(h, h) is indefinite on kerF ′(z∗), then there exist linearly
independent vectors h+ and h− in kerF ′(z∗) such that F is 2-regular in direction of
h± and such that the compatibility condition F ′′(z∗)(h±, h±) ∈ ImF ′(z∗) is satisfied.

For, since λ∗F ′′(z∗)(h, h) is indefinite on kerF ′(z∗), there exist vectors hα and
hβ in kerF ′(z∗) so that λ∗F ′′(z∗)(hα, hα) = −1 and λ∗F ′′(z∗)(hβ , hβ) = 1. If we
take nontrivial convex combinations of hα and hβ and of hα and −hβ , it follows
that there exist two linearly independent directions h+ and h− in kerF ′(z∗) such
that λ∗F ′′(z∗)(h±, h±) = 0. Since λ∗ is the unique annihilator of ImF ′(z∗), this
is equivalent to F ′′(z∗)(h±, h±) ∈ ImF ′(z∗). Hence h± satisfy conditions (i) and
(ii) for p = 2. Furthermore, F is 2-regular along h± if there exists a vector h ∈
Z (not necessarily in kerF ′(z∗)) such that πG2(z∗)(h±, h) �= 0, where π : Z →
Y/ ImF ′(z∗) is the canonical projection. But again, since ImF ′(z∗) has codimension
1, this is equivalent to λ∗F ′′(z∗)(h±, h) �= 0. This condition is satisfied since indeed
we have λ∗F ′′(z∗)(h+, h−) �= 0. For, if this were not true, then it would follow that
λ∗F ′′(z∗)(h, h) = 0 for all h in the linear span of h+ and h−. But this is not possible
since hα and hβ lie in this span.

It therefore follows from [22, Corollary 3.3] that h+ and h− in kerF ′(z∗) are
tangent directions to the set {z ∈ Z : F (z) = 0}. (In fact, except for scalar multiples
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these are the only tangent directions in the two-dimensional subspace of kerF ′(z∗)
spanned by hα and hβ .) Hence, if the objective is to minimize some functional I :
Z → R over {z ∈ Z : F (z) = 0}, then it is a necessary condition for optimality of z∗
that I ′(z∗)h± = 0. This in its essence (combined with a perturbation argument) is
the reasoning of Agrachev and Sarychev, who proved the result below.

Proposition 5.2 (see [1, Theorem 3.4]). Consider the problem to minimize a
functional I : Z → R over the set {z ∈ Z : F (z) = 0}. Suppose ImF ′(z∗) has
codimension 1 and let λ∗ be a nonzero annihilator of ImF ′(z∗). If the quadratic
form λ∗F ′′(z∗)(h, h) is indefinite on kerF ′(z∗), then it is a necessary condition for
optimality of z∗ that the codimension of Im(F ′(z∗), I ′(z∗)) is 2, i.e., that I ′(z∗)h = 0
for all h ∈ kerF ′(z∗).

As described above, this result naturally fits into our framework of high-order
approximations near nonregular points. In a certain sense these are still the least
degenerate cases.

We now proceed to include the critical directions for the objective I. We will focus
on the least degenerate critical case and therefore make the following assumption:

(iii) I ′(z∗) is not identically zero and ∇iI(z∗)(Hi) = 0 for i = 1, . . . , p− 1.
Assuming I ′(z∗) �= 0 excludes some cases in which Theorem 6.1 below could be

satisfied with a trivial choice of multipliers. However, rather than including this as
a degenerate case, in this case the better way is to analyze the objective further by
considering higher derivatives of I. This can be done easily, but the formulas for
the cones of decrease and their duals (which enter into the formulation of Theorem
6.1) become different. Here we just give the nondegenerate formulation. The other
assumption that the first p − 1 directional derivatives vanish is directly tied in with
optimality. If there exists a first nonzero directional derivative ∇jI(z∗)(Hj) with
j < i which is positive, then z∗ indeed is a local minimum for any curve z(ε) =
z∗ +

∑p
i=1 εihi + o(εp), ε > 0, and none of the directions Hp−1 is of any use in

improving the value. In other words, the p-order cone of decrease along Hp−1 is
empty and the empty intersection property of approximating cones holds trivially.
Note that we restrict to ε ≥ 0 since we also want to include inequality constraints.
On the other hand, if ∇jI(z∗)(Hj) < 0, then Hj is indeed a direction of decrease,
and arbitrary high-order extensions of this sequence will give better values. Thus the
p-order cone of decrease will be the full space. In this case our conditions below apply,
but they simplify in the sense that the multiplier ν0 in Theorem 6.1 must vanish. The
truly critical case is when all these derivatives vanish.

We also need to define the critical directions for the inequality constraint U in
the optimal control problem. More generally, we define a p-order feasible set to an
inequality constraint in a Banach space.

Definition 5.3. Let S ⊂ Z be a subset with nonempty interior. We call v a
p-order feasible vector for S at z∗ in direction of Hp−1 = (h1, . . . , hp−1) ∈ Zp−1 if
there exist an ε0 > 0 and a neighborhood V of v so that for all 0 < ε ≤ ε0,

z∗ +
p−1∑
i=1

εihi + εpV ⊂ S.

The collection of all p-order feasible vectors v for S at z∗ in direction of the sequence
Hp−1 will be called the p-order feasible set to S at z∗ in direction of the sequence Hp−1

and will be denoted by FS(p)(S; z∗, Hp−1).
It follows from this definition that FS(p)(S; z∗, Hp−1) is open (since any vector

in the neighborhood V of v also lies in FS(p)(S; z∗, Hp−1)). It is also clear that
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FS(p)(S; z∗, Hp−1) is convex, if S is. Furthermore, if hj ∈ FS(j)(S; z∗, Hj−1) for
some integer j < p, then any vector v is allowed as a p-order feasible direction and
thus trivially FS(p)(S; z∗, Hp−1) = X.

For the optimal control problem andHp−1 = ((η1, ξ1); . . . , (ηp−1, ξp−1)) let Vp−1 =
(ξ1, . . . , ξp−1) ∈ Lm∞(0, 1)p denote the sequence of controls. Then the critical feasible
directions for the convex inequality constraint U in Lm∞(0, 1) consist of all Hp−1 for
which

(iv) FS(p)(U ;u∗, Vp−1) is nonempty.
Definition 5.4. We call a direction Hp−1a p-regular critical direction for the ex-

tremum problem at z∗ if the operator F is p regular at z∗ along Hp−1 and if conditions
(i)–(iv) are satisfied.

6. The p-order local maximum principle. Theorem 6.1 below gives a gen-
eralized p–order version of the maximum principle obtained from a dual characteri-
zation of the fact that if (x∗, u∗) is optimal, then the p-order tangent cones to the
set {F = 0}, the p-order feasible cone to U and the p-order cone of decrease for the
functional I cannot intersect. This theorem generalizes a result which was derived
from quadratic approximations in [18, Theorem 4.1] to the case of general p-order ap-
proximations. Notice that we write covectors like ψ as row vectors. This is consistent
with a multiplier interpretation of the adjoint variable. We also denote partial deriva-
tives by subscripts. For instance, if ∇if(Hi) denotes the ith directional derivative of
f = f(x, u, t) with respect to the sequence Hi, then

(∇if(Hi)
)
x
denotes its partial

derivative in x. For example, suppose H1 = (η1, ξ1). Then

∇1f(H1) = fx(x, u, t)η1 + fu(x, u, t)ξ1,

and thus

(∇1f(H1)
)
x
= fxx(x, u, t)η1 + fux(x, u, t)ξ1

and

(∇1f(H1)
)
u
= fxu(x, u, t)η1 + fuu(x, u, t)ξ1.

Theorem 6.1 (p-order local maximum principle). Suppose the admissible pro-
cess (x∗, u∗) is optimal for the optimal control problem (OC). Then for every p-
regular critical direction Hp−1 there exist a number ν0 = ν0(Hp−1) ≥ 0, vectors
ai = a(Hp−1) ∈ (Rk)∗, i = 0, 1, . . . , p − 1, and absolutely continuous functions
ψ(·) = ψ(Hp−1)(·) and ρi(·) = ρi(Hp−1)(·), i = 1, . . . , p− 1, from [0, T ] into (Rn)∗,
which satisfy the following conditions along the optimal trajectory (x∗(t), u∗(t), t):

(a) nontriviality condition: ν0 and the functional λ : Lm∞(0, T )→ R given by

λ(ξ) =

∫ T

0

〈
ν0Lu + ψfu +

p−1∑
i=1

ρi
(∇if(Hi)

)
u
, ξ

〉
dt(6.1)

do not both vanish identically.
(b) extended adjoint equation:

ψ̇(t) = −ν0Lx − ψ(t)fx −
p−1∑
i=1

ρi(t)
(∇if(Hi)

)
x

(6.2)
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with terminal condition

ψ(T ) = ν0�x(x∗(T )) + a0qx(x∗(T )) +
p−1∑
i=1

ai
(∇iq(x∗(T );Hi)

)
x
.(6.3)

(c) orthogonality conditions on the additional multipliers: The functions ρi(·), i =
1, . . . , p− 1, satisfy

ρ̇i(t) = −ρi(t)fx, ρi(t)fu ≡ 0, ρi(T ) = aiqx(x∗(T )),(6.4)

and for j = 1, . . . , i − 1, the following conditions are satisfied for a.e. t ∈
[0, T ]:

ρi(t)
(∇jf(Hj)

)
x
= 0, ρi(t)

(∇jf(Hj)
)
u
= 0, ai

(∇jq((x∗(1);Hj)
)
x
= 0.

(6.5)

(d) separation condition: for all ξ ∈ FS(p)(U ;u∗, Vp−1), we have that

0 ≤ ν0Rp[�](Hp−1) + a0Rp[q](Hp−1) +

p−1∑
i=1

aiRp+i[q](Hp−1)

(6.6)

+

∫ T

0

〈
ν0Lu + ψfu +

p−1∑
i=1

ρi(t)
(∇if(Hi)

)
u
, ξ

〉
dt

+

∫ T

0

(
ν0Rp[L](Hp−1) + ψ(t)Rp[f ](Hp−1) +

p−1∑
i=1

ρi(t)Rp+i[f ](Hp−1)

)
dt.

Corollary 6.2. The separation condition (d) implies the following p-order local
minimum condition: along (x∗(t), u∗(t), t) we have for every u ∈ U and a.e. t ∈ [0, T ]

〈
ν0Lu(x∗, u∗) + ψ(t)fu +

p−1∑
i=1

ρi(t)
(∇if(Hi)

)
u
, u− u∗(t)

〉
≥ 0.(6.7)

7. Proof. Let z∗ = (x∗, u∗). Since Hp−1 is a p-regular critical direction, Theo-
rem 7.1 of [22] applies in its nondegenerate form. The control constraint has the form
Z = W

n

11(0, T ) × U , where U = {u ∈ Lm∞(0, T ) : u(t) ∈ U a.e. on (0, T )} is convex.
Since the constraint is active only in the control variable u, FS(p)(Z; z∗, Hp−1) is

trivially the full space W
n

11(0, T ) in the first coordinate. Thus the p-order feasible set
to Z at z∗ in direction of Hp−1 takes the form

FS(p)(Z; z∗, Hp−1) = W
n

11(0, T )× FS(p)(U ;u∗, Vp−1).

Hence by (iv) this set is nonempty. Note also that, if (λ, µ) defines a supporting
hyperplane to FS(p)(Z; z∗, Hp−1), i.e.,

〈
λ, (η, ξ)

〉
+ µ ≥ 0 for (η, ξ) ∈ FS(p)(Z; z∗, Hp−1),

then λ is of the form λ = (0, λ) and (λ, µ) defines a supporting hyperplane to
FS(p)(U ;u∗, Vp−1).
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It therefore follows from [22, Theorem 7.1] that there exists a Lagrange multiplier
ν0 ≥ 0, functionals (y∗i , w

∗
i ) ∈ Y ⊥i

i−1, i = 1, . . . , p, and a supporting hyperplane (λ, µ)

to FS(p)(U ;u∗, Vp−1), all depending on the sequence Hp−1, such that the multipliers
ν0 and λ do not both vanish, and

(0, λ) ≡ ν0I
′(z∗) +

p∑
i=1

G∗
i [F1](z∗;Hi−1)y

∗
i +

p∑
i=1

G∗
i [F2](z∗;Hi−1)w

∗
i ,(7.1)

µ ≤ ν0Rp[I](z∗;Hp−1) +

p∑
i=1

〈y∗i , Rp−1+i[F1](z∗;Hp−1)〉(7.2)

+

p∑
i=1

〈w∗
i , Rp−1+i[F2](z∗;Hp−1)〉.

In these formulas F1 and F2 denote the components of the operator F , [Fi], re-
spectively, [I] indicates that the operators G or R are taken on Fi, respectively, I,
and ∗ denotes the dual map. Also Y ⊥i

i−1 denotes the annihilator of Yi−1 in Y ∗
i , i.e.,

Y ⊥i
i−1 = {z∗ ∈ Y ∗

i : 〈z∗, v〉 = 0 ∀ v ∈ Yi−1} and we formally set Y0 = {0}, so that

Y ⊥1
0

∼= Y ∗
1 .

We now analyze these equations. Conditions (b) and (c) of the theorem follow
from the Euler–Lagrange equation (7.1). For simplicity of notation we omit the ar-
guments (z∗;Hi). We then have for arbitrary (η, ξ) ∈W

n

11(0, T )× Lm∞(0, T ) that

λ(ξ) ≡ ν0I
′(η, ξ) +

p∑
i=1

〈y∗i , Gi[F1](η, ξ)〉+
p∑
i=1

〈w∗
i , Gi[F2](η, ξ)〉 .(7.3)

The (y∗i , w
∗
i ) are continuous linear functionals on the spaces Yi which extend to con-

tinuous linear functionals (y∗i , w
∗
i ) in the full space W

n

11(0, T )
∗ × (Rk)∗. Using the

representations of continuous linear functionals in W
n

11(0, T )
∗ [14, p. 21], it follows

that there exist functions ψ, ρi ∈ Lm∞(0, T ), i = 1, . . . , p − 1, such that for all
(η, ξ) ∈W

n

11(0, T )× Lm∞(0, T ),

〈y∗1 , G1[F1](η, ξ)〉 = 〈y∗1, G1[F1](η, ξ)〉 = −
∫ T

0

ψ(t)
d

dt
(G1[F1](η, ξ)) dt,(7.4)

and for i = 2, . . . , p,

〈y∗i , Gi[F1](η, ξ)〉 = 〈y∗i , Gi[F1](η, ξ)〉 = −
∫ T

0

ρi−1(t)
d

dt
(Gi[F1](η, ξ)) dt.(7.5)

Similarly, we represent the second factor by row-vectors ai−1(note the shift in index),

〈w∗
i , Gi[F2](η, ξ)〉 = 〈w∗

i , Gi[F2](η, ξ)〉 = ai−1Gi[F2](η, ξ).(7.6)

Since we consider extensions of the functionals (y∗i , w
∗
i ) from Yi to the full space Y ,

the multipliers ψ, ρi, and ai are not unique but depend on these extensions except
for (ρp−1, ap−1) which corresponds to the functional (y∗p, w

∗
p) which already is defined

on the full space. We shall show below that the particular extension away from Yi,
although it may give rise to different multipliers in the statement of the theorem, still
has no influence in the conditions of the theorem. For the moment, we just pick one
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representation. Thus we have for all (η, ξ) ∈W
n

11(0, T )× Lm∞(0, T ) that

λ(ξ) = ν0

∫ T

0

(Lxη + Luξ)ds+ ν0�x(x∗(T ))η(T )−
∫ T

0

ψ(t)
d

dt
(G1[F1](η, ξ)) dt

(7.7)

−
p−1∑
i=1

∫ T

0

ρi(t)
d

dt
(Gi+1[F1](η, ξ)) dt+ a0G1[F2](η, ξ) +

p−1∑
i=1

〈ai, Gi+1[F2](η, ξ)〉.

We need to evaluate the time derivatives d
dtGi[F ](z∗;Hp−1) of the G-operators along

the reference trajectory. Since the operator F splits as F = (F1, F2), also the operators
Gi defined in (4.4) are applied componentwise. Note that we have F1(x, u) = x −
I(f)(x, u), where I(f) is the integral operator I(f)(x, u) =

∫ (·)
0

f(x(s), u(s), s)ds. The
linear term x will enter only the first operator G1 but not the operators Gi, i ≥ 2,
which depend only on higher derivatives. And the time-derivative will simply cancel
the integration. We can use the definition of the ith order directional derivative at
a point ς ∈ Z along the sequence Hi for an arbitrary operator Φ : Z → Y between
Banach spaces to write the general formula concisely: let ∇iΦ : Z → Y, i ∈ N,

∇iΦ(ς;Hi) : Z → Y,

ς �→ ∇iΦ(ς;Hi) =

i∑
r=1

1

r!


 ∑
j1+···+jr=i

Φ(r)(ς)(hj1 , . . . , hjr )


 .(7.8)

It then follows for i = 2, . . . , p that

d

dt
(Gi[F1](z∗;Hi−1) · (η, ξ))

=
d

dt


i−1∑
r=1

1

r!

∑
j1+···+jr=i−1

(
−
∫ t

0

∂f (r)

∂x
(z∗)(ηj1 , ξj1 ; . . . ; ηjr , ξjr )η

+
∂f (r)

∂u
(z∗)(ηj1 , ξj1 ; . . . ; ηjr , ξjr )ξds

)]
(7.9)

= − (∇i−1f
)
x
(z∗;Hi−1)η −

(∇i−1f
)
u
(z∗;Hi−1)ξ.

With this notation for i = 2, . . . , p we also have that

Gi[F2](z∗;Hi−1)(η, ξ) =
(∇i−1q(x∗(T );Hi−1)

)
x
· η(T ).(7.10)

Using these formulas we thus obtain for all (η, ξ) ∈W
n

11(0, T )× Lm∞(0, T ) that

λ(ξ) =

∫ T

0

((
ν0Lx + ψfx +

p−1∑
i=1

ρi
(∇if(Hi)

)
x

)
η − ψ

.
η

)
dt

+

∫ T

0

〈
ν0Lu + ψfu +

p−1∑
i=1

ρi
(∇if(Hi)

)
u
, ξ

〉
dt(7.11)

+ ν0�x(x∗(T ))η(T ) + a0qx(x∗(T ))η(T ) +
p−1∑
i=1

〈ai
(∇iq(Hi)

)
x
, η(T )〉.
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Conditions (b)–(c) of the theorem follow from here using the following version of
the classical DuBois–Raymond lemma. A proof is given, for instance, in [18].

Lemma 7.1 (see [18]). Suppose α, β ∈ Ln1 (0, T ), c ∈ R
n, and for all h ∈W

n

11(0, T )
we have

∫ T

0

α(t)h(t) + β(t)ḣ(t)dt = 〈c, h(T )〉.(7.12)

Then

β(t) = c−
∫ T

t

α(s)ds.(7.13)

In particular, if necessary after changing β on a set of measure zero, β ∈W
n

11(0, T ).
Equations (6.2) and (6.3) directly follow if we take ξ ≡ 0 in (7.11). The ex-

tra conditions on the multipliers ρi and ai follow from the orthogonality relations

(y∗i+1, w
∗
i+1) ∈ Y

⊥i+1

i , i = 1, . . . , p − 1. Since the multiplier (y∗i+1, w
∗
i+1) is orthog-

onal to ImGj for j = 1, . . . , i, we have for all (η, ξ) ∈ W
n

11(0, T ) × Lm∞(0, T ) and
j = 1, . . . , i that

0 =
〈
y∗i+1, Gj [F1](η, ξ)

〉
+ 〈w∗

i+1, Gj [F2](η, ξ)〉.(7.14)

For j = 1, this yields

0 =

∫ T

0

ρi
(
fxη + fuξ − .

η
)
dt+ aiqx(x∗(T ))η(T ),(7.15)

and for j = 2, . . . , i,

0 =

∫ T

0

ρi
((∇j−1f(Hj−1)

)
x
η +

(∇j−1f(Hj−1)
)
u
ξ
)
dt+ ai

(∇j−1q
)
x
(x∗(T ))η(T ).

(7.16)

Conditions (6.4) and (6.5) are consequences of these relations using Lemma 7.1. For
instance, setting ξ = 0 in the second equation, we obtain that

∫ T

t

ρi
(∇j−1f(Hj−1)

)
x
ds = −ai

(∇j−1q(Hj−1)
)
x
(x∗(T )) = const,(7.17)

and from this (6.5) follows.
If we set η = 0 in (7.11), we obtain a representation for the functional λ: for all

ξ ∈ Lm∞(0, T ),

λ(ξ) =

∫ T

0

〈
ν0Lu + ψfu +

p−1∑
i=1

ρi
(∇if(Hi)

)
u
, ξ

〉
dt.(7.18)

Since (λ, µ) is a supporting hyperplane to FS(p)(U ;u∗, Vp−1), it follows that λ(ξ)+µ ≥
0 for all ξ ∈ FS(p)(U ;u∗, Vp−1). But (7.2) states that

µ ≤ ν0Rp[I] +

p∑
i=1

〈y∗i , Rp−1+i[F1]〉+
p∑
i=1

〈w∗
i , Rp−1+i[F2]〉,
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and by definition and using the representations of these functionals, we have

Rp[I] =

∫ T

0

Rp[L](Hp−1)dt+Rp[�](Hp−1),(7.19)

〈y∗1 , Rp[F1]〉 = −
∫ T

0

〈
ψ(t),

d

dt
(Rp[F1](Hp−1))

〉
dt

=

∫ T

0

ψ(t)Rp[f ](Hp−1)dt,(7.20)

〈y∗i , Rp−1+i[F1]〉 = −
∫ T

0

〈
ρi−1(t),

d

dt
(Rp−1+i[F1](Hp−1))

〉
dt

=

∫ T

0

ρi−1(t)Rp−1+i[f ](Hp−1)dt,(7.21)

〈w∗
i , Rp−1+i[F2]〉 = ai−1Rp−1+i[q](Hp−1).(7.22)

Using the representation (7.18) for λ, we therefore obtain condition (6.6). This proves
the result.

The corollary is a direct consequence of the fact that (λ, µ) is a supporting hyper-
plane to FS(p)(U ;u∗, Vp−1) since this implies that λ is a supporting functional to U at
u∗ [22, Corollary 6.3]. Hence the minimum condition (6.7) follows from Example 10.5
in [12]. We include it since this is the common form of the local minimum principle,
but the separation condition is stronger (see the section with examples below).

Remark: Nontriviality of the extension. If Hp−1 satisfies conditions (i)–(iv) in
the definition of critical directions, but the operator F is not p-regular along Hp−1,
then the conditions of Theorem 6.1 can be satisfied with a trivial choice of multipliers
for which both ν0 = 0 and λ ≡ 0. Now the nontriviality statement is only on all
multipliers which is significantly weaker than the strong nontriviality statement (a) of
Theorem 6.1. In fact, in this case the conditions can be satisfied by choosing all the
new multipliers zero and for (ν0, ψ) the multipliers of the local maximum principle.
This, of course, defeats the purpose of our extension. The p-regularity eliminates this
choice of multipliers and thus gives us a nontrivial extension.

Remark: On the uniqueness of multipliers. There are two sources for non-
uniqueness of the multipliers, one essential, the other unimportant. Different mul-
tipliers can arise from the existence of linearly independent supporting functionals
(λ = (0, λ), µ) to FS(p)(Z; z∗, Hp−1), and this is just one aspect of the particular
problem to be considered. However, given λ and ν0, since the operator Gp is onto,

the functionals (y∗i , w
∗
i ) ∈ Y ⊥i

i−1, i = 1, . . . , p, in the generalized Euler–Lagrange equa-
tion (7.1) are uniquely determined. The multipliers ψ, ρi, and ai in Theorem 6.1
are determined by representations obtained for these functionals after extending the
(y∗i , w

∗
i ) to continuous linear functionals on the full space. Naturally they depend on

these extensions, and different independent solutions to conditions (b) and (c) can
exist which all represent the same functionals (y∗i , w

∗
i ). On the other hand, these

extensions should be irrelevant and indeed the nonuniqueness caused in this way has
no effect on the separation condition (d) which is invariant for all these multipliers in
the sense that the value of the right-hand side in (6.6) does not depend on the choice
of the specific representative from this class of multipliers.

If ψ + ψ̂, ρi + ρ̂i for i = 1, . . . , p − 2, and ai + âi for i = 0, . . . , p − 2 are
also multipliers which represent these functionals, then (ψ̂, â0) defines a functional
(ŷ∗1 , ŵ

∗
1) in the annihilator of Y1, and the (ρ̂i, âi) define functionals (ŷ∗i+1, ŵ

∗
i+1) in
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the annihilator of Yi+1, i = 1, . . . , p − 2. (The last multipliers (ρp−1, ap−1) are
unique since no extensions need to be taken.) It therefore follows for all (η, ξ) ∈
W

n

11(0, T )× Lm∞(0, T ) that

0 = 〈ŷ∗1 , G1[F1](η, ξ)〉+ 〈ŵ∗
1 , G1[F2](η, ξ)〉(7.23)

= −
∫ T

0

ψ̂(t)
d

dt
(G1[F1](η, ξ)) dt+ â0G1[F2](η, ξ)

and

0 = 〈ŷ∗i+1, Gi+1[F1](η, ξ)〉+ 〈ŵ∗
i+1, Gi+1[F2](η, ξ)〉(7.24)

= −
∫ T

0

ρ̂i(t)
d

dt
(Gi+1[F1](η, ξ)) dt+ âiGi+1[F2](η, ξ).

In particular, the multipliers (ψ̂, â0) satisfy analogous orthogonality conditions as the
multiplier (ρ1, a1) and for i = 2, . . . , p − 2, (ρ̂i, âi) satisfies analogous orthogonality
conditions as (ρi+1, ai+1). Thus we have

˙̂
ψ(t) = −ψ̂(t)fx, ψ̂(t)fu ≡ 0, ψ̂(T ) = â0qx(x∗(T )),(7.25)

and for j = 1, . . . , i, the following conditions are satisfied for a.e. t ∈ [0, T ]:

ρ̂i(t)
(∇jf(Hj)

)
x
= 0, ρ̂i(t)

(∇jf(Hj)
)
u
= 0, âi

(∇jq((x∗(1);Hj)
)
x
= 0.(7.26)

Note that, different from the orthogonality conditions (c) in Theorem 6.1, here the
last index is j = i. Therefore we obtain, for example,

ν0Lu +
(
ψ + ψ̂

)
fu +

p−1∑
i=1

(ρi + ρ̂i)
(∇if(Hi)

)
u
= ν0Lu + ψfu +

p−1∑
i=1

ρi
(∇if(Hi)

)
u

(7.27)

since ψ̂fu ≡ 0 and also still ρ̂i
(∇if(Hi)

)
u
≡ 0. As it should be, the extended adjoint

equation and its terminal condition are not affected with such a choice. Furthermore,
by the compatibility condition (ii) we have Rp−1+i[F ](z∗;Hp−1) ∈ Yi, and thus it also
follows that

0 = 〈ŷ∗1 , Rp[F1]〉+ 〈ŵ∗
1 , Rp[F2]〉(7.28)

=

∫ T

0

ψ̂(t)Rp[f ](Hp−1)dt+ â0Rp[q](Hp−1),

and for i = 2, . . . , p− 1,

0 = 〈ŷ∗i , Rp−1+i[F1]〉+ 〈ŵ∗
i , Rp−1+i[F2]〉(7.29)

=

∫ T

0

ρ̂i(t)Rp+i[f ](Hp−1)dt+ âiRp+i[q](Hp−1).
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Hence we have

0 = â0Rp[q](Hp−1) +

p−1∑
i=1

âiRp+i[q](Hp−1)

+

∫ T

0

〈
ψ̂fu +

p−1∑
i=1

ρ̂i(t)
(∇if(Hi)

)
u
, ξ

〉
dt(7.30)

+

∫ T

0

(
ψ̂(t)Rp[f ](Hp−1) +

p−1∑
i=1

ρ̂i(t)Rp+i[f ](Hp−1)

)
dt.

Thus the separation condition (d) is independent of the extensions of the linear func-
tionals (y∗i , w

∗
i ) ∈ Y ⊥i

i−1, i = 1, . . . , p− 1.

In the case of a Lagrangian minimization problem which has no control con-
straints, the functional λ vanishes identically. In this case we can normalize ν0 = 1
and the multipliers (y∗i , w

∗
i ) ∈ Y ⊥i

i−1, i = 1, . . . , p, in the generalized Euler–Lagrange
equation (7.1) are unique since G∗

p is one-to-one. In this case we therefore obtain the
following corollary.

Corollary 7.2 (p-order local maximum principle for Lagrangian problems).
Consider the problem (OC) without control constraints (U = R

m), and suppose the
admissible process (x∗, u∗) is optimal. Then for every p-regular critical direction Hp−1,
there exist vectors ai = a(Hp−1) ∈ (Rk)∗, i = 0, 1, . . . , p−1, and absolutely continuous
functions ψ(·) = ψ(Hp−1)(·) and ρi(·) = ρi(Hp−1)(·), i = 1, . . . , p − 1, from [0, T ]
into (Rn)∗, which satisfy the conditions (b)–(d) of Theorem 6.1 along the optimal
trajectory (x∗(t), u∗(t), t) for ν0 = 1. In particular, we thus have

Lu(x∗, u∗) + ψ(t)fu +

p−1∑
i=1

ρi(t)
(∇if(Hi)

)
u
≡ 0.(7.31)

Furthermore, for any multipliers which satisfy conditions (b) and (c), the value of the
right-hand side in (6.6) is the same.

8. Approximations of order r in the p-regular case, r > p. Theorem 6.1
is based on p-order approximations. If these remain inconclusive, higher-order approx-
imations can now easily be set up. Suppose Hp−1 is a p-regular critical direction, and
consider higher-order approximations Hr−1, r > p, whose first p− 1 components are
given by Hp−1. Several simplifications occur. For instance, since FS(p)(U ;u∗, Vp−1)
is nonempty, arbitrary higher-order approximations for the control constraint can be
made, i.e., FS(r)(U ;u∗, Vr−1) = Lm∞(0, T ). More importantly, F is trivially r-regular
at (x∗, u∗) in direction of Hr−1 since already the first p components of the map Gr
are onto. In this case, all the quotient spaces Yi+1/Yi are {0} for i = p, . . . , r− 1. In
particular, all the multipliers associated with these terms are zero, and therefore no
additional multipliers arise in higher-order approximations. Thus only the operator
Gp needs to be considered.

We show now that the required higher-order expansions for the tangent directions
can easily be made by solving linear equations for the operator Gp. We first analyze
the higher-order approximations to the constraint F ={z ∈ Z : F (z) = 0} in a Banach
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space Z. For i = 0, . . . , p−1, the term at εp+i in the expansion of F (z∗+
∑p+i
j=1 εjhj)

can be expressed as

∇p+iF (z∗;H) =

i+1∑
k=1

Gk[F ](z∗;Hk−1)hp+i+1−k +Rp+i[F ](z∗;Hp−1),(8.1)

and for � ≥ 2p, we get

∇F (z∗;H) =

p∑
k=1

Gk[F ](z∗;Hk−1)h+1−k +R[F ](z∗;H−p).(8.2)

(∇F collects all terms for which the indices of the directions h sum to �. The
operators Gk are used to write contributions of the h vectors with highest index
separately. But for our construction the vectors in Hp−1 are given and only terms
with higher indices need to be chosen. Therefore, in the terms of orders p through
2p − 1, we consider only the vectors hp, . . . , h as free and restrict the range of the
operators Gk, while for terms of orders ≥ 2p, we always step down the full length
p.) There are simple relations between these operators which follow directly from the
definition of the R operators. For example, for � = p, . . . , 2p− 1,

G+1−p[F ](z∗;H−p)hp +R[F ](z∗;Hp−1) = R[F ](z∗;Hp).(8.3)

HereR[F ](z∗;Hp) consists of all terms which are homogeneous of degree �, but involve
only vectors from Hp. On the left-hand side these terms are split into those which
contain hp and those which don’t. Since the total order is less than 2p, hp can enter
linearly only with terms which must be homogeneous of degree �−p. These are given
by G+1−p[F ](z∗;H−p).

The construction of higher-order approximating sequences is inductive and re-
quires only solution of linear equations in every step. It is shown in [22, Corollary 3.3]
that the p-order tangent directions hp to F at z∗ along a sequence Hp−1 (which satis-
fies conditions (i) and (ii) and along which F is p-regular) are given by the solutions
to the linear equation

Gp[F ](z∗;Hp−1)hp +Rp−1[F ](z∗, Hp−1) = 0,(8.4)

where Rp−1[F ](z∗, Hp−1) ∈ Y1 × Y2/Y1 × · · · × Y/Yp−1 is the point with components

(Rp[F ](z∗;Hp−1), π1Rp+1[F ](z∗;Hp−1), . . . , πp−1R2p−1[F ](z∗;Hp−1)) .(8.5)

This vector is well defined by the compatibility condition. In the next step we need
to choose hp+1 so that amongst other conditions we have

∇p+1F (z∗;Hp) = G1(z∗)hp+1 +G2(z∗;H1)hp +Rp+1[F ](z∗;Hp−1)︸ ︷︷ ︸
= G1(z∗)hp+1 + Rp+1[F ](z∗;Hp) = 0.

By the choice of hp as a p-order tangent direction the required necessary condition
Rp+1[F ](z∗;Hp) ∈ Y1 is satisfied since hp already solves the equation∇p+1F (z∗;Hp) =
0 in the quotient space Y2/Y1, i.e., except possibly for a remaining term in Y1. (See [21]
for more detailed explanations on calculating p-order tangent directions.) Similarly,
the necessary conditions Rp+i[F ](x∗;Hp) ∈ Yi are satisfied for all the other compo-
nents, and we can inductively solve for hp+1 while preserving the required necessary
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conditions for setting up higher-order approximations. Note that these conditions are
essential since only in this way can we actually assert that Hp+1 is a (p + 1)-order
tangent direction. In general we have the following.

Proposition 8.1. Let Hp−1 be a (p − 1)-order tangent direction to F at z∗,
and suppose F is p-regular at z∗ in direction of Hp−1. Let Hr−1 be an extension
of Hp−1 to an (r − 1)-order tangent direction to F at z∗ (i.e., ∇iF (z∗)(Hi) = 0
for i = p, . . . , r − 1, and the compatibility conditions Rr−1+i[F ](z∗;Hr−1) ∈ Yi for
i = 1, . . . , p−1 are satisfied), and let Rr−1[F ](z∗;Hr−1) be the point with components

(Rr[F ](z∗;Hr−1), π1Rr+1[F ](z∗;Hr−1), . . . , πp−1Rr+p−1[F ](z∗;Hr−1)) .(8.6)

Then the set of all r-order tangent directions to F at z∗ along Hr−1, TS(r)(F ; z∗, Hr−1),
is a nonempty affine variety given by the solutions to the equation

Gp[F ](z∗;Hp−1)hr +Rr−1[F ](z∗;Hr−1) = 0.(8.7)

Proof. In the state-space Z the vectors hr which extend Hr−1 to r-order tangent
directions are the solutions to the following equations:

∇rF (z∗;Hr−1) = G1(z∗)hr +Rr[F ](z∗;Hr−1) = 0,

∇r+1F (z∗;Hr−1) = G1(z∗)hr+1 +G2(z∗;h1)hr +Rr+1[F ](z∗;Hr−1) ∈ Y1

. . .

∇r+iF (z∗;Hr−1) =

i+1∑
k=1

Gk(z∗;Hk−1)hr+i+1−k +Rr+i[F ](z∗;Hr−1) ∈ Yi

for i = 0, . . . , p − 1, and the vectors hj for j > r are left undetermined in this step.
By assumption (guaranteed by the inductive steps of the construction) we have

Rr+i[F ](z∗;Hr−1) ∈ Yi+1,

and therefore, since the operator Gp is onto, we can choose hr so that

Gi+1(z∗;Hi)hr +Rr+i[F ](z∗;Hr−1) ∈ Yi.(8.8)

These vectors are precisely the solutions to (8.7). It follows similar to the proof of the
main approximation lemma in [21] that any such vector defines an r-order tangent
direction. The only change is that the order of approximation needs to be raised
to r.

Note that we need only to solve linear equations, but in every step a system
of p equations needs to be solved since the operator F is only p-regular. As in
[22, section 2] we define the r-order tangent cone to F at z∗ in direction of Hr−1,
TC(r)(F ; z∗, Hr−1), as the cone in Z × R generated by the vectors (v, 1) with v ∈
TS(r)(F ; z∗, Hr−1). The dual or polar cone consists of all continuous linear functionals
which are nonnegative on TC(r)(F ; z∗, Hr−1). Since the operator Gp is used in each
of these higher-order approximations, the structure of the dual cone directly follows
from [22, Proposition 3.6].
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Proposition 8.2. The dual or polar r-order tangent cone consists of all linear
functionals (λ, µ) ∈ X∗×R which can be represented in the following form: there exist
functionals y∗i ∈ Y ⊥i

i−1, i = 1, . . . , p, and a number s ≥ 0 such that

λ =

p∑
i=1

G∗
i [F ](z∗;Hi−1)y

∗
i ,(8.9)

µ =

p∑
i=1

〈y∗i , Rr−1+i[F ](z∗;Hr−1)〉+ s.(8.10)

Thus, given a p-regular tangent direction, it is possible to set up higher-order
approximations of arbitrary order. Now consider the problem to minimize a functional
I : Z → R over the set F . If there exists an integer j ≤ r such that ∇jI(z∗;Hj) <
0 while ∇iI(z∗;Hi) = 0 for i = 1, . . . , j − 1, then z∗ is not optimal since there
exist j-order tangent directions to F for which I will produce better values than
at z∗. Thus it is a necessary condition for optimality of z∗ that the first nonzero
derivative of ∇iI(z∗;Hi) is positive. Once this happens, it is clear that no higher-
order approximations which extend Hi are useful in obtaining necessary conditions
for optimality. Therefore the r-order critical directions for the objective are those
which satisfy

(iii-r) ∇iI(z∗)(Hi) = 0 for i = p, . . . , r − 1.

Theorem 8.3. Suppose the admissible process (x∗, u∗) is optimal for the optimal
control problem (OC), and let Hp−1 be a p-regular critical direction. Let Hr−1be an
extension of Hp−1 to an (r−1)-order tangent direction to the equality constraint which
is r-order critical for the objective. Then there exist vectors ai = a(Hp−1) ∈ (Rk)∗,
i = 0, 1, . . . , p−1, and absolutely continuous functions ψ(·) = ψ(Hp−1)(·) and ρi(·) =
ρi(Hp−1)(·), i = 1, . . . , p− 1, from [0, T ] into (Rn)∗, which satisfy conditions (b) and
(c) of Theorem 6.1 with ν0 = 1 and are such that

0 ≤ Rr[�](Hr−1) + a0Rr[q](Hr−1) +

p−1∑
i=0

aiRr+i[q](Hr−1)(8.11)

+

∫ T

0

(
Rr[L](Hr−1) + ψ(t)Rr[f ](Hr−1) +

p−1∑
i=1

ρi(t)Rr+i[f ](Hr−1)

)
dt.

The value of the right-hand side in (8.11) is the same independent of the choice of
multipliers ai, ψ, and ρi which satisfy conditions (b) and (c).

Proof. Let z∗ = (x∗, u∗). Under these conditions the r-order tangent cone and
the r-order cone of decrease are nonempty. Since the feasible cone is the full space,
it is therefore a necessary condition for optimality that these cones do not inter-
sect. The r-order cone of decrease of the functional I at z∗ in direction of Hr−1,
DC(r)(I; z∗, Hr−1), is given by [22, Proposition 4.1] as

DC(r)(I; z∗, Hr−1) = {(w, γ) ∈ X × R : γ > 0, I ′(z∗)w + γRr[I](z∗;Hr−1) < 0}
(8.12)
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and thus is nonempty, open, and convex. Its dual cone is given by [22, Proposition 4.2]
as

(
DC(r)(I; z∗, Hr−1)

)∗
=

{
(λ, µ) ∈ X∗ × R : ∃ α1 ≤ 0, α2 ≥ 0 such that

(
λ

µ

)
=

(
I ′(z∗) 0

Rr[I](z∗;Hr−1) 1

)(
α1

α2

)}
.(8.13)

Hence it follows from the Dubovitskii–Milyutin lemma [12] that there exist non-

trivial continuous linear functionals in the dual cones,
(
TC(r)(F ; z∗, Hr−1)

)∗
and(

DC(r)(I; z∗, Hr−1)
)∗

, whose sum vanishes identically. Thus there exist functionals

(y∗i , w
∗
i ) ∈ Y ⊥i

i−1, i = 1, . . . , p, such that

0 ≡ I ′(z∗) +
p∑
i=1

G∗
i [F1](z∗;Hi−1)y

∗
i +

p∑
i=1

G∗
i [F2](z∗;Hi−1)w

∗
i ,

(8.14)

0 ≤ Rr[I](z∗;Hr−1) +

p∑
i=1

〈y∗i , Rr−1+i[F1](z∗;Hr−1)〉+
p∑
i=1

〈w∗
i , Rr−1+i[F2](z∗;Hr−1)〉.

(8.15)

The first equation is the Euler–Lagrange equation (7.1) for the case λ ≡ 0 and ν0 = 1.
Thus conditions (b) and (c) of Theorem 6.1 follow. The second-order condition (8.15)
gives (8.11). In this derivation only the index changes from p to r. Furthermore, as in
the case of a Lagrangian extremum problem the multipliers (y∗i , w

∗
i ) ∈ Y ⊥i

i−1 are unique,
and the degrees of freedom brought into the representation by using extensions to the
full space do not affect the values (since Rr−1+i[F ](z∗;Hr−1) ∈ Yi for i = 1, . . . , p−1,
and the freedom in the multipliers is only within functionals which annihilate Yi).
This proves the result.

Remark. Note that we cannot assert in general that the multipliers in Theorem
8.3 are the same ones as the multipliers which arise in Theorem 6.1. In fact, if λ is
not identically zero, they are not. If, however, λ ≡ 0, then (except for the possible
but inconsequential freedom in the extensions) these multipliers are the same since
G∗
p is 1− 1. This applies to the Lagrangian problem.

Corollary 8.4 (Lagrangian problems). Consider the optimal control prob-
lem (OC) without control constraints (U = R

m), and suppose the admissible process
(x∗, u∗) is optimal. Let Hp−1 be p-regular critical direction and let ai = a(Hp−1),
i = 0, 1, . . . , p − 1, ψ(·) and ρi(·), i = 1, . . . , p − 1, be multipliers which satisfy the
conditions of Theorem 6.1 along the optimal trajectory (x∗(t), u∗(t), t) for ν0 = 1.
Then (8.11) holds for any extension of Hp−1 to an (r − 1)-order tangent direction to
the equality constraint which is r-order critical.

Our theorems equally apply to the regular case, i.e., p = 1, but then they reduce
to classical results. Yet on this level the relations between these results are easiest
explained. For p = 1, Theorem 6.1 is the local maximum principle (e.g., [12, The-
orem 12.1]) and the separation condition is simply the statement that there exists
a supporting hyperplane to U at u∗. For the Lagrangian minimization problem and
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r = 2, Theorem 8.3 gives the accessory problem. For, in this case, (8.11) becomes

0 ≤ R2[�](H1) + a0R2[q](H1) +

∫ T

0

R2[L](H1) + ψ(t)R2[f ](H1)dt

=
1

2
�xx(x∗(T ))(η(T ), η(T )) +

1

2
a0qxx(x∗(T ))(η(T ), η(T ))

+

∫ T

0

(η, ξ)

(
Lxx Lxu
Lux Luu

)(
η
ξ

)
+

〈
ψ, (η, ξ)

(
fxx fxu
fux fuu

)(
η
ξ

)〉
dt(8.16)

=
1

2
�xx(x∗(T ))(η(T ), η(T )) +

1

2
a0qxx(x∗(T ))(η(T ), η(T ))

+

∫ T

0

(η, ξ)

(
Hxx Hxu

Hux Huu

)(
η
ξ

)
dt,

where H = L+ ψf . This holds for all (η, ξ) ∈ kerF ′(x∗, u∗) for which I ′(x∗, u∗) = 0.
But (η, ξ) ∈ kerF ′(x∗, u∗) if and only if η is a solution to the variational equation

η̇ = fx(x∗(t), u∗(t), t)η + fu(x∗(t), u∗(t), t)ξ, η(0) = 0,(8.17)

with terminal constraint qx(x∗(T ))η(T ) = 0. These are the conditions for the domain
of the accessory problem. In its typical formulation, however, no reference is made
to the condition I ′(x∗, u∗) = 0. But this is badly misleading. For, if this does not
hold, then it follows immediately that (x∗, u∗) cannot be an extremal since it violates
the local maximum principle. Thus the condition I ′(x∗, u∗) = 0 is hidden in the
statement that the accessory problem is taken along an extremal. In this sense our
primal approach of determining high-order admissible directions results in the proper
set of necessary conditions which these directions have to satisfy to be critical of
a certain level. Then, if we choose r = 3, Theorem 8.3 gives additional necessary
conditions for optimality, but only for those directions for which linear or quadratic
approximations have been inconclusive, namely second-order critical directions. In
this sense, our results provide a complete hierarchy of results which through primal
constructions of higher-order approximating directions and dual characterizations of
empty intersection properties of approximating cones give necessary conditions for
optimality for increasingly more degenerate structures.

9. Examples. In this section we give several examples which illustrate how The-
orem 6.1 can be used to eliminate abnormal candidates from optimality. We consider
two cases. The first illustrates the case when Im(F ′(z∗), I ′(z∗)) has codimension 1
and in the second example Im(F ′(z∗), I ′(z∗)) has codimension 2. In these examples
the order p will be arbitrary. However, we use the same equality constraint so that
the analysis of high-order tangent directions only needs to be done once.

We consider the problems to minimize the functional

I±(x, u) =
∫ T

0

[
(x1 − 1)2 + xp2 + (x3 ± 1)2 − 2

]
dt(9.1)

over all (x, u) ∈W
3

11(0, T )× L2
∞(0, T ) subject to the dynamics

ẋ(t) = A(x) +Bu =


 0

xp1
αxp−1

2 x3


+


 0 1
−1 0
0 −1



(

u1

u2

)
,(9.2)



GENERALIZED LOCAL MAXIMUM PRINCIPLE 847

initial condition x(0) = 0, and terminal constraints x1(T ) = 0 and x3(T ) = 0. Here
p is an integer, p ≥ 2, and α is an arbitrary real number. For simplicity we have not
imposed any control constraints. A related example which has bounded controls is
given in [20].

We first show that the reference trajectory Γ = (x∗, u∗) ≡ (0, 0) is an abnormal
extremal for each problem. If Γ is optimal, then by the weak local maximum principle
there exist a constant λ0 ≥ 0 and an absolutely continuous function λ : [0, T ]→ (R3)∗

such that (λ0, λ(t)) �= 0 for all t ∈ [0, T ], λ̇(t) = λ0(2, 0,∓2), λ(T ) = (ν1, 0, ν3), and
the local minimum conditions λ2(t) ≡ 0 and λ1(t) ≡ λ3(t) are satisfied. For the
problem to minimize I+ we get

λ1(t)− λ3(t) = ν1 − ν3 + 4λ0(t− T ),

and this vanishes if and only if ν1 = ν3 and λ0 = 0. Thus in this case Γ is a corank
1 abnormal extremal whose unique multiplier is given by λ0 = 0 and λ(t) ≡ (ν, 0, ν)
for some nonzero constant ν. If, however, we minimize I , then we have

λ1(t)− λ3(t) = ν1 − ν3,

and the minimum condition λ1(t) ≡ λ3(t) is automatically satisfied if ν1 = ν3 = ν.
In this case the extremal Γ has two linearly independent multipliers, one normal,
the other abnormal, given by λ0 = 0 and λ(t) ≡ (1, 0, 1) and λ0 = 1 and λ(t) ≡
(2(t− T ), 0, 2(t− T )).

In either case the generalized Legendre–Clebsch condition [6] is trivially satisfied:
since the multipliers are at most linear functions in t, we have for any positive integer
k that

d2k

dt2k
Hu(λ0, λ(t), 0, 0) ≡ 0,

and thus the controls are singular of infinite order. For the case when there is a unique
multiplier further necessary conditions for optimality of multi-input control systems
are given by Goh [13]. In its simplified version [13, section 4.3] these conditions are
satisfied trivially here since the control vector fields are constant and thus commute.
The stronger condition stated in the “fundamental theorem” in [13] in addition re-
quires that the matrix BTHxx(0, λ(t), 0, 0, )B is positive semidefinite. For p > 2, this
holds trivially since Hxx(0, λ(t), 0, 0, ) ≡ 0, but for p = 2, this excludes the optimality
of Γ. We have H(0, λ, x, u, ) = λ2x

2
1 + λ3αx2x3 + Bu, and thus using λ2(t) ≡ 0 and

λ3(t) ≡ ν, we get that

BTHxx(0, λ(t), 0, 0, )B =

(
0 −1 0
1 0 −1

)
 0 0 0

0 0 αν
0 αν 0




 0 1
−1 0
0 −1




= αν

(
0 1
1 0

)
,(9.3)

which is indefinite for α �= 0. In this case the optimality of Γ can also be excluded
using the result of Agrachev and Sarychev [1, Theorem 3.4] recalled in Proposition
5.2: It is clear from above that ImF ′(0, 0) has codimension 1. More specifically, the
variational equation is given by the linear system ḣ(t) = Bξ, h(0) = 0, and thus its
reachable set is simply the image of B. Hence

ImF ′(0, 0) =
{
(a, b) ∈W

3

11(0, T )× R
2 : b[1] + b[3] = a[1](T ) + a[3](T )

}
,(9.4)
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where the superscripts denote the components. Also,

kerF ′(0, 0) =
{
(η, ξ) ∈W

3

11(0, T )× L2
∞(0, T ) : η̇(t) = Bξ, η(0) = 0,(9.5)

η[1](T ) = 0 and η[3](T ) = 0
}
.

Note that for (η, ξ) ∈ kerF ′(0, 0)

I ′±(0, 0)(η, ξ) = −2
∫ T

0

η[1](t)∓ η[3](t)dt = −2(1± 1)

∫ T

0

η[1](t)dt,(9.6)

and thus we have I ′−(0, 0)(η, ξ) ≡ 0 for all (η, ξ) ∈ kerF ′(0, 0) while this quantity
can be made nonzero for I+. Hence the codimension of Im(F ′(0, 0), I ′−(0, 0)) is 2,
while the codimension of Im(F ′(0, 0), I ′+(0, 0)) is 1. A nontrivial annihilator λ∗ of
ImF ′(0, 0) is determined by the abnormal costate λ of the weak maximum principle,
and since λ(t) = (ν, 0, ν), it follows that

λ∗F ′′(0, 0)((η, ξ); (η, ξ)) = 〈y∗, F ′′
1 (0, 0) ((η, ξ), (η, ξ))〉+ 〈w∗, F ′′

2 (0, 0) ((η, ξ), (η, ξ))〉

=

∫ T

0

λ(t)Axx(0)(η(t), η(t))dt+ 0

= ν

∫ T

0

2αη[2](s)η[3](s)ds,(9.7)

where η[i] denotes the ith component of η. This quantity can be made both positive
and negative for (η, ξ) ∈ kerF ′(0, 0). For instance, choose η[3](t) = sin(π t

T ) and

η[2](t) = ±η[3](t). Hence λ∗F ′′(0, 0) is indefinite on kerF ′(0, 0), and thus Γ is not
optimal.

For p > 2 or for the problem to minimize I−, however, these results do not apply.
We now show how Theorem 6.1 can be used to obtain additional information. We
first consider the problem to minimize I+ and show how to eliminate the optimality
of Γ for any p ≥ 2 using Theorem 6.1. For this we first need to find an appropriate
p-regular critical direction

Hp−1 = ((η1, ξ1); . . . ; (ηp−1, ξp−1)) ∈
(
W

3

11(0, T )× L2
∞(0, T )

)p−1

.

Since the components of f are homogeneous polynomials of degree p and the terminal
constraints are linear, it follows that for i = 1, . . . , p − 1, the directional derivatives
∇iF (z∗)(Hi) are simply given by

∇iF (z∗)(Hi) = F ′(0, 0)(ηi, ξi),(9.8)

and thus these derivatives vanish provided (ηi, ξi) ∈ kerF ′(0, 0) for i = 1, . . . , p − 1.
Since the dynamics involves only p-order terms it seems reasonable to consider only
first- and pth-order approximations. We therefore choose Hp−1 of the form

Hp−1 = ((η1, ξ1); (0, 0); . . . ; (0, 0))(9.9)

with (η1, ξ1) ∈ kerF ′(0, 0). With this choice of directions the compatibility conditions
(ii) simplify considerably and reduce to the first condition only,

Rp[F ](Γ;Hp−1) =
1

p!
F (p)(0, 0) ((η1, ξ1); . . . ; (η1, ξ1)) ∈ ImF ′(0, 0).(9.10)
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The conditions for i = 2, . . . , p− 1, are satisfied since Rp−1+i[F ](Γ;Hp−1) = 0. Con-
dition (9.10) is equivalent to

(1, 0, 1) ·
∫ T

0

D(p)
x A(0)(η1, . . . , η1)ds = 0,

where D
(p)
x A(0)(η1, . . . , η1) denotes the 3-vector whose ith entry is given by the values

of the multilinear form D
(p)
x Ai(0) acting on the vector η1 in every component. In

particular, since A1(x) ≡ 0 in the example, we must therefore have

∫ T

0

D(p)
x A3(0)(η1, . . . , η1)ds = 0.(9.11)

If, as above, we denote the components of η1by η
[j]
1 , j = 1, 2, 3, then for A3(x) =

αxp−1
2 x3 this requires that

∫ T

0

(
η
[2]
1

)p−1 (
η
[3]
1

)
ds = 0.(9.12)

We satisfy this by choosing η
[3]
1 = −η

[1]
1 ≡ 0 (i.e., ξ

[2]
1 ≡ 0). Then choosing a nonzero

η
[2]
1 with zero boundary conditions defines a nontrivial vector Hp−1 of the form (9.9)
for which conditions (i) and (ii) in the definition of p-regular critical directions are
satisfied. The operator F is p-regular in this direction if the operator Gp(Γ;Hp−1) is
onto. Because of the homogeneity properties of A, the pth component Gp of Gp is
given by

Gp[F ](Γ;Hp−1)(η̃, ξ̃) =
1

(p− 1)!
F (p)(0, 0)

(
(η1, ξ1); . . . ; (η1, ξ1); (η̃, ξ̃)

)
,

while all operators Gi for i = 2, . . . , p− 1, vanish. Thus Gp(Γ;Hp−1) is onto if there

exists a direction (η̃, ξ̃) ∈ W
3

11(0, T ) × L2
∞(0, T ) such that Gp[F ](Γ;Hp−1)(η̃, ξ̃) /∈

ImF ′(0, 0). Like above, this is equivalent to

∫ T

0

D(p)
x A3(0)(η1, . . . , η1,η̃)ds �= 0,(9.13)

and thus

∫ T

0

(
η
[2]
1

)p−2 [(
η
[2]
1

)(
η̃[3]

)
+ (p− 1)

(
η
[3]
1

)(
η̃[2]

)]
ds �= 0.(9.14)

Since we have η
[3]
1 ≡ 0 in our chosen direction Hp−1, this can simply be satisfied by

choosing η̃[3] = η
[2]
1 if p is even or η̃[3] = (η

[2]
1 )2 if p is odd. Hence F is p-regular in

direction of Hp−1 at Γ. Finally, these directions are also critical for the objective: by
(9.6) we have I ′+(0, 0)(η1, ξ1) = 0 and furthermore

∇2I+(0, 0)(H2) =
1

2
I ′′+(0, 0)((η1, ξ1); (η1, ξ1))

=

∫ T

0

(
η
[1]
1

)2

+
(
η
[3]
1

)2

ds = 0,
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provided p > 2. Since no other I+-derivatives arise in the directional derivatives
∇iI+(0, 0)(Hi) for i = 3, . . . , p − 1, the direction Hp−1 = ((η1, ξ1); (0, 0); . . . ; (0, 0))

with η
[1]
1 = η

[3]
1 ≡ 0 and a nonzero η

[2]
1 is a nonzero p-regular critical direction for the

problem to minimize I+ subject to F = 0 for any p ≥ 2.
We thus can apply Theorem 6.1. Since there are no control constraints we can

normalize the multipliers so that ν0 = 1. The additional multipliers ρi, i = 1, . . . , p−1,
are associated with elements in the dual spaces of the quotients Yi+1/Yi. But here
Yi = ImF ′(0, 0) for i = 1, . . . , p − 1, and Yp is the full space. Thus we have ρi ≡ 0
for i = 1, . . . , p − 2, and the only nonzero multipliers are ψ and ρp−1 which for
simplicity of notation we just call ρ. Now (6.4) of Theorem 6.1 states that ρ is an
adjoint multiplier for which the conditions of the weak local maximum principle for
an abnormal extremal are satisfied. Since this multiplier is unique, we must have
ρ(t) = (ν, 0, ν), but ν ∈ R could now be zero. To write down the extended adjoint
equation and minimum condition (6.7), we need to evaluate the directional derivatives
∇p−1f(x, u)(Hi), where f(x, u) = A(x)+Bu. Note that all partial derivatives of order
at least two which contain one u-derivative vanish. Thus we need only to calculate
the actual x-partials. The leading term in ∇p−1f(x, u)(Hi) is therefore given by

D(p−1)
x A(x)(η1, . . . , η1) =




0

p!
(
η
[1]
1

)p−1

x1

(p− 1)!

[
(p− 1)

(
η
[2]
1

)p−2 (
η
[3]
1

)
x2 +

(
η
[2]
1

)p−1

x3

]


 .

All other terms come from lower derivatives and contain at least quadratic terms in
the xi. After taking another derivative and evaluating at zero all these terms will

vanish. Since we also have η
[1]
1 = η

[3]
1 ≡ 0, we therefore get

(∇p−1f(0, 0)(Hi)
)
x
=




0 0 0
0 0 0

0 0
(
η
[2]
1

)p−1


(9.15)

and
(∇p−1f(0, 0)(Hi)

)
u
≡ 0.(9.16)

Thus the extended minimum condition reduces to ψB ≡ 0, the minimum condition
of the weak maximum principle. Hence also ψ2(t) ≡ 0 and ψ1(t) = ψ3(t). But now
the extended adjoint equation is given by

ψ̇(t) = (2, 0,−2)− ρ




0 0 0
0 0 0

0 0
(
η
[2]
1

)p−1


 ,(9.17)

and thus

4 = ψ̇1(t)− ψ̇3(t)− ν
(
η
[2]
1 (t)

)p−1

= −ν
(
η
[2]
1 (t)

)p−1

.(9.18)

But we can certainly choose η
[2]
1 nonconstant to violate this condition. This con-

tradiction proves that Γ cannot be optimal for the problem to minimize I+ for any
p ≥ 2.
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We now consider the problem to minimize I− for which the codimension of
Im(F ′(0, 0), I ′−(0, 0)) is 2. This becomes a harder problem in some aspects but an
easier problem in others. Essentially, since there exist two linearly independent mul-
tipliers which satisfy the weak local maximum principle, conditions (a)–(c) of Theorem
6.1 can be satisfied in a straightforward way using these multipliers where (ν0, ψ) is
the normal multiplier and ρ ≡ 0. Hence these conditions will give nothing new. On
the other hand, since the codimension is 2, the restrictions on the critical directions
are less stringent since any direction (η, ξ) ∈ kerF ′(0, 0) is automatically critical for
the objective as well. Hence more directions are critical and the separation condition
(d) becomes stronger. The details follow.

We first assume p > 2 and consider the same p-regular tangent directions as
above. Note that these directions remain p-order critical for the objective and thus
are p-regular critical directions. The only difference to the analysis above is that the
extended adjoint equation now reads

ψ̇(t) = (2, 0, 2)− ρ




0 0 0
0 0 0

0 0
(
η
[2]
1 (t)

)p−1


 ,(9.19)

and thus we get

0 = ψ̇1(t)− ψ̇3(t)− ν
(
η
[2]
1 (t)

)p−1

= −ν
(
η
[2]
1 (t)

)p−1

.(9.20)

But this equation can be satisfied with ν = 0 implying ρ ≡ 0. The separation condition
(d) reduces to

0 ≤
∫ T

0

Rp[L](Hp−1) + ψ(t)Rp[f ](Hp−1)dt.(9.21)

Since η
[1]
1 ≡ η

[3]
1 ≡ 0, we have

Rp[f ](Hp−1) =




0(
η
[2]
1

)p
0


 ,(9.22)

and this term will be annihilated by ψ2(t) ≡ 0; and Rp[L](Hp−1) only generates the

term (η
[2]
1 (t))p as nonzero term. Thus it is a necessary condition for optimality of Γ

that

0 ≤
∫ T

0

(
η
[2]
1 (t)

)p
dt(9.23)

for any p-regular critical direction which satisfies η
[1]
1 ≡ η

[3]
1 ≡ 0. But we can multiply

these directions by −1, and thus Γ is not optimal if p is odd.
If p is even, (9.23) will always be satisfied and these directions do not give rise to

better values of the objective. In fact, if Hp−1 = ((η1, ξ1), (η2, ξ2), . . . , (ηp−1, ξp−1))

is any p-order tangent direction for which η
[3]
1 �= 0, then, since by (9.8) necessarily

(η2, ξ2) ∈ kerF ′(0, 0), we get

∇2I−(0, 0)(H2) = I ′−(0, 0)(η2, ξ2) +
1

2
I ′′−(0, 0)((η1, ξ1), (η1, ξ1))(9.24)

=

∫ T

0

(
η
[1]
1

)2

+
(
η
[3]
1

)2

ds > 0.
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Hence no p-order tangent direction can lead to an improved value of the objective.
Indeed, it can be shown that no improvement of the objective is possible for any
tangent direction. These calculations strongly suggest that Γ is locally optimal if p
is even and p ≥ 4, but we are not aware of sufficient conditions for optimality which
would apply to this situation.

The case p = 2 is the most interesting one. As above, in this case 2-regular

critical directions for which η
[1]
1 ≡ η

[3]
1 ≡ 0 cannot be used to exclude the optimality

of Γ. However, now any direction in kerF ′(0, 0) is critical, and thus any nontrivial
(η, ξ) ∈ kerF ′(0, 0) which satisfies the compatibility condition

∫ T

0

η[2](s)η[3](s)ds = 0(9.25)

defines a 2-regular critical direction. It is easily seen from (9.14) that the operator

F is 2-regular at Γ in direction of (η, ξ) by choosing η̃[3] = η
[2]
1 and η̃[2] = η

[3]
1 .

Hence any direction (η, ξ) ∈ kerF ′(0, 0) which satisfies (9.25) is a 2-regular critical
direction. The fact that co dim(Im I ′−(0, 0), ImF ′(0, 0)) = 2 allows for this large class
of critical directions H1. The separation condition (d) of Theorem 6.1 in conjunction
with Corollary 7.2 and the fact that ρ ≡ 0 therefore implies that the quadratic form

Q =
1

2

∫ T

0

L(2)(0, 0)(H1, H1) + ψ(t)f (2)(0, 0)(H1, H1)dt(9.26)

is positive semidefinite on the set of all 2-regular critical directions H1. Note that
(9.26) takes the form of the accessory problem for the normal multiplier (1, ψ), but
that the domain is restricted to the actual tangent directions to the equality constraint.
In this case we have ψ3(t) = ν+2(t−T ), ν = ψ3(T ). Note that in accordance with our
remark on the uniqueness of multipliers the one degree of freedom in the multipliers
is taken by the multipliers (ν, 0, ν) from the annihilator of ImF ′(0, 0). But, as stated
in Corollary 7.2, this freedom does not enter into the value of the quadratic form:

Q =

∫ T

0

(
η[1]

)2

+
(
η[2]

)2

+
(
η[3]

)2

+ ψ3(t)αη[2]η[3]dt

=

∫ T

0

(
η[2]

)2

+ 2
(
η[3]

)2

+ (ν + 2(t− T ))αη[2]η[3]dt

=

∫ T

0

(
η[2]

)2

+ 2
(
η[3]

)2

+ 2tαη[2]η[3]dt.(9.27)

Regardless of the value of ν, the quadratic formQ takes the same value for all possible
multipliers because of the compatibility condition (9.25).

Now we pick a suitable subset of 2-regular critical directions H1. Let C denote
the space of all twice continuously differentiable functions h : [0, T ]→ R which satisfy
zero boundary conditions h(0) = h(T ) = 0. Since

∫ T

0

ḣ(t)h(t)dt =
1

2
h(t)2

∣∣∣∣
T

0

= 0,

C is isomorphic to a subspace of critical directions defined by

η[3](t) = −η[1](t) = h(t), η[2](t) = ḣ(t)(9.28)
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and

ξ[1](t) = ḧ(t), ξ[2](t) = −ḣ(t).(9.29)

Hence it is a necessary condition for optimality that the quadratic form

Q =

∫ T

0

(
ḣ(t)

)2

+ 2 (h(t))
2
+ 2αtḣ(t)h(t)dt

=

∫ T

0

(
ḣ(t)

)2

+ (2− α) (h(t))
2
dt(9.30)

is positive semidefinite on C. It follows from the Jacobi equation [10] thatQ is positive

definite on C for α < 2+
(
T
π

)2
, positive semidefinite for α = 2+

(
T
π

)2
, and indefinite

for α > 2 +
(
T
π

)2
. Thus Γ is not optimal for α > 2 +

(
T
π

)2
.

10. Conclusion. These examples illustrate the hierarchy of results derived in
this paper which give necessary conditions for optimality of abnormal extremals. This
extension is nontrivial in the sense that the multiplier at the objective does not van-
ish. The results apply regardless of whether the multiplier is unique or not, whether
additional multipliers are normal or not, etc. The key idea behind our results is
to characterize the directions which are actually tangent to the constraint set, and
this question has been answered conclusively in [21]. Hence it is possible to set up
high-order constructions. Naturally, near abnormal points, the resulting necessary
conditions for optimality will take a different look since the constraint typically is
no longer a manifold and intersecting branches need to be analyzed separately. Our
constructions provide an approach for doing this.

The local version of the extended maximum principle presented in this paper,
besides its intrinsic interest for Lagrangian problems when the reference control takes
values in the interior of the control set, can also be considered a first step in the
derivation of a more general version analogous to the Pontryagin maximum principle.
This theorem will apply to more general problems in the sense that the control set
can be arbitrary and consequently no differentiability assumptions need to be made
on the control. Also the terminal time will be free. For the case p = 2, this transition,
which is accomplished by a technique of variable time transformations (introduced by
Dubovitskii in this context) has already been carried out in [18]. Its generalization to
the general p-order maximum principle is a logical next step. This result has already
been formulated in [20] with an outline of the proof.
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Abstract. In this paper we derive and analyze a discontinuous stabilizing feedback for a Lie
algebraic generalization of a class of kinematic nonholonomic systems introduced by Brockett [New
Directions in Applied Mathematics, P. Hilton and G. Young, eds., Springer-Verlag, New York, 1982,
pp. 11–27]. The algorithm involves discrete switching between isospectral and norm-decreasing flows.
We include a rigorous analysis of the convergence.

Key words. nonlinear control, nonholonomic systems, isospectral flows, Lie theory

AMS subject classifications. 93E15, 93B25

PII. S0363012998335607

1. Introduction. In this paper we present a stabilization algorithm for a Lie
algebraic generalization of a class of nonholonomic systems originally introduced by
Brockett [11]. These are the systems of the general form ẋ = B(x)u in which the
dimension of the control vector u is smaller than that of the state vector x, but the
system is nonetheless controllable. Such systems are sometimes referred to as kine-
matic nonholonomic systems (as opposed to dynamic nonholonomic systems which
arise from a Lagrangian—see, e.g., Bloch and Crouch [2] or Bloch, Krishnaprasad,
Marsden, and Murray [9]). Following standard usage, we will simply refer to kine-
matic nonholonomic systems as nonholonomic.

A prototypical system in the class we study here is the Heisenberg system or
nonholonomic integrator (Brockett [11], [12]):

ẋ = u,(1.1)

ẏ = v,(1.2)

ż = xv − yu,(1.3)

where x, u, y, v, z ∈ R. If we identify the variable z with the skew-symmetric matrix
Y = ( 0

−z
z
0 ), and observe that(

x
y

)
(u, v)−

(
u
v

)
(x, y) =

(
0 xv − yu

−xv + yu 0

)
,

then a generalization of (1.1)–(1.3) immediately suggests itself. This is the so(n)
system (see Brockett [11]):

ẋ = u,(1.4)
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Ẏ = xuT − uxT ,(1.5)

where x, u are column vectors in R
n and Y ∈ so(n), n ≥ 2. Here so(n) is the Lie

algebra of n× n skew-symmetric matrices: Y T = −Y .
The importance of the so(n) system (1.4)–(1.5) is that it is a canonical form for a

class of controllable systems of the form ẋ = B(x)u, u ∈ R
n, x ∈ R

n(n+1)/2. The class
in question is the controllable systems of this type, where the first derived algebra of
control vector fields spans the tangent space TR

n(n+1)/2 at any point. (Recall that if
E0 is the subbundle of the tangent bundle spanned by the control fields, then the first
derived algebra is given by E1 = E0+ [E0, E0].) Brockett showed that such a system
can be transformed to the form (1.4)–(1.5) up to a suitable order in the neighborhood
of a given point such as the origin (see Brockett [11]). (In the terminology of Bloch,
Reyhanoglu, and McClamroch [10], for example, this is a controllable nonholonomic
kinematic system of nonholonomy degree 1.)

A different generalization of the Heisenberg system (1.1)–(1.3) is obtained by
identifying the vectors (x, y)T and (u, v)T with the matrices X = 1√

2
( x−y

−y
−x ) and

U = 1√
2
( u−v

−v
−u ), respectively. Then we have

[U,X] = UX −XU =

(
0 xv − yu

−(xv − yu) 0

)
.

This suggests the following matrix system occurring in the Lie algebra sl(n, R) of
n× n matrices with trace 0:

Ẋ = U,(1.6)

Ẏ = [U,X],(1.7)

where X,U ∈ sym0(n, R) and Y ∈ so(n). Here sym0(n, R) is the space of n× n real
symmetric matrices with trace zero. Note that sl(n, R) = sym0(n, R)⊕so(n), a direct
sum.

The system we study in this paper generalizes both the so(n) system (1.4)–(1.5)
and the sl(n, R) system (1.6)–(1.7). Let g be a Lie algebra. Assume g has a direct sum
decomposition g = m⊕ h such that h is a Lie subalgebra, [h,m] ⊆ m, and [m,m] = h.
The exact hypotheses will be given in section 3; for now, we note that every simple
Lie algebra with a Cartan decomposition is of this type. We will consider the following
system in g:

ẋ = u,(1.8)

Ẏ = [u, x],(1.9)

where x, u ∈ m, Y ∈ h.
Clearly the sl(n, R) system (1.6)–(1.7) has the form (1.8)–(1.9). In addition, the

so(n) system (1.4)–(1.5) can also be written in this form as we now show. Let h = so(n)
and let m = R

n. For x, u ∈ m, define [u, x] ≡ xuT −uxT ∈ h. For Y ∈ h, x ∈ m, define
[Y, x] = −[x, Y ] ≡ Y x. Then the Lie algebra g ≡ m + h is isomorphic to so(n + 1).
Indeed, this is clear if we make the identifications

h ∼=
{(

0 0
0 Y

)
: Y ∈ so(n)

}
and m ∼=

{(
0 −xT

x 0

)
: x ∈ R

n

}
.

It is easy to check that the desired commutation relations hold, and, with these
particular identifications, that the adjoint action of h on m agrees with the standard
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action of so(n) on R
n. (Incidentally, that the Heisenberg system (1.1)–(1.3) can be

viewed as either an sl(2, R) system or an so(3) system is just a consequence of the
fact that sl(2, R) and so(3) are isomorphic Lie algebras.)

We have already noted that the so(n) system (1.4)–(1.5) is a canonical form for
those controllable nonholonomic systems for which the first derived algebra E1 =
E0 + [E0, E0] of the control subbundle E0 spans the tangent space at each point and
for which the dimensions of E0 and E1 are arithmetically related in a particular way
(see Brockett [11]). As partial motivation for considering the more general Lie algebra
system (1.8)–(1.9), we expect that this system will turn out to be a canonical form
for a wider class of controllable nonholonomic systems satisfying conditions which
suitably generalize those characterizing the so(n) system, including certain symmetry
conditions. In particular, we suspect that (1.8)–(1.9) is a canonical form for nonholo-
nomic systems occurring in certain homogeneous spaces, such as symmetric spaces.

The problem we consider herein is that of finding a stabilizing control for the
general system (1.8)–(1.9). Since the dimension of m, which is where the control u
takes its values, is less than the dimension of the state space g, the system fails Brock-
ett’s necessary condition for the existence of a continuous feedback law (see Brockett
[12]). Previous work on the stabilization problem for nonholonomic systems such as
the Heisenberg and so(n) systems has focused mainly on the development of either
smooth dynamic feedback or nonsmooth static feedback. For the former approach,
see Coron [15] and also Pomet [28] and M’Closkey and Murray [25]. A discontinuous,
discrete-time approach can be found in Bloch, Reyhanoglu, and McClamroch [10]
and Kolmanovsky and McClamroch [23]. Brockett [14], on the other hand, used a
stochastic approach. Other interesting work includes that of Liu and Sussmann [24],
Sontag [30], Hespanha [21], Khennouf and Canudas de Wit [22], Morse [26], and oth-
ers. The role of differential flatness in these systems is also interesting; see the work
of Sira-Ramirez [29] and of Fliess et al. [19].

In this paper we present a new discontinuous feedback law and an algorithm
for its implementation. We also give a rigorous analysis of the convergence of the
algorithm. This completely solves the stabilization problem for (1.8)–(1.9), which is
more general than the systems considered by others. We stress, however, that our
results are new even for the well-known so(n) system (1.4)–(1.5). Our present results
are related to our earlier work on the Heisenberg system (1.1)–(1.3) (see Bloch and
Drakunov [4], [5], [6]), the so(n) system (1.4)–(1.5) (see Bloch and Drakunov [7]),
and the general system (1.8)–(1.9) (see Bloch, Drakunov and Kinyon [8]). However,
this paper is not so much an extension of our earlier work as it is a completely new
approach to the stabilization problem. In addition we provide insights into the natural
geometric structure of the problem.

Stabilizing (1.8)–(1.9), even locally, is a nontrivial task, since, as can be easily
seen, linearization in the vicinity of the origin 0 ∈ g gives the noncontrollable system

ẋ = u,

Ẏ = 0.

The main difficulty with (1.8)–(1.9) is the fact that stabilization of x leads to the right-
hand side of (1.9) being 0. Therefore Y cannot be directly steered to zero when x = 0.
This simple observation implies that to stabilize the system one needs to make Y
converge “faster” than x. The feedback law and algorithm we present in sections 4 and
5 satisfy this criterion. The idea is as follows: we switch back and forth between flows
which decrease one of the variables x and Y in norm, while at the same time leaving
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the other variable as “unchanged” as possible. One of the most remarkable features
of our feedback law is what “unchanged” turns out to mean; for not only does the
nondecreasing variable remain constant in norm, it turns out to evolve isospectrally.
For matrix Lie algebras, the meaning of this is clear; for general Lie algebras, the
adjoint representation of the variable in question evolves with constant spectrum.

In the case of the so(n) system, we have an additional feature. As will be seen
in sections 4 and 6, in those parts of the algorithm where the skew-symmetric matrix
Y is decreasing in norm (as x evolves isospectrally), all of the eigenvalues of Y TY
except for the largest one remain constant. The results in section 4 suggest that this
partial isospectrality of Y probably generalizes to other Lie algebras.

We conclude this introduction with an outline of what follows. In section 2, we
consider the Heisenberg system (1.1)–(1.3). We introduce our control law for this
special case and we show that it stabilizes the system. As might be expected, the
feedback is a prototype for the more general ones to follow.

In section 3 we introduce the general Lie algebraic setting. We give the specific
hypotheses on the Lie algebra g and we show that in a certain sense, these hypotheses
cannot be weakened in order to have a stabilization problem that can be solved. We
prove certain useful operator identities in g, and we also verify two crucial inequalities
which play a role in the proof of the convergence of the stabilization algorithm. The
proof of one of the inequalities, (3.12), is rather delicate and relies on the structure
of the Lie algebra g in an essential way. This turns out to be somewhat obscured in
the setting of specific Lie algebras, and provides another justification for considering
the general system (1.8)–(1.9) instead of just, say, the so(n) system.

In section 4 we present our discontinuous controls and we analyze the various
cases between which we will be switching in our algorithm. As mentioned above,
we show that in each of the main cases, one variable decreases in norm while the
other evolves isospectrally. We also verify (4.22), which, in so(n), is the key to the
previously mentioned partial isospectrality of Y in the case when it is the norm-
decreasing variable.

In section 5 we present the stabilization algorithm and we give a rigorous proof of
its convergence. Again, the estimates are rather delicate and are most easily seen in
the general setting, not in the setting of specific Lie algebras. It is here, as well as in
section 3, where it will be shown that the generalization to the Lie algebraic setting
is not as straightforward as it seems.

Finally, in section 6 we apply our results to the so(n) system. We show that
stabilization will be achieved in, at most, 	n2 
 iterations of our algorithm. We show
some numerics in so(3) to illustrate our results.

2. Stabilization of the Heisenberg system. To illustrate part of our full
algorithm for stabilization of the system (1.8)–(1.9), we discuss it in the context of
the Heisenberg system or nonholonomic integrator (1.1)–(1.3), which we repeat here
for convenience:

ẋ = u,(2.1)

ẏ = v,(2.2)

ż = xv − yu.(2.3)

The usefulness of stabilization for this system may be illustrated by an application
to the kinematics of a knife edge in point contact with a plane surface or the motion
of a rolling wheel—the simplest form of “mobile robot” (see, for example, Bloch and
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Drakunov [5], Bloch, Reyhanoglu, and McClamroch [10], and Murray and Sastry [27]).
One may transform these systems to one of Heisenberg type.

Our model for the control of (2.1)–(2.3) is the following (slightly incomplete)
control law:

u = −αx+ β z y,(2.4)

v = −αy − β z x,(2.5)

where α and β are positive constants. With this choice, the system (2.1)–(2.3) becomes

ẋ = −αx+ βzy,(2.6)

ẏ = −αy − βzx,(2.7)

ż = −βz(x2 + y2).(2.8)

Let V = x2 + y2. Then

V̇ = 2(xẋ+ yẏ) = 2(βxzy − βyzx− αx2 − αy2) = −2αV.(2.9)

There are a number of strategies for choosing α and β to stabilize the system. It is
clear from (2.8) that if we initially choose α = 0 and β > 0, then for x or y not equal
to zero, z will be driven asymptotically to 0, while (2.9) shows that V will remain
fixed. On the other hand for α > 0 and β = 0, V will be driven to 0. All stabilization
strategies to be discussed later are generalizations of this simple observation.

Note also from (2.8) the following: for α = 0 the rate of convergence for the
variable z depends on the initial conditions for V . The greater the value of V |t=0, the
faster will be the convergence. On the other hand, if V |t=0 = 0, i.e., if the initial state
belongs to the z-axis, then the variable z will not converge at all. In order to initialize
motion in this case, one may apply any nonzero control for a short period of time. It
may be a constant nonzero vector or any other suitable control. One possibility is to
use

u = −α(x− x1),
v = −α(y − y1),

with some x1, y1 such that x2
1 + y2

1 �= 0. With this control the state will leave the
z-axis. Then the control (2.4), (2.5) can be used with α = 0, β > 0. When the state
reaches an ε-neighborhood of z = 0 (observe that the derivative of z in this mode is
just a constant times −z), we can switch to α > 0, β = 0; thus stabilizing the state
to the origin.

Let us note here that because of the switchings, the above strategy assumes
that the control input is a discontinuous function of the state variables. Thus the
existence of the corresponding solution of the differential equations (off of the z-axis
only) should be understood in the sense of the Filippov definition (see Filippov [18]).
In such systems sliding mode behavior (motion along a discontinuity set) is possible,
which can be used to stabilize the system (see DeCarlo, Zak, and Drakunov [16] and a
generalization of the sliding mode concept in Drakunov and Utkin [17]). In Bloch and
Drakunov [4], [5], [7] several methods are given for achieving stability of (2.1)–(2.3)
using sliding mode theory.

Similar considerations apply in the general case discussed here, although we will
not discuss explicitly sliding mode behavior; only the discrete switching pattern is
needed to obtain stability.
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3. The general setting. We now consider the general situation. Let g be a
real semisimple Lie algebra, and let B : g× g → R be the Killing form of g. Assume
that g has a direct sum decomposition g = h ⊕ m, where h is a compactly imbedded
subalgebra and the subspace m is the orthogonal complement of h relative to B. (In
the terminology of Helgason [20], g is a semisimple orthogonal symmetric Lie algebra.
See this reference, especially Chapter V, for subsequent assertions about Lie algebras.)
Under these assumptions, the commutation relations [h,m] ⊆ m and [m,m] ⊆ h hold,
and the restriction B|h×h of the Killing form B to h × h is negative definite. In
addition, assume that no ideal of g is contained in h. The Jacobi identity together
with the commutation relations for h and m imply that [m,m]⊕m is an ideal of g, and
thus so is its orthogonal complement relative to B. But this complement is contained
in h, and therefore [m,m] = h. In particular, the representation of h on m is faithful
(because the kernel of this representation is B-orthogonal in h to [m,m]).

We will consider stabilization of the system (1.8)–(1.9) in g, which we repeat here
for convenience:

ẋ = u,(3.1)

Ẏ = [u, x],(3.2)

where x, u ∈ m, Y ∈ h. We first show that this system can be analyzed without loss
of generality in a more specialized type of Lie algebra.

Under the given hypotheses on g, there exist B-orthogonal ideals g+ and g− with
the following properties: (i) g = g+ ⊕ g− (direct sum), (ii) h± = g± ∩ h is compactly
imbedded in g± and contains no ideal of g±, and (iii) g+ = h+⊕m+ is of noncompact
type and g− = h−⊕m− is of compact type, where m± = g±∩m. If we let x = x++x−,
u = u+ + u−, and Y = Y+ + Y− denote the corresponding decompositions, then the
system (3.1)–(3.2) decomposes into the systems

ẋ± = u±,(3.3)

Ẏ± = [u±, x±].(3.4)

It follows that to stabilize the system (3.1)–(3.2) in g, it is enough to stabilize simul-
taneously the systems (3.3)–(3.4).

We thus assume from now on without loss of generality that g is either of non-
compact type or of compact type. This implies that the restriction B|m×m of B to m
is positive definite if g is of noncompact type and negative definite if g is of compact
type.

We should stress here that all simple Lie algebras satisfy our assumptions when
g = h⊕m is a Cartan decomposition. Thus the results we obtain in this paper for our
general class of Lie algebras apply to many important cases. It is also worth noting
that we would gain no generality by weakening our assumptions that g is semisimple
and that h contains no ideal of g. For example, if we were to assume merely that g
is effective, that is, that h does not contain any elements of the center of g, then it
would follow that g would have an additional ideal g0 = h0 + m0 of Euclidean type
(see Helgason [20]). But in such an ideal, [u0, x0] = 0, which would imply that Y0 is
constant. Thus stabilization would not be possible. This would still be the case even
if we were to keep the semisimplicity, but not the assumption that h contains no ideal
of g.

In order to discuss the compact and noncompact cases simultaneously, let

ε =

{
1 if g is of noncompact type,
−1 if g is of compact type.

(3.5)
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We will use the inner product on g defined by the Killing form

〈x1 + Y1, x2 + Y2〉 ≡ εB(x1, x2)−B(Y1, Y2)(3.6)

for x1, x2 ∈ m, Y1, Y2 ∈ h. The corresponding norm will be denoted by ‖ · ‖.
Now for x ∈ m, let

M(x) = ε(ad x)2|h.(3.7)

Then M(x) is a nonnegative symmetric operator on h relative to the inner product.
To see this, note that ad x is B-symmetric if g is noncompact and B-skew-symmetric
if g is compact. In either case, (ad x)2 is B-symmetric, and thus so isM(x). Note that
(ad x)2 is nonnegative if g is noncompact and nonpositive if g is compact, and thus
introducing ε into the definition ofM(x) guarantees that it is a nonnegative operator.

Next, for Y ∈ h, let

N(Y ) = −(ad Y )2|m.(3.8)

Then N(Y ) is a nonnegative symmetric operator on m relative to the inner product.
This follows from the fact that ad Y is B-skew-symmetric.

We will make frequent use of two identities relating the operatorsM(x) andN(Y ).
First, the Jacobi identity implies

[Y,M(x)Y ] = ε[x,N(Y )x](3.9)

for all x ∈ m, Y ∈ h. Second, the invariance of the Killing form implies

〈Y,M(x)Y 〉 = ‖[Y, x]‖2 = 〈x,N(Y )x〉(3.10)

for all x ∈ m, Y ∈ h.
We will also require two estimates arising from M(x) and N(Y ). First, since m

and h are each invariant under (ad x)2 for every x ∈ m, we have

‖x‖2 = εtr((ad x)2) = εtr((ad x)2|m) + εtr((ad x)2|h)
= εtr((ad x)2|m) + tr(M(x)).

This implies the following inequality:

tr(M(x)) ≤ ‖x‖2(3.11)

for all x ∈ m.
Our second estimate is the following: there exists a constant 0 < η < 1 such that

tr(N(Y )) > η‖Y ‖2(3.12)

for all Y ∈ h. This fact, which will be crucial for our discussion of the convergence of
our algorithm, is probably part of Lie algebra folklore, but the authors are unaware of
any reference. We conclude this section with a proof of this result. Since the discussion
that follows is somewhat far afield from our stabilization problem, the reader who is
more interested in the control-theoretic aspects might wish to skip ahead to section 4.

In addition to the restriction of the Killing form B, the Lie algebra h has two
other natural invariant forms:

Bh(Y1, Y2) = tr((ad Y1)(ad Y2)|h),(3.13)

Bm(Y1, Y2) = tr((ad Y1)(ad Y2)|m)(3.14)
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for Y1, Y2 ∈ h. The form Bh is just the Killing form of h itself, while the form Bm is the
natural trace form associated with the representation of h on m. All three invariant
forms are related by

B(Y1, Y2) = Bh(Y1, Y2) +Bm(Y1, Y2)(3.15)

for Y1, Y2 ∈ h. Also notice that

tr(N(Y )) = −Bm(Y, Y )(3.16)

for all Y ∈ h.
We have already noted that the restriction of B to h is negative definite since

h is compactly imbedded in g. In addition, Bm is negative definite. Indeed, suppose
Bm(Z,Z) = 0 for some Z ∈ h. Then the nonpositive symmetric operator (ad Z)2|m
must be the zero operator (because all of its nonpositive eigenvalues must be 0). Now
for all x ∈ m, we have 0 = 〈[Z, [Z, x]], x〉 = −〈[Z, x], [Z, x]〉, and thus [Z, x] = 0. Since
h acts faithfully on m, Z = 0.

Letting z(h) denote the center of h, we have

h = z(h) + [h, h],(3.17)

a direct sum, which is orthogonal relative to 〈·, ·〉 (that is, relative to B). Indeed, if
Z is orthogonal to [h, h] relative to 〈·, ·〉, then 0 = 〈Z, [Y1, Y2]〉 = −〈[Y1, Z], Y2〉 for all
Y1, Y2 ∈ h. Thus [Y1, Z] = 0 for all Y1 ∈ h, i.e., Z ∈ z(h). By a similar computation,
the subspaces z(h) and [h, h] are also orthogonal relative to Bh and it therefore follows
from (3.15) that they are orthogonal relative to Bm.

The restriction of Bh to [h, h] is negative definite. Indeed, if Bh(Z,Z) = 0, then
the nonpositive symmetric operator (ad Z)2|h must be the zero operator. Now for all
Y ∈ h, we have 0 = 〈[Z, [Z, Y ]], Y 〉 = −〈[Z, Y ], [Z, Y ]〉, and thus [Z, Y ] = 0. Therefore
Z ∈ z(h). Since the restriction of Bh to [h, h] is just the Killing form of [h, h] itself
(because [h, h] is an ideal of h), it follows that [h, h] is compact semisimple.

Now since the restrictions of both B and Bm to [h, h] are negative definite and
invariant, it follows that each is a positive multiple of Bh. Thus there exist c1, c2 > 0
such that

Bm(Y1, Y2) = c1Bh(Y1, Y2) and B(Y1, Y2) = c2Bh(Y1, Y2)

for all Y1, Y2 ∈ [h, h]. The relation (3.15) implies c2 = 1 + c1. Thus let

η =
c1

c2
=

c1

1 + c1
.(3.18)

Then we have the relation

Bm(Y1, Y2) = ηB(Y1, Y2)(3.19)

for all Y1, Y2 ∈ [h, h].
For Y,Z ∈ h, write Y = Yc + Ys and Z = Zc + Zs for the decompositions into

z(h) and [h, h] (“c” = center, “s” = semisimple). Using the orthogonality relative to
all three forms as well as (3.15) and (3.19), we compute

Bm(Y,Z) = Bm(Yc, Zc) +Bm(Ys, Zs)

= B(Yc, Zc)−Bh(Yc, Zc) + ηB(Ys, Zs)

= B(Yc, Zc) + ηB(Ys, Zs),(3.20)
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where we have used the vanishing of Bh on z(h) to obtain (3.20). Now since 0 < η < 1
and B is negative definite, (3.20) and the orthogonality yield

Bm(Y,Z) < ηB(Yc, Zc) + ηB(Ys, Zs)

= ηB(Y,Z).(3.21)

If we specialize (3.21) to the case Y = Z, we obtain

Bm(Y, Y ) < ηB(Y, Y ).

Multiplying through by −1 (and noting (3.16)) gives (3.12) for all Y ∈ h.

4. Controls. We now present our controls for the system (3.1)–(3.2). These are
given by

u = −αx+ β[Y, x]− γ[Y, [Y, x]]
= −αx+ β[Y, x] + γN(Y )x,

(4.1)

where α, β, γ : g→ R are functions. We will assume that α, γ ≥ 0 and βε ≤ 0.
With (4.1) as our choice of u (and using (3.9)), the system (3.1)–(3.2) becomes

ẋ = −αx+ β[Y, x] + γN(Y )x,(4.2)

Ẏ = βεM(x)Y + γ[N(Y )x, x]

= βεM(x)Y − γε[Y,M(x)Y ].(4.3)

Using (4.2), we compute

d

dt
‖x‖2 = 2〈x, ẋ〉

= −2α〈x, x〉+ 2β〈x, [Y, x]〉+ 2γ〈x,N(Y )x〉
= −2α‖x‖2 + 2γ〈x,N(Y )x〉.(4.4)

Here the last equality of (4.4) follows because ad Y is B-skew-symmetric. Now let λ∗
denote the largest eigenvalue of the symmetric operator N(Y ). Then 〈x,N(Y )x〉 ≤
λ∗‖x‖2 for all x ∈ m, and thus the right-hand side of (4.4) is nonpositive if λ∗γ ≥ α.
In this case ‖x‖ is nonincreasing, and we also have that ‖x‖ is constant if α = γ = 0.

Using (4.3), we compute

d

dt
‖Y ‖2 = 2〈Y, Ẏ 〉

= 2βε〈Y,M(x)Y 〉 − 2γε〈Y, [Y,M(x)Y ]〉
= 2βε〈Y,M(x)Y 〉.(4.5)

Since βε ≤ 0 and M(x) is a nonnegative operator, it follows that the right-hand side
of (4.5) is nonpositive. Thus ‖Y ‖ is nonincreasing in general and is constant if β = 0.

Our stabilization algorithm will be (necessarily) discontinuous and will require
switching of the control (4.1) between the following three cases: (i) α > 0, β = γ = 0;
(ii) α = κλ∗, γ = κ, and β = 0, where, as above, λ∗ is the largest eigenvalue of N(Y )
and where κ is a positive function; (iii) α = γ = 0, βε < 0. We now discuss the
dynamical behavior of the system (4.2)–(4.3) in each of these cases.

Case I. α > 0, β = γ = 0.
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In this case, the system (4.2)–(4.3) is

ẋ = −αx,(4.6)

Ẏ = 0.(4.7)

The dynamics here are quite clear: x is driven to 0 radially while Y remains fixed.
The remarks made in section 2 regarding the Heisenberg system hold here as well;
if Y was not already 0 in the first place, implementing the control (4.1) with these
parameter values will render the system unstabilizable. Thus this case will only be
used if Y ≡ 0.

Case II. α = κλ∗, γ = κ, β = 0.
As noted above, κ > 0. In this case, the control (4.1) has the form

u = −κ (λ∗x−N(Y )x),(4.8)

while the system (4.2)–(4.3) is

ẋ = −κ(λ∗x−N(Y )x),(4.9)

Ẏ = −κε[Y,M(x)Y ].(4.10)

In this case, ‖Y ‖ is constant. In addition, (4.10) is a Lax equation in Y . It follows
that the spectrum of ad Y is constant. Therefore the spectrum of the operator N(Y )
is constant, as are the dimensions of its eigenspaces. In particular, the eigenvalue λ∗,
which occurs in (4.9), is constant.

Let 0 ≤ λ0 < λ1 < · · · < λs = λ∗ denote those eigenvalues of N(Y ) which are
distinct. (Thus s ≤ dim m−1.) Let x = x0+x1+· · ·+xs be the unique decomposition
of x into the eigenspaces of N(Y ). Then the differential equation (4.9) decouples into
the following system of equations in m:

ẋ0 = −κ(λ∗ − λ0)x0,
ẋ1 = −κ(λ∗ − λ1)x1,
...

ẋs−1 = −κ(λ∗ − λs−1)xs−1,
ẋs = 0.

(4.11)

Since κ(λ∗ − λj) > 0 for j = 0, 1, . . . , s− 1, it follows that xj → 0 asymptotically. If
we let x∗ denote the projection of x onto the λ∗-eigenspace of N(Y ), that is, x∗ = xs,
then noting that x∗ ≡ x∗|t=0 is constant, we conclude that

x→ x∗

asymptotically.
Note that (4.9)–(4.10) and (3.9) imply the following:

Ẏ = −κ[x,N(Y )x] = [x, ẋ].(4.12)

Since x is converging to a λ∗-eigenvector of N(Y ), the right-hand side of (4.9) is
converging to 0, and thus ẋ is converging to 0. Therefore (4.12) implies that Ẏ is
converging to 0.

Summarizing this case, we have that Y evolves isospectrally with constant norm
and asymptotically vanishing velocity, while x is driven to x∗, its (constant) projection
onto the λ∗-eigenspace of N(Y ).
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Case III. α = γ = 0, βε < 0.
The system (4.2)–(4.3) for this case is

ẋ = β[Y, x],(4.13)

Ẏ = βεM(x)Y.(4.14)

In this case, ‖x‖ is constant. In addition, (4.13) is a Lax equation in x, and
thus ad x has constant spectrum. Therefore the spectrum of the operator M(x) is
constant, as are the dimensions of its eigenspaces. Let 0 ≤ µ0 < µ1 < · · · < µr denote
those eigenvalues of M(x) which are distinct. (Thus r ≤ dim h − 1.) For Y ∈ h, let
Y = Y0+ · · ·+Yr denote the unique decomposition of Y into the eigenspaces ofM(x).
Then the differential equation (4.14) decouples into the following system of equations
in h:

Ẏ0 = βεµ0Y0,

Ẏ1 = βεµ1Y1,
...

Ẏr = βεµrYr.

(4.15)

Since βεµj < 0 for j = 1, . . . , r, we have that Yj → 0 asymptotically. If µ0 > 0,
then the same applies to Y0. Otherwise, if M(x) has µ0 = 0 as an eigenvalue, then
Y0 remains constant. Thus we have either Y → 0 or Y → Y0 asymptotically, where
Y0 ≡ Y0|t=0 is constant. In either case, if we let Y# denote the projection of Y onto
the nullspace of M(x), then noting that Y# ≡ Y#|t=0 is constant, we conclude that

Y → Y#

asymptotically.
Using system (4.13)–(4.14), we can derive the following equation:

d

dt
M(x)nY = βε[Y,M(x)nY ] + βεM(x)n+1Y(4.16)

for every nonnegative integer n. Indeed, the case n = 0 is just (4.14). Using the
induction hypothesis, we have for n > 0,

d
dtM(x)nY = ε[ẋ, [x,M(x)n−1Y ]] + ε[x, [ẋ,M(x)n−1Y ]]

+M(x)(βε[Y,M(x)n−1Y ] + βεM(x)nY ).
(4.17)

Now

[ẋ, [x,M(x)n−1Y ]] = β[[Y, x], [x,M(x)n−1Y ]](4.18)

and

[x, [ẋ,M(x)n−1Y ]] = β[x, [[Y, x],M(x)n−1Y ]],(4.19)

while applying the Jacobi identity repeatedly gives

M(x)[Y,M(x)n−1Y ] = [Y,M(x)nY ] + ε[[x, Y ], [x,M(x)n−1Y ]]
+ε[x, [[x, Y ],M(x)n−1Y ]].

(4.20)
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Substituting (4.18), (4.19), and (4.20) into (4.17) and simplifying gives (4.16).
Then from (4.16) immediately follows

d

dt
f(M(x))Y = βε[Y, f(M(x))Y ] + βεf(M(x))M(x)Y(4.21)

for every real analytic function f . As an interesting special case of this, let p(µ) be
the minimal polynomial of M(x) and assume that µ0 = 0 is an eigenvalue of M(x)
(so that Y does not converge to 0). Then p(µ) = µq(µ) for some polynomial q. Taking
f = q in (4.21) gives

d

dt
q(M(x))Y = βε[Y, q(M(x))Y ].(4.22)

This is a Lax equation, and it follows that the spectrum of q(M(x))Y remains con-
stant. We will see in section 6 what we suggested in the introduction, namely, that
in the so(n) case, the constancy of the spectrum of q(M(x))Y implies that Y itself
evolves partially isospectrally.

Summarizing this case, we have that x evolves isospectrally with constant norm,
Y is driven to Y#, its (constant) projection onto the nullspace ofM(x), and q(M(x))Y
evolves with constant spectrum.

As an aside, it is interesting to compare the system of equations in Case III with
the double bracket equations discussed in Brockett [13] and Bloch, Brockett, and Ratiu
[1], for example. In these papers the isospectral flow L̇ = [L, [L,N ]] was considered,
where L,N live in a compact Lie algebra and N is fixed. This flow is the gradient
flow of 〈L,N〉 on an adjoint orbit of the corresponding Lie group with respect to the
so-called normal metric. The second equation of system (4.13)–(4.14) is, on the other
hand, of the form Ẏ = βε[X, [X,Y ]]. This equation is not isospectral (although it is
coupled to the isospectral equation (4.13)), and we have a different function, 〈Y, Y 〉,
decreasing along its flow. This, of course, is precisely what we want in the present
context. We note also that in this system there is an interesting coupling between two
equations involving brackets. This is reminiscent of Bloch and Crouch [3], although
there the coupling is between two Lax equations and the overall flow is Hamiltonian.

5. The stabilization algorithm. We now describe our feedback strategy. As
before, λ∗ denotes the largest eigenvalue of the operator N(Y ), x∗ denotes the pro-
jection of x onto the λ∗-eigenspace of N(Y ), and Y# denotes the projection of Y
onto the nullspace of M(x). Let δ > 0 be a prescribed error tolerance. In an informal
pseudocode, our algorithm can be described as follows.
begin
while ‖Y ‖ ≥ δ.

1. Let r = ‖x‖. Implement the control (4.1) with α = λ∗κ, γ = κ, and β = 0.
Then Y evolves isospectrally with constant norm, while x converges to the
constant x∗. If x∗ �= 0, then go to Step 3.

2. Let z∗ denote a fixed λ∗-eigenvector of N(Y ) with ‖z∗‖ = r (1− 1/dim m)
1/2
.

Let u = −α(x− z∗), where α > 0. Then x converges to z∗, while Y remains
constant.

3. Implement the control (4.1) with α = γ = 0, βε < 0. Then x evolves isospec-
trally with constant norm, while Y converges to the constant Y#.

end while
if ‖x‖ ≥ δ, then
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4. implement the control (4.1) with α > 0, β = γ = 0. Then x will converge to
0 radially, while Y remains 0.

end

In Step 1, if α is a constant, then x will converge to x∗ in infinite time; if, for
example, α = 1/‖x − x∗‖, then x will converge in finite time. Similarly, in Step
3, if β is a constant, then Y will converge to Y# in infinite time; if, for example,
β = 1/‖Y − Y#‖, then Y will converge in finite time. To establish the convergence
claim made in Step 2, we simply note that in this case x(t) has the form x(t) = f(t)z∗,
where f(t) is a scalar-valued function satisfying ḟ = −α(f−1), f(0) = 0. (For instance,
if α > 0 is constant, we have f(t) = 1−e−αt.) It follows from (3.2) that Ẏ = [u, x] = 0,
so that Y is constant as claimed.

Step 2 is implemented if x converges to 0 in Step 1. One instance where this could
happen is if the initial value of x is 0, in which case the first implementation of Step
1 is trivial. More generally, the case where the projection of x onto the λ∗-eigenspace
of N(Y ) is 0 seems to be the natural higher-dimensional analog of the situation in
the Heisenberg system (2.1)–(2.3), where the initial value starts on the z-axis. As in
Steps 1 and 3, Step 2 can also be implemented in finite time.

The λ∗-eigenspace of N(Y ) will, in general, have dimension greater than 1 (since
the nonzero eigenvalues of the B-skew-symmetric operator ad Y come in complex
conjugate pairs). Thus there is no unique choice of eigenvector z∗ in Step 2. Any
lexicographic ordering of the eigenvectors relative to a coordinate basis will suffice
as a selection scheme. The rationale behind the particular normalization of z∗ will
be explained below. (Choices of this type occur naturally in stabilizing nonholonomic
systems; see Sontag [30] for comments on this and related robustness issues.)

We will now show that our algorithm successfully stabilizes the system (3.1)–(3.2)
by showing that each of ‖x‖ and ‖Y ‖ can be brought to within the prescribed error
tolerance. Note that as soon as the test condition of the while loop fails, that is,
as soon as ‖Y ‖ < δ, then the system will be stabilized whether Step 4 needs to be
executed or not. Thus we may assume that the initial value of Y satisfies ‖Y ‖ ≥ δ so
that the while loop will be executed at least once. If Y ever converges to 0 in Step
3 because Y# = 0, then the test condition of the while loop will eventually fail. As
noted, this is enough to guarantee that the system is stabilizable.

Assume that for every iteration of Step 3, we have Y# �= 0. We will show that
after finitely many iterations of the while loop, the test condition will fail. In other
words, the projection of Y onto the nullspace of M(x) is eventually arbitrarily small
in norm. In fact, we will show a stronger result, for when this situation occurs, then
it turns out that ‖x‖ is simultaneously brought to within the error tolerance. Thus as
soon as the while loop’s test condition fails, the test condition of the if-then statement
(Step 4) will also fail, and the system will already be stabilized.

Assume first that Step 3 is about to be executed. Since Step 1 and possibly Step
2 have already been executed, the initial values x(0) = x∗ and Y (0) = Y∗ satisfy
N(Y∗)x∗ = λ∗x∗. As before, let Yj denote the projection of Y onto the µj-eigenspace
of M(x). Recall that Y# = Y0 ≡ Y0(0) throughout Step 3 and that Y (t) → Y#

asymptotically. Using the orthogonality of the eigenspaces, we compute

‖Y#‖2 = ‖Y∗‖2 −
∑r
j=1 ‖Yj(0)‖2

≤ ‖Y∗‖2 − 1∑r

j=0
µj

∑r
j=0 µj‖Yj(0)‖2.

(5.1)
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Note that we are using µ0 = 0. Now using the orthogonality once again, we compute

r∑
j=0

µj‖Yj(0)‖2 = 〈Y∗,
r∑
j=0

µjYj(0)〉 = 〈Y∗,M(x∗)Y∗〉

= 〈x∗, N(Y∗)x∗〉(5.2)

= λ∗‖x∗‖2.(5.3)

Here we have used (3.10) to obtain (5.2). In addition, using (3.11), we have

r∑
j=1

µj ≤ tr(M(x∗)) ≤ ‖x∗‖2.(5.4)

Applying (5.3) and (5.4) to (5.1) yields

‖Y#‖2 ≤ ‖Y∗‖2 − λ∗.(5.5)

Now using (3.12), we have

λ∗ ≥ 1

dim m
tr(N(Y∗)) >

η

dim m
‖Y∗‖2.(5.6)

Applying (5.6) to (5.5) gives our final estimate for Step 3

‖Y#‖2 <
(
1− η

dim m

)
‖Y∗‖2.(5.7)

Now assume that Step 3 has already been executed and that Step 1 is about to
be executed again. Then the initial values x(0) = x# and Y (0) = Y# in Step 1 satisfy
M(x#)Y# = 0. By (3.10), this implies 〈x#, N(Y#)x#〉 = 0. As before, let xj denote
the projection of x into the λj-eigenspace of N(Y ). Recall that x∗ = xs ≡ xs(0)
throughout Step 1 and that x(t)→ x∗ asymptotically. Using the orthogonality of the
eigenspaces, we compute

‖x∗‖2 = ‖x#‖2 −
∑s−1
j=0 ‖xj(0)‖2

≤ ‖x#‖2 − 1∑s

j=0
(λs−λj)

∑s
j=0(λs − λj)‖xj(0)‖2.

(5.8)

Using orthogonality again, we compute

s∑
j=0

(λs − λj)‖xj(0)‖2 = λs‖x#‖2 − 〈x#,

s∑
j=0

λsxj(0)〉

= λs‖x#‖2 − 〈x#, N(Y#)x#〉
= λs‖x#‖2.(5.9)

Also

s∑
j=0

(λs − λj) = sλs −
s−1∑
j=0

λj .(5.10)

Applying (5.9) and (5.10) to (5.8) gives

‖x∗‖2 ≤
(
1− λs

sλs −
∑s−1
j=0 λj

)
‖x#‖2.(5.11)
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Finally,

λs

sλs −
∑s−1
j=0 λj

≥ 1
s
≥ 1

dim m
,(5.12)

and applying (5.12) to (5.11) gives our final estimate for Step 1

‖x∗‖2 ≤
(
1− 1

dim m

)
‖x#‖2.(5.13)

Now assume Step 2 is executed because x = 0 (that is, x∗ = 0 in Step 1). Rename
x∗ = z∗, where z∗ is the chosen λ∗-eigenvector. Then the normalization of z∗ described
in Step 2 immediately implies (5.13) holds as an equality.

Define two sequences of real numbers as follows: Let aj and bj denote, respectively,
the initial values of ‖x‖2 and ‖Y ‖2 prior to the (j + 1)st iteration of the while loop,
where j = 0, 1, . . .. Recall that ‖Y ‖ remains constant during Steps 1 and 2 and
‖x‖ remains constant during Step 3. Our estimates (5.7) and (5.13) imply that the
sequences {aj} and {bj} satisfy

aj+1 ≤
(
1− 1

dim m

)
aj ,(5.14)

bj+1 <
(
1− η

dim m

)
bj .(5.15)

Since

0 < 1− 1

dim m
< 1− η

dim m
< 1,(5.16)

it follows from (5.14)–(5.15) that the sequences {aj} and {bj} each converge to 0. In
particular, it is immediate that each of ‖x‖ and ‖Y ‖ can be brought to within the
prescribed error tolerance δ > 0 in finitely many iterations of the while loop.

In summary, we have proven the following result.
Theorem 5.1. The algorithm globally stabilizes the system (3.1)–(3.2).
We remark while we have used the error tolerance δ above to indicate how the

stabilization algorithm works in practice, the formal proof of stability follows from
letting δ limit to zero.

6. Example: so(n). We consider the so(n) systems (1.4)–(1.5). Let g = so(n+
1), the Lie algebra of (n+ 1)× (n+ 1) skew-symmetric matrices. As in section 1, we
identify the Lie subalgebra

h ≡
{(

0 0
0 Y

)
: Y ∈ so(n)

}

with so(n) and the subspace

m ≡
{(

0 −xT

x 0

)
: x ∈ R

n

}

with R
n, and the adjoint action of so(n) on R

n is the standard action. Since g is of
compact type, ε = −1. For x ∈ R

n, the operator M(x) : so(n)→ so(n) is given by

M(x)Y = −[x, [x, Y ]] = xxTY + Y xxT .(6.1)
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This satisfies the following minimal polynomial equation:

M(x)2Y = (xTx)M(x)Y.(6.2)

For Y ∈ so(n), the operator N(Y ) : Rn → R
n is given by

N(Y )x = Y TY x.(6.3)

The control (4.1) in this setting is given by

u = −αx+ βY x+ γY TY x(6.4)

for x ∈ R
n, Y ∈ so(n), and thus the system (4.2)–(4.3) is

ẋ = −αx+ βY x+ γY TY x,(6.5)

Ẏ = −β(xxTY + Y xxT ) + γ(Y TY xxT − xxTY TY ).(6.6)

In Case III, with α = γ = 0, we know from (4.22) that the matrixM(x)Y−(xTx)Y
evolves with constant spectrum. Since xTx remains constant throughout this case, this
means that

Y − 1

xTx
M(x)Y(6.7)

has constant spectrum. Assume now that the system is in its initial configuration
for Step 3. Then Y TY x = λ∗x, where λ∗ is the largest eigenvalue of N(Y ) = Y TY .
Observe that

M(x)Y = xxTY + Y xxT = xxTY + 1
λ∗

Y xxTY TY

= (xxT + 1
λ∗

Y xxTY T )Y.

We claim the symmetric operator 1
xT x

(xxT + 1
λ∗

Y xxTY T ) is actually an orthogonal
projector onto the subspace of R

n spanned by x and Y x. Indeed, using the antisym-
metry of Y, we compute

(xxT + 1
λ∗

Y xxTY T )2 = (xTx)xxT + 1
λ∗2 Y xxTY TY xxTY T

= (xTx)(xxT + 1
λ∗

Y xxTY T ).

This establishes our claim. It follows that the operator given by (6.7) is the compo-
sition of the orthogonal projector onto the orthogonal complement of the subspace
spanned by x and Y x with Y .

In particular, suppose v is an eigenvector of Y TY corresponding to a nonzero
eigenvalue λ �= λ∗. Then Y x is also such an eigenvector and Y v± λ1/2iv are complex
eigenvectors of Y itself corresponding to the eigenvalues ±λ1/2i, respectively. Both v
and Y v are orthogonal to the subspace spanned by x and Y x. The preceding discussion
shows that

(Y − 1
xT x

M(x)Y )v = Y v,

(Y − 1
xT x

M(x)Y )Y v = Y 2v = −λv.
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It follows that

(
Y − 1

xTx
M(x)Y

)
(Y v ± λ1/2iv) = ±λ1/2i(Y v ± λ1/2iv),

and thus ±λ1/2i are eigenvalues of Y − 1
xT x

M(x)Y . (Similarly, if v is an eigenvector
of Y TY corresponding to the possible eigenvalue 0, then consideration of Y v shows
that 0 is an eigenvalue of Y − 1

xT x
M(x)Y .) On the other hand, we have

(Y − 1
xT x

M(x)Y )x = 0,

(Y − 1
xT x

M(x)Y )Y x = Y 2x+ λ∗x = 0.

We see that the eigenvalues of Y other than ±λ∗1/2i are also eigenvalues of
Y − 1

xT x
M(x)Y with the same multiplicities. It follows that throughout Step 3, the

other eigenvalues of Y, and hence Y TY, will remain constant. (While the preceding
discussion seems to assume implicitly that λ∗ has multiplicity 1, it is easy to see that
the same result applies if there are additional eigenvectors corresponding to λ∗.)

In Step 3, the eigenvalue of Y TY, whose initial value is λ∗, is the only one that
is evolving nontrivially and it will in fact converge to 0. To see this, recall that
Y converges to Y#, the projection of Y onto the nullspace of M(x). It follows that

1
xT x

M(x)Y = 1
xT x

(µ0Y0+ · · ·+µrYr) will converge to 0, for if Y# = Y0 �= 0, then µ0 =

0. But as we have just seen, ±λ∗1/2i are the only nonzero eigenvalues of 1
xT x

M(x)Y
at time t = 0, and thus they must converge to 0 asymptotically.

These considerations also tell us how many times we can expect the stabiliza-
tion algorithm to iterate. Indeed, since Y TY can have at most 	n2 
 distinct positive
eigenvalues, stabilization will be achieved in at most 	n2 
 iterations.

Specializing further, let us consider the case so(3). Here Y TY has only one nonzero
eigenvalue, which has multiplicity 2. It follows that after one execution of Step 3, Y
will converge to 0. Thus the algorithm will stabilize the system with just one iteration
of the while loop.

As a numerical example of this, consider the 6th order system

ẋ = u,(6.8)

Ẏ = xuT − uxT ,(6.9)

where x, u ∈ R3, Y ∈ so(3) with the following initial conditions:

x(0) =


 0.2
1.1
1.1


 ,

Y (0) =


 0 0.1 −0.2
−0.1 0 3.0
0.2 −3.0 0


 .

The spectrum of Y (0)TY (0) is {9.05, 9.05, 0}.
After we apply Step 1 (with u = −λ∗x + Y TY x) over the interval [0, t1] with

t1 = 2 sec, x and Y become, respectively,
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Fig. 6.1. Numerical example.

x(t1) =


 −0.10761.0966

1.0726


 ,

Y (t1) =


 0 0.4359 0.1346
−0.4359 0 2.9738
−0.1346 −2.9738 0


 .

The spectrum of Y (t1)
TY (t1) remains constant {9.05, 9.05, 0} with good accuracy, but

as expected, the vector x(t1) is now the eigenvector corresponding to the eigenvalue
λ = 9.05.

Application of Step 3 (with u = Y x) over the interval [t1, t2] (t2 = 4 sec) results
in the fast decay of ‖Y (t)‖ to zero as ‖x(t)‖ remains constant. At the end of this
interval, the eigenvalues of Y (t2)

TY (t2) become very small: {0.0007, 0.0007, 0}.
Finally, Step 4 is executed (with u = −x). As expected, x converges to 0 as the

value of Y remains unchanged.
Time plots of ‖x(t)‖2 and ‖Y (t)‖2 are shown in Figure 6.1. The decrease in these

magnitudes is clearly seen.
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Abstract. In this paper we discuss a class of team problems with discrete action spaces. We
introduce multimodularity into team theory as a natural alternative to convexity in continuous spaces.
The main result relates coordinatewise-optimal (cw-optimal) points to the optimal team decision for
a class of team problems. The method is based on a characterization of coordinatewise minima of
multimodular functions.
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1. Introduction. In 1955 Marschak introduced in [6] team problems as a math-
ematical model for cooperative decision making. In a team problem there are two or
more decision makers or controllers who receive a common reward as the joint result
of their decisions. The fact that the decision makers have a common objective sets
it apart from the models that are usually encountered in game theory. Team prob-
lems differ from ordinary decision problems with one controller, since the controllers
may have different information on which they have to base their decision. The role
of information in control problems is discussed in Witsenhausen [11, 12] and Ho and
Chu [3]. For some examples and a tutorial introduction to team problems see Ho [4].

The applications of team problems were at first found in the area of decision mak-
ing in organizations (see Marschak [6]). Recently the attention in team theory has
acquired a new impulse from the area of load balancing in distributed computer sys-
tems (see, for instance, Wang and Morris [10]). The environment of high-performance
computer networking provides a typical example of a complex and highly-distributed
system for which decentralized control and team theory appear to provide the right
framework.

Despite a history of more than forty years, there are not that many fundamental
results in team theory. The verification of the optimality of a team strategy, for
instance, is equivalent to a minimization over a function space, and this is infeasible
without additional assumptions. To the best of our knowledge, there are only two
papers in the literature that present conditions for optimality of team strategies.
Radner presents in [7] a sufficient condition that guarantees optimality: if the cost
is a convex function of the decision variables and the expected cost is locally finite
and stationary for a given team strategy, then this strategy is optimal. Stationarity
is defined as a first-order property of the conditional expectation of the cost given
the different information patterns. In the case of a convex cost function stationarity
of a strategy implies that it is person-by-person optimal (pbpo). This means that the
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expected cost cannot be improved by any player alone if the other team members keep
using the same strategy. The importance of this result is twofold. First, it provides
a way to verify the optimality of a strategy, and second, it suggests an algorithm to
search for the optimal strategy. The local finiteness condition of Radner is relaxed
by Krainak, Speyer, and Marcus [5] and replaced with a weaker condition. Both
results, however, rely on the fact that the cost function is defined on a continuous
space and that it is convex. The continuity makes it possible to compare the expected
costs of any two team strategies by effectively constructing a randomization of the
strategies. The expected cost of the randomized strategy is then a convex function of
the randomization weight and the equivalence of local and global optimality for this
one-dimensional convex function ensures the optimality of the stationary strategy.

The primary motivation for our research comes from decentralized control in dis-
tributed computer systems. These systems consist of a large number of computers that
are interconnected by a network, and they allow sharing of resources and processors.
Typically one computer is able to generate processes or tasks that can be performed
on the computer itself, or they can be delegated to another processor. In the frame-
work of team theory each computer (or more accurately each process scheduler) is a
team player that has to decide for each process that is generated locally where the
task has to be performed, locally or on another processor. The action space for such
a team problem is intrinsically discrete, and it also does not allow a straightforward
extension to a continuous action space. This property prohibits applying the results
of [7] and [5].

The aim of this paper is to introduce a framework for team problems with a dis-
crete action space and to present preliminary results for the existence and uniqueness
of optima. For the cost function we consider a discrete space analogy for convex-
ity, namely multimodularity. The specific results that were obtained for a class of
two-person team problems are as follows:

• we present a characterization of the set of pbpo strategies;
• we give a procedure to check, for any pbpo strategy, in which direction to

look for the optimal strategy. Not only does this provide us with an efficient
search procedure, but it also enables us to check the optimality of a strategy.

The outline of this paper is as follows. In section 2 we introduce the team problem.
A special class of team problems is described in section 3 and we present the optimality
conditions for this class. For these conditions we rely on some results on the minima
of multimodular functions. These results are summarized in the appendix.

2. Team problems. In this section we introduce our general formulation of the
team decision problem. We restrict our attention to a nondynamical team problem.

The following definition of a team problem is based on the definitions of Rad-
ner [7] and Krainak, Speyer, and Marcus [5]. We use an underlying probability space
(Ω,F ,P), with Ω the space of elementary events, F a sigma field of subsets of Ω, and
P a known probability measure on F . We use the letter ω to denote an event, but we
do not really distinguish between events and states. In fact we also refer to Ω as the
underlying, unobserved, state space, and we also call ω the state when it represents
an outcome.

A team is a set of N decision makers or players. Each player i can choose a
decision ai from a set Ai, the action set. In this paper we assume that the action
sets are subsets of Z. Here Z indicates the set of integers, and N indicates the set of
natural numbers, including 0. If the players choose the action vector a = (a1, . . . , aN )
and the state is ω, then a cost C(a, ω) is incurred. C is a real-valued function that is
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measurable with respect to the sigma field generated on the product space (Zm×Ω) by
the Borel sets B(Zm) of Zm and by the σ-algebra F . On discrete spaces the σ-algebras
are not necessary, but they are retained to simplify the notation and to emphasize
the analogy with the case of continuous spaces.

Contrary to a conventional optimal decision problem, we assume that each player
has his own observation of the underlying event space. This is implemented as follows.
We assume that for each player i there exists an observation space Yi, a given sigma
field Yi of subsets of Yi, and a function hi : Ω→ Yi that is Yi-measurable. If the event
ω occurs, then player i will observe hi(ω), and thus each function hi is a random
variable on (Ω,F ,P). We refer to Yi as the information subfield of player i, and
we define Fhi = {h−1

i (A) | A ∈ Yi} as the sigma field that is induced by hi. The
decision that player i makes can depend only on its observation, and thus the set
of admissible control laws Ui for player i is defined by the set of Z-valued functions
that are Yi-measurable. We let U = U1 × · · · × UN denote the set of admissible team
strategies.

Note that under a strategy γ the team action a is by definition a function of the
state ω, i.e., a = γ(h(ω)) with h(ω) = (h1(ω), . . . , hN (ω)). Under a strategy γ the
expected cost of the strategy J(γ) is now defined as

J(γ) = E{C(γ(h(ω)), ω)},(2.1)

where E denotes the expectation with respect to P.
Definition 2.1. A strategy γ∗ ∈ U is optimal if

J(γ∗) ≤ J(γ), γ ∈ U .(2.2)

The next definition is a variation on the concept of cw-optimality as was intro-
duced in Radner [7]. In that paper a strategy γ is called pbpo if J(γ) cannot be
improved by changing the strategy for one player alone. The idea that lies behind this
definition is that under some extra conditions on the cost function C there exists only
one pbpo strategy and this strategy is by the conditions on the cost function then also
optimal. As an extra bonus the computation of a pbpo strategy is much easier than
for the globally optimal strategy, since the optimization problem in a sense becomes
separable. In our model with discrete action spaces we introduce the same concept
of pbpo. This is done in a way that is different from [7] and [5], where stationarity
is defined by means of the differential of a conditional expectation with respect to
the individual decisions. An example of the use of pbpo strategies to determine an
optimal solution for a detection problem can be found in [9].

Definition 2.2. A team strategy γ ∈ U is pbpo if J(γ) <∞ and for each player
i, i = 1, . . . , N,

E
[
C(γ(h(ω)), ω) | Fhi

]
≤ E

[
C(γ(h(ω)), ω) | Fhi

]
, (P − a.s.)(2.3)

for all team strategies γ ∈ U with

γj ≡ γj for all j = 1, . . . , N, with j �= i.

A team strategy is called strictly pbpo if the ≤ sign in (2.3) is replaced by a strict
inequality (<).

Note that the inequality (2.3) is well defined, since both conditional expectations
are random variables on the same probability space. In fact, this implies that the
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Fig. 2.1. An example of a continuous convex function restricted to a discrete space.

inequalities can be replaced by the usual stochastic order (cf. Shaked and Shanthiku-
mar [8, pp. 3, 5]).

If the formulation of the team problem is such that there exists a natural continu-
ation C of the cost function from ZN ×Ω to RN ×Ω, and C is a convex, differentiable
and locally finite function, then this continuous version of the problem has a unique
optimal solution and this solution is also the only pbpo solution (see Radner [7]).
There is no guarantee that restriction to a discrete action space leads to an optimal
solution that is in the “neighborhood” of the continuous solution. By neighborhood
we mean that the discrete solution is close to the continuous solution, in the usual
metric of RN . Consider for example the cost function

C(a1, a2, ω) = (a1 + 0.5−
√

3a2)
2 + 2(

√
3(a1 + 0.5) + a2)

2(2.4)

for a team problem with only one possible outcome ω, i.e., a deterministic team
or an ordinary minimization problem. From the picture of the contour lines as in
Figure 2.1, we can see that the continuous minimum is in (a1, a2) = (−0.5, 0), while
the two integer valued minima are in (a1, a2) = (−1, 1) and (0,−1). This example
can be modified, however, such that the “discrete” solution is arbitrarily far from the
“continuous” solution. Note also that the discrete nature of the problem in this case
allows two solutions.

In many problems the continuation of C to RN may not be as straightforward as
in the example. If that is the case, then we might try to construct one. This is where
the idea of multimodularity comes in, and it is shown in detail in Hajek [2]. Hajek
constructs atoms that span the space RN . Each atom contains exactly m+1 extreme
points, and these points lie in ZN . The continuation C of C is piecewise affine on
all the atoms. If the function C is multimodular on ZN , then the continuation of the
function is convex in RN . Unfortunately this continuation is not differentiable, so the
results of Radner [7] and Krainak, Speyer, and Marcus [5] cannot be applied here (see
also the example in [7, p. 802]). For a justification of the use of multimodular cost
functions see the remarks in [2, p. 546] and Bartroli and Stidham [1]. The discussion
of multimodularity and its relation to convexity is presented in the appendix.

3. Solution of a class of team problems. In this section we investigate a
special class of team problems. It is intended as an example for team problems with
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discrete action spaces. It will also serve to indicate the possibilities of using multi-
modularity properties in solving this kind of team problem. We shall discuss various
properties of optimal and cw-optimal strategies. These properties can be used in a
procedure to search for the optimal team strategy.

We first need to introduce multimodular functions. For this we consider functions
defined on Zm. We define the vectors v0, v1, . . . , vm in Zm as

v0 = (−1, 0, . . . , 0),
v1 = (1,−1, 0, . . . , 0),
v2 = (0, 1,−1, 0, . . . , 0),

...
vm−1 = (0, . . . , 1,−1),

vm = (0, . . . , 0, 1),

and we let V = {v0, v1, . . . , vm}. Note that any subset of m vectors of V is a basis for
Zm, and furthermore we remark that

v0 + v1 + · · ·+ vm = (0, . . . , 0).(3.1)

Definition 3.1. A function f on Zm for m ≥ 2 is said to be multimodular if
for all z ∈ Zm,

g(z + vi) + g(z + vj) ≥ g(z) + g(z + vi + vj)(3.2)

for any vi, vj ∈ V and vi �= vj.
For a function f on Zm, n ∈ {1, . . . , m} and z ∈ Zm, we denote the first-order

n-difference of f at z as

∆nf(z) := f(z + en)− f(z),(3.3)

where en denotes the nth unit vector.
Definition 3.2. Let f be a real-valued function defined on Zm. A point z ∈ Zm

is called minimal for f if f(z) ≤ f(y) for all y ∈ Zm, y �= z, and it is called
coordinatewise minimal (cw-minimal) if f(z) ≤ f(z + λei) for any i ∈ {1, . . . , m}
and any λ ∈ Z, λ �= 0. We define a point z ∈ Zm to be strictly minimal or strictly
cw-minimal if these inequalities are replaced by strict inequalities.

With these definitions we can now introduce the class of team problems that we
want to describe. We consider a problem with two players. The underlying event space
Ω has three elements, numbered as Ω = {1, 2, 3}, and each element occurs with the
same probability. We assume that F is the sigma algebra generated by {{1}, {2}, {3}}.
The action sets for both players are Z.

We assume that the two players have distinctly different information patterns.
Player 1 cannot distinguish between events 1 and 2, so Fh1 = σ({{1, 2}, {3}}), while
player 2 cannot distinguish between events 2 and 3, so Fh2 = σ({{1}, {2, 3}}).

For the cost structure we assume the following.
Assumption 3.3. For each possible outcome ω, the cost function C(u1, u2, ω) is

multimodular as a function of the decision variables (u1, u2) ∈ Z2.
In this section we shall discuss the properties of pbpo strategies. For this we shall

make use of the classification of cw-minimal points of multimodular functions on Z2.
The following lemma is a direct consequence of the results of Appendix A, but we
specifically state it here for easy reference.
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Lemma 3.4. If g : Z2 → R is a multimodular function and y = (y1, y2) and
z = (z1, z2) are two distinct strictly cw-minimal points of g, where z1 ≥ y1, then there
is some B > 0 such that

1. (z1, z2) = (y1 + B, y2 −B);
2. for all b, 0 < b < B, (y1 + b, y2 − b) is also cw-minimal;
3. if g(z) > g(y), then the minimum of g cannot be in the set {(y1 +b, y2−b)|b ≥

B};
4. if both y and z, for some B ≥ 0, are minimal for g, then (y1 + b, y2 − b) is
minimal for all 0 ≤ b ≤ B;

5. if both g(y1 + 1, y1 − 1) ≥ g(y1, y2) and g(y1 − 1, y1 + 1) ≥ g(y1, y2), then
(y1, y2) is minimal; if the inequalities are strict, then the minimum is also
unique.

Proof. See Appendix A, Lemma A.10.
Note that (strict) multimodularity of a function does not guarantee that the

minimum is unique. It can take the form of a line segment {(y1+z, y2−z) | 0 ≤ z ≤ B}
for some (y1, y2) ∈ Z2 and B ≥ 0. There can be only one such segment, however.

We now introduce the notation for a team decision strategy. We already saw
in section 2 that the observations of the players can be modelled by functions that
are defined on the event space. The observations of player 1 are given by a function
h1 : Ω→ {1, 3} of the state, where

h1(ω) =

{
1 if ω = 1, 2,
3 if ω = 3.

(3.4)

Similarly, we represent the information pattern of player 2 by a function h2, which is
defined as

h2(ω) =

{
1 if ω = 1,
3 if ω = 2, 3.

(3.5)

With this definition we can now represent a team decision function as γ =
(γ11, γ13, γ21, γ23) ∈ Z4, where γij represent the action that γ prescribes when player
i gets observation j. Finally, we can now write the expected cost J(γ) as a function
of the team decision rule γ as

J(γ11, γ13, γ21, γ23) =
1

3
C(γ11, γ21, 1) +

1

3
C(γ11, γ23, 2) +

1

3
C(γ13, γ23, 3).(3.6)

In principle, this makes finding the optimal strategy an optimization problem on Z4.
The properties that γ has to satisfy for optimality and cw-optimality are summa-

rized in the following lemma.
Lemma 3.5. A team decision strategy γ∗ = (γ11

∗, γ13
∗, γ21

∗, γ23
∗) is minimal if

(γ11
∗, γ13

∗, γ21
∗, γ23

∗) = arg min
(γ11,γ13,γ21,γ23)∈Z4

J(γ11, γ13, γ21, γ23),(3.7)

or, in other words, if γ∗ is a minimum for J . A strategy γ = (γ11, γ13, γ21, γ23) is
strictly pbpo if J is strictly cw-minimal in γ, or

J(γ11, γ13, γ21, γ23) < J(u11, γ13, γ21, γ23) for all u11 ∈ Z, u11 �= γ11,(3.8)

J(γ11, γ13, γ21, γ23) < J(γ11, u13, γ21, γ23) for all u13 ∈ Z, u13 �= γ13,(3.9)

J(γ11, γ13, γ21, γ23) < J(γ11, γ13, u21, γ23) for all u21 ∈ Z, u21 �= γ21,(3.10)

J(γ11, γ13, γ21, γ23) < J(γ11, γ13, γ21, u23) for all u23 ∈ Z, u23 �= γ23.(3.11)
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Proof. The first statement is immediate from the definition of optimality.
The second statement follows from the fact that, by definition, a team strategy
γ = (γ11, γ13, γ21, γ23) is strictly pbpo if it satisfies the following set of equations:

C(γ11, γ21, 1) + C(γ11, γ23, 2) < C(γ11, γ21, 1) + C(γ11, γ23, 2),(3.12)

C(γ13, γ23, 3) < C(γ13, γ23, 3),(3.13)

C(γ11, γ21, 1) < C(γ11, γ21, 1),(3.14)

C(γ11, γ23, 2) + C(γ13, γ23, 3) < C(γ11, γ23, 2) + C(γ13, γ23, 3)(3.15)

for all γ11, γ13, γ21, γ23 ∈ Z. For instance, inequality (3.12) is immediate from the
definition of pbpo and the fact that Fh1 = σ({{1, 2}, {3}}). Since C(γ13, γ23, 3) is
independent of γ11, (3.12) thus implies that J(γ11, γ13, γ21, γ23) < J(γ11, γ13, γ21, γ23)
for all γ11 ∈ Z. In a similar way, one can prove the cw-minimality of J for the other
components of γ.

In the remainder of this section we shall exploit the special nature of multimodular
functions to derive properties of optima and cw-optima. We show how one can search
for other (coordinatewise) minima starting from a cw-minimum. The main result is
as follows.

Theorem 3.6. If α = (α11, α13, α21, α23) and β = (β11, β13, β21, β23) are both
strictly pbpo strategies, then they have to satisfy either MβT ≤MαT or MβT ≥MαT

for

M =




0 1 1 1
1 0 1 1
−1 −1 0 −1
−1 −1 −1 0


 .(3.16)

The vector inequality ≤ is to be interpreted componentwise, i.e., z ≤ y if and only if
zi ≤ yi for all i.

Proof. For any strategy z = (z11, z13, z21, z23), the expected cost J(z) for this
strategy is

• multimodular in (z11, z21) if (z13, z23) is fixed,
• multimodular in (z11, z23) if (z13, z21) is fixed,
• multimodular in (z13, z21) if (z11, z23) is fixed,
• multimodular in (z13, z23) if (z11, z21) is fixed.

Now assume that α is strictly pbpo. This implies that ∆11J(α) > 0. Using the fact that
J is multimodular in (z11, z21) for (z13, z23) fixed, we get that ∆11J(α11+m, z13, α21−
m, α23) > 0 for all m ≥ 0 and all z13 ∈ Z. Note that ∆11J(z) is independent of z13.
Next use the multimodularity of J in (z11, z23) for (z13, z21) fixed to get ∆11J(α11 +
m+n, z13, α21−m, α23−n) > 0 for all m, n ≥ 0 and all z13. Finally, use the fact that
for any multimodular function f defined on Z2, ∆if(x) ≤ ∆if(x + ej) for x ∈ Z2 and
i, j = 1, 2, to prove that ∆11J(z) > 0 for all z in

G11+ := {(α11 + m + n + i, z13, α21 −m + j, α23 − n + k) | i, j, k, m, n ≥ 0, z13 ∈ Z}.
Specifically, this means that the points in the interior of G11+ cannot be pbpo. With
the interior of G11+ we mean the points z with z11 + z21 + z23 > α11 + α21 + α23.
Analogously, we can exploit the fact that ∆11J(α11 − 1, α13, α21, α23) < 0 to show
that ∆11J(z) < 0 for z in

G11− := {(α11−1−m−n− i, z13, α21 +m− j, α23 +n−k) | i, j, k, m, n ≥ 0, z13 ∈ Z}.
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In the same manner, we also find that the fact that α is strictly pbpo implies
∆13J(z) > 0 for all z in

G13+ := {(z11, α13 + m + n + i, α21 −m + j, α23 − n + k) | i, j, k, m, n ≥ 0, z13 ∈ Z},

and ∆13J(z) < 0 for z in

G13− := {(z11, α13−1−m−n− i, α21 +m− j, α23 +n−k) | i, j, k, m, n ≥ 0, z11 ∈ Z}.

For the decisions of player 2, we get, in a similar manner, ∆21J(z) > 0 for z in

G21+ := {(α11 −m + j, α13 − n + k, α21 + m + n + i, z23, ) | i, j, k, m, n ≥ 0, z23 ∈ Z},

and ∆21J(z) < 0 for all z in

G21− := {(α11 +m−j, α13 +n−k, α21−1−m−n− i, z23, ) | i, j, k, m, n ≥ 0, z23 ∈ Z},

and finally ∆23J(z) > 0 for z in

G23+ := {(α11 −m + j, α13 − n + k, z21, α23 + m + n + i, ) | i, j, k, m, n ≥ 0, z21 ∈ Z},

and ∆23J(z) < 0 for z in

G23− := {(α11 +m−j, α13 +n−k, z21, α23−1−m−n− i, ) | i, j, k, m, n ≥ 0, z21 ∈ Z}.

Observe that, by the same reasoning as for G11+, there cannot be other pbpo strategies
in the interior of any of the G’s.

Now assume that β is also pbpo and β11 > α11. Since β cannot lie in G11+, this
implies that

β11 + β21 + β23 ≤ α11 + α21 + α23.(3.17)

This proves the second inequality of MβT ≤ MαT . Since β11 > α11, it also implies
that β21 + β23 ≤ α21 + α23. This in itself implies that at least one of the inequalities
β21 ≤ α21 and β23 ≤ α23 hold. We shall prove that, in fact, both inequalities hold.
Assume that β21 > α21. Since β is pbpo, it cannot lie in the interior of G21+, and
thus β11 + β13 + β21 < α11 + α13 + α21. Because of the assumptions on β11 and
β21, we conclude that β13 < α13. Now β is also outside the interior of G13−, so
β13+β21+β23 ≥ α13+α21+α23. This contradicts β13 < α13 and β21+β23 ≤ α21+α23.
We can thus conclude that both β21 ≤ α21 and β23 ≤ α23.

Since β21 ≤ α21 and β is outside of the interior of G21−, this implies

β11 + β13 + β21 ≥ α11 + α13 + α21,(3.18)

and this proves the fourth component of the matrix inequality. Analogously to the
reasoning above, we conclude from this that β13 ≥ α13. This, together with the fact
that β is outside of the interior of G13+, implies

β13 + β21 + β23 ≤ α13 + α21 + α23,(3.19)

the first inequality, and finally β23 ≤ α23 leads us to

β11 + β13 + β23 ≥ α11 + α13 + α23,(3.20)
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the third inequality.
If we start with β11 < α11, then this same reasoning gives us MβT ≥MαT . The

case where β11 = α11 is treated in the following lemma.
Note that the proof of Theorem 3.6 does not depend on the particular information

patterns of this problem. It is based solely on the additive structure of the expected
cost and on the multimodularity of the cost function.

Theorem 3.6 provides us with a characterization of the areas around a known
pbpo strategy, where we might find other pbpo strategies. If we want to design a
search procedure, then we may want to know in which direction we have to search in
the immediate neighborhood of α. By immediate neighborhood of α we refer to those
strategies β, with |βij −αij | ≤ 1 for all coefficients βij . The following lemmas provide
us with the necessary results.

Lemma 3.7. If α = (α11, α13, α21, α23) and β = (β11, β13, β21, β23) are both
strictly pbpo strategies and α �= β, then

• if α11 = β11, then α21 = β21,
• if α23 = β23, then α13 = β13.

Proof. Assume that α11 = β11. Define g(z13, z21, z23) := J(α11, z13, z21, z23); then

g(z13, z21, z23) =
1

3

[
C(α11, z21, 1)

]
+

1

3

[
C(α11, z23, 2) + C(z13, z23, 3)

]
.

It is clear that g is a convex function of z21 on Z, and that α21 =
arg minz21∈Z g(z13, z21, z23) is independent of z13 and z23. Since both α and β are
pbpo, they are cw-minimal for g and thus α21 = β21. The proof for α23 = β23 pro-
ceeds analogously.

Lemma 3.7 does not tell us what happens if α13 = β13 or α21 = β21. It appears
that we can construct two strictly pbpo strategies α and β that have some components
in common. All these possibilities are summarized in the next lemma.

Lemma 3.8. If α = (α11, α13, α21, α23) and β = (β11, β13, β21, β23) are two dis-
tinct strictly pbpo strategies, then one of the following possibilities holds:

1. α and β differ in at least two components,
2. (α11, α13) �= (β11, β13),
3. (α21, α23) �= (β21, β23),
4. (α11, α23) �= (β11, β23).
Proof. Part 1. Assume that the statement is false and that, for instance, α11

and β11 are the only two coefficients that are different. This implies C(α11, α21, 1) +
C(α11, α23, 2) < C(β11, α21, 1) + C(β11, α23, 2) = C(β11, β21, 1) + C(β11, β23, 2) <
C(α11, β21, 1) + C(α11, β23, 2). This gives a contradiction, since α21 = β21 and α23 =
β23.

Parts 2 and 3. Assume (α11, α13) = (β11, β13). Consider the function g(z21, z23)
defined as J(α11, α13, z21, z23), so

g(z21, z23) =
1

3

[
C(α11, z21, 1) + C(α11, z23, 2) + C(α13, z23, 3)

]
=: g1(z21) + g2(z23).

Since α is a strictly pbpo strategy, (α21, α23) must be cw-minimal for g. The function
g is multimodular in (z21, z23), and thus g1 and g2 are convex functions of z21 and
z23, respectively. This implies that g has a unique minimum, so α = β.

Part 4. From Lemma 3.7, we see that α11 = β11 implies α21 = β21 and α23 = β23

implies α13 = β13.
Now assume that we have found a pbpo strategy α, and we want to check the

strategies in the neighborhood of α to see whether they are pbpo. Among the pbpo
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strategies we can then check the value of the expected cost J for optimality. The
neighborhood of a strategy α is the set

{(β11, β13, β21, β23) | |βij − αij | ≤ 1, i = 1, 2, j = 1, 3}.
Note that there are 80 strategies (excluding α) in this set. If we combine the results of
Theorem 3.6 and Lemmas 3.7 and 3.8, the following corollary shows how 68 of these
strategies can be eliminated.

Corollary 3.9. If α = (α11, α13, α21, α23) is a strictly pbpo strategy, then the set
of possible pbpo strategies in the neighborhood of α are the strategies of the form β =
α ± ε with ε ∈ {(1, 0,−1, 0), (0, 1, 0,−1), (1, 0, 0,−1), (1, 0,−1,−1), (1, 1, 0,−1), (1, 1,
−1,−1)}. Outside of this set there cannot be pbpo strategies in the neighborhood of
α.

Proof. We sketch the proof in three steps.
1. Assume that a pbpo strategy β = α + ε is of the form ε = (1,−1, ε21, ε23) for

any ε21, ε23 ∈ {−1, 0, 1}. We show that β cannot satisfy MβT ≤MαT , since then the
third and fourth matrix inequalities imply that α21 ≤ β21 and α23 ≤ β23. These again
imply via the first and last inequalities that α11 ≥ β11 and α13 ≥ β13, and this gives
a contradiction with the assumption on the signs of the first two coefficients of ε. The
inequality MβT ≥MαT gives a similar contradiction. Analogously, we can show that
ε cannot be of the form ε = (−1, 1, ε21, ε23) or ±(ε11, ε13, 1,−1).

2. Assume that a pbpo strategy β = α + ε is of the form ε = (1, ε13, ε21, 1) for
any ε13, ε21 ∈ {−1, 0,−1}. If β were to satisfy MβT ≤ MαT , then this would imply
ε21 ≤ 2, while MβT ≥ MαT would imply ε21 ≥ 2. Both contradictions show that
the ε cannot be of the proposed form. Similarly, we can show that ε cannot be of the
forms ±(1, ε13, 1, ε23), ±(ε11, 1, 1, ε23), or ±(ε11, 1, ε21, 2).

3. Combine 1 and 2 to get the possible candidates of ε.
Note that within this set there are pairs of strategies that differ in exactly one

coefficient, and thus of these pairs only one can be strictly pbpo. Furthermore, for
any ε in the set of Corollary 3.9, both α+ ε and α− ε can be pbpo, but at most one of
these two strategies can have an expected cost smaller than J(α) (see Lemma A.6).
Finally, if it turns out that J(α + ε) ≥ J(α) for some ε, then the same lemma ensures
that J(α + kε) ≥ J(α) for all k ∈ N, and thus these points cannot be minimal. In
immediate consequence of this is the following, which can be proven analogously to
part 5 of Lemma 3.4.

Corollary 3.10. If α is a strictly pbpo strategy and for all ε as in Corollary 3.9
we have J(α+ε) ≥ J(α) and J(α−ε) ≥ J(α), then α is minimal. If all the inequalities
are strict, then α is the unique optimal strategy.

This concludes our exploration of this class of team problems. We have developed
a check for the optimality of a team strategy, and we have given the description of a
procedure to search for the optimal strategy.

4. Conclusions. In this paper we have discussed team problems with discrete
action spaces. Inspired by known results for problems on continuous spaces with con-
vex cost functions, we have introduced multimodularity as a natural abstraction of
convexity onto discrete spaces.

In the class of team problems of section 3, we have seen that multimodularity
of the cost function translates to properties for the expected cost as a function of
the strategy. These properties allow us to check for optimality of a strategy, and they
indicate how the complexity of a search for the optimum can be reduced. The example,
however, indicates that the complexity is still rather high, and we feel that it must be
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possible to reduce it even more by exploiting the multimodularity even further. This
is a topic for future research.

If we extend the results of section 3 to a model with a larger observation space
for both players, then most of the results of the section remain valid. The proof of
Theorem 3.6 relies only on the multimodularity of the cost function and not on the
structure of the information patterns. This means that it is a straightforward exercise
to extend the results of Theorem 3.6 to a larger observation space. In Lemmas 3.7 and
3.8, the particular structure of the information patterns is used, and any extension in
this direction has to be done on an ad hoc basis.

Extending the team problem to more than two players is not a trivial task. If
we try to mimic the proof of Theorem 3.6 for an example with three players, then
even for small observation spaces it is not clear if a matrix inequality of the form
MαT ≤MβT will hold and what the form of M will be.

Appendix A. Multimodular functions and optimality.
In this appendix, we introduce the concept of multimodular functions. Further-

more, we define cw-optimality for this class of functions, and we show its relation to
ordinary optimality. We present a classification of cw-optimal points, and we specify
a procedure to search for the optimum. For a more elaborate introduction to multi-
modular functions, we refer to Hajek [2].

We consider functions defined on Zm. We define the vectors v0, v1, . . . , vm in Zm

as

v0 = (−1, 0, . . . , 0),
v1 = (1,−1, 0, . . . , 0),
v2 = (0, 1,−1, 0, . . . , 0),

...
vm−1 = (0, . . . , 1,−1),

vm = (0, . . . , 0, 1),

and we let V = {v0, v1, . . . , vm}. Note that any subset of m vectors of V is a basis for
Zm, and furthermore we remark that

v0 + v1 + · · ·+ vm = (0, . . . , 0).(A.1)

Definition A.1. A function f on Zm for m ≥ 2 is said to be multimodular if
for all z ∈ Zm,

g(z + vi) + g(z + vj) ≥ g(z) + g(z + vi + vj)(A.2)

for any vi, vj ∈ V, and vi �= vj.
For a function f on Zm, n ∈ {1, . . . , m}, and z ∈ Zm we denote the first-order

n-difference of f at z as

∆nf(z) := f(z + en)− f(z),(A.3)

where en denotes the nth unit vector.
Definition A.2. Let f be a real-valued function defined on Zm. A point z ∈ Zm

is called minimal for f if f(z) ≤ f(y) for all y ∈ Zm, y �= z, and it is called coordi-
natewise minimal (cw-minimal) if f(z) ≤ f(z + λei) for any i ∈ {1, . . . , m} and any
λ ∈ Z, λ �= 0. We define a point z ∈ Zm to be strictly minimal or strictly cw-minimal
if these inequalities are replaced by strict inequalities.
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Note that of course a minimal point is also cw-minimal. The following lemma
gives an indication of the properties of cw-optimal points of a multimodular function.

Lemma A.3. Let z∗ be a strictly cw-minimal point of a multimodular function f,
let z be any point in Zm, and let the coordinates of z − z∗ with respect to the bases
{v1, . . . , vm} and {v0, . . . , vm−1} be

z − z∗ = k1v1 + k2v2 + · · ·+ kmvm(A.4)

and

z − z∗ = l0v0 + l1v1 + · · ·+ lm−1vm−1,(A.5)

respectively.
A. If ki > 0 for all i = 1, . . . , m, then 0 < ∆1f(z − e1), and thus z is not

cw-minimal.
B. If ki < 0 for all i = 1, . . . , m, then ∆1f(z) < 0, and z is not cw-minimal.
C. If li > 0 for all i = 0, . . . , m− 1, then ∆mf(z) < 0, and z is not cw-minimal.
D. If li < 0 for all i = 0, . . . , m − 1, then 0 < ∆mf(z − e1), and z is not

cw-minimal.
Proof. For statement A we assume, without loss of generality, that z∗ = 0, and

let z ∈ Zm be z = k1v1 + · · ·+ kmvm. From the definition of multimodularity, we get,
by taking vi = v0 = (−1, 0, . . . , 0):

f(u− e1)− f(u) ≥ f(u− e1 + vj)− f(u + vj)

for all u ∈ Zm and all vj ∈ V, vj �= v0. Since u is arbitrary, we can rewrite this as

∆1f(u) ≤ ∆1f(u + vj), u ∈ Zm, vj ∈ V, vj �= v0.(A.6)

Note that −e1 = v0 = −v1 − v2 − · · · − vm, so

z − e1 = (k1 − 1)v1 + (k2 − 1)v2 + · · ·+ (km − 1)vm,

where, by assumption, ki − 1 ≥ 0 for all i. By repeated application of (A.6), we thus
get

∆1f(z − e1) ≥ ∆1f(0) > 0.

From ∆1f(z − e1) > 0 follows that z cannot be a cw-minimal point, and this proves
A.

For statement B we note that if z∗ = 0 is a strictly cw-minimal point, then
∆1f(−e1) < 0, and

∆1f(z) = ∆1f(k1v1 + · · ·+ kmvm)
= ∆1f(−e1 + (k1 + 1)v1 + · · ·+ (km + 1)vm)
≤ ∆1f(−e1)
< 0,

so z is not cw-minimal.
For statements C and D, note that vm = em, so the proof is analogous to cases

A and B by showing that (A.6) now becomes

∆mf(u) ≥ ∆mf(u + vj), u ∈ Zm, vj ∈ V, vj �= vm.
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This concludes the proof.
To continue with a classification of cw-optimal points, we introduce the following

definition of cones and atoms.
Definition A.4. For z ∈ Zm, define the following polyhedral cones:

C0+(z) = {u ∈ Z | u = z + k1v1 + · · ·+ kmvm, ki ∈ Z, ki > 0},(A.7)

C0−(z) = {u ∈ Z | u = z + k1v1 + · · ·+ kmvm, ki ∈ Z, ki < 0},(A.8)

Cm+(z) = {u ∈ Z | u = z + k0v0 + · · ·+ km−1vm−1, ki ∈ Z, ki > 0},(A.9)

Cm−(z) = {u ∈ Z | u = z + k0v0 + · · ·+ km−1vm−1, ki ∈ Z, ki < 0}.(A.10)

We let C(z) denote the union

C(z) = C0+(z) ∪ C0−(z) ∪ Cm+(z) ∪ Cm−(z).(A.11)

From Lemma A.3 we know that if z is a strictly cw-minimal point, then there
are no other cw-minimal points in C(z). This means that if we start from a known
cw-minimal point z, then we have to search only the complement of C(z) for other
possible cw-minimal points. This complement can be characterized by means of a
simplicial decomposition of Rm. We now continue with a brief introduction to this
decomposition. For a detailed discussion, we refer to Hajek [2].

Definition A.5. We let Σ denote the set of permutations of {0, . . . , m}. Let
σ ∈ Σ and z ∈ Zm. The set {u0, . . . , um} of extreme points of the atom S(z, σ) is
defined as follows:

u0 = z,
u1 = u0 + vσ(1),
u2 = u1 + vσ(2),

...
um = um−1 + vσ(m);

hence u0 = um+vσ(0). The atom S(z, σ) ⊂ Rm is thus the set of convex combinations
of {u0, . . . , um} : S(z, σ) = {∑m

i=0 aiui ∈ Zm | ai ∈ R+,
∑m
i=0 ai = 1}. We denote

S(z, σ) = 〈u0, . . . , um〉.
Each atom is in fact a simplex, since it contains exactly m + 1 extreme points in

Zm. Examples of atoms in two and three dimensions are depicted in Figure A.1. In
R2 the atoms are triangles. In R3 each atom is bounded by four triangles, and each
of the triangles that belong to the same atom share exactly one side.

The atoms allow the following alternative characterization of multimodularity.
Every atom S contains exactly m + 1 points {u0, . . . , um}, so for any function f
defined on Zm, there is a unique affine function LS(z) that agrees with f on the
m + 1 extreme points. If f is multimodular, then LS(z) ≤ f(z) for z ∈ Zm (see
Hajek [2, Lemma 4.2]). The entire Rm can be decomposed uniquely into atoms of the
form S(z, σ), and for a function f defined on Zm we can thus uniquely construct a
continuous function f on Rm that is piecewise affine on all the atoms S(z, σ), z ∈ Zm.
If f is a multimodular on Zm, then this f is a convex function on Rm.

The next property of multimodular functions will be used a couple of times in
this paper, so for this reason we state it here explicitly.

Lemma A.6. If f is a multimodular function, then f(z+kei) is a convex function
of k ∈ Z for any z ∈ Z and unit vector ei, i = 1, . . . , m.
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Fig. A.1. Atoms in two and three dimensions.

Fig. A.2. Example of a multimodular function in Z2.

Proof. Let z ∈ Zm and ei be some unit vector. Let S be an atom that contains
both z and z + ei. Such an atom exists, since ei = vi + · · ·+ vm. Using LS(z) ≤ f(z)
for this atom, we get

∆if(z) = f(z + ei)− f(z) = LS(z + ei)− LS(z) = LS(z + 2ei)− LS(z + ei)

≤ f(z + 2ei)− f(z + ei) = ∆if(z + ei).

The third equality is due to the fact that LS is affine.
In a similar manner, we may conclude that in fact for any vector v ∈ V and for

any z ∈ Z, the function f(z + kv) is convex in k ∈ Z.
For an example of a multimodular function on Z2, see Figure A.2. The atoms

that decompose R2 were depicted in Figure A.1.
Definition A.7. For an atom S(z, σ), z ∈ Zm, σ ∈ Σ, we define Cσ(z) as the

polyhedral cone in Zm :

Cσ(z)

=
{

u ∈ Zm | u = z + k1(u1 − u0) + · · ·+ km(um − u0), ki ∈ N, S(z, σ) = 〈u0, . . . , um〉
}

.
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Define Σ∗ to be the following subset of permutations:

Σ∗ = {σ ∈ Σ | σ(0) �= 0, σ(0) �= m, σ(1) �= 0, σ(1) �= m},
and

CΣ∗(z) := ∪
σ∈Σ∗

Cσ(z),

CΣ∗(z) := {u ∈ CΣ∗(z) | u �= z + kei for all k ∈ Z, i = 1, . . . , m}.
Finally, we define P (z) as the plane through z that has normal vector (1, . . . , 1), i.e.,

P (z) := {u ∈ Zm|u1 + u2 + · · ·+ um = z1 + z2 + · · ·+ zm}.
Note in this definition that for the case of m = 2, the set Σ∗ is empty, and thus

CΣ∗(z) and CΣ∗(z) are also empty.
In the remainder of this section, we shall use these definitions to build a charac-

terization of the set of cw-minimal points. The following lemma gives us the necessary
preliminary results.

Lemma A.8. For any z ∈ Z,

C(z) ∩ CΣ∗(z) = ∅,(A.12)

Zm = C(z) ∪ CΣ∗(z) ∪ P (z).(A.13)

Proof. First consider (A.12). If m = 2, then CΣ∗(z) = ∅ and the result is imme-
diate. For m > 2, assume that we have z ∈ Zm and y ∈ Cσ(z) for some σ ∈ Σ∗. This
means that we can write y − z as

y − z = k1(u1 − u0) + · · ·+ km(um − u0)

or

y − z = k1vσ(1) + k2(vσ(1) + vσ(2)) + · · ·+ km(vσ(1) + vσ(2) + · · ·+ vσ(m)),(A.14)

and thus

y − z = (k1 + k2 + · · ·+ km)vσ(1)

+ (k2 + k3 + · · ·+ km)vσ(2)

...
+ kmvσ(m).

(A.15)

Note that all ki ≥ 0. Since σ ∈ Σ∗, we know that σ(j) = 0 for some j �= 0, 1. Using
(A.1) and subtracting (kj + kj+1 + · · ·+ km)(v0 + · · ·+ vm) from (A.15), we get

y − z = (k1 + · · ·+ kj−1)vσ(1)

+ (k2 + · · ·+ kj−1)vσ(2)

...
+ kj−1vσ(j−1)

− kjvσ(j+1)

− (kj + kj+1)vσ(j+2)

...
− (kj + kj+1 + · · ·+ km−1)vσ(m).
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Recall that {vσ(1), . . . , vσ(j−1), vσ(j+1), . . . , vσ(m)} is a basis for Zm, so this represen-
tation is unique. Since ki ≥ 0, we see that y is neither in C0+(z) nor in C0−(z).
Analogously, one can prove that z /∈ Cm+(z) and z /∈ Cm−(z), and thus z /∈ C(z).
This proves that C(z) and CΣ∗(z) are disjoint.

To prove (A.13), assume that y ∈ Zm and y /∈ CΣ∗(z). We have to prove that y is
in C(z) or P (z). The set {S(z, σ) | z ∈ Zm, σ ∈ Σ} forms a partition of Zm, so there
must be a permutation σ of {0, . . . , m}, such that y ∈ Cσ(z). Since y /∈ CΣ∗(z), σ is
not in Σ∗, and we must have σ(0) = 0 or m, or σ(1) = 0 or m. We shall deal with the
case of σ(1) = 0 first. According to the definition of Cσ(z), we can write y − z as

y − z = (k1 + k2 + · · ·+ km)v0 + (k2 + · · ·+ km)vσ(2) + · · ·+ kmvσ(m)(A.16)

for some ki ≥ 0. We now have to distinguish between the three following cases.
1: k1 > 0. Use (A.1) to show that

y − z = −k1vσ(2)

− (k1 + k2)vσ(3)

...
− (k1 + · · ·+ km−1)vσ(m)

− (k1 + · · ·+ km)vσ(0).

Since k1 is strictly positive, this means that y ∈ C0−(z).
2: k1 = 0, σ(0) = m. We first show that km > 0. Assume that km = 0. Construct

a permutation τ as follows: τ(1) = σ(2), τ(2) = σ(1) = 0, τ(m) = σ(0) = m,
τ(0) = σ(m), and τ(i) = σ(i) for i = 3, . . . , m− 1. This makes τ ∈ Σ∗. From (A.16),
using k1 = km = 0, we get

y − z = (k2 + · · ·+ km)vτ(1)
+ (k2 + · · ·+ km)vτ(2)
...
+ km−1vτ(m−1),

which implies that y ∈ CΣ∗(z), and this contradicts y /∈ CΣ∗(z). We may conclude
that the assumption km = 0 is incorrect, and then it is immediate from (A.16) that
y ∈ Cm+(z).

3: k1 = 0 and σ(0) �= m. Define the permutation τ by τ(1) = σ(2), τ(2) = σ(1)
and τ(i) = σ(i), i = 3, . . . , m. From (A.16), we have

y − z = (k2 + · · ·+ km)vτ(1)
+ (k2 + · · ·+ km)vτ(2)
...
+ kmvτ(m),

(A.17)

and thus y ∈ Cτ (z). Now assume that τ(1) �= m, then τ ∈ Σ∗, and thus y ∈ CΣ∗(z),
which contradicts the assumption that y /∈ CΣ∗(z). We conclude that τ(1) = m. Since
vτ(1) = vm and vτ(2) = v0, we may conclude from (A.17) that the coefficients of y− z
sum up to zero, and thus y ∈ P (z).

The case where σ(1) = m is proven analogously, with the roles of v0 and vm
interchanged. The case where σ(0) = 0 (or σ(0) = m) proceeds as follows. Again, use
(A.1) by substituting

vσ(1) + vσ(2) + · · ·+ vσ(j) = −vσ(j+1) − · · · − vσ(m) − vσ(0)(A.18)
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into each line of (A.14) to get

y − z = −(k1 + · · ·+ km)vσ(0)

−(k1 + · · ·+ km−1)vσ(m)

−(k1 + · · ·+ km−2)vσ(m−1)

...
−k1vσ(2).

(A.19)

This brings y − z in a form similar to (A.15), with the exception that now all the
coefficients of the vis become negative. The proof concludes analogously to the case
where σ(1) = 0.

Note that the three sets C(z), CΣ∗(z), and P (z) are not mutually disjoint. C(z)
and P (z) are disjoint, but CΣ∗(z) and P (z) have a nonempty intersection. The im-
mediate consequence of Lemma A.8 is summarized in the following theorem, which is
the main result of this section.

Theorem A.9. If z ∈ Zm is a strictly cw-minimal point of a multimodular func-
tion f, then there can be other cw-minimal points only in CΣ∗(z) or in the plane
P (z).

Proof. It is immediate from Lemma A.8 that the only other cw-minimal points
must lie in CΣ∗(z) or in P (z). Actually, we do not need to include the entire set CΣ∗(z)
as a possibility for other coordinatewise minima. It may contain an axis of the form
{z + kei | k ∈ Z} for some unit vector ei, i = 1, . . . , m. Since z is strictly cw-minimal
and f is convex along this axis (see Lemma A.6), it is immediately obvious that there
cannot be other coordinatewise minima on this axis.

Theorem A.9 not only gives a characterization of the set of cw-minimal points,
but it also enables us to search for the minimum in an efficient manner. In the two-
dimensional case, for instance, the theorem means that if z ∈ Z2 is strictly cw-
minimal, then the possible other coordinatewise minima must lie on the line {(z1 +
k, z2 − k) | k ∈ Z}. For an indication of the implications of Theorem A.9, take a look
at Figure A.3. We assume that 0 (the center of the cube) is strictly cw-minimal. The
points indicated with a bold filled circle are the points on the unit cube that are in
both CΣ∗(0) and in P (0). The bold open circles are the points of CΣ∗(0) that are not
in P (0). The bold open diamonds are the points P (0) that are not in CΣ∗(0).

We conclude this appendix with the proof of Lemma 3.4. It summarizes the results
of Theorem A.9 for multimodular functions defined on Z2.

Lemma A.10. If g : Z2 → R is a multimodular function and y = (y1, y2) and
z = (z1, z2) are two distinct strictly cw-minimal points of g where z1 ≥ y1, then

1. (z1, z2) = (y1 + B, y2 −B) for some B > 0;
2. for all b, 0 < b < B, (y1 + b, y2 − b) is also cw-minimal;
3. if g(z) > g(y), then the minimum of g cannot be in the set {(y1 +b, y2−b)|b ≥

B};
4. if both y and z = (y1 + B, y2 − B) for some B ≥ 0 are minimal, then (y1 +

b, y2 − b) is minimal for all 0 ≤ b ≤ B;
5. if both g(y1 + 1, y1 − 1) ≥ g(y1, y2) and g(y1 − 1, y1 + 1) ≥ g(y1, y2), then

(y1, y2) is minimal; if the inequalities are strict, then the minimum is also
unique.

Proof. The proof follows immediately from Theorem A.9. Note that if m = 2,
then there exist no permutations σ of {0, 1, 2} with both σ(0) �= 0, 1 and σ(1) �= 0, 1,
so CΣ∗(z) = ∅ for all z ∈ Z2. This means that if z is a strictly cw-minimal point, then
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Fig. A.3. The cone CΣ∗ (0) and the plane P (0).

the only other cw-minimal points must lie in P (z) = {(z1 + b, z2 − b) | b ∈ Z}. This
proves 1.

To prove 2, note that y strictly cw-minimal implies that ∆1g(y) > 0. Since g is
multimodular, this implies that ∆1g(y1 +b, y2−b) > 0 for b ≥ 0. In the same manner,
∆1g(z1 − 1, z2) < 0, and by multimodularity ∆1g(z1 − 1− b, z2 + b) < 0 for all b > 0.
Analogously, one can show that ∆2g(z1− b, z2 + b) > 0 and ∆2g(y1 + b, y2−1− b) < 0
for all b ≥ 0, and these equalities combined prove 2.

For 3, 4, and 5, note that f(z) := g(y1 + z, y2 − z) is a convex function of z ∈ Z
by the remark below Lemma A.6.
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1. Introduction. In this paper we consider time discretization schemes for the
Kushner equation

dπ(t) +Aπ(t) dt = (h− πt[h])π(t) (dy(t)− πt[h] dt) ,
π(0) = p0,

(1.1)

where πt[h] =
∫
Rd h(x)π(t, x) dx and

−Aφ(x) =
∂

∂xi

(
ai,j(x)

∂

∂xj
φ(x)

)
− ∂

∂xi
(ai(x)φ(x)) .(1.2)

The Kushner equation (1.1) arises in nonlinear filtering of diffusion-type processes
(see, e.g., [13], [17], [20]). More specifically, assume that the (unobserved) system
process x(t) ∈ Rd is a solution to the Ito equation

dx(t) = g(x(t)) dt+ σ(x(t)) dw1(t), x(0) = x0,(1.3)

and the observation process y(t) ∈ Rp is of the form

y(t) =

∫ t
0

h(x(s)) ds+ w2(t),(1.4)

where w1 and w2 are Brownian motions. In addition, it is assumed that w2 is in-
dependent of x(t) and x0 is a random variable with density function p0 ∈ L2(Rd).
Throughout what follows g : Rd → Rd, σ : Rd → Rd×d, and h : Rd → Rp are bounded
continuous functions and g and σ are also Lipschitz continuous.

The diffusion processes x(t), y(t) are considered on a complete probability space
(Ω,F , P ). Let us denote by Fyt the P -completed σ-field generated by the observations
{y(s), 0 ≤ s ≤ t}.
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It is a standard fact that for a bounded function φ, the best mean square estimator
of φ(x(t)) based on the observations {y(s), 0 ≤ s ≤ t} is given by π[φ] = E[φ(x(t))|Fyt ].
Moreover, a fundamental result of filtering theory (see, e.g., [7], [17]) says that if
φ ∈ C2

b (R
d), then πt[φ] admits the stochastic differential

dπt[φ] = −πt[A∗φ] dt+ (πt[hφ]− πt[φ]πt[h])(dy(t)− πt[h] dt),(1.5)

where A∗ is the operator formally adjoint to A with ai,j = ( 1
2σσ

∗)i,j and ai = gi −
∂
∂xj
ai,j . If the measure πt(dx) = E[I(x(t) ∈ dx)|Fyt ] admits a smooth density π(t, x)

with respect to the Lebesgue measure, it is readily checked that π(t, x) verifies the
Kushner equation (1.1).

It is also a standard fact (e.g., see [2], [19], [20]) that

E [φ(x(t))|Fyt ] =

∫
φ(x)p(t, x) dx∫
p(t, x) dx

,(1.6)

where the function p(t, x), usually referred to as the unnormalized filtering density,
satisfies the Zakai equation

dp(t) +Ap(t) dt = hp(t) dy(t), p(0) = p0.(1.7)

There is a substantial body of results on numerical approximations of the equations
of nonlinear filtering (see, e.g., [1], [2], [3], [4], [5], [6], [8], [9], [11], [14], [16], and
the references therein). The overwhelming majority of these numerical schemes deals
with the Zakai equation. The rationale for this choice is usually twofold.

1. The Kushner and Zakai equations are equivalent in that their solutions are
related by the simple formulas

π(t, x) = p(t, x)/
∫
p(t, x) dx,

p(t, x) = π(t, x) exp{∫ t
0
πs[h] dy(s)− 1

2

∫ t
0
|πs[h]|2 ds}.(1.8)

2. In contrast to the Kushner equation, the Zakai equation is linear, and this of
course greatly simplifies its analysis.

Unfortunately, in spite of its popularity, the Zakai equation has serious deficien-
cies as a computational tool. These include the following: (a) fast dissipation of
the solution as the number of time steps grows, and (b) the effect of intermittency
which manifests itself in the appearance of rare but very large peaks. On the con-
trary, it appears that Kushner’s equation of nonlinear filtering is not subject to the
aforementioned problems.

In this paper we develop time discretization schemes that apply directly to the
Kushner equation (1.1). These schemes belong to the class of splitting-up approxi-
mations. The idea of splitting an operator into simpler parts according to different
physical properties has been widely used in applied analysis. For example, different
alternating directions schemes were developed for the heat equation (see [18] and [10]
for a survey of the various operator-splitting schemes). In the case of discrete time
observation, Kushner’s and Zakai’s equations automatically split into two parts: the
prediction term that corresponds to the (deterministic) operator A and the correction
term related to the (stochastic) operator B = hp(t) ẏ(t). In [14] (see also [15] and the
references therein) Kushner proposed a Markov chain approximation for continuous
time equations of nonlinear filtering and proved its weak convergence in the space of
measures. Owing to the discrete time nature of the Markov chain approximation, it
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is, naturally, of the splitting-up type. Splitting-up time discretization of the Zakai
equation in L2 spaces was pioneered by Bensoussan, Glowinski, and Rascanu [3] and
further developed in [8], [11]. In particular, the first estimates of the rate of con-
vergence of the splitting-up approximations for the Zakai equation were obtained in
these papers.

In this paper we prove weak and strong convergence in L2 spaces of the approxi-
mations to the solution of (1.1) and estimate the approximation errors.

To avoid the effects of fast dissipation and intermittency, numerical approxima-
tions to Zakai’s equation are often normalized on every step. It was established experi-
mentally that this procedure is quite efficient. However, the effect of the normalization
on the convergence of the approximation has never been studied rigorously. In this
paper we derive the rate of convergence of normalized splitting-up approximations to
Zakai’s equation from the rate of convergence of the splitting-up approximation of
Kushner’s equation.

2. Well-posedness and difference approximations.

2.1. Zakai and Kushner equations in weighted Sobolev spaces. Weighted
Sobolev spaces are of central importance for the approximation results we will be
developing below. The analytical theory of Zakai and Kushner equations in standard
Sobolev spaces is well understood (see, e.g., [20] and the references therein). However,
much less is known about the extensions of this theory to weighted spaces. In this
section we will recall some important results in nonlinear filtering and extend them
to the case of weighted Sobolev spaces.

The Zakai theory is based on the change of probability measure [2], [20]. Let ηt
be a stochastic process defined by

ηt = exp

(
−
∫ t

0

h(x(s)) dy(s) +
1

2

∫ t
0

|h(x(s))|2 ds
)
.(2.1)

Define a probability measure P̃ on (Ω,F) by

dP̃

dP
= ηt.(2.2)

In what follows Ẽ stands for the expectation with respect to measure P̃ . It is a
standard fact that under the assumptions we made above the measures P and P̃ are
mutually absolutely continuous.

By Girsanov’s theorem, the observation process y(t) is an Fyt -adapted Wiener
process with covariance I on (Ω,F , P̃ ).

Denote S = (Ω× [0, T ],F×B, dP ×dt) and S̃ = (Ω× [0, T ],F×B, dP̃ ×dt), where
B is the Borel σ-algebra in [0, T ]. Set H = L2(Rd) and V = H1(Rd) and denote by
V ∗ the strong dual to V . H∗ is identified with H so that V ⊂ H = H∗ ⊂ V ∗. The
inner product (·, ·) in H is defined by

(φ, ψ) =

∫
Rd

φ(x)ψ(x) dx.

The dual product in V ∗ × V is denoted by 〈·, ·〉H .
Let us denote by X the Hilbert space L2(Rd;ϕ(|x|) dx) equipped with the inner

product

(φ, ψ)X =

∫
Rd

φ(x)ψ(x)ϕ(|x|) dx,
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where the positive weight ϕ ∈ H1
�oc(R

+), which is bounded on every compact in R+,
and so that ϕ(s) ≥ 1,

ϕ′(s) ≤ γ ϕ(s) almost everywhere (a.e.), s ∈ R,

and ϕ−1 ∈ L1(R+). For example, one can choose ϕ(s) = eγ s, s ≥ 0.
Note that X is continuously embedded into L1(Rd), i.e.,

|φ|L1 ≤ |ϕ| 12L1 |φ|X for φ ∈ X.

Let Ṽ be the completion of C1
0 (Rd) with respect to the norm

|φ|2
Ṽ

= (∇φ,∇φ)X + |φ|2X .

Obviously Ṽ is a Hilbert space. Denote by Ṽ ∗ its dual with respect to the scalar
product in H. It is readily checked that Ṽ ⊂ V ⊂ H and that the imbeddings are
continuous. The duality between Ṽ and Ṽ ∗ is denoted by 〈, 〉X .

Throughout what follows we assume that the initial condition p0 ∈ X.
Definition 2.1. A function p(t) is a (generalized) solution of the Zakai equation

(1.7) if p(t) is a predictable process in V such that
∫ T
0
|p(t)|2V dt < ∞ (almost surely

(a.s.)) and for all φ ∈ C∞
0 (Rd), the equality

(p(t), φ) = (p0, φ) +

∫ t
0

[(
− ∂

∂xi
p(s)ai,j ,

∂

∂xj
φ

)
+

(
p(s)ai,

∂

∂xi
φ

)]
ds

+

∫ t
0

(hp(s), φ) dy(s)

(2.3)

holds dtdP a.e.
Definition 2.2. A function π(t) is a (generalized) solution of the Kushner

equation (1.1) if π(t) is a predictable process in V such that
∫ T
0
|p(t)|2V dt <∞ (a.s.)

and for all φ ∈ C∞
0 (Rd), the equality

(π(t), φ) = (p0, φ) +

∫ t
0

[(
− ∂

∂xi
π(s)ai,j ,

∂

∂xj
φ

)
+

(
π(s)ai(x),

∂

∂xi
φ

)]
ds

+

∫ t
0

[(π(s), hφ)− (π(s), φ)(π(s), h)](dy(s)− (π(s), h) ds)

(2.4)

holds dtdP a.e.
It is well known (see, e.g., [20], [21]) that both the Kushner and Zakai equations

have unique generalized solutions; these solutions are nonnegative, p(t) ∈ L1(Rd), and
formulas (1.6), (1.8) hold. If, as assumed in this paper, the initial condition p0 ∈ X,
the solutions to the Kushner and Zakai equations belong to Ṽ . More specifically, the
following result holds.

Theorem 2.3. (i) The generalized solution to the Zakai equation (1.7) p ∈
L2(S̃; Ṽ ) ∩ L2(Ω, P̃ , C(0, T ;X)).

(ii) The generalized solution to the Kushner equation (1.1) π ∈ L1(S; Ṽ )∩L1(Ω, P,
C(0, T ;X)).
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Proof. To begin with we will extend the operator A to a linear continuous operator
from V to V ∗ by the formula

〈Aφ,ψ〉 = (A0∇φ− aφ,∇ψ) for all φ, ψ ∈ V,
where A0 denotes the symmetric matrix {ai,j}. We will use the same notation,A,
for the extension. Due to the assumptions on the coefficients g, h, and σ, it can be
shown that A ∈ L(V, V ∗), the space of linear continuous operators from V into V ∗,
and there exist constants β > 0 and 0 ≤ ρ <∞ such that

〈Aφ, φ〉+ ρ|φ|2H ≥
1

2
β|φ|2V for all φ ∈ V,(2.5)

where |φ|2V = (∇φ,∇φ) + |φ|2H .

The operator A can also be extended to the linear continuous operator from Ṽ
to Ṽ ∗ given by

〈Aφ,ψ〉X = (Aφ,ϕψ)

= (A0∇φ− φa, ϕ∇ψ + ψ∇ϕ) for all φ ∈ Ṽ , ψ ∈ C∞
0 (Rd),

(2.6)

where ϕ(x) = ϕ(|x|) and

∇ϕ = ϕ′(|x|) x|x| .

This extension still will be denoted by A.
It is readily checked that there exist constants ρ̃, C <∞ and β > 0 so that

|Ax|
Ṽ ∗ ≤ C |x|2Ṽ and 〈Aφ, φ〉X + ρ̃ |φ|2X ≥

β

2
|φ|2
Ṽ
.(2.7)

Let us consider the operator equation

p(t) = p0 −
∫ t

0

Ap(s) ds+

∫ t
0

Bp(s) dy(s),(2.8)

where A is the operator defined by (2.6) and B maps Ṽ into the space of Hilbert–
Schmidt operators L2(Rp, X) by the formula Bf = h(x) f. We will consider (2.8) on

(Ω,F , P̃ ) and will interpret it as an equation in Ṽ . The latter means (see [20]) that

a function p(t) is a solution of (2.8) if p(t) is a predictable process in Ṽ such that∫ T
0
|p(t)|2

Ṽ
dt <∞ (a.s.) and for all v ∈ C∞

0 (Rd),

(p(t), v)X = (p0, v)X −
∫ t

0

〈Ap(s), v〉X ds+

∫ t
0

(Bp(s), v)X dy(s).(2.9)

Owing to (2.7) it is easy to show that there exist constants K, C ∈ R+, and β > 0
so that for all x ∈ V,

−2 〈Ax, x〉X + |Bx|2X ≤ K |x|2X −
β

2
|x|2
Ṽ

and |Ax|
Ṽ ∗ ≤ C|x|Ṽ .

Thus (2.8) satisfies the assumptions of Theorem 3.1.4 in [20] and so there exists a
unique solution of this equation, p(t, x), and

p ∈ L2(S̃, Ṽ ) ∩ L2(Ω, P̃ , C(O, T ;X)).(2.10)
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Let ψ be an arbitrary function from C∞
0 (Rd). Then ϕ−1ψ ∈ Ṽ . Now taking v = ϕ−1ψ,

we can rewrite (2.9) in the form

(p(t), ψ) = (p0, ψ)−
∫ t

0

(A0∇φ− aφ,∇ψ) ds+

∫ t
0

(hp(s), ψ) dy(s).(2.11)

Thus we proved that p(t) is a generalized solution of the Zakai equation, and we
know that this solution is unique. From this and Proposition 3.1 and Theorem 3.1 in
[21] it follows that under our assumptions for any f ∈ L∞(Rd),

E [f(x(t))|Fyt ] =

∫
Rd

f(x)π(t, x) dx a.s.

and π(t, x) is a unique generalized solution of the Kushner equation (1.1). Moreover,
π(t, x) = p(t, x)/ρt, where

ρt = exp

(∫ t
0

πs [h] dy(s)− 1

2

∫ t
0

|πs [h]|2 ds
)

= 〈p(t), 1〉 a.s.(2.12)

Since for any q ≥ 1, ρ(t)q is a nonnegative supermartingale with respect to the

filtration (Ω,F , {Fyt }t≤T , P̃ ), it follows from (2.10) and (2.12) that π ∈ L1(S, Ṽ ) ∩
L1(Ω, P, C(O, T ;X)). Indeed, by the Schwarz inequality,

E

∫ T
0

|π(s)|
Ṽ
dt = Ẽ

∫ T
0

ρ−1
t η

−1
t |p(t)|Ṽ dt

≤
(
Ẽ

∫ T
0

|p(t)|2
Ṽ
dt

) 1
2
(
Ẽ

∫ T
0

ρ−2
t η

−2
t dt

) 1
2

<∞.

The inclusion π ∈ L1(Ω, P, C(O, T ;X)) can be proved similarly.
We conclude this section by deriving some auxiliary results needed below to justify

the splitting up approximations. Let us consider the equation

π + λAπ = φ,(2.13)

where φ ∈ H and λ > 0 is a scalar.
Definition 2.4. We say that π is a solution of (2.13) if it belongs to V and the

equality

(π, ψ) + λ(A0∇π − a π,∇ψ) = (φ, ψ)

holds for all ψ ∈ V.
Lemma 2.5. Assume that λ > 0 is sufficiently small and φ ∈ H and is nonneg-

ative a.e. in Rd. Then (2.13) has a unique solution and it is nonnegative (a.e. in
Rd).
Proof.1 By standard arguments (see [22]) one can derive from (2.5) that if ρλ ≤ 1,

Jλ = (I + λA)−1 ∈ L(V ∗, V ) and (2.13) has a unique solution π = Jλφ, where φ is
an H-valued random variable. By definition, π ∈ V and satisfies

(π, ψ) + λ ((A0∇π,∇ψ)− (a π,∇ψ)) = (φ, ψ)

1This result is well known; however, for the sake of completeness we give a short proof.
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for all ψ ∈ V .
Let ψ = min(π, 0). Then ψ ∈ V and

|ψ|2H + λ ((A0∇ψ,∇ψ)− (aψ,∇ψ)) = (φ, ψ) ≤ 0.

It follows from (2.5) that

(1− λρ) |ψ|2H +
λβ

2
|ψ|2V ≤ 0,

which implies that |ψ|H = 0, and thus π ≥ 0 a.e. in Rd.
Of course it follows from Lemma 2.5 that for sufficiently small λ > 0, the system

(2.17) has a unique nonnegative solution.
Lemma 2.6. If in addition to the assumptions of Lemma 2.5 φ ∈ X, then a

solution to (2.13) belongs to Ṽ .
Proof. The same arguments as in Lemma 2.5 yield that if ρ̃λ ≤ 1, then the

equation

(π, v)X + λ (A0∇π − π a, ϕ∇v + v∇ϕ) = (π, v)X for all v ∈ Ṽ(2.14)

has a unique solution in Ṽ . Now we will prove that a solution to (2.14) is also a
solution to (2.13). This will give us the desired result since according to Lemma 2.5,
a solution to the latter equation is unique.

Let ψ be an arbitrary function from C∞
0 (Rd). Then ϕψ ∈ Ṽ . Now taking v =

ϕ−1ψ, we can rewrite (2.14) as follows:

(π, ψ) + λ ((A0∇π,∇ψ)− (a π,∇ψ)) = (φ, ψ) for all ψ ∈ C∞
0 (Rd).

Since C∞
0 (Rd) is dense in V , we conclude that π is indeed a solution to (2.13).

2.2. Operator-splitting approximations for the Kushner and Zakai equa-
tions. The operator splitting is an effective and natural approach to time discretiza-
tion of the Zakai equation. In fact, it mimics the exact recursive formula which holds
in the case of discrete time observations. In this subsection we define explicit and
implicit operator-splitting approximations for the Kushner equation and discuss their
relation to the splitting-up approximation of the Zakai equation.

For T ∈ R+ and m, k ∈ Z, set λ = T/m, tk = kλ, yk = y(tk), and ∆yk =
yk − yk−1. The splitting-up discretization for the Zakai equation can be defined by
the formulas2

αk = exp(h(x)∆yk − λ2 |h(x)|2)pk−1,

pk − αk + λApk = 0, k = 1, 2, . . . , p0 = p0.
(2.15)

This splitting-up scheme for the Zakai equation was introduced in [2]. The rate of
convergence of this scheme and its higher-order modifications were studied in [8] and
[11]; see also the references therein.

In practice, to avoid possible complications related to the fast dissipation of pk

and the effect of intermittency as the number of time steps grows, this scheme is often

2It is shown in Lemma 2.5 that for sufficiently small λ > 0 the inverse operator (I + λA)−1 is
well defined.
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modified as follows:

αk = exp(h(x)∆yk − λ2 |h(x)|2)p̃k−1,

δk = αk/
∫
αk dx, and

p̃k − δk + λAp̃k = 0, k = 1, 2, . . . , p̃0 = p0.

(2.16)

As we mentioned before, in contrast to the former splitting-up scheme, the convergence
of the latter one has never been studied rigorously.

Now let us consider two operator splitting-up approximations to the Kushner
equation. We begin with the explicit one:

ξk = exp
(
(h− πk−1[h])(∆yk − πk−1[h]λ)− 1

2 |h(x)− πk−1[h]|2λ)πk−1,

πk − ξk + λAπk = 0, k = 1, 2, . . . , π0 = p0,
(2.17)

where

πk−1[h] =

∫
h(x)πk−1 dx∫
πk−1 dx

.(2.18)

Note that ξk = ξk(tk), where ξk(·) satisfies

ξk(t) = πk−1 +

∫ t
tk−1

(h− πk−1[h])ξk(s)(dy(s)− πk−1[h] ds), t ∈ [tk−1, tk].(2.19)

Obviously, πk is not necessarily a probability density and πk−1[h] defines the mean of
h with respect to the normalizations of πk−1.

Similarly, one can consider the implicit version of (2.17):

ξ̃k = π̃k−1 +
∫ tk
tk−1

(h− 〈ξ̃t, h〉)ξ̃(t)(dy(t)− 〈ξ̃t, h〉 dt),

π̃k − ξ̃k + λAπ̃k = 0.

(2.20)

That is, ξ̃k = ξ̃(tk), where ξ̃(·) satisfies the stochastic integro-differential equation

dξ̃t = (h− 〈ξ̃t, h〉)ξ̃t(dy(t)− 〈ξ̃t, h〉 dt), ξ̃(tk−1) = π̃k−1,(2.21)

on the interval (tk−1, tk]. By Ito’s lemma a solution to this equation is given by the
formula3

ξ̃t = βt/〈βt, 1〉,

where βt = βt(x) is a solution to the stochastic equation

dβt(x) = h(x)βt(x) dy(t), βtk−1
= π̃k−1.

3Everywhere below, 〈, 〉 denotes the duality between L1(Rd) and L∞(Rd). In particular, 〈βt, 1〉 =∫
Rd βt(x) dx.
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The implicit approximation to the Kushner equation given by (2.20) is equivalent to
the splitting-up scheme (2.16) for the Zakai equation with normalization at each step.
Indeed, setting up βk = β(tk), we can rewrite (2.21) as follows:

βk = exp

(
h(x)∆yk − λ

2
|h(x)|2

)
π̃k−1 , γk =

βk

〈βk, 1〉 ,

π̃k − γk + λAπ̃k = 0, k = 1, 2, . . . , π̃0 = p0.

(2.22)

Obviously Lemmas 2.5 and 2.6 yield that the sequences {πk} and {π̃k} are well
defined. The discretized solution map (2.15) for the Zakai equation is given by

pk = (I + λA)−1αk, where αk = γkk−1p
k−1,(2.23)

where

γkk−1 = exp

(
h∆yk − λ

2
|h(x)|2

)
and ∆yk = y(tk)− y(tk−1).

Set

qkk−1 = exp

(
πk−1[h] ∆yk − λ

2
|πk−1[h]|2

)
.

Since qkk−1 does not depend on x, a solution to the approximation (2.17) can be written
as

πk = (qkk−1)−1(I + λA)−1γkk−1π
k−1.

By induction we have the following relation between πn and pn:

πn = (qn)−1 pn, where qn = Πnk=1 q
k
k−1.(2.24)

Of course, (2.24) implies that 〈πn, 1〉 = (qn)−1 〈pn, 1〉 , and so for any f ∈ X∗,

πn [f ] = pn [f ] .(2.25)

For s ∈ (tk−1, tk], write

γk(s) = exp{h(x) (y(s)− y(tk−1))− (s− tk−1) |h(x)|2/2}
and set

pk(s, x) = (I + λA)
−1
αk(s, x),

αk(s, x) = γk(s)p
k−1(x), and p0(s) = p0.

(2.26)

Obviously, γk(tk) = γkk−1 and αk(tk, x) = αk(x). Define the function αλt (x) = αk(t, x)
for t ∈ [tk−1, tk).

Lemma 2.7. For every k,

〈
pk, 1

〉
=
〈
pk−1, 1

〉
exp

{∫ tk
tk−1

αks [h] dy(s)− 1

2

∫ tk
tk−1

|αks [h] |2 ds
}

= exp

{∫ tk
0

aλs [h] dy(s)− 1

2

∫ tk
0

∣∣αλs [h]
∣∣2 ds

}
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P—a.e., where αks [h] =
〈
αk(s), h

〉
/
〈
αk(s), 1

〉
and αλt [h] = αkt [h] for t ∈ (tk−1, tk].

Proof. Owing to (2.26) we have (I + λA) pk (s, x) = αk(s, x). Note also that for
every f ∈ H1(Rd),

∫
Rd

∇(A0∇f − af) dx = 0.

Therefore,

〈
pk(s), 1

〉
=
〈
αk(s), 1

〉
=

∫
Rd

γk(s, x)pk−1(x) dx.(2.27)

Since for t ∈ (tk−1, tk], dγk(t) = h(x)γk(t) dy(t), γk(tk−1) = 1, it follows from (2.27)
that

〈
pk(t), 1

〉
=
〈
pk−1, 1

〉
+
∫ t
tk−1

∫
Rd h(x)γk(s, x)pk−1(x) dx dy(s)

=
〈
pk−1, 1

〉
+
∫ t
tk−1

〈
pk(s), 1

〉 ∫
Rd h(x)γk(s, x)pk−1(x) dx

〈
αk(s), 1

〉−1
dy(s)

=
〈
pk−1, 1

〉
+
∫ t
tk−1

〈
pk(s), 1

〉 〈
αk(s), h

〉 〈
αk(s), 1

〉−1
dy(s).

Hence

〈
pk(t), 1

〉
=
〈
pk−1, 1

〉
exp

{∫ t
tk−1

αks [h] dy(s)− 1

2

∫ t
tk−1

∣∣αks [h]
∣∣2 ds

}
,

which completes the proof.

3. Convergence of splitting-up approximations.

3.1. Convergence in L1(Ω,F , P ). In this section we will establish weak and
strong convergence of the splitting-up approximation (2.17) to the solution of the
Kushner equation. Since the differences in the proof of the main results for the
sequences {πk} and {π̃k} are minimal, note that

π̃n = (q̃n)−1pn with q̃n = exp

(
n∑
k=1

∫ tk
tk−1

(
ξ̃t[h] dy(t)− 1

2
|ξ̃t[h]|2 dt

))
;

we will consider here only the former one and leave the latter to the interested reader.
Define the functions πλ(t) and pλt by

πλ(t) = πk and pλt = pk for t ∈ [kλ, (k + 1)λ) k ≥ 0.

Also, for t ∈ [kλ, (k+ 1)λ), set ρλt = exp{∫ tk
0
αks [h] dy(s)− 1

2

∫ tk
0

∣∣αks [h]
∣∣2 ds}. Owing

to Lemma 2.7, we have

ρλt =
〈
pλt , 1

〉
.(3.1)

First we will establish two auxiliary results, Lemma 3.1 and Theorem 3.2.
Lemma 3.1. Let µ1(t) and µ2(t) be Fyt -adapted processes so that

sup
t

(|µ1(t)|2 + |µ2(t)|) ≤ C|h|2∞.
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Write θt = exp{∫ t
0
µ1(s)dy(s)+

∫ t
0
µ2(s)ds}. For all f ∈ L∞(Rd) and any q ≥ 1, there

exist constants M(q) and c(q) such that

Eθt|
〈
pλt − p(t), f

〉 |q ≤M(q) exp
(
c(q)|h|2∞t

) |f |q∞ ∣∣ϕ−1
∣∣ 12
1

(Ẽ |pλt − p(t)|2X)
1
2 .

Proof. Assume that t ∈ [kλ, (k+ 1)λ). Changing the probability law according to
(2.2), applying the Schwarz inequality, and using (2.12) and (3.1), we get

Eθt|
〈
pλt − p(t), f

〉 |q = Ẽη−1
t θt|

〈
pλt − p(t), f

〉 |q
≤ |f |q−1

∞ Ẽ
[
η−1
t θt|ρλt + ρt|q−1| 〈pλt − p(t), f〉 |]

≤ |f |q∞
∣∣ϕ−1

∣∣ 12
1
Ẽ
[
η−1
t θt|ρλt + ρt|q−1|pλt − p(t)|X

]

≤ |f |q∞
∣∣ϕ−1

∣∣ 12
1

(Ẽ|pλ(t)− p(t)|2X)
1
2 (Ẽ(η−2

t θ
2
t |ρλt + ρt|2q−2))

1
2 .

(3.2)

It follows from (2.1), (2.12), and (3.1) that

(η−2
t θ

2
t |ρλt + ρt|2q−2) ≤M(q)

(
Iλt + It

)
,

where

Iλt = exp(
∫ t
0

2((q − 1)αλs [h]1{s<(k+1)λ} + h(x(s)) + µ1(s)) dy(s)

− 1
2

∫ t
0

4|(q − 1)αλs [h]1{s<(k+1)λ} + h(x(s)) + µ1(s)| 2 ds)

and

It = exp(
∫ t
0

2((q − 1)πs[h] + h(x(s)) + µ1(s)) dy(s)

−1
2

∫ t
0

4|(q − 1)πs[h] + h(x(s)) + µ1(s)| 2 ds).

Since πs [h] ≤ |h|∞ and αλs [h] ≤ |h|∞ , It and Iλt are martingales with respect to the

filtration (Ω,F , {Fyt }t≤T , P̃ ). Therefore,

Ẽη−2
t θt|ρλt + ρt|2q−2 ≤M(q) exp(c(q)|h|2∞t),(3.3)

which implies the desired estimate.
The following result follows in exactly the same manner as in [11].
Theorem 3.2. The following estimate holds uniformly in λ :

sup
t≤T

Ẽ|pλt |2X + Ẽ

∫ T
0

|pλt |2Ṽ dt <∞.

Moreover,

sup
t≤T

Ẽ|pλt − p(t)|2X + Ẽ

∫ T
0

|pλt − p(t)|2Ṽ → 0 as λ→ 0.

The main results of this section are given in the following two theorems.



904 KAZUFUMI ITO AND BORIS ROZOVSKII

Theorem 3.3. For every f ∈ L∞(Rd) and q ≥ 1,

E |πλ(t)[f ]− πt[f ]|q → 0 as λ→ 0.

Moreover, there exist constants M and c (which do not depend on q) so that

sup
t≤T

E |πλ(t)[f ]− πt[f ]|q ≤M exp{cT |h|2∞}
∣∣ϕ−1

∣∣ 12
1
|f |q∞ sup

t≤T
(Ẽ |pλt − p(t)|2X)

1
2 .

Proof. Since |πλ(t)[f ]− π(t)[f ]| ≤ |f |∞ , it suffices to prove the theorem only for
q = 1. It follows from (2.25) that for f ∈ L∞(Rd),

πλ(t)[f ]− π(t)[f ] =
〈pλt , f〉
〈pλt , 1〉

− 〈p(t), f〉〈p(t), 1〉

= −ρ−1
t (〈p(t)− pλt , f〉+ pλt [f ]〈pλt − p(t), 1〉).

(3.4)

By Lemma 3.1, we have

E |ρ−1
t 〈p(t)− pλt , f〉|

≤ M
2 exp{c |h|2∞ t}

∣∣ϕ−1
∣∣ 12
1
|f |∞ (Ẽ |pλt − p(t)|2X)

1
2 .

(3.5)

Since |pλt [f ]| ≤ |f |∞ , Lemma 3.1 yields

E|ρ−1
t p

λ
t [f ]〈 pλt − p(t), 1〉|

≤ M
2 exp{c |h|2∞ t}

∣∣ϕ−1
∣∣ 12
1
|f |∞(Ẽ |pλt − p(t)|2X)

1
2 .

(3.6)

The result follows now from Theorem 3.2.
Theorem 3.4. The function πλ converges to π, the solution of the Kushner

equation (1.1), strongly in L1((0, T )×Ω, Ṽ ) as λ→ 0.Moreover, the following estimate
holds:

E

∫ T
0

|πλ(t)−π(t)|
Ṽ
dt ≤ C



(
Ẽ

∫ T
0

|pλt − p(t)|2Ṽ dt
) 1

2

+

(∫ T
0

(Ẽ|pλt − p(t)|2X)
1
2 dt

) 1
2


 .

Proof. Note that

πλ(t)− π(t) = ρ−1
t (pλt − p(t)) + pλt (ρtρ

λ
t )

−1 〈pλt − p(t), 1〉,(3.7)

and thus

E

∫ T
0

|πλ(t)− π(t)|
Ṽ
dt ≤ E

∫ T
0

ρ−1
t |pt − pλt |Ṽ dt

+E

∫ T
0

|pλt |Ṽ (ρtρ
λ
t )

−1| 〈pλt − p(t), 1〉 | dt.
Now changing the probability law according to (2.2) and applying the Schwarz in-
equality, we get

E

∫ T
0

ρ−1
t |pλt − p(t)|Ṽ dt =

(
Ẽ

∫ T
0

|η−1
t ρt

−1|2 dt
)1

2
(
Ẽ

∫ T
0

|pλt − p(t)|2Ṽ dt
)1

2

.(3.8)
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Write ζλt = (ηtρtρ
λ
t )

−1. Now by the Schwarz inequality and Lemma 3.1 we have

E

∫ T
0

|pλt |Ṽ (ρtρ
λ
t )

−1| 〈pλt − p(t), 1〉| dt

≤
(
Ẽ

∫ T
0

|ζλt 〈pλt − p(t), 1〉|2 dt
) 1

2
(
Ẽ

∫ T
0

|pλt |2Ṽ dt
) 1

2

≤ C
(∫ T

0

(Ẽ|pλt − p(t)|2X)
1
2 dt

) 1
2
(
Ẽ

∫ T
0

|pλt |2Ṽ dt
) 1

4

.

(3.9)

Obviously,

Ẽ

∫ T
0

|η−1
t ρt

−1|2 dt <∞.(3.10)

The statement follows now from Theorem 3.2 and (3.8)–(3.10).
Corollary 3.5. The following estimate holds:

E|πn − π(tn)|X ≤ C
[
1 +

(
Ẽ|pn|4X

) 1
4

](
Ẽ|pn − p(tn)|2X

) 1
2

.(3.11)

Proof. From (3.7) and Hölder’s inequality,

E|πn − π(tn)|X ≤ |ϕ|
1
2
2

[(
Ẽ|(η(tn)ρ(tn)−1|2

) 1
2
(
Ẽ|pn − p(tn)|2X

) 1
2

+
(
Ẽ|pn|4X

) 1
4
(
Ẽ|η(tn)(ρ(tn)ρn)−1|4

) 1
4
(
Ẽ|pn − p(tn)|2X

) 1
2

]
,

which shows the estimate.
In section 4 we establish a bound on (Ẽ|pn|4X)

1
4 and the convergence estimate for

(Ẽ|pn − p(tn)|2X)
1
2 . It will be shown that

sup
n
E|πn − π(tn)|X ≤ C λ(3.12)

provided that p(t) satisfies an appropriate regularity condition.

3.2. Convergence in L2(Ω, F, P̃ ). In this section we show that πλ(·) converges

strongly in L2(S̃; Ṽ ). First we derive some preliminary estimates for πk. Multiplying
(2.17) by πk, we obtain

(πk − ξk, πk)X + λ 〈Aπk, πk〉X = 0.

Now completing the square, we obtain

1

2
(|πk|2X − |ξk|2X + |πk − ξk|2X) + λ 〈Aπk, πk〉X = 0,

and thus from (2.7)

(1− 2λρ̃) Ẽ |πk|2X + Ẽ |πk − ξk|2X + λβ Ẽ |πk|2
Ṽ
≤ Ẽ |ξk|2X .(3.13)
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Since p0 ≥ 0 a.e., it follows from Lemma 2.5 that the sequence {πk} generated by
(2.17) satisfies πk ≥ 0 a.e. for each k ≥ 0. Thus

|h− πk−1[h]|∞ ≤ |h|∞ and |πk−1[h]|∞ ≤ |h|∞.

It follows from (2.19) and Ito’s lemma that for t ∈ [tk−1, tk],

Ẽ |ξk(t)|2X − Ẽ |πk−1|2X = Ẽ

∫ t
tk−1

(
2(h− πk−1[h])πk−1[h] + (h− πk−1[h])2

) |ξk(s)|2X ds

≤
∫ t
tk−1

3|h|2∞ Ẽ |ξ(s)|2X ds.

From Gronwall’s lemma,

Ẽ |ξk|2X ≤ e3|h|
2
∞λ Ẽ |πk−1|2X .

Thus from (3.13), we obtain

e−ω̃λ Ẽ |πk|2X + e−3λ |h|2∞ (Ẽ |πk − ξk|2X + λβ Ẽ |πk|2
Ṽ

) ≤ Ẽ |πk−1|2X ,

where ω̃ = 1 + 2 ρ̃ + 3 |h|2∞. (To obtain the latter inequality we used the fact that
e−λ(1+2ρ̃) ≤ 1 − 2λρ̃ for sufficiently small λ > 0.) Multiplying this by e−ω̃ tk−1 , we
have for k ≥ 1

e−ω̃tk (Ẽ |πk|2X + Ẽ |πk − ξk|2X + λβ Ẽ |πk|2
Ṽ

) ≤ e−ω̃tk−1 Ẽ |πk−1|2X .

Summing up both sides of the inequality in k, we obtain

e−ω̃tm Ẽ |πm|2X + Ẽ

m∑
k=1

e−ω̃tk (|πk − ξk|2X + λβ |πk|2
Ṽ

) ≤ Ẽ |π0|2X .(3.14)

Assume that p0 ∈ X. Then it follows from (3.14) that

sup
t∈[0,T ]

Ẽ |πλ(t)|2X + β

∫ T
0

Ẽ |πλ(t+ λ)|2
Ṽ
dt ≤ eω̃ T Ẽ |p0|2X .(3.15)

In addition, since from Lemma 2.5 πk ≥ 0 a.e., we have πλ(t) ≥ 0 a.e. in S̃.

Next we show that πλ(t) converges weakly to π(t) in L2(S̃; Ṽ ).

Theorem 3.6. The sequence {πλ(t)} converges weakly in L2(S̃; Ṽ ) and weakly
star in L∞(0, T, L2(Ω, P̃ ;X)) to the unique solution π(t) of the Kushner equation

π(t) = p0 −
∫ t

0

Aπ(s) ds+

∫ t
0

(h− π[h](s))π(s)(dy(s)− π[h](s) ds) in Ṽ ∗.(3.16)

Proof. From (3.15) there exists a subsequence of {πλ}, which will be denoted

by the same symbol, such that πλ → π weakly in L2(S̃; Ṽ ) and weakly star in

L∞(0, T ;L2(Ω; P̃ ,X)), where π(t) ∈ L2(S̃; Ṽ )∩sL∞(0, T ;L2(Ω, P̃ ,X)) can be chosen
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to be predictable. Moreover, π ≥ 0 a.e. in S̃. If [s], s ∈ R, denotes the largest integer
j such that j ≤ s, then from (2.17) we have

πλ(t) = p0 −
∫ [t/λ]λ

0

Aπλ(s+ λ) ds

+

∫ [t/λ]λ

0

(F (πλ(s))πλ(s) + rλ(s)) (dy(s)− πλ[h](s) ds),

(3.17)

where the operator F on X is defined by

F (π) = (h− π[h]) for π ∈ X.

The residual function rλ(·) is defined by

rλ(t) = F (πλ(t))(ξλ(t)− πλ(t)),

where

ξλ = ξk(t) if t ∈ ((k − 1)λ, kλ], k ≥ 1,

and

ξk(t) = πk−1 +

∫ t
tk−1

(h− πk−1[h])ξk(s)(dy(s)− πk−1[h] ds).

Note that

(φ, ψ)H = (φ, ϕ−1ψ)X and |ϕ−1ψ|X ≤ |ϕ−1| 121 |ψ|∞
for ψ ∈ L∞(Rd). Thus (πλ, ψ) ∈ L2(S̃;R). Moreover, as proved in section 3.1,

πλ[h]→ π[h] in Lq(S̃;R)(3.18)

for h ∈ L∞(Rd) and 2 ≤ q < ∞. Thus it follows from the Lebesgue-dominated
convergence theorem that

F (πλ)πλ → F (π)π weakly in L2(S̃,X).(3.19)

By Ito’s lemma we have for t ∈ [tk−1, tk]

Ẽ |ξλ(t)− πλ(t)|2X

= Ẽ

∫ t
tk−1

2((h− πλ[h]) ξλ(s), ξλ(s)− πλ(s) + |(h− πλ[h]) ξλ(s)|2X) ds

≤
∫ t
tk−1

|h|2∞ Ẽ |ξλ(s)− πλ(s)|2X + 2Ẽ |(h− πλ[h]) ξλ(s)|2X ds.

(3.20)

It follows from Gronwall’s lemma that

Ẽ |ξλ(t)− πλ(t)|2X ≤ 2|h|2∞e|h|
2
∞ (t−tk−1)

∫ t
tk−1

Ẽ |ξλ(s)|2X ds ≤M (t− tk−1)(3.21)
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for t ∈ [tk−1, tk] and some M > 0 independent of λ > 0, where we used the fact that

Ẽ |ξλ(t)|2X ≤ eω̃tkẼ |p0|2X .
Hence we have

Ẽ

∫ T
0

|rλ(t)|2X dt ≤ |h|2∞ Ẽ
∫ T

0

|ξλ(t)− πλ(t)|2X dt ≤M λ.(3.22)

It thus follows from (3.15)–(3.22) that for almost all (t, ω) a continuous modification

of π(t) ∈ L2(S̃; Ṽ ) in X (see [12, Theorem 3.2]) satisfies (3.16) and π ≥ 0. Note that
1 ∈ X∗ and

(π(t), 1)H = (p0, 1)H +

∫ t
0

((π(s), h)H − π[h](s)(π(s), 1))(dy(s)− π[h](s) ds)H

= (p0, 1)H = 1
(3.23)

a.s. Thus the random probability density π(·) ∈ L2(S̃; Ṽ ) ∩ L∞(S̃;X) satisfies the
Kushner equation (1.1) in the sense that (3.16) is satisfied a.e. in S̃.

Finally we show that πλ(t) converges strongly to π(t) in L2(S̃; Ṽ ).

Theorem 3.7. The sequence {πλ(t)} converges strongly in L2(S̃; Ṽ ) to the unique
solution π(t) of the Kushner equation (3.16).
Proof. Note that (3.17) is equivalently written as

πk + λAπk − λG(πk−1)πk−1 = πk−1 + F (πk−1)πk−1 ∆yk + ek,

where

G(π) = π[h] (h− π[h]) for π ∈ X
and

ek =

∫ tk
tk−1

rλ(s)(dy(s)− πk−1[h] ds).

Multiplying this by πk we have

1

2
(|πk|2X + |πk − πk−1|2X − |πk−1|2X) + λ (〈Aπk, πk〉X −G(πk−1)πk, πk)

= (ek − λG(πk−1)(πk − πk−1), πk) + (F (πk−1)πk−1 ∆yk, π
k).

Since

Ẽ (F (πk−1)πk−1 ∆yk, π
k−1) = 0,

we have

Ẽ (F (πk−1)πk−1 ∆yk, π
k) ≤ 1

2
(Ẽ |πk − πk−1|2X + Ẽ |F (πk−1)πk−1 ∆yk|2X).

Thus we obtain

Ẽ |πk|2X + 2λ Ẽ (〈Aπk, πk〉X −G(πk−1)πk, πk)

≤ Ẽ |πk−1|2X + λ Ẽ |F (πk−1)πk−1|2X + 2 Ẽ (ek − λG(πk−1)(πk − πk−1), πk).

(3.24)
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First, we note that

2〈Aπ, π〉X − 2(G(πk−1)π, π)− |F (π)π|2 + ω̃ |π|2X ≥ β |π|2Ṽ for π ∈ Ṽ .(3.25)

Second, we note that since

Ẽ |πk − πk−1|2X ≤ 2(Ẽ |πk − ξk|2X + Ẽ |ξk − πk−1|2X),

it follows from (3.14)–(3.21) that

m∑
k=1

Ẽ |πk − πk−1|2X ≤ const.(3.26)

It follows from (3.22) that

m∑
k=1

Ẽ |ek|2X ≤ constλ.(3.27)

Multiplying (3.24) by ck−1 with c = 1− λω̃, we obtain for k ≥ 1

ckẼ |πk|2X − ck−1Ẽ |πk−1|2H

+λck−1 Ẽ (2〈Aπk, πk〉 − 2(G(πk−1)πk, πk)− |F (πk−1)πk−1|2)

≤ 2ck−1Ẽ (ek − λ (G(πk−1)(πk − πk−1), πk)).

Summing up this in k, we obtain

cmẼ (|πλ(T )|2X + λ |F (πλ(T ))πλ(T )|2X)− Ẽ (|p0|2X + λ |F (p0)p0|2X) + Tλ

≤ 2

m∑
k=1

ck−1Ẽ (ek − λ (G(πk−1)(πk − πk−1), πk)),
(3.28)

where

Tλ =

∫ T
0

eλ(t) Ẽ (2〈Aπλ(t+ λ), πλ(t+ λ)〉+ ω̃ |πλ(t+ λ)|2X

− 2(G(πλ(t))πλ(t+ λ), πλ(t+ λ))− |F (πλ(t+ λ))πλ(t+ λ)|2) dt,

(3.29)

where

eλ(t) = ck for t ∈ (tk−1, tk].

It follows from (3.22) and (3.26) that

m∑
k=1

ck−1 Ẽ (ek − λG(πk−1)(πk − πk−1), πk)→ 0

as λ→ 0. Define

Sλ =

∫ T
0

eλ(t) Ẽ(2〈Aπλ(t+ λ)−Aπ(t), π(t+ λ)− π(t)〉+ ω̃ |π(t+ λ)− π(t)|2X

− 2(G(πλ(t))(πλ(t+ λ)− π(t)), πλ(t+ λ)− π(t))

− |F (πλ(t+ λ)(πλ(t+ λ)− π(t))|2X) dt.

(3.30)
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It then follows from (3.24) that

Sλ ≥ β
∫ T

0

eλ(t) Ẽ |πλ(t+ λ)− π(t)|2
Ṽ
dt.(3.31)

On the other hand, it follows from (3.16) and Ito’s lemma that

e−ω̃T Ẽ |π(T )|2X − Ẽ |p0|2X

+

∫ T
0

e−ω̃tẼ (2〈Aπ(t), π(t)〉+ ω̃ |π(t)|2X − 2(G(π(t))π(t), π(t))

− |F (π(t))π(t)|2X) dt = 0.

(3.32)

Note that |eλ(t)− e−ω̃t| → 0 as λ→ 0 uniformly on [0, T ]. Hence, since from (3.29)–
(3.30),

∫ T
0

e−ω̃tẼ (−2 〈Aπ(t), π(t)〉 − ω̃ |π(t)|2X + 2(G(π(t))π(t), π(t)) + |F (π(t))π(t)|2X) dt

+ lim inf Tλ = lim inf Sλ ≥ 0,

it follows from (3.28)–(3.32) that as λ→ 0,

∫ T
0

e−ω̃t Ẽ (−2 〈Aπ(t), π(t)〉 − ω̃ |π(t)|2X + 2(G(π(t))π(t), π(t)) + |F (π(t))π(t)|2X) dt

+Ẽ|p0|2X − e−ω̃T lim sup Ẽ |πλ(T )|2X ≥ 0.
(3.33)
Combining (3.32)–(3.33), we obtain

e−ω̃T (Ẽ |π(T )|2X − lim sup Ẽ |πλ(T )|2X) ≥ 0.

Since πλ(T ) converges weakly to π(T ) (without loss of generality), Ẽ |π(T )|2X− lim inf
Ẽ |πλ(T )|2X ≤ 0 and thus we have

Ẽ |πλ(T )− π(T )|2X → 0 as λ→ 0.

Moreover, lim inf Sλ = 0 and from (3.31)

Ẽ |πλ(t)− π(t)|
L2(0,T ;Ṽ )

→ 0 as λ→ 0.

4. Convergence rate. In this section we establish the convergence estimate
(3.12) of πλt to π(t) by Corollary 3.5. First, we have the following estimate.

Lemma 4.1. For all m and λ = T/m,

sup
1≤k≤m

Ẽ : |pk|4X ≤ C Ẽ : |p0|4X .

Proof. Note that in (2.15) αk = αk(tk), where

αk(t) = pk−1 +

∫ t
tk−1

hαk(s) dy(s) t ∈ [tk−1, tk].(4.1)
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Multiplying (2.15) by pk|pk|2X , we obtain

(4.2)

1

4
(|pk|4X − |αk|4X + (|pk|2X − |αk|2X)2) +

1

2
|pk|2X |pk − αk|2X + λ 〈Apk, pk〉 |pk|2X = 0.

From (4.1) and Ito’s lemma

d|αk(t)|2X = 2 (hαk(t), αk(t))X dy(t) + |hαk(t)|2X dt.

Thus, by Ito’s lemma,

Ẽ |αk(t)|4X − Ẽ |pk−1|4X = Ẽ

∫ t
tk−1

(4 |(hαk(s), αk(s))X |2 + 2 |hαk(s)|2X |αk(s)|2X) ds

≤
∫ t
tk−1

6|h|2∞ Ẽ |αk(s)|4X ds.

By Gronwall’s lemma,

Ẽ |αk|4X ≤ e6|h|
2
∞λ Ẽ |pk−1|4X .

As shown in section 3.2, it follows from (2.7) and (4.3) that

e−ω̃λẼ |pk|4X + 2e−6λ|h|2∞β Ẽ |pk|2
Ṽ
|pk|2X ≤ Ẽ |pk−1|4X ,

where ω̃ = 1 + 4ρ̃+ 6 |h|2∞. Hence we obtain

sup
k
Ẽ |pk|4X +

m∑
k=1

Ẽ β |pk|2
Ṽ
|pk|2X ≤ e−ω̃T Ẽ |p0|4X .(4.3)

Next, we have the convergence estimate.
Theorem 4.2. Assume that the solution p(t) of (1.7) satisfies the following

regularity:

Ẽ |A(hp(t))|2X + Ẽ |Ap(t)|2X ≤M(4.4)

for some M > 0 and all t ∈ [0, T ]. Then for all m and λ = T/m,

sup
1≤k≤m

Ẽ |pk − p(tk)|2X + β

m∑
k=1

|pk − p(tk)|2
Ṽ
≤ C λ2.

Proof. For k ≥ 0 define the approximation error εk by

εk =

∫ tk
tk−1

A(p(t)− p(tk)) dt−
∫ tk
tk−1

h(p(t)− ᾱ(t)) dy(t),(4.5)

where p(t) is the unique solution to the Zakai equation (1.7) and ᾱ(t) satisfies

dᾱ(t) = h(x)ᾱ(t) dy(t), ᾱ(tk−1) = p(tk−1)
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on [tk−1, tk]. Since (1.7) is equivalently written as

p(tk)− p(t) +

∫ tk
t

Ap(s) ds =

∫ tk
t

hp(s) dy(s),(4.6)

we have εk = ε
(1)
k − ε(2)k with

ε
(1)
k =

∫ tk
tk−1

∫ tk
t

A2p(s) ds dt,

ε
(2)
k =

∫ tk
tk−1

∫ tk
t

A(hp(s)) dy(s) dt+

∫ tk
tk−1

h(p(t)− ᾱ(t)) dy(t).

(4.7)

Since from (4.5)–(4.6),

p(tk)− p(tk−1) +Ap(tk) =

∫ tk
tk−1

hᾱ(t) dy(t)− εk,

the error function δpk = pk − p(tk) satisfies

δpk − δpk−1 + λAδpk =

∫ tk
tk−1

hδαk(t) dy(t) + εk,(4.8)

where δαk(t) = αk(t)− ᾱ(t) on [tk−1, tk). Multiplying (4.4) by δpk, we obtain

1

2
(|δpk|2X − |δpk−1|2X + |δpk − δpk−1|2X) + 〈λAδpk − ε(1)k , δpk〉X

= (δpk, γk − ε(2)k ),

(4.9)

where

γk =

∫ tk
tk−1

hδαk(t) dy(t).

Since Ẽ (δpk−1, γk − ε(2)k ) = 0, we have

Ẽ (δpk, γk + ε
(2)
k ) ≤ 1

2
(Ẽ |δpk − δpk−1|2X + Ẽ |γk − ε(2)k |2X),

and from (4.9) and (2.7),

(1− 2λρ̃) Ẽ |δpk|2X − Ẽ |δpk−1|2X

≤ −λβ |δpk|2
Ṽ

+ 2Ẽ 〈ε(1)k , δpk〉X + Ẽ |γk − ε(2)k |2X

≤ −βλ
2
|δpk|2

Ṽ
+

2λ

β

∣∣∣∣ε
(1)

λ

∣∣∣∣
2

Ṽ ∗
+ 2 (Ẽ |γk|2X + Ẽ |ε(2)k |2X).

(4.10)

Note that

Ẽ |γk|2 ≤ |h|2∞
∫ tk
tk−1

Ẽ |δαk(s)|2 ds ≤ |h|2∞e|h|
2
∞λλ Ẽ |δpk−1|2(4.11)
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since δαk satisfies dδαk(t) = h δαk(t) dy(t) with δαk(tk−1) = δpk−1. Now we evaluate
the error terms Ẽ |ε(2)|2X and Ẽ |ε(1)|2

Ṽ ∗ . To this end we use

Ẽ

∣∣∣∣∣
∫ t
tk−1

η(s) ds

∣∣∣∣∣
2

≤ e (t− tk−1)

∫ t
tk−1

Ẽ |η(s)|2 ds(4.12)

for any square integrable Ft-adapted process η and t > tk−1. In fact if φ(t) =∫ t
tk−1

η(s) ds, then

Ẽ|φ(t)|2 = 2

∫ t
tk−1

Ẽ(φ(s), η(s)) ds ≤
∫ t
tk−1

(
1

t− tk−1
Ẽ |φ(s)|2 + (t− tk−1)Ẽ |η(s)|2

)
ds.

Thus (4.12) follows from Gronwall’s lemma. From (4.12),

Ẽ |ε(1)|2
Ṽ ∗ ≤ eλ

∫ tk
tk−1

Ẽ

∣∣∣∣
∫ tk
t

Ap(s) ds

∣∣∣∣
2

Ṽ ∗
dt

≤ (eλ)2
∫ tk
tk−1

∫ tk
t

Ẽ |Ap(s)|2
Ṽ ∗ ds dt ≤

1

2
(eλ2)2 max

s∈[0,T ]
Ẽ |Ap(s)|2

Ṽ ∗

and

Ẽ

∣∣∣∣∣
∫ tk
tk−1

∫ tk
t

A(hp(s)) dy(s) dt

∣∣∣∣∣
2

X

≤ eλ
∫ tk
tk−1

Ẽ

∣∣∣∣
∫ tk
t

A(hp(s)) dy(s)

∣∣∣∣
2

X

dt

≤ eλ
∫ tk
tk−1

∫ tk
t

Ẽ |A(hp(s))|2X ≤
1

2
eλ3 max

s∈[0,T ]
Ẽ |A(hp(s))|2X .

Note that

d(p(t)− ᾱ(t)) = h (p(t)− ᾱ(t)) dy(t) +Ap(t) dt

and thus by Ito’s lemma and the Hölder inequality,

Ẽ |p(t)− ᾱ(t)|2X ≤
∫ t
tk−1

(
λ Ẽ |Ap(t)|2X +

(
1

λ
+ |h|2∞

)
Ẽ |p(s)− ᾱ(s)|2X

)
ds.

By Gronwall’s lemma,

Ẽ |p(t)− ᾱ(t)|2X ≤ e1+|h|2∞λ λ2 max
s∈[0,T ]

Ẽ |Ap(s)|2X

and thus

Ẽ

∣∣∣∣∣
∫ tk
tk−1

h(p(t)− ᾱ(t)) dy(t)

∣∣∣∣∣
2

X

≤ |h|2∞
∫ tk
tk−1

Ẽ |p(t)− ᾱ(t)|2X

≤ e1+|h|2∞λ |h|2∞λ3 max
s∈[0,T ]

Ẽ |Ap(s)|2X .
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Hence there exists a constant c2 such that

2

λ
Ẽ |ε(2)|2X +

1

β
Ẽ

∣∣∣∣ε
(1)

λ

∣∣∣∣
2

Ṽ ∗
≤ c2 λ2(4.13)

provided that (4.4) holds. It thus follows from (4.10)–(4.13) that

(1− 2ρ̃λ) (Ẽ |δpk|2X + β Ẽ |δpk|2
Ṽ

) ≤ (1 + cλ) Ẽ |δpk−1|2X + c2 λ
3

for some positive constants c. Thus we obtain

sup
1≤k≤m

Ẽ |δpk|2X + β

m∑
k=1

λẼ |δpk|2
Ṽ
≤M e

c̃T − 1

c̃
λ2

for c̃ = 1 + c+ 2ρ̃.
The regularity assumption (4.4) of the solution to (1.7) can be verified under

certain smoothness assumptions on the functions f, σ, h, and the initial condition p0
(e.g., see [20]). Now the estimate (3.12) follows from Corollary 3.5, Lemma 4.1, and
Theorem 4.2.
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REGULARITY RESULTS FOR THE MINIMUM TIME FUNCTION
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Abstract. Under suitable controllability and smoothness assumptions, the minimum time func-
tion T (x) of a semilinear control system is proved to be locally Lipschitz continuous and semiconcave
on the controllable set. These properties are then applied to derive optimality conditions relating
optimal trajectories to the superdifferential of T .

Key words. time optimal control, semilinear parabolic problem, semiconcavity, optimality
conditions
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1. Introduction. In this paper we study a time optimal control problem for the
system

y′(t) = Ay(t) + f(y(t)) + u(t) (t > 0) , y(0) = x.

Here y belongs to a real separable Banach space X, A is the generator of an analytic
semigroup of negative type, f is a Lipschitz perturbation, and u(·) is a control taking
values in a closed set U ⊂ X. A model problem for such an equation is a semilinear
parabolic system under the action of a distributed control.

The time optimal control problem associated with this system consists of finding,
for any initial condition x ∈ X, the trajectories reaching in minimum time a given set
K ⊂ X, called the target set. If such a trajectory exists, it is called optimal for the
point x.

The history of this problem dates back to the works [17], [18], [20], [21], [5], [16],
[22] (see also [24]), where it was studied for linear systems (f ≡ 0) using the Pontryagin
maximum principle. The linear problem is also considered in [12] from the point of
view of dynamic programming. Nonlinear time optimal control problems in infinite
dimensions were treated in [6], [7], [14], [15] following the dynamic programming
approach. A comprehensive description of many of these results is given in [23].

In this paper we restrict our attention to the case where both the control set U
and the target K are closed balls in X. In addition, we require that the control set
be large enough to ensure local controllability on ∂K. Our approach can possibly be
extended to more general control systems, where K and U are smooth bounded sets
with nonempty interior, but we do not treat such cases here.

The main object of our analysis is the minimum time function T (x) of the above
system, defined as the infimum of the time taken to steer the trajectories of the
state equation from x to K. It is well known that this function provides the basis
of the dynamic programming method in optimal control. In section 3 we give the

∗Received by the editors March 5, 1998; accepted for publication (in revised form) July 14, 1999;
published electronically March 15, 2000.
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precise definition and state some basic properties of T (x). In section 4 we analyze the
regularity of the minimum time function. Our main result (Theorem 4.3) is that T
satisfies a semiconcavity estimate of the form

T (x) + T (y)− 2T

(
x+ y

2

)
≤ C|x− y|1+α

for some C ≥ 0, α ∈ ]0, 1]. This result holds under suitable regularity assumptions
on the norm of the space X and on the nonlinear term f which appears in the state
equation. We have to assume, in fact, that the norm of X is sufficiently smooth away
from 0 and that, roughly speaking, f is of class C1,α as a function from Y to X, where
Y ⊂ X is the domain of a suitable fractional power of −A. We could just assume
f ∈ C1,α(X,X), but this would be too restrictive for the application to the model
problem mentioned at the beginning. A similar semiconcavity result was obtained by
two of the authors in [11] for a finite dimensional setting; the main ideas in the proof
are similar, but the extension of the technique of [11] to infinite dimensions requires
a substantial improvement of the method.

Once we have proved the semiconcavity of T , we are in a position to apply the
regularity results on semiconcave functions proved in [2]. These results are recalled
in section 2 of this paper and concern the set of nondifferentiability (or singular set)
of a semiconcave function. In particular, the singular set can be covered by a count-
able family of Lipschitz surfaces in X. Moreover, it is possible to give conditions for
the propagation of singularities starting from a given point of nondifferentiability. In
the case of the minimum time function, these results become interesting in connec-
tion with the optimality conditions that we derive in section 5 of this paper. Our
main result (see Corollary 5.12 and Theorem 5.13) states that there is a one-to-one
correspondence between the optimal trajectories starting at a given point x and the
elements of a suitable generalized differential of T at x. In particular, it follows that
the differentiability points of T are exactly the starting points of a unique time opti-
mal trajectory. Therefore, the aforementioned result on the singular sets of T implies
that the initial conditions of multiple time optimal trajectories form a “small” set in
X. On the other hand, this set is in general nonempty even for a system associated
with a parabolic equation (see [1]).

2. Preliminaries. Throughout this paper we denote by X a real separable Ba-
nach space with separable dual X∗, and by

E = {ej}j∈N

a dense subset of X. Then, X is an Asplund space and, in particular, X possesses an
equivalent norm that is Fréchet differentiable on X \ {0}. We denote by | · | such a
norm, by 〈·, ·〉 the duality pairing between X and X∗, and by ‖ · ‖ the standard norm
of a linear operator between Banach spaces. For any R > 0 and x ∈ X, we set

BR(x) = {y ∈ X : |x− y| < R},
and we abbreviate BR = BR(0).

Let Ω ⊂ X be an open set and W another Banach space. We denote by C(Ω;W )
the space of all continuous functions g : Ω → W , and by C1(Ω;W ) the space of all
functions that are Fréchet differentiable in Ω with continuous derivative Dg. Further-
more, for any θ ∈ [0, 1], C1,θ(Ω;W ) stands for the set of all functions g ∈ C1(Ω;W )
with Hölder continuous derivative; that is

‖Dg(x)−Dg(z)‖ ≤ C|x− z|θ ∀x, z ∈ Ω
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for some constant C > 0. Finally, in the above notation, we drop the arrival set when
W = R.

We now recall the definition of a semiconcave function in Ω, a notion that is
classical in finite dimensions and that was applied to infinite dimensional problems in
[26], [8].

Definition 2.1. Given α ∈ ]0, 1], a function g ∈ C(Ω) is said to be semiconcave
with exponent α if, for any point x0 ∈ Ω, there exist ρ > 0 and C ≥ 0 such that

g(x) + g(y)− 2g

(
x+ y

2

)
≤ C|x− y|1+α

for all x, y ∈ Bρ(x0). We denote by SCα(Ω) the set of all functions g : Ω→ R which
are semiconcave with exponent α and we set SC(Ω) = ∪α∈ ]0,1]SCα(Ω).

Semiconcave functions share many properties with concave functions. For in-
stance, arguing as in the finite dimensional case (see e.g., [3]), it is easy to show that
any semiconcave function in Ω is locally Lipschitz continuous. Consequently, g is
Fréchet differentiable on a dense set by a result of [28], and the gradient Dg is locally
bounded. Now, let us denote by D∗g(x) the set of all points p ∈ X∗ for which a
sequence {xk}k∈N ⊂ Ω exists such that
(i) x = lim

k→∞
xk,

(ii) g is Fréchet differentiable at xk,
(iii) Dg(xk) weakly–* converges to p as k →∞.
In view of the above remarks we have that D∗g(x) �= ∅ for any x ∈ Ω .

Just like the concave case, semiconcave functions possess a natural notion of
generalized gradient, given by the superdifferential

D+g(x) =

{
p ∈ X∗ : lim sup

y→x

g(y)− g(x)− 〈p, y − x〉
|y − x| ≤ 0

}
∀x ∈ Ω.

Actually, a similar generalization of the gradient is the subdifferential of g defined as

D−g(x) =

{
p ∈ X∗ : lim inf

y→x

g(y)− g(x)− 〈p, y − x〉
|y − x| ≥ 0

}
.

However, for a semiconcave function, the superdifferential plays a more important role
than the subdifferential. Indeed, in view of the proposition below, D+g is nonempty at
every point. Therefore, given any x ∈ Ω, either D−g(x) is empty, or g is differentiable
at x.

Proposition 2.2. Let g ∈ SCα(Ω) for some α ∈ ]0, 1] and let x0 ∈ Ω. Then
D+g(x0) is nonempty and satisfies

D+g(x0) = coD∗g(x0),(2.1)

where co denotes the closed convex hull. Moreover, there exist R,C > 0 such that

g(y)− g(x)− 〈p, y − x〉 ≤ C|y − x|1+α ∀ y, x ∈ BR(x0), p ∈ D+g(x),(2.2)

〈p− q, y − x〉 ≤ 2C|y − x|1+α ∀ y, x ∈ BR(x0), p ∈ D+g(y), q ∈ D+g(x).(2.3)

For the proof of the above proposition the reader is referred to [8] for semiconcave
functions with exponent α = 1, the argument in the general case being similar.
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We now introduce the singular sets of a semiconcave function on X. Let P be a
subspace of X∗ and r > 0. We denote by BP

r the ball with radius r and center at
0 in P . We say that B is a ball of dimension n ∈ N in X∗ if there exist a subspace
P ⊂ X∗, with dimP = n, a covector p ∈ X∗, and a radius r > 0 such that

B = p+BP
r .(2.4)

Similarly, we say that B is a ball of codimension n in X∗ if (2.4) holds for a subspace
P such that codimP = n. Let g : Ω → R be a semiconcave function. We introduce
the following singular sets of g.

Definition 2.3. The set of all points x ∈ Ω such that D+g(x) fails to be a
singleton is called the singular set of g and is denoted by Σ(g). The points of Σ(g)
are called the singular points of g. Moreover, for any n ∈ N, n > 0 we denote by
Σn(g) (resp., Σ∞−n(g)) the set of all points x ∈ Ω such that D+g(x) contains a ball
of dimension n (resp., codimension n).

To study the singular set we will need the following definition (see e.g., [19]).
Definition 2.4. We will say that a set Σ ⊂ X is n rectifiable iff a bounded set

A ⊂ R
n and a Lipschitz function, f, exist so that

f : A→ Σ

is surjective. Moreover, we will say that a set Σ ⊂ X is countably n rectifiable iff

Σ =
⋃
j∈N

Qj(2.5)

where the sets Qj ⊂ X, j ∈ N, are n rectifiable.
By analogy with the previous definition, we will say that Σ ⊂ X is∞−n rectifiable

if a subspace Y ⊂ X, of codimension n, and a bounded set A ⊂ Y exist so that Σ is
the image of A under a Lipschitz map f. Similarly, we will say that Σ is countably
∞−n rectifiable if it can be represented as in (2.5) for some family of∞−n rectifiable
sets {Qj}. The following theorem is proved in [2].

Theorem 2.5. Let g ∈ SC(Ω) and fix n ∈ N, n > 0. Then,
(i) Σn(g) is countably ∞− n rectifiable;
(ii) Σ∞−n(g) is countably n rectifiable.

The following theorem, again proved in [2], describes the propagation of singular-
ities of a semiconcave function with exponent 1.

Theorem 2.6. Let X be a Hilbert space, let g ∈ SC1(Ω), and let x0 ∈ Σ(g). Let

p0 ∈ D+g(x0) \D∗g(x0) ,(2.6)

and suppose that, for some vector q ∈ X \ {0} and some T0 > 0,

p0 + tq /∈ D+g(x0) ∀0 < t ≤ T0 .(2.7)

Then, a number 0 < T ≤ T0 and two Lipschitz arcs x, p : [0, T ]→ X exist so that

(i) 〈x(t)− x0, q〉 < 0 ∀0 < t ≤ T,

(ii) (x(0), p(0)) = (x0, p0),

(iii) (x(t), p(t)) ∈ Σ(g)×D+g(x(t)) ∀t ∈ [0, T ] .

A point x0 ∈ Σ(g) for which x and p as above exist will be called a propagation point
of Σ(g).
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3. A time optimal control problem. Let us consider the controlled evolution
equation in X

{
y′(t) = Ay(t) + f(y(t)) + u(t), t > 0,

y(0) = x,
(3.1)

under the following assumptions:
(H1) A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup

of bounded linear operators on X, etA, satisfying

‖etA‖ ≤ e−ωt ∀t ≥ 0(3.2)

for some constant ω > 0;
(H2) f : X → X is a Lipschitz continuous function satisfying

|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ X,

f(0) = 0.

We assume that the control set U is a closed ball in X of the form

U = Br(3.3)

for some given r > 0. A measurable function u : [0,+∞[→ U will be called a control
strategy (or, simply a control). We denote by U the set of all control strategies. It is
well known that, for any x ∈ X and any control u, state equation (3.1) has a unique
mild solution. We recall that a mild solution of (3.1) is a function y ∈ C([0,∞[ ;X)
satisfying

y(t) = etAx+

∫ t

0

e(t−s)A[f(y(s)) + u(s)]ds , t ≥ 0.(3.4)

Such a solution is called the trajectory of system (3.1) starting from x with control u
and is denoted by y(·;x, u).

Remark 3.1. The assumption that ω in (H1) is positive is not restrictive, as one
can always reduce the system to this case by adding a bounded linear term to f .

Remark 3.2. Assumption (H1) implies (see e.g., [27]) that the fractional powers
of −A, denoted by (−A)θ, are well defined for any θ ∈ [0, 1] and satisfy

|(−A)θetAx| ≤ Mθ

tθ
|x| ∀x ∈ X, t > 0,(3.5)

|x| ≤M ′
θ|(−A)θx| ∀x ∈ D((−A)θ)(3.6)

for suitable constants Mθ,M
′
θ > 0. Moreover, a well-known interpolation inequality

(see e.g., [27]) ensures that, for any θ ∈ [0, 1
2 ], there exists κθ > 0 such that

|(−A)θx| ≤ |(−A)
1
2x|+ κθ|x| ∀x ∈ D((−A)

1
2 ) .(3.7)

We are interested in the time optimal control problem for system (3.1) with a
closed ball BR as a target. More precisely, for any x ∈ X and any control strategy u
we denote by

τ(x, u) = min{t ≥ 0 : y(t;x, u) ∈ BR} ∈ [0,+∞](3.8)
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the transition time from x to BR. We define the controllable set R to be the set of all
points x such that τ(x, u) < +∞ for some u. Then, for all x ∈ R, the time optimal
control problem consists of minimizing τ(x, u) over all controls u. A control u at which
τ(x, ·) attains the minimum is said to be optimal for x and the corresponding solution
y(·;x, u) of (3.1) is called an optimal trajectory.

The dynamic programming approach to the above problem is based on the prop-
erties of the value function — called minimum time function in this case — defined
as

T : R → [0,+∞[ , T (x) = inf
u∈U

τ(x, u).(3.9)

The minimum time function encompasses most of the information about the con-
trol problem. An important property of this function is the dynamic programming
principle which says that, for any x ∈ R and any control u,

T (x) ≤ t+ T (y(t;x, u)) ∀t ∈ [0, τ(x, u)] .(3.10)

Furthermore, equality holds in (3.10) iff u is optimal for x.
Our goal is to relate the optimal trajectories of the above problem to the structure

of superdifferentials of T . Such generalized differentials enjoy the properties that
we have described in the previous section, once it is shown that T is semiconcave.
Therefore, one of the main steps of our analysis will be to prove the semiconcavity of
T , which we do in the next section. For this purpose we impose, in addition to (H1)
and (H2), the conditions below.

(H3) The constants ω,L, r,R which appear in (H1), (H2), (3.3), and (3.8), resp.,
satisfy

0 < (L− ω)R < r.

(H4) There exists α ∈]0, 1] such that the norm in X is of class C1,α(X \BM ) , for
any M > 0.

(H5) The function f is Gâteaux differentiable at all points x ∈ X. The Gâteaux
differential δf(x) satisfies the following property: there exist θ1 ∈ ]0, 1/2[ , β ∈ ]0, 1],
and Ĉ > 0 such that

|f(x+ y)− f(x)− δf(x)y| ≤ Ĉ|(−A)θ1y|1+β(3.11)

for all x, y ∈ D((−A)θ1). Moreover, the map x �→ δf(x) is strongly continuous on X;
that is, for any sequence {xn} in X,

lim
n→∞xn = x∞ ⇒ lim

n→∞ δf(xn)x = δf(x∞)x ∀x ∈ X.(3.12)

Remark 3.3. The rightmost inequality in (H3) is a controllability assumption
and will ensure that R is an open neighbourhood of BR. The first inequality holds
provided L > ω and has been assumed only in order to simplify the exposition. In
fact, all the results of this paper hold in the case of L ≤ ω as well, and some of them
even in a stronger form. For instance, if L ≤ ω, one could prove that R = X.

Remark 3.4. Let us denote by d(x) the distance of x from the target

d(x) = inf
y∈BR

|y − x| = (|x| −R)+ .
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Then, from (H4) and the identity

|x+ h|+ |x− h| − 2|x| =
∫ 1

0

〈D|x+ th| −D|x− th|, h〉dt,

it follows that d is semiconcave on X \BR with exponent α. In addition, the numbers
C, ρ in Definition 2.1 can be chosen independently on x0 ∈ X \BR.

Condition (H4) holds true in several important examples. For instance, let X =
Lp(O) where p ∈]1,∞[ and O is a bounded domain R

n. Then, it is well known that
the norm satisfies (H4) with α = p− 1 if p ∈]1, 2[ and with α = 1 if p ∈ [2,∞[.

Remark 3.5. Hypothesis (H5) is trivially satisfied when f ∈ C1,β(X;X), since
we can take in this case δf = Df and any θ1 ∈ ]0, 1/2[. However, there are interesting
examples where f satisfies our assumptions without being Fréchet differentiable, as
shown in the next example. Let us also observe that the Lipschitz continuity of f and
property (3.11) imply that, for some constant L∗ > 0,

|f(x) + f(y)− 2f(z)| ≤ L∗(|(−A)θ1(x− y)|1+β + |x+ y − 2z|)(3.13)

for all x, y, z ∈ D((−A)θ1).
Example. Let O be a bounded domain in R

n with sufficiently smooth boundary,
and let φ ∈Lip(R) ∩ C1,1(R) be such that φ(0) = 0. In this example we show that
the control system associated with the parabolic state equation



yt(t, ξ) = ∆y(t, ξ) + φ(y(t, ξ)) + u(t, ξ), (t, ξ) ∈]0,+∞[×O ,

y(t, ξ) = 0, (t, ξ) ∈]0,+∞[×∂O ,

y(0, ξ) = x(ξ), ξ ∈ O,

(3.14)

rewritten in abstract form, satisfies (H1), (H2), and (H5).
Let us set X = L2(O), and define A : D(A) ⊂ X → X as

D(A) = W 2,2(O) ∩W 1,2
0 (O) ; Ax(ξ) = ∆x(ξ) (ξ ∈ O, x ∈ D(A)).

Moreover, consider the composition map f : X → X defined by

f(x)(ξ) = φ(x(ξ)), (ξ ∈ O, x ∈ X).

Then, (3.1) is the abstract version of system (3.14). The fact that A satisfies (H1) is
well known; (H2) is immediate to check. Let us show that (H5) is also satisfied. It is
well known (see e.g., [4]) that f is Gâteaux differentiable with

δf(y)(z)(ξ) = φ′(y(ξ))z(ξ) for any y, z ∈ X , ξ ∈ O,

but f is nowhere Fréchet differentiable unless φ is linear. On the other hand, if L and
M are the Lipschitz constants of φ and φ′, then, for any β ∈ [0, 1], we have that

||f(x+ y)− f(x)− δf(x)y||2L2(O)

=

∫
Ω

y2(ξ)

(∫ 1

0

(φ′(x(ξ) + λy(ξ))− φ′(x(ξ))) dλ
)2

dξ

≤
∫

Ω

y2(ξ)

(∫ 1

0

(|φ′(x(ξ) + λy(ξ))|+ |φ′(x(ξ))|) dλ
)2−2β (∫ 1

0

Mλ|y(ξ)|dλ
)2β

dξ

≤ (2L)2−2β(M/2)2β
∫

Ω

|y(ξ)|2+2βdξ = C||y||2(1+β)

L2+2β(O)
.
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Recalling that, by the Sobolev embedding theorem,

D((−A)θ) ⊂W 2θ,2(O) ⊂ L2n/(n−4θ)(O),

we obtain property (3.11) with

β = 1 , θ1 =
3

8
if n ≤ 3,

and with

β ∈
]
0,

1

n− 1

[
, θ1 =

1

4
if n > 3.

Finally, property (3.12) follows from the Lebesgue dominated convergence theorem.

In the next lemma we collect some basic properties about the trajectories of (3.1).

Lemma 3.6. Assume (H1) and (H2). Then the following properties hold.

(i) For any x ∈ X a control strategy u∗ exists such that the corresponding
trajectory of (3.1) satisfies

|y(t;x, u∗)| ≤ e(L−ω)t

(
|x| − r

L− ω

)
+

r

L− ω
(3.15)

for any 0 ≤ t ≤ ω−1 log(1 + r−1ω|x|).
(ii) For any x ∈ X and any control strategy u the corresponding trajectory of

(3.1) satisfies

|y(t;x, u)| ≤ e(L−ω)t

(
|x|+ r

L− ω

)
− r

L− ω
∀t ≥ 0 .(3.16)

(iii) For any x, z ∈ X and any control strategy u we have that

|y(t;x, u)− y(t; z, u)| ≤ e(L−ω)t|x− z| ∀t ≥ 0.(3.17)

(iv) Let θ ∈ [0, 1[ be given. Then the trajectories of (3.1) belong to the domain
of (−A)θ for any t > 0, and

|(−A)θy(t;x, u)| ≤ Mθ

tθ
|x|+

∫ t

0

Mθ

(t− s)θ
(L|y(s;x, u)|+ r)ds.(3.18)

Moreover, for any T0 > 0, a constant K = K(θ, T0) > 0 exists such that

|(−A)θ(y(t;x, u)− y(t; z, u))| ≤ K

tθ
|x− z|(3.19)

for any x, z ∈ X and t ∈ [0, T0].
(v) If in addition (H5) holds, then, for any T0 > 0, a constant k > 0 exists such

that

|y(t;x+ h, u) + y(t;x− h, u)− 2y(t;x, u)| ≤ k|h|1+β(3.20)

for every x, h ∈ X and t ∈ [0, T0].
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Proof. (i): Given x ∈ X, x �= 0, let us set, for t ≥ 0,

u∗(t) = − r

|x|e
t(A+ωI)x.

By (3.2), |u∗(t)| ≤ r for any t, and thus u∗ is an admissible control strategy. From
(3.4) we compute

y(t) =

(
1− r

|x|
eωt − 1

ω

)
etAx+

∫ t

0

e(t−s)Af(y(s)) ds.

Let us set

φ(t) = eωt|y(t)| .

Then, for any t ≤ ω−1 log(1 + r−1ω|x|),

φ(t) ≤
[
|x| − r

ω
(eωt − 1)

]
+

∫ t

0

eωs|f(y(s))| ds

≤ |x|+
∫ t

0

[Lφ(s)− reωs] ds.

Here we have used the Lipschitz assumption (H2) on f . We can now apply the
Gronwall inequality to obtain

φ(t) ≤ eLt|x|+ r

L− ω

(
eωt − eLt

)
,

which implies (3.15).
(ii)–(iii): These assertions can be derived by similar computations to those of (i).
(iv): Inequality (3.18) is a straightforward consequence of (3.4) and (3.5). In order to
prove (3.19), we apply properties (3.5) and (3.17) to obtain

|(−A)θ(y(t;x, u)− y(t; z, u))| ≤ Mθ

tθ
|x− z|+

∫ t

0

Mθ

(t− s)θ
|y(s;x, u)− y(s; z, u)|ds

≤ Mθ

tθ
|x− z|+Mθ|x− z|

∫ t

0

e(L−ω)s

(t− s)θ
ds

≤Mθ|x− z|
[
1

tθ
+ e(L−ω)T0

T 1−θ
0

1− θ

]
.

(v): By (3.2), (3.13), and (3.19), we obtain

|y(t;x+ h, u) + y(t;x− h, u)− 2y(t;x, u)|

=

∣∣∣∣
∫ t

0

e(t−s)A(f(y(s;x+ h, u)) + f(y(s;x− h, u))− 2f(y(s;x, u)))ds

∣∣∣∣

≤ L∗
∫ t

0

e−ω(t−s){|y(s;x+ h, u) + y(s;x− h, u)− 2y(s;x, u)|

+ |(−A)θ1(y(s;x+ h, u)− y(s;x− h, u))|1+β}ds
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≤ L∗
∫ t

0

e−ω(t−s)|y(s;x+ h, u) + y(s;x− h, u)− 2y(s;x, u)|ds

+L∗
∫ t

0

e−ω(t−s)K(θ1, T0)
1+β

s(1+β)θ1
|h|1+βds

≤ L∗
∫ t

0

e−ω(t−s)|y(s;x+ h, u) + y(s;x− h, u)− 2y(s;x, u)|ds +K ′|h|1+β

for some K ′ > 0. We conclude our proof by the Gronwall inequality.
Remark 3.7. From (ii) above and (H2) we conclude that, for any ρ > 0, a constant

Cρ > 0 exists such that

|f(y(t;x, u))| ≤ Cρ ∀t ∈ [0, 1]

for any |x| ≤ ρ and any control strategy u. Therefore, all trajectories starting from
x ∈ Bρ may be estimated from below as follows:

|y(t;x, u)| ≥ |etAx| − (Cρ + r)t ∀t ∈ [0, 1] .

The last inequality, together with the strong continuity of etA, implies that T (x) > 0
for any x ∈ R \BR.

The following proposition shows that, in a neighbourhood of the target, the min-
imum time function is bounded above by the distance function.

Proposition 3.8. Assume (H1), (H2), and (H3). Then, there exists a number
ρ ∈ ]0, r/(L− ω)−R[ such that

T (x) ≤ d(x)

r − (R + ρ)(L− ω)
(3.21)

for all points x satisfying d(x) ≤ ρ. Moreover, R is an open subset of X.
Proof. First of all, we fix ρ ∈ ]0, r/(L− ω)−R[ so that

1

L− ω
log

r
L−ω −R
r

L−ω − |x|
≤ ω−1 log(1 + r−1ω|x|)(3.22)

for any x ∈ X such that 0 < d(x) ≤ ρ. The existence of such a number ρ follows from
the fact that, taking the limit as |x| → R, the left-hand side of (3.22) tends to 0 while
the right-hand side tends to ω−1 log(1 + r−1ωR) > 0.

Now, let x ∈ X be fixed so that 0 < d(x) ≤ ρ, and let u∗ be the corresponding
control strategy, given by Lemma 3.6(i). Defining

t∗ =
1

L− ω
log

r
L−ω −R
r

L−ω − |x|
,

we can apply (3.15) with t = t∗ in light of (3.22), obtaining |y(t∗;x, u∗)| ≤ R. There-
fore, by an easy computation,

T (x) ≤ t∗ ≤ d(x)

r − |x|(L− ω)
.

This estimate, together with (3.17), easily implies that R is open.



926 PAOLO ALBANO, PIERMARCO CANNARSA, AND CARLO SINESTRARI

In section 6 we will use the following proposition. For a proof of this standard
result see, e.g., [23, p. 68].

Proposition 3.9. Assume (H1), (H2), (H5), and let y be a trajectory of (3.1).
Then, there exists a unique strongly continuous map G : ∆ → L(X), where ∆ :=
{(t, s) : 0 ≤ s ≤ t ≤ T}, such that

{
G(t, t) = I ∀t ∈ [0, T ]

G(t, r)G(r, s) = G(t, s) ∀r, s, t : 0 ≤ s ≤ r ≤ t ≤ T,
(3.23)

and

G(t, s)x = e(t−s)Ax+

∫ t

s

e(t−r)Aδf(y(r))G(r, s)x dr

= e(t−s)Ax+

∫ t

s

G(t, r)δf(y(r))e(r−s)Ax dr

for 0 ≤ s ≤ t ≤ T, x ∈ X.
Remark 3.10. By standard techniques one can show that the operator G above is

the evolution operator of the linearization of (3.1) along the trajectory y. Equivalently,
if y(·) = y(·;x, u), then, for any h ∈ X, we have that

y(t;x+ h, u)− y(t;x, u) = G(t, 0)h+ o(|h|) .(3.24)

4. Regularity of the minimum time function. In this section we prove that
the minimum time function T , defined in (3.9), is semiconcave. We begin showing a
preliminary regularity result, which yields, in particular, the local Lipschitz continuity
of T .

Theorem 4.1. Assume (H1), (H2), (H3), and let x0 ∈ R \ BR be fixed. Then,
for some δ > 0,

0 < m(δ) := inf
x∈Bδ(x0)

T (x) ≤ sup
x∈Bδ(x0)

T (x) =: M(δ) < +∞ .(4.1)

Moreover, for any θ ∈ [0, 1[ a constant Kθ = Kθ(x0) exists such that

|T (x)− T (z)| ≤ Kθ|(−A)−θ(x− z)| ∀x, z ∈ Bδ(x0).(4.2)

Proof. We first prove the rightmost inequality of (4.1); that is, we show that T
is bounded from above in some neighborhood of x0. Let u0 be a control such that
τ0 := τ(x0, u0) <∞. Recalling (3.17), we have that, for any x ∈ X,

d(y(τ0;x, u0)) ≤ |y(τ0;x, u0)− y(τ0;x0, u0)| ≤ e(L−ω)τ0 |x− x0| .

Now, let

δ0 = ρe(ω−L)τ0 ,

where ρ ∈ ]0, r/(L − ω) − R[ is given by Proposition 3.8. Then, from the dynamic
programming principle and (3.21) we obtain

T (x) ≤ τ0 + T (y(τ0;x, u0)) < τ0 +
ρ

r − (R + ρ)(L− ω)
∀x ∈ Bδ0(x0),
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and this shows that M(δ0) < +∞. We now show that there exist numbers δ1 ∈ ]0, δ0]
and C > 0 such that

|T (x)− T (z)| ≤ C|x− z| ∀x, z ∈ Bδ1(x0) .(4.3)

Let us define

δ1 = min
{ρ

2
e(ω−L)M(δ0), δ0

}

and consider two points x, z ∈ Bδ1(x0) with T (x) < T (z). Then, for any ε ∈ ]0, T (z)−
T (x)[ a control uε exists such that

τ(x, uε) < T (x) + ε < T (z) ≤M(δ0).

Let us set for simplicity x′ = y(τ(x, uε);x, uε), z
′ = y(τ(x, uε); z, uε). From the dy-

namic programming principle it follows that

|T (z)− T (x)| = T (z)− T (x) ≤ T (z′) + ε .(4.4)

Now, estimate (3.17) gives

d(z′) ≤ |x′ − z′| ≤ e(L−ω)M(δ0)|x− z| < ρ.

Then we can apply Proposition 3.8 to obtain

|T (z)− T (x)| ≤ T (z′) + ε ≤ |x′ − z′|
r − (R + ρ)(L− ω)

+ ε

≤ e(L−ω)M(δ0)

r − (R + ρ)(L− ω)
|x− z|+ ε .(4.5)

Since ε is arbitrary, (4.3) follows. We note that (4.3) is a special case of (4.2), namely
(4.2) for θ = 0. Recalling Remark 3.7, such a Lipschitz estimate yields the lower
bound in (4.1) for a suitably small δ ∈]0, δ1[.

In order to complete the proof it remains to prove (4.2) for θ ∈]0, 1[. For this
purpose, we note that, taking x, z, and uε as above,

|y(t;x, uε)− y(t; z, uε)|

≤
∫ t

0

e−ω(t−s)|f(y(s;x, uε))− f(y(s; z, uε))|ds + |etA(x− z)|

≤ L

∫ t

0

e−ω(t−s)|y(s;x, uε)− y(s; z, uε)|ds +
Mθ

tθ
|(−A)−θ(x− z)| .

Then, applying the Gronwall inequality, we obtain

|y(t;x, uε)− y(t; z, uε)| ≤
[
Mθ

tθ
+ LMθ

∫ t

0

e(L−ω)(t−s)

sθ
ds

]
|(−A)−θ(x− z)|

≤
[

Mθ

m(δ)θ
+

LMθ

1− θ
M(δ)1−θe(L−ω)M(δ)

]
|(−A)−θ(x− z)|
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for all t ∈ [T (x), τ(x, uε)]. For t = τ(x, uε), the left-hand side of the inequality is
|x′ − z′|. Arguing as in (4.5), we then conclude that

|T (x)− T (z)| ≤ Kθ|(−A)−θ(x− z)|+ ε

for some Kθ > 0. Since ε is arbitrary, the proof is complete.
Remark 4.2. From estimate (4.2) it is easy to deduce that D+T (x) ⊂ D((−A∗)θ)

for all θ ∈ [0, 1[ . Moreover, if D((−A)θ) is compactly embedded into X for some
θ ∈ ]0, 1[ , then (4.2) implies that T is sequentially weakly continuous near x0.

We can now prove our semiconcavity result for the minimum time function.
Theorem 4.3. Let assumptions (H1), (H2), (H3), (H4), and (H5) be satisfied,

and let α and β be as in (H4) and (H5), resp. Then the minimum time function T
belongs to SCγ(R \BR), where γ = min{α, β}.

Proof. Let x ∈ R\BR be fixed. By (4.3) we can choose m∗,M∗, δ∗ > 0 such that

0 < m∗ ≤ inf
x∈Bδ∗ (x)

T (x) < sup
x∈Bδ∗ (x)

T (x) ≤M∗ < +∞(4.6)

and

2δ∗ < ρeM
∗(ω−L) ,(4.7)

where ρ is given by Proposition 3.8. From (3.17) we obtain that, for all x, z ∈ Bδ∗(x)
and all u ∈ U ,

|y(t;x, u)− y(t; z, u)| < ρ , t ∈ [0,M∗] .(4.8)

Moreover, by (3.18), for any θ ∈ [0, 1[ there exists Cθ > 0 such that

|(−A)θy(t;x, u)| ≤ Cθ(4.9)

for all x ∈ Bδ∗(x), all u ∈ U , and all t ∈ [m∗/2, T (x)].
Let us now take x, x + h, x− h ∈ Bδ(x), where δ ∈ ]0, δ∗] is a number which will

be specified later in the proof. We have to prove that

T (x+ h) + T (x− h)− 2T (x) ≤ C|h|1+γ(4.10)

for some constant C > 0 independent of x, h.
Without loss of generality, we can assume the existence of an optimal control, u,

for x, i.e.,

T (x) = τ(x, u) .

In the general case the conclusion follows by an approximation argument, as in the
proof of Proposition 4.1.

We observe that, if T (x) ≥ max{τ(x− h, u), τ(x+ h, u)}, then (4.10) is trivial as

T (x+ h) + T (x− h)− 2T (x) ≤ τ(x− h, u) + τ(x+ h, u)− 2T (x) ≤ 0 .

Therefore, it is enough to consider the two cases T (x) ≤ min{τ(x− h, u), τ(x+ h, u)}
and τ(x− h, u) < T (x) < τ(x+ h, u). We will denote by c0, c1, . . . positive constants,
independent of x and h.

Case 1. Suppose that

T (x) ≤ min{τ(x− h, u), τ(x+ h, u)}.(4.11)
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Let us set

x0 = y(T (x);x+ h, u), x1 = y(T (x);x, u), x2 = y(T (x);x− h, u).

Then, by definition, x1 ∈ ∂BR. From the dynamic programming principle, Proposi-
tion 3.8, and property (4.8), we obtain

T (x+ h) + T (x− h)− 2T (x) ≤ T (x0) + T (x2) ≤ d(x0) + d(x2)

r − (R + ρ)(L− ω)
.

In addition, from (3.17), (3.20), and the semiconcavity of d in X \ BR (see Remark
3.4) we deduce

d(x0) + d(x2) ≤ 2d

(
x0 + x2

2

)
+ c0|x0 − x2|1+α

≤ |x0 + x2 − 2x1|+ c0|x0 − x2|1+α ≤ c1|h|1+β + c2|h|1+α.

This proves (4.10) in this case.
Case 2. Suppose that

τ(x− h, u) < T (x) < τ(x+ h, u).(4.12)

Before starting our analysis let us point out that the main ideas of the proof are
basically the same of the previous case. We will again exploit the regularity of f , the
semiconcavity of the distance function, and the estimate of T near the target given
by Proposition 3.8. However, if we proceed as in Case 1 and let the points x − h
and x+ h evolve according to a control u which is optimal for x, we obtain no useful
information. We have to use instead controls which are suitable rescalings of u; this
choice takes into account the fact that, by (4.12), the points x−h and x+h require a
different amount of time to approach the target. For this reason, the analysis of this
case is longer and requires more delicate estimates than the previous one.

Let us first set

τ0 =
1

2
τ(x− h, u)

and

z0 = y(τ0;x− h, u), z1 = y(τ0;x, u), z2 = y(τ0;x+ h, u) .

We note that, for j = 0, 1, 2, zj ∈ D((−A)θ) for all θ ∈ [0, 1[ in light of (4.9). In fact,
this gain in regularity is the reason why we replace the points x − h, x, x + h with
z0, z1, z2. By definition, we have that

T (z0) ≤ τ0.

From the dynamic programming principle and (4.12) we obtain

τ0 + T (z1) = T (x) > 2τ0 ≥ τ0 + T (z0),

and so

T (z1) > T (z0) .(4.13)
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Let us abbreviate

Tj = T (zj), j = 0, 1, 2.

Again by dynamic programming, we deduce that

T (x− h) + T (x+ h)− 2T (x) ≤ T0 + T2 − 2T1 .(4.14)

If T2 − T1 ≤ T1 − T0, then (4.10) follows from (4.14). Assume, on the contrary, that
T2 − T1 > T1 − T0. Then a number a exists such that

a ∈
]
T1 − T0

T1
,
T2 − T1

T1

[⋂
]0, 1[ .(4.15)

Indeed the above set can be empty only if (T1 − T0)/T1 ≥ 1 or if (T2 − T1)/T1 ≤ 0.
But both possibilities are excluded since T0 > 0 and T2− T1 > T1− T0 > 0 by (4.13).

Next, having fixed a as in (4.15), we define

u1(t) = u(t+ τ0), u0(t) = u1

(
t

1− a

)
, u2(t) = u1

(
t

1 + a

)
,

and

zj(t) = y(t; zj , uj) , j = 0, 1, 2.

Notice that, by (4.15), (1 + a)T1 < T2 and (1− a)T1 < T0. We now claim that

d(z2((1 + a)T1)) ≤ ρ, d(z0((1− a)T1)) ≤ ρ .(4.16)

Assuming for a moment that (4.16) holds, we deduce from Proposition 3.8 and from
the semiconcavity of d that

T2 + T0 − 2T1 ≤ T (z2((1 + a)T1)) + T (z0((1− a)T1))

≤ 1

r − (R + ρ)(L− ω)
[d(z2((1 + a)T1)) + d(z0((1− a)T1))]

≤ 1

r − (R + ρ)(L− ω)
2d

(
z2((1 + a)T1) + z0((1− a)T1)

2

)

+c1|z2((1 + a)T1)− z0((1− a)T1)|1+α .(4.17)

Let us now prove our claim (4.16). To this end, define

ζ1(t) = z2((1 + a)t)− z1(t), ζ2(t) = z0((1− a)t)− z1(t) .(4.18)

We note that ζ1(t) is the solution of the problem



ζ ′1(t) = (1 + a) {Az2((1 + a)t) + f(z2((1 + a)t)) + u1(t)}
−{Az1(t) + f(z1(t)) + u1(t)} ,

ζ1(0) = z2 − z1 .

Hence, we have that

ζ1(t) = etA(z2 − z1) +

∫ t

0

e(t−s)A{f(z2((1 + a)s))− f(z1(s))} ds

+ a

∫ t

0

e(t−s)A{Az2((1 + a)s) + f(z2((1 + a)s)) + u1(s)} ds ,
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which yields

|ζ1(t)| ≤ e−ωt|z2 − z1|+ L

∫ t

0

e−ω(t−s)|ζ1(s)|ds + aϕ(t),(4.19)

where we have set ϕ(t) =
∫ t
0
e(t−s)A (Az2((1 + a)s) + f(z2((1 + a)s)) + u1(s)) ds. Us-

ing (4.9), we obtain

|ϕ(t)| ≤
∫ t

0

(
C1−θMθ

(t− s)θ
+ e−ω(t−s)(LC0 + r)

)
ds

≤ C1−θMθ

1− θ
t1−θ + t(LC0 + r) ≤ c2(1 + t)

for some c2 > 0. Now, the Gronwall inequality gives

|ζ1(t)| ≤ e−ωt|z2 − z1|+ ac2(1 + t)

+L

∫ t

0

e(L−ω)(t−s) (e−ωs|z2 − z1|+ ac2(1 + s)
)
ds ,(4.20)

whence, by (3.17),

|ζ1(T1)| ≤ 2δeM
∗(L−ω) +ac2(1+M∗)+LM∗e(L−ω)M∗ {

2δeM
∗(L−ω) + ac2(1 +M∗)

}
.

The above inequality can be rewritten as

|ζ1(T1)| ≤ c3(δ + a)(4.21)

for some c3 > 0. Recalling that T1 = T (x)− 1
2τ(x− h, u) we obtain from (4.12)

T1 ≥ 1

2
T (x) ≥ 1

2
m∗.

The Lipschitz continuity of T (·), together with (4.15) and (3.17), yields

a ≤ T2 − T1

T1
≤ c4|z2 − z1|

m∗ ≤ c5|h| ≤ 2c5δ.(4.22)

Thus, from inequality (4.21) we conclude that if δ ∈ ]0, δ∗] is fixed small enough, then

|ζ1(T1)| ≤ ρ.

This inequality implies our claim (4.16) as far as z2(·) is concerned. To obtain the
conclusion for z0(·), it suffices to replace ζ1 by ζ2 in the above argument.

It now remains to estimate the right-hand side in (4.17). We first observe that
the inequalities in (4.22) imply that both a and |z2 − z1| are of order O(|h|). From
inequality (4.20) we deduce that

|ζ1(t)| < c6|h|, t ∈ [0, T1].(4.23)

An analogous property holds for |ζ2(t)|, t ∈ [0, T1]. We then obtain

|z2((1 + a)t)− z0((1− a)t)|1+α = |ζ1(t)− ζ2(t)|1+α ≤ 4c6|h|1+α(4.24)
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for any t ∈ [0, T1]. In view of (4.17), our proof will be concluded if we show that

d

(
z2((1 + a)T1) + z0((1− a)T1)

2

)
≤ c|h|1+β(4.25)

for some constant c > 0. As a first step we show that, for some c7 > 0,

|(−A)θ1(z2((1 + a)t)− z0((1− a)t))| ≤ c7|h|t−θ1 , ∀t ∈ [0, T1],(4.26)

with θ1 as in (3.13). Indeed, set η(t) = z2((1 + a)t)− z0((1− a)t), and observe that

η(t) = ζ1(t)− ζ2(t)

= etA(z2 − z0) +

∫ t

0

e(t−s)A{f(z2((1 + a)s))− f(z0((1− a)s))}ds

+ a

∫ t

0

e(t−s)AA(z2((1 + a)s)− z0((1− a)s))ds

+ a

∫ t

0

e(t−s)A{2u1(s) + f(z2((1 + a)s)) + f(z0((1− a)s))}ds .

Then

|(−A)θ1η(t)| ≤ Mθ1

tθ1
|z2 − z0|+ LMθ1

∫ t

0

|η(s)|
(t− s)θ1

ds

+ a

∫ t

0

|(−A)1+θ1e(t−s)A(z2((1 + a)s) + z0((1− a)s))|ds

+ a

∫ t

0

|(−A)θ1e(t−s)A(f(z2((1 + a)s)) + f(z0((1− a)s)))|ds

+ 2a

∫ t

0

|(−A)θ1e(t−s)Au1(s)|ds.(4.27)

We recall that both |z2 − z1| and a are of order O(|h|). The last two integrals in
(4.27) are easily estimated using (3.5) and the boundedness of z0, z2, u1. In addition,
we have, by (3.5) and (4.9),

a

∫ t

0

|(−A)1+θ1e(t−s)A(z2((1 + a)s) + z0((1− a)s))|ds

≤ a

∫ t

0

|(−A)
1+θ1

2 e(t−s)A(−A)
1+θ1

2 (z2((1 + a)s) + z0((1− a)s))|ds

≤ a

∫ t

0

c8(t− s)−
1+θ1

2 ds ≤ c9a.

Finally, equality (4.24) shows that |η(t)| = O(|h|), and our claim (4.26) follows.
Let us now define ξ(t) = z0((1 − a)t) + z2((1 + a)t) − 2z1(t) and note that, by

(3.20) we have ξ(0) ≤ c10|h|1+β for some c10 > 0. Moreover,
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ξ′(t) = (1− a){Az0((1− a)t) + f(z0((1− a)t)) + u1(t)}
+ (1 + a){Az2((1 + a)t) + f(z2((1 + a)t)) + u1(t)}
−2{Az1(t) + f(z1(t)) + u1(t)}

= Aξ(t) + a{A(z2((1 + a)t)− z0((1− a)t)) + f(z2((1 + a)t))− f(z0((1− a)t))}
+ (f(z0((1− a)t)) + f(z2((1 + a)t))− 2f(z1(t)).

Hence,

ξ(t) = etAξ(0) +

∫ t

0

2e(t−s)A
{
f

(
z0((1− a)t) + z2((1 + a)t)

2

)
− f(z1(s))

}
ds

+

∫ t

0

e(t−s)A {f(z0((1− a)s)) + f(z2((1 + a)s))

−2f
(
z0((1− a)t) + z2((1 + a)t)

2

)}
ds

+ a

∫ t

0

e(t−s)A(f(z0((1− a)s))− f(z2((1 + a)s))ds + a

∫ t

0

e(t−s)AAη(s)ds.

Recalling the Lipschitz continuity of f and formula (3.13), we obtain

|ξ(t)| ≤ c10|h|1+β + L

∫ t

0

|ξ(s)|ds+

∫ t

0

L∗|(−A)θ1η(s)|1+β ds

+ aL

∫ t

0

|η(s)|ds+M1−θ1

∫ t

0

1

(t− s)1−θ1
|(−A)θ1η(s)|ds .

Now, using (4.24), (4.26), and the Gronwall inequality, we conclude that

|ξ(t)| ≤ c11|h|1+β , t ∈ [0, T1],(4.28)

which implies (4.25) and completes our proof.
Since the minimum time function T is semiconcave, its singular set enjoys the

properties stated in Theorem 2.5. In the next section, we will use Theorem 2.6 to
derive a criterion for the propagation of the singularities of T .

5. Optimality conditions. In this section we use the fact that T is semiconcave
to derive some optimality conditions for the minimum time problem. From now on,
we will suppose that all assumptions (H1)–(H5) are satisfied, and, moreover, that

(H6)X is a Hilbert space;
(H7) etA is a compact operator for every t > 0;
(H8) A is self-adjoint;
(H9) a constant L̂ > 0 exists such that

|[δf(x)− δf(y)]z| ≤ L̂|(−A)θ1(x− y)||(−A)θ1z| ∀x, y, z ∈ D((−A)θ1),(5.1)

where θ1 is given by (H5). In what follows we omit recalling the above hypotheses.
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Remark 5.1. We note that, if (H6) holds, then assumption (H4) is satisfied with
α = 1. Moreover, (H9) yields estimate (3.11) in (H5) with β = 1. In addition, (H1)
implies that

〈Ax, x〉 ≤ −ω|x|2 ∀x ∈ D(A).(5.2)

Remark 5.2. It is well known that the parabolic system (3.14) satisfies (H7) and
(H8). Moreover, (H9) holds if n ≤ 3. In fact, in this case, θ1 ∈ ]0, 1/2[ exists such
that W 2θ1,2(O) ⊂ L4(O). Then

|[δf(x)− δf(y)]z| ≤ L′||x− y||L4(O)||z||L4(O) ≤ L̂||x− y||W 2θ1,2(O)||z||W 2θ1,2(O).

We will now begin to analyze properties of optimal controls and optimal trajec-
tories for problem (3.9). The existence of such optimal pairs can be proved, arguing
as in [7, p. 365]. Let then y(·) be an optimal trajectory starting from a given point
x ∈ R. We consider the adjoint system associated with y

p′(t) = −Ap(t)− (δf(y(t)))∗p(t), t ∈ ]0, T (x)](5.3)

together with the transversality condition

p(T (x)) =
y(T (x))

rR + |(−A)
1
2 y(T (x))|2 − 〈f(y(T (x))), y(T (x))〉 .(5.4)

We observe that the right-hand side of (5.4) is well defined. In fact, y(T (x)) ∈
D((−A)1/2) by Lemma 3.6(iv); in addition, by (H2), (H3), and (5.2), we have that

rR + |(−A)
1
2 y(T (x))|2 − 〈f(y(T (x))), y(T (x))〉

≥ rR + (ω − L)|y(T (x))|2 = R(r + (ω − L)R) > 0.

Moreover, applying Proposition 3.9, we can check easily that problem (5.3)–(5.4) has
a unique solution given by

p(t) =
G∗(T (x), t)y(T (x))

rR + |(−A)
1
2 y(T (x))|2 − 〈f(y(T (x))), y(T (x))〉 .(5.5)

Such a solution will be called the dual arc associated with y(·). The following inclusion
is interesting in itself and has several important consequences.

Theorem 5.3. Let y(·) = y(·;x, u) be a time optimal trajectory for x and p be
the dual arc associated with y(·). Then

p(t) ∈ D+T (y(t))

for any t ∈ [0, T (x)[ .
To prove the above theorem we need a technical lemma.
Lemma 5.4. Let α ∈ [0, 1[, θ ∈ ]0, 1 − α[ and T > 0 be fixed. Then a constant

C > 0 exists such that

|(−A)α(y(t;x, u))− x)| ≤ C(1 + |(−A)θ+αx|)tθ(5.6)

for all x ∈ D((−A)θ+α) ∩B2R, for all controls u ∈ U and for all t ∈ [0, T ].
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Proof. First of all we note that

|(−A)α(y(t;x, u))− x)| ≤ |(−A)α(etA − I)x)|

+

∣∣∣∣
∫ t

0

(−A)αe(t−s)A(f(y(s;x, u)) + u(s))ds

∣∣∣∣ .
In addition we have, using (3.5),

|(−A)α(etA − I)x)| =
∣∣∣∣
∫ t

0

(−A)1+αeσAxdσ

∣∣∣∣

=

∣∣∣∣
∫ t

0

(−A)1−θeσA(−A)θ+αxdσ

∣∣∣∣

≤M1−θ|(−A)θ+αx| t
θ

θ
.

On the other hand, using (H2) and (3.16), we obtain that there exists c1 > 0 such
that |f(y(s;x, u))+u(s)| < c1 for any x ∈ B2R, s ∈ [0, T ] and u ∈ U . Therefore, using
again (3.5), we find

∣∣∣∣
∫ t

0

(−A)αe(t−s)A(f(y(s;x, u)) + u(s))ds

∣∣∣∣ ≤Mαc1

∫ t

0

ds

sα
≤ c2t

θ,

which implies the conclusion.
Proof of Theorem 5.3. It is enough to prove the result for the initial time t = 0.

In fact, if t0 ∈ ]0, T (x)[ , then, by the dynamic programming principle, the restriction
of y(·) to the interval [t0, T (x)] is an optimal trajectory for the point y(t0) and the
restriction of p(·) to the same interval is the associated dual arc. Thus, knowing that
the inclusion holds for the initial time yields that p(t0) ∈ D+T (y(t0)).

Therefore it suffices to show that p(0) ∈ D+T (x), or, equivalently, that

T (x+ h)− T (x)− 〈p(0), h〉 ≤ o(|h|).
For simplicity we set

T := T (x) and σ := rR + |(−A)
1
2 y(T )|2 − 〈f(y(T )), y(T )〉.

Then, by (5.5), 〈p(0), h〉 = 〈σ−1y(T ), G(T, 0)h〉. Therefore, all we need to show is the
fact that

T (x+ h)− T (x)−
〈y(T )

σ
,G(T, 0)h

〉
≤ o(|h|) ,(5.7)

where h ∈ X is sufficiently small. Let us consider the trajectories yh(t) := y(t;x+h, u).
In order to prove (5.7), we have to distinguish two cases.

Case 1. Suppose that

τ(x+ h, u) =: th < T (x).

Then

0 < T − th ≤ T (x)− T (x+ h) = O(|h|).(5.8)
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We note that

d(y(th)) =
〈y(T )

R
, y(th)− y(T )

〉
+O(|y(th)− y(T )|2).(5.9)

Now, Lemma 5.4 (with α = 0 and x = y(th)) implies that |y(T )−y(th)| = O((T−th)
θ)

for some θ > 1/2, and so |y(T )− y(th)|2 = o(|h|). Moreover, we have that

〈y(T )

R
, y(th)− y(T )

〉
= −

∫ T

th

d

dt

〈y(T )

R
, y(t)

〉
dt

= −
∫ T

th

〈y(T )

R
,Ay(t) + f(y(t)) + u(t)

〉
dt

≤ −
∫ T

th

{〈y(T )

R
,Ay(t) + f(y(t))

〉
− r

}
dt

= (T − th)

{
|(−A)

1
2 y(T )|2
R

− 〈y(T ), f(y(T ))〉
R

+ r

}

−
∫ T

th

〈
(−A)

3
4
y(T )

R
, (−A)

1
4 (y(T )− y(t))

〉
dt

+

∫ T

th

〈y(T )

R
, f(y(T ))− f(y(t))

〉
dt = (I)h + (II)h + (III)h .

From Lemma 5.4 we obtain that |(−A)α(y(t) − y(T ))| → 0 as t → T for any α ∈
[0, 1/2[ . Since T − th = O(|h|) by (5.8), we have that (II)h+(III)h = o(|h|) as h→ 0.
Thus (5.9) implies that

d(y(th)) ≤ (T − th)σ

R
+ o(|h|) .

Then, we obtain from (5.8)

T (x+ h)− T (x) ≤ th − T ≤ −Rd(y(th))

σ
+ o(|h|) .(5.10)

Next, by (3.24),

d(y(th)) =

〈
yh(th)

R
, y(th)− yh(th)

〉
+O(|y(th)− yh(th)|2)

=

〈
y(T )

R
, y(th)− yh(th)

〉
+

〈
y(th)− y(T )

R
, y(th)− yh(th)

〉

+O(|y(th)− yh(th)|2)

= −
〈
y(T )

R
,G(th, 0)h

〉
+ o(|h|) = −

〈
y(T )

R
,G(T, 0)h

〉
+ o(|h|),

which, together with (5.10), proves claim (5.7) in this case.
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Case 2. Suppose that

τ(x+ h, u) > T (x).

For simplicity we set xh = y(T (x);x + h, u), and we note that xh �∈ BR. Then, the
dynamic programming principle gives

T (x+ h)− T (x) ≤ T (xh).

Our goal is to estimate T (xh) with d(xh). Since xh = y(T (x)) +G(T (x), 0)h+ o(|h|)
by (3.24), we have

d(xh) =
〈y(T (x))

R
,G(T (x), 0)h

〉
+ o(|h|).

Therefore, to prove (5.7) in this case, we only need to show that

T (xh) ≤ Rd(xh)

σ
+ o(|h|) .(5.11)

For this purpose, we consider the problem

{
y′h(t) = Ayh(t) + f(yh(t)) + u∗(t), t > 0,

yh(0) = xh ,
(5.12)

where u∗ is a feedback control of the form u∗(t) = −ryh(t)/|yh(t)|. We are interested
in studying the solution of system (5.12) only for |yh(t)| ≥ R; hence we can consider
the system as a semilinear evolution equation with a Lipschitz nonlinearity. First of
all, observe that, by (H2) and (5.2),

d

dt

|ȳh(t)|2
2

= 〈Aȳh(t) + f(ȳh(t)), ȳh(t)〉 − r|ȳh(t)|
≤ (L− ω)|ȳh(t)|2 − r|ȳh(t)|.

If |h| is small enough, then |xh| ≤ r + |y(T (x))− xh| < R. Then, from (H3) and the
above inequality it follows that τ(xh, u

∗) < +∞ for |h| small, and that τ(xh, u
∗)→ 0

as h→ 0. Let us set, for simplicity, τh = τ(xh, u
∗) . Then,

d(xh) =
〈yh(τh)

R
, xh − yh(τh)

〉
+O(|xh − yh(τh)|2)

= −
∫ τh

0

d

dt

〈yh(τh)
R

, yh(t)
〉
dt +O(|xh − yh(τh)|2)

= −
∫ τh

0

〈yh(τh)
R

,Ayh(t) + f(yh(t))− r
yh(t)

|yh(t)|
〉
dt +O(|xh − yh(τh)|2).

Arguing as in Case 1 and applying Lemma 5.4, we obtain

d(xh) =

∫ τh

0

σ

R
dt + o(|h|) =

τh σ

R
+ o(|h|) ,

which implies (5.11) and concludes our proof.
We now state the Pontryagin maximum principle for our control system.
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Proposition 5.5. Let y(·) = y(·;x, u) be an optimal trajectory for x and p(t) be
the corresponding dual arc. Then, p(t) �= 0 for all t ∈ [0, T (x)[ , and

u(t) = −r p(t)

|p(t)|(5.13)

for almost everywhere (a.e.) t ∈ [0, T (x)].
Proof. The maximum principle is a classical result in the theory of optimal control.

For the minimum time problem, it is well known (see e.g., [7, p. 367]) that there exists
at least one arc p(·) solution of (5.3) such that (5.13) holds. In our particular case,
since the target set is a ball, we can prescribe the final condition for p(·) to be a
normal vector to the ball at the terminal point of the trajectory, i.e., any scalar
multiple of y(T (x)). This can be proved as in the finite dimensional case (see [9]).
The normalization in the transversality condition (5.4) is chosen in such a way that
Theorem 5.3 holds.

The fact that p(t) �= 0 for any t is not obvious a priori. In fact, (5.3) is, in
general, ill posed forward in time as −A fails to be the generator of a C0 semigroup.
Nevertheless, a forward uniqueness property is proved in [10, Theorem A.1] for such
equations, which ensures that p(t) never vanishes if the final condition is nonzero, as
in (5.4).

Coupling state equation (3.1) with the adjoint system (5.3) and using (5.13), we
obtain the Hamiltonian form of the maximum principle


y′(t) = Ay(t) + f(y(t))− r

p(t)

|p(t)|

p′(t) = −Ap(t)− (δf(y(t)))∗p(t) .

(5.14)

Once again, we note that the Cauchy problem for the above system is, in general, ill
posed. However, as we show in the next proposition, the system satisfies a forward
uniqueness property like the one recalled in the previous proof for the adjoint equation
(5.3).

Proposition 5.6. Given x, q ∈ X, with q �= 0 and T > 0, there exists at most
one pair (y, p) : [0, T ] → X × (X \ {0}) which solves system (5.14) in [0, T [, and
satisfies the initial conditions {

y(0) = x

p(0) = q .
(5.15)

The following proof uses a technique introduced by [25]; this method was adapted
to systems by [13], in a different situation from the one of interest in this paper.

Proof. Suppose that there exist two solutions, say (y1(t), p1(t)) and (y2(t), p2(t)),
of problem (5.14)–(5.15). Define ȳ(t) := y2(t) − y1(t) and p̄(t) := p2(t) − p1(t). We
note that the pair (ȳ(t), p̄(t)) is a solution of the system


ȳ′(t) = Aȳ(t) + f(y2(t))− f(y1(t))− r

p2(t)

|p2(t)| + r
p1(t)

|p1(t)| ,

p̄′(t) = −Ap̄(t)− δf(y2(t))
∗p2(t) + δf(y1(t))

∗p1(t)

(5.16)

for t ∈]0, T [, with initial conditions {
ȳ(0) = 0,

p̄(0) = 0.
(5.17)
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Now, let us take a function θ ∈ C1(R) such that θ(t) = 1 for 0 ≤ t ≤ T
2 , θ(t) = 0 for

t = T and |θ′(t)| ≤ 4
T . We set

z(t) := e
k(t−T )2

2 θ(t)ȳ(t) and q(t) := e
k(t−T )2

2 θ(t)p̄(t).

We have that 


z′(t) = Az(t) + k(t− T )z(t) + φ1(t) ,

z(0) = z(T ) = 0,

q′(t) = −Aq(t) + k(t− T )q(t) + φ2(t) ,

q(0) = q(T ) = 0,

(5.18)

where

φ1(t) = e
k(t−T )2

2 θ(t)

(
f(y2(t))− f(y1(t))− r

p2(t)

|p2(t)| + r
p1(t)

|p1(t)|
)

+e
k(t−T )2

2 θ′(t)ȳ(t)(5.19)

and

φ2(t) = e
k(t−T )2

2 θ(t)(δf(y1(t))
∗p1(t)− δf(y2(t))

∗p2(t)) + e
k(t−T )2

2 θ′(t)p̄(t) .(5.20)

Then, multiplying the first equation of system (5.18) by z′(t) and the second equation
by q′(t) we get

|z′(t)|2 =
1

2

d

dt
{〈Az(t), z(t)〉+ k(t− T )|z(t)|2} − k

2
|z(t)|2 + 〈φ1(t), z

′(t)〉

and

|q′(t)|2 =
1

2

d

dt
{〈−Aq(t), q(t)〉+ k(t− T )|q(t)|2} − k

2
|q(t)|2 + 〈φ2(t), q

′(t)〉.

Integrating the equations above on [0, T ] and recalling that z and q vanish at the
endpoints, we obtain

∫ T

0

(
|z′(t)|2 +

k

2
|z(t)|2

)
dt ≤ 1

2

∫ T

0

(|z′(t)|2 + |φ1(t)|2)dt

and
∫ T

0

(
|q′(t)|2 +

k

2
|q(t)|2

)
dt ≤ 1

2

∫ T

0

(|q′(t)|2 + |φ2(t)|2)dt.

Hence,

k

∫ T

0

(|z(t)|2 + |q(t)|2)dt ≤
∫ T

0

(|φ1(t)|2 + |φ2(t)|2)dt .(5.21)

We have now to estimate the right-hand side of (5.21). Let us first note that, by
Proposition 5.5,

ek(t−T )2θ2(t)

∣∣∣∣ p2(t)

|p2(t)| −
p1(t)

|p1(t)|
∣∣∣∣
2

≤ C1|q(t)|2
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for some C1 > 0. Here and in the remainder of the proof C1, C2, . . . denote positive
numbers independent of k. We have

|φ1(t)|2 ≤ 2L2|z(t)|2 + 4ek(t−T )2 |θ′(t)ȳ(t)|2

+ 4r2ek(t−T )2θ2(t)

∣∣∣∣ p2(t)

|p2(t)| −
p1(t)

|p1(t)|
∣∣∣∣
2

≤ 2L2|z(t)|2 + 4ek(t−T )2 |θ′(t)ȳ(t)|2 + C2|q(t)|2

for some C2 > 0. Moreover,

|φ2(t)|2 ≤ 2ek(t−T )2 |θ′(t)p̄(t)|2 + 2ek(t−T )2θ2(t)|δf(y1(t))
∗p1(t)− δf(y2(t))

∗p2(t)|2.
Now, the interpolation inequality (3.7) and assumption (5.1) yield

|δf(y1(t))
∗p1(t)− δf(y2(t))

∗p2(t)|
≤ |[δf(y1(t))

∗ − δf(y2(t))
∗]p2(t) + δf(y1(t))

∗(p1(t)− p2(t))|
≤ C3{|(−A)θ1(y2(t)− y1(t))||(−A)θ1p2(t)|+ |p1(t)− p2(t)|}
≤ C4{|(−A)θ1(y2(t)− y1(t))|+ |p1(t)− p2(t)|}
≤ C4{|(−A)

1
2 (y2(t)− y1(t))|+ κθ1 |y2(t)− y1(t)|+ |p1(t)− p2(t)|}

for some C3, C4 > 0. Therefore, we obtain

|φ2(t)|2 ≤ 2ek(t−T )2 |θ′(t)p̄(t)|2 + C5(|(−A)
1
2 z(t)|2 + |z(t)|2 + |q(t)|2)

for some C5 > 0. Multiplying by z(t) the first equation of (5.18) and integrating, we
obtain ∫ T

0

|(−A)
1
2 z(t)|2dt ≤ 1

2

∫ T

0

(|z(t)|2 + |φ1(t)|2)dt

≤ 1

2

∫ T

0

((1 + 2L2)|z(t)|2 + 4ek(t−T )2 |θ′(t)ȳ(t)|2 + C2|q(t)|2)dt.

Plugging the estimates of |φ1(·)| and |φ2(·)| into (5.21), we find

k

∫ T

0

(|z(t)|2 + |q(t)|2)dt

≤ C6

∫ T

0

(|z(t)|2 + |q(t)|2)dt + C7

∫ T

0

ek(t−T )2 |θ′(t)|2(|ȳ(t)|2 + |p̄(t)|2) dt

= C6

∫ T

0

(|z(t)|2 + |q(t)|2)dt + C7

∫ T

T
2

ek(t−T )2 |θ′(t)|2(|ȳ(t)|2 + |p̄(t)|2) dt

≤ C6

∫ T

0

(|z(t)|2 + |q(t)|2)dt + C7
16

T 2
ek

T2

4

∫ T

0

(|ȳ(t)|2 + |p̄(t)|2) dt

for some C6, C7 > 0. On the other hand, if k > C6,

(k − C6)

∫ T

0

(|z(t)|2 + |q(t)|2)dt ≥ (k − C6)e
k T2

4

∫ T
2

0

(|ȳ(t)|2 + |p̄(t)|2) dt,
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and therefore

∫ T
2

0

(|ȳ(t)|2 + |p̄(t)|2)dt ≤ 16C7

(k − C6)T 2

∫ T

0

(|ȳ(t)|2 + |p̄(t)|2) dt .(5.22)

Sending k →∞, we obtain |ȳ(t)| = |p̄(t)| = 0 on [0, T2 ]. The conclusion follows by an
easy iteration argument.

The singular points of T can be characterized in terms of optimal trajectories.
Before proving this fact, we need a preliminary result.

Lemma 5.7. Let x and xn be given points of R\BR such that xn → x as n→∞.
Let yn : [0, T (xn)] → X be optimal trajectories for xn and let pn : [0, T (xn)] → X
be the corresponding dual arcs. Then there exists a subsequence, {ynk

(·)}, converging
uniformly on any interval [0, T ′], with T ′ < T (x), to a trajectory y(·), optimal for
x. In addition, limk→∞ pnk

(t) = p(t) for all t ∈ [0, T (x)[ , where p(·) is the dual arc
associated with y(·).

Proof. Let us denote by un(·) the optimal controls corresponding to yn(·), and
let us set for simplicity Tn = T (xn), T = T (x). After extracting a subsequence, we

find that there exists u : [0, T ] → Br such that un
∗
⇀ u in L∞([0, T ′], Br) for any

T ′ < T . Then, using the compactness of the operators etA, we can see easily that
y(·) := y(·;x, u) is an optimal trajectory for x and that yn(·) → y(·) uniformly in
[0, T ′] for any T ′ < T .

It remains to prove that pn(t)→ p(t) for all t ∈ [0, T (x)[ . To this purpose, let us
first show that (−A)1/2yn(Tn) tends to (−A)1/2y(T ). We have

|(−A)
1
2 (yn(Tn)− y(T ))| ≤ |(−A)

1
2 (yn(Tn)− y(Tn;xn, u))|

+|(−A)
1
2 (y(Tn;xn, u)− y(Tn))|+ |(−A)

1
2 (y(Tn)− y(T ))|.

Using the representation formula (3.4) and property (3.5), we obtain that the first
term on the right-hand side tends to 0 as n → ∞. The second and third term also
tend to 0, thanks to inequality (3.19) and to Lemma 5.4, resp. Thus we have that
(−A)1/2yn(Tn) → (−A)1/2y(T ), and this implies, by (5.4), (H2), and (3.6), that
pn(Tn)→ p(T ).

Let us now prove that pn(t)→ p(t) for any t ∈ [0, T (x)[ . To fix ideas, we suppose
that Tn > T for all n. Then we have, by (H5),

|pn(t)− p(t)| ≤ |e(Tn−t)A(pn(Tn)− p(T ))|+ |(e(Tn−t)A − e(T−t)A)p(T )|

+

∫ T

t

|e(s−t)Aδf(yn(s))∗(pn(s)− p(s))|ds

+

∫ Tn

T

|e(s−t)Aδf(yn(s))∗pn(s)|ds

+

∫ T

t

|e(s−t)A(δf(yn(s))∗ − δf(y(s))∗)p(s)|ds

≤ L

∫ T

t

|pn(s)− p(s)|ds + o(1) as n→∞.

Then the conclusion follows by applying Gronwall’s inequality.



942 PAOLO ALBANO, PIERMARCO CANNARSA, AND CARLO SINESTRARI

The following theorem provides a characterization of the singular points of T as
the initial points of multiple time optimal trajectories.

Theorem 5.8. A point x ∈ R \ BR is a differentiability point for the minimum
time function T iff there exist a unique optimal trajectory for system (3.1) with initial
point x.

Proof. Suppose first that T is differentiable at x. Let y(·) be any optimal trajec-
tory starting at x, and let p(·) be the associated dual arc. Then, by (5.3), (5.13), and
Theorem 5.3, we have that (y, p) is a solution of system (5.14) with initial conditions
y(0) = x, p(0) = DT (x). But Proposition 5.6 states that there exists at most a unique
pair (y, p) with these properties. Therefore, x is the starting point of a unique optimal
trajectory.

Conversely, let us assume that there exists a unique optimal trajectory starting
at x, which we denote by y(·). We note that D+T (x) �= ∅ as the minimum time
function is semiconcave. If we prove that D−T (x) is also nonempty, we obtain that
T is differentiable at x. Hence, to conclude the proof it is enough to show that

p(0) ∈ D−T (x),(5.23)

where p(·) is the dual arc associated with y(·). For this purpose, let us consider a
sequence xk converging to x as k →∞ such that

lim
k→∞

T (xk)− T (x)− 〈p(0), xk − x〉
|xk − x| = lim inf

x′→x

T (x′)− T (x)− 〈p(0), x′ − x〉
|x′ − x| .

Now let yk(·) be optimal trajectories for the points xk, and let pk(·) be the dual arcs
associated with yk(·). Since y(·) is the unique optimal trajectory for x, Lemma 5.7
implies that yk → y and that pk → p as k → ∞. Using Theorem 5.3 and property
(2.2) of semiconcave functions, we obtain

T (xk)− T (x)− 〈p(0), xk − x〉
= T (xk)− T (x)− 〈pk(0), xk − x〉 − 〈p(0)− pk(0), xk − x〉
≥ −C|xk − x|2 − |p(0)− pk(0)| |xk − x| .

Hence,

lim
k→∞

T (xk)− T (x)− 〈p(0), xk − x〉
|xk − x| ≥ 0,

and the proof is complete.
We now proceed to show that, for the control systems under investigation, the

minimum time function is differentiable along any optimal trajectory, except for the
end points. For this purpose, we use the Hamilton–Jacobi–Bellman equation

r|DT (x)| − 〈DT (x), Ax〉 − 〈DT (x), f(x)〉 = 1.(5.24)

The next lemma shows that the above equation is satisfied, in a suitable sense, along
any optimal trajectory.

Lemma 5.9. Let y(·) = y(·;x, u) be a time optimal trajectory for a point x ∈
R \BR. Then, for any t ∈ ]0, T (x)[ , θ ∈ ]0, 1[, and q ∈ D+T (y(t)), we have that

〈(−A)1−θq, (−A)θy(t)〉 − 〈q, f(y(t))〉+ r|q| = 1.(5.25)
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Proof. First we observe that all the terms in (5.25) are well defined since, by
Remark 4.2 and Lemma 3.6(iv), both q and y(t) belong to D((−A)θ) for any θ ∈ [0, 1[ .
Now, having fixed t ∈ ]0, T (x)[ , θ ∈ ]0, 1[ and q ∈ D+T (y(t)), we note that, for all
h > 0,

1

h
〈q, y(t)− y(t− h)〉

=
1

h
〈q, (ehA − I)y(t− h)〉+ 1

h

∫ h

0

〈e(h−s)Aq, f(y(t+ s− h)) + u(t+ s− h)〉ds.

Hence,

lim
h↓0

1

h
〈q, (ehA − I)y(t− h)〉 = − lim

h↓0
1

h

∫ h

0

〈(−A)1−θq, (−A)θesAy(t− h)〉ds

= −〈(−A)1−θq, (−A)θy(t)〉 .
Moreover, we have that

lim sup
h↓0

1

h

∫ h

0

〈e(h−s)Aq, f(y(t+ s− h)) + u(t+ s− h)〉ds ≥ 〈q, f(y(t)〉 − r|q|.

From the dynamic programming principle we obtain

1 = lim
h↓0

1

h
{T (y(t− h))− T (y(t))} ≤ lim inf

h↓0
1

h
〈q, y(t− h)− y(t)〉

≤ 〈(−A)1−θq, (−A)θy(t)〉 − 〈q, f(y(t))〉+ r|q|.(5.26)

To prove the converse inequality, we introduce the control

ũ(s) =

{
u(s) if s ≤ t,
−rq/|q| if s > t.

Let us set ỹ(s) = y(s;x, ũ). Arguing as in the first part of the proof we obtain

lim
h↓0

1

h
〈q, ỹ(t+ h)− ỹ(t)〉 = −〈(−A)1−θq, (−A)θy(t)〉+ 〈q, f(y(t))〉 − r|q|.

Again by the dynamic programming principle, we have that

−1 ≤ lim inf
h↓0

1

h
{T (ỹ(t+ h))− T (ỹ(t))} ≤ lim inf

h↓0
1

h
〈q, ỹ(t+ h)− ỹ(t)〉

= −〈(−A)1−θq, (−A)θy(t)〉+ 〈q, f(y(t))〉 − r|q| ,
which, together with (5.26), yields the conclusion.

We also need the following easy result.
Lemma 5.10. Let x ∈ D((−A)θ) for some θ ∈ ]0, 1[, and let Γ ⊂ D((−A)1−θ) be

a nonempty convex set such that

−〈(−A)1−θq, (−A)θx〉+ 〈q, f(x)〉 − r|q| = 1(5.27)

for any q ∈ Γ. Then Γ is a singleton.
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Proof. Suppose on the contrary that Γ contains two distinct elements q1 and q2.
Then, since Γ is convex, equality (5.27) holds with q = λq1+(1−λ)q2, for all λ ∈ [0, 1].
This implies

|λq1 + (1− λ)q2| = λ|q1|+ (1− λ)|q2| ∀λ ∈ [0, 1].

This is possible only if q2 = αq1 for some α > 0. But then (5.27), which is not
homogeneous in q, cannot be satisfied both by q1 and by q2.

The differentiability of T along any optimal trajectory follows as a corollary.
Proposition 5.11. Let y(·) = y(·;x, u) be a time optimal trajectory for a point

x ∈ R \BR. Then T is differentiable at any point of the form y(t) for t ∈ ]0, T (x)[ .
Proof. The two previous lemmas show that D+T (y(t)) is a singleton for any

t ∈ ]0, T (x)[ . On the other hand, a semiconcave function is differentiable at any
point where its superdifferential is a singleton. Since T is semiconcave, the conclusion
follows.

From the above proposition we immediately obtain the following corollary.
Corollary 5.12. Let y(·) = y(·;x, u) be a time optimal trajectory for a point

x ∈ R \BR and p be the corresponding dual arc. Then

p(0) ∈ D∗T (x).

Corollary 5.12, together with the following result, completes Theorem 5.8, giving
a characterization of all time optimal trajectories starting at singular points of T .

Theorem 5.13. Let x ∈ R \ BR. Then, for any q ∈ D∗T (x), there exists a
unique solution (y, p) of the Cauchy problem




y′(t) = Ay(t) + f(y(t))− r
p(t)

|p(t)| , y(0) = x,

p′(t) = −Ap(t)− (δf(y(t)))∗p(t) , p(0) = q.

(5.28)

Moreover, y(·) is a time optimal trajectory for x, and p(·) is the associated dual arc.
Proof. Given q ∈ D∗T (x), let {xn} be a sequence of differentiability points for

T such that xn → x and DT (xn) ⇀ q. For any n, let us denote by yn(·) the unique
optimal trajectory for xn and by pn(·) the corresponding dual arc. By Theorem
5.3, we have that pn(0) = DT (xn). By Lemma 5.7 we obtain that, after possibly
extracting a subsequence, yn(·) → y(·) and pn(·) → p(·) pointwise, where y(·) is an
optimal trajectory for x and p(·) is the associated dual arc. In particular, p(0) =
lim pn(0) = q. Moreover, recalling the Hamiltonian form of the maximum principle
(5.14), we conclude that (y, p) is a solution of (5.28). Finally, (y, p) is the unique
solution of this problem in light of Proposition 5.6.

The above proof shows that, if q ∈ D∗T (x) for some x, then there exists xn → x
such that DT (xn) → q in the strong topology, not only in the weak topology as
required by the definition of D∗T . We remark that such a property would not hold
without the compactness assumption on etA in (H7).

We will conclude this section with a propagation result for the singular set of
T . For this purpose we need a lemma showing that the Hamilton–Jacobi–Bellman
equation (5.24) is satisfied on a dense set.

Lemma 5.14. Let θ ∈]0, 1[ and x ∈ D((−A)θ) ∩ (R \ BR). Then, for all p ∈
D∗T (x),

〈(−A)1−θp, (−A)θx〉 − 〈p, f(x)〉+ r|p| = 1.(5.29)
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Proof. Given q ∈ D∗T (x), Theorem 5.13 yields the existence of a trajectory
y(·) = y(·;x, u), time optimal for x, such that the associated dual arc p(·) satisfies
p(0) = q. Then,

|(−A)θ(y(t)− x)|

=

∣∣∣∣(−A)θ
(
(etA − I)x+

∫ t

0

e(t−s)A(f(y(s)) + u(s))ds

)∣∣∣∣

≤ ∣∣(etA − I)(−A)θx
∣∣+
∫ t

0

Mθ

(t− s)θ
|f(y(s)) + u(s)|ds→ 0

as t→ 0. Analogously, we find that

|(−A)1−θ(p(t)− q)| ≤
∣∣∣(e(T−t)A − eTA

)
(−A)1−θp(T )

∣∣∣

+

∫ t

0

|(−A)1−θesAδf(y(s))∗p(s)| ds

+

∫ T

t

∣∣∣(−A)1−θ
(
e(s−t)A − esA

)
δf(y(s))∗p(s)

∣∣∣ ds→ 0

as t→ 0. In addition, by Theorem 5.3 and Lemma 5.9, we have that

〈(−A)1−θp(t), (−A)θy(t)〉 − 〈p(t), f(y(t))〉+ r|p(t)| = 1

for any t > 0. Letting t→ 0, we obtain the conclusion.
We are now in a position to prove the aforementioned propagation result.
Theorem 5.15. Let x0 ∈ Σ(T ). If x0 belongs to D((−A)θ) for some θ ∈]0, 1],

then x0 is propagation point of Σ(T ).
Proof. From Theorem 4.3 we know that T belongs to the class SC1(R\BR). We

claim that, under the above assumptions, D∗T (x0) is a proper subset of D+T (x0), i.e.,
assumption (2.6) of Theorem 2.6 holds. Let us argue by contradiction and suppose
that D+T (x0) = D∗T (x0). Then, since D+T (x0) is a convex set, we deduce, from
Lemmas 5.10 and 5.14, that D+T (x0) is a singleton. But this is impossible, since
x0 ∈ Σ(T ).

Having fixed p0 ∈ D+T (x0) \D∗T (x0), it remains to exhibit a vector q satisfying
condition (2.7) of Theorem 2.6. For this purpose it suffices to take any q ∈ X \
D((−A)θ). In fact, since D+T (x0) ⊂ D((−A)θ), θ ∈ [0, 1[, we immediately obtain
that p0 + tq /∈ D+T (x0) for every t �= 0. The proof is then completed applying
Theorem 2.6.

In this paper we include no example to show that the minimum time function may
well possess a nonempty singular set. Such examples are well known in the literature:
a typical case is that of the distance function from a closed set. One may wonder,
however, whether the minimum time function associated with a parabolic system like
(3.14) may be singular at some point. The affirmative answer to this question follows
from an example of [1].
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Abstract. Our aim is to present sufficient conditions ensuring Hoffman’s error bound for lower
semicontinuous nonconvex inequality systems and to analyze its impact on the local controllability,
implicit function theorem for (non-Lipschitz) multivalued mappings, generalized equations (varia-
tional inequalities), and sensitivity analysis and on other problems like Lipschitzian properties of
polyhedral multivalued mappings as well as weak sharp minima or linear conditioning. We show
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such that Hoffman’s error bound holds. We also show that this error bound is nothing but the clas-
sical Farkas lemma for linear inequality systems. In the latter case our constant may be computed
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1. Introduction. Consider the inequality system

f(x) ≤ 0,(1.1)

where f : X → R ∪ {∞} is an extended real-valued lower semicontinuous function
and X is a Banach space.

Let S be a set of solutions to (1.1). Hoffman’s error bound holds (globally) for
(1.1) if there exists a > 0 such that

d(x, S) ≤ af+(x) ∀x ∈ X,(1.2)

where d(x, S) = infu∈S ‖x − u‖, f+(x) = max(f(x), 0) and ‖ ‖ denotes the norm on
X.

Hoffman’s result [11] states that if f is a maximum of a finite number of affine
functions in Rn, then (1.2) holds.

Various extensions in finite dimension of Hoffman’s result were obtained for gen-
eral convex inequality systems (see, for example, [36], [37], [12], [34], [35], [56]). For
other related error bound results, see [4], [38], [13], [49]. Robinson [49] showed that in
infinite dimension the error bound (1.2) holds for any convex differentiable inequal-
ity system which satisfies the Slater constraint qualification condition and where S is
bounded. In [13], Ioffe gave a local version of (1.2) for nonconvex and nondifferentiable
Lipschitz inequality system in infinite dimension. He used his result to obtain a new
proof of Hoffman’s inequality in linear programming in infinite dimension. Recently,
Deng [9] studied any system of convex inequality in a reflexive Banach space which
has an unbounded solution set.

In this paper we study the parametric inequality systems

(1.1′) f(x, y) ≤ 0,

∗Received by the editors May 21, 1998; accepted for publication (in revised form) June 15, 1999;
published electronically March 15, 2000.

http://www.siam.org/journals/sicon/38-3/33921.html
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where f : X×Y → R∪{∞} is an extended real-valued lower semicontinuous function
and Y is a Banach space.

For each y we let S(y) be a set of solutions to (1.1′). We are concerned with the
following analogous Hoffman’s error bound: there exists a > 0 such that

(1.2′) d(x, S(y)) ≤ af+(x, y) ∀x ∈ X, ∀y ∈ Y.

Our aim is to present sufficient conditions ensuring (1.2′) for lower semicontin-
uous nonconvex inequality systems and to analyze its impact on the local control-
lability, sensitivity analysis, implicit function theorem for non-Lipschitz multivalued
mappings, and generalized equations (variational inequalities) and on other problems
like Lipschitzian properties of polyhedral multivalued mappings as well as weak sharp
minima or linear conditioning. As in [9] and [13] we can show how the information
about our sufficient condition can be used to provide a computable constant a such
that (1.2′) holds. We also show that relation (1.2) is nothing but the classical Farkas
lemma for linear inequality systems. In the latter case our constant may be computed
explicitly. Note that the present paper is an infinite dimensional extension of [22] and
a continuation of [18], published in Mathematical Programming in 1994, in which I
indicate (see the end of section 3 of [18]) that we may use the partial approximate
subdifferential (which works in any Banach spaces and more and the proposed proof
works for any presubdifferential [55] as is noted in [24, Theorem 6.1]) and introduce
similar regularity conditions to ensure metric regularity of systems defined by inclu-
sions.

Our notation is basically standard. For any Banach space X and its topological
dual X∗ we denote by BX and BX∗ their closed unit balls. As usual, domf and epif
of an arbitrary extended real-valued function f stand for the domain and the epigraph

domf = {x : f(x) < +∞},
epif = {(x, r) : f(x) ≤ r}.

2. Error bound: The nonconvex case. In this section we present sufficient
condition in terms of an abstract subdifferential. The partial subdifferential (as in
[55]), in x with respect to y, on X is any operator ∂x which satisfies the following
properties.

For any lower semicontinuous function f : X×Y → R∪{∞}, any locally Lipschitz
function g : X × Y → R ∪ {∞}, any x ∈ X, and any y ∈ Y ,

(P1) ∂xf(x, y) ⊂ X∗ and ∂xf(x, y) = ∅ if f(x, y) =∞;
(P2) ∂xg(x, y) coincides with the partial subdifferential in the sense of convex

analysis whenever g(·, y) is convex, that is,
∂xg(x, y) = {x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ g(u, y)− g(x, y) ∀u ∈ X};

(P3) 0 ∈ ∂xf(x, y) whenever x is a local minimum for f with respect to y;
(P4) ∂xf(x, y) = ∂xw(x, y) whenever f and w coincide around (x, y);
(P5)

∂x(f + g)(x, y) ⊂ ∂xf(x, y) + ∂xg(x, y).

In the case where f(x, y) = f(x) for all (x, y) ∈ X × Y , our subdifferential will
be denoted by ∂f(x).

Before stating our main results of this section, let us give some examples of partial
subdifferentials.
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Example 2.1 (partial limiting Fréchet subdifferential). Let X be an Asplund
space, i.e., a Banach space on which every continuous convex function is Fréchet
differentiable at a dense set of points. We refer the reader, for example, to the papers
by Phelps [48]. The partial Fréchet ε-subdifferential of f at x with respect to y is the
set

∂εxf(x, y) =

{
x∗ ∈ X∗ : lim inf

h→0

f(x+ h, y)− f(x, y)− 〈x∗, h〉
‖ h ‖ ≥ −ε

}

if (x, y) ∈ domf and ∂εxf(x, y) = ∅ if (x, y) /∈ domf . The partial limiting Fréchet
subdifferential ∂Fx f(x, y), which is first introduced in finite dimension by Jourani and
Thibault [22], of f at x with respect to y is the set

∂Fx f(x, y) = seq- lim sup
(u,v)

f−→(x,y)

ε−→0+

∂εxf(u, v).

In the case where f(x, y) = f(x), this subdifferential (Kruger–Mordukhovich [30])
is an infinite dimensional extension of the nonconvex construction by Mordukhovich
[39], [40] (see also [44]).

We may show that the partial limiting Fréchet subdifferential has the same proper-
ties as the limiting Fréchet subdifferential (see Kruger–Mordukhovich [31] and Kruger
[29]) and hence it satisfies properties (P1)–(P5).

Example 2.2 (partial approximate subdifferential). The partial Dini subdifferen-
tial of f at x with respect to y is the set

∂−
x f(x, y) =

{
x∗ ∈ X∗ : 〈x∗, h〉 ≤ lim inf

t→0+

u→h

t−1(f(x+ tu, y)− f(x, y)) ∀h ∈ X

}

if (x, y) ∈ domf and ∂−
x f(x, y) = ∅ if (x, y) /∈ domf .

The partial approximate subdifferential of f at x with respect to y is the set

∂Ax f(x, y) =
⋂

L∈F(X)

lim sup

(u,v)
f−→(x,y)

∂−
x fu+L(u, v),

where fS(x, y) = f(x, y) if x ∈ S and fS(x, y) = +∞ otherwise and F(X) denotes
the collection of all finite dimensional subspaces of X.

In the case where f(x, y) = f(x), this subdifferential (Ioffe [14], [15]) is an infinite
dimensional extension of the nonconvex construction by Mordukhovich [39], [40]. In
fact, Ioffe [16] showed that in finite dimensional spaces the approximate subdifferential
and the limiting Fréchet subdifferentials coincide. Ioffe [14] used this representation
to introduce the approximate subdifferential in infinite dimensional spaces. We have
to note that the subdifferentials in Examples 2.1 and 2.2 are generally different in
infinite dimensional case.

We may show that the partial approximate subdifferential has the same properties
as the approximate subdifferential (see Ioffe [14], [15]) and hence it satisfies properties
(P1)–(P5).

Example 2.3 (partial Clarke’s subdifferential). Let f be locally Lipschitzian
around (x, y). The partial Clarke’s generalized directional derivative of f at x with
respect to y in the direction h ∈ X is given by

d0
xf((x, y);h) = lim sup

(u,v)−→(x,y)

t→0+

f(u+ th, v)− f(u, v)

t
.
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The partial Clarke’s subdifferential of f at x with respect to y is the set

∂Cx f(x, y) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d0
xf((x, y);h) ∀h ∈ X}.

We may show that the partial Clarke’s subdifferential has the same properties as
the Clarke’s subdifferential (see Clarke [6]) and hence it satisfies properties (P1)–(P5)
for locally Lipschitzian functions.

All these partial subdifferentials coincide, for a continuous convex function f ,
with the partial subdifferential in the sense of convex analysis

∂xf(x, y) = {x∗ ∈ X∗ : 〈x∗, h− x〉 ≤ f(h, y)− f(x, y) ∀h ∈ X}.

We suppose in the following that our partial subdifferential ∂ satisfies (P1)–(P5).

Our proof is similar to that given by Ioffe in [13] in the local situation and in the
case where f is locally Lipschitzian. We begin with the global error bound result.

Theorem 2.4. Let f : X × Y → R ∪ {∞} be an extended real-valued function
such that for each y ∈ Y , f(·, y) is lower semicontinuous. Suppose that

there exists a > 0 ∀x ∈ X, ∀y /∈ S−1(x), d(0, ∂xf(x, y)) ≥ 1

a
.(2.1)

Then (1.2′) holds.

Proof. Suppose that our relation (1.2′) is not valid. Then there exists x′ ∈ X and
y′ ∈ Y such that

d(x′, S(y′)) > af+(x
′, y′).(2.2)

Note that x′ /∈ S(y′). Then f+(x
′, y′) > 0. Set ε = f(x′, y′) and λ = (a+ α)f(x′, y′)

where α > 0 is such that λ < d(x′, S(y′)). Then

f+(x
′, y′) ≤ inf

x∈X
f+(x, y

′) + ε.

By the lower semicontinuity of f(·, y′), the Ekeland’s variational principle ensures the
existence of x ∈ X satisfying

‖x− x′‖ ≤ λ(2.3)

f+(x, y
′) ≤ f+(u, y

′) +
ε

λ
‖u− x‖ ∀u ∈ X.(2.4)

Note that, by (2.2)–(2.3), x /∈ S(y′). Since f(·, y′) is lower semicontinuous, it coincides
with f+(·, y′) in a neighborhood of x and hence by (2.4) and properties (P1)–(P5) we
get

0 ∈ ∂xf(x, y
′) +

1

(a+ α)
BX∗

and this contradicts relation (2.1).

Remark. Theorem 2.4 has been established by Clarke [5] (see also [7]) in Hilbert
space using the decrease principle.

The proof of the following local result is similar to the previous one. It extends
the result by Ioffe [13] to the non-Lipschitz case.
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Theorem 2.5. Let f : X × Y → R ∪ {∞} be an extended real-valued function
such that for each y ∈ Y , f(·, y) is lower semicontinuous and let x ∈ S(y) for some
y ∈ Y . Suppose that there exist r > 0 and a > 0 such that

∀x ∈ x+ rBX , ∀y /∈ S−1(x)with y ∈ y + rBY , d(0, ∂xf(x, y)) ≥ 1

a
.(2.5)

Then

d(x, S(y)) ≤ af+(x, y) ∀x ∈ x+
r

2
BX , ∀y ∈ y + rBY .

Remark. Note that Theorems 2.4 and 2.5 remain valid if Y is a metric space.
In the following corollary we give a sufficient condition for the solvability of inclu-

sions: Given (x, y) with y ∈ F (x), find for each y in some neighborhood of y a point
x(y) near x, solution of the inclusion

y ∈ F (x),

where F : X → 2Y is a multivalued mapping.
Corollary 2.6. Let F : X → 2Y be a multivalued mapping with closed graph

GrF containing (x, y). Suppose that

there exist r > 0, a > 0 ∀x ∈ x+ rBX , ∀y /∈ F (x) with y ∈ y + rBY ,

d(0, ∂xd(x, y;GrF )) ≥ 1

a
.

Then

d(x, F−1(y)) ≤ ad(x, y;GrF ) ∀x ∈ x+
r

2
BX , ∀y ∈ y + rBY .

Proof. Set f(x, y) = d(x, y; GrF ) and apply Theorem 2.5.
The following corollary gives us different characterizations of our sufficient con-

dition in Corollary 2.6 for partial limiting Fréchet subdifferential in finite dimension.
Corollary 2.7. Let X and Y be finite dimensional spaces and let F : X → 2Y

be a multivalued mapping with closed graph GrF containing (x, y). Then the following
assertions are equivalent:

(1) if (0, y∗) ∈ ∂F d(x, y;GrF ), then y∗ = 0;
(2) there exist r > 0 and a > 0 ∀x ∈ x+ rBX , ∀y /∈ F (x), with y ∈ y + rBY ,

d(0, ∂Fx d(x, y;GrF )) ≥ 1

a
;

(3) (Graphical metric regularity) there exist r > 0 and a > 0 such that

d(x, F−1(y)) ≤ ad(x, y;GrF ) ∀x ∈ x+ rBX , ∀y ∈ y + rBY ;

(4) (Metric regularity) there exist r > 0 and a > 0 such that

d(x, F−1(y)) ≤ ad(y, F (x)) ∀x ∈ x+ rBX , ∀y ∈ y + rBY .

Proof. (2) =⇒ (3) follows from Corollary 2.6.
(3) =⇒ (4) is obvious.
(4) =⇒ (1): see Mordukhovich [41], [42] and Jourani [18].
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The proof of the implication (1) =⇒ (2) is similar to that of Theorem 3.14 in
Jourani [18].

Remarks. (1) Recently Thibault [53] showed (by a direct method) that the equiv-
alence (3)⇐⇒ (4) holds in any normed spaces.

(2) We may show that the corollary holds in infinite dimensional spaces for a
special class of multivalued mappings (see for some applications of this type of result
the papers by Ioffe [17], Mordukhovich and Shao [45], [46], and Jourani and Thibault
[23], [24], [25], [26], [27], [18], [19], [20], [21]).

Suppose in addition to (P1)–(P5) that our subdifferential satisfies the following
closedness assumption:

(P6) ∂xf(x, y) = lim sup
(u,v)→(x,y)

f(u,v)→f(x,y)

∂xf(u, v)

and

∂xf(x, y) = seq− lim sup
(u,v)→(x,y)

f(u,v)→f(x,y)

∂xf(u, v)

if X is Asplund.
Remarks. (1) Property (P6) is satisfied for partial limiting Fréchet subdifferential

(in Asplund spaces) and for partial approximate subdifferential for any lower semi-
continuous function f and for partial Clarke’s subdifferential for any locally Lipschitz
function f .

(2) With these properties, our subdifferential satisfies the following inclusions for
any locally Lipschitz function f around x uniformly in y (in some neighborhood Vy
of y):

∂Fx f(x, y) ⊂ ∂Ax f(x, y) ⊂ ∂xf(x, y).

Corollary 2.8. Let f be as in Theorem 2.5 and let x ∈ S(y) for some y ∈ Y .
Suppose that f is continuous around (x, y), (P6) is satisfied, and

0 /∈ ∂xf(x, y).(2.6)

Then there exist r > 0 and a > 0 such that

d(x, S(y)) ≤ af+(x, y) ∀x ∈ x+ rBX , ∀y ∈ y + rBY .(2.7)

Proof. It suffices to show that (2.6) implies (2.5) and to apply Theorem 2.5.
Indeed suppose that (2.5) is false. Then there are sequences ((xn, yn)) and (x∗

n) such
that xn /∈ S(yn) and x∗

n ∈ ∂xf(xn, yn) with (xn, yn) → (x, y) and x∗
n → 0. Thus, by

(P6), 0 ∈ ∂xf(x, y) and this contradiction completes the proof.

3. Error bound: The convex case. We start this section by giving a char-
acterization of Hoffman’s error bound (see the excellent paper by Burke and Ferris
[3]).

Proposition 3.1. Suppose X is a Hilbert space and f is convex and proper. If
S is closed, then the following are equivalent:

(i) Relation (1.2) holds;
(ii) ∂d(S, x) ⊂ a∂f+(x) ∀x ∈ S.
In the following proposition we present a classical condition ensuring relation (1.2)

which also can be obtained as a consequence of the results in [50] and [51].
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Proposition 3.2. Suppose f is convex and f(x0) < 0. Then for all x ∈ X

d(x, S) ≤ f+(x)

−f(x0)
‖x− x0‖.

If in addition there exists a nonempty set C ⊂ X, α > 0, and γ ≥ 1 such that

f(x)− f(x0) ≥ α‖x− x0‖γ ∀x ∈ C,

then

d(x, S) ≤ f+(x)

α
∀x ∈ C.

Let g : X → R∪{∞} be a function. The recession function g∞ of g is defined by

epig∞ = (epig)∞,

where A∞ = {x : A + x ⊂ A}. If g is convex, proper, and lower semicontinuous,
then

g∞(u) = sup
x∈domg

{g(u+ x)− g(x)}.

The following result extends that of Deng [9], established in reflexive Banach
spaces, to general Banach spaces.

Theorem 3.3. Let g : X → R∪{∞} be a convex, proper, and lower semicontin-
uous function and C be a closed convex subset of X such that domg∩C �= ∅. Consider
the solution set

S′ = {x ∈ C : g(x) ≤ 0}.
Suppose that

(i) for all x ∈ domg ∩ C, x /∈ S′,

∂(g +ΨC)(x) = ∂g(x) +N(C, x),

where ΨC denotes the indicator function of C;
(ii) there exist a > 0 and x̂ ∈ C∞ with ‖x̂‖ = 1 such that

g∞(x̂) ≤ −1
a
.

Then

d(x, S′) ≤ ag+(x) ∀x ∈ C.

Proof. Put f = g+ΨC . It is an easy exercise to show that (i) and (ii) imply (2.1)
and Theorem 2.4 completes the proof.

Remarks. (1) In [9], Deng assumed that the function g is continuous and this is
crucial in his proof.

(2) Deng [9] established this result in reflexive Banach space and for a finite
number of inequality

gi(x) ≤ 0, i = 1, . . . ,m.

But it suffices to put g(x) = max{gi(x) : i = 1, . . . ,m} and it is easy to show that
the assertion (ii) is satisfied.

(3) We know that the formula in (i) is valid under some constraint qualifications
and there are many constraint qualifications in the literature ensuring this relation.
It is valid, for example, when g is continuous.
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4. Error bound: The linear case. In this section we are concerned with the
linear equality-inequality systems

Ax = 0, 〈x∗
i , x〉+ bi ≤ 0, i = 1, . . . ,m,(4.1)

where A : X → Y is a linear continuous mapping such that R(A), the rank of A, is
closed, Y is a Banach space, bi ∈ R, and x∗

i ∈ X∗ with ‖x∗
i ‖ = 1.

We begin by showing that in the case of linear inequality systems, Hoffman’s
error bound is equivalent to the classical Farkas lemma. To do this, some notations
are needed. We set

∆m = {1, . . . ,m},
Im = {E ⊂ ∆m : (x∗

i )i∈E are linearly independent },
∀E ∈ Im, SE = ∩i∈ESi and fE(x) =

∑
i∈E d(x, Si) and

∀i ∈ ∆m, Si = {x ∈ H : 〈x∗
i , x〉+ bi ≤ 0}.

Theorem 4.1. Consider the linear inequality system

〈x∗
i , x〉+ bi ≤ 0, i = 1, . . . ,m

with solution set S, x∗
i ∈ H, where H is a Hilbert space. Then the two following

properties hold and are equivalent:
(i) there exists α > 0 depending only on (x∗

i )i∈∆m such that

d(x, S) ≤ αf(x) ∀x ∈ X.

(ii) (Farkas lemma) for all u in S, N(S, u) = R+∂f(u), where

f(x) =

m∑
i=1

d(x, Si) and N(S, u) = R+∂d(u, S).

Proof. The implication (i) =⇒ (ii) is obvious.
We establish the reverse implication in three steps.
First step. Let E ∈ Im. Since (x

∗
i )i∈E are linearly independent,

min

{∥∥∥∥∥
∑
i∈E

λix
∗
i

∥∥∥∥∥ : 1 ≥ λi ≥ 0, i ∈ E,
∑
i∈E

λi ≥ 1

}
> 0,

and hence for all x /∈ SE

d(0, ∂fE(x)) ≥ 1

αE
,

where

1

αE
= min

{∥∥∥∥∥
∑
i∈E

λix
∗
i

∥∥∥∥∥ : 1 ≥ λi ≥ 0, i ∈ E,
∑
i∈E

λi ≥ 1

}
.

So, by Theorem 2.4,

d(x, SE) ≤ αEfE(x) ∀x ∈ H.

Second step. We will show that for each x /∈ S there exists E ∈ Im such that

d(x, S) = d(x, SE).
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Indeed, let x /∈ S; then there exists u in S such that

d(x, S) = ‖x− u‖

or, equivalently,

x− u ∈ N(S, u).

By (ii), x−u ∈ R+∂f(u) and as ∂d(u, Si) ⊂ [0, 1]x∗
i , for i ∈ ∆m, there exist 1 ≥ λi ≥ 0,

i ∈ ∆m, not all equal to zero, such that

x− u =
∑
i∈∆m

λix
∗
i .

If (x∗
i )i∈∆m

are linearly independent the result follows from the first step. So suppose
there exist µi ∈ R, i ∈ ∆m, not all equal to zero such that

∑
i∈∆m

µix
∗
i = 0.

Hence for all t ∈ R
∑
i∈∆m

(λi + tµi)x
∗
i = x− u.

Our problem is to find t ≥ 0 and i0 ∈ ∆m such that λi0+tµi0 = 0 and λi+tµi ≥ 0
for i �= i0. Set J = {i ∈ ∆m : µi < 0} and suppose that J �= ∅. Set t = mini/∈J −λi

µi
.

Then there exists i0 ∈ ∆m such that

λi0 + tµi0 = 0 and λi + tµi ≥ 0 ∀i �= i0.

By induction we show that x−u is a positive combination of the linearly independent
family of (x∗

i )i∈E and hence x− u ∈ N(SE , u), or equivalently, ‖x− u‖ = d(x, SE).
Third step. By the second step we have for each x /∈ S the existence of E ∈ Im

such that

d(x, S) = d(x, SE),

and by the first step we have

d(x, S) ≤ αEfE(x) ≤ αEf(x).

Thus the proof is complete by taking

α = max
E∈Im

αE .

Remark. One of the referees pointed out that when the dimension of H is finite,
a general result was proved by D. Klatte [28].

We use Theorem 4.1 to get a Lipschitzian property of polyhedral multivalued
mappings. A multivalued mapping F from X into Y is polyhedral if its graph is the
union of a finite (possibly empty) collection of polyhedral convex sets.

Corollary 4.2 (see [49]). Let F be a multivalued mapping from X into Y .
Suppose that Y is a Hilbert space and F is polyhedral. Then F is locally upper Lip-
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schitzian, i.e., there exists a > 0 such that for all x ∈ X there exists r > 0 such that
for all x′ ∈ x+ rBX ,

F (x′) ⊂ F (x) + a‖x− x′‖BY .

Proof. Let GrF be the graph of F . Then there are polyhedral sets P1, . . . , Pk ⊂
X × Y such that GrF = ∪{Pi : i = 1, . . . , k}. For each i = 1, . . . , k there are
(bi,j)j=1,...,ki ⊂ R, (x∗

i,j)j=1,...,ki ⊂ X∗, and (y∗i,j)j=1,...,ki ⊂ Y ∗ such that

Pi = {(x, y) ∈ X × Y : 〈x∗
i,j , x〉+ 〈y∗i,j , y〉+ bi,j ≤ 0, j = 1, . . . , ki}.

For each i let Fi be the multivalued mapping whose graph is Pi. for all i = 1, . . . , k
and x ∈ X, Fi(x) is a polyhedral subset of Y .

If for all i = 1, . . . , k, Fi(x) is empty, then there exists r > 0 such that for all
x′ ∈ x+ rBX and for all i = 1, . . . , k, Fi(x

′) are empty. So suppose that there exists
i such that Fi(x) is nonempty; then by Theorem 4.1, there exists ai > 0, depending
only on (y∗i,j)j=1,...,ki , such that for all y ∈ Y,

d(y, Fi(x)) ≤ aig
i(x, y),

where gi(x, y) =
∑ki
j=1(〈x∗

i,j , x〉 + 〈y∗i,j , y〉 + bi,j)+. So for all x′ ∈ X and for all
y ∈ Fi(x

′)

d(y, Fi(x)) ≤ aig
i(x, y) ≤ aiKi‖x− x′‖,

where Ki =
∑ki
j=1 ‖x∗

i,j‖, and hence

Fi(x
′) ⊂ Fi(x) + aiKi‖x− x′‖BY .

Set a = max{aiKi : i = 1, . . . , k}. Then for all x ∈ X, there exists r > 0 such that
for all x′ ∈ x+ rBX

F (x′) ⊂ F (x) + a‖x− x′‖BY .

Remark. If in Corollary 4.2 we have F (x) �= ∅ for all x in some neighborhood V
of x0, then for all x, x′ ∈ V

F (x′) ⊂ F (x) + a‖x− x′‖BY .

The following result is due to Ioffe [13]. It extends that of Hoffman [11] from
finite dimensional spaces to infinite dimensional ones.

Theorem 4.3. Let S be the solution set of the system (4.1). Then there exists
a > 0 such that

d(x, S) ≤ af(x) ∀x ∈ X,

where f(x) = ‖Ax‖+∑m
i=1(〈x∗

i , x〉+ bi)+.

Proof. It suffices to show that the assumptions of Theorem 2.4 are satisfied (see
Ioffe [13]).
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5. Implicit function theorem and generalized equations. Let X be the
product of two finite dimensional spaces U and V , and Y stands for a Banach space
(in fact all the results of this section hold for Y a metric space) and let F : U×Y → V
be a multivalued mapping. Consider the inclusion

0 ∈ F (u, y).

We wish to solve this inclusion for u as a function of y around (u, y) at which this
inclusion holds. Again our important results (Theorems 2.4 and 2.5) permit us to
establish the implicit function theorem for non-Lipschitz multivalued mappings. Note
that the infinite dimensional case will be studied in a forthcoming paper.

Theorem 5.1. Suppose that the graph GrF of the multivalued mapping F is
closed and that

(0, v∗) ∈ ∂F(u,v)h(u, 0, y) =⇒ v∗ = 0,(5.1)

where h(u, v, y) = d(u, v,GrFy) and Fy : u → F (u, y). Suppose also that the multi-
valued mapping y → Fy(u) is pseudo-Lipschitzian around y uniformly in u in some
neighborhood of u, that is there exist a > 0 and r > 0 such that for all y, y′ ∈ y+ rBY
and u ∈ u+ rBU ,

Fy(u) ∩ rBV ⊂ Fy′(u) + a‖y − y′‖BV .

Then the multivalued mapping (y, v)→ F−1
y (v) is pseudo-Lipschitzian around (y, 0, u).

Hence there exist α > 0 and a Lipschitz continuous mapping φ : (y+αBY )×αBV → U
with φ(y, 0) = u such that for all (y, v) ∈ (y + αBY )× αBV ,

v ∈ F (φ(y, v), y).

Proof. For the first part, apply Theorem 2.5 to the function h with (u, v) playing
the role of x.

The proof of the second part follows from the following selection lemma.
Lemma 5.2. Let G be a multivalued mapping from some Banach space Z into

Rm. Suppose that G is pseudo-Lipschitzian around (z, 0), that is, there exist kG > 0
and r > 0 such that for all z, z′ ∈ z + rBZ

G(z) ∩ rBRm ⊂ G(z′) + kG‖z − z′‖BRm .

Suppose also that for all z ∈ z + rBZ , G(z) is closed. Then G admits a Lipschitz
selection g near z with g(z) = 0.

Proof. Without loss of generality we assume that m = 1. Set s = r(1 + 2kG) and
consider the mappings G : z + rBZ → [−s, s] defined by

G(z) = G(z) ∩ sBR.

Then there exist a > 0 and b > 0 such that for all z, z′ ∈ z + aBZ

G(z) ∩ bBR ⊂ G(z′) ∩ bBR + kG‖z − z′‖BR.

Define the mapping g : z + aBZ → [−s, s] by

g(z) = infG(z) ∩ bBR := inf{p : p ∈ G(z) ∩ bBR}.
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Then g is locally Lipschitzian near z and as G(z) is compact, g(z) ∈ G(z).
Remarks. (1) Theorem 5.1 remains valid if Y is finite dimensional and if relation

(5.1) is replaced by

(0, y∗, v∗) ∈ ∂F d(u, y, 0;GrF ) =⇒ v∗ = 0, y∗ = 0.

(2) The theorem is false if the uniform pseudo-Lipschitzness assumption is omit-
ted. Indeed, consider the real-valued function F defined on R2 by

F (u, y) = (
√
|y|+ 1)u.

It is simple to see that all the hypotheses of the theorem are satisfied except the fact
that the mapping

y → Fy(u)

is not pseudo-Lipschitz around 0 uniformly in u in some neighborhood of 0 and the
conclusion is that the mapping (y, v) → F−1

y (v) = v√
|y|+1

is not locally Lipschitz

around (0, 0).
(3) One of the referees pointed out that the first part of Theorem 5.1 was derived

in [32] for infinite dimensional Fréchet smooth spaces and this is true. In my opinion
their result is not an implicit function theorem but a metric regularity one. However,
the authors of [32] may consult the paper by Jourani and Thibault [22], published in
Mathematical Programming in 1990, established in finite dimensional spaces. In this
paper we established a graphical metric regularity result but, as noted by Thibault
[53], metric regularity and graphical metric regularity are equivalent. The present
paper is an infinite dimensional extension of [22] and a continuation of the paper [18],
published in Mathematical Programming in 1994, in which I indicate (see the end of
section 3) that we may use the partial approximate subdifferential (which works in
any Banach spaces and the proposed proof works for any subdifferential satisfying
(P1)–(P6) as is noted in the paper [24, Theorem 6.1]) and introduce similar regularity
conditions to ensure metric regularity of systems defined by inclusions. I am persuaded
that the authors of the paper [32] might not be aware of the existence of the papers
[22] and [18].

Now we consider the generalized equation of the form

0 ∈ f(u, y) +G(u),(5.2)

where f : U × Y → V is a mapping and G : U → V is a multivalued mapping of a
closed graph. We are concerned with properties of the solution set

S(y) := {u ∈ U : 0 ∈ f(u, y) +G(u)}
near a reference point. These questions are addressed to local sensitivity analysis
of the generalized equation (5.2) under parameter perturbation y. There are many
publications devoted to the study of the sensitivity analysis of generalized equations
in forms (5.2) or in the form

0 ∈ f(u, y) +N(C, u),

where N(C, u) is the normal cone operator in the sense of convex analysis [51], then
in the latter case the generalized equation is reduced to the parametric variational
inequality

find u ∈ C such that 〈f(u, y), u− u′〉 ≥ 0 ∀u′ ∈ C.
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For more details concerning these equations and their consequences, the reader can
consult, for example, the works by Robinson [49], Mordukhovich [42], and references
therein.

Most of the obtained results in the literature assume that f is differentiable.
Our aim is to apply Theorem 2.5 in order to show that sensitivity analysis of these
generalized equations may be established for f locally Lipschitzian in u uniformly in
y around (u, y) solution of (5.2). Note that our result extends that of Mordukhovich
[42] in which he assumes that f admits a so-called strong approximation.

Theorem 5.3. Let f be locally Lipschitzian around the point (u, y) solution of
(5.2). Suppose that

0 ∈ ∂Fu (v
∗ ◦ f)(u, y) +D∗G(u,−f(u, y)(v∗) =⇒ v∗ = 0,

where D∗G(u, v)(v∗) = {u∗ ∈ U∗ : (u∗,−v∗) ∈ R+∂
F d(u, v,GrG)} is the coderiva-

tive multivalued mapping of G at (u, v). Then the multivalued mapping S is pseudo-
Lipschitzian around (u, y), that is, there exist r > 0 and b > 0 such that for all
y, y′ ∈ y + rBY

S(y) ∩ (u+ rBU ) ⊂ S(y′) + b‖y − y′‖BU .
Proof. Apply Theorem 2.5 to the function g(u, y) = d(u,−f(u, y), GrG) and use

subdifferential calculus of composite functions for partial limiting Fréchet subdiffer-
ential which is the same as limiting Fréchet subdifferential.

Remark. Theorem 5.3 may be obtained from Theorem 5.1 by setting F (u, y) =
f(u, y) +G(u).

When G(u) = {0} for all u we obtain the following implicit function theorem for
mappings which can be considered as a generalization of that of Clarke [6] since the
partial limiting Fréchet subdifferential is smaller than Clarke’s.

Corollary 5.4. Let f be locally Lipschitzian around the point (u, y) solution of

f(u, y) = 0.

Suppose that

0 ∈ ∂Fu (v
∗ ◦ f)(u, y) =⇒ v∗ = 0.

Then there exist r > 0 and a Lipschitz continuous mapping φ : (y + rBY ) → U with
φ(y) = u such that for all y ∈ y + rBY

f(φ(y), y) = 0.

6. Local controllability. Given a multivalued mapping F : [0, 1] × Rn → 2R
n

and a set C0 ⊂ Rn, we call x a trajectory for F with respect to C0 if it satisfies

x(0) ∈ C0 and x′(t) ∈ F (t, x(t)) almost everywhere (a.e.) on [0, 1].(6.1)

We denote by S the set of all trajectories of (6.1). We suppose in what follows this
section that S is a closed and nonempty subset of the space C([0, 1], Rn) of continuous
functions on [0, 1] with values in Rn.

The parametrized reachable set of (6.1) (with parameter z ∈ C([0, 1], Rn)) is given
by

R(z) = {x(1) : x+ z ∈ S}.
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The target is a closed nonempty subset of Rn and is denoted by C1. Let A be the
multivalued mapping from Rn × C([0, 1], Rn) into C([0, 1], Rn) defined by

A(y, z) = {x ∈ C([0, 1], Rn) : x(1) + y ∈ C1, x+ z ∈ S}.
Let w be the linear continuous functional from C([0, 1], Rn) into Rn defined by w(x) =
x(1) and let w∗ be its adjoint functional. We denote by ΨC the indicator function of
C.

Finally we shall say that the system is strongly locally controllable (s.l.c.) if there
exists r > 0 such that for all z ∈ rBC([0,1],Rn),

rBRn ⊂ R(z)− C1

and is locally controllable if this later holds for z = 0.
There are many publications devoted to local controllability (see, for example,

[10], [6], and bibliographies therein). Most works in the area conduct a local con-
trollability under conditions expressed, in primal space in terms of Clarke’s tangent
cone or some derivative of multivalued mappings, or in dual space in terms of Clarke’s
normal cone. Our aim in this section is to present sufficient conditions in terms of
the approximate subdifferential of the distance function ensuring strong local control-
lability. Note that the approximate subdifferential of locally Lipschitz functions is
usually much smaller than Clarke’s. It turns out that the sufficient condition below
(6.6) is much more restrictive than the same one expressed in terms of Clarke’s sub-
differential and this latter does not hold for a broad class of sets C1 and S important
for applications (see, for example, [19]).

Theorem 6.1. Let x ∈ S with x(1) ∈ C1. Suppose that

w∗(∂Ad(x(1), C1)) ∩ (−∂AΨS(x)) = {0}.(6.2)

Then there exist r > 0 and a > 0 such that for all x ∈ x+rBC([0,1],Rn), y ∈ rBRn , z ∈
rBC([0,1],Rn),

d(x,A(y, z)) ≤ a(d(x(1) + y, C1) + d(x+ z, S))(6.3)

and hence the system is s.l.c.
Proof. It is not difficult to show that when u /∈ C1

∂Ad(u,C1) ⊂ SRn ,(6.4)

where SRn = {x∗ ∈ Rn : ‖x∗‖ = 1}. Set f(x, y, z) = d(x(1)+y, C1)+ΨS(x+z).We
will show that (2.5) holds, and we apply Theorem 2.5. So, suppose the contrary. Then
there are (xk, yk, zk)→ (x, 0, 0) and (x∗

k), with ‖x∗
k‖ → 0 such that xk /∈ A(yk, zk) and

x∗
k ∈ ∂Ax f(xk, yk, zk), for all integer k. By the definition of f and the subdifferential

calculus we get ∂Ax f(xk, yk, zk) ⊂ w∗(∂Ad(xk(1) + yk, C1)) + ∂AΨS(xk + zk). Then
xk+zk ∈ S and hence xk(1)+yk /∈ C1 and by (6.4) there exist u

∗
k ∈ ∂Ad(xk(1)+yk, C1),

with ‖u∗
k‖ = 1, and v∗k ∈ ∂AΨS(xk + zk) such that

x∗
k = w∗(u∗

k) + v∗k.

We may suppose that u∗
k → u∗, with u∗ ∈ ∂Ad(x(1), C1) and, by (6.4), ‖u∗‖ = 1 and

v∗k → v∗, with v∗ ∈ ∂Ad(x, S) and

w∗(u∗) + v∗ = 0,
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and this contradicts (6.2) since ‖w∗(u∗)‖ = 1.
Remark. In fact we showed that for all x ∈ x + rBC([0,1],Rn), y ∈ rBRn , z ∈

rBC([0,1],Rn)

d(x,A(y, z)) ≤ a(d(x(1) + y, C1) + ΨS(x+ z))(6.5)

for all x ∈ x + rBC([0,1],Rn), y ∈ rBRn , z ∈ rBC([0,1],Rn), but this is equivalent (use
Proposition 2.4.3 in [6]) to relation (6.3) with another constant a1 instead of a.

In the following theorem we show that in relation (6.2), we may replace ∂AΨS(x)
by ∂Ad(S, x).

Theorem 6.2. Theorem 6.1 remains valid if we replace (6.2) with

w∗(∂Ad(x(1), C1)) ∩ (−∂Ad(S, x)) = {0}.(6.6)

Proof. Suppose that (6.5) does not hold. Then there are sequences (xk, yk, zk)→
(x, 0, 0) such that xk + zk ∈ S and

d(xk, A(yk, zk)) > kd(xk(1) + yk, C1).(6.7)

Set gk(x) = d(x(1)+yk, C1) and εk =
√
gk(xk). Note that by (6.7) εk > 0 and εk → 0.

Set λk = min(kε2k, εk) and sk =
ε2k
λk

= max( 1
k , εk). Then

gk(xk) ≤ inf
x∈S−zk

gk(x) + ε2
k

and hence by Ekeland’s variational principle there exists uk ∈ S − zk such that

‖uk − xk‖ ≤ λk(6.8)

and

gk(uk) ≤ gk(x) + sk‖x− uk‖ ∀x ∈ S − zk,

and hence uk is a local minimum of the function

x→ gk(x) + sk‖x− uk‖+ (1 + sk)d(x+ zk, S).

Thus

0 ∈ ∂Agk(uk) + (1 + sk)∂
Ad(uk + zk, S) + skB(C([0,1],Rn))∗ .

Note that by (6.8) uk(1) + yk /∈ C1 and hence by (6.4) there exist u∗
k ∈ ∂Ad(uk(1) +

yk, C1), with ‖u∗
k‖ = 1, and x∗

k ∈ (1 + sk)∂
Ad(uk + zk, S) such that

‖w∗(u∗
k) + x∗

k‖ ≤ sk,

and as in the proof of Theorem 6.1 we arrive at a contradiction with (6.6).
In order to give other conditions ensuring relation (6.3), we give an estimate of

the approximate subdifferential of the distance function to the solution set of the dif-
ferential inclusion (6.1). We begin with some definitions and notations. A multivalued
mapping G : Rn → Rn is said to be Lipschitz on a set A (of rank k) provided that
for all x, u ∈ A

G(x) ⊂ G(u) + k‖x− u‖BRn ,



962 ABDERRAHIM JOURANI

where ‖ · ‖ denotes the euclidean norm. Let ∆ and Ωt be the sets defined by

∆ = {t : (t, x) ∈ Ω}
Ωt = {x : (t, x) ∈ Ω}.

Following Clarke [6], Ω is called a tube provided the set ∆ is an interval (say, ∆ =
[0, 1]) and provided there exist a continuous function ω(t) and a continuous positive
function ε on [0, 1] such that Ωt = ω(t) + ε(t)BRn for all t ∈ [0, 1]. We call such
tube a tube on [0, 1]. If x is a given continuous function on [0, 1], the ε-tube about x,
denoted T (x, ε), is the tube on [0, 1] obtained by setting

Ω = {(t, u) : 0 ≤ t ≤ 1, u ∈ x(t) + εBRn}.

Let Ω be a tube on [0, 1]. We say [6] that F is measurably Lipschitz on Ω provided
that the following hold.

(i) For each x ∈ Rn, the mutivalued mapping t→ F (t, x) is measurable on [0, 1].

(ii) There exists an integrable function k(t) on [0, 1] such that for each t ∈ [0, 1]
the multivalued mapping x→ F (t, x) is nonempty and Lipschitz of rank k(t) on Ωt.

We assume in the following that F is measurably Lipschitz on Ω. To the multi-
valued mapping F we associate the quantities

ρ(t, x, y) = d(y, F (t, x)), ρF (x) = IF (x, x
′) =

∫ 1

0

ρ(t, x(t), x′(t))dt,

and we set K = exp(
∫ 1

0
k(t)dt). The set AC will refer to the set of absolutely contin-

uous functions x : [0, 1]→ Rn.

Now we may compute the subdifferential of the solution set of (6.1).

Proposition 6.3. Let S be the solution set of (6.1) and let x ∈ S and ε > 0
such that T (x, ε) ⊂ Ω. Suppose that the values of F are closed. Then

∂Ad(x, S) ⊂ 2∂A[KρF (·) + (K lnK + 1)d(u(·), C0)](x),

where u : x→ x(0).

The proof of this proposition is a consequence of the following lemma.

Lemma 6.4 (compare with [6, Lemma 2, p. 124]). Let f : AC → R be a locally
Lipschitz function around x, with constant Kf > 0, and let x be a local solution of
the problem of minimizing f over S. Then x is a local solution of the problem

min{f(x) +KfKρF (x) +Kf (K lnK + 1)d(x(0), C0) : x ∈ AC}.

Remark. We may apply Theorem 2.4 in order to obtain Kf (K + 1) instead of
Kf (K lnK + 1), since

d(x, u−1(C0)) ≤ d(u(x), C0) ∀x ∈ C([0, 1], Rn).

Proof of Proposition 6.3. Let x∗ ∈ ∂Ad(x, S). Then [15] for all L ∈ F(AC) there
are nets (xi) ⊂ S, εi > 0, and x∗

i ∈ (1 + εi)B(AC)∗ such that xi → x, x∗
i → x∗,

εi → 0+ and such that the function

x→ −〈x∗
i , x− xi〉+ εi‖x− xi‖+ (1 + εi)d(x, xi + L)
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attains a local minimum at xi on S. Then, by Lemma 6.4, the function

x→ −〈x∗
i , x− xi〉+ εi‖x− xi‖+ (1 + εi)d(x, xi + L) + (2 + 2εi)

× [KρF (x) + (K lnK + 1)d(x(0), C0)]

attains a local minimum at xi. Thus

x∗
i ∈ (2 + 2εi)∂

A[KρF (·) + (K lnK + 1)d(u(·), C0)](xi) + εiB(AC)∗

+ (1 + εi)∂
Ad(xi, xi + L)

and hence

x∗ ∈ 2∂A[KρF (·) + (K lnK + 1)d(u(·), C0)](x)

and the proof is complete.
Set K1 = 2(K lnK + 1). Then, with the help of Proposition 6.3, we have the

following result.
Corollary 6.5. Let F be as in Proposition 6.3. Suppose that

if (v′(t), v(t)) ∈ K1∂
Cρ(t, x(t), x′(t)) a.e.

with

v(0) ∈ K1∂
Ad(x(0), C0), v(1) ∈ ∂Ad(x(1), C1), then v(1) = 0.

Then the conclusion of Theorem 6.2 holds.
Here ∂Cρ refers to the Clarke’s subdifferential of ρ with respect to the variables

(x(t), x′(t)) for t fixed.
Proof. It suffices to show that (6.6) holds and to apply Theorem 6.2. Indeed

consider (as in Thibault [54]) the mappings α : Rn × L1([0, 1], Rn) → Rn × Rn and
β : Rn × L1([0, 1], Rn)→ L1([0, 1], Rn)× L1([0, 1], Rn) defined by

α(x(0), x′) = (x(0), x(1)), β(x(0), x′) = (x, x′).

Let b ∈ ∂Ad(x(1), C1) with −w∗(b) ∈ ∂A(x, S). By Proposition 6.3 there exist a ∈
K1∂

Ad(x(0), C0) and (u, v) ∈ K1∂
AIL(x, x

′) such that

−α∗(a, b) = β∗(u, v)

and hence (see Thibault [54])

b = −v(1), a = v(0), and u(t) = v′(t) a.e.,

and hence b = 0 and the proof is complete.
As a consequence, we obtain the following result which gives us an upper estimate

of the solution set of (6.1).
Corollary 6.6. There exist a > 0 and r > 0 such that

d(x,B(z, v)) ≤ a(d(x(0) + z, C0) + ρF (x+ v))

for all x ∈ x+ rBAC , z ∈ rBRn , and v ∈ rBAC .
Here

B(z, v) = {x ∈ AC : x(0) + z ∈ C0, x′(t) + v′(t) ∈ F (t, x(t) + v(t)), a.e.}.
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Corollary 6.5 may be stated in the following general form. The proof of this
result is omitted since it is similar to those of Theorems 6.1 and 6.2. Note that in the
following result, the perturbation appears only on the left-hand side of the differential
inclusion.

Theorem 6.7. Under the assumptions of Corollary 6.5 there exist a := a(x) > 0
and r > 0 such that

d(x,C(y, z, v)) ≤ a(d(x(0) + z, C0) + ρ̂F (x+ v) + d(x(1) + y, C1))

for all x ∈ x+ rBAC , z, y ∈ rBRn , and v ∈ rBAC .
Here

C(y, z, v) = {x ∈ AC : x(1)+y ∈ C1, x(0)+z ∈ C0, x′(t)+v′(t) ∈ F (t, x(t)), a.e.}
and

ρ̂F (x+ v) =

∫ 1

0

d(x′(t) + v′(t), F (t, x(t)))dt.

This theorem implies in particular that there exist a > 0 and r > 0 such that for
all (y, z) ∈ r(BRn ×BRn) and v ∈ rBAC there exists u ∈ AC such that

u(0) + z ∈ C0, u(1) + y ∈ C1, u′(t) + v′(t) ∈ F (t, u(t)), and

‖x− u‖AC ≤ a[‖z‖+ ‖y‖+ ‖v‖AC ].
7. Applications to sensitivity analysis. Throughout this section X and Y

will be Banach spaces. Suppose that an optimization problem (P) is given in the
following abstract form:

min{f(x) : g(x) ≤ 0}.
It often happens that (P) lends itself naturally to parametric perturbation, so that

(P) is embedded in a family of optimization problems (Py) indexed by a parameter y

min{f(x, y) : g(x, y) ≤ 0}.
The value of the problem (Py) is denoted v(y), and v is called the value function.

For each y in the domain of v we consider the set of minimizers

S(y) := {x ∈ X : g(x, y) ≤ 0, f(x, y) = v(y)}.
We proceed to examine a few typical properties of v that have a bearing on (P).

We begin by the Lipschitzian property of v. For this we introduce a compactness
assumption which will assure the stability of the parametrized problems (Py). A
stability assumption (SA) holds if S(y) �= ∅ for y near 0 and

if yn → 0 and xn ∈ S(yn) ∀n, then (xn) has an accumulation point.

Theorem 7.1. Suppose that
(i) S(0) is nonempty,
(ii) f (resp., g) is lower semicontinuous and locally Lipschitzian near each point

(x0, 0), with Lipschitz constant kf (x0), (resp., near 0 uniformly around x0) for x0 ∈
S(0),
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(iii) (SA) holds,
(iv) the Hoffman error bound holds at each point x0 in S(0), i.e., there exist

a(x0) > 0 and r > 0 such that

d(x, {u : g(u, y) ≤ 0}) ≤ a(x0)g+(x, y) ∀x ∈ x0 + rBX , ∀y ∈ rBY .

Then v is locally Lipschitzian near 0.
Proof. First we show that v is continuous at 0. Since v is upper semicontinuous it

suffices to show that it is s.l.c. at 0. So suppose the contrary; then there exist ε > 0
and a sequence (yn) converging to 0 such that for n large enough

v(0) > v(yn) + ε.

By (iii), there exists xn ∈ S(yn), which we assume converging to some x0 with, by
(ii), x0 ∈ S(0) and hence by the lower semicontinuity of f , we get

v(0) ≥ v(0) + ε

which leads to a contradiction. So v is s.l.c. at 0.
Now we proceed to show that v is locally Lipschitzian around 0. So suppose the

contrary; then there are sequences yn → 0 and y′n → 0 such that for n large enough

|v(yn)− v(y′n)| > n‖yn − y′n‖.
We may assume that the set I = {n : v(yn)−v(y′n) > n‖yn−y′n‖} is infinite (because
(yn) and (y′n) play a symmetric role). For all n ∈ I there exists, by (iii), x′

n ∈ S(y′n),
which we suppose converges to x0 ∈ S(0) (by the continuity of v). Now, by (iv), for
n ∈ I large enough

d(x′
n, {u : g(u, yn) ≤ 0}) ≤ ag+(x

′
n, yn)

and hence there exists xn, with g(xn, yn) ≤ 0, such that

‖x′
n − xn‖ ≤ ag+(x

′
n, yn)

and since g is locally Lipschitzian near 0 uniformly in x′
n, with constant kg = kg(x0)

‖x′
n − xn‖ ≤ a(g+(x

′
n, yn)− g+(x

′
n, y

′
n)) ≤ akg‖yn − y′n‖.

So if kf is a Lipschitz constant of f around (x0, 0), then for all n ∈ I sufficiently large

n‖yn − y′n‖ < f(xn, yn)− f(x′
n, y

′
n) ≤ kf (1 + akg)‖yn − y′n‖,

and this contradiction completes the proof.
We have the following estimate of the subdifferential of v.
Theorem 7.2. Suppose, in addition to the assumptions of Theorem 7.1, that g

is locally Lipschitzian near each point (x0, 0), with x0 ∈ S(0). Then
• ∀x0 ∈ S(0), ∂Av(0) ∩MA(x0) �= ∅,
• ∂Av(0) ⊂MA(0).
Where

MA(x0) = {y∗ + z∗ : (x∗, y∗) ∈ ∂Af(x0, 0), (−x∗, z∗) ∈ α(x0)[0, 1]∂
Ag(x0, 0)},

MA(0) =
⋃

x0∈S(0)

MA(x0)
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α(x0) = (kv + kf (x0))a(x0) and kv is a Lipschitz constant of v near 0.
Proof. The proof of the second part is omitted because it is similar to that given

by Jourani in [19] for the so-called G-subdifferential.
For all x0 ∈ S(0) we have, by Theorem 7.1, that the function

(x, y)→ f(x, y)− v(y) + α(x0)g+(x, y)

attains a local minimum at (x0, 0) and hence (x0, 0, v(0)) is a local minimum of the
function

(x, y, t)→ f(x, y)− t+ α(x0)g+(x, y)

over the set {(x, y, t) : v(y) = t}, and the result follows by using Fritz–John neces-
sary optimality conditions for approximate subdifferential.

The previous result may be applied to produce estimates of the subdifferential of
the marginal function

m(y, z) = inf{f(x(0), x(1)) : x(1) + y ∈ C1, x(0) + z ∈ C0,

x′(t) ∈ F (t, x(t)), a.e.}

Let S(y, z) be the set of feasible points x satisfying m(y, z) = f(x(0), x(1)).
Corollary 7.3. Suppose that for all x ∈ S(0, 0), the assumptions of Theorem

6.7 hold, f is locally Lipschitzian around (x(0), x(1)) with constant kf (x), and suppose
that the multivalued mapping (y, z)→ S(y, z) satisfies some compactness assumption
like (SA). Then
• m is locally Lipschitzian around (0, 0) (with constant km),
• ∀x ∈ S(0, 0), ∂Am(0, 0) ∩N(x) �= ∅,
• ∂Am(0, 0) ⊂ N(0, 0).
Where K1(x) = (kf (x) + km)a(x), a(x) is as in Theorem 6.7,

N(0, 0) =
⋃

x∈S(0,0)

N(x),

and N(x) is the set of elements (a, b) ∈ K1(x)∂
Ad((x(0), x(1)), C0 × C1) for which

there exist (c, d) ∈ ∂Af(x(0), x(1)) and v such that

(v′(t), v(t)) ∈ K1(x)∂
Cρ(t, x(t), x′(t)), a.e.

with

a+ c = v(0) and b+ d = −v(1).

Proof. Apply Theorem 7.2 with g(x, y, z) = d(x(1)+y, C1)+d(x(0)+z, C0)+ρF (x)
and use the formulae on generalized gradients of integral functionals [6].

8. Further results: Farkas lemma for quadratic inequality systems and
weak sharp minima (or linear conditioning). We will use the previous results
and the result by Mangasarian [37] to obtain a Farkas lemma for quadratic inequality
system

x ∈ C,
1

2
〈x,Bx〉+ 〈b, x〉+ c ≤ 0,(8.1)
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where C is polyhedral in Rn and B ∈ Rn×m is symmetric and positive semidefinite.
We let S be a solution set to this system.

We use the description of the solution set of a convex program established in [37].
See [33] for a simple proof of the following proposition in the case where f is locally
Lipschitz.

Proposition 8.1. Let D be the solution set to the problem

min
x∈C

f(x),

where both f : Rn → R and C ⊂ Rn are convex with f differentiable. Let u ∈ D.
Then

D = {x ∈ C : ∇f(x) = ∇f(u), 〈∇f(u), x− u〉 = 0}.

Now we are able to present a Farkas lemma for (8.1).
Proposition 8.2. Let u be a boundary point in S and Bi, i = 1, . . . ,m, be vector

lines of B. Set g(x) = 1
2 〈x,Bx〉+ 〈b, x〉+ c. Then

N(S, u) ⊂ N(C, u) +R+∂g+(u) orN(S, u) ⊂ N(C, u) + span{B1, . . . , Bm, b}.

Proof. First case. If there exists u0 ∈ C such that g(u0) < 0, then, by Proposition
3.2, we have

d(x, S) ≤ f+(x)

−g(u0)
‖x− u0‖ ∀x ∈ Rn,

where f(x) = g(x) + ΨC(x), or, equivalently,

d(x, S) ≤ g+(x)

−g(u0)
‖x− u0‖ ∀x ∈ C.

This ensures that

N(S, u) ⊂ N(C, u) +R+∂g+(u).

Second case. For all x ∈ C, g(x) ≥ 0. In this case S is the set of solutions of the
problem

min
x∈C

g(x).

Thus, by Proposition 8.1, S = {x ∈ C : A(x − u) = 0}, where A = (B, b) and
Theorem 4.3 implies the existence of a > 0 such that

d(x, S) ≤ a‖A(x− u)‖ ∀x ∈ C.

Thus

N(S, u) ⊂ N(C, u) + span{B1, . . . , Bm, b}.

This completes the proof.
Remark. Proposition 8.2 may be obtained as a consequence of the well-known

results in convex analysis (see [51]).
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Consider a function g : X → R ∪ {∞} and a subset C of X. We say that
S := argminC g is a set of weak sharp minima for g relative to C with modulus b > 0
if

g(x) ≥ g(u) + bd(x, S) ∀x ∈ C, ∀u ∈ S.

As we can see that this is equivalent to Hoffman’s error bound

d(x, S) ≤ 1

b
f+(x) ∀x ∈ X,

where f(x) = g(x)−g(u)+ΨC(x) for some u ∈ S. To simplify we assume that C = X.
Theorem 8.3. Let f be lower semicontinuous, b > 0, and S := argmin f be

nonempty. Consider the following statements.
(i) (∂f)−1(x∗) ⊂ S ∀x∗ ∈ X∗ with ‖x∗‖ < b.
(ii) ∀x ∈ domf, x /∈ S d(0, ∂f(x)) ≥ b.
(iii) S is a set of weak sharp minima for f on X with modulus b.

Then (i) ⇐⇒ (ii) =⇒ (iii). If in addition f is proper and convex, statements (i), (ii),
and (iii) are equivalent. Here (∂f)−1(x∗) := {x ∈ X : x∗ ∈ ∂f(x)}.

Proof. The equivalence (i) ⇐⇒ (ii) is obvious. The implication (ii) =⇒ (iii)
follows from Theorem 2.4. Theorem 5.1 in [8] ensures the implication (iii) =⇒
(i).

Remark. One of the referees pointed out that the nonparametric version of Theo-
rem 2.4 and the equivalence of (ii) and (iii) were obtained independently and presented
at a meeting in Dallas in 1997 by J. V. Burke and S. Deng.

Acknowledgment. The author wishes to acknowledge the comments of the ref-
erees, which helped to correct and improve the presentation of the paper.
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Abstract. In the stabilization problem for systems with control and state constraints a domain
of attraction is a set of initial states that can be driven to the origin by a feedback control without
incurring constraints violations. If the problem is that of tracking a reference signal, that converges to
a constant constraint-admissible value, a tracking domain of attraction is a set of initial states from
which the reference signal can be asymptotically approached without constraints violation during
the transient. Clearly, since the zero signal is an admissible reference signal, any tracking domain of
attraction is a domain of attraction. We show that the opposite is also true. For constant reference
signals we establish a connection between the convergence speed of the stabilization problem and
tracking convergence which turns out to be independent of the reference signal. We also show that
the tracking controller can be inferred from the stabilizing (possibly nonlinear) controller associated
with the domain of attraction.

Key words. constrained control, domain of attraction, Lyapunov functions, tracking, convex
analysis
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1. Introduction. In this paper we consider linear systems with state and control
constraints. For this class of systems we say that a certain convex and compact set
including the origin in its interior is a domain of attraction to the origin if there
exists a feedback control such that for any initial state in this set the state is driven
asymptotically to the origin without constraints violation. Several previous references
have dealt with the construction of such domains (see for instance [3], [6], [11], [12],
[17], [18], [19], [20], [21], [26], [28]).

Here we consider the problem of tracking a reference signal including the zero
one. We assume that the system is square (i.e., it has as many inputs as outputs)
and that it is free of invariant zeros at one in the discrete-time case (or it is free
from zeros at the origin in the continuous-time case). We define a set of reference
vectors which are constraints-compatible in the sense that they are associated with
state vectors which are in the interior of the domain of attraction to the origin and
to feasible input vectors. The only condition required for the signal to be tracked is
that it asymptotically converges to a value which is in this set. A signal satisfying the
above requirement will be said to be admissible. We stress that the signal, during the
transient, may assume values outside this set and it is a goal of the control to avoid
constraints violations. For the zero reference signal, such a goal can be achieved only
if the initial state is inside a domain of attraction to the origin. Any initial state from
which we can track asymptotically an admissible reference signal is said to belong to
a tracking domain of attraction. The question which hence arises is whether there
are initial states inside the domain of attraction to the origin from which we cannot
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solve the problem of tracking an admissible reference signal. Put in other words this
means to verify whether or not the largest tracking domain of attraction is a proper
subset of the assigned domain of attraction. We show that the answer is negative.

The basic ideas we develop here are related to previously published results [2], [15],
[14], [16]. The main difference relies on the fact that in those references it is assumed
that a stabilizing linear nominal compensator (often referred to as precompensator) is
applied to the system. To this nominal compensator the so called reference governor
is added which is a device that possibly attenuates the effect of the reference signal in
order to avoid violations. This is basically equivalent to considering a stable system
(i.e., a system to which a precompensator is applied) and to managing the reference
for this system. Although this assumption is quite reasonable, it turns out that the
resulting constructed invariant sets depend on the precompensator. Therefore, an
unsuitable choice of the compensator can produce a very small domain of attraction.

Conversely, here we do not assume the existence of any precompensator and thus
we may take as a domain of attraction the largest one in absolute in the sense that, if
the initial state is outside that region, there is no guarantee that constraints violation
can be avoided, even for zero reference signal. We show that this is a tracking domain
of attraction, in the sense that there is a (possibly nonlinear) compensator, which is
not a priori fixed, that solves the tracking problem for any initial state in this region.
Furthermore, we show that the control strategy can be inferred from the original
stabilizing controller associated with the given domain of attraction. We use as a
technical support a Lyapunov function suitably constructed by “reshaping” the one
associated with such a domain.

Finally we show that, for constant reference signals and symmetric domains, the
speed of convergence can be estimated a priori from the speed of convergence achieved
by the stabilizing controller, and it does not depend on the particular reference.

The paper is organized as follows. In section 2 we provide the basic definitions.
In section 3 we state the main results which will be proven later in section 4 and
section 5. We particularize the results to domains of attraction of special shapes in
section 6. We show how to extend the results to nonsquare systems in section 7. We
finally present two examples in section 8 to illustrate the method, and we derive our
conclusions in section 9.

2. Definitions and problem statement. In what follows we denote by intP
the interior of a set P and by ∂P its boundary. With the term C-set we denote a
convex and compact set containing the origin as an interior point. It is known that
any C-set P induces a positively homogeneous convex function which is known as
Minkowski functional (see [22]):

ψP(x) = inf{ξ ≥ 0 : x ∈ ξP}.(2.1)

The function ψP(x) ≥ 0 is such that ψP(x) = 0 iff x = 0, and ψP(λx) = λψP(x) for
any λ ≥ 0. If P is 0-symmetric (i.e., x ∈ P implies −x ∈ P), then ψP is a norm. The
index P will be omitted for brevity when the inducing set P of ψP is clear from the
context.

In the following we consider both discrete and continuous-time square systems

δx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

(2.2)

where δ represents the shift operator δx(t) = x(t+1) in the discrete-time case and the
derivative operator in the continuous-time case. The vector y(t) ∈ R

q is the system
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output, the vector x(t) ∈ R
n is the system state, and u(t) ∈ R

q is the control input.
We assume that (A,B) is stabilizable and that x and u are subject to the constraints

x(t) ∈ X ,(2.3)

u(t) ∈ U ,(2.4)

where X ⊂ R
n and U ⊂ R

q are assigned C-sets.
Due to the presence of the constraints, the solution of the stabilization problem

implies restrictions on the admissible initial conditions.
Definition 2.1. The C-set S ⊂ X is a domain of attraction for the system (2.2)

if there exists a continuous feedback control function u(t) = φ(x(t)) such that any
trajectory x(t) with initial condition x(0) ∈ S is such that x(t) ∈ S, u(t) ∈ U , and

lim
t→∞x(t) = 0.

It is well known that the above definition is fundamental for the stabilization
problem under constraints. An initial condition can be driven to the origin without
constraints violations iff it belongs to a domain of attraction. However, in practice,
simple convergence is not enough, but it is important to provide an index of the speed
of convergence to the origin. Thus we introduce the following two definitions.

Definition 2.2. The C-set S ⊂ X is a domain of attraction with speed of
convergence λ for the discrete-time system (2.2) if there exists 0 ≤ λ < 1 and a
continuous feedback control function u(t) = φ(x(t)) such that any trajectory x(t) with
initial condition x(0) ∈ S is such that

ψS (x(t)) ≤ λtψS (x(0)) .

If we take λ = 1, the set S is simply said to be positively invariant (often referred to
as controlled–invariant). We say that Sλ ⊂ X is the largest domain of attraction if
for any domain of attraction S in X with speed of convergence λ we have S ⊂ Sλ.

Definition 2.3. The C-set S ⊂ X is a domain of attraction with speed of con-
vergence β for the continuous-time system (2.2) if there exists β > 0 and a continuous
feedback control function u(t) = φ(x(t)) such that any trajectory x(t) with initial con-
dition x(0) ∈ S is such that

ψS (x(t)) ≤ e−βtψS (x(0))

If we take β = 0, the set S is simply said to be positively invariant (often referred to
as controlled-invariant). We say that Sβ ⊂ X is the largest domain of attraction if
for any domain of attraction S in X with speed of convergence β we have S ⊂ Sβ.

A stabilizable system always admits a domain of attraction P ⊂ X . The knowl-
edge of such a domain is fundamental in the stabilization problem under constraints,
since if x(0) ∈ P, then the conditions x(t) ∈ P ⊂ X for t ≥ 0, and x(t)→ 0 as t→∞
can be assured. Thus, once we have computed a domain of attraction P to solve the
problem (possibly the largest one [4], [6], [7]), we can replace the constraint x(t) ∈ X
by the new constraint

x(t) ∈ P.
In this paper we deal with the problem of tracking a certain class of reference signals.
To this aim we make the assumption that the system is free from zeros at one (zeros
at the origin).
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Assumption 2.1. The square matrix

Md =

[
A− I B
C D

](
resp., Mc =

[
A B
C D

])

is invertible.
The general case in which Md (Mc) is not invertible or even nonsquare will be

considered in section 7. Under Assumption 2.1 the system has the property that for
any constant reference r ∈ R

q there is an unique state-input equilibrium pair (x̄, ū)
such that the corresponding equilibrium output is r. Such a pair is the unique solution
of the equation

Md

[
x̄(r)
ū(r)

]
=

[
0
r

](
resp., Mc

[
x̄(r)
ū(r)

]
=

[
0
r

])
.

Thus we can define the set of admissible constant reference vectors

R = {r ∈ R
q : ū(r) ∈ U , x̄(r) ∈ P}.

Being that P and U are both bounded, R is also bounded. The set R is of funda-
mental importance. It is the set of all reference vectors for which the corresponding
input and state equilibrium pairs do not violate the constraints ū ∈ U and x̄ ∈ P.
While the reason for imposing the former is obvious, the second deserves some expla-
nation. Indeed we have imposed x ∈ X . However, note that if x̄(r) is not included in
a domain of attraction, then the condition x(t) → x̄(r) can cause a violation of the
constraints if, for instance, after a sufficiently long period, the reference r(t) switches
to zero.

We are now going to introduce the set of all the admissible signals to be tracked,
formed by the signals r(t) having a finite limit r∞, with the condition that r∞ has
some admissibility condition with respect to the constraints.

Definition 2.4. Assume that a small 0 < ε < 1 is given. A reference signal r(t)
is admissible if it is continuous1 and if it is such that

lim
t→∞ r(t) = r∞ ∈ (1− ε)R .

= Rε.

The parameter ε, as we will see later, is introduced to avoid singularities in the
control. Such ε may be arbitrarily small, and thus it does not practically affect the
problem. We stress that an admissible reference signal does not need to assume its
values in Rε, but only its limit r∞ needs to do this. Now we can state the following
basic definition.

Definition 2.5. The set P ⊂ X is a tracking domain of attraction if there exists
a (possibly nonlinear) feedback control

u(t) = Φ(x(t), r(t))

such that for any x(0) ∈ P and for every admissible reference signal r(t)
(i) x(t) ∈ P and u(t) ∈ U ,
(ii) y(t)→ r∞ as t→∞.

1The continuity requirement for the function r(t) is limited to the continuous-time case only. It
is not essential but avoids unnecessary complications.
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1 0 1
1

0

1

Fig. 1. The largest domain of attraction when λ = .9.

Since r(t) = 0 is an admissible reference signal, any tracking domain of attraction
is a domain of attraction. The main result of this paper is that of showing that every
domain of attraction P is also a tracking domain of attraction. The importance of
this assertion lies in the fact that the tracking problem can be solved once one has
found a domain of attraction. Since the latter operation is a well-established topic,
this allows for the solution of a more general problem.

Remark 2.1. Note that under Assumption 2.1 the condition y(t)→ r∞ as t→∞
is equivalent to the two conditions x(t)→ x̄∞

.
= x̄(r∞) and u(t)→ ū∞

.
= ū(r∞).

2.1. A simple example. Consider the discrete-time system

A =

[
1 −1
1 1

]
B =

[
1
0

]
C =

[
0 1

]
,

together with the constraints sets X = {x : ‖x‖∞ ≤ 1} and U = {u : |u| ≤ 1.2}. The
largest domain of attraction with speed of convergence λ for λ ≥ 0.9 is given by

P = {x : |x1| ≤ 1, |x2| ≤ 1, |x1 + x2| ≤ λ}
and is reported in Figure 1 for λ = .9. Such a domain is associated with the polyhedral
function ψ(x) = max{|x1|, |x2|, |x1 + x2|/λ}.

If we take λ < 1 we assure that P is a domain of attraction. Note that for λ
approaching 1 the set P approaches the largest invariant set. Therefore there is a
tradeoff between the choice of the largest invariant set and the convergence speed.
Once this tradeoff is fixed by a choice of λ, we have that there exists a stabilizing
control which avoids constraints violation for all initial states inside P. Now if we
want to track a reference signal r(t) the situation is different. For a given fixed r̄, the
corresponding state input pair is

[
x̄
ū

]
=

[
A− I B
C 0

]−1 [
0
r̄

]
.

If our goal were asymptotic tracking only, in view of the linearity of the system we
could just use the translated Lyapunov function

ψ(x− x̄) = max{|x1 − x̄1|, |x2 − x̄2|, |x1 − x̄1 + x2 − x̄2|/λ}.
But in this way the constraints could not be satisfied. The basic idea we pursue is to
“deform” the function ψ in such a way that the surface of level one is unchanged and
the minimum point (the zero) is assumed on x̄.
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The set Rε is the interval

Rε = {r : |r| ≤ λ− ε}.

For every reference signal r(t) → r̄ ∈ Rε and x(0) ∈ P, our goal is that of letting
y(t)→ r̄ and x(t) ∈ P. According to Remark 2.1, for the first condition it is necessary
and sufficient that x(t)→ x̄ = [0 r]T and u(t)→ r (in this case ū(r) = r).

3. Main results. We will now introduce the functions which will subsequently
be used for tracking every admissible reference signal. Suppose that a C-set P, which
is a domain of attraction, is given and consider its Minkowski functional which, from
(2.1), can be rewritten as

ψP(x) = inf{α > 0 :
1

α
x ∈ P}.(3.1)

For every x̄ ∈ intP and x ∈ P, we introduce the following function:

ΨP(x, x̄) = inf{α > 0 : x̄ +
1

α
(x− x̄) ∈ P}.(3.2)

It is immediate that the just introduced function Ψ recovers the values of ψ when
x̄ = 0, say ΨP(x, 0) = ψP(x). For fixed x̄, ΨP(x, x̄) is convex. Furthermore, the
function ΨP(x, x̄) for (x, x̄) ∈ P × intP is such that

ΨP(x, x̄) = 0 iff x = x̄,(3.3)

ΨP(x, x̄) < 1 iff x ∈ P,(3.4)

ΨP(x, x̄) = 1 iff x ∈ ∂P.(3.5)

A sketch of the function ΨP(x, x̄) for fixed x̄ is in Fig. 2. One further relevant property
of this function is that ΨP is Lipschitz in x and positively homogeneous of order one
with respect to the variable z = x− x̄ ∈ R

n, x̄ ∈ intP, i.e.,

ΨP(ξz + x̄, x̄) = ξΨP(z + x̄, x̄).(3.6)

In view of property (3.3) we have that the function is a suitable Lyapunov candidate
for tracking, and from (3.4)–(3.5) we have that this function is suitable to prevent
constraints violations, as we will show later.

Let us now consider the function ΨP(x, x̄) and for every x ∈ P and x̄ ∈ intP,
with x �= x̄, set

x̃
.
= x̄ + (x− x̄)

1

ΨP(x, x̄)
∈ ∂P.

The vector x̃ is the intersection of ∂P with the half line starting from x̄ and passing
through x (see Fig. 2). Assume that P is a given domain of attraction and that
φ(x) is the control law associated with this set. As shown in [4], [7], there exists
always a positively homogeneous control of order 1 which can be associated with such
a domain. Therefore, without restriction, we introduce the following assumption.

Assumption 3.1. The stabilizing control law φ(x) associated with the domain of
attraction P is Lipschitz and positively homogeneous of order 1, i.e., φ(αx) = αφ(x)
for α ≥ 0 and x ∈ P.
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x

x

x~

P

Fig. 2. The function ΨP (x, x̄) for fixed x̄.

The next step in the derivation of a feedback control law Φ(x, r) is the definition
of a saturation map Γ : R

q → Rε as follows:

Γ(r) =

{
rψRε(r)

−1 when ψRε
(r) > 1

r otherwise

say

Γ(r) = r ∗ sat
(

1

ψRε
(r)

)
,

where sat(·) is the saturation function. Note that Γ(r) is the identity if we restrict
r ∈ Rε. Conversely, for r �∈ Rε, Γ(r) is the intersection of ∂Rε and the segment
having extrema 0 and r.

The control we propose has the form

Φ(x, r) = φ(x̃)ΨP(x, x̄) + (1−ΨP(x, x̄))ū,(3.7)

where [
x̄(r̄)
ū(r̄)

]
.
= M−1

d

[
0
r̄

](
resp.,

[
x̄(r̄)
ū(r̄)

]
.
= M−1

c

[
0
r̄

])
(3.8)

and

r̄ = Γ(r).(3.9)

Note that, for r ∈ Rε, (3.9) does not play any role. Note also that, since r̄ = Γ(r) ∈
Rε, then x̄ ∈ intP, thus the term ΨP(x, x̄) in (3.7) is defined. However, the expression
(3.7) is not defined for x = x̄ because of the critical term φ(x̃)ΨP(x, x̄). Nevertheless,
in view of the homogeneity of φ and from the expression of x̃, we have that

φ(x̃)ΨP(x, x̄) = φ(ΨP(x, x̄)x̃) = φ (x + (ΨP(x, x̄)− 1)x̄) .(3.10)

Then φ(x̃)ΨP(x, x̄) → 0 as x → x̄ so that we can extend the function by continuity
by assuming

φ(x̃)ΨP(x̄, x̄) = 0.
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The introduced control law inherits most of the properties from φ(x) according to
the next proposition which assures existence and uniqueness of the solution of (2.2)
when the control Φ(x, r) is used, provided that the admissible reference signal r(t) is
measurable.

Proposition 3.1. Suppose φ(x) is Lipschitz and homogeneous of order 1. Then
Φ(x, r) : P ×R

q → U , defined as in (3.7)–(3.9), is continuous and it is Lipschitz with
respect to x.

To have an idea of how this control works, note that as long as the condition

ΨP(x(t), x̄(t)) ≤ 1(3.11)

is satisfied, we have that x(t) ∈ P. Moreover, for x̄ ∈ intP, the control is just a convex
combination of the control ū(r̄) and φ(x̃). By construction, ū(r̄) ∈ U and φ(x̃) ∈ U ;
thus Φ(x, r) ∈ U .

Our effort will be devoted to proving that the proposed control law guarantees
(3.11) as well as the limit condition

ΨP(x(t), x̄(r∞))→ 0,(3.12)

where x̄(r∞) is the steady state associated with r∞ ∈ Rε (note that Γ(r∞) = r∞).
Indeed such a limit condition implies x(t) → x̄(r∞) and, from (3.7) and (3.10),
Φ(x(t), r(t)) → Φ(x̄(r∞), r∞) = ū(r∞). Therefore if (3.12) holds, we have that
y(t)→ r∞.

For evident practical reasons, we introduce an extended concept of speed of con-
vergence, appropriate for the condition (3.12). In the continuous-time case, given
a fixed x̄ ∈ intP we say that the speed of convergence is β > 0 if the Lyapunov
derivative Ψ̇P(x(t), x̄) of ΨP(x(t), x̄) is such that

Ψ̇P(x, x̄, u)
.
= lim
h→0+

ΨP(x + h(Ax + Bu), x̄)−ΨP(x, x̄)

h
≤ −βΨP(x, x̄),

where the existence of the limit is assured by the convexity of ΨP with respect to x.
In the discrete-time case we say that the speed of convergence is λ < 1 if

ΨP(Ax + Bu, x̄) ≤ λΨP(x, x̄).

We start by considering a special case, namely the one in which the reference
signal is constant. In this case we can show that, if we have a domain of attraction
to the origin with a certain speed of convergence, we can achieve the tracking goal
without constraints violation for all the initial states in such a domain. Furthermore,
for symmetric domains, we can guarantee a speed of convergence which is independent
of the reference input.

Theorem 3.2. Let P be a domain of attraction with speed of convergence λ
for the discrete-time dynamic system (2.2) associated with the control φ(x) satisfying
Assumption 3.1. Then, for every admissible constant reference signal r(t) = r̄, the
control law (3.7)–(3.8) is such that for every initial condition x(0) ∈ P we have that
x(t) ∈ P and u(t) ∈ U for every t ≥ 0 and limt→∞y(t) = r̄. Moreover, if P is
0-symmetric, the speed of convergence λTR = λ+1

2 is guaranteed.
The next theorem is the continuous-time version of the above.
Theorem 3.3. Let P be a domain of attraction with speed of convergence β for

the continuous-time dynamic system (2.2) associated with the control φ(x) satisfying
Assumption 3.1. Then, for every admissible constant reference signal r(t) = r̄, the
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control law (3.7)–(3.8) is such that for every initial condition x(0) ∈ P, we have that
x(t) ∈ P and u(t) ∈ U for every t ≥ 0 and limt→∞y(t) = r̄. Moreover, if P is
0-symmetric, the speed of convergence is at least βTR = β

2 .
The proposed control law can be successfully used even when the reference r(t)

is allowed to vary provided that it is admissible according to Definition 2.4.
Theorem 3.4. Let r(t) be admissible as in Definition 2.4. Any domain of attrac-

tion P, with speed of convergence β > 0 (0 ≤ λ < 1), for system (2.2) is a tracking
domain of attraction. Moreover, the control law in (3.7)–(3.9) assures the conditions
(i) and (ii) of Definition 2.5.

Remark 3.1. If we consider a constant reference r ∈ Rε and the corresponding
steady state vectors derived from x̄ and ū by means of (3.8), then we can apply a
state and control translation by considering the system δx̂ = Ax̂ + Bû with the new
constraints û = u− ū ∈ U − ū = Û and x̂ = x− x̄ ∈ X − x̄ = X̂ . From this algebraic
point of view, our result amounts to proving that the largest domain of attraction of
the translated problem is just achieved by translating the original largest domain of
attraction as P̂ = P − x̄.

4. Properties of the function Ψ(x, x̄). To prove the results of the previous
section we first need to present some properties of the function Ψ(x, x̄). First we prove
its continuity. For the simple notation we will drop the index P.

Lemma 4.1. For (x, x̄) ∈ P × intP, the function Ψ(x, x̄) is continuous.
Proof. Consider the case x �= x̄. Take any point (x, x̄) and a close pair (x′, x̄′).

Assume that x′ ∈ Vx and x̄′ ∈ Vx̄ ⊂ intP where Vx and Vx̄ are close neighborhoods
of x and x̄ such that Vx

⋂
Vx̄ = ∅, the empty set. This implies that ‖x′ − x̄′‖ ≥ M

for some positive M . Assume now x′ ∈ P and take α > 0 (which exists because
x̄′ ∈ intP) such that x̄′ +(x′− x̄′)/α ∈ P . Then ‖(x′− x̄′)/α‖ ≤ m, for some positive
m. This means that α ≥M/m; thus it is lower bounded. From (3.2) we have

Ψ(x′, x̄′) = inf

{
α > 0 : x̄′ +

1

α
(x′ − x̄′) ∈ P

}
(4.1)

= inf



α > 0 : x̄ +

1

α
(x− x̄) ∈ P + (x̄− x̄′)

(
1− 1

α

)
+

1

α
(x− x′)

︸ ︷︷ ︸
=z



,

where P + z
.
= {y = x + z, x ∈ P}. Since α as in (4.1) is lower bounded by M/m,

then ‖z‖ → 0 as (x′, x̄′)→ (x, x̄).
Moreover, P is a C-set; thus for every 0 < ε̂ < 1 there exists δ such that if

‖x− x′‖ ≤ δ and ‖x̄− x̄′‖ ≤ δ, then

(1− ε̂)P ⊂ P + z ⊂ (1 + ε̂)P.(4.2)

Consider the following function:

α(ε) = inf

{
α > 0 : x̄ +

1

α
(x− x̄) ∈ (1 + ε)P

}
.

The inclusion (4.2) assures that for ε̂ and δ as above

α(ε̂) ≤ Ψ(x′, x̄′) ≤ α(−ε̂),
and from (3.2) we have

α(ε̂) ≤ Ψ(x, x̄) ≤ α(−ε̂).
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Thus, if we show that α(ε) is continuous at 0, we have |α(ε̂)− α(−ε̂)| → 0, as ε̂→ 0,
and we have completed the proof.

Since x̄ ∈ intP, there exists 0 < ε̄ < 1 such that x̄ ∈ int{(1 + ε)P} for all |ε| < ε̄.
The set of all points of the form x̄ + (x − x̄)/α, α > 0 is a ray originating

from x̄ which, for |ε| ≤ ε̄, intersects the boundary of (1 + ε)P at the unique point
x̄ + (x− x̄)/α(ε). We can write this condition as

ψ (x̄ + (x− x̄)/α(ε)) = 1 + ε.(4.3)

Note also that for α > α(ε) the point x̄+(x− x̄)/α ∈ int{(1+ ε)P}; thus the function
α(ε) is strictly decreasing on [−ε̄, ε̄], and so it is invertible. From (4.3) its inverse is
the function

ε(α)
.
= ψ (x̄ + (x− x̄)/α)− 1

which is continuous (actually convex). Then α(ε) is continuous.
In the case x = x̄ ∈ intP, say Ψ(x, x̄) = 0 it is very easy to show from (3.2) that

Ψ(x′, x̄′)→ 0 as (x′, x̄′)→ (x̄, x̄), and we skip the proof for brevity.
The function Ψ(x, x̄) is not necessarily differentiable and then, to use it as a

candidate Lyapunov function, we invoke the theory of subdifferentials. Given a convex
function F (x), the subdifferential of F in x is defined as the set [23]

∇F (x) = {w : 〈w, z − x〉 ≤ F (z)− F (x) for all z ∈ R
n} .

Each element w of ∇F is called subgradient. In what follows we denote by ∇Ψ(x, x̄)
the subdifferential of the function Ψ(x, x̄) with respect to x (i.e., x̄ is assumed con-
stant):

∇Ψ(x, x̄) = {w : 〈w, z − x〉 ≤ Ψ(z, x̄)−Ψ(x, x̄)} .
If Ψ(x, x̄) is differentiable with respect to x, then ∇Ψ(x, x̄) is a singleton including
the gradient vector

∇Ψ(x, x̄)
.
=

[
∂Ψ(x, x̄)

∂x1
, . . . ,

∂Ψ(x, x̄)

∂xn

]T
.

For constant x̄, the Lyapunov derivative of the function Ψ(x, x̄), along the system
trajectory of the system (2.2), is given by

Ψ̇(x, x̄, u) = lim
τ→0+

Ψ(x + τ(Ax + Bu), x̄)−Ψ(x, x̄)

τ
.(4.4)

From [23, Th. 23.4], we have that

Ψ̇(x, x̄, u) = sup
w∈∇Ψ(x,x̄)

〈w,Ax + Bu〉.(4.5)

This fact implies that the condition

Ψ̇(x, x̄, u) ≤ −βΨ(x, x̄)

is equivalent to

〈w,Ax + Bu〉 ≤ − βΨ(x, x̄) for all w ∈ ∇Ψ(x, x̄).

The next lemma will show some fundamental properties concerning the subdifferen-
tiability of Ψ. Its importance will be evident later when we deal with continuous-time
systems.

Lemma 4.2. Assume that x̄ ∈ intP is fixed. Then
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(i) Its subdifferential is constant over any ray emanating from x̄

∇Ψ(x̄ + µy, x̄) = ∇Ψ(x̄ + y, x̄) for all µ ≥ 0;(4.6)

(ii) The equality

Ψ(x, x̄) = 〈ŵ, x− x̄〉

holds for all ŵ ∈ ∇Ψ(x, x̄).
(iii) For every x ∈ ∂P the positive cones generated by the subdifferentials ∇ψ(x)

and ∇Ψ(x, x̄) coincide. This means that each w ∈ ∇ψ(x) is aligned with
some ŵ ∈ ∇Ψ(x, x̄) and vice-versa. Furthermore, if P is 0-symmetric (i.e.,
P = −P) for every x̄ ∈ (1 − ε)P and x ∈ ∂P, the aligning factor γ(ŵ, w)
such that

ŵ = γ(ŵ, w)w, ŵ ∈ ∇Ψ(x, x̄), w ∈ ∇ψ(x)

satisfies the inequality

γ(ŵ, w) ≥ 1

2− ε
≥ 1

2
.(4.7)

Proof. Property (i) is a straightforward derivation from the definition of the
subdifferential once we have established that ψ̃(y) = Ψ(x̄+ y, x̄) is a positively homo-
geneous function of order 1 according to (3.6). Property (ii) follows from the following
properties of the positively homogeneous functions of order 1 (see the appendix)

ψ̃(y) = 〈w, y〉 for all w ∈ ∇ψ̃(y).(4.8)

To prove (iii), let x̄ ∈ intP be fixed. From (3.4)–(3.5) the unit balls of the functions
Ψ(x, x̄) and ψ(x) are both equal to P. For x ∈ ∂P, the normal cone [13] to this set
is given by

N = {z ∈ R
n : 〈z, x′ − x〉 ≤ 0 for all x′ ∈ P}.

Since the normal cone for x ∈ ∂P is the convex positive cone generated by any of the
two subdifferentials ∇Ψ(x, x̄) and ∇ψ(x), we have the alignment of any element of
the former with an element of the latter and the existence of a positive real γ(ŵ, w)
such that ŵ = γw, with ŵ ∈ ∇Ψ(x, x̄) and w ∈ ∇ψ(x).

To prove (4.7) consider x ∈ ∂P so that Ψ(x, x̄) = 1 with x̄ ∈ (1 − ε)P. Let
ŵ ∈ ∇Ψ(x, x̄) and w ∈ ∇ψ(x) be as above. From property (ii)

Ψ(x, x̄) = 1 = 〈ŵ, x− x̄〉 = γ〈w, x− x̄〉.

Then, since w ∈ ∇ψ(x), ψ(x) = 〈w, x〉 = 1 and by the symmetry of P, ψ(−x̄) =
ψ(x̄) ≤ 1− ε we get

1

γ
= 〈w, x− x̄〉 = 〈w,−x̄− x〉+ 2〈w, x〉(4.9)

≤ ψ(−x̄)− ψ(x) + 2 = ψ(−x̄) + 1 ≤ 2− ε(4.10)

which is equivalent to (4.7).
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Remark 4.1. If symmetry is removed, it is possible to show that there exists
mε > 0 such that γ(ŵ, w) ≥ mε > 0, although no lower bounds can be provided a
priori.

We recall that if P is a convex set in a real normed space X, then it is possible
to define on the dual space X∗ the support functional h(x∗) of P

h(x∗) = sup
x∈P
〈x, x∗〉.(4.11)

If the set contains the origin as an interior point, then h(x∗) is positive definite, and
if the set is compact, there exists a finite constant K such that h(x∗) ≤ K‖x∗‖ for
every x∗. Once h(·) is known, it is possible to describe a closed convex set as the
intersection of all the half-spaces that contain it:

P =
⋂
x∗
{x : 〈x, x∗〉 ≤ h(x∗)}.(4.12)

For every x belonging to a C-set P we have that −h(−x∗) ≤ 〈x, x∗〉 ≤ h(x∗) for
every x∗ ∈ X∗. If P is 0-symmetric, then h(−x∗) = h(x∗) for all x∗. The next lemma
characterizes Ψ(x, x̄) in terms of h.

Lemma 4.3. Let h(·) be the support functional of P. Then

Ψ(x, x̄) = sup
‖x∗‖=1

〈x∗, x− x̄〉
h(x∗)− 〈x∗, x̄〉 .(4.13)

Proof. By a proper scaling of the vectors x∗ in (4.12), we know that x ∈ P iff
〈x, x∗〉 ≤ h(x∗) for every x∗ such that ‖x∗‖ = 1. Then from (3.2)

Ψ(x, x̄) = inf

{
α : 〈x̄ +

1

α
(x− x̄), x∗〉 ≤ h(x∗), for all ‖x∗‖ = 1

}

= inf

{
α :

1

α
〈(x− x̄), x∗〉 ≤ h(x∗)− 〈x̄, x∗〉, for all ‖x∗‖ = 1

}
.

from which follows (4.13).
The next lemma we present gives an upper bound to the values of the function

Ψ(x, x̄) when (x, x̄) ∈ αP × intP. It will be useful to guarantee a convergence speed
in the discrete-time case.

Lemma 4.4. Suppose P is 0-symmetric and let x ∈ αP and x̄ ∈ intP. Then

Ψ(x, x̄) ≤ α + 1

2
.(4.14)

Proof. From Lemma 4.3 we need to prove that

〈x∗, x− x̄〉
h(x∗)− 〈x∗, x̄〉 ≤

1 + α

2
(4.15)

for every x∗ such that ‖x∗‖ = 1. For every such x∗ we have that 〈x, x∗〉 ≤ αh(x∗)
whenever x ∈ αP. Thus

〈x∗, x− x̄〉
h(x∗)− 〈x∗, x̄〉 ≤

αh(x∗)− 〈x∗, x̄〉
h(x∗)− 〈x∗, x̄〉

=
α− 〈x∗,x̄〉

h(x∗)

1− 〈x∗,x̄〉
h(x∗)

(4.16)
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for every ‖x∗‖ = 1 (note that h(x∗) �= 0). Now we notice that, since P is 0-symmetric,

−1 ≤ 〈x
∗, x̄〉

h(x∗)
≤ 1.

Thus expression (4.16) is bounded by the extrema of the function

f(ξ) =
α− ξ

1− ξ
with |ξ| ≤ 1.

Simple algebra shows that f(ξ) is continuous and decreasing thus attaining its maxi-
mum at ξ = −1. This proves (4.15).

Remark 4.2. The previous lemma gives a specific upper bound for Ψ(x, x̄) for
x̄ ∈ intP and x ∈ αP. If symmetry is removed, we have that there exists mα < 1
such that Ψ(x, x̄) ≤ mα < 1, although no upper bounds can be guaranteed a priori.

5. Proofs of the main results. For brevity, the next proofs will consider the
case of a symmetric P only. The general proofs follow immediately by considering
Remarks 4.1 and 4.2.

Proof of Proposition 3.1. In view of the homogeneity of φ(x) we have that

Φ(x, r) = φ(x̃)Ψ(x, x̄) + (1−Ψ(x, x̄))ū

= φ(Ψ(x, x̄)x̄ + x− x̄) + (1−Ψ(x, x̄))ū.(5.1)

By exploiting the Lipschitz condition on φ(x) and the triangular inequality we get

‖Φ(x1, r)− Φ(x2, r)‖ ≤ L‖Ψ(x1, x̄)x̄ + x1 − x̄−Ψ(x2, x̄)x̄− x2 + x̄‖
+‖(1−Ψ(x1, x̄))ū− (1−Ψ(x2, x̄))ū‖;

therefore, after proper rearrangement,

‖Φ(x1, r)− Φ(x2, r)‖ ≤ L‖x1 − x2‖+ (L‖x̄‖+ ‖ū‖)‖Ψ(x1, x̄)−Ψ(x2, x̄)‖.
Let LP be the Lipschitz constant of the function Ψ(x, x̄) and let K be a constant such
that L‖x̄‖+ ‖ū‖ ≤ K so that we can finally obtain

‖Φ(x1, r)− Φ(x2, r)‖ ≤ (L + LPK)‖x1 − x2‖.
The Lipschitz constant of Φ(x, r) is then LΦ = (L + LPK).

The continuity of Φ(x, r) can be inferred easily by considering expression (5.1)
which, in view of Lemma 4.1 and the Lipschitz condition of φ, is continuous with
respect to x, x̄, and ū. Now x̄ and ū are linear functions of r̄ = Γ(r), and Γ is
continuous. This completes the proof.

Proof of Theorem 3.2. We have already noticed that Φ(x, r) ∈ U , which is
an immediate consequence of the convexity of U and the fact that the control Φ(x, r)
as in (3.7)–(3.9) is the convex combination of φ(x̃) and ū, both belonging to U . The
condition x ∈ P for every t ≥ 0 will be proved by showing that Ψ(x, x̄) is a Lyapunov
function for system (2.2). Consider x ∈ P, x �= x̄ and let

y = Ax + BΦ(x, r)

= A(x̃Ψ(x, x̄) + (1−Ψ(x, x̄))x̄) + B(φ(x̃)Ψ(x, x̄) + (1−Ψ(x, x̄)ū)

= Ψ(x, x̄)(Ax̃ + Bφ(x̃)) + (1−Ψ(x, x̄)(Ax̄ + Bū)

= Ψ(x, x̄)(Ax̃ + Bφ(x̃)) + (1−Ψ(x, x̄))x̄,
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where we have replaced Ax̄ + Bū = x̄ due to the fact that (x̄, ū) is an equilibrium
pair. Define now ỹ = Ax̃+Bφ(x̃), since P is domain of attraction as in definition 2.2.
Then ψ(Ax̃ + Bφ(x̃)) ≤ λψ(x̃) = λ, and thus ỹ ∈ λP. By virtue of (3.6),

Ψ(y, x̄) = Ψ(ỹΨ(x, x̄) + (1−Ψ(x, x̄))x̄, x̄)

= Ψ((ỹ − x̄)Ψ(x, x̄) + x̄, x̄)

= Ψ(x, x̄)Ψ(ỹ, x̄) ≤ 1 + λ

2
Ψ(x, x̄),

where the inequality comes from Lemma 4.4. Thus

Ψ(Ax + BΦ(x, r), x̄) ≤ λTRΨ(x, x̄).

Proof of Theorem 3.3 Let x ∈ P and x̄ ∈ (1 − ε)P. From (4.5) we need to
prove that Ψ̇(x, x̄) ≤ −β/2Ψ(x, x̄), which is true if

〈ŵ, Ax + BΦ(x, r)〉 ≤ −β
2

Ψ(x, x̄) < 0(5.2)

is satisfied for all ŵ ∈ ∇Ψ(x, x̄) and x �= x̄. Let, then, x �= x̄. Note that

〈ŵ, Ax + BΦ(x, r)〉
= 〈 ŵ , A(Ψ(x, x̄)x̃ + (1−Ψ(x, x̄))x̄) + B(Ψ(x, x̄)φ(x̃) + (1−Ψ(x, x̄))ū 〉
= 〈 ŵ , [Ax̃ + Bφ(x̃)] Ψ(x, x̄) + (1−Ψ(x, x̄)) [Ax̄ + Bū] 〉.

We remind the reader that in the continuous-time case we have that Ax̄ + Bū = 0
and that (i) of Lemma 4.2 holds so that ŵ ∈ ∇Ψ(x, x̄), iff ŵ ∈ ∇Ψ(x̃, x̄). Since
x̃ ∈ ∂P, then, by virtue of (iii) of Lemma 4.2, ŵ = γ(ŵ, w)w, with w ∈ ∇ψ(x̃) and
γ(ŵ, w) ≥ 1/(2− ε). Therefore

〈ŵ, Ax + BΦ(x, r)〉 = Ψ(x, x̄)〈ŵ, Ax̃ + Bφ(x̃)〉
= γ(ŵ, w) 〈w,Ax̃ + Bφ(x̃)〉 Ψ(x, x̄).

Due to the fact that P is a domain of attraction, we have that

〈w,Ax̃ + Bφ(x̃)〉 ≤ −β for all w ∈ ∇ψ(x).

From (iii) of Lemma 4.2 we have that, if P is symmetric, γ(ŵ, w) ≥ 1/(2− ε) ≥ 1/2,
and thus we have (5.2).

Remark 5.1. According to Remarks 4.1 and 4.2, for nonsymmetric domains we
have that λTR = mα < 1 and βTR = βmε > 0.

Proof of Theorem 3.4 We will consider the control law (3.7)–(3.9) and we will
prove the result for the continuous-time case only, as the discrete-time version can be
obtained by following a similar argument.

To show that the proposed control law maintains the state inside P for every
x(0) ∈ P, we need to show its positive invariance for the closed-loop system. But this
is immediate because we can just consider the original Lyapunov function ψ(x). For
x ∈ ∂P we have that Φ(x, r) = φ(x), and thus the Lyapunov derivative of the system
with the tracking control is

ψ̇(x(t)) = sup
w∈∇ψ(x)

〈w,Ax + Bφ(x)〉,
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which is the same as the Lyapunov derivative of the system with original stabilizing
control associated with P. By Definition 2.3, the derivative for x ∈ ∂P is such that

ψ̇(x) ≤ −β,
which obviously prevents the state x(t) from leaving P [1].

The fact that the control Φ(x, r) ∈ U has been shown at the beginning of the
proof of Theorem 3.2 (we remind the reader that ū is computed with respect to the
“saturated” reference r̄ = Γ(r)).

To complete the proof we need now to show that y(t) approaches r∞ when t→∞.
In view of Remark 2.1, this amounts to showing that x(t)→ x̄∞, say Ψ(x, x̄∞)→ 0.

Let Φ(x(t), r(t)) and Φ(x(t), r∞) be the control actions associated with the refer-
ence values r(t) and r∞, resp., so that we can write

ẋ = Ax + BΦ(x, r) = Ax + BΦ(x, r∞) + B[Φ(x, r)− Φ(x, r∞)].

To show that x(t) → x̄∞ we consider the candidate Lyapunov function Ψ(x(t), x̄∞).
Take any vector w ∈ ∇Ψ(x(t), x̄∞). Then

〈w,Ax + BΦ(x, r)〉 = 〈w,Ax + BΦ(x, r∞)〉+ 〈w,B[Φ(x, r)− Φ(x, r∞)]〉︸ ︷︷ ︸
z

≤ −β
2

Ψ(x(t), x̄∞) + |z(t)|,

where we have exploited the condition 〈w,Ax+BΦ(x, r∞)〉 ≤ −β2 Ψ(x(t), x̄∞) proven
in Theorem 3.3. As the above inequality holds for all w ∈ ∇Ψ(x(t), x̄∞), from (4.5)
we get

Ψ̇(x(t), x̄∞,Φ(x(t), r(t))) ≤ −β/2Ψ(x(t), x̄∞) + |z(t)|.
The vector w ∈ ∇Ψ(x(t), x̄∞) is bounded due to the fact that Ψ(x, x̄∞) is Lipschitz
with respect to the first argument x. Since r(t)→ r∞ ∈ Rε, there exists T1 such that
r(t) ∈ R ε

2
for t ≥ T1. Φ(x, r) is continuous, thus it is uniformly continuous on P×Rε.

This means that z(t) → 0 as r̄(t) → r∞. Standard Lyapunov arguments lead to the
conclusion that Ψ(x(t), x̄∞)→ 0, say x(t)→ x̄∞.

6. Special domains of attraction. The proofs of the preceding sections have
allowed us to show that every domain of attraction is indeed a tracking domain. The
actual implementation of the proposed control law requires the computation of the
functions Ψ(x, x̄) and ψRε(r). In the next subsections we will see how the above
arguments apply when we consider different families of domains.

6.1. Ellipsoidal domains. Ellipsoids are very popular candidate domains of
attraction. They have been deeply investigated in literature, see for instance [18],
[21]. A detailed exposition on the properties of such sets can be found in [10]. Assume
that an ellipsoidal domain of attraction

P = {x : xTQx ≤ 1}, Q > 0,

is available and this domain is associated with the linear control law φ(x) = Kx.
Since by Assumption 2.1 Mc (resp., Md) is invertible we denote with Kxr and Kur,

resp., the first n lines and the last m lines of M−1
c (resp., Md) so that x̄(r) = Kxrr

and ū = Kurr. The set R is the intersection of the sets

Rx = {r : rTKT
xrQKxrr ≤ 1}
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and

Ru = {r : Kurr ∈ U}.
The Minkowski functional of Rε = (1 − ε)R is easily computable. For instance, if U
is the unit ball of some norm ‖ · ‖U , then Ru = {r : ‖Kurr‖U ≤ 1} so that

ψRε = (1− ε)−1 max{(rTKT
xrQKxrr)

1/2, ‖Kurr‖U}.
With the choice of an ellipsoidal tracking domain, denoting by y = x − x̄, the

expression of Ψ(x, x̄) reduces to the following:

Ψ(x, x̄) =
x̄TQy + [(x̄TQy)2 + yTQy(1− x̄TQx̄)]

1
2

1− x̄TQx̄
;

thus its computation essentially involves the computation of the three quantities
xTQx̄, xTQy and yTQy.

The operations involved on-line in the implementation of the proposed control
law are hence the following:

1. Compute the “constrained” reference value rc = Γ(r);
2. Compute x̄ = Kxrrc and ū = Kurrc;
3. Compute Ψ(x, x̄);
4. Set

Φ(x, r) = Kx + (1−Ψ(x, x̄))(ū−Kx̄).

Although we have explicitly considered the case in which the original controller is
linear, we can easily consider the case in which such a controller is nonlinear. The
price we pay is a less neat expression of the controller.

6.2. Polyhedral domains. Polyhedral invariant sets have been deeply investi-
gated for constrained stabilization problems [3], [11], [12], [17], [19], [20], [26], [28].
The basic reason is that if linear state and control constraints are considered, the
largest domain of attraction can be arbitrarily closely approximated by a polyhedral
set which is a domain of attraction. Such a result holds for both discrete-time [17], [19]
and continuous-time systems [7]. It is also known that once such a domain of attrac-
tion is available, a feedback stabilizing control law can be inferred. Therefore, in the
constrained stabilization problem, considering polyhedral sets as candidate domains
of attraction is not restrictive.

We consider now the implementation of a tracking control strategy for a polyhe-
dral domain of attraction. A polyhedral C-set P can be represented as

P = {x : Fix ≤ 1, i = 1, 2, . . . , s} = {x : Fx ≤ 1̄},
where F is the matrix whose rows are Fi, while 1̄

.
= [1 1 . . . 1]T . The Minkowski

functional associated with P is given by [5], [28]

ψ(x) = max
i

Fix.

From the above expression it is evident that in this particular case the set is the
intersection of a finite number of half-spaces, thus if we consider the function Ψ(x, x̄),
its expression is given by

Ψ(x, x̄)
.
= max

i

Fi(x− x̄)

1− Fix̄
, x ∈ (1− ε)P,
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where ε > 0 is a small number. Note that 1− Fix̄ ≥ ε, so singularities are avoided.
The construction of a polyhedral domain of attraction is a well-established topic

and allows the designer to derive a Lipschitz piecewise linear control law of the form
u = K(x)x according to [4], [17], which is positively homogeneous of order 1. Once
such a domain is known, the expression of the control can be derived by means of
(5.1) with the provided expression of Ψ.

After the determination of the value of Ψ, as for the other families considered
here, the first step necessary for the implementation of the tracking control (3.7)–
(3.9) concerns the evaluation of the function

ψRε
(r) = (1− ε)−1 max {ψ(Kxrr), ‖Kurr‖U}

(we remind the reader that x̄ = Kxrr and ū = Kurr), whose computation is needed
for the determination of the “constrained” reference value rc = Γ(r).

6.3. Smoothed domains. In this section we consider the family of domains of
attraction whose Minkowski functional is given by

ψ(x) =

(
s∑
i=1

σ2p(Fix)

) 1
2p

where

σr(x) =

{
xr if x ≥ 0,
0 otherwise.

This family has been analyzed in [9] for the constrained stabilization problem.
Similar functions have been used for tracking constant signals for continuous-time
systems in the presence of state constraints only in [8]. It is helpful to recall that, al-
though the functions used in [8] are similar to those proposed here, they are essentially
different. Their definition is based on an analytic expression and such definition does
not apply to the Minkowski function of a generic C-set. In particular the unitary level
surface is not invariant when the reference is allowed to vary. They are unsuitable for
the cases in which there are control constraints and variable reference signals.

Here we reconsider this class for tracking purposes for continuous-time systems
and we assume that the input constraints are of the form U = {u : ‖u‖∞ ≤ 1}. The
reason for considering this class of functions comes from the fact that the differentia-
bility of this class of functions together with the assumption on U to be a box allows
for the determination of an explicit control law (as opposed to the control law which
can be associated with a polyhedral domain which is general implicit). Indeed it can
be shown that to every such domain of attraction P can be associated the Lipschitz
control function

φ(x) = −sat(k(BTFTΓ(x)T ))ψ(x)

where

Γ(x)
.
= ψ(x)(1−2p)

[
(F1x)2p−1 . . . (Fsx)2p−1

]
and k is a computable positive constant (see [9]). The drawback of the capability of
determining an explicit control law is given anyway by the fact that it is not possible
to give an explicit expression for Ψ(x, x̄), but this has to be computed by bisection
on the parameter α in (3.2).

Again, the control action requires the computation on-line of Ψ(x(t), x̄(t)) and
the application of (5.1).
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7. Nonsquare systems. So far we have considered the case in which the system
has as many inputs as outputs. It is not difficult to extend the results to nonsquare
systems. Consider the nonsquare matrix Mc and the equation

[
A B
C D

] [
x̄(r)
ū(r)

]
=

[
0
r̄

]
.

It is well known that, if the above equation does not admit an unique solution, two
cases are possible: for a given r̄ there may be infinitely many solutions, or there may
be none. In the first case one has to choose one vector [x̄(r)T ū(r)T ] among the
solutions. One obvious choice is to consider the minimum (possibly weighted) norm
solution given by

[
x̄(r)
ū(r)

]
=

[
A B
C D

]† [
0
r̄

]
,(7.1)

where M†
c is the Moore–Penrose inverse of Mc.

In the case in which there are no solutions, the obvious extension, the least square
solution, is not suitable since for tracking purpose we need the steady-state condition

[
A B

] [ x̄(r)
ū(r)

]
= 0(7.2)

to be satisfied exactly, a condition which is in general not satisfied by the solution
(7.1). In this case we may take, among all the equilibrium points satisfying (7.2), those
which minimize ‖ȳ − r̄‖. This is obtained by first parameterizing all the elements of
the kernel of [A B] as x = Nz, u = Mz, where AN +BM = 0 and then choosing for
a given reference r the least square solution of

min
z
‖[CN + DM ]z − r‖.

Since the minimum is obtained for z = [CN + DM ]†r we finally obtain

[
x̄(r)
ū(r)

]
=

[
N [CN + DM ]†r
M [CN + DM ]†r

]
.

Once the linear relation above is established, all the theory developed in the previous
chapters remains valid. Clearly in the over-determined (i.e., no exact solution) case,
asymptotic tracking, even for a constant signal, is not possible in general.

8. Examples.

8.1. Continuous-time example: linear state feedback. As a first example
we consider the following continuous-time system:

ẋ(t) =

[
1 .4
.8 .5

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
.2 .1

]
x(t).

We derived for this system a linear state feedback compensator u = Kx which
is such to stabilize the closed loop system while guaranteeing that for every initial
state ‖x(0)‖ ≤ 1 we have ‖Kx‖ ≤ Umax along the system trajectory. By solving the
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Fig. 3. Domain of attraction.

corresponding set of linear matrix inequalities (LMI) [10] for Umax = 5, we obtained
the gain

K =
[ −3.6845 −1.5943

]
which corresponds to the ellipsoidal domain of attraction (with speed of convergence
β = .0001) P = {x : xTQx ≤ 1}, where

Q =

[
.7859 .2950
.2950 .1172

]
.

The set P is the ellipse depicted in Figure 3 and is by construction contained in the
region where |Kx| ≤ Umax (also reported in Figure 3); thus the constraints on the
reference value r̄ can be derived by the set P alone and result in |r̄| ≤ .2403. We
slightly reduced this value to .24 to guarantee that x̄(r̄) belongs to the interior of P.
This means that r̄ = Γ(r) = 0.24 sat(r/0.24).

We report in Figure 4 the zero initial state time evolution of the output corre-
sponding to the reference signal (dashed line)

r(t) =

{
0.40 for 0 ≤ t ≤ 100,
0.20 + 0.20e−(t−100)/10 for 100 < t

and we report in Figure 5 the state space evolution.

8.2. Discrete-time example: linear variable structure state feedback.
As a second example we consider the discrete-time system

x(k + 1) =

[
1 .3
−1 1

]
x(k) +

[
.5
1

]
u(k)

y(k) =
[ −.1 .3

]
x(k)

with the state and control constraint sets, resp., given by

X = {x : ‖x‖∞ ≤ 1}
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Fig. 5. Domain of attraction and state space evolution.

and

U = {u : |u| ≤ 1}.

For this system we computed a symmetric polyhedral domain of attraction P =
{x : ‖Fx‖∞ ≤ 1} with speed of convergence λ = .9 (which is the polyhedral region
in Figure 6), where

F =


 0 1

1.8160 −0.2421
1.3140 0.1932


 .

In this case the constraints on the reference value derive from the constraint that
x̄ ∈ P and translate in |r̄| ≤ .27. The linear variable structure controller associated
with P is given by u(x) = kix with i = arg maxj |fjx|, where fi and ki are the ith
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rows of F and K, resp., where

K =


 −0.4690 −0.7112
−0.6355 −0.7806
−1.3140 −0.1931


 .

We applied the control law proposed in section 6.2 with ε = .01, starting from zero
initial state, for the reference signal

r(t) = 0.2 + 0.4 ∗ sin(0.01 ∗ t) ∗ e−0.005∗t.

Figure 7 depicts the time evolution of the output and the reference value, and
Figure 6 shows the corresponding state space trajectory.

9. Conclusions. In this paper it was shown that every set of initial states which
can be brought to the origin while assuring that no control and state constraints are
violated is indeed a tracking domain. This amounts to saying that it is possible to
track a given reference value only if its corresponding state and input equilibrium pair
belongs to a domain of attraction, whereas if this condition is not met the state is not
“trackable.” We have provided this result based on the system structure, without as-
suming the existence of a stabilizing compensator, by furnishing a Lyapunov function
which is derived by the domain of attraction and which allows us to derive a tracking
strategy that avoids state and input constraints yet guarantees an a priori speed of
convergence. Future directions in this area concern the possibility of deriving stabi-
lizing tracking strategies capable of maintaining the tracking error within prespecified
bounds and of improving the speed of convergence.

The presented approach can be applied as well to systems with control constraints
only. In this case the domain of attraction can be computed by considering a fictitious
(sufficiently large) state constraints region and by applying the techniques suggested
in [9], [17], [20]. We finally remind the reader that for systems with no state con-
straints and free from eigenvalues in the open right half plane (or with no eigenvalues
outside the closed unit disk) a completely different approach can be used for global
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stabilization [25] or semiglobal stabilization [24], [27]. In this case those approaches
can be successfully applied to the solution of the tracking problem with an arbitrarily
large initial condition set.

Appendix. Given a differentiable positively homogeneous function of order 1
F : R

n → R it is well known that 〈∇F (y), y〉 = F (y). This property can be extended
easily to our case of nondifferentiable functions under the convexity assumption.

Proof of the equality (4.8). Let F : R
n �→ R be a convex and positively

homogeneous function of order 1. Then for any y and any w ∈ ∇F (y), we have
〈w, y〉 = F (y).

For y = 0 the property is obvious. So let y �= 0. By definition any w ∈ ∇F (y) is
such that

F (z)− F (y) ≥ 〈w, z − y〉

for all z ∈ R
n, that is

F (z)− 〈w, z〉 ≥ F (y)− 〈w, y〉.

Now let z = λy with λ > 0. Then

λ [F (y)− 〈w, y〉] ≥ F (y)− 〈w, y〉 for all λ > 0,

which necessarily implies

F (y)− 〈w, y〉 = 0.
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Abstract. This contribution deals with the problem of structure determination for generalized
orthonormal basis models used in system identification. The model structure is parameterized by a
prespecified set of poles representing a finite-dimensional subspace of H2. Given this structure and
experimental data, a model can be estimated using linear regression techniques. Since the variance
of the estimated model increases with the number of estimated parameters, one objective is to find
coordinates, or a basis, for the finite-dimensional subspace giving as compact or parsimonious a
system representation as possible. In this paper, a best basis algorithm and a coefficient decom-
position scheme are derived for the generalized orthonormal rational bases. Combined with linear
regression and thresholding this leads to compact transfer function representations. The methods are
demonstrated with several examples.

Key words. system identification, model structures, orthonormal basis functions, best basis
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1. Introduction. Over the last few years, the use of orthonormal rational basis
functions in system identification has received considerable attention. The idea is to
approximate the transfer function of a linear time-invariant system with a linear com-
bination of orthonormal basis functions having fixed poles. Given a finite collection
of asymptotically stable filters, the basis functions can be constructed from a Gram–
Schmidt orthogonalization of the given filters using all-pass filters with balanced state
space realizations. Orthogonality in H2 is defined with respect to the inner product
(2.2). The resulting family of orthonormal functions then forms a basis for the finite-
dimensional subspace of H2 consisting of all possible transfer functions having the
poles given at hand. Depending on the order in which the orthogonalization is per-
formed, different bases are obtained. These represent different selections of coordinate
systems for the finite-dimensional subspace.

Given input/output data from a linear time invariant system, the system transfer
function can be approximated in the given finite-dimensional subspace by estimating
the expansion coefficients associated with the selected coordinate system. Supposing
that the output data is corrupted by noise, the estimated coefficients also can be
considered noisy. In particular, small coefficients will be more or less hidden in noise
and thus the system estimate actually benefits from discarding them. In this way,
selection of the coordinate system becomes an important issue. Since the bases are
orthogonal, the energy of the coefficients will always be exactly the same independent
of the selection of coordinates. If all coefficients below some magnitude are discarded,
a coordinate system concentrating the energy into a few large and many small coef-
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ficients results in a smaller error than a selection having a more evenly distributed
energy. This can be viewed as selecting a coordinate system where some of the basis
functions are close to, or resemble, the system being identified. Coefficient concentra-
tion can, for example, be measured by the entropy or the �1-norm of the coefficients.
The following example demonstrates the consequence of orthogonalization order. Let
a transfer function be given by

G(z) =
3z + 1/

√
2

5z(z − 1/
√
2)
.(1.1)

Using a Gram–Schmidt orthogonalization of the two functions 1
z and 1

z−1/
√

2
, the

orthonormal pair of functions

ψ1(z) =
1

z
and ψ2(z) =

1/
√
2

z(z − 1/
√
2)

(1.2)

is constructed. The transfer function G(z) can then be written G(z) = g1ψ1(z) +
g2ψ2(z), where

g1 =
3

5
and g2 =

4

5
.(1.3)

On the other hand, if the orthogonalization is performed the other way around, the
orthonormal pair

ψ̃1(z) =
1/
√
2

z − 1/
√
2

and ψ̃2(z) =
1− z/√2

z(z − 1/
√
2)

(1.4)

is obtained so that G(z) can be written G(z) = g̃1ψ̃1(z) + g̃2ψ̃2(z), with

g̃1 =

√
49

50
and g̃2 =

1√
50
.(1.5)

In the first case, the two expansion coefficients g1 and g2 have almost equal size, while
in the second case g̃1 is much larger than g̃2. In this way, almost all of the “energy”
is concentrated in the coefficient g̃1. The �1-norms in these two cases satisfy

|g1|+ |g2| = 7

5
>
√
2
4

5
= |g̃1|+ |g̃2|.(1.6)

In general, under the constraint that g2
1 + g2

2 is constant, |g1| + |g2| is minimized
when one of the coefficients is zero so that the other term becomes the system G(z)
itself. The �1-norm is maximized when the two coefficients are equal so that the
energy is maximally spread out. The example illustrates the importance of selecting
coordinates. The coefficient energy becomes concentrated into few coefficients if the
coordinates are selected as close as possible to the expanded function.

The contribution of this paper deals with the selection of the best coordinates, or
basis. The orthogonalization procedure results in many different possible bases. How-
ever, a specific basis function can belong to many different bases. In fact, the overlap
can be tremendous. If for example the dimension of the subspace is n, and if all the
initially given filters have different poles, there will be n! different orthogonal bases,
each one resulting from a different orthogonalization order. However, all of these dif-
ferent bases are constructed from only n2n−1 different basis functions. For example,
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n = 10 gives 3,628,800 bases constructed from only 5,120 basis functions. This obser-
vation leads to a scheme for selecting the very best coordinates, where “best” is in
terms of concentration of the expansion coefficients, measured by entropy, �1-norm, or
some other cost. Moreover, if expansion coefficients are estimated in one single basis,
the coefficients belonging to all the other basis functions can be calculated using local
orthogonal transformations. Thus, a total framework is developed for decomposition
into all possible expansion coefficients and then selection of the best basis. All of this
is performed in the same complexity as the number of basis functions. In this mean-
ing, the scheme is “fast.” Several examples of applications of the best-basis selection
scheme are given in section 5.

Construction of orthonormal rational bases is by no means new. In [33], it was
investigated how the Laguerre basis could be used for system identification. This basis
can be generated from identical first order all-pass filters, and the results were gener-
alized to the second order Kautz functions in [34]. Further generalizations were made
in [16, 15, 14] and [21]. In [5], it is demonstrated how general orthonormal rational
bases can be generated in a simple manner from all-pass filters with balanced state
space realizations. This result is mainly due to [20, 27], but similar basis constructions
appear in the literature as early as 1925 in [31]. The historical background of these
constructions is investigated in [2].

In order to have an efficient representation of a system using an orthonormal ra-
tional expansion, it is important that the basis functions be calibrated to the system
being identified. This corresponds to selecting an approximating subspace of H2 and
determines the rate of convergence of the expansion coefficients; see [36]. Calibration
can be made by incorporating a priori knowledge about the poles of the system in
the construction of the basis. As already mentioned, the mean squared error of the
estimate is further reduced if coefficients with magnitudes less than the corresponding
variance error are set to zero. This way of thresholding was investigated in [5], where
ideas from [9] were applied to rational bases. Model sets based on orthonormal func-
tions have nice properties in terms of least squares estimates of the coefficients since
if many coefficients are discarded in the final estimate, the least squares estimate of
the kept coefficients remains the same; see [13].

In the best basis selection scheme developed in this paper, the observation that
the number of basis functions is much smaller than the number of different bases is
crucial for the existence of an efficient best basis algorithm. This situation is similar
to the wavelet packet best-basis selection methods suggested in [7], and the same best
basis criteria can be used in the case of the best rational basis as well. Another best
basis criterion was suggested in [10]. In this paper the cost function is related to the
entropy cost of [8].

More precisely, the parallel to the wavelet packet transform can briefly be de-
scribed in the following way. In the wavelet packet case, a signal is made finite dimen-
sional through sampling. The finite-dimensional space to work with then becomes R

n

or C
n, where n is the number of samples. The basis in which the signal is described is

the canonical Dirac basis. The signal is then transformed into all the wavelet packet co-
efficients using a low-complexity implementation of the transform. The best wavelet
packet basis can then be selected. This is illustrated in Figure 1.1. The number of
different bases is approximately 1.5n, while the number of basis functions is only
n(log2(n) + 1).

In the case of choosing the best rational basis, a collection of filters is given. The
finite-dimensional space is then identified with the span of the poles of these filters
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Finite signal
representation
in R

n.

coefficients
for all bases

∼ n logn steps.
considered

Calculate

Select best basis
∼ n steps.

Fig. 1.1. Wavelet packet best basis decomposition.

∼ n2n−1 steps.

coefficients
for all n!
bases considered

Calculate

∼ n2n−1 steps.in span{ψk}.

Select best basis

represented

G≈
n∑

k=1

gkψk

System

Fig. 1.2. Best rational basis decomposition.

and the system is approximated in this space by estimating the coefficients for a ba-
sis given by some ordering of the filters. This basis can then be called the canonical
basis. All the coefficients needed for all the other orderings of the filters can then
be calculated from the canonical coefficients. As mentioned above, if all n filters are
different, the number of bases is n! while the number of different coefficients and steps
for calculating them is n2n−1. As in the case of wavelet packet best basis selection,
the best rational basis can now be selected. This can be done in n2n−1 steps as well.
Figure 1.2 illustrates the scheme.

Connections between wavelets and orthonormal rational basis functions have pre-
viously been studied in [11] and frames of rational wavelets for system identification
were examined in [25, 24] with promising results, but where one conclusion is that
bases of rational wavelets can never be orthogonal.

The paper is organized as follows. In section 2, the background for rational basis
construction and system identification is given. Section 3 presents the best basis selec-
tion scheme while the procedure for calculating all possible expansion coefficients is
derived in section 4. Different examples are given in section 5 and finally in section 6,
some conclusions are made. The two main results of the paper are the best basis
selection scheme presented in section 3.3 and the coefficient generation of section 4.2.

2. Background. This section presents the background for construction of or-
thonormal rational basis functions and for their use in system identification. Sec-
tion 2.1 gives a convenient way to construct rational bases from a cascade of all-pass
filters with balanced state space realizations. In section 2.2, it is shown how thresh-
olding can be applied when using these bases in system identification.

2.1. An orthonormal family in H2. Assume that a strictly proper asymp-
totically stable linear time-invariant dynamical system is described by

y(t) = G(q)u(t),(2.1)

where {u(t)} is the input sequence, {y(t)} is the output sequence, and q is the forward
shift operator. The transfer function G(z) is assumed to be asymptotically stable so
that the system will belong to H2, being the Hardy space of functions analytical
outside, and square integrable on the unit circle. See, e.g., [1, 28]. Since G(z) is
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Fig. 2.1. The approximate system Gn(z).

assumed to be strictly proper, only the part of H2 with functions fulfilling G(∞) = 0
is considered.

Let {ψk(z)}∞k=1 be an orthonormal family of functions in H2 such that 〈ψk, ψl〉 =
δk,l, where the inner product is defined as

〈f, g〉 = 1

2π

∫ π

−π
f(eiω)g(eiω)dω(2.2)

for any pair of functions f, g ∈ H2, and where δk,l = 1 if k = l and 0 otherwise.
Suppose now that G(z) can be represented as

G(z) =

∞∑
k=1

gkψk(z).(2.3)

The simplest example of such a family of orthonormal functions is the standard basis

ψk(z) = z−k, k = 1, 2, . . . .(2.4)

Since the transfer function G(z) belongs to H2, the expansion coefficient sequence
{gk} will be square summable so that gk → 0 as k →∞. Therefore, the sequence can
be truncated in order to obtain an approximation Gn(z) of G(z), where

Gn(z) =

n∑
k=1

gkψk(z).(2.5)

Due to orthonormality, the expansion coefficients for both (2.3) and (2.5) will be given
by the least squares generalized Fourier coefficients gk = 〈G,ψk〉. Assume now that
the functions ψk(z) are state transfer functions of the approximating system Gn(z).
This is illustrated in Figure 2.1. A state space realization of Gn(z) is written

x(t+ 1) = Anx(t) + Bnu(t),(2.6)

y(t) = Cnx(t), Cn = (g1 . . . gn) ,
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for which the functions {ψk}nk=1 correspond to

ψk(z) = eTk (zI−An)
−1

B, k = 1, . . ., n,(2.7)

where ek = (0 . . . 1 . . . 0)T is a unit vector with 1 in position k and where I is the
identity matrix. Assume that the system matrix An has all its eigenvalues strictly
inside the unit circle so that the system (2.6) is asymptotically stable. Then, the
family of functions (2.7) has mutual inner products 〈ψk, ψl〉 = eTkPel , where P is the
unique solution of the discrete Lyapunov equation

AnPAT
n + BnB

T
n = P.(2.8)

This follows from the fact that the inner products can be written

〈ψk, ψl〉 = 1

2π

∫ π

−π

[
eTk
(
Ieiω −An

)−1
Bn

] [
eTl
(
Ie−iω −An

)−1
Bn

]
dω

= eTk

{
1

2π

∫ π

−π

[(
Ieiω −An

)−1
Bn

] [(
Ie−iω −An

)−1
Bn

]T
dω

}
el =: eTkPel .

(2.9)

It is then well known that the controllability Gramian P satisfies the Lyapunov equa-
tion (2.8) and that P is unique and positive definite if An is stable. It is easy to
conclude that the family {ψk}nk=1 becomes orthonormal if and only if

AnA
T
n + BnB

T
n = I.(2.10)

In this way, the parameters available for constructing an orthonormal family are
(An,Bn) under the constraint (2.10), and An is asymptotically stable. However, if n
is large (2.10) might be complicated to solve and if the family is to be expanded to,
say, order n+ 1, it would be convenient to do this in some structured way.

A state space realization satisfying (2.10) is said to be input balanced. In [20, 27], a
way of constructing orthonormal families from serial connections of all-pass filters with
such realizations was given. This kind of construction has previously been presented
in [5, 2] and similar ideas have also been discussed in [39, 6, 21].

Crucial for all of these constructions is the concept of orthogonal all-pass filters
defined as follows.

Definition 2.1 (orthogonal all-pass filter). A scalar transfer function H(z) is
said to be all-pass if

H(z)H(1/z) ≡ 1,(2.11)

and it is said to be orthogonal if its state-space realization (A,B,C, D) is input bal-
anced, i.e., if it fulfills

AAT + BBT = I.(2.12)

It is straightforward to verify [27] that a filter H(z) with state space realization
(A,B,C, D) is orthogonal and all-pass if and only if

F :=

[
A B
C D

]
(2.13)
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u(t)
H1 H2 Hm

x1 x2 xm

Fig. 2.2. A cascade of all-pass filters with input balanced realizations generating an orthonormal
family.

is an orthogonal matrix, FFT = I.

The key result in [27, sect. 10.4] is that the orthogonality and all-pass properties
are preserved through several different connections of such filters. One such opera-
tion is the serial, or cascade, connection. More formally, let H1(z) and H2(z) be two
orthogonal all-pass filters with states x1 and x2, respectively. Then, the serial connec-
tion H1(z)H2(z) of the two filters with the state vector (xT1 xT2 )T is also orthogonal
and all-pass.

This follows from the fact that ifH1(z) andH2(z) have the state space realizations
(A1,B1,C1, D1) and (A2,B2,C2, D2) respectively, and if the matrices

F1 :=

[
A1 B1

C1 D1

]
and F2 :=

[
A2 B2

C2 D2

]
(2.14)

are defined, the serial connection will have the corresponding matrix

F3 :=


 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1


 =


I 0 0
0 A2 B2

0 C2 D2




A1 0 B1

0 I 0
C1 0 D1


(2.15)

for the state (xT1 xT2 )T . It is then trivial to verify that if F1 and F2 are orthogonal
matrices, the factors of F3 are also orthogonal, making their product orthogonal as
well.

From this result it is easy to see that, given a family of stable all-pass filters
{Hk}mk=1 with McMillan degrees {nk}mk=1, an orthonormal family in H2 can be gen-
erated by serially connecting the filters in an array as shown in Figure 2.2.

The orthonormal functions {ψk}nk=1 are then simply given as the state transfer
functions from the input to the cascade to each of the components of the states of the
filters, making n =

∑m
k=1 nk. More specifically let xk, defined as the states of Hk(z)

and shown in Figure 2.2, have components

xk(t) =



xk,1(t)
xk,2(t)

...
xk,nk

(t)


 ,(2.16)

where nk is the McMillan degree of the filter Hk(z). The transfer functions ψk,l(z),
defined by xk,l(t) = ψk,l(q)u(t), then satisfy 〈ψi,j , ψk,l〉 = δi,kδj,l.
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Define

Ψk(z) =



ψk,1(z)
ψk,2(z)

...
ψk,nk

(z)


 , k = 1, . . .,m,(2.17)

and let Hk(z) have the state transfer function Φk(z). Then the Ψk(z)’s obtained from
the m ordered filters in the cascade are given by

Ψk(z) = Φk(z)

k−1∏
l=1

Hl(z), k = 1, . . .,m.(2.18)

Some special cases should be mentioned here. If all the all-pass filters fulfill
Hk(z) = H(z) with McMillan degree n and have state transfer functions Φk(z) = Φ(z),
the construction of [15, 14] is obtained. In this case, the basis functions become

Ψk(z) = Φ(z) [H(z)]
k−1

, k = 1, 2, . . . .(2.19)

Moreover, equal first order filters result in the Laguerre basis suggested for system
identification already in [17]. The Laguerre basis was also suggested for time series
modeling in [35]. Identical second order filters give the Kautz basis. None of these con-
structions provides any flexibility in coordinate selection since they are constructed
from only one kind of all-pass filter. Explicit expressions for balanced state space
realizations for the Laguerre and Kautz bases can be found in, e.g., [14]. The approx-
imation properties of both the first order filter-based Laguerre basis and the second
order Kautz basis are thoroughly investigated in [36]. These results are generalized to
the Hambo construction of [14] in [23].

Historical remarks on the construction of orthonormal rational bases can be found
in [2]. The first such constructions were made almost simultaneously by Takenaka in
[31] and by Malmquist; see [37].

The completeness condition for the family (2.18) with k = 1, . . .,∞ is very mild.
Basically, it spans the subspace of all possible strictly proper transfer functions in
H2 if the poles of Ψk(z) do not (if at all) converge too fast to the unit circle when
k → ∞. This was shown in [30] in a paper that only considers the case of poles
with single multiplicity. The more general result can be found in [37, chap. 10]. The
condition automatically provides completeness for the Laguerre, Kautz, and Hambo
constructions.

2.2. System identification and thresholding. The general orthonormal ba-
sis functions (2.18) are now possible to use for system identification. As mentioned
earlier, one of the major advantages with such a model structure is that it is linear in
the parameters. If the measurements are noisy, the estimated expansion coefficients
will be contaminated with noise as well. One way to regularize the system estimate is
then to discard small coefficients. This way of thresholding the estimate was suggested
in [9] and is efficient when the basis is able to give a sparse representation of the sys-
tem, but not the noise. The motivation is that if this is the case, small coefficients will
mostly consist of noise so that the estimation error is reduced if these are replaced
with zeros.

Let the system identification problem be defined as

y(t) = G(q)u(t) + e(t), t = 1, . . ., N,(2.20)
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where {y(t)}Nt=1 is the output sequence, {u(t)}Nt=1 is the input sequence, and {e(t)}Nt=1

is a white Gaussian measurement noise with zero mean and variance σ2. The system
is assumed to be asymptotically stable and strictly proper so that it belongs to H2.
Define the vector valued least squares expansion coefficients gk := 〈G,Ψk〉 , k =
1, . . .,m, so that

gk =



gk,1
gk,2
...

gk,nk


 =



〈G,ψk,1〉
〈G,ψk,2〉

...
〈G,ψk,nk

〉


 .(2.21)

Suppose that the functions Ψk(z) are generated by the cascade shown in Figure 2.2,
where all-pass filter k has McMillan degree nk. Let n =

∑m
k=1 nk and define the nth

order approximation of G(z) as

Gn(z) :=

m∑
k=1

gTkΨk(z),(2.22)

which minimizes the approximation error ‖G−Gn‖2. Let the parameter vector Θ be
defined by

Θ :=




g1

...
gm


 .(2.23)

The least squares estimate of Θ resulting from N measurements then becomes

Θ̂ := R−1
N fN ,(2.24)

where

RN =
1

N

N∑
t=1

X(t)XT (t), fN =
1

N

N∑
t=1

X(t)y(t)(2.25)

with

X(t) =




x1(t)
x2(t)

...
xm(t)


(2.26)

and where xk is defined by (2.16). It is well known (see, e.g., [19, chap. 8]) that
Θ̂→ Θ∗ with probability one (w.p.1) as N →∞, where

Θ∗ := argmin
Θ

1

2π

∫ π

−π

∣∣G(eiω)−Gn(eiω)
∣∣2 φu(eiω)dω,(2.27)

where φu is the power spectral density of the input sequence {u(t)}Nt=1. In this way,
if the input has a constant mean spectrum such as the realizations of white noise, Θ̂
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will converge to the true least-squares gains Θ. The asymptotic distribution of the
gains becomes

√
N(Θ̂−Θ∗) ∼ AsN(0,R−1

N σ
2),(2.28)

where σ2 is the variance of the measurement noise. From the orthonormality of the
basis functions, RN will asymptotically become the identity matrix w.p.1 so that the
asymptotic distribution of the coefficients Θ̂ will be independently and identically
distributed (i.i.d.) Define the nth order approximation of G(z) using the estimated
least squares gains Θ̂ as

Ĝn(z) :=

m∑
k=1

ĝTΨk(z).(2.29)

Let {u(t)}Nt=1 be a realization of a white noise. The least-squares error then satisfies

‖G− Ĝn‖2 → ‖G−Gn‖2 w.p.1 as N →∞.(2.30)

From the orthonormality of the basis functions, the squared error can now be written

‖G− Ĝn‖22 =

m∑
k=1

‖gk − ĝk‖22 +

∞∑
k=m+1

‖gk‖22(2.31)

so that the error is divided into two terms. The first part,
∑m
k=1 ‖gk − ĝk‖22, is mini-

mized given the firstm all-pass filters by the least-squares estimate Θ̂ of the coefficients
Θ, while the second term is completely determined by the choice of the first m filters.
It would be desirable to make this part as small as possible for fixed m, but in general
this leads to a difficult nonlinear optimization problem. However, a priori knowledge
about the true system can often be used when selecting the filters {Hk}mk=1.

A systematic iterative scheme for selecting the all-pass filter for the construction
in [14] is suggested in [16, 15]. In this case, when the basis is generated from one single
repeated all-pass filter, a model is identified using a basis generated from some initial
all-pass filter. The model is then reduced by means of balanced model reduction to
some lower-order system, which is used to construct a new all-pass filter. The steps
above are then repeated until a refined low order model is obtained. The method
seems to converge in many cases and reduces the tail contribution of the error to
almost zero after only three or four iterations. If the model order for the all-pass filter
is selected as the true order of G(z), the poles of the all-pass filter converge to the
poles of G(z) making only the first basis function necessary. However, in some cases
the method diverges, especially in the presence of substantial measurement noise.

In [5], it was suggested that the thresholding rule of [9] should be used to regularize
the system estimate if measurement noise is present. The suggestion builds on the
observation that if, for some k and l,

(ĝk,l − gk,l)2 > g2
k,l,(2.32)

a smaller error in the estimate is obtained by simply replacing ĝk,l with 0. In this
case the true coefficient gk,l is totally “drowned” in noise. Since we hope the system
is well described with only a few basis functions while the noise is difficult to express
in the basis, the threshold algorithm described in section 3.2 could be applied to this
kind of basis function as well. Then, the problem is reduced to finding the proper



SELECTION OF BEST ORTHONORMAL RATIONAL BASIS 1005

threshold level in order to detect when (2.32) happens. From (2.28), the asymptotic
distribution of the coefficients is known. Suppose that the input sequence {u(t)} has
zero mean and constant power spectral density σ2

u and that the measurement noise
{v(t)} is white stationary zero mean with variance σ2. Then

√
N(ĝk,l − gk,l) ∼ AsN(0, σ2/σ2

u).(2.33)

Furthermore they are asymptotically independent for different (k, l). The threshold
rule suggested in [9] then relies on the fact that

Prob


 max

1≤k≤m
1≤l≤nk

|ĝk,l − gk,l| > σ

σu

√
2 log n

N


→ 0(2.34)

as m→∞. This follows from a result in [18] which was used in [9].
Assume the problem formulation of (2.20), where the input sequence {u(t)}Nt=1

has constant power spectral density σ2
u and zero mean. Let the measurement noise be

defined as above so that (2.34) results in the following regularization scheme:
1. Choose a rational orthonormal basis constructed from a cascade of orthonor-

mal all-pass filters {Hk}mk=1 with McMillan degrees nk, respectively.

2. Calculate the least squares estimates Θ̂ of the least squares coefficients Θ as
in (2.24).

3. Let

ĝsk,l =

{
ĝk,l if |ĝk,l| ≥ τ σ

σu
,

0 if |ĝk,l| < τ σ
σu
,

k = 1, . . .,m,
l = 1, . . ., nk,

(2.35)

where

τ =

√
2 log n

N
.(2.36)

4. Form the thresholded transfer function estimate

Ĝ(s)
n (z) =

m∑
k=1

nk∑
l=1

ĝsk,lψk,l(z).(2.37)

The algorithm results in only significant coefficients being kept. In order for it to
work well, the system G(z) should be as compressible as possible in the basis chosen.
It is therefore important to incorporate as much a priori information as possible when
selecting the all-pass filters Hk(z). However, even when the all-pass filters have been
selected, their ordering in the cascade has to be selected as well. The compressibility
of a collection of all-pass filters can differ significantly depending on the order in which
the filters appear. In parallel to the best basis selection of wavelet packets, given a
collection of all-pass filters, a similar problem of best basis, or ordering, can be stated
for rational orthonormal functions. In the following section, a scheme for selecting a
suitable such basis is presented.

3. Best basis selection. As mentioned in the previous section, a collection of
orthonormal all-pass filters can be used to construct an orthonormal rational basis.
Different orderings of these filters will then correspond to different coordinate selec-
tions for the same subspace of H2. In this section, a scheme is given for selecting
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u(t)
Hl1 Hl2 Hln

x1 x2 xn

Fig. 3.1. Cascade of orthogonal all-pass filters.

the best among all possible coordinates. The outline is as follows. In section 3.1, the
number of different bases and different basis functions is given. Section 3.2 considers
different criteria for optimality. The selection scheme is derived in section 3.3 and
finally, in section 3.4, some implementation issues are discussed.

3.1. Combinatorial observations. Using notation similar to that in section 2.1,
a basis is associated with a collection of n balanced all-pass filters placed in an array
as shown in Figure 3.1. Let the all-pass filter Hk(z) have state transfer function Φk(z)
and McMillan degree nk. Suppose that there is a total of p different filters, repre-
sented by the family {Hl(z)}pl=1, and that the filter Hl(z) appears exactly κl times
for l = 1, . . ., p. The number of filters n in the array then becomes

n =

p∑
l=1

κl.(3.1)

Given the array in Figure 3.1, the vector valued basis functions will be

Ψk(z) = Φlk(z)

k−1∏
i=1

Hli(z), k = 1, . . ., n,(3.2)

for some ordering {lk}nk=1. Define the finite-dimensional space

Hn := span {Ψk}nk=1 ⊂ H2,(3.3)

which is independent of the ordering of the filters since they will all have the same
finite fractional expansions. Thus, each ordering of the functions will correspond to a
selection of coordinates for Hn. The number of different such choices is given by the
following proposition, first presented in [4].

Proposition 3.1 (number of bases). Given the different orthogonal all-pass fil-
ters {Hl(z)}pl=1 and multiplicities {κ}pl=1 with n =

∑p
l=1 κl, the number of arrange-

ments of these filters is (
n

κ1, κ2, . . . , κp

)
:=

n!

κ1! · κ2! · · ·κp! .(3.4)

Proof. The result is obtained from simple counting; see for example [12].
The number of bases can be described combinatorially as the number of “words”

that can be written using the “letters” {Hl}pl=1, where each letter Hl(z) appears κl
times. A number of special cases can now be examined.

All filters equal. This results in the construction of [14] with the Laguerre or
Kautz bases as special cases. Of course, there is only one way to arrange a number
of equal filters and consequently, with p = 1 and κ1 = n, Proposition 3.1 gives only(
n
n

)
= 1 basis.
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All filters different. This problem is identical to the number of arrangements of
n distinct objects and is equal to n!, which is exactly what Proposition 3.1 gives with
p = n and κl = 1 for l = 1, . . ., n.

Each filter appears κ times. This case can be viewed as starting with the con-
struction of [14] with κ equal filters, where each of the filters has p factors. Then,
Proposition 3.1 gives the number of bases that can be constructed by splitting up
each filter into its factors and rearranging them. With κl = κ for l = 1, . . ., p this re-
sults in n!/(κ!)p bases. For example, if each filter appears twice, the number of bases
will be n!/2n/2.

Two different filters. With only two different all-pass filters, the number of bases
becomes

(
n
κ

)
, where κ is the number of filters H1(z) so that H2(z) appears n−κ times.

Observe that a vector valued basis function, defined as in (3.2), depends on the
state transfer function of its output filter Hlk(z) and on which filters precede it in
the cascade, but not on their ordering. Obviously, there will be an overlap in which
different basis functions there are in all the bases given by Proposition 3.1. The
number of different basis functions is determined by the following proposition.

Proposition 3.2 (number of basis functions). Given different orthogonal all-pass
filters {Hl(z)}pl=1 with multiplicities {κl}pl=1 and n =

∑p
k=1 κl, the number of vector

valued basis functions as defined in (3.2) that can be constructed from these filters is

p∑
l=1


κl

p∏
m�=l
m=1

(κm + 1)


 .(3.5)

Proof. A basis function is uniquely defined by the output filter Hl(z) (or actually
its state transfer function Φl(z)) together with the p-tuple

(k1, k2, . . ., kp) , where

{
0 ≤ km ≤ κm, m �= l,
0 ≤ kl ≤ κl − 1 otherwise,

(3.6)

denoting that the array of filters preceding the output filter contains Hm(z) km times
for m = 1, . . ., p. Each filter Hm(z) can appear from 0 up to κm times in this array
except for Hl(z), which can appear only from 0 up to κl − 1 times, since the filter
Hl(z) is used as an output filter. Simple counting then gives a total of

(κ1 + 1) (κ2 + 1) · · · (κl−1 + 1)κl (κl+1 + 1) · · · (κp + 1) = κl

p∏
m�=l
m=1

(κm + 1)(3.7)

basis functions having Hl(z) as their output filter. The total number of functions (3.5)
is then obtained as the sum over all possible output filters.

The number of basis functions can now be calculated for the special cases consid-
ered above.

All filters equal. With p = 1 and κ1 = n, (3.5) gives n. This is of course expected
since there is only one basis.

All filters different. With p = n and κl = 1 for l = 1, . . ., p, the number of basis
functions becomes n2n−1. This can be checked since the filters preceding the output
filter can be represented by an (n− 1)-position binary number, which can take 2n−1

values, and since there are n possible output filters.
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Each filter appears κ times. In this case, with κl = κ for l = 1, . . ., p, the number
of functions will be pκ(κ+ 1)n−1, according to (3.5).

Two different filters. With H1(z) appearing κ times, the number of basis func-
tions will be 2κ(n−κ)+n. This expression degenerates to n for κ = 0 or κ = n, which
corresponds to the case when all the filters are equal. It is maximized for κ = n/2,
where there are equally many of the two different filters. In this case, the number of
functions is n(n + 2)/2. This should be compared to the number of bases, which is(
n
n/2

) ≈ 2n+1/2/
√
πn according to Stirling’s formula. In this way there is an expo-

nentially growing number of bases containing only a quadratically growing number of
basis functions.

Propositions 3.1 and 3.2 show that in many cases, the number of basis functions
is dramatically smaller than the number of orthonormal basis functions that can be
constructed from these, while in other cases the difference is more modest. If, e.g., all
the filters are equal and n = 10, the total number of bases is n! = 3, 628, 800 while
the number of basis functions becomes only n2n−1 = 5, 120. If there are 5 of each of
2 different all-pass filters, the number of bases is 252 while the number of functions is
60. In both these cases, the number of basis functions is smaller than the number of
bases that can be constructed from them. In section 3.3, it will be shown that in the
case of rational basis functions, a fast algorithm also exists that permits selection of
the best basis.

3.2. Best basis criteria. In order for the thresholding of section 2.2 to work
as an efficient regularization method in system identification, it is necessary to have
a basis that provides a sparse system description. This situation is similar to wavelet-
packet best basis selection. In the case of rational basis functions, the best ordering of
the all-pass filters has to be found. This section discusses different optimality criteria
or cost functions for determining what is meant by the best basis. The same cost
functions were used for wavelet packet best basis selection in [7, 8, 10].

Let {gk}k∈B be the expansion coefficients of a finite orthonormal rational basis
expansion, where B are the indices of n basis functions formed from all the state
outputs from an array of all-pass filters. Let all possible B denote the bases that
can be formed by permuting the ordering of the all-pass filters. In this way, a finite
library of bases is obtained. In [8], it was suggested that the entropy of the expansion
coefficients should be used as a cost function for best basis selection. This is defined
by

Ve(B) = −
∑
k∈B
|gk|2 log |gk|(3.8)

and is a well-known data compression measure; see [38]. Another possible criterion
for best basis selection is the �α-cost

Vα(B) =
∑
k∈B
|gp|α(3.9)

with 0 < α < 2. In particular, α = 1 is often considered. Both these cost functions
have the property that for free minimization subject only to the constraint∑

k∈B
|gk|2 = Constant,(3.10)

they result in all gk but one equal to zero. The corresponding maximization problem
gives all |gk| equal. This indicates the ability to measure compression. However, for
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best basis selection, the minimization is also constrained by the requirement that the
coefficients of all different bases also must describe the same system.

A third cost function,

V (B, τ) =
∑
k∈B

min(|gk|2, τ2σ2),(3.11)

was suggested in [10]. This function is strongly connected to denoising by thresholding
using the threshold level τσ, thus involving this parameter also in the best basis
selection process. A more general form of (3.11) was suggested for speech denoising
using wavelet packets in [3], where colored noise was taken into account.

The cost function (3.11) relates to the entropy cost and the �1-cost via the fol-
lowing result.

Theorem 3.3. Let Ve(B), V1(B), and V (B, τ) be defined by (3.8), (3.9), and
(3.11), respectively. Let

C :=

√∑
k∈B
|gk|2,(3.12)

which is constant for any choice of orthonormal basis. Then

Ve(B) =

∫ C/σ

0

V (B, τ)dτ
τ
− 1

2
C2 − C2 logC(3.13)

and

V1(B) =
1

2σ

∫ ∞

0

V (B, τ)dτ
τ2
.(3.14)

Proof. Integration of one term of V (B) results in

∫ C/σ

0

min(|gk|2, τ2σ2)
dτ

τ
= σ2

∫ C/σ

0

min

( |gk|2
σ2

, τ2

)
dτ

τ

= σ2

{∫ |gk|/σ

0

τ2 dτ

τ
+

∫ C/σ

|gk|/σ

|gk|2
σ2

dτ

τ

}

= σ2

{
1

2

|gk|2
σ2

+
|gk|2
σ2

log
C

σ
− |gk|

2

σ2
log
|gk|
σ

}

=
1

2
|gk|2 + |gk|2 logC − |gk|2 log |gk|.

(3.15)

Summation over k ∈ B of the left- and right-hand sides gives (3.13). Similarly,

∫ ∞

0

min(|gk|2, τ2σ2)
dτ

τ2
= σ2

∫ ∞

0

min

( |gk|2
σ2

, τ2

)
dτ

τ2

= σ2

{∫ |gk|/σ

0

τ2 dτ

τ2
+

∫ ∞

|gk|/σ

|gk|2
σ2

dτ

τ2

}
= 2σ|gk|,

(3.16)

which via summation over k ∈ B results in (3.14).
The theorem shows that the entropy and �1-cost in fact are weighted versions of

(3.11), where the weight is taken (integrated) over many threshold levels.
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The cost function (3.11) also has an interpretation in terms of rate distortion. If a
signal is decomposed in the best basis according to this cost and reconstructed using
only coefficients with a magnitude greater than τ, then the �2 reconstruction error is
minimal over all bases in the library for any construction using the selected number
of coefficients. See [26, 32].

The cost functions discussed above can now be used for selecting the best rational
basis.

3.3. Selection scheme. In section 3.1, it was concluded that the number of
bases that can be constructed from an array of all-pass filters in most cases is much
larger than the number of basis functions forming these bases. Using wavelet packet
terminology, there is a library of bases containing only a few different basis functions.
This section provides a scheme for selecting the best among all possible bases in the
library. The search is made in a complexity no larger than the number of different
basis functions so that in this sense, the search can be called “fast.”

In section 3.2, different criteria for best-basis selection were discussed. Which
criterion to use is up to the user, but important for all these methods is that they
describe compression so that a basis with the energy concentrated in few coefficients is
selected. Supposing that the true system is well described by only a few coefficients in
the finite-dimensional subspace Hn but that noise is present, a denoising scheme such
as the one described in section 2.2 can be applied. This was suggested for orthonormal
rational bases in [5]. Since only coefficients above the threshold level are kept, as few
such coefficients as possible would give a smaller variance for the system estimate.
This is a result of fewer parameters being estimated; see [22].

The selection criteria from wavelet packet basis selection presented in section 3.2
are directly applicable to the selection of the best orthonormal rational basis as well.
The selection algorithm, however, becomes different. As for wavelet packets, it is
crucial that the cost function be additive for the algorithm derived here. The following
terminology will be used.

Definition 3.4 (collection and word). An m-collection is a set of m all-pass fil-
ters, where the filter Hl(z) appears kl times for l = 1, . . ., p. The m-collection is
represented by the p-tuple

(k1, k2, . . ., kp) , where

p∑
l=1

kl = m.(3.17)

An m-word is an ordered m-collection.
The vector valued basis functions (3.2) are thus fully defined by the output filter

together with a collection of preceding filters. A basis for Hn, on the other hand, is
defined by the word of all-pass filters constituting the array. With this terminology
an algorithm for selection of the best basis can now be formulated. The algorithm is
recursive: If the best m-word and its cost are known for each different m-collection,
the best (m+1)-word and its cost can be calculated for all different (m+1)-collections.
Formally, this can be written as follows.

Algorithm 3.5 (best basis selection). The algorithm selects the best basis con-
structed from an array of n orthogonal all-pass filters. The given filters are {Hl(z)}pl=1

with multiplicities {κl}pl=1, where n =
∑p
l=1 κl. In other words, the output of the al-

gorithm is the best n-word constructed from these filters.
1. If m = 1, all the best 1-words and their costs are trivial.
2. For all (m+ 1)-collections:



SELECTION OF BEST ORTHONORMAL RATIONAL BASIS 1011

(a) For every l where kl �= 0 in the current (m+1)-collection: Construct the
basis function having Hl(z) as output filter preceded by the remaining m-
collection. Calculate the cost of the expansion coefficient corresponding
to each such basis function.

(b) For each basis function: Add its cost to the known best cost of the corre-
sponding m-collection and select the best. The corresponding best (m+1)-
word is given by the best m-word for the current m-collection with the
selected output filter appended.

3. Terminate if m = n−1. Otherwise, increment m by one and return to step 2.
The single n-word resulting from the algorithm will correspond to the globally

optimal basis with respect to the chosen cost function. From the way the algorithm
is constructed, it is important that the cost function be additive in the sense that the
sum of the costs for two disjoint subsets of the coefficients is equal to the cost of the
union of these two coefficient sets. This is fulfilled for all the cost functions considered
in section 3.2. Additivity of the cost then implies that a suboptimal m-word cannot
result in an optimal (m + 1)-word, and in this way the resulting n-word has to be
globally optimal. The number of steps for Algorithm 3.5 is given by the following
theorem.

Theorem 3.6 (algorithmic complexity). The order of complexity of Algorithm 3.5
with respect to n and {κl}pl=1 is

p∑
l=1


κl

p∏
m�=l
m=1

(κm + 1)


 ,(3.18)

which is the same as the number of basis functions given by Proposition 3.2.
Proof. The steps 2(a) and 2(b) of Algorithm 3.5 are performed once for each l

having kl �= 0 in the current m-collection. Step 3.3 is performed once for each (m+1)-
collection. These steps are repeated for m = 1, . . ., n − 1. The initial step takes p
operations. In total this gives

p+
n−1∑
m=1


∑

∀(k1,...,kp)∑
kl=m+1

0≤kl≤κl




p∑
i=1
ki �=0

1





=

p∑
i=1
ki �=0



n−1∑
m=0




∑
∀(k1,...,kp)∑
kl=m+1

0≤kl≤κl

1






=

p∑
i=1
ki �=0

# {(k1, . . ., kp)|ki �= 0} =
p∑
l=1

κl

p∏
i=1
i �=l

(1 + κi) .

(3.19)

Remark 3.7. In the proof, the change of order of summation avoids using the
number of (m+1)-collections. Due to the constraints imposed by the κl’s, this number
cannot be explicitly calculated. However, for given values of the κl’s, the number of m-
collections is the coefficient in front of xm in the generating function

∏p
l=1

∑κl

k=0 x
k.

As will be shown in the next section, the (m + 1)-collections can recursively be
calculated from the m-collections without knowing in advance how many these are for
a certain m+ 1. In this way, no search for the (m+ 1)-collections has to be made.

Theorem 3.6 shows that, as in the case of wavelet packet best basis selection,
the number of algorithmic steps for selecting the best orthonormal rational basis is
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the same as the number of different basis functions in all bases considered. The next
section demonstrates how to recursively calculatem-collections and how to implement
the algorithm.

3.4. Implementation. Algorithm 3.5, defined in section 3.3, performs the inner
iteration once for each (m + 1)-collection with respect to the multiplicities {κl}pl=1.
The constraints imposed by the κl’s result in difficulties in explicitly calculating all
(m+1)-collections for a given m without having to search over all the collections with
all different lengths. However, the following algorithm shows how all (m+1)-collections
can be calculated recursively given all the m-collections.

Algorithm 3.8 (recursive collection generation). Given allm-collections (k1, . . ., kp)
with 0 ≤ kl ≤ κl for l = 1, . . ., p so that

∑p
l=1 kl = m, the following steps generate all

(m+ 1)-collections.
For each m-collection (k1, . . . , kp):
1. l← 0
2. l← l + 1

(a) If kl = 0, increment kl by 1 to generate an (m+1)-collection and repeat
step 2 if l < p. Stop otherwise.

(b) If 0 < kl < κl, increment kl by 1 to generate an (m+ 1)-collection and
stop.

(c) Stop if kl = κl.
Proof. The following arguments show that the mapping performed by Algo-

rithm 3.8 from all m-collections to the (m + 1)-collections is onto: First of all, it is
evident that if there is any output from the algorithm, it will be an (m+1)-collection,
and the only time when there is no output is when kl = κl for all l = 1, . . ., p.
It then remains to show that any (m + 1)-collection always comes from the algo-
rithm: Take an arbitrary (m + 1)-collection (k1, . . ., kp). If k1 > 0, it comes from
(k1 − 1, k2, . . ., kp) via Algorithm 3.8. If k1 = 0 and k2 > 0, it comes from the m-
collection (0, k2 − 1, k3, . . ., kp) via the algorithm. If k1 = k2 = 0 and k3 > 0 it comes
from (0, 0, k3− 1, . . ., kp), and so on. Thus, any (m+1)-collection was generated from
the algorithm and the mapping is onto. This inversion also shows that no (m + 1)-
collection is produced more than once by the algorithm. Note here that, in step 2(a),
the l < p condition is only needed if m = 0.

The algorithm above provides a fast way to recursively calculate collections with
different number sums. For implementation of the best basis selection algorithm, it
is also convenient to have some systematic addressing of the collections. This is to
say that an integer must be assigned to each of the collections in a unique way. The
total number of collections, or p-tuples (k1, . . . , kp), with 0 ≤ kl ≤ κl for l = 1, . . ., p
becomes

∏p
l=1(κl+1). Thus, the collections can be numbered from 0 to

∏p
l=1(κl+1)−1

in the following way.
Definition 3.9 (addressing). Let 0 ≤ k ≤ κl for l = 1, . . ., p and denote a

collection by

cq = (k1, . . . , kp),(3.20)

where q is an integer in {0, 1, . . .,∏p
l=1(κl + 1)− 1}, calculated as

q :=

p∑
l=1

kl

l−1∏
j=1

(1 + κj),(3.21)

and where the product over no elements is defined as 1.
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21 9 7 5

Fig. 3.2. Counter.

This way of numbering the collections is in fact a multibase representation with
respect to the κl’s. One interpretation of the numbering is that the collection cq
can be viewed as the qth number on the counter shown in Figure 3.2, where the
lth wheel is numbered from 0 to κl. This is also quite the same as the numbering
of time, where for example hours, days, and weeks all have different numbers of
their respective subquantities minutes, hours, and days. The numbering and recursive
collection calculation is demonstrated with the following example.

Example 3.10. Let p = 3 with κ1 = 3, κ2 = 1, and κ3 = 2. The total number of
collections is then 24 and with the addressing of Definition 3.9, they become

c0 = (0, 0, 0), c8 = (0, 0, 1), c16 = (0, 0, 2),
c1 = (1, 0, 0), c9 = (1, 0, 1), c17 = (1, 0, 2),
c2 = (2, 0, 0), c10 = (2, 0, 1), c18 = (2, 0, 2),
c3 = (3, 0, 0), c11 = (3, 0, 1), c19 = (3, 0, 2),
c4 = (0, 1, 0), c12 = (0, 1, 1), c20 = (0, 1, 2),
c5 = (1, 1, 0), c13 = (1, 1, 1), c21 = (1, 1, 2),
c6 = (2, 1, 0), c14 = (2, 1, 1), c22 = (2, 1, 2),
c7 = (3, 1, 0), c15 = (3, 1, 1), c23 = (3, 1, 2).

(3.22)

The recursion of Algorithm 3.8 can be cranked with the trivial collection c0. This gives

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
c0 c1 c2 c3 c7 c15 c23

c4 c5 c6 c11 c19

c8 c9 c10 c14 c22

c12 c13 c18

c16 c17 c21

c20

(3.23)

It is easily checked that in each column of (3.23), the collections have the same number

sum
∑3
k=1 kl.

The addressing of Definition 3.9 gives a convenient representation of the collec-
tions when implementing Algorithm 3.5. In step 2 of this algorithm, the (m + 1)-
collections are recursively calculated using Algorithm 3.8. In step 2(a), the remaining
m-collection for the current l is obtained by reducing the current kl with 1 from the
current (m+ 1)-collection. Using the addressing of Definition 3.9, this reduction can

be made directly simply by subtracting
∏l−1
j=1(1+ κj) from the address of the current

(m+1)-collection. This results in the address to the corresponding m-collection. The
subtracted products are found as the addresses for m = 1. In this way, the collections
will not have to be explicitly represented by anything other than the addresses. In
step 2(a), kl �= 0 can be checked for the addresses by successively dividing by the κl’s
in order to examine if these are contained as factors in the remainder of the current
(m + 1)-collection. This is shown in more detail in Appendix A. For example (from
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15

19

22 = 2 · 1 + 1 · 4 + 2 · 8

m = 5

22− 1 = 21

7

14

21

m = 4

11

Best cost and ordering
for collection 14.

Best cost and ordering
for collection 18.

for collection 21.
Best cost and ordering

3

1

18 22− 4 = 182

22− 8 = 14

Fig. 3.3. Addressing in Algorithm 3.5.

Example 3.10 above), by subtracting 1, 4, and 8 respectively, the address 22 with
number sum m = 5 will then directly point to the addresses 21, 18, and 14, all having
number sums m = 4. This is illustrated in Figure 3.3.

Several implementation aspects were treated in this section, which concludes the
derivation of a best basis selection scheme. The following section provides a way to cal-
culate the expansion coefficients associated with each of the different basis functions.
These coefficients are the essential input to Algorithm 3.5.

4. Decomposition. The expansion coefficients of a system can be obtained us-
ing system identification as described in section 2.2. This results in the coefficients
for only one fixed basis. The selection scheme derived in section 3, however, needs
the coefficients for all possible basis functions. In this section, an algorithm is given
that uses the expansion coefficients in one single basis in order to produce all the
coefficients needed for the best basis selection scheme. The algorithm uses local block
two-by-two orthogonal matrix transformations and has the same complexity as the
best basis selection scheme of section 3.

The local orthogonal transformations are derived in section 4.1 where a method
is also given for generating coefficients in the case where all the all-pass filters are
different from each other. The latter is provided for understanding of the general
coefficient-generation scheme presented in section 4.2.

4.1. Calculating coefficients by orthonormal transformations. Suppose
that the expansion coefficients are given in one basis. This can be achieved with the
system-identification approach presented in section 2.2. Then, there is an orthonor-
mal, and thus well-conditioned, matrix transformation of these coefficients to the
coefficients of any other possible basis. Using the inherent recursive structure of the
rational basis functions, this orthonormal transformation can be decomposed into
local (block) two-by-two orthonormal transformations.

Given a family of different all-pass filters {Hk}nk=1, the basis functions for an
ordering {lk}nk=1 of the filters can then be written as in (3.2). Consider two basis
functions of consecutive order

Ψk(z) = Φlk(z)

k−1∏
i=1

Hli(z),(4.1)
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Ψk+1(z) = Φlk+1
(z)Hlk(z)

k−1∏
i=1

Hli(z).(4.2)

By interchanging the order of the output filter of Ψk(z) and the output filter of
Ψk+1(z), two basis functions of a basis defined by another ordering are obtained. The
functions can be written

Ψ̃k(z) = Φlk+1
(z)

k−1∏
i=1

Hli(z),(4.3)

Ψ̃k+1(z) = Φlk(z)Hlk+1
(z)

k−1∏
i=1

Hli(z).(4.4)

The two pairs of functions relate via the linear transformation T(lk, lk+1) as

[
Ψk(z)

Ψk+1(z)

]
= T(lk, lk+1)

[
Ψ̃k(z)

Ψ̃k+1(z)

]
.(4.5)

Denote the outer product between two column vector valued functions Φj(z) and
Φk(z) with possibly different dimension by

〈Φj ,Φk 〉 := 1

2π

∫ π

−π
Φj(e

iω)
[
Φk(e

iω)
]H
dω,(4.6)

where H denotes transposition and complex conjugation. Then, from the orthonor-
mality of the basis functions, the transformation matrix T becomes

T(lk, lk+1) =

[ 〈Ψk, Ψ̃k 〉 〈Ψk, Ψ̃k+1 〉
〈Ψk+1, Ψ̃k 〉 〈Ψk+1, Ψ̃k+1 〉

]
,(4.7)

and since all the four basis functions have the common factor
∏k−1
i=1 Hli , T can be

rewritten as

T(lk, lk+1) =

[ 〈Φlk ,Φlk+1
〉 〈Φlk ,ΦlkHlk+1

〉
〈Φlk+1

Hlk ,Φlk+1
〉 〈Φlk+1

Hlk ,ΦlkHlk+1
〉
]
.(4.8)

Rewriting (4.7) as (4.8) is crucial for the existence of a fast coefficient transformation
scheme. Let T(j, k) be partitioned into blocks as

T(j, k) =

[
t11(j, k) t12(j, k)
t21(j, k) t22(j, k)

]
,(4.9)

where the four blocks, given by

t11(j, k) = 〈Φj ,Φk 〉,(4.10)

t12(j, k) = 〈Φj ,ΦjHk 〉,(4.11)

t21(j, k) = 〈ΦkHj ,Φk 〉,(4.12)

t22(j, k) = 〈ΦkHj ,ΦjHk 〉,(4.13)

are orthonormal, i.e., the matrix satisfies T(j, k)TT (j, k) = I. (This is shown in
Appendix B, where the orthonormality follows because the two pairs of orthonormal
functions {Φj ,ΦkHj} and {Φk,ΦjHk} have the same span.)
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The transformation matrix T can be calculated as the solution of a Lyapunov-like
equation. Define

Xj,k(z) :=

[
Φj(z)

Φk(z)Hj(z)

]
(4.14)

so that T(j, k) = 〈Xj,k,Xk,j 〉. Let Hj(z) and Hk(z) have the state-space realiza-
tions (Aj ,Bj ,Cj , Dj) and (Ak,Bk,Ck, Dk) respectively. From (2.15), Xj,k(z) has
the (balanced) state-space realization

(Aj,k,Bj,k) =

([
Aj 0

BkCj Ak

]
,

[
Bj

BkDj

])
.(4.15)

In this way, T(j, k) can be written

T(j, k) = 〈Xj,k,Xk,j 〉

=
1

2π

∫ π

−π

(
Ieiω −Aj,k

)−1
Bj,k

[(
Ie−iω −Ak,j

)−1
Bk,j

]T
dω

=

∞∑
n=0

∞∑
m=0

An
j,kBj,k

{
1

2π

∫ π

−π
e−iω(n−m)dω

}
BT
k,j(A

T
k,j)

m

=

∞∑
n=0

An
j,kBj,kB

T
k,j(A

T
k,j)

n,

(4.16)

which solves the equation

Aj,kT(j, k)AT
k,j + Bj,kB

T
k,j = T(j, k).(4.17)

As shown in Appendix C, this equation can easily be transformed into a Sylvester
equation using bilinear transformations. This equation can then be solved with stan-
dard methods. Such equations are often used in feedback design of large-scale multi-
variable systems; see, e.g., [29].

In terms of the block components of T(j, k), this equation can be divided into the
four coupled matrix equations

t11 = Ajt11A
T
k + BjB

T
k ,(4.18)

t12 = Ajt11C
T
kBT

j + Ajt12A
T
j + BjDkB

T
j ,(4.19)

t21 = BkCjt11A
T
k + Akt21A

T
k + BkDjB

T
k ,(4.20)

t22 = BkCjt11C
T
kBT

j + BkCjt12A
T
j

+ Akt21C
T
kBT

j + Akt22A
T
j + BkDjDkB

T
j ,(4.21)

where the argument (j, k) of t11, t12, t21, and t22 was suppressed. The equations can
either be solved “top-down” due to their triangular structure or as the total solution
to (4.17). The following gives an example of a transformation matrix T(j, k).

Example 4.1 (generalized Laguerre functions). The generalized Laguerre func-
tions with real poles

ψk(z) =

√
1− a2

k

z − ak
k−1∏
j=1

1− ajz
z − aj , k = 1, 2, . . . ,(4.22)
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are obtained from an array built of different first order all-pass filters. The transfor-
mation matrix (4.8) becomes

T(j, k) =
1

1− ajak

[√
1− a2

j

√
1− a2

k aj − ak
ak − aj

√
1− a2

j

√
1− a2

k

]
.(4.23)

Suppose now that Ψk(z) and Ψk+1(z), defined by (4.1), have the respective ex-
pansion coefficients gk and gk+1. Using (4.5), the expansion coefficients associated
with the basis functions Ψ̃k(z) and Ψ̃k+1(z) are then given by[

g̃k
g̃k+1

]
= TT (lk, lk+1)

[
gk

gk+1

]
.(4.24)

In this way, given the expansion coefficients of a pair of functions in one basis, the
expansion coefficients for the functions obtained from alternating the two last all-
pass filters can be obtained by a block two-by-two transformation. The question is
whether the coefficients of all possible basis functions can be reached by repeating
such transformations. Next, it will be shown that this is the case, but in order to
facilitate the description, a more compact notation for the expansion coefficients will
be introduced.

Definition 4.2 (expansion-coefficient notation). Given a family of different all-
pass filters {Hk(z)}nk=1, an expansion coefficient associated with a basis function con-
structed from these filters can then be denoted by g(p, k), where p denotes the address
to the subset of preceding all-pass filters and k is the number associated with the output
filter. The addressing is performed as in Definition 3.9, which in the case where all
the filters are different reduces to

p =

n∑
l=1

dl2
l−1,(4.25)

where dl is either 1 or 0 denoting whether or not the filter Hl(z) is included in the
set. The output filter Hk(z) cannot belong to the subset p.

Before introducing the scheme for calculating all the coefficients, the idea for
coefficient generation will be illustrated with an example.

Example 4.3 (coefficient generation). Suppose that all coefficients belonging to
functions generated from the filters H1(z), H2(z), and H3(z) are known. Suppose also
that g({1, 2, 3}, 4) is known. Here, the subset address is replaced by the subset itself
in order to make the description easier to follow. To start with, all the coefficients
generated from arrays of maximum length 4 become

g({1, 2, 4}, 3) =
[
tT12 tT22

] [ g({1, 2}, 3)
g({1, 2, 3}, 4)

]
,

g({1, 3, 4}, 2) =
[
tT12 tT22

] [ g({1, 3}, 2)
g({1, 2, 3}, 4)

]
,

g({2, 3, 4}, 1) =
[
tT12 tT22

] [ g({2, 3}, 1)
g({1, 2, 3}, 4)

]
,

g({1, 2}, 4) =
[
tT11 tT21

] [ g({1, 2}, 3)
g({1, 2, 3}, 4)

]
,



1018 PER BODIN, LARS F. VILLEMOES, AND BO WAHLBERG

g({1, 3}, 4) =
[
tT11 tT21

] [ g({1, 3}, 2)
g({1, 2, 3}, 4)

]
,

g({2, 3}, 4) =
[
tT11 tT21

] [ g({2, 3}, 1)
g({1, 2, 3}, 4)

]
.

Next, coefficients coming from length-3 arrays are produced by

g({1, 4}, 2) = [tT12 tT22
] [ g({1}, 2)

g({1, 2}, 4)
]
,

g({2, 4}, 1) = [tT12 tT22
] [ g({2}, 1)

g({1, 2}, 4)
]
,

g({1, 4}, 3) = [tT12 tT22
] [ g({1}, 3)

g({1, 3}, 4)
]
,

g({3, 4}, 1) = [tT12 tT22
] [ g({3}, 1)

g({1, 3}, 4)
]
,

g({2, 4}, 3) = [tT12 tT22
] [ g({2}, 3)

g({2, 3}, 4)
]
,

g({3, 4}, 2) = [tT12 tT22
] [ g({3}, 2)

g({2, 3}, 4)
]
,

g({1}, 4) =
[
tT11 tT21

] [ g({1}, 2)
g({1, 2}, 4)

]
,

g({2}, 4) =
[
tT11 tT21

] [ g({2}, 3)
g({2, 3}, 4)

]
,

g({3}, 4) =
[
tT11 tT21

] [ g({3}, 1)
g({1, 3}, 4)

]
.

Finally, the length-2 arrays give the coefficients

g({4}, 1) =
[
tT12 tT22

] [g({∅}, 1)
g({1}, 4)

]
,

g({4}, 2) =
[
tT12 tT22

] [g({∅}, 2)
g({2}, 4)

]
,

g({4}, 3) =
[
tT12 tT22

] [g({∅}, 3)
g({3}, 4)

]
,

g({∅}, 4) =
[
tT11 tT21

] [g({∅}, 1)
g({1}, 4)

]
.

The reason the total T is not used in the transforms is to avoid too many coefficients
being generated. Note that above,

[
tT11 tT21

]
is used fewer times than

[
tT12 tT22

]
. The

number of coefficients known is 3 · 22 + 1 = 13 and the total number of coefficients
associated with 4 filters is 4 · 23 = 32. In the example, 19 coefficients were generated,
which is exactly the difference.

It is now possible to formulate a coefficient generation scheme for the case where
the all-pass filters are different. Assume as in the example above that all the coeffi-
cients associated with basis functions constructed from the filters H1(z), . . ., Hm−1(z)
are known. Furthermore, assume that g(2m−1 − 1,m) also is known. Then, the rest
of the coefficients associated with the basis functions constructed from the filters
H1(z), . . ., Hm(z) are generated by the following algorithm.

Algorithm 4.4 (recursive step for coefficient generation).
1. Let l = m− 1.
2. For all possible l-collections pl that can be constructed from the all-pass filters
H1(z), . . ., Hm−1(z), let

g(pl − 2k−1 + 2m−1, k) =
[
tT12(k,m) tT22(k,m)

] [g(pl − 2k−1, k)
g(pl,m)

]
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for all k in the current l-collection.
3. For all possible (l − 1)-collections pl−1 that can be constructed from the all-
pass filters H1(z), . . ., Hm−1(z): Pick one k such that Hk(z) does not belong
to the current (l − 1)-collection and let

g(pl−1,m) =
[
tT11(k,m) tT21(k,m)

] [ g(pl−1, k)
g(pl−1 + 2k−1,m)

]
.

4. Terminate if l = 1, decrease l by 1 otherwise, and go to step 2.
The following theorem guarantees that all coefficients can be generated given the

coefficients for one basis.
Theorem 4.5 (coefficient generation). Given the coefficients g(2m−1 − 1,m),

m = 1, . . ., n of the canonical basis, all the other n2n−1 − n coefficients are generated
by performing Algorithm 4.4 recursively for m = 1, . . . , n.

Proof. Steps 2 and 3 of Algorithm 4.4 trivially generate coefficients not known
before. It then remains to check that the number of coefficients generated equals
n2n−1−n. Step 2 is performed

(
m−1
l

)
l times while step 4.4 is performed

(
m−1
l−1

)
times.

Thus for fixed m, Algorithm 4.4 generates

m−1∑
l=1

(
m− 1

l

)
l +

(
m− 1

l − 1

)
= (m− 1)2m−2 + 2m−1 − 1(4.26)

coefficients. Then, the algorithm is performed for m = 1, . . . , n so that the total
number of coefficients produced becomes

n∑
m=1

(m− 1)2m−2 + 2m−1 − 1 = n2n−1 − n,(4.27)

which is exactly the number of coefficients needed.
The following section extends the coefficient generation procedure to cover the

general rational basis case.

4.2. General coefficient calculation. Using the same two-by-two transforma-
tions as in the previous section, the coefficient generation scheme can now be derived
for the general basis case where the all-pass filters can have multiplicities.

Given a family of all-pass filters {Hl}pl=1 with balanced realizations and multi-
plicities {κl}pl=1 denoting that each filter Hl(z) appears κl times, the total number
of filters is n :=

∑p
l=1 κl. As in the previous section, denote an expansion coefficient

g(β, l), meaning that the output filter in the corresponding basis function is Hl(z) and
that the filter is preceded by the collection of filters with address β. The addressing
of the collections of filters is performed as suggested in Definition 3.9.

Suppose now that the expansion coefficients

g(βk, lk), k = 1, . . ., n,(4.28)

for one basis are given. The basis is defined by the ordering {lk}nk=1 of the filters in
the array. In this way, βk is a (k − 1)-collection. The first collection will have the
address β1 = 0 and the other addresses are given by

βk+1 = βk +

lk−1∏
j=1

(κj + 1), k = 1, . . ., (n− 1).(4.29)
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The following algorithm is now suggested for generating all the other coefficients that
are obtained by rearranging the array of all-pass filters in all possible different ways.

Algorithm 4.6 (general coefficient generation). Given the expansion coefficients
for one basis, as described above, repeat the following steps for m = 2, . . . , n:

1. Let k ← m− 1 and a1 ← βm.
2. For each aj:

– For every different Hl(z) in the collection represented by aj except for
the filter Hlm(z):

(a) Let

g

(
aj −

l−1∏
i=1

(κi + 1) +

lm−1∏
i=1

(κi + 1), l

)

=
[
tT12(l, lm) tT22(l, lm)

] [g(aj −∏l−1
i=1(κi + 1), l)

g(aj , lm)

]
.

(4.30)

(b) Let ãj,l ← aj −
∏l−1
i=1(κi + 1).

3. Delete all aj and assign a new aj′ ← ãj,l for each unique ãj,l.
4. For each aj , pick one Hl(z) from the collection represented by βm − aj and
let

g(aj , lm)

=
[
tT11(l, lm) tT21(l, lm)

] [ g(aj , l)

g(aj +
∏l−1
i=1(κi + 1), lm)

]
.

(4.31)

5. Terminate if k = 1, decrease k by 1 otherwise, delete all ãj,l, and go to step 2.
Before the algorithm is proved, a couple of examples of how it is executed will be

given. A different number of steps is performed for each m depending on the initially
given ordering of the all-pass filters.

Example 4.7 (general coefficient generation). Let p = 3 and let κ1 = 3, κ2 = 1,
and κ3 = 2. The case is the same as in Example 3.10. Two different initial orderings
will be examined in order to demonstrate how the algorithm executes for different
cases. First, let the given basis be defined by the ordering(

l1 l2 l3 l4 l5 l6
)
=
(

1 1 1 2 3 3
)
.(4.32)

Then, Algorithm 4.6 produces

(0 0 0) :1 (1 0 0) :1 (2 0 0) :1 (3 0 0) :2 (3 1 0) :3 (3 1 1) :3

(0 0 0) :2 ( 6) (1 0 0) :2 ( 4) (2 0 0) :2 ( 2) (2 1 0) :1 ( 1) (2 1 1) :1 ( 7) (2 1 2) :1 (24)

(0 0 0) :3 (23) (0 1 0) :1 ( 5) (1 1 0) :1 ( 3) (2 1 0) :3 ( 9) (3 0 1) :2 ( 8) (3 0 2) :2 (25)

(0 1 0) :3 (19) (1 1 0) :3 (14) (3 0 0) :3 (10) (2 1 1) :3 (26)

(1 0 0) :3 (20) (2 0 0) :3 (15) (1 1 1) :1 (11) (3 0 1) :3 (27)

(0 0 1) :2 (21) (0 1 1) :1 (16) (2 0 1) :2 (12) (1 1 2) :1 (28)

(0 0 1) :1 (22) (1 0 1) :2 (17) (2 0 1) :1 (13) (2 0 2) :2 (29)

(0 0 1) :3 (40) (1 0 1) :1 (18) (1 1 1) :3 (31) (2 0 2) :1 (30)

(0 1 1) :3 (36) (2 0 1) :3 (32)

(1 0 1) :3 (37) (0 1 2) :1 (33)

(0 0 2) :2 (38) (1 0 2) :2 (34)

(0 0 2) :1 (39) (1 0 2) :1 (35)
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where the entries

(k1 k2 k3) : l ( j)(4.33)

denote a coefficient for the basis function with l as output filter, preceded by ki filters
Hi(z), i = 1, 2, 3. The number j denotes that the entry is the jth coefficient generated
by the algorithm. Grey-shaded entries are generated in step 4 of the algorithm while
the nonshaded are produced in step 2(a).

Let now the initially known coefficients be defined by the ordering

(
l1 l2 l3 l4 l5 l6

)
=
(

1 2 3 1 3 1
)
.(4.34)

The algorithm then executes as

(0 0 0) :1 (1 0 0) :2 (1 1 0) :3 (1 1 1) :1 (2 1 1) :3 (2 1 2) :1

(0 0 0) :2 ( 2) (0 1 0) :1 ( 1) (0 1 1) :1 ( 3) (2 0 1) :2 (10) (1 1 2) :1 (17) (3 0 2) :2 (29)

(0 0 0) :3 ( 9) (0 1 0) :3 ( 5) (1 0 1) :2 ( 4) (2 1 0) :3 (11) (2 0 2) :2 (18) (3 1 1) :3 (30)

(1 0 0) :3 ( 6) (1 0 1) :1 (12) (1 1 1) :3 (19) (2 0 2) :1 (31)

(0 0 1) :2 ( 7) (1 1 0) :1 (13) (2 0 1) :3 (20) (2 1 1) :1 (32)

(0 0 1) :1 ( 8) (2 0 0) :3 (14) (0 1 2) :1 (21) (3 0 1) :3 (33)

(1 0 0) :1 (16) (2 0 0) :2 (15) (1 0 2) :2 (22) (3 0 1) :2 (34)

(0 0 1) :3 (28) (0 1 1) :3 (24) (1 0 2) :1 (23) (3 1 0) :3 (35)

(1 0 1) :3 (25) (2 0 1) :1 (36)

(0 0 2) :2 (26) (2 1 0) :1 (37)

(0 0 2) :1 (27) (3 0 0) :3 (38)

(2 0 0) :1 (40) (3 0 0) :2 (39)

which corresponds to a different execution pattern. In both cases, all 40 coefficients are
generated given the 6 coefficients in one basis. From Proposition 3.2, this is exactly
the number of different basis functions in all the bases that can be constructed from
the 6 all-pass filters.

With the example above in mind, Algorithm 4.6 can now be proved.

Proof. Consider a fixed m in step 1 of the algorithm and suppose that all the
coefficients in the previous steps have been calculated. Say now that the collection
with address βm has kl filters Hl(z), l = 1, . . ., p. Then for fixed m, lm is added to this
collection. The new coefficients to be calculated will then be those based on exactly
klm + 1 filters Hlm(z), where the output filter also is counted. These can be divided
into three parts:

(i) The new known coefficient g(βm, lm).
(ii) All the other g(a, lm) where the collection a has klm filters Hlm(z).
(iii) All coefficients g(b, l) where the collection b has klm + 1 filters Hlm(z) and

consequently l �= lm.

By construction, the coefficients of type (ii) are recursively generated in step 4 of the
algorithm while the coefficients of type (iii) are generated recursively by step 2(a).
That all coefficients are obtained is guaranteed by the fact that for each k in the
algorithm the number of filters, except Hlm , is reduced by 1 in all possible
ways.
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Remark 4.8. The total number of coefficients of types (i) and (ii) becomes

p∏
j=1
j �=lm

(kj + 1)(4.35)

while the number of coefficients of type (iii) is

p∑
l=1
l �=lm

kl

p∏
j=1
j �=l
j �=lm

(kj + 1).(4.36)

In this way the total number of new coefficients generated for a fixed m is the sum
of (4.35) and (4.36), which does not depend on the number of the filter Hlm(z) in the
array.

This concludes the contributions of this paper. A complete scheme for decom-
posing a system in the coefficients of a large number of orthonormal bases and for
selecting the best has been given. In the following section, the best basis scheme is
examined for a number of examples.

5. Examples. The procedure for selecting the best orthonormal rational basis
can now be investigated in some examples. The first example concerns an exact finite
description in order to demonstrate the consequences of selecting different all-pass
filter orderings. Section 5.2 then examines pole selection in a noise-free setting. Finally,
in section 5.3, best basis selection is applied to delay estimation.

5.1. Finite description. In order to demonstrate best rational basis selection,
this example assumes that the system is exactly described by a finite number of basis
functions. This means that the poles of the system are exactly the poles of the basis
functions. In this way, the problem is reduced to a pure problem of calculating the
best basis with respect to some cost function, while the estimation procedure can be
omitted. Let the system transfer function be

G(z) =
n∑
k=1

ck

√
1− a2

k

z − ak ,(5.1)

where all the ak’s are real and different with magnitude less than one, and where the
square-root factor normalizes the norm of each of the terms to |ck|. Choose as bases
the different generalized Laguerre systems constructed with the very same poles. The
all-pass filters will thus be

Hk(z) =
1− akz
z − ak , k = 1, . . ., n,(5.2)

while the state transfer functions become

φk(z) =

√
1− a2

k

z − ak , k = 1, . . ., n.(5.3)

The basis functions for some given ordering {kl}nl=1 are then given by

ψl(z) = φkl(z)

l−1∏
j=1

Hkj (z), l = 1, . . ., n.(5.4)
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Fig. 5.1. Coefficients for the ascending pole order.

In this way, the system can now exactly be described by any of the n! different bases
that can be constructed. For fixed ordering, the expansion is written

G(z) =

n∑
l=1

glψl(z),(5.5)

where the coefficients gl = 〈G,ψl〉 are explicitly calculated as

〈G,ψl〉 = 1

2π

∫ π

−π
G(eiω)ψl(e

−iω)dω

=
√

1− a2
kl

n∑
m=1

cm

√
1− a2

m

1− aklam
l−1∏
j=1

am − akj
1− akjam

(5.6)

for l = 1, . . ., n.
The best basis selection was performed with n = 9 and ak = k/10, k = 1, . . ., 9.

In this way, 362, 880 bases are searched in 2, 304 steps. Two different cases were
examined: In the first case, cl was chosen so that gl = 5 − |l − 5| for the ascending
pole ordering nl = l, l = 1, . . . , 9. Figure 5.1 shows the expansion coefficients for the
ascending pole ordering. Two different cost functions were considered: the �1-cost

n∑
l=1

|gl|(5.7)

and the entropy

−
n∑
l=1

|gl|2 log |gl|.(5.8)

The magnitude of the best and worst �1 expansion coefficients are shown in Figure 5.2.
In the same way, this is shown for the best and worst entropy expansions in Figure 5.3.
The second case considered is constructed so that gl = 1 for the ascending order kl = l,
l = 1, . . . , 9. The best and worst �1 expansion coefficients are displayed in Figure 5.4.
For the entropy cost, exactly the same best and worst respective bases are selected as
in the �1 case. The resulting costs and orderings for the two different cases are shown
in Table 5.1. For case 1, the best expansions differ while the worst give the same
result. As mentioned above, in case 2 both the best and the worst expansions match
for the two different cost functions. Also the worst expansions for case 2 become the
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(a) Best expansion.
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(b) Worst expansion.

Fig. 5.2. Best and worst 
1 expansion coefficients for case 1.

same. The latter should not be surprising since in this case, the solution is feasible
and optimal for the two optimization problems

min
gl

n∑
l=1

|gl| subject to

n∑
l=1

|gl|2 = Constant(5.9)

and

min
gl

n∑
l=1

|gl|2 log |gl|, subject to

n∑
l=1

|gl|2 = Constant.(5.10)

This example shows the difference in coefficient compression between different
choices of basis and, in this way, the importance of selecting the order of the all-pass
filters in the array properly.

5.2. Noise-free estimation. In this case, the system is estimated without mea-
surement noise. As a priori information, three different alternatives are given for the
complex poles of the system while the real pole is assumed to be known. One of the
complex poles is identical to the true one and the other two are somewhat displaced.
The system is given by

G(z) = C
b1(z)b2(z)

(z −K)a(z)2
,(5.11)
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(a) Best expansion.
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(b) Worst expansion.

Fig. 5.3. Best and worst entropy expansion coefficients for case 1.

Table 5.1
Costs and orderings for the two cases.

Case 1

Type 
1-cost Entropy cost Ordering k1, . . . , k9

Best 
1 14.22 −161.21 9, 8, 2, 1, 7, 6, 3, 4, 5
Worst 
1 26.53 −101.16 6, 4, 2, 1, 3, 5, 7, 8, 9
Best entropy 14.37 −167.00 5, 9, 7, 8, 1, 2, 4, 3, 6
Worst entropy 26.53 −101.16 6, 4, 2, 1, 3, 5, 7, 8, 9

Case 2

Type 
1-cost Entropy cost Ordering k1, . . . , k9

Best 
1 5.99 −6.28 9, 8, 7, 6, 5, 4, 3, 2, 1
Worst 
1 9.00 0.00 1, 2, 3, 4, 5, 6, 7, 8, 9
Best entropy 5.99 −6.28 9, 8, 7, 6, 5, 4, 3, 2, 1
Worst entropy 9.00 0.00 1, 2, 3, 4, 5, 6, 7, 8, 9

where

b1(z) = z2 − 2r cos(φ+ ∆φ)z + r2,

b2(z) = z2 − 2r cos(φ−∆φ)z + r2,

a(z) = z2 − 2r cos(φ)z + r2,

with r = 0.80, φ = 1.30π/4, ∆φ = 0.20π/4, and K = 0.50. C is a normalizing
constant achieving G(1) = 1. The system output y is generated as y(t) = G(q)u(t),
t = 1, . . . , N, where q is the forward shift operator and the input sequence {u(t)}Nt=1

is a unit pseudorandom binary signal (PRBS). The number of samples N is chosen
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(a) Best expansion.
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(b) Worst expansion.

Fig. 5.4. Best and worst 
1 expansion coefficients for case 2. These also match the best and
worst entropy expansions for case 2.

to be 1, 024.
The orthonormal basis used for estimation is constructed from the four different

filters H1, H2, H3, and H4, where H1 is a Laguerre filter with a pole in 0.50, H2 is a
Kautz filter with the same poles as the roots of z2 − 2r cos(φd1)z + r

2
d, H3 is a Kautz

filter with the same poles as the roots of z2 − 2r cos(φd2)z + r2
d, and H4 is a Kautz

filter with the same poles as a(z).
The displaced parameters φd1 , φd2 , and rd are disturbed by 5% from the original

so that φd1 = 1.05φ, φd2 = 0.95φ, and rd = 1.05 r. The corresponding multiplicities
for the filters are

(
κ1 κ2 κ3 κ4

)
=
(

1 2 2 2
)
.(5.12)

With this setting, the best basis among 630 is chosen in 135 steps. The idea is to see
if the best basis selection scheme chooses the correct complex pole over the displaced
parameters so that the first three filters in the best array are H1, H4, and H4, while
the other basis functions have zero coefficients. The initial ordering of the filters was
chosen as

(
l1 · · · l7

)
=
(

1 2 3 4 2 3 4
)

(5.13)

and estimation of the corresponding coefficients was performed as in (2.24) from
section 2.2. The resulting coefficients are shown in Figure 5.5. Calculation of all the
other possible coefficients and selection of the best basis was performed with the given
conditions. For simplicity of the presentation, only the �1-cost was considered. The
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Fig. 5.5. Estimated coefficients for the initial ordering of the all-pass filters.
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Fig. 5.6. Coefficients for the best 
1-ordering of the all-pass filters.

Table 5.2
Costs and orderings for the initial, best, and worst bases.

Type 
1-cost Ordering l1, . . ., l7

Initial 0.786 1, 2, 3, 4, 2, 3, 4
Best 
1 0.757 1, 4, 4, 2, 3, 3, 2
Worst 
1 1.742 2, 3, 2, 3, 4, 4, 1

resulting coefficients are shown in Figure 5.6 while the ordering and cost are presented
in Table 5.2. In the table, the worst cost and ordering are also shown.

The corresponding worst coefficients can be found in Figure 5.7. As intended,
the best basis selection scheme chooses a basis constructed from an array starting
with H1, H4, and H4. This means that the system is exactly described by the first
five coefficients. With the initial ordering, on the other hand, more coefficients are
needed. One can also note that, not surprisingly, the worst basis has the first order
all-pass filter last in the array.

This example shows how the coefficient calculation and selection scheme chooses
a suitable ordering of the all-pass filters.

5.3. Multiple delays. In this example, estimation of a system with multiple
delays is examined. The system is shown in Figure 5.8. The purpose is to estimate
the delays from choosing the best basis. Thus, for clarity, the poles are assumed to be
known so that

Gj(z) =
1− aj
z − aj , j = 1, 2, 3,(5.14)

with a1 = 0.30, a2 = 0.40, and a3 = 0.50. The delays are d1 = 5, d2 = 10, and
d3 = 10, and are unknown. The system can be viewed as echo measurements with
two additional bounces.
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Fig. 5.7. Coefficients for the worst 
1-ordering of the all-pass filters.

+

G1(q) G2(q)q−d1 q−d2 q−d3 G3(q)
u(t)

y(t)
+

Fig. 5.8. System with three delays.

Simulations were performed with {u(t)}1,024
t=1 chosen as PRBS; Gaussian measure-

ment noise with standard deviation 1.00 was added to the output and the system was
estimated in a basis consisting of the four different filters

Hj(z) =
1− ajz
z − aj , j = 1, 2, 3,(5.15)

and

H4(z) = z−1.(5.16)

The multiplicities of these filters were(
κ1 κ2 κ3 κ4

)
=
(

1 1 1 35
)
.(5.17)

With a large number of delays in the bases, and with the remaining dynamics similar
to that of the system, the best basis selection scheme should be able to identify the
proper delays. The total number of possible bases is 50, 616 while the number of
different basis functions is only 712. Figure 5.9 shows the magnitude of the best and
worst �1-coefficients.

Although the measurement noise is quite large, the best basis shows significantly
larger coefficients in positions 6, 17, and 28. The corresponding filters are H1, H2,
and H3, respectively so that the rest of the all-pass filters are the unit delays H4.
The number of delays before coefficient 6 is 5 and corresponds to d1. Between the
coefficients 6 and 17 the number of delays is 10, corresponding to d2. Finally, the
number of delays between the coefficients 28 and 17 is 10, which is the same as d3.
The three different delays can thus be identified in this way. The ordering of the worst
basis starts with H3 and H2 followed by 4 unit delays, which are followed by H1. All
the rest of the filters are delays.

The example shows that, for a system with this delay structure, the delays can
be estimated by selecting the best orthonormal rational basis expansion even when
substantial measurement noise is present.
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(a) Best expansion.
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(b) Worst expansion.

Fig. 5.9. Best and worst 
1-expansion coefficients for the system shown in Figure 5.8.

6. Concluding remarks. This paper gives a method for calculating coefficients
and selecting the best basis among a large number of different orthonormal rational
bases.

The number of possible bases was first derived and the observation that a basis
function can be a member of many different bases was made. This was exploited
in order to derive a scheme for selecting the best orthonormal basis. The selection
scheme is fast in the sense that the best basis is selected in a number of steps with a
complexity no larger than the number of different basis functions. A similar scheme
was then derived for calculating all possible different expansion coefficients, providing
the coefficients in only one basis. The method is based on recursive local orthonormal
transformations of the already calculated coefficients.

These two main results give a complete method for separately calculating all the
possible coefficients and then selecting the best basis in an order of complexity which
is the same as the number of different basis functions rather than the number of
different bases. This property is very similar to that of the wavelet packet best basis
methods of [7].

As indicated in the beginning of section 1, the different bases can be viewed
as results from Gram–Schmidt orthogonalizations of simple filters having the given
poles. Depending on the order in which the orthogonalization is performed, different
bases for the finite-dimensional subspace are received. In this way, the best basis
selection of Algorithm 3.5 is not only applicable to subspaces in H2 but can in fact
be applied to any finite-dimensional space. However, the issue of multiplicities as well
as the coefficient calculation of Algorithm 4.6 becomes specific to the construction of
rational bases.
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Appendix A. Address to collection conversion. Given an address

q =

p∑
l=1

kl

l−1∏
j=1

(1 + κj)

to a collection (k1, . . ., kp) with respect to the multiplicities {κl}pl=1, the numbers
{kl}pl=1 are extracted from q by the following pseudocode:
for l = 1, . . ., p

kl ← rem(q, κl + 1)
q ← (q − kl)/(κl + 1)

end

Appendix B. Orthonormality of T(j, k). The matrix T(j, k) defined by (4.8)
fulfills T(j, k)TT (j, k) = I since

span{Φj ,ΦkHj} = span{Φk,ΦjHk}.(B.1)

These two pairs of functions have the same span since they both have the same poles
and are strictly proper, and thus have the same partial fractional expansions.

Appendix C. Transforming A1XAT
2 + B1B

T
2 = X. Given the matrix equa-

tion

A1XAT
2 + B1B

T
2 = X,(C.1)

introduce

Ãk = (Ak + I)−1(Ak − I),(C.2)

B̃k =
√
2(Ak + I)−1Bk(C.3)

for k = 1, 2. Then, X solves the Sylvester equation

Ã1X + XÃT
2 + B̃1B̃

T
2 = 0.(C.4)
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Abstract. The problem of the existence of linear systems ẋ(t) = Ax(t)+Bu(t) with prescribed
structural invariants for system similarity is studied. Namely, we solve the problem of the existence
of such a system with prescribed controllability indices, Hermite indices, and invariant factors when
the invariant factors of A (which are also invariants under system similarity) are given.
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1. Introduction, notation, and preliminary results. Let us assume that
A ∈ F

n×n and B ∈ F
n×m, F being the field of real or complex numbers. In the study

of the structure of linear control systems

ẋ(t) = Ax(t) +Bu(t)(1.1)

under systems similarity—(TAT−1, TB), with T invertible—several systems of invari-
ants can be found. In [12] Popov gave a complete system of independent invariants for
system similarity but this is not the only complete system of invariants that one can
obtain (see, for example, [9, p. 494], [5, p. 191], or [20]). An interesting feature of all
these systems is that they are formed by two types of subsystems that, following [11,
p. 48], we can call invariants of structure and numerical invariants. The former ones
are nonnegative integers, and the latter ones are real or complex numbers depending
on the underlying field where the elements of A and B are.
The most mentioned structural invariants are the controllability and the Hermite

indices [9, Chap. 6], [5]. Both come up when searching for a basis of the controlla-
bility subspace, i.e., the one generated by the columns of the controllability matrix,
C(A,B) = [B AB . . . An−1B], in the following table:

b1 b2 b3 . . . bm
Ab1 Ab2 Ab3 . . . Abm
A2b1 A2b2 A2b3 . . . A2bm
...

...
...

. . .
...

An−1b1 An−1b2 An−1b3 . . . An−1bm,
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where bi ∈ F
n×1 is the ith column of B. If rankC(A,B) = r and we select by columns

(from left to right) the first r linearly independent columns of the table and we write
them as

b1, . . . , A
h1−1b1, . . . , bm, . . . , A

hm−1,

then h1, h2, . . . , hm are the Hermite indices of the system. Actually, as pointed out in
[9, p. 476], these indices are the degrees of the polynomials appearing in the diagonal
of the Hermite normal form of the right denominator of the transfer (sIn − A)−1B.
This is why they were called Hermite indices in [20] (see also [14]). If we proceed
similarly but searching by rows from top to bottom and we rearrange the indices in
nonincreasing order, then we come up with the controllability indices [4] or input
structural indices as they are called in [3, p. 156].
It is also worth noting that system similarity implies similarity of the correspond-

ing state matrices. It is well known (see, for example, [6]) that two square matrices A1

and A2 are similar if and only if their corresponding characteristic matrices sI − A1

and sI − A2 are equivalent; i.e., they have the same invariant factors (the invari-
ant factors of A being those of sI − A as a polynomial matrix). Thus the invariant
factors of the state matrix are invariants under system similarity. Furthermore, if
we call invariant factors of (A,B) or of system (1.1) those of the polynomial matrix
[sIn−A B], then these polynomials are also invariants under system similarity. No-
tice that the invariant factors of system (1.1) are all equal to 1 if and only if the
system is controllable [13].
The well-known Rosenbrock’s theorem [13] on eigenstructure assignment under

state feedback can be seen as a result of the relationship between the invariant fac-
tors of the state matrix A, i.e., those of sIn − A, and the controllability indices of a
controllable system (A,B). Similarly, the generalization of Rosenbrock’s theorem to
noncontrollable systems [17, 18] provides a characterization of the possible controlla-
bility indices and invariant factors of system (A,B) for a given matrix A. Following
these ideas, the study of the relationship between the controllability and the Hermite
indices of a given pair as well as the relationship between the invariant factors of A
and the Hermite indices and invariant factors of (A,B) for all possible choices of B
was carried out in [20]. In this paper, the four systems of invariants are considered
together. Namely, we will deal with the following.

Problem 1. Let A ∈ F
n×n and α1 | . . . | αn its invariant factors. Let k1 ≥ · · · ≥

km > 0 be positive integers, h1 ≥ · · · ≥ hm ≥ 0 nonnegative integers, and γ1 | . . . | γn
monic polynomials. Under what conditions does there exist a matrix B ∈ F

n×m such
that (A,B) has k1, . . . , km as controllability indices, h1, . . . , hm as Hermite indices,
and γ1, . . . , γn as invariant factors?
Our results will be of an algebraic nature and so we will not impose any restrictions

on F that from now on will be considered arbitrary. We will use Greek letters to denote
polynomials, α | β will mean that α divides β, and d(α) will be the degree of α.
As said before, the controllability indices are invariant under system similarity but

in the case when (A,B) is controllable, they form a complete system of invariants for
the feedback equivalence. Following Brunovsky [4], two matrix pairs (A,B), (Â, B̂) ∈
F
n×n × F

n×m are said to be feedback equivalent if there are nonsingular matrices
P ∈ F

n×n and Q ∈ F
m×m and a matrix R ∈ F

m×n such that (Â, B̂) = (PAP−1 +
PBR,PBQ). If (A,B) is not completely controllable, a complete system of invariants
is given by the controllability indices and the invariant factors of (A,B).
The paper is organized as follows: in the next section we give a solution to

the posed problem when the system is controllable, and in the following one when
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this condition is not satisfied. Our proofs, although involved, are constructive and
decidable.
Throughout this paper we will refer several times to the Brunovsky indices of

a pair of matrices. We call Brunovsky indices of (A,B) to the components of the
conjugate partition of that of the controllability indices; i.e., if (k1, . . . , km) is the
partition of the controllability indices of (A,B), then, by defining rj = # {i : ki ≥ j},
we have that r1, . . . , rn are its Brunovsky indices (or its r-numbers as they were called
in [4]).
In general, if a = (a1, . . . , an) is a partition of nonnegative integers, we will use

ā = (a1, . . . , an) to mean its conjugate partition. Thus

(r1, . . . , rn) = (k1, . . . , km).

We will consider that the components in each partition are arranged in
nonincreasing order. Following [8], we say that a is majorized by b, and we write
a ≺ b if

k∑
j=1

aj ≤
k∑
j=1

bj , 1 ≤ k < n,

and

n∑
j=1

aj =

n∑
j=1

bj .

It can be proved that if a ≺ b, then b̄ ≺ ā [10].
Before going into a solution of Problem 1, let us notice that this problem is

equivalent, in the sense of Proposition 1.1 given below, to the following one.
Problem 2. Let (A,B) ∈ F

n×n × F
n×m, and let k1 ≥ · · · ≥ km > 0 and

γ1 | . . . | γn be its controllability indices and invariant factors, respectively. Let
α1 | . . . | αn and h1 ≥ · · · ≥ hm ≥ 0 be monic polynomials and nonnegative integers.
Find necessary and sufficient conditions for the existence of a static state feedback
matrix F ∈ F

m×n and a nonsingular matrix Q ∈ F
m×m such that A + BF has

α1, . . . , αn as invariant factors and (A+BF,BQ) has h1, . . . , hm as Hermite indices.
It should be remarked that a solution of this problem will provide us with a

generalization of Rosenbrock’s theorem. In fact we are characterizing not only the
invariant factors that can be assigned by state feedback but also some additional
invariants (the Hermite indices) of the similarity class where the closed loop system
(A+BF,BQ) may lie.
As said before the equivalence of Problems 1 and 2 is based on the following

proposition.
Proposition 1.1. Let A ∈ F

n×n and α1 | . . . | αn its invariant factors. Let
(Â, B̂) ∈ F

n×n × F
n×m with k1 ≥ · · · ≥ km > 0 and γ1 | . . . | γn as controllability

indices and invariant factors, respectively, and let h1 ≥ · · · ≥ hm ≥ 0 be nonnegative
integers. Then there exists a matrix B ∈ F

n×m such that (A,B) is feedback equivalent
to (Â, B̂) and has h1, . . . , hm as Hermite indices if and only if there are matrices
F ∈ F

m×n and Q ∈ F
m×m, nonsingular, such that Â + B̂F is similar to A and

(Â+ B̂F, B̂Q) has γ1, . . . , γn as invariant factors and h1, . . . , hm as Hermite indices.
Proof. Assume that there is B so that (A,B) is feedback equivalent to (Â, B̂)

and has h1, . . . , hm as Hermite indices. Let us show that there are matrices F and
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Q, nonsingular, such that (Â+ B̂F, B̂Q) is similar to (A,B). This is enough to prove
that (Â + B̂F, B̂Q) has h1, . . . , hm as Hermite indices and γ1, . . . , γn as invariant
factors because these two sequences are invariant under system similarity. In fact,
since (A,B) and (Â, B̂) are feedback equivalent, there are nonsingular matrices P
and T and a matrix R such that

A = P (Â+ B̂RP )P−1 and B = PB̂T.

So, F = RP and Q = T are the desired matrices.
Conversely, if A is similar to Â+B̂F for some matrix F , then there is an invertible

matrix P such that A = P (Â + B̂F )P−1. Define B = PB̂Q. Thus (A,B) and
(Â + B̂F, B̂Q) are system similar matrix pairs and so they have the same invariant
factors γ1, . . . , γn and the same Hermite indices h1, . . . , hm. Furthermore, as (Â, B̂)
and (Â+ B̂F, B̂Q) are feedback equivalent, we conclude that (A,B) and (Â, B̂) have
the same controllability indices k1, . . . , km.
From now on we will deal with Problem 1. A consequence of the next lemma is

that we can substitute A with any matrix in its similarity class.
Lemma 1.2. Let A ∈ F

n×n. Let k1 ≥ · · · ≥ km > 0 and h1 ≥ · · · ≥ hm ≥ 0 be
nonnegative integers and γ1, . . . , γn monic polynomials. Suppose that A

s∼ Â. Then
there exists B ∈ F

n×m such that (A,B) has k1, . . . , km as controllability indices,
h1, . . . , hm as Hermite indices, and γ1, . . . , γn as invariant factors if and only if there
exists B̂ ∈ F

n×m such that (Â, B̂) has k1, . . . , km as controllability indices, h1, . . . , hm
as Hermite indices, and γ1, . . . , γn as invariant factors.

Proof. The proof is straightforward.
Given a controllable matrix pair (A,B) ∈ F

n×n × F
n×m, we are going to give a

canonical form for the similarity of matrix pairs associated with the Hermite indices
(see [9]).

Lemma 1.3. Let (A,B) ∈ F
n×n × F

n×m be a controllable pair and let h1 ≥ · · · ≥
hp > 0 = hp+1 = · · · = hm be its Hermite indices. Then there exists a nonsingular
matrix P ∈ F

n×n such that

(PAP−1, PB) = (Ac, Bc),

where

Ac = (Aij) i = 1, . . . , p,
j = 1, . . . , p,

Bc = (Bij) i = 1, . . . , p,
j = 1, . . . ,m,

are the blocks

Aii =







0 0 . . . 0 xii0
1 0 . . . 0 xii1
0 1 . . . 0 xii2
...

...
. . .

...
...

0 0 . . . 1 xiihi−1






∈ F

hi×hi , 1 ≤ i ≤ p,

Aij =







0 0 . . . 0 xji0
0 0 . . . 0 xji1
0 0 . . . 0 xji2
...

...
. . .

...
...

0 0 . . . 0 xjihi−1






∈ F

hi×hj , 1 ≤ i < j ≤ p,
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Aij = 0 ∈ F
hi×hj , 1 ≤ j < i ≤ p,

Bii =
[
1 0 . . . 0

]T ∈ F
hi×1, 1 ≤ i ≤ p,

Bij =
[
0 0 . . . 0

]T ∈ F
hi×1, 1 ≤ i, j ≤ p, i = j,

Bij =
[
xji0 xji1 . . . xjihi−1

]T ∈ F
hi×1, 1 ≤ i ≤ p, p+ 1 ≤ j ≤ m.

2. The controllable case. In this section, we will deal with Problem 1 in the
controllable case. The following two results provide necessary conditions for the prob-
lem to have a solution, i.e., for the existence of a matrix B ∈ F

n×m such that (A,B)
has prescribed controllability and Hermite indices for a given A ∈ F

n×n.
Lemma 2.1 (see [20]). Let A ∈ F

n×n, and let α1 | . . . | αn be its invariant factors.
Let h1 ≥ · · · ≥ hm ≥ 0 be nonnegative integers . Then there exists a matrix B ∈ F

n×m,
m ≤ n, such that (A,B) is controllable and has h1, . . . , hm as Hermite indices if and
only if there are m monic polynomials β1, . . . , βm such that d(βi) = hi, 1 ≤ i ≤ m,
and

αi = 1, 1 ≤ i ≤ n−m,(2.1)

αn−m+1 . . . αn−m+k | g.c.d.{βi1 . . . βik : 1 ≤ i1 < · · · < ik ≤ m},

1 ≤ k ≤ m− 1,(2.2)

α1 . . . αn = β1 . . . βm.(2.3)

Lemma 2.2 (see [20]). Let (A,B) ∈ F
n×n × F

n×m be a controllable matrix pair.
Let k1 ≥ · · · ≥ km ≥ 0 be its controllability indices, and let h1, . . . , hm be its Hermite
indices. Then

(k1, . . . , km) ≺ (h1, . . . , hm).(2.4)

The rest of this section is dedicated to show that conditions (2.1)–(2.4) are also
sufficient for a matrix B ∈ F

n×m to exist so that for a given matrix A ∈ F
n×n the pair

(A,B) is controllable and has prescribed controllability and Hermite indices. This will
be shown as a consequence of several lemmas.

Lemma 2.3 (see [2]). Let (A1, B1) ∈ F
n1×n1 × F

n1×m1 and (A2, B2) ∈ F
n2×n2 ×

F
n2×m2 be two controllable matrix pairs, and let r1 ≥ · · · ≥ rn1 and m2 = s1 ≥ · · · ≥

sn2
be their Brunovsky indices, respectively. Let k1 ≥ · · · ≥ ks1 be the controllability

indices of (A2, B2), and put n = n1 + n2. Assume that t1 = r1 + m2 and that
t1 ≥ · · · ≥ tn are nonnegative integers. Then there exist matrices X ∈ F

n1×n2 and
Y ∈ F

n1×m2 such that t1, . . . , tn are the Brunovsky indices of([
A1 X
0 A2

]
,

[
B1 Y
0 B2

])
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if and only if the following conditions hold:

n1∑
j=1

rj +

n2∑
j=1

sj =

n∑
j=1

tj ,(2.5)

tj ≤ rj + s1, 1 ≤ j ≤ n,(2.6)

tj ≥ sj , 1 ≤ j ≤ n,(2.7)

dp∑
j=1

(tj − rj − p) ≥
s1∑

j=p+1

kj , 1 ≤ p ≤ s1,(2.8)

i∑
j=1

rj ≤ (i− q)(tq − sq) +

q∑
j=1

(tj − sj), 1 ≤ q ≤ k1; q + 1 ≤ i ≤ n,(2.9)

where dp = max{j : tj − rj ≥ p}, 1 ≤ p ≤ s1.
Remark. Notice that when s1 = · · · = sk1 , (2.5)–(2.8) imply tj = rj + s1,

1 ≤ j ≤ k1, and (2.9) holds.
Lemma 2.4 (see [1]). Let (A,B) ∈ F

n×n × F
n×m be a controllable matrix pair,

and let r1 ≥ · · · ≥ rn be its Brunovsky indices. Let t1 = r1 + s ≥ · · · ≥ tn be
nonnegative integers. Then there exists a matrix C ∈ F

n×s such that t1, . . . , tn are
the Brunovsky indices of (A, [B C]) if and only if the following conditions hold:

n∑
j=1

tj =

n∑
j=1

rj ,(2.10)

tj ≤ rj + s, 1 ≤ j ≤ n,(2.11)

dp∑
j=1

(tj − rj − p) ≥ 0, 1 ≤ p ≤ s,(2.12)

where dp = max{j : tj − rj ≥ p}, 1 ≤ p ≤ s.
Lemma 2.5. Let k1 ≥ · · · ≥ km > 0 and h1 ≥ · · · ≥ hm ≥ 0 be nonnega-

tive integers, and let (v1, v2, . . . , vn) = (h1, . . . , hm), (t1, . . . , tn) = (k1, . . . , km) and
(v′1, . . . , v

′
n) = (h1, . . . , hm−1). Assume that (2.4) holds and let

ri = m− 1, 1 ≤ i ≤ km,

and

ri = min


m− 1, ti +

i−1∑
j=1

(tj − rj)− hm


 , km < i ≤ n.



LINEAR SYSTEMS WITH PRESCRIBED INVARIANTS 1039

Then the following conditions are satisfied:

r1 ≥ · · · ≥ rn ≥ 0,(2.13)

(v′1, . . . , v
′
n) ≺ (r1, . . . , rn),(2.14)

tj ≤ rj + 1, 1 ≤ j ≤ n,(2.15)

d1∑
j=1

(tj − rj − 1) = 0,(2.16)

where d1 = max{j : tj − rj ≥ 1}.
Proof. We can assume without loss of generality that km < n.
Notice first that ti ≤ m−1, km < i ≤ n, and

∑km
j=1(tj − rj)−hm = km−hm ≥ 0.

Moreover, as ri ≤ ti+
∑i−1
j=1(tj − rj)−hm, km < i ≤ n, we have that

∑i−1
j=1(tj − rj)−

hm ≥ 0 for km + 1 < i ≤ n. Hence,

ri ≥ ti, km < i ≤ n.

Therefore, d1 = km and (2.15)–(2.16) hold.
We will prove next that for some i ∈ {km + 1, . . . , n},

ri = ti +

i−1∑
j=1

(tj − rj)− hm.

In fact, assume that

ri = ti +

i−1∑
j=1

(tj − rj)− hm, km + 1 ≤ i ≤ n;

then

rn = m− 1 < tn +

n−1∑
j=1

(tj − rj)− hm =

m−1∑
j=1

hj − (n− 1)(m− 1).

So

n(m− 1) <
m−1∑
j=1

hj ≤ n(m− 1),

which is a contradiction.
Let g = min{i ∈ {km + 1 . . . , n} : ri = ti +

∑i−1
j=1(tj − rj)− hm}. Then

ri = m− 1, 1 ≤ i ≤ g − 1,

rg =

g∑
j=1

tj − (g − 1)(m− 1)− hm,
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and

ri = ti, g < i ≤ n.

Therefore,

rg−1 = m− 1 ≥ rg ≥ tg ≥ tg+1 = rg+1,

and (2.13) follows.
On the other hand,

v′i = vi − 1, 1 ≤ i ≤ hm,
v′i = vi, hm < i ≤ n,

and, bearing in mind that hm ≤ km < g, we have that

i∑
j=1

rj = (m− 1)i ≥
i∑

j=1

v′j , 1 ≤ i < g,

i∑
j=1

rj =

i∑
j=1

tj − hm ≥
i∑

j=1

vj − hm =

i∑
j=1

v′j , g ≤ i ≤ n,

and

n∑
j=1

rj =

n∑
j=1

tj − hm =

n∑
j=1

vj − hm =

n∑
j=1

v′j ,

from which we obtain (2.14).
Lemma 2.6. Let h1 ≥ · · · ≥ hp > 0 positive integers, and let

(Aii, Bii) =






0 0 . . . 0 xii0
1 0 . . . 0 xii1
...

...
. . .

...
...

0 0 . . . 1 xiihi−1


 ,


1
0
...
0





 ∈ F

hi×hi × F
hi×1, i = 1, . . . , p.

Let k1 ≥ · · · ≥ km > 0 be positive integers. If condition (2.4) is satisfied, then there
exist matrices Xij ∈ F

hi×hj , Yij ∈ F
hi×1, 1 ≤ i ≤ p − 1, i + 1 ≤ j ≤ p, and

Yip+1 ∈ F
hi×(m−p), 1 ≤ i ≤ p, such that







A11 X12 . . . X1p

0 A22 . . . X2p

...
...

. . .
...

0 0 . . . App


 ,



B11 Y12 . . . Y1p Y1p+1

0 B22 . . . Y2p Y2p+1

...
...

. . .
...

...
0 0 . . . Bpp Ypp+1







has k1, k2, . . . , km as controllability indices.
Proof. If m = 1, then k1 = h1, and there is nothing to prove.
Assume now that condition (2.4) is sufficient for m− 1, and let us show that it is

sufficient for m.
From (2.4) we have that m ≥ p and km ≥ hm.
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Let (v1, v2, . . . , vn) = (h1, . . . , hm), (t1, . . . , tn) = (k1, . . . , km), and (v
′
1, . . . , v

′
n) =

(h1, . . . , hm−1). From Lemma 2.5 there exist nonnegative integers r1, . . . , rn satisfying
conditions (2.13)–(2.16) and r1 = m− 1.
Let (k′1, . . . , k

′
m−1) = (r1, . . . , rn). Then k

′
m−1 > 0, and condition (2.14) is equiv-

alent to

(k′1, . . . , k
′
m−1) ≺ (h1, . . . , hm−1).(2.17)

Moreover, from (2.4) and (2.14), we obtain

n∑
j=1

rj + hm =

n∑
j=1

tj ,(2.18)

and, since k1 ≥ km ≥ hm,

tj ≥ 1, 1 ≤ j ≤ hm.(2.19)

If m = p, from (2.17) and the induction hypothesis, there are matrices Xij ∈
F
hi×hj , Yij ∈ F

hi×1, 1 ≤ i ≤ m− 2, i+ 1 ≤ j ≤ m− 1, such that the matrix pair

(A′, B′) =







A11 X12 . . . X1m−1

0 A22 . . . X2m−1

...
...

. . .
...

0 0 . . . Am−1m−1


 ,



B11 Y12 . . . Y1m−1

0 B22 . . . Y2m−1

...
...
. . .

...
0 0 . . . Bm−1m−1







has k′1, . . . , k
′
m−1 as controllability indices (and therefore r1, . . . , rn as Brunovsky in-

dices). The Brunovsky indices of (Amm, Bmm) are 1, . . . , 1 (hm times).
From (2.15), (2.16), (2.18), and (2.19), by Lemma 2.3, there exist matrices X ∈

F
(n−hm)×hm , Y ∈ F

(n−hm)×1 such that the matrix pair
([

A′ X
0 Amm

]
,

[
B′ Y
0 Bmm

])

has k1, . . . , km as controllability indices.
If m > p, from (2.17) and the induction hypothesis, there are matrices Xij ∈

F
hi×hj , Yij ∈ F

hi×1, 1 ≤ i ≤ p−1, i+1 ≤ j ≤ p, and Yip+1 ∈ F
hi×(m−1−p), 1 ≤ i ≤ p,

such that

(A′, B′) =







A11 X12 . . . X1p

0 A22 . . . X2p

...
...

. . .
...

0 0 . . . App


 ,



B11 Y12 . . . Y1p Y1p+1

0 B22 . . . Y2p Y2p+1

...
...
. . .

...
0 0 . . . Bpp Ypp+1







has r1, . . . , rn as Brunovsky indices.
As m > p, it follows that hm = 0. From (2.15), (2.16), and (2.18), by Lemma 2.4,

there exists yp+1 ∈ F
n×1 such that the matrix pair

(
A′,

[
B′ yp+1

])
has k1, . . . , km as controllability indices.

Lemma 2.7. Let (Ai, Bi), (Âi, B̂i) ∈ F
ni×ni × F

ni×mi , i = 1, 2, and assume that
(Ai, Bi) is feedback equivalent to (Âi, B̂i), i = 1, 2. Let m ≥ m1 + m2 and k1 ≥
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· · · ≥ km ≥ 0 be nonnegative integers. Then there exist matrices X ∈ F
n1×n2 , Y1 ∈

F
n1×m2 , Y2 ∈ F

n1×(m−m1−m2), Y3 ∈ F
n2×(m−m1−m2) such that

(A,B) =

([
A1 X
0 A2

]
,

[
B1 Y1 Y2

0 B2 Y3

])

has k1, . . . , km as controllability indices if and only if there exist matrices X̂ ∈ F
n1×n2 ,

Ŷ1 ∈ F
n1×m2 , Ŷ2 ∈ F

n1×(m−m1−m2), Ŷ3 ∈ F
n2×(m−m1−m2) such that

(Â, B̂) =

([
Â1 X̂

0 Â2

]
,

[
B̂1 Ŷ1 Ŷ2

0 B̂2 Ŷ3

])

has k1, . . . , km as controllability indices.
Proof. Assume that

(A,B) =

([
A1 X
0 A2

]
,

[
B1 Y1 Y2

0 B2 Y3

])

has k1, . . . , km as controllability indices.
There are nonsingular matrices Pi ∈ F

ni×ni and Qi ∈ F
mi×mi and matrices

Ri ∈ F
mi×ni , i = 1, 2, such that

(Âi, B̂i) = (PiAiP
−1
i + PiBiRi, PiBiQi), i = 1, 2.

Put

P :=

[
P1 0
0 P2

]
, Q :=


 Q1 0 0
0 Q2 0
0 0 Im−m1−m2


 , and R :=


 R1 0
0 R2

0 0


 .

Then

(PAP−1 + PBR,PBQ) =

([
Â1 X̂

0 Â2

]
,

[
B̂1 Ŷ1 Ŷ2

0 B̂2 Ŷ3

])
,

where X̂ = P1XP−1
2 + P1Y1R2, Ŷ1 = P1Y1Q2, Ŷ2 = P1Y2, and Ŷ3 = P2Y3.

Lemma 2.8. Let (A1, B1) ∈ F
n1×n1 × F

n1×m1 be a controllable matrix pair,
A2 ∈ F

n2×n2 and A3 ∈ F
n1×n2 . Then there exist R ∈ F

m1×n2 and L ∈ F
n1×n2 such

that

A1L+B1R− LA2 = A3.

Proof. Let k1 ≥ k2 ≥ · · · ≥ kr be the controllability indices of the matrix pair
(A1, B1), then [16] there exist nonsingular matrices P ∈ F

n1×n1 and Q ∈ F
m1×m1 and

a matrix F ∈ F
m1×n1 such that

PA1P
−1 + PB1F = Â1, PB1Q = B̂1,

where

Â1 = diag(A11, A12, . . . , A1r), B̂1 =




B11

B12

...
B1r
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and

A1i =

[
0 Iki−1

0 0

]
∈ F

ki×ki , B1i =

[
0
ei

]
∈ F

ki×m1 , i = 1, . . . , r,

where ei is the ith row of the identity matrix Im1
.

Let us put

Â3 = PA3 =




A31

A32

...
A3r


 , A3i ∈ F

ki×n2 , i = 1, . . . , r.

By Lemma 2.10 of [16], for i = 1, . . . , r there are matrices Li ∈ F
ki×n2 , di ∈ F

1×n2

such that −A1iLi +A3i + LiA2 = [
0
di
] ∈ F

ki×n2 .
Let

L̂ =




L1

L2

...
Lr


 .

As all the elements of B1i are zero except the one in position (ki, i), it is easy to prove
that there exists a matrix R̂ ∈ F

m1×n2 such that −Â1L̂+ Â3 + L̂A2 + B̂1R̂ = 0.
Therefore,

−PA1P
−1L̂− PB1FL̂+ PA3 + L̂A2 + PB1QR̂ = 0,

and if we put L = P−1L̂ and R = FL̂−QR̂, the lemma follows.
Lemma 2.9. Let

(A,B) =







A11 A12 . . . A1p

0 A22 . . . A2p

...
...

. . .
...

0 0 . . . App


 ,



B11 0 . . . 0
0 B22 . . . 0
...

...
. . .

...
0 0 . . . Bpp





 ,

with (Aii, Bii) ∈ F
ni×ni × F

ni×mi controllable, 1 ≤ i ≤ p − 1 and (App, Bpp) ∈
F
np×np × F

np×mp . Let m ≥∑p
i=1 mi and k1 ≥ · · · ≥ km ≥ 0 be nonnegative integers.

Then there exist matrices Zij ∈ F
ni×mj , 1 ≤ i ≤ p − 1, i + 1 ≤ j ≤ p, and Zip+1 ∈

F
ni×(m−

∑p

i=1
mi), 1 ≤ i ≤ p, such that

(A(p), B(p)) =







A11 A12 . . . A1p

0 A22 . . . A2p

...
...

. . .
...

0 0 . . . App


 ,



B11 Z12 . . . Z1p Z1p+1

0 B22 . . . Z2p Z2p+1

...
...

. . .
...

...
0 0 . . . Bpp Zpp+1







has k1, . . . , km as controllability indices if and only if there exist matrices Xij ∈
F
ni×nj , Yij ∈ F

ni×mj , 1 ≤ i ≤ p−1, i+1 ≤ j ≤ p, and Yip+1 ∈ F
ni×(m−

∑p

i=1
mi), 1 ≤

i ≤ p, such that

(Â(p), B̂(p)) =







A11 X12 . . . X1p

0 A22 . . . X2p

...
...

. . .
...

0 0 . . . App


 ,



B11 Y12 . . . Y1p Y1p+1

0 B22 . . . Y2p Y2p+1

...
...

. . .
...

...
0 0 . . . Bpp Ypp+1







has k1, . . . , km as controllability indices.
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Proof. We will show by induction on p that if there exist matrices Xij ∈ F
ni×nj ,

Yij ∈ F
ni×mj , 1 ≤ i ≤ p− 1, i+1 ≤ j ≤ p, and Yip+1 ∈ F

ni×(m−
∑p

i=1
mi), 1 ≤ i ≤ p,

such that (Â(p), B̂(p)) has k1, . . . , km as controllability indices, then there exist matri-

ces Zij ∈ F
ni×mj , 1 ≤ i ≤ p − 1, i + 1 ≤ j ≤ p, and Zip+1 ∈ F

ni×(m−
∑p

i=1
mi), 1 ≤

i ≤ p, such that (A(p), B(p)) has k1, . . . , km as controllability indices.
If p = 1, the proposition is trivial.
We will assume that it is true up to p−1, and let us prove that it also holds for p.
Let us suppose that there are matrices Xij ∈ F

ni×nj , Yij ∈ F
ni×mj , 1 ≤ i ≤

p− 1, i+ 1 ≤ j ≤ p, and Yip+1 ∈ F
ni×(m−

∑p

i=1
mi), 1 ≤ i ≤ p, such that (Â(p), B̂(p))

has k1, . . . , km as controllability indices. By the induction hypothesis there exist
matrices Zij ∈ F

ni×mj , 1 ≤ i ≤ p− 1, i+ 1 ≤ j ≤ p− 1, such that

(A(p−1), B(p−1)) =







A11 A12 . . . A1p−1

0 A22 . . . A2p−1

...
...
. . .

...
0 0 . . . Ap−1p−1


 ,



B11 Z12 . . . Z1p−1

0 B22 . . . Z2p−1

...
...
. . .

...
0 0 . . . Bp−1p−1







has the same controllability indices as

(Â(p−1), B̂(p−1)) =







A11 X12 . . . X1p−1

0 A22 . . . X2p−1

...
...

. . .
...

0 0 . . . Ap−1p−1


 ,



B11 Y12 . . . Y1p−1

0 B22 . . . Y2p−1

...
...
. . .

...
0 0 . . . Bp−1p−1





 .

Furthermore, as (Aii, Bii) is controllable, 1 ≤ i ≤ p−1; then the pairs (A(p−1), B(p−1))
and (Â(p−1), B̂(p−1)) are controllable, and so they are feedback equivalent.
Let us assume that

Xp =




X1p

...
Xp−1p


 ∈ F

∑p−1

i=1
ni×np , Yp =




Y1p

...
Yp−1p


 ∈ F

∑p−1

i=1
ni×mp ,

and

Yp+1 =




Y1p+1

...
Yp−1p+1


 ∈ F

∑p−1

i=1
ni×(m−

∑p

i=1
mi)

are matrices such that

(Â(p), B̂(p)) =

([
Â(p−1) Xp

0 App

]
,

[
B̂(p−1) Yp Yp+1

0 Bpp Ypp+1

])

has k1, . . . , km as controllability indices.
By Lemma 2.7 there exist X̂p, Ŷp, Ŷp+1, Ŷpp+1 such that

([
A(p−1) X̂p

0 App

]
,

[
B(p−1) Ŷp Ŷp+1

0 Bpp Ŷpp+1

])

is feedback equivalent to (Â(p), B̂(p)).
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Because (A(p−1), B(p−1)) is controllable, by Lemma 2.8 there exist matrices

L ∈ F

∑p−1

i=1
ni×np and R ∈ F

∑p−1

i=1
mi×np such that

A(p−1)L− LApp +B(p−1)R = X̂p −Ap,

where

Ap =




A1p

...
Ap−1p


 ∈ F

∑p−1

i=1
ni×np .

Put

T =

[
I L
0 I

]
, F =


 0 −R
0 0
0 0


 .

Then

T

[
A(p−1) X̂p

0 App

]
T−1 + T

[
B(p−1) Ŷp Ŷp+1

0 Bpp Ŷpp+1

]
F =

[
A(p−1) Ap
0 App

]
= A(p)

and

T

[
B(p−1) Ŷp Ŷp+1

0 Bpp Ŷpp+1

]
=

[
B(p−1) Ŷp + LBpp Ŷp+1 + LŶpp+1

0 Bpp Ŷpp+1

]
.

Write Zpp+1 = Ŷpp+1 and

Ŷp + LBpp =




Z1p

...
Zp−1p


 , Ŷp+1 + LŶpp+1 =




Z1p+1

...
Zp−1p+1


 ,

where Zip ∈ F
ni×mp , 1 ≤ i ≤ p− 1, and Zip+1 ∈ F

ni×(m−
∑p

i=1
mi), 1 ≤ i ≤ p− 1. Put

B(p) =

[
B(p−1) Ŷp + LBpp Ŷp+1 + LŶpp+1

0 Bpp Ŷpp+1

]
.

Then (A(p), B(p)) is feedback equivalent to (Â(p), B̂(p)), and therefore it has k1, . . . , km
as controllability indices.
Finally, the following lemma, whose proof is straightforward, allows us to perform

some transformations on matrix B without altering the Hermite indices of pair (A,B).
Lemma 2.10. Let A ∈ F

n×n and bi ∈ F
n×1, 1 ≤ i ≤ m. Let h1, . . . , hm be the

Hermite indices of the pair (A,B), where B = [b1, . . . , bm]. Let t be a nonnegative

integer and l ∈ {2, . . . ,m}. Put b′l = bl +
∑t
j=0

∑l−1
i=1 cijA

jbi, where cij ∈ F are
arbitrary. Then, h1, . . . , hm are the Hermite indices of the matrix pair (A,B′), where
B′ = [b1, . . . , b′l, . . . , bm].
As a consequence of this result, we have that the matrix pair

(Ac, B
′
c) =







A11 A12 . . . A1p

0 A22 . . . A2p

...
...
. . .

...
0 0 . . . App


 ,



B11 Z12 . . . Z1p Z1p+1

0 B22 . . . Z2p Z2p+1

...
...
. . .

...
...

0 0 . . . Bpp Zpp+1
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for arbitrary Zij ∈ F
hi×1, 1 ≤ i ≤ p− 1, i+ 1 ≤ j ≤ p, and Zip+1 ∈ F

hi×(m−p), 1 ≤
i ≤ p, has h1, . . . , hm as Hermite indices.
Now we can prove our main result.
Theorem 2.11. Let A ∈ F

n×n, and let α1 | . . . | αn be its invariant factors.
Let k1 ≥ · · · ≥ km > 0 and h1 ≥ · · · ≥ hm ≥ 0 be nonnegative integers. Then
there exists a matrix B ∈ F

n×m such that (A,B) is controllable and has k1, . . . , km
as controllability indices and h1, . . . , hm as Hermite indices if and only if there are m
monic polynomials β1, . . . , βm such that d(βi) = hi, 1 ≤ i ≤ m, and conditions (2.1),
(2.2), (2.3), and (2.4) are satisfied.

Proof. The necessity is a direct consequence of Lemmas 2.1 and 2.2.
Assume now that a matrix A ∈ F

n×n is given with α1 | . . . | αn as invariant
factors. By Lemma 2.1 conditions (2.1)–(2.3) are sufficient for the existence of a matrix
B ∈ F

n×m such that (A,B) has h1, . . . , hm as Hermite indices. By Lemma 1.3 (A,B)
is similar to (Ac, Bc), where this pair has the form exhibited in that lemma. From
Lemmas 2.6, 2.9, and 2.10 we have that if condition (2.4) is fulfilled, then there are
matrices Zij ∈ F

hi×1, 1 ≤ i ≤ p−1, i+1 ≤ j ≤ p, and Zip+1 ∈ F
hi×(m−p), 1 ≤ i ≤ p,

such that

(Ac, B
′
c) =







A11 A12 . . . A1p

0 A22 . . . A2p

...
...
. . .

...
0 0 . . . App


 ,



B11 Z12 . . . Z1p Z1p+1

0 B22 . . . Z2p Z2p+1

...
...
. . .

...
...

0 0 . . . Bpp Zpp+1







has k1, . . . , km as controllability indices and h1, . . . , hm as Hermite indices. As A
and Ac are similar matrices, there is a nonsingular matrix P ∈ F

n×n such that A =
PAcP

−1. Put B = PB′
c. Then (A,B) has k1, . . . , km and h1, . . . , hm as controllability

and Hermite indices, respectively, and the theorem follows.
It is worth noting that if F is algebraically closed in [20], it has been shown that

conditions (2.1), (2.2), and (2.3) are equivalent to (2.1) and

(h1, . . . , hm) ≺ (d(αn), . . . , d(αn−m+1)).(2.20)

Thus, in this case, we have the following consequence of Theorem 2.11.
Corollary 2.12. Let F be an algebraically closed field. Let A ∈ F

n×n, and let
α1 | . . . | αn be its invariant factors. Let k1 ≥ · · · ≥ km > 0 and h1 ≥ · · · ≥ hm ≥ 0
be nonnegative integers. Then there exists a matrix B ∈ F

n×m such that (A,B) is
controllable and has k1, . . . , km as controllability indices and h1, . . . , hm as Hermite
indices if and only if conditions (2.1), (2.20), and (2.4) are satisfied.

3. The noncontrollable case. Now we will generalize Theorem 2.11 to the
noncontrollable case. It is well known (see, for example, [9, p. 361]) that if (A,B) is
not completely controllable, then there is a nonsingular matrix P such that

PAP−1 =

[
A1 A2

0 A3

]
, PB =

[
B1

0

]
,(3.1)

where (A1, B1) ∈ F
r×r is controllable and r = rank C(A,B). Furthermore, the

invariant factors of (A,B) different from 1 and those of A3 coincide [17].
As the Hermite indices and the controllability indices are invariant under similar-

ity tranformations, it follows that the Hermite indices and the controllability indices
of (A,B) are those of the matrix pair (A1, B1) in the decomposition of (A,B) as in
(3.1).
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The generalization of Lemma 2.1 to the noncontrollable case is given by the
following lemma.

Lemma 3.1 (see [20]). Let A ∈ F
n×n, and let α1 | . . . | αn be its invariant

factors. Let h1, . . . , hm and γ1, . . . , γn be nonnegative integers and monic polynomials,
respectively, such that d(γ1) + · · · + d(γn) = q. Let r = n − q. Then there exists a
matrix B ∈ F

n×m, m ≤ r, such that (A,B) has h1, . . . , hm as Hermite indices and
γ1, . . . , γn as invariant factors if and only if there are m monic polynomials τ1, . . . , τm
such that d(τi) = hi, 1 ≤ i ≤ m, and

αi−m | γi | αi, 1 ≤ i ≤ n,(3.2)

σ1 . . . σr−m+j | g.c.d.{τi1 . . . τij : 1 ≤ i1 < · · · < ij ≤ m}, 1 ≤ j ≤ m,(3.3)

σ1 . . . σr = τ1 . . . τm,(3.4)

where we agree that αi := 1 for i < 1 and σj =
βj

βj−1 , 1 ≤ j ≤ r, and βj =∏n+j
i=1 l.c.m.(γi−j , αi−r) , 0 ≤ j ≤ r.
With the help of this result we can generalize Theorem 2.11 to give a complete

solution to Problem 1.
Theorem 3.2. Let A ∈ F

n×n, and let α1 | . . . | αn be its invariant factors. Let
k1 ≥ · · · ≥ km > 0 and h1 ≥ · · · ≥ hm ≥ 0 be nonnegative integers and γ1, . . . , γn
monic polynomials, such that d(γ1)+ · · ·+d(γn) = q. Let r = n−q. Then there exists
a matrix B ∈ F

n×m, m ≤ r, such that (A,B) has h1, . . . , hm as Hermite indices,
k1, . . . , km as controllability indices, and γ1, . . . , γn as invariant factors if and only if
there are m monic polynomials τ1, . . . , τm such that d(τi) = hi, 1 ≤ i ≤ m, and the
conditions (3.2)–(3.4) and (2.4) are satisfied.

Proof of Theorem 3.2.
Necessity. If there exists B such that (A,B) has k1, . . . , km as controllability

indices, h1, . . . , hm as Hermite indices, and γ1, . . . , γn as invariant factors, by Lemma
3.1 conditions (3.2)–(3.4) hold. Moreover, there exists a matrix P such that (3.1)
holds and the controllability indices and the Hermite indices of (A,B) are those of
the pair (A1, B1). Then, by Lemma 2.2 condition (2.4) holds.

Sufficiency. By Lemma 3.1, if conditions (3.2), (3.3), and (3.4) hold, there exists
a matrix B ∈ F

n×m such that (A,B) has h1, . . . , hm as Hermite indices and γ1, . . . , γn
as invariant factors.
If we assume that h1 ≥ · · · ≥ hp > 0 = hp+1 = · · · = hm, then there exists a

matrix P such that

PAP−1 =

[
Ac A2

0 A3

]
PB =

[
Bc
0

]
,

where (Ac, Bc) ∈ F
r×r×F

r×m has the structure of that of Lemma 1.3 with h1, . . . , hm
as Hermite indices and γr+1, . . . , γn are the invariant factors of A3.
Now, as in the proof of Theorem 2.11, if conditions (3.2)–(3.4) and (2.4) hold,

then there exists B′
c such that([

Ac A2

0 A3

]
,

[
B′
c

0

])

has k1, . . . , km as controllability indices, h1, . . . , hm as Hermite indices, and γ1, . . . , γn
as invariant factors.
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As

A
s∼
[
Ac A2

0 A3

]
,

by applying Lemma 1.2, the theorem follows.
Corollary 3.3. Let A ∈ F

n×n, and let α1 | . . . | αn be its invariant factors,
F algebraically closed. Let k1 ≥ · · · ≥ km > 0, h1 ≥ · · · ≥ hm ≥ 0 be nonnegative
integers and γ1, . . . , γn monic polynomials such that d(γ1) + · · · + d(γn) = q. Let
r = n − q. Then there exists a matrix B ∈ F

n×m, m ≤ r, such that (A,B) has
k1, . . . , km as controllability indices, h1, . . . , hm as Hermite indices, and γ1, . . . , γn as
invariant factors if and only if the conditions (3.2), (2.4), and

(h1, . . . , hm) ≺ (d(σr), . . . , d(σ1))(3.5)

are satisfied.
A consequence of this corollary and Proposition 1.1 is the following theorem.
Theorem 3.4. Let (A,B) ∈ F

n×n × F
n×m be a matrix pair with k1 ≥ · · · ≥

km > 0 and γ1 | . . . | γn as controllability indices and invariant factors, respectively.
Let α1 | . . . | αn and h1 ≥ · · · ≥ hm ≥ 0 be monic polynomials and nonnegative
integers. Then there exist a state feedback matrix F ∈ F

m×n and a nonsingular matrix
Q ∈ F

m×m such that A+BF has α1, . . . , αn as invariant factors and (A+BF,BQ)
has h1, . . . , hm as Hermite indices if and only if conditions (3.2), (2.4), and (3.5)
hold.

Acknowledgment. Thanks are given to the referees for their valuable sugges-
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[6] R. Gantmacher, Théorie des Matrices: I, Dunod, Paris, 1966.
[7] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applica-

tions, John Wiley and Sons, New York, 1986.
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Abstract. We study the problem of minimizing the expected discounted loss

E

[
e
−
∫ T

0
r(u)du

(C −Xx,π(T ))+

]

when hedging a liability C at time t = T , using an admissible portfolio strategy π(·) and starting with
initial wealth x. The existence of an optimal solution is established in the context of continuous-time
Ito process incomplete market models, by studying an appropriate dual problem. It is shown that
the optimal strategy is of the form of a knock-out option with payoff C, where the “domain of the
knock-out” depends on the value of the optimal dual variable. We also discuss a dynamic measure
for the risk associated with the liability C, defined as the supremum over different scenarios of the
minimal expected loss of hedging C.

Key words. expected loss, hedging, incomplete markets, portfolio constraints, dynamic mea-
sures of risk

AMS subject classifications. Primary, 90A09, 90A46; Secondary, 93E20, 60H30

PII. S036301299834185X

1. Introduction. In a complete financial market which is free of arbitrage op-
portunities, any sufficiently integrable random payoff (contingent claim) C, whose
value has to be delivered and is known at time t = T , can be hedged perfectly: start-
ing with a large enough initial capital x, an agent can find a trading strategy π that
will allow his wealth Xx,π(·) to hedge the liability C without risk at time t = T , that
is,

Xx,π(T ) ≥ C almost surely (a.s.) for some portfolio π(·),(1.1)

while maintaining “solvency” throughout [0, T ]. (For an overview of standard results
in complete and some incomplete markets in continuous-time Ito process models, see,
for example, Cvitanić (1997), or a recent book by Karatzas and Shreve (1998).) This
is either no longer possible or too expensive to accomplish in a market which is incom-
plete due to various “market frictions,” such as insufficient number of assets available
for investment, transaction costs, portfolio constraints, problems with liquidity, pres-
ence of a “large investor,” and so on. In this paper we concentrate on the case in
which incompleteness arises due to some assets not being available for investment and
the more general case of portfolio constraints. Popular approaches to the problem
of hedging a claim C in such contexts have been to either maximize the expected
utility of the difference −D := Xx,π(T )−C or minimize the risk of D. In particular,
one of the most studied approaches is to minimize E[D2], so-called quadratic hedg-
ing of Föllmer–Schweizer–Sondermann (for recent results and references see Pham,
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Rheinländer, and Schweizer (1998), for example). An obvious disadvantage of this
approach is that one is penalized for high profits and not just high losses. On the
other hand, Artzner, Delbaen, Eber, and Heath (1999) have shown in a static hedging
setting that the only measure of risk that satisfies certain natural “coherence” proper-
ties is of the type E[D̄+] (or a supremum of these over a set of probability measures),
where D̄+ is the discounted value of the positive part of D. Motivated by this work,
Cvitanić and Karatzas (1999) solve the problem of minimizing E[D̄+] in a context of
a complete continuous-time Ito process model for the financial market. We solve in
this paper the same problem in a more difficult context of incomplete or constrained
markets. Recently, Pham (1998) has solved the problem of minimizing E[(D+)p] for
p > 1 in discrete-time models and under cone constraints. Moreover, independently
from Pham and the present paper, Föllmer and Leukert (1999b) analyze the prob-
lem of minimizing E[l(D+)] for a general loss function l and in general incomplete
semimartingale models, emphasizing the Neyman–Pearson lemma approach, as op-
posed to the duality approach. The former approach was used by the same authors
in Föllmer and Leukert (1999a) to solve the problem of maximizing the probability
of perfect hedge P [D ≤ 0]. Some early work on problems like these is presented in
Dembo (1997), in a one-period setting. A very general study of the the duality ap-
proach and its use in the utility maximization context can be found in Kramkov and
Schachermayer (1999).

As mentioned above, another approach would be to try to hedge away all the risk
of the agent by superreplicating the claim he has to deliver at time T , namely to have
Xx,π(T ) ≥ C, a.s. This has been done in the framework of constraints by Cvitanić and
Karatzas (1993), Broadie, Cvitanić, and Soner (1998), and Cvitanić, Pham, and Touzi
(1999). However, the cost x = xC of the least expensive strategy accomplishing the
superreplication is typically very high, and hence the strategy is appropriate neither
for pricing nor for hedging purposes. For example, if the agent sells a call option C on
one share of stock S, and he cannot borrow money, then his cost of superreplicating
the option is equal to the price of one share of S. Nobody would pay this much for
the option if they can buy the stock itself. More interesting examples include newly
deregulated energy markets, reinsurance markets, and emerging markets. The cost of
superreplication in these markets is usually too high (even infinite), and one is forced
to introduce preferences, typically in terms of a loss or a utility function. This is the
approach taken also in this paper, with a linear loss function.

Suppose now that, in addition to the genuine risk that the liability C represents,
the agent also faces some uncertainty regarding the model for the financial market
itself. Following Cvitanić and Karatzas (1999), we capture such uncertainty by al-
lowing a family P of possible “real-world probability measures,” instead of just one
measure. Thus, the “max-min” quantity

V (x) := sup
P∈P

inf
π

EP [D̄+](1.2)

represents the maximal risk that the agent can encounter when faced with the “worst
possible scenario” P ∈ P. In the special case of incomplete markets and under the
condition that all equivalent martingale measures are included in the set of possible
real-world measures P, we show that

V (x) = V (x) := inf
π

sup
P∈P

EP [D̄+].(1.3)

In other words, the corresponding fictitious “stochastic game” between the market
and the agent has a value. The trading strategy attaining this value is shown to be
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the one that corresponds to borrowing just enough money from the bank at time t = 0
as to be able to have at least the amount C at time t = T .

We describe the market model in section 2 and introduce the optimization prob-
lem in section 3. As is by now standard in financial mathematics, we define a dual
problem, whose optimal solution determines the optimal terminal wealth Xx,π̂(T ).
It turns out that this terminal wealth is of the “knock-out” option type—namely,
it is either equal to C or to 0 or to a certain (random) value 0 ≤ B ≤ C, de-
pending on whether the optimal dual variable is less than, larger than, or equal to
one, respectively. What makes the dual problem more difficult than in the usual
utility optimization problems (as in Cvitanić and Karatzas (1992)) is that the ob-
jective function fails to be everywhere differentiable, and the optimal dual variable
(related to the Radon–Nikodym derivative of an “optimal change of measure”) can be
zero with positive probability. Nevertheless, we are able to solve the problem using
nonsmooth optimization techniques for infinite dimensional problems, which can be
found in Aubin and Ekeland (1984). We discuss in section 4 the stochastic game
associated with (1.2) and (1.3).

2. The market model. We recall here the standard Ito process model for a
financial market M. It consists of one bank account and d stocks. Price processes
S0(·) and S1(·), . . . , Sd(·) of these instruments are modeled by the equations

dS0(t) = S0(t)r(t)dt , S0(0) = 1,

dSi(t) = Si(t)


bi(t)dt +

d∑
j=1

σij(t)dW
j(t)


 , Si(0) = si > 0 ; i = 1, . . . , d.(2.1)

Here W (·) = (W 1(·), . . . ,W d(·))′ is a standard d-dimensional Brownian motion on
a complete probability space (Ω,F , P ), endowed with a filtration F = {F(t)}0≤t≤T ,
the P -augmentation of FW (t) := σ(W (s); 0 ≤ s ≤ t) , 0 ≤ t ≤ T , the filtration
generated by the Brownian motion W (·). The coefficients r(·) (interest rate), b(·) =
(b1(·), . . . , bd(·))′ (vector of stock return rates) and σ(·) = {σij(·)}1≤i,j≤d (matrix of
stock-volatilities) of the model M are all assumed to be progressively measurable
with respect to F. Furthermore, the matrix σ(·) is assumed to be invertible, and
all processes r(·), b(·), σ(·), σ−1(·) are assumed to be bounded uniformly in (t, ω) ∈
[0, T ]× Ω.

The “risk premium” process

θ0(t) := σ−1(t)[b(t)− r(t)1̃] , 0 ≤ t ≤ T,(2.2)

where 1̃ = (1, . . . , 1)′ ∈ R
d, is then bounded and F-progressively measurable. There-

fore, the process

Z0(t) := exp

[
−
∫ t

0

θ′0(s)dW0(s)− 1

2

∫ t

0

||θ0(s)||2ds
]
, 0 ≤ t ≤ T,(2.3)

is a P -martingale, and

P0(Λ) := E[Z0(T )1Λ], Λ ∈ F(T )(2.4)

is a probability measure equivalent to P on F(T ). Under this risk-neutral equivalent

martingale measure P0, the discounted stock prices S1(·)
S0(·) , . . . ,

Sd(·)
S0(·) become martin-

gales, and the process

W0(t) := W (t) +

∫ t

0

θ0(s)ds , 0 ≤ t ≤ T,(2.5)
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becomes Brownian motion, by the Girsanov theorem.
Consider now an agent who starts out with initial capital x and can decide, at

each time t ∈ [0, T ], what proportion πi(t) of his (nonnegative) wealth to invest
in each of the stocks i = 1, . . . , d. However, the portfolio process (π1(·), . . . , πd(·))′
has to take values in a given closed convex set K ⊂ R

d of constraints, for almost
everywhere (a.e.) t ∈ [0, T ], a.s. We will also assume that K contains the origin.
For example, if the agent can hold neither short nor long positions in the last d−m
stocks Sm+1(·), . . . , Sd(·), we get a typical example of an incomplete market, in the
sense that not all square-integrable payoffs can be exactly replicated. (One of the best
known examples of incomplete markets, the case of stochastic volatility, is included
in this framework.) Another typical example is the case of an agent who has limits
on how much he can borrow from the bank, or how much he can go short or long in
a particular stock.

With π(t) = (π1(t), . . . , πd(t))
′ ∈ K chosen, the agent invests the amount X(t)(1−∑d

i=1 πi(t)) in the bank account, at time t, where we have denoted X(·) ≡ Xx,π,κ(·)
his wealth process. Moreover, for reasons of mathematical convenience, we allow the
agent to spend money outside of the market, and κ(·) ≥ 0 denotes the corresponding
cumulative consumption process. The resulting wealth process satisfies the equation

dX(t) = −dκ(t) +

[
X(t)(1−

d∑
i=1

πi(t))

]
r(t)dt

+

d∑
i=1

πi(t)X(t)


bi(t)dt +

d∑
j=1

σij(t)dW
j(t)




= −dκ(t) + r(t)X(t)dt + π′(t)σ(t)X(t)dW0(t); X(0) = x.

Denoting

X̄(t) = e
−
∫ t

0
r(u)du

X(t),(2.6)

the discounted version of a process X(·), we get the equivalent equation

dX̄(t) = −e−
∫ t

0
r(u)du

dκ(t) + π′(t)σ(t)X̄(t)dW0(t) ; X(0) = x.(2.7)

It follows that X̄(·) is a nonnegative local P0-supermartingale, hence also a
P0-supermartingale, by Fatou’s lemma. Therefore, if τ0 is defined to be the first
time it hits zero, we have X(t) = 0 for t ≥ τ0, so that the portfolio values π(t) are
irrelevant after that happens. Accordingly, we can and do set π(t) = 0 for t ≥ τ0.

More formally, we have the following definition.
Definition 2.1. (i) A portfolio process π : [0, T ] × Ω → R

d is F-progressively

measurable and satisfies
∫ T
0
||π(t)||2dt <∞, a.s., as well as
π(t) ∈ K for a.e. t ∈ [0, T ](2.8)

a.s. A consumption process κ(·) is a nonnegative, nondecreasing, progressively mea-
surable process with right-continuous with left limits (RCLL) paths, with κ(0) = 0 and
κ(T ) <∞.

(ii) For a given portfolio and consumption processes π(·), κ(·), the process X(·) ≡
Xx,π,κ(·) defined by (2.7) is called the wealth process corresponding to strategy (π, κ)
and initial capital x.



1054 JAKŠA CVITANIĆ

(iii) A portfolio-consumption process pair (π(·), κ(·)) is called admissible for the
initial capital x, and we write (π, κ) ∈ A(x), if

Xx,π,κ(t) ≥ 0, 0 ≤ t ≤ T,(2.9)

holds a.s.
We refer to the lower bound of (2.9) as a margin requirement. The no-arbitrage

price of a contingent claim C in a complete market is unique and is obtained by mul-
tiplying (“discounting”) the claim by H0(T ) := Z0(T )/S0(T ) and taking expectation.
Since the market here is incomplete, there are more relevant stochastic discount fac-
tors other than H0(T ). We identify them along the lines of Cvitanić and Karatzas
(1993), hereafter [CK93], and Karatzas and Kou (1996), hereafter [KK96], as follows:
Introduce the support function

δ(ν) := sup
π∈K
{−π′ν}(2.10)

of the set −K, as well as its barrier cone

K̃ := {ν ∈ R
d / δ(ν) <∞}.(2.11)

For the rest of the paper we assume the following mild conditions.
Assumption 2.2. The closed convex set K ⊂ R

d contains the origin; in other
words, the agent is allowed not to invest in stocks at all. In particular, δ(·) ≥ 0 on K̃.
Moreover, the set K is such that δ(·) is continuous on the barrier cone K̃ of (2.11).

Denote by D the set of all bounded progressively measurable process ν(·) taking
values in K̃ a.e. on Ω× [0, T ]. In analogy with (2.2)–(2.5), introduce

θν(t) := σ−1(t)[ν(t) + b(t)− r(t)1̃] , 0 ≤ t ≤ T,(2.12)

Zν(t) := exp

[
−
∫ t

0

θ′ν(s)dW (s)− 1

2

∫ t

0

||θν(s)||2ds
]
, 0 ≤ t ≤ T,(2.13)

Pν(Λ) := E[Zν(T )1Λ], Λ ∈ F(T ),(2.14)

Wν(t) := W (t) +

∫ t

0

θν(s)ds , 0 ≤ t ≤ T,(2.15)

a Pν-Brownian motion. Also denote

Hν(t) := e
−
∫ t

0
δ(ν(u))du

Zν(t).(2.16)

Note that

dZν(t) = −Zν(t)θ′ν(t)dW (t).(2.17)

From this and (2.7) we get, by Ito’s rule,

d(Hν(t)X̄(t)) = −e−
∫ t

0
r(u)du

Hν(t)dκ(t)− [δ(ν(t)) + π′(t)ν(t)]Hν(t)X̄(t)dt(2.18)

+ [π′(t)σ(t)− θν(t)]Hν(t)X̄(t)dW (t) ; X(0) = x

for all ν ∈ D. Therefore, Hν(·)X̄(·) is a P -local supermartingale (note that δ(ν) +
π′ν ≥ 0 for π ∈ K and ν ∈ K̃), and from (2.9) thus also a P -supermartingale, by
Fatou’s lemma. Consequently,

E[Hν(T )X̄x,π,κ(T )] ≤ x ∀ (π, κ, ν) ∈ A(x)×D .(2.19)
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3. The minimization problem and its dual. Suppose now that, at time
t = T , the agent has to deliver a payoff given by a contingent claim C, a random
variable in L2(Ω,F(T ), P ), with

P [C ≥ 0] = 1 and P [C > 0] > 0.(3.1)

Introduce a (possibly infinite) process

C̄(t) := ess sup
ν∈D

E

[
Hν(T )C̄

∣∣∣∣ F(t)

]
, 0 ≤ t ≤ T,(3.2)

a.s., the discounted version of the process

C(·) := S0(·)C̄(·).(3.3)

We have denoted

C̄ :=
C

S0(T )
(3.4)

the discounted value of the F(T )-measurable random variable C. We impose the fol-
lowing assumption throughout the rest of the paper (see Remark 3.14 for a discussion
on the relevance of this assumption).

Assumption 3.1. We assume

C(0) = sup
ν∈D

E[Hν(T )C̄] <∞.(3.5)

The following theorem is taken from the literature on constrained financial mar-
kets (see, for example, [CK93], [KK96], or Cvitanić (1997)).

Theorem 3.2. (Cvitanić and Karatzas (1993)). Let C ≥ 0 be a given contingent
claim. Under Assumption 3.1, the process C(·) of (3.3) is finite, and it is equal to the
minimal admissible wealth process hedging the claim C. More precisely, there exists a
pair (πC , κC) ∈ A(C(0)) such that

C(·) ≡ XC(0),πC ,κC (·),(3.6)

and, if for some x ≥ 0 and some pair (π, κ) ∈ A(x) we have

Xx,π,κ(T ) ≥ C, P − a.s.,(3.7)

then

Xx,π,κ(t) ≥ C(t), 0 ≤ t ≤ T, P − a.s.

Consequently, if x ≥ C(0), there exists then an admissible pair (π, κ) ∈ A(x) such
that Xx,π,κ(T ) ≥ C. Achieving a “hedge without risk” is not possible for x < C(0).
Motivated by results of Artzner et al. (1999) (and similarly as in a complete market
setting of Cvitanić and Karatzas (1999)) we choose the following risk function to be
minimized:

V (x) ≡ V (x;C) := inf
(π,κ)∈A(x)

E
[
C̄ − X̄x,π,κ(T )

]+
.(3.8)

In other words, we are minimizing the expected discounted net loss, over all admissible
trading strategies.
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If x ≥ C(0), we have V (x) = 0, because, as mentioned above, we can find a wealth
process that hedges C. Moreover, the margin requirement (2.9) implies that x ≥ 0,
so we assume from now on that

0 < x < C(0).(3.9)

Note that we can (and do) assume Xx,π,κ(T ) ≤ C, P−a.s., in our optimization
problem (3.8), since the agent can always consume down to the value of C, in case
he has more than C at time T . In particular, if C(ω) = 0, we can (and do) assume
Xx,π,κ(T, ω) = 0, too. This means that the set {C = 0} ∈ F(T ) is not relevant for
the problem (3.8), which motivates us to define a new probability measure

PC(Λ) =
1

E[C̄]
E[C̄1Λ], Λ ∈ F(T )(3.10)

(see also Remark 3.14 (ii)). Denote by EC the associated expectation operator.
The problem (3.8) has then an equivalent formulation

V (x) = E[C̄] inf
(π,κ)∈A(x)

EC

[
1− Xx,π,κ(T )

C

]+
.(3.11)

We approach the problem (3.11) by recalling familiar tools of convex duality:
starting with the convex loss function R(y) = (1−y)+, consider its Legendre–Fenchel
transform

R̃(z) := min
0≤y≤1

[R(y) + yz] = z ∧ 1, z ≥ 0(3.12)

(where z ∧ 1 = min{z, 1}). The minimum in (3.12) is attained by any number I(z; b)
of the form

I(z; b) :=




0 ; z > 1
1 ; 0 ≤ z < 1
b ; z = 1


 ,(3.13)

where 0 ≤ b ≤ 1.
Consequently, denoting

Y x,π,κ :=
Xx,π,κ(T )

C
, PC − a.s.,(3.14)

we conclude from (3.12) that for any initial capital x ∈ (0, C(0)) and any (π, κ) ∈
A(x), ν ∈ D, z ≥ 0 we have

(1− Y x,π,κ)+ ≥ R̃(zHν(T ))− zHν(T )Y x,π,κ, PC − a.s.(3.15)

Thus, multiplying by E[C̄], taking expectations, and in conjunction with (2.19), we
obtain

E[C̄]EC [1− Y x,π,κ]
+ ≥ E[C̄]EC

[
R̃(zHν(T ))

]
− zE[C̄]EC [Hν(T )Y x,π,κ]

≥ E[C̄]EC
[
R̃(zHν(T ))

]
− xz.(3.16)
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This is a type of a duality relationship that has proved to be very useful in
constrained portfolio optimization studied in Cvitanić and Karatzas (1992). The
difference here is that we have to extend it to the random variables in the set

H := {H ∈ L1(Ω,F(T ), PC) / H ≥ 0 PC − a.s.,

E[C̄]EC [HY x,π,κ] ≤ x, ∀ (π, κ) ∈ A(x)}.(3.17)

Remark 3.3. As the referee points out, it should be noted that the set H does not
actually depend on x. This is because Xx,π,κ(·) = xX1,π,κ/x(·), so that the inequality
in the definition (3.17) of H is equivalent to

E[C̄]EC [HY 1,π,κ] ≤ 1 ∀ (π, κ) ∈ A(1).(3.18)

It is clear that H is a convex set. It is also closed in L1(Ω,F(T ), PC). Indeed,
if Hn → H in L1(Ω,F(T ), PC), then there exists a (relabeled) subsequence {Hn}n∈N

converging to H, PC−a.s.; therefore H ≥ 0, PC − a.s., and, by Fatou’s lemma,
E[C̄]EC [HY x,π,κ] ≤ x ∀(π, κ) ∈ A(x).

By Theorem 3.2 we have C(·) = XC(0),πC ,κC (·) for some (πC , κC) ∈ A(x). Con-
sequently, we have Y C(0),πC ,κC = 1, PC − a.s., and therefore

E[C̄]EC [H] = E[C̄H] ≤ C(0) ∀ H ∈ H,(3.19)

where we extend a random variable H to the probability space (Ω,F(T ), P ) by setting
H = 0 on {C = 0}. Similarly, since 0 ∈ K, taking X̄x,0,0(T ) = x in the definition
(3.17) of H, we see that

E[C̄]EC [H/C] = E[H] ≤ 1 ∀ H ∈ H.(3.20)

Moreover, since E[C̄]EC [Hν(T )] ≤ C(0) <∞ ∀ν ∈ D, and by (2.19), we get

HD := {Hν(T ) / ν ∈ D} ⊂ H.(3.21)

Remark 3.4. The idea of introducing the set H is similar to and inspired by the
approach of Kramkov and Schachermayer (1999), who work with the set of all non-
negative processes G(·) such that G(·)X̄(·) is a P -supermartingale for all admissible
wealth processes X(·).

Next, arguing as above (when deducing (3.16)), we obtain

E[C̄]EC [1− Y x,π,κ]
+ ≥ E[C̄]EC

[
R̃(zH)

]
− xz =: J̃(H; z)− xz ∀ H ∈ H, z ≥ 0,

(3.22)

where we have denoted

J̃(H; z) := E[C̄]EC [(zH) ∧ 1].(3.23)

It is easily seen that−J̃(·; z) : L1(Ω,F(T ), PC)→ R is a convex, lower-semicontinuous
and proper functional, in the terminology of convex analysis; see, for example, Aubin
and Ekeland (1984), henceforth [AE84].

Remark 3.5. It is straightforward to see that the inequality of (3.22) holds as
equality for some (π̂, κ̂) ∈ A(x) and ẑ ≥ 0, Ĥ ∈ H, if and only if we have

E[C̄]EC
[
ĤY x,π̂,κ̂

]
= x(3.24)
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and

Y x,π̂,κ̂ = I(ẑĤ; B̂) = 1{ẑĤ<1} + B̂1{ẑĤ=1}, PC − a.s.(3.25)

for some F(T )-measurable random variable B̂ that satisfies 0 ≤ B̂ ≤ 1, PC- a.s. We
also set

Y x,π̂,κ̂ = 0 on {C = 0}.
If (3.24) and (3.25) are satisfied, then (π̂, κ̂) is optimal for the problem (3.11), under
the “change of variables” (3.14), since the lower bound of (3.22) is attained. Moreover,
Ĥ ∈ H is optimal for the auxiliary dual problem

Ṽ (z) = sup
H∈H

J̃(H; z)(3.26)

with z = ẑ. If we let

Xx,π̂,κ̂(T ) = CY x,π̂,κ̂, P − a.s.,(3.27)

the conditions (3.24) and (3.25) become

E
[
ĤX̄x,π̂,κ̂(T )

]
= x(3.28)

and

Xx,π̂,κ̂(T ) = C
(

1{ẑĤ<1} + B̂1{ẑĤ=1}
)
, P − a.s.(3.29)

for some F(T )-measurable random variable B̂ that satisfies 0 ≤ B̂ ≤ 1, a.s., and
Xx,π̂,κ̂(T ) is the terminal wealth of the strategy (π̂, κ̂) which is optimal for the problem
(3.8).

In light of the preceding remark, our approach will be the following: we will try
to find a number ẑ > 0, a solution Ĥ to the auxiliary dual problem (3.26) with z = ẑ,
a number ẑ > 0, a random variable B̂ as above, and a pair (π̂, κ̂) ∈ A(x) such that
(3.24) and (3.25) (or, equivalently, (3.28) and (3.29)) are satisfied.

Theorem 3.6. For any given z > 0, there exists an optimal solution Ĥ = Ĥz ∈ H
for the auxiliary dual problem (3.26).

Proof. Let Hn ∈ H be a sequence that attains the supremum in (3.26), so that

lim
n

J̃(Hn; z) = Ṽ (z).

Note that, by (3.19), H is a bounded set in L1(Ω,F(T ), PC), so that by Komlós
theorem (see Schwartz (1986), for example) there exists a random variable Ĥ ∈
L1(Ω,F(T ), PC) and a (relabeled) subsequence {Hi}i∈N such that

Gn :=
1

n

n∑
i=1

Hi → Ĥ, PC − a.s.

Fatou’s lemma then implies Ĥ ∈ H. Since 0 ≤ (zGn) ∧ 1 ≤ 1, by the dominated
convergence theorem and concavity of J̃(·; z) we get

J̃(Ĥ; z) = lim
n

J̃

(
1

n

n∑
i=1

Hi; z

)
≥ lim

n

[
1

n

n∑
i=1

J̃(Hi; z)

]
= Ṽ (z).
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Thus, Ĥ ∈ H is optimal.
Lemma 3.7. The function Ṽ (z) is continuous on [0,∞).
Proof. Let H ∈ H and assume first z1, z2 > 0. We have

J̃(H; z1) = E[C̄]EC [(z1H) ∧ 1] = E[C̄]EC
[
(z2H) ∧ 1 + (z1H) ∧ 1− (z2H) ∧ 1

]
= J̃(H; z2) + E[C̄]EC

[
H(z1 − z2)1{z1H<1,z2H<1} + (z1H − 1)1{z1H<1,z2H≥1}

+ (1− z2H)1{z1H≥1,z2H<1}
]

≤ Ṽ (z2) + 2E[C̄](1− z2/z1)+.

Taking the supremum over H ∈ H we get Ṽ (z1)−Ṽ (z2) ≤ 2E[C̄](1−z2/z1)+. Since we
can do the same while interchanging the roles of z1 and z2, we have shown continuity
on (0,∞). To prove continuity at z2 = 0, note that, by duality and (3.20), we have

J̃(H; z1) = E[C̄]EC [(z1H) ∧ 1] ≤ E[(C̄ − y)+] + yz1E[H] ≤ E[(C̄ − y)+] + yz1

for all z1 > 0, y > 0. Choosing first y large enough and then z1 small enough, we
can make the two terms on the right-hand side arbitrarily close to zero, uniformly in
H ∈ H.

Proposition 3.8. For every 0 < x < C(0) there exists ẑ = ẑx ∈ (0,∞) that
attains the supremum supz≥0[Ṽ (z)− xz].

Proof. Denote

α(z) := Ṽ (z)− xz.

Note that α(0) = 0. It is clear that

lim sup
z→∞

α(z) < 0,(3.30)

so that the supremum of α(z) over [0,∞) cannot be attained at z =∞. Consequently,
being continuous by Lemma 3.7, function α(z) either attains its supremum at some
ẑ > 0, or else α(z) ≤ α(0) = 0 for all z > 0. Suppose that the latter is true. We have
then

x ≥ Ṽ (z)

z
≥ E[C̄]EC

[
H ∧ 1

z

]
(3.31)

for all z > 0 and H ∈ H. In particular, we can use the dominated convergence
theorem while letting z → 0 to get

x ≥ E[HC̄]

for all H ∈ HD. Taking the supremum over H ∈ HD we obtain x ≥ C(0), a contra-
diction.

Denote Ĥ = Ĥẑ the optimal dual variable for problem (3.26), corresponding to
z = ẑ of Proposition 3.8. We want to show that there exists an F(T )-measurable
random variable 0 ≤ B̂ ≤ 1 such that the optimal wealth for the primal problem is
given by CI(ẑĤ, B̂), where I(z; b) is given in (3.13). In order to do that, we recall
some notions and results from convex analysis, as presented, for example, in [AE84].

First, introduce the space

L := L1(Ω,F(T ), PC)× R(3.32)
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with the norm

‖(Z, z)‖ := E[C̄]EC |Z|+ |z|

and its subset

G := {(zH, z) ∈ L / z ≥ 0, H ∈ H}.(3.33)

It is easily seen that G is convex, by the convexity of H. It is also closed in L. Indeed,
if we are given subsequences zn ≥ 0 and Hn ∈ H such that (znHn, zn)→ (Z, z) in L,
then zn → z; we also have, from (3.19),

EC |znHn − zHn| ≤ |zn − z|EC [Hn] ≤ C(0)

E[C̄]
|zn − z|,

so that zHn → Z in L1(Ω,F(T ), PC). If z = 0 we get Z = 0, and we are done. If
z > 0, we get Hn → Z/z in L1(Ω,F(T ), PC), therefore Z/z ∈ H because H is closed
in L1(Ω,F(T ), PC), and we are done again. The closedness of G has been confirmed.

We now define a functional Ũ : L→ R by

Ũ(Z, z) := −E[C̄]EC [Z ∧ 1] + xz = −J̃(Z; 1) + xz.(3.34)

It is easy to check that Ũ is convex, lower-semicontinuous, and proper on L. Moreover,
since we have

J̃(Ĥ, ẑ)− xẑ = Ṽ (ẑ)− xẑ ≥ Ṽ (z)− xz

≥ J̃(H, z)− xz ∀ (H, z) ∈ H × [0,∞)

from Proposition 3.8 and in the notation of Theorem 3.6, it follows that the pair
Ĝ := (ẑĤ, ẑ) ∈ G is optimal for the dual problem

inf
(Z,z)∈G

Ũ(Z, z).(3.35)

Let L∗ := L∞(Ω,F(T ), PC) × R be the dual space to L and let N(ẑĤ, ẑ) be the
normal cone to the set G at the point (ẑĤ, ẑ), given by

N(ẑĤ, ẑ) = {(Y, y) ∈ L∗ / E[C̄]EC [ẑĤY ] + ẑy = max
(zH,z)∈G

(E[C̄]EC [zHY ] + zy)}
(3.36)

by Proposition 4.1.4 in [AE84]. Let ∂Ũ(ẑĤ, ẑ) denote the subdifferential of Ũ at
(ẑĤ, ẑ), which, by Proposition 4.3.3 in [AE84], is given by

∂Ũ(ẑĤ, ẑ) = {(Y, y) ∈ L∗ / Ũ(ẑĤ, ẑ)− Ũ(Z, z)

≤ E[C̄]EC [Y (ẑĤ − Z)] + y(ẑ − z) ∀ (Z, z) ∈ L}.(3.37)

Then, by Corollary 4.6.3 in [AE84], since (ẑĤ, ẑ) is optimal for the problem (3.35),
we obtain the following proposition.

Proposition 3.9. The pair (ẑĤ, ẑ) ∈ G is a solution to

0 ∈ ∂Ũ(ẑĤ, ẑ) + N(ẑĤ, ẑ).(3.38)
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In other words, there exists a pair (Ŷ , ŷ) ∈ L∗ which belongs to the normal cone
N(ẑĤ, ẑ) and such that −(Ŷ , ŷ) belongs to the subdifferential ∂Ũ(ẑĤ, ẑ).

From (3.36) and (3.37), this is equivalent to

E[C̄]EC [ẑĤŶ ] + ẑŷ ≥ E[C̄]EC [zHŶ ] + zŷ ∀z ≥ 0, H ∈ H,(3.39)

and

E[C̄]EC [Ŷ (ẑĤ − Z)] + ŷ(ẑ − z)

≤ E[C̄]EC [(ẑĤ) ∧ 1]− E[C̄]EC [Z ∧ 1] + x(z − ẑ) ∀ (Z, z) ∈ L.(3.40)

It is clear from (3.40) (by letting z → ±∞ while keeping Z fixed) that, necessarily,

ŷ = −x.

On the other hand, if we let ẑ = z in (3.39), we get

EC [Ŷ Ĥ] ≥ EC [Ŷ H] ∀H ∈ H.(3.41)

Moreover, letting z = (ẑ + ε) for some ε > 0, H = Ĥ in (3.39), and recalling ŷ = −x,
we obtain

x ≥ E[C̄]EC [Ŷ Ĥ].

Similarly, we get the reverse inequality by letting ẑ = z − ε and H = Ĥ in (3.39)
(recall that ẑ > 0 by Proposition 3.8), to obtain, finally,

E[C̄]EC [Ŷ Ĥ] = x.(3.42)

This last equality will correspond to (3.24) with Ŷ = Y x,π̂,κ̂, if we can show the
following result and recall (3.14).

Proposition 3.10. There exists an admissible pair (π̂, κ̂) ∈ A(x) such that

Xx,π̂,κ̂(T ) = CŶ , P − a.s.

and such that (3.28) is satisfied.
(Here we set Ŷ = 0 on {C = 0}.)
Proof. This follows immediately from (3.41) and (3.42), which can be written as

x = E[C̄Ŷ Ĥ] = sup
H∈H

E[C̄Ŷ H]

(with H = 0 on {C = 0}). Indeed, Theorem 3.2 tells us that the right-hand side is no
smaller than the minimal amount of initial capital needed to hedge CŶ ; thus, there
exists a pair (π̂, κ̂) ∈ A(x) that does the hedge.

In order to “close the loop,” it only remains to show (3.25).
Proposition 3.11. Let − (Y, y) ∈ ∂Ũ(ẑĤ, ẑ). Then y = −x and Y is of the

form

Y = 1{ẑĤ<1} + B1{ẑĤ=1} , PC − a.s.(3.43)

for some F(T )-measurable random variable B that satisfies 0 ≤ B ≤ 1, PC a.s.



1062 JAKŠA CVITANIĆ

Proof. We have already seen that y = −x. Define a random variable A by

Y = 1{ẑĤ<1} + A.(3.44)

From (3.40) with ŷ = −x and Ŷ = Y , we get

EC [A(ẑĤ − Z)]− EC [Z1{ẑĤ<1}]

≤ EC [1{ẑĤ≥1}]− EC [Z ∧ 1] ∀ Z ∈ L1(Ω,F(T ), PC).(3.45)

Let Z ∈ L1(Ω,F(T ), PC) be such that

{ẑĤ < 1} = {Z < 1}.
Then,

EC [A(ẑĤ − Z)] = EC [A(ẑĤ − Z)1{ẑĤ<1}] + EC [A(ẑĤ − Z)1{ẑĤ≥1}] ≤ 0,(3.46)

by (3.45). This implies

A ≤ 0 on {ẑĤ < 1}, A ≥ 0 on {ẑĤ ≥ 1}, PC − a.s.,(3.47)

for otherwise we could make Z arbitrarily small (respectively, large) on {ẑĤ < 1} ∩
{A > 0} (respectively, on {ẑĤ ≥ 1} ∩ {A < 0}) to get a contradiction in (3.46).

Suppose now that PC [A < 0, ẑĤ < 1] > 0. There exists then δ > 0 such that
EC [A(ẑĤ − 1)1{ẑĤ<1}] > δ, because of (3.47). For a given ε > 0, let Z = 1 − ε on

{ẑĤ < 1} and Z = 1 on {ẑĤ ≥ 1}, in (3.46). This gives

EC [A(ẑĤ − 1 + ε)1{ẑĤ<1}] + EC [A(ẑĤ − 1)1{ẑĤ≥1}] ≤ 0.(3.48)

The left-hand side is greater than δ + εEC [A1{ẑĤ<1}] for all ε > 0 (recall (3.47)

again), a contradiction to (3.48). Thus, we have shown

A = 0 on {ẑĤ < 1}, PC − a.s.(3.49)

Going back to (3.46), this implies

EC [A(ẑĤ − Z)1{ẑĤ≥1}] ≤ 0(3.50)

for all Z ∈ L1(Ω,F(T ), PC) such that {Z < 1} = {ẑĤ < 1}. If we set now Z = 1 on
{ẑĤ ≥ 1}, we get from (3.50) and (3.47)

A = 0 on {ẑĤ > 1}, PC − a.s.(3.51)

Using (3.49) and (3.51) in (3.45), we obtain

EC [A(1− Z)1{ẑĤ=1}]− EC [Z(1{ẑĤ<1} − 1{Z<1})]

≤ EC [1{ẑĤ≥1} − 1{Z≥1}] ∀ Z ∈ L1(Ω,F(T ), PC).(3.52)

Suppose now that PC [A > 1, ẑĤ = 1] > 0. There exists then δ > 0 such that
EC [A1{ẑĤ=1,A>1}] > δ + PC [ẑĤ = 1, A > 1]. Setting Z = 0 on {ẑĤ = 1, A > 1},
Z = 1 on {ẑĤ = 1, A ≤ 1}, and Z = 1−ε otherwise (for a given ε > 0), (3.52) implies

EC [A1{ẑĤ=1,A>1}]− (1− ε)EC [1{ẑĤ<1} − 1{ẑĤ �=1}]

≤ PC [ẑĤ ≥ 1]− PC [ẑĤ = 1, A ≤ 1].(3.53)
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The left-hand side is greater than δ + PC [ẑĤ = 1, A > 1] + (1 − ε)(PC [ẑĤ �= 1] −
PC [ẑĤ < 1]), so that from (3.53) we conclude δ − ε(PC [ẑĤ �= 1]− PC [ẑĤ < 1]) ≤ 0
for all ε > 0, a contradiction. Therefore,

A ≤ 1 , on {ẑĤ = 1}, PC − a.s.(3.54)

Together with (3.44), (3.47), (3.49), and (3.51), this completes the proof.
We now state the main result of the paper.
Theorem 3.12. For any initial wealth x with 0 < x < C(0) < ∞, there exists

an optimal pair (π̂, κ̂) ∈ A(x) for the problem (3.8) of minimizing the expected loss
of hedging the claim C. It can be taken as that strategy for which the terminal wealth
Xx,π̂,κ̂(T ) is given by (3.29), i.e.,

Xx,π̂,κ̂(T ) = C
(

1{ẑĤ<1} + B̂1{ẑĤ=1}
)

, P − a.s.(3.55)

Here (ẑ, Ĥ) is an optimal solution for the dual problem (3.35), and B̂ can be taken
as the random variable B in Proposition 3.11, with (Y, y) replaced by some (Ŷ , ŷ) ∈
{−∂Ũ(ẑĤ, ẑ) ∩N(ẑĤ, ẑ)}, which exists by Proposition 3.9.

Proof. It follows from Remark 3.5. Indeed, it was observed in that remark that
a pair (π̂, κ̂) ∈ A(x) is optimal for the problem (3.8) if it satisfies (3.28) and (3.55)
for some F(T )-measurable random variable B̂, 0 ≤ B̂ ≤ 1, and some ẑ ≥ 0, Ĥ ∈ H.
The existence of such a pair (π̂, κ̂) ∈ A(x) was established in Proposition 3.10 in
conjunction with Proposition 3.11, with B̂, ẑ, and Ĥ as in the statement of the
theorem.

The following simple example is mathematically interesting from several points
of view. It shows that the optimal dual variable Ĥ can be equal to zero with positive
probability, unlike the case of classical utility maximization under constraints (as
in Cvitanić and Karatzas (1992)). Moreover, ẑĤ can be equal to one with positive
probability, so that the use of nonsmooth optimization techniques and subdifferentials
for the dual problem is really necessary. It also shows why it can be mathematically
convenient to allow nonzero consumption. Finally, it confirms that condition (3.5) is
not always necessary for the dual approach to work.

Example 3.13. Suppose r(·) ≡ 0 for simplicity, and let C ≥ 0 be any contingent
claim such that P [C ≥ x] > 0. We consider the trivial primal problem for which
K = {0}, so that there is only one possible admissible portfolio strategy π̂(·) ≡ 0
(in other words, the agent can invest only in the riskless asset). We do not assume
condition (3.5), which, for these constraints, is equivalent to C being bounded. It is
clear that the value V (x) of the primal problem is E[C − x]+, and duality implies

E[C − x]+ ≥ E[C((zH) ∧ 1)]− xz(3.56)

for all z ≥ 0, H ∈ H (see (3.22)). Here we can take H to be the set of all nonnegative
random variables such that E[H] ≤ 1. Let ẑ := P [C ≥ x] > 0 and ẑĤ := 1{C≥x}. It

is then easily checked that Ĥ ∈ H and that the pair (Ĥ, ẑ) attains equality in (3.56),
so that the pair (ẑĤ, ẑ) ∈ G is optimal for the dual problem (3.35). One possible
choice for the optimal terminal wealth is

Xx,π̂,κ̂(T ) = x1{C≥x} + C1{C<x}.

According to (3.55), this corresponds to B̂ = x/C on {C ≥ x}, and κ̂(t) = 0 for
t < T , while κ̂(T ) = (x− C)1{C<x}.



1064 JAKŠA CVITANIĆ

Remark 3.14. (i) Assumption 3.1 is satisfied, for example, if C is bounded. We
need it in order to get existence for the dual problem (3.35), due to our use of the
Komlós theorem. Example 3.13 shows that this assumption is not always necessary:
in this example the dual problem has a solution and there is no gap between the
primal and the dual problem, even when (3.5) is not satisfied.

(ii) If we, in fact, assumed that C is bounded, the switch to the equivalent for-
mulation (3.11) from (3.8) would not be necessary. (The reason for this is that the
dual spaces of L1(Ω,F(T ), P ) and L1(Ω,F(T ), PC) are then the same, up to the
equivalence class determined by the set {C = 0}.)

Remark 3.15. Since there are almost no examples with explicit solutions to
this problem, it is of interest to study possible numerical algorithms. In Markovian
continuous-time models this would involve solving Hamilton–Jacobi–Bellman PDEs,
while in discrete models one could apply standard linear or convex programming
techniques; see Blumenstein (1999) for some of these issues.

4. Dynamic measures of risk. Suppose now that we are not quite sure whether
our subjective probability measure P is equal to the real-world measure. We would
like to measure the risk of hedging the claim C under constraints given by set K, and
under uncertainty about the real-world measure. According to Artzner et al. (1999),
and Cvitanić and Karatzas (1999), it makes sense to consider the following quantities
as the lower and upper bounds for the measure of such a risk, where we denote by P
a set of possible real-world measures:

V (x) := sup
Q∈P

inf
(π,κ)∈A(x)

EQ
[
C̄ − X̄x,π,κ(T )

]+
,(4.1)

themaximal risk that can be incurred, over all possible real-world measures, dominated
by its “min-max” counterpart

V (x) := inf
(π,κ)∈A(x)

sup
Q∈P

EQ
[
C̄ − X̄x,π,κ(T )

]+
,(4.2)

the upper-value of a fictitious stochastic game between an agent (who tries to choose
(π, κ) ∈ A(x) so as to minimize his risk) and “the market” (whose “goal” is to choose
the real-world measure that is least favorable for the agent). Here, EQ is expectation
under measure Q. A question is whether the “upper-value” (4.2) and the “lower-
value” (4.1) of this game coincide and, if they do, to compute this common value.
We shall answer this question only in a very specific setting as follows. Let P be
the “reference” probability measure, as in the previous sections. We first change the
margin requirement (2.9) to a more flexible requirement

X̄x,π,κ(t) ≥ −k, 0 ≤ t ≤ T, P − a.s.,(4.3)

where k is a constant such that∞ > k ≥ C(0)−x > 0. We still assume 0 < x < C(0),
and we look at the special case of the constraints given by

K = {π ∈ R
d / πm+1 = · · · = πd = 0}(4.4)

for some m < d. In other words, we only consider the case of a market which is
incomplete due to the insufficient number of assets available for investment. In this
case,

K̃ = {ν ∈ R
d / ν1 = · · · = νm = 0}
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and

D = {bounded progress. meas. processes ν(·) / ν1(·) ≡ · · · ≡ νm(·) ≡ 0}.

We define the set P of possible real-world probability measures as follows. Let E be
a set of progressively measurable and bounded processes ν(·) and such that

D ⊂ E .(4.5)

We set

P := {Pν / ν ∈ E},(4.6)

in the notation of (2.14) (note that the reference measure P is not necessarily in P).
In other words, our set of all possible real-world probability measures includes all the
“equivalent martingale measures” for our market, corresponding to bounded “kernels”
ν(·). This way, under a possible real-world probability measure Pν ∈ P, the model
M of (2.1) becomes

dS0(t) = S0(t)r(t)dt, S0(0) = 1,

dSi(t) = Si(t)


(r(t)− νi(t))dt +

d∑
j=1

σij(t)dW
j
ν (t)


 ,(4.7)

Si(0) = si ∈ (0,∞) ; i = 1, . . . , d,

in the notation of (2.15). The resulting modified modelMν is similar to that of (2.1);
now Wν(·) plays the role of the driving Brownian motion (under Pν), but the stock
return rates are different for different “model measures” Pν .

The following theorem shows that, if the uncertainty about the real-world prob-
ability measure is large enough (in the sense that all equivalent martingale measures
corresponding to bounded kernels are possible candidates for the real-world measure),
then the optimal thing to do in order to minimize the expected risk of hedging a claim
C in the market is the following: borrow exactly as much money from the bank as is
needed to hedge C.

Theorem 4.1. Under the above assumptions we have

V (x) = V (x) = C(0)− x.(4.8)

In other words, the stochastic game defined by (4.1) and (4.2) has a value that is equal
to the expected loss of the strategy which borrows C(0) − x from the bank and then
invests according to the least expensive strategy for hedging the claim C.

Proof. Let (π∗, κ∗) be the strategy from the statement of the theorem, namely
the one for which we have

X̄∗(t) := X̄x,π∗,κ∗
(t) = C̄(t)− (C(0)− x), P − a.s.,

in the notation of (3.2). Such a strategy exists by Theorem 3.2. It is clear that (4.3) is
then satisfied, so that (π∗, κ∗) ∈ A(x). Since for this strategy EQ[C̄−X̄x,π∗,κ∗

(T )]+ =
C(0)− x for all Q ∈ P, it also follows that

V (x) ≤ C(0)− x.(4.9)
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On the other hand, we have here δ(ν) = 0 for ν ∈ K̃, so that Hν(·) = Zν(·) for ν ∈ D,
and Ito’s rule gives, in analogy to (2.7) and in the notation of (2.15),

dX̄∗(t) = −e−
∫ t

0
r(u)du

dκ∗(t) + (π∗(t))′σ(t)X̄∗(t)dWν(t) ; X∗(0) = x(4.10)

for all ν ∈ D, since ν′(·)π∗(·) ≡ 0. Therefore, X̄∗(·) is a Pν-local supermartingale
bounded from below, thus also a Pν-supermartingale, by Fatou’s lemma. Conse-
quently,

Eν [X̄∗(T )] ≤ x ∀ ν ∈ D,(4.11)

where Eν is the expectation under Pν measure. Since Pν ∈ P for all ν ∈ D, (4.11)
and Jensen’s inequality imply

V (x) ≥ sup
ν∈D

inf
(π,κ)∈A(x)

(Eν [C̄]− x)+ = sup
ν∈D

(Eν [C̄]− x)+ = C(0)− x.(4.12)

Since V (x) ≤ V (x), (4.8) is a consequence of (4.9) and (4.12).
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J. Cvitanić (1997), Optimal trading under constraints, in Financial Mathematics, Lecture Notes in

Math. 1656, W. J. Runggaldier, ed., Springer, Berlin, pp. 123–190.
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Abstract. In general, the value function associated with an exit time problem is a discontin-
uous function. We prove that the lower (upper) semicontinuous envelope of the value function is a
supersolution (subsolution) of the Hamilton–Jacobi equation involving the proximal subdifferentials
(superdifferentials) with subdifferential-type (superdifferential-type) mixed boundary condition. We
also show that if the value function is upper semicontinuous, then it is the maximum subsolution of
the Hamilton–Jacobi equation involving the proximal superdifferentials with the natural boundary
condition, and if the value function is lower semicontinuous, then it is the minimum solution of the
Hamilton–Jacobi equation involving the proximal subdifferentials with a natural boundary condi-
tion. Futhermore, if a compatibility condition is satisfied, then the value function is the unique lower
semicontinuous solution of the Hamilton–Jacobi equation with a natural boundary condition and a
subdifferential type boundary condition. Some conditions ensuring lower semicontinuity of the value
functions are also given.

Key words. Hamilton–Jacobi equation, dynamic programming principle, exit time problems,
proximal subdifferentials

AMS subject classifications. 49L05, 49L20
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1. Introduction. In this paper we study the exit time problem (also called the
control problem with a boundary condition as in [10]). In its simplest form, the exit
time problem involves a given open set E in Rn, and asks for choices for the time
t∗ ≥ 0 and the measurable function u on [0, t∗) which will

minimize J(x, u) :=

∫ t∗

0

e−λsf(y(s), u(s))ds+ e−λt
∗
h(y(t∗))

subject to (s.t.) ẏ(t) = g(y(t), u(t)) a.e. t ∈ [0, t∗],
u(t) ∈ U a.e. t ∈ [0, t∗),

y(0) = x, y(t) ∈ E, 0 ≤ t < t∗, y(t∗) �∈ E.
By the classical Hamilton–Jacobi (H–J) theory (or the so-called dynamic pro-

gramming theory), if the value function V is continuously differentiable, then it is the
unique solution of the following H–J equation:

λV (x) +H(x,−∇V (x)) = 0 ∀x ∈ E,(1)

where the Hamiltonian H(x, p) := max{p · g(x, u)− f(x, u) : u ∈ U}, with the natural
boundary condition

V (x) = h(x) ∀x ∈ ∂E.
Due to the complicated behavior of the trajectories at the boundary of the state

space, the value function for the exit time problem is in general discontinuous, even
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if all the problem data are Lipschitz continuous, unless some nontangency condition
is imposed on the boundary (see, e.g., [12, 23, 10] for the Lipschitz continuity of the
value function). Solving the H–J equation (1) with appropriate boundary conditions
in some nonclassical sense has become an active research area. Gonzalez and Rofman
[13] proved that the value function is an upper bound of a suitable set of subsolutions
of the H–J equation. Dempster and Ye [10] characterized the Lipschitz value function
as a solution of the H–J equation involving the Clarke generalized gradient. Bardi
and Soravia [2], Barles and Perthame [4, 5], Blanc [6], Ishii [14], and Soravia [17, 18]
have studied the solution of the H–J equation (1) with various boundary conditions in
the framework of the viscosity solutions first introduced by Crandall and Lions [9] for
continuous functions and later defined for discontinuous functions by Ishii [14, 15] and
modified by Barron and Jenson [3] for the case of convex Hamiltonians. The reader
is also referred to the recent monograph of Bardi and Capuzzo-Dolcetta [1] for the
history and the recent development of the H–J equation using the viscosity approach.

Under assumptions that reduce the exit time problem to a generalized optimal
stopping time problem, Ye and Zhu [24] showed that the value function of the exit
time problem with relaxed controls is the unique lower semicontinuous solution of the
H–J equation with the usual gradient replaced by the proximal subdifferential ∂pV (x)
(see Definition 2.1) with the natural boundary condition

V (x) = h(x) ∀x ∈ Ec,
where Ec denotes the complement of the state space E and the subdifferential type
boundary condition, i.e.,

λV (x) +H(x,−∂pV (x)) ≤ 0 ∀x ∈ ∂E.
The purpose of this paper is to extend the H–J theory using the equivalence

between the invariance and the H–J equation to treat exit time problems under as-
sumptions that are much more general than those in [24]. In particular, we allow
the discount rate λ to be zero and the exit cost h to be unbounded. In Theorem
2.2 we show that the lower (upper) semicontinuous envelope of the value function
is a supersolution (subsolution) of the H–J equation involving the proximal subdif-
ferentials (superdifferentials) with subdifferential-type (superdifferential-type) mixed
boundary condition. In Theorems 2.3 and 2.4 we show that if the value function is
upper semicontinuous, then it is the maximum subsolution of the H–J equation in-
volving the proximal superdifferentials with the natural boundary condition, and if
the value function is lower semicontinuous, then it is the minimum solution of the
H–J equation involving the proximal subdifferentials with a natural boundary condi-
tion. Some conditions ensuring lower semicontinuity of the value functions are given
in Proposition 2.5.

The technique of treating semicontinuous solutions to the H–J equation by using
equivalence between the invariance property and the H–J equation was first introduced
by Subbotin [19] for differential games (see also Subbotin [20]) and has been used
in [8, 11] for finite horizon problems and in [22] for minimal time problems. The
equivalence of the various concepts of the solution to the H–J equation in an open set
was also given in [8].

We arrange the paper as follows: In the next section we state the problem for-
mulation for the exit time problem and our main results. In section 3 we establish
the equivalence among the optimality principle, the invariance property, and the H–J
equations. The proofs of the main results are contained in section 4.
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2. The exit time problems and the H–J equation. Let U be a compact
subset of Rm and Prob(U) the set of all Borel probability measures on U . Consider
Prob(U) as a subset of the dual of C(U) endowed with the weak star topology, where
C(U) is the Banach space of continuous functions on U with the supremum norm.
For any φ ∈ C(U) and u ∈ Prob(U), we denote the pairing of φ and u by φ(u) :=∫
U
φ(r)u(dr). Let U be the set of all Lebesgue measurable mappings from R to

Prob(U). For finite real numbers a < b, define U[a,b] := {u|[a,b] : u ∈ U}. Then U[a,b]

is a weak star compact subset of L1([a, b];C(U))∗. We endow U with the following
topology: un converges to u in U provided that un|[a,b] converges to u|[a,b] in U[a,b]

for any finite real numbers a < b. The set U[a,b] is the collection of relaxed control
functions defined in Warga [21]. It is the compactification of the set of usual control
functions in the weak star topology of L1([a, b];C(U))∗. Elements of U[a,b] are called
relaxed controls. Using the set of relaxed controls ensures the existence of the optimal
solution and also ensures the convexity of the velocity set so that the invariance
theorems can be used. Any relaxed control can be approximated by usual controls.
We refer to [21] for more details.

Let the state space E be an open subset of Rd, Ē be the closure of E, and O
be an open set containing Ē. Assume that g : O × U → Rd satisfies the following
condition.

(H1) g(x, u) is continuous, bounded, and Lipschitz in x uniformly in u ∈ U .
Under such a condition, for each x ∈ O and u ∈ U , the differential equation

ẏ(s) = g(y(s), u(s)) a.e.

has a unique solution defined on R that satisfies the side condition y(0) = x. We
denote this solution by y[x, u](·) to indicate its dependence on x and u.

For each initial state x ∈ E and control function u, define the exit time t∗[x, u]
to be the first time the trajectory starting from x ∈ E corresponding to the control u
exits from the state space E, or infinity if it never exits the state space; i.e.,

t∗[x, u] := inf{t > 0 : y[x, u](t) �∈ E},

where inf ∅ =∞ by convention. For any x ∈ Ec, we define t∗[x, u] := 0. Where there
is no confusion, we will simply use t∗ instead of t∗[x, u].

Let λ ≥ 0 be the discount rate. Consider the following exit time problem:

Px minimize J(x, u) :=

∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
h(y[x, u](t∗))

s.t. u ∈ U .

We state some further basic assumptions:
(H2) The running cost f(x, u) : O×U → Rd is continuous, bounded, and Lipschitz

in x uniformly in u ∈ U . The exit cost h(x) : O → R is lower semicontinuous.

Furthermore, when t∗[x, u] =∞ the integral
∫ t∗
0
e−λsf(y[x, u](s), u(s))ds con-

verges and the limit e−λ∞h(y[x, u](∞)) := limr→∞ e−λrh(y[x, u](r)) exists
and is finite.

Remark 1. The exit time problem we consider in this paper is more general
than that usually considered in the literature (see, e.g., [1, 6]) in that we allow the
discount rate λ to be zero and the exit cost h to be unbounded. Notice that under
the assumption that f is bounded, the integral

∫∞
0
e−λsf(y[x, u](s), u(s))ds converges
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automatically for the case λ > 0 so the assumption (H2) is mainly for the case when
λ = 0.

Under our assumptions, it is known that there exists an optimal control for the
exit time problem for each x ∈ E. Define the value function of the family of problems
Px as

V (x) := min

{∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
h(y[x, u](t∗)) : u ∈ U

}
.

Unlike a standard free end point optimal control problem whose value function
is continuous if the terminal cost is continuous, the value function for the exit time
problem is in general discontinuous even in the case where the terminal cost h is
smooth. To see this we examine two simple examples.

Example 1. Let E = (0, 1) be the state space and the control set U = {−1}.
Consider the following exit time problem where f(x, u) ≡ 0, g(x, u) = u, h(x) = x,
λ = 0 :

min y(t∗)
s.t. ẏ = u, u(t) = −1,

y(0) = x.

It is easy to see that the value function

V (x) =

{
0 if x ∈ [0, 1),
x if x �∈ [0, 1)

is upper semicontinuous with discontinuity at x = 1.
Example 2. In Example 1, change the control set to U = {1}. Then the value

function becomes

V (x) =

{
1 if x ∈ (0, 1],
x if x �∈ (0, 1],

which is lower semicontinuous with discontinuity at x = 0.
In order to see the connections between the value function and the H–J equations

we define the lower and upper semicontinuous envelopes of a function W : O → R as

W∗(x) := lim inf
y→x

W (y)

and

W ∗(x) := lim sup
y→x

W (y),

respectively. Then it is easy to see that W∗ is lower semicontinuous and W ∗ is upper
semicontinuous.

We will use the concept of proximal subdifferentials (superdifferentials) for any
lower (upper) semicontinuous functions defined as follows.

Definition 2.1 (see, e.g., Clarke [7] and Loewen [16]). Let φ : Rd → (−∞,∞]
be an extended-valued lower semicontinuous function. The proximal subdifferential of
φ at x ∈ Rd where φ(x) �=∞ is a set-valued map defined by

∂pφ(x) := {ξ ∈ Rd :∃σ > 0, δ > 0

s.t. φ(y) ≥ φ(x)− σ‖y − x‖2 + 〈ξ, y − x〉 ∀y ∈ x+ δB},
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where 〈a, b〉 denotes the inner product of the vectors a and b and B denotes the open
unit ball. Let φ : Rd → [−∞,∞) be an extended-valued upper semicontinuous func-
tion. The proximal superdifferential of φ at x where φ(x) �=∞ is defined by

∂pφ(x) := −∂p(−φ)(x),

i.e.,

∂pφ(x) := {ξ ∈ Rd :∃σ > 0, δ > 0

s.t. φ(y) ≤ φ(x) + σ‖y − x‖2 + 〈ξ, y − x〉 ∀x+ δB}.

Remark 2. Since the function y → φ(x)−σ‖y−x‖2+〈ξ, y−x〉 in the right-hand
side of the inequality in the definition of the proximal subdifferential is a quadratic,
it is easy to see that ξ ∈ ∂pφ(x) if and only if there is a parabola fitting under the
epigraph of φ at (x, φ(x)) with ξ as the slope of φ at x. Hence, in the case where there
does not exist a parabola fitting under the epigraph of φ at (x, φ(x)), the proximal
subdifferential of φ at x may be empty (e.g., φ(x) = −|x| has an empty proximal
subdifferential at 0). Similarly the proximal superdifferential may be empty. However,
we shall see later that the emptiness of the proximal subdifferential (superdifferential)
is actually an advantage.

We now state our main results. The first result gives the connection between the
semicontinuous envelopes of the value function and the H–J inequalities.

Theorem 2.2. Under assumptions (H1)–(H2) the lower semicontinuous enve-
lope of the value function V∗(x) is a supersolution of the H–J equation involving the
proximal subdifferentials (in E), i.e.,

λV∗(x) +H(x,−∂pV∗(x)) ≥ 0 ∀x ∈ E(2)

with the subdifferential-type mixed boundary condition

max{V∗(x)− h(x), λV∗(x) +H(x,−∂pV∗(x))} ≥ 0 ∀x ∈ ∂E,(3)

and the upper semicontinuous envelope of the value function V ∗(x) is a subsolution
of the H–J equation involving the proximal superdifferentials (in E), i.e.,

λV ∗(x) +H(x,−∂pV ∗(x)) ≤ 0 ∀x ∈ E,(4)

with the superdifferential-type mixed boundary condition

min{V ∗(x)− h∗(x), λV ∗(x) +H(x,−∂pV ∗(x))} ≤ 0 ∀x ∈ ∂E,(5)

where ∂E denotes the boundary of E.
Remark 3. Equation (2) should be understood in the following sense: At any

point x ∈ E where ∂pV∗(x) �= ∅,

λV∗(x) +H(x,−ξ) ≥ 0 ∀ξ ∈ ∂pV∗(x).

Hence the points x where ∂pV∗(x) = ∅ can be neglected. Equation (4) is understood in
a similar way. Equation (3) means that if x ∈ ∂E is a point where V∗(x) < h(x) and
∂pV∗(x) �= ∅, then

λV∗(x) +H(x,−ξ) ≥ 0 ∀ξ ∈ ∂pV∗(x).
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Similarly, (5) means that if x ∈ ∂E is a point where V ∗(x) > h∗(x) and ∂pV ∗(x) �= ∅,
then

λV ∗(x) +H(x,−ξ) ≤ 0 ∀ξ ∈ ∂pV ∗(x).

Note that a similar result was given in Theorem 2.9 of Blanc [6] in the viscosity
solution sense for the case λ > 0 and bounded exit cost h. In general, as in Remark
2.7 of Blanc [6], we do not expect to have a unique function that satisfies (2)–(5).

When the value function has a semicontinuity property, the following two the-
orems give connections between the value function (instead of its semicontinuous
envelopes) and the H–J equation with natural boundary condition (instead of the
mixed boundary condition).

Theorem 2.3. In additions to assumptions (H1)–(H2), assume that the value
function is upper semicontinuous. Then it is the maximum upper semicontinuous
function that is a subsolution of the H–J equation involving the proximal superdiffer-
entials (in E), i.e.,

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ E,
with the natural boundary condition

W (x) = h(x) ∀x ∈ ∂E.
Theorem 2.4. In additions to assumptions (H1)–(H2), assume that the value

function is lower semicontinuous. Then it is the minimum lower semicontinuous
solution of the H–J equation involving the proximal subdifferentials (in E), i.e.,

λW (x) +H(x,−∂pW (x)) = 0 ∀x ∈ E,
with the natural boundary condition

W (x) = h(x) ∀x ∈ ∂E.
We now give some conditions which ensure lower semicontinuity of the value

function. First we state the required assumptions.
(A) ∀ x ∈ ∂E and u ∈ U such that y[x, u](t) ∈ Ē ∀t ∈ [0,∞), the limit

limr→∞ e−λrh(y[x, u](r)) exists. Also, ∀x ∈ ∂E, all controls u ∈ U and
r ≥ 0 such that y[x, u](t) ∈ Ē∀t ∈ [0, r], y[x, u](r) ∈ ∂E, or r =∞,

h(x) ≤
∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r)).

Proposition 2.5. In addition to assumptions (H1)–(H2), if (A) is satisfied, then
the value function V (x) is lower semicontinuous on Ē.

Proof. Let x ∈ Ē and xn ∈ Ē, xn → x. By definition of the value function for
each n, there exists un ∈ U and t∗[xn, un] := t∗n such that

V (xn) =

∫ t∗n

0

e−λsf(y[xn, un](s), un(s))ds+ e−λt
∗
nh(y[xn, un](t

∗
n)).(6)

We now consider two cases.
Case 1. The sequence {t∗n} is bounded. Without loss of generality we may assume

that t∗n converges to r, t∗n ∈ [0, r + 1] and un|[0,r+1] converges to u ∈ U[0,r+1] in the
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topology of U[0,r+1]. Then y[xn, un](s) uniformly converges to y[x, u](s) in [0, r + 1].
Since Ē and ∂E are closed, y[x, u](t) ∈ Ē ∀t ∈ [0, r] and y[x, u](r) ∈ ∂E. Taking lim
inf in (6) when n→∞ yields by virtue of lower semicontinuity of h

lim inf
n→∞ V (xn) ≥

∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r))

=

∫ t∗

0

e−λsf(y[x, u](s), u(s))ds

+

∫ r

t∗
e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r))

≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
h(y[x, u](t∗))

(by assumption (A))

≥ V (x).
Case 2. The sequence {t∗n} is unbounded. Without loss of generality we may

assume that t∗n →∞. For each integer m > 0, consider the restriction of un to [0,m].
Since U[0,m] is compact we can extract a convergent subsequence from {un|[0,m]}.
Using the diagonal method we can choose a subsequence {uni

} of {un} and an element
u ∈ U such that uni |[0,m] converges to u|[0,m] in U|[0,m] for any m. We may assume
that

lim
i→∞

V (xni) = lim inf
n→∞ V (xn).

Taking lim inf in (6) when ni →∞ yields in the case t∗[x, u] =∞ that

lim inf
i→∞

V (xni) ≥
∫ ∞

0

e−λsf(y[x, u](s), u(s))ds+ e−λ∞h(y[x, u](∞))

≥ V (x)
and in the case t∗[x, u] <∞ that

lim inf
i→∞

V (xni) ≥
∫ ∞

0

e−λsf(y[x, u](s), u(s))ds+ e−λ∞h(y[x, u](∞))

=

∫ t∗

0

e−λsf(y[x, u](s), u(s))ds

+

∫ ∞

t∗
e−λsf(y[x, u](s), u(s))ds+ eλ∞h(y[x, u](∞))

≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
h(y[x, u](t∗))

(by assumption (A))

≥ V (x).
The proof of the proposition is complete.

Remark 4. In its essentials the above result says that if we allow the trajectory
to continue after the first exit time but assume that it is cheaper to stop at the first exit
time than to continue until the trajectory reaches the boundary again, then the value
function is lower semicontinuous. The assumption (A) is not satisfied at the boundary
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point x = 1 for Example 1 since the only r in this case is r = 1 and the trajectory
starting at x = 1 using the only control u = −1 reaches the boundary state x = 0 at
time r = 1, but 1 = h(1) �≤ h(y[1, u](1)) = 0. On the other hand, the assumption (A)
is satisfied by Example 2 and hence the value function is lower semicontinuous.

Combining Theorem 2.4 and Proposition 2.5, we have the following corollary.
Corollary 2.6. Under assumptions (H1), (H2), and (A), the value function is

the minimum lower semicontinuous solution of the H–J equation involving the proxi-
mal subdifferentials (in E), i.e.,

λW (x) +H(x,−∂pW (x)) = 0 ∀x ∈ E,(7)

with the natural boundary condition

W (x) = h(x) ∀x ∈ ∂E.(8)

One may wonder whether the natural boundary condition (8) is enough for the
uniqueness of the solution to (7). The following example gives a negative answer.

Example 3. Let E = R2\{0} be the state space and the control set U = [−1, 1].
Consider the exit time problem where f(x, u) ≡ 1, g(x, u) = (u, 0), h(x) = 0, λ = 1. It
is easy to see that

V (x) =

{∫ |x1|
0
e−sds = 1− e−|x1| if x2 = 0,∫∞

0
e−sds = 1 if x2 �= 0,

H(x, p) = max{p1u : u ∈ [−1, 1]} − 1 = |p1| − 1,

and

∂pV (x1, 0) =



(e−x1 , 0) if x1 > 0,
(−ex1 , 0) if x1 < 0,
[−1, 1]× {0} if x1 = 0.

Hence the value function is a lower semicontinuous solution of the H–J equation (7)
with the natural boundary condition (8). However, the functionW (x) = 1 if x �= 0 and
W (0) = 0 is also a lower semicontinuous solution of (7), (8). Indeed, by Corollary 2.6,
the value function is the minimum solution of the H–J equation (7) with the natural
boundary condition V (0) = 0.

The above example shows that the natural boundary condition (8) may not be
enough to ensure the uniqueness of the solution to the H–J equation involving the
proximal subdifferentials (7). However, V satisfies the subdifferential-type boundary
condition

λV (0) +H(x,−∂pV (0)) ≤ 0

while W (x) does not satisfy the above boundary condition. (Note ∂pW (0) = R2.)
We now give a compatibility condition stronger than assumption (A) under which the
value function is not only lower semicontinuous but also a unique lower semicontinuous
solution to the H–J equation involving the proximal subdifferentials with the natural
boundary condition and the subdifferential-type boundary condition.

(H3) ∀ x ∈ O \ E, all controls u ∈ U

h(x) ≤
∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrh(y[x, u](r)) ∀0 ≤ r < τ∗,(9)
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where

τ∗ := inf{t > 0 : y[x, u](t) �∈ O \ E}

and when

τ∗ =∞,
∫ τ∗

0

e−λsf(y[x, u](s), u(s))ds

converges and the limit limr→∞ e−λrh(y[x, u])(r)) exists and is finite.
Remark 5. When E = Rd and h = 0 the exit time problem becomes an infinite

horizon problem and assumption (H3) is satisfied vacuously. If f ≥ 0 and h = 0, then
assumption (H3) is also satisfied. This includes the time optimal control problem since
solving a time optimal control problem is equivalent to solving an exit time problem
with f = 1 and h = 0. Note that (H3) is a local version of the assumption (5.8) in
Bardi and Capuzzo-Dolcetta [1] and (H3′) in Ye and Zhu [24].

The statement of the following theorem is known from Corollary 4.5 of Ye and
Zhu [24] for the case where λ > 0 and h is bounded under the assumption that (9)
is satisfied globally ∀x ∈ Rd. However, the proof we give here is independent and
different.

Theorem 2.7. Under assumptions (H1)–(H3), the value function V (x) is a
unique lower semicontinuous solution of the H–J equation involving the proximal sub-
differentials (in E), i.e.,

λV (x) +H(x,−∂pV (x)) = 0 ∀x ∈ E

with the natural boundary condition

V (x) = h(x) ∀x ∈ O\E

and the subdifferential-type boundary condition, i.e.,

λV (x) +H(x,−∂pV (x)) ≤ 0∀x ∈ ∂E.

Remark 6. Note that a similar result was proved in Theorem 5.5 of Bardi and
Capuzzo-Dolcetta [1] for the lower semicontinuous envelope of the value function in
the viscosity solution sense in the case where λ > 0 and h is bounded under the
assumption that (9) is satisfied globally ∀x ∈ Rd.

3. Optimality principle, invariance, and the H–J equation.
Definition 3.1. Let W (x) : G :→ R where G ⊆ Rd is an open set. We say that

W (x) satisfies
(a) the superoptimality principle in G if and only if ∀x ∈ G there exists a control
u ∈ U such that

W (x) ≥
∫ τ

0

e−λsf(y[x, u](s), u(s))ds+ e−λτW (y[x, u](τ)) ∀0 ≤ τ < τ∗;

(b) the suboptimality principle in G if and only if ∀x ∈ G and ∀u ∈ U ,

W (x) ≤
∫ τ

0

e−λsf(y[x, u](s), u(s))ds+ e−λτW (y[x, u](τ)) ∀0 ≤ τ < τ∗.
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Here τ∗ := inf{t > 0 : y[x, u](t) �∈ G} is the exit time from set G.
The following facts are well known from the Bellman optimality principle.
Proposition 3.2. The value function V (x) satisfies the superoptimality principle

in E and suboptimality principle in E.
Furthermore, the following results indicate that not only the value function but

also its lower (upper) semicontinuous envelope satisfies the superoptimality (subopti-
mality) principle in E.

Proposition 3.3. The lower semicontinuous envelope of the value function V∗(x)
satisfies the superoptimality principle in E and the upper semicontinuous envelope of
the value function V ∗(x) satisfies the suboptimality principle in E.

Proof. Fix x ∈ E, and suppose V∗(x) = limn→∞ V (xn) where limn→∞ xn =
x, xn ∈ E. Then by Proposition 3.2, there exists un ∈ U and t∗[xn, un] = t∗n such that

V (xn) ≥
∫ τ

0

e−λsf(y[xn, un](s), un(s))ds+ e−λτV (y[xn, un](τ)) ∀0 ≤ τ < t∗n.

Without loss of generality assume that t∗n → t∗ where t∗ may be finite or infinity.
Let 0 ≤ τ < t∗. Hence, for n large enough τ ≤ t∗n. Taking limits and using the
compactness of relaxed controls, we find a control u ∈ U such that

V∗(x) ≥
∫ τ

0

e−λsf(y[x, u](s), u(s))ds+ e−λτV∗(y[x, u](τ)) ∀0 ≤ τ < t∗.

Similarly we can prove that V ∗(x) satisfies the suboptimality principle.
In the following proposition, we show that either semicontinuity on Ē and the

optimality principle in E or the suboptimality principle in an open set containing Ē
gives the comparison results.

Proposition 3.4.
(a) Suppose that W satisfies the superoptimality principle in E. If W is lower

semicontinuous on Ē and

W (x) ≥ h(x) ∀x ∈ ∂E,

then W (x) ≥ V (x) ∀x ∈ Ē.
(b) Suppose that W satisfies the suboptimality principle in E. If W is upper

semicontinuous on Ē and

W (x) ≤ h(x) ∀x ∈ ∂E,

then W (x) ≤ V (x) ∀x ∈ Ē.
(b′) Suppose that W satisfies the suboptimality principle in the open set O con-

taining Ē and

W (x) ≤ h(x) ∀x ∈ ∂E.

Then W (x) ≤ V (x) ∀x ∈ Ē.
Proof. (a) Suppose that W satisfies the superoptimality in E and W (x) ≥

h(x) ∀x ∈ ∂E. Then ∀x ∈ E there exists u ∈ U such that ∀τn ∈ [0, t∗).

W (x) ≥
∫ τn

0

e−λsf(y[x, u](s), u(s))ds+ e−λτnW (y[x, u](τ)).
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Without loss of generality, assume that τn → t∗. Taking limits in the above inequality,
we have by the compactness of relaxed controls and the lower semicontinuity of the
function W that

W (x) ≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
W (y[x, u](t∗))

≥
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
h(y[x, u](t∗))

≥ V (x).
Similarly we can prove (b).

(b′) Now suppose W satisfies the suboptimality in O and W (x) ≤ h(x) ∀x ∈ ∂E.
If x ∈ ∂E, then W (x) ≤ h(x) = V (x). If x ∈ E, then ∀u ∈ U we have

W (x) ≤
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
W (y[x, u](t∗))(10)

≤
∫ t∗

0

e−λsf(y[x, u](s), u(s))ds+ e−λt
∗
h(y[x, u](t∗)).(11)

Hence W (x) ≤ V (x).
Definition 3.5 (see [22, Definition 3.1]). Suppose Ω ⊂ Rn is nonempty, Θ ⊂ Rn

is open, and Γ : Rn =⇒ Rn is a set-valued map.
(a) Then (Γ,Ω) is weakly invariant in Θ provided that ∀x ∈ Ω ∩ Θ, there ex-

ists an absolutely continuous function y(·) that satisfies ẏ(s) ∈ Γ(y(s)) a.e.,
y(0) = x, and

y(s) ∈ Ω ∀s ∈ [0, τ∗).

(b) Then (Γ,Ω) is strongly invariant in Θ provided that ∀x ∈ Ω ∩Θ and for any
absolutely continuous function y(·) that satisfies ẏ(s) ∈ Γ(y(s)) a.e., y(0) = x
one has

y(s) ∈ Ω ∀s ∈ [0, τ∗)

where τ∗ := inf{t > 0 : y(t) �∈ Θ}.
Define

F (s, x, r) := {(g(x, u),−e−λsf(x, u)) : u ∈ U},
F̃ (s, x, r) := {(g(x, u), e−λsf(x, u)) : u ∈ U}.

We write {1} × F for the set-valued map defined as

({1} × F )(s, x, r) := {(1, g(x, u),−e−λsf(x, u)) : u ∈ U}.
Similarly, we define {1} × F̃ and {−1} × {−F}. Let W : G → R. We denote the
epigraph of the function e−λtW (x) by XW , i.e.,

XW := {(t, x, r) : r ≥ e−λtW (x)}.
The following results show that the optimality principles are equivalent to the invari-
ance properties.

Proposition 3.6 (equivalence of optimality principles and invariances). Let G
be an open set in Rd.



1078 J. J. YE

(a) A function W satisfies the superoptimality principle in G if and only if ({1}×
F,XW ) is weakly invariant in R×G×R;

(b) A function W satisfies the suboptimality principle in G if and only if either

({1}×{F̃}, X−W ) is strongly invariant in R×G×R or ({−1}×{−F}, XW )
is strongly invariant in R×G×R.

Proof. Since the proof is straightforward by using definitions, we prove only the
second part of (b). Let (t, x, r) ∈ XW ∩R×G×R. Then x ∈ G and r ≥ e−λtW (x).
By suboptimality principle, we have ∀u ∈ U ,

eλτW (y[x, u](−τ)) ≤
∫ 0

−τ
e−λsf(y[x, u](s), u(s))ds+W (x) ∀0 ≤ τ ≤ τ∗,

where τ∗ := inf{t > 0 : y[x, u](−τ) �∈ G}. Let z0(τ) = −τ + t, z(τ) = y[x, u](−τ),
zd+1(τ) = r −

∫ −τ
0
e−λ(t+s)f(y[x, u](s), u(s))ds. Then z0(0) = t, z(0) = y[x, u](0) =

x, zd+1(0) = r, (ż0, ż, ˙zd+1)(s) ∈ ({−1} × {−F})(z0(s), z(s)), and

zd+1(τ) = r −
∫ −τ

0

e−λ(t+s)f(y[x, u](s), u(s))ds

≥ e−λtW (x)−
∫ −τ

0

e−λ(t+s)f(y[x, u](s), u(s))ds

= e−λt(W (x)−
∫ −τ

0

e−λsf(y[x, u](s), u(s))ds)

≥ e−λ(t−τ)W (y[x, u](−τ))
= e−λz0(τ)W (z(τ)).

That is, (z0, z, zd+1)(τ) ∈ XW ∀0 ≤ τ < τ∗. So ({−1} × {−F}, XW ) is strongly
invariant in R × G × R. Conversely, we can show that if ({−1} × {−F}, XW ) is
strongly invariant in R × G × R, then W satisfies the suboptimality principle in
G.

In the case when the function satisfying the optimality principles has semicontinu-
ity properties, the invariances can be described by the H–J equations in the following
way.

Proposition 3.7 (equivalence of invariances and the H–J equations). Let G be
an open subset in Rd.

(a) Let W : G→ R be a lower semicontinuous function. Then ({1} × F,XW ) is
weakly invariant in R×G×R if and only if

λW (x) +H(x,−∂pW (x)) ≥ 0 ∀x ∈ G.

(b) Let W : G→ R be an upper semicontinuous function. Then ({1} × F̃ ,X−W )
is strongly invariant in R×G×R if and only if

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.

(b′) LetW : G→ R be a lower semicontinuous function. Then ({−1}×{−F}, XW )
is strongly invariant in R×G×R if and only if

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.
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The proof is based on the following lemmas. We denote Np
Ω(x) = ∂pδΩ(x), where

δΩ is the indicator function of a set Ω defined by

δΩ(x) =

{
0 if x ∈ Ω,
+∞ if x �∈ Ω.

Lemma 3.8 (see, e.g., [22, Theorem 3.1]). Suppose that for each x ∈ Rn, Γ(x) is
not empty, convex, and compact, and the graph gphΓ := {(x, v) : v ∈ Γ(x)} is closed
in R2n. Let Ω ⊆ Rn be closed and Θ ⊆ Rn be open.

(a) Then (Γ,Ω) is weakly invariant in Θ if and only if

min{〈v, ξ〉 : v ∈ Γ(x)} ≤ 0 ∀x ∈ Ω ∩Θ, ξ ∈ Np
Ω(x),

where Np
Ω(x) is the proximal normal cone to Ω at x ∈ Ω defined by

Np
Ω(x) := {ξ ∈ Rn : ∃M > 0 s.t. 〈ξ, x′ − x〉 ≤M‖x′ − x‖2 ∀x′ ∈ Ω}.

(b) In addition, assume that Γ is Lipschitz continuous; i.e., for each compact
subset C ⊂ Rn, there exists K > 0 so that

Γ(x) ⊂ Γ(y) +K‖x− y‖B ∀x, y ∈ C.
Then (Γ,Ω) is strongly invariant in Θ if and only if

max{〈v, ξ〉 : v ∈ Γ(x)} ≤ 0 ∀x ∈ Ω ∩Θ, ξ ∈ Np
Ω(x).

Lemma 3.9. Suppose that for each x ∈ Rn, Γ(x) is not empty, convex, and
compact, and the graph gphΓ := {(x, v) : v ∈ Γ(x)} is closed in R2n. Let θ be a lower
semicontinuous function and Θ be an open subset of Rn. Then

(a)

min{〈v1, η〉+ v2ρ : (v1, v2) ∈ Γ(z, r)} ≤ 0 ∀(z, r) ∈ epiθ ∩Θ,
(η, ρ) ∈ Np

epiθ(z, r)(12)

if and only if

min{〈v1, η〉 − v2 : (v1, v2) ∈ Γ(z, θ(z))} ≤ 0 ∀z ∈ Θ, η ∈ ∂pθ(z).(13)

(b) In addition, assume that Γ is Lipschitz continuous. Then

max{〈v1, η〉+ v2ρ : (v1, v2) ∈ Γ(z, θ(z))} ≤ 0 ∀(z, r) ∈ epiθ ∩Θ,
(η, ρ) ∈ Np

epiθ(z, r)(14)

if and only if

max{〈v1, η〉 − v2 : (v1, v2) ∈ Γ(z, θ(z)))} ≤ 0 ∀z ∈ Θ, η ∈ ∂pθ(z).(15)

Proof. Since an equivalent definition of the proximal subdifferential of φ at z is
that

η ∈ ∂pθ(z) if and only if (η,−1) ∈ Np
epiθ(z, θ(z)),

(13) and (15) are (12) and (14) with r = θ(z) and ρ = −1, respectively. So it suffices
to prove that (13) and (15) imply (12) and (14), respectively.
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We first suppose that (13) holds. Let (z, r) ∈ epiθ ∩Θ, (η, ρ) ∈ Np
epiθ(z, r). Then

by the nature of epigraphs, we have ρ ≤ 0. Let us assume first that ρ < 0 from which it
follows that r = θ(z). Since Np

epiθ(z, θ(z)) is a cone, we have (−ηρ ,−1) ∈ Np
epiθ(z, θ(z))

and consequently −ηρ ∈ ∂pθ(z). By (13), we have

min

{
−
〈
v1,
η

ρ

〉
− v2 : (v1, v2) ∈ Γ(z, θ(z))

}
≤ 0.

Since ρ < 0, we have

min{〈v1, η〉+ v2ρ : (v1, v2) ∈ Γ(z, θ(z))} ≤ 0.

That is, (12) holds ∀ ρ < 0.
We see that (η, ρ) = 0 trivially satisfies (12). Now suppose ρ = 0 and η �= 0,

from which it follows that (η, 0) ∈ Np
epiθ(z, θ(z)). By definition (cf. [16]), η is in the

singular limiting subdifferential of θ at z. So there exists {zi}, {ηi}, and {ρi} so that
zi → z, θ(zi)→ θ(z), ηi → η, ρi < 0, ρi ↑ 0, and −ηiρi ∈ ∂pθ(zi). By (13), we have

min

{
−
〈
v1,
ηi
ρi

〉
− v2 : (v1, v2) ∈ Γ(zi, θ(zi))

}
≤ 0.

So there exist (vi1, v
i
2) ∈ Γ(zi, θ(zi)) such that

〈vi1, ηi〉+ vi2ρi ≤ 0.

Without loss of generality, assume that vi1 → v1, vi2 → v2. Then (v1, v2) ∈ Γ(z, θ(z))
and

〈v1, η〉+ v2 · 0 ≤ 0 ∀(η, 0) ∈ Nepiθ(z, θ(z)),
which is (12) when ρ = 0.

Now suppose (15) holds. Let (η, ρ) ∈ Np
epiθ(z, r), (z, r) ∈ epiθ ∩ Θ. Then ρ ≤ 0.

If ρ < 0, then the proof is similar to that in (a). If ρ = 0, then r = θ(z), (η, 0) ∈
Np
epiθ(z, θ(z)). So there exist {zi}, {ηi}, and {ρi} such that zi → z, θ(zi)→ θ(z), ηi →
η, ρi < 0, ρi ↑ 0, and −ηiρi ∈ ∂pθ(zi). By (15), we have

max

{
−
〈
v1,
ηi
ρi

〉
− v2 : (v1, v2) ∈ Γ(zi, θ(zi))

}
≤ 0.

That is,

max{〈v1, ηi〉+ v2ρi : (v1, v2) ∈ Γ(zi, θ(zi))} ≤ 0.

Since Γ is Lipschitz continuous, letting (v1, v2) ∈ Γ(zi, θ(zi)), we have

Γ(zi, θ(zi)) ⊂ Γ(z, θ(z)) +K(‖z − zi‖2 + |θ(z)− θ(zi)|2)1/2B.
Therefore there exists (vi1, v

i
2) ∈ Γ(z, θ(z)) such that

(v1, v2) = (vi1, v
i
2) +K(‖x1 − zi‖2 + |θ(x1)− θ(zi)|2)1/2e,

where ‖e‖ ≤ 1. Hence

〈v1, ηi〉+ v2ρi = 〈vi1, ηi〉+ vi2ρi + 〈λie1, ηi〉+ 〈λie2, ρi〉
≤ 〈λie1, ηi〉+ 〈λie2, ρi〉,
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where λi = K(‖x1 − zi‖2 + |θ(x1)− θ(zi)|2)1/2 → 0 as i→∞. Taking limits, we have

〈v1, η〉+ v2 · 0 ≤ 0 ∀(η, 0) ∈ Nepiθ(x1, θ(x1)).

That is, (14) when ρ = 0.
Lemma 3.10 (see [24, Lemma 4.1]). Let W be an extended-valued lower semi-

continuous function. Then

∂p(e
−λtW (x)) = {−λe−λtW (x)} × {e−λt∂pW (x)}.

Proof of Proposition 3.7. By virtue of (a) in Lemmas 3.8 and 3.9, ({1} × F,XW )
is weakly invariant in R×G×R if and only if

min{ξ1 + ξ2 · g(x, u) + e−λtf(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, ξ ∈ ∂p(e−λtW (x)).

By Lemma 3.10, that is,

min{−λW (x) + η · g(x, u) + f(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, η ∈ ∂pW (x).

Hence

λW (x) +H(x,−η) ≥ 0 ∀x ∈ G, η ∈ ∂pW (x).

By virtue of (b) in Lemmas 3.8 and 3.9, ({1} × F̃ ,X−W ) is strongly invariant in
R×G×R if and only if

max{ξ1 + ξ2 · g(x, u)− e−λtf(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, ξ ∈ ∂p(−e−λtW (x)).

By Lemma 3.10, that is,

max{λW (x)− η · g(x, u)− f(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, η ∈ ∂p(−W (x)).

Hence

λW (x) +H(x,−η) ≤ 0 ∀x ∈ G, η ∈ ∂pW (x).

By virtue of (b) in Lemmas 3.8 and 3.9, ({−1}×{−F}, XW ) is strongly invariant
in R×G×R if and only if

max{−ξ1 − ξ2 · g(x, u)− e−λtf(x, u) : u ∈ U} ≤ 0 ∀x ∈ G, ξ ∈ ∂p(e−λtW (x)).

By Lemma 3.10, that is,

max{λW (x)− η · g(x, u)− f(x, u) : u ∈ U} ≤ 0 ∀x ∈ Rd, η ∈ ∂pW (x).

Hence

λW (x) +H(x,−η) ≤ 0 ∀x ∈ G, η ∈ ∂pW (x).

We now derive from Propositions 3.6 and 3.7 the equivalence between the opti-
mality principles and the H–J equations.

Proposition 3.11 (equivalence of optimality principles and the H–J equations).
Let G be an open subset of Rd.
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(a) Let W : G → R be a lower semicontinuous function. Then it satisfies the
superoptimality principle in G if and only if it is a supersolution of the H–J
equation involving the proximal subdifferentials in G; i.e.,

λW (x) +H(x,−∂pW (x)) ≥ 0 ∀x ∈ G.
(b) Let W : G → R be an upper semicontinuous function. Then it satisfies

the suboptimality principle in G if and only if it is a subsolution of the H–J
equation involving the proximal superdifferentials in G; i.e.,

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.
(b′) Let W : G → R be a lower semicontinuous function. Then it satisfies the

suboptimality principle in G if and only if it is a subsolution of the H–J
equation involving the proximal subdifferentials in G; i.e.,

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ G.
4. Proof of main results.
Proof of Theorem 2.2. By Proposition 3.3, V∗(x) satisfies the superoptimality

principle in E. So by (a) of Proposition 3.11, it is a supersolution of the H–J equation
involving the proximal subdifferentials in E.

We now prove that V∗ satisfies the boundary condition

max{V∗(x)− h(x), λV∗(x) +H(x,−∂pV∗(x))} ≥ 0 ∀x ∈ ∂E.(16)

If V∗(x)− h(x) ≥ 0 ∀x ∈ ∂E, then the boundary condition (16) holds. Otherwise
suppose that there exists x ∈ ∂E such that V∗(x) < h(x).

Let xn → x, V (xn)→ V∗(x). We may assume without loss of generality that xn ∈
E ∀n. Indeed, if there exists a subsequence {xp} of {xn} such that xp ∈ ∂E ∀p, then,
by definition of the value function on the boundary of E and the lower semicontinuity
of the exit cost h, we have

V∗(x) = lim
n→∞V (xn) = lim

p→∞V (xp) = lim
p→∞h(xp) ≥ h(x),

which contradicts the assumption that V∗(x) < h(x).
Now by the Bellman optimality principle, there exists a control un ∈ U , t∗n :=

t∗[xn, un] > 0 such that

V (xn) ≥
∫ r

0

e−λsf(y[xn, un](s), un(s))ds+ e−λτnV (y[xn, un](r)) ∀0 ≤ r ≤ t∗n.

Now let r̄ = lim inf t∗n. We must have r̄ > 0, since otherwise we can find a
subsequence of {t∗n} such that t∗n → 0 so that

V∗(x) = lim
n→∞V (xn)

≥ lim inf
n→∞

∫ t∗n

0

e−λsf(y[xn, un](s), un(s))ds+ lim inf
n→∞ e−λt

∗
nh(y[xn, un](t

∗
n))

≥ h(x) since h is lower semicontinuous,

which is a contradiction. Now by the compactness of relaxed controls on [0, r̄], there
exists u = limn→∞ un such that

V∗(x) ≥
∫ r

0

e−λsf(y[x, u](s), u(s))ds+ e−λrV∗(y[x, u](r)) ∀r ∈ (0, r̄].
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Let ξ ∈ ∂pV∗(x). Then there exist σ > 0, δ > 0 such that

V∗(x′)− V∗(x) + σ‖x′ − x‖2 ≥ 〈ξ, x′ − x〉 ∀x′ ∈ x+ δB.
Let x′ = y[x, u](r) where r ∈ [0, r̄] is fixed. Then

〈ξ, y[x, u](r)− x〉 ≤ σ‖y[x, u](r)− x‖2 + V∗(y[x, u](r))− V∗(x)
≤ σ‖y[x, u](r)− x‖2 − eλr

∫ r

0

e−λsf(y[x, u](s), u(s))ds

+eλrV∗(x)− V∗(x).
Since y[x, u](r)− x = ∫ r

0
g(y[x, u](s), u(s))ds, one has

∫ r

0

[〈−ξ, g(y[x, u](s), u(s))〉 − f(y[x, u](s), u(s))]ds

+

∫ r

0

[(1− eλ(r−s))f(y[x, u](s), u(s))]ds+ (eλr − 1)V∗(x) ≥ −σ‖y[x, u](r)− x‖2.

By virtue of the boundedness of g and the Lipschitz continuity of g, f uniformly in
u ∈ U , one has

‖y[x, u](r)− x‖ ≤Mgr

(‖ξ‖Lg + Lf )Mgs+ 〈ξ, g(x, u(s))〉 − f(x, u(s))
≥ 〈ξ, g(y[x, u](s), u(s))〉 − f(y[x, u](s), u(s)),

where Mg, Lg, Lf denote the bound of g and the Lipschitz constants of g, f , respec-
tively. Therefore, one has

∫ r

0

[〈−ξ, g(x, u(s))〉 − f(x, u(s))]ds+ (eλr − 1)V∗(x)

≥ o(r)−
∫ r

0

[(1− eλ(r−s))f(y[x, u](s), u(s))]ds

≥ o(r)−
∫ r

0

(1− eλ(r−s))Mfds,

where o(r) indicates a function g(r) such that limt→0+ |g(r)|/r = 0 and Mf is the
bound of f . Since the term in the square bracket in the first integral is bounded from
above by

H(x,−ξ) = max{〈−ξ, g(x, u)〉 − f(x, u) : u ∈ U},
(17) implies that

H(x,−ξ)r + (eλr − 1)V∗(x) ≥ o(r)−
∫ r

0

(1− eλ(r−s))Mfds.

Dividing the above inequality by r and letting r → 0, we have

λV∗(x) +H(x,−∂pV∗(x)) ≥ 0.

Similarly by Proposition 3.3, V ∗(x) satisfies the suboptimality principle. So by
Proposition 3.6, ({−1} × {−F}, XV ∗) is strongly invariant in R × E × R. Hence, by
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Proposition 3.7, V ∗ is a proximal subsolution of the H–J equation. The boundary
condition can be proved similarly.

Proof of Theorem 2.3. By Proposition 3.2, the value function V (x) satisfies the
suboptimality principle in E. Since V (x) is upper semicontinuous, by (b) of Proposi-
tion 3.11, it is a subsolution of the H–J equation involving the proximal superdiffer-
entials, i.e.,

λV (x) +H(x,−∂pV (x)) ≤ 0 ∀x ∈ E.
Conversely, let W (x) be an upper semicontinuous function such that

λW (x) +H(x,−∂pW (x)) ≤ 0 ∀x ∈ E
W (x) ≤ h(x) ∀x ∈ ∂E.

Then by (b) of Proposition 3.11, W satisfies the suboptimality principle in E. By (b)
of Proposition 3.4, W (x) ≤ V (x) ∀x ∈ Ē.

Proof of Theorem 2.4. By Proposition 3.2, the value function V satisfies both
the superoptimality principle in E and the suboptimality principle in E. Since the
value function is assumed to be lower semicontinuous, by the equivalence of the opti-
mality principles and the H–J equations ((a) and (b′) of Proposition 3.11), the value
function is both a supersolution and subsolution (hence a solution) of the H–J equa-
tion involving the proximal subdifferentials. Now if W (x) is a lower semicontinuous
solution of the H–J equation involving the proximal subdifferentials in E with the
natural boundary condition W (x) = h(x) ∀x ∈ ∂E, then by (a) of Proposition 3.4,
W (x) ≥ V (x) ∀x ∈ E.

Proof of Theorem 2.7. By Proposition 3.2, the value function V satisfies both
the superoptimality principle in E and the suboptimality principle in E. Observing
that V (x) = h(x) ∀x ∈ Ec we have by assumption (H3) that the value function also
satisfies the suboptimality principle in O which contains Ē. Since by Proposition 2.5
the value function is lower semicontinuous, by (a) and (b′) of Proposition 3.11,

λV (x) +H(x,−∂pV (x)) ≥ 0 ∀x ∈ E,(17)

λV (x) +H(x,−∂pV (x)) ≤ 0 ∀x ∈ O.(18)

Now suppose W is a lower semicontinuous function that satisfies (17), (18), and the
natural boundary condition W (x) = h(x) ∀x ∈ O\E. Then by Proposition 3.11, W
satisfies both the superoptimality principle in E and the suboptimality principle in
O. Hence by (a) and (b′) of Proposition 3.4, W (x) = V (x) ∀x ∈ Ē.
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Thèse de 3o Cycle, Univ. Paris, 1980.

[13] R. Gonzalez and E. Rofman, An algorithm to obtain the maximum solutions of the Hamilton-
Jacobi equation, in Optimization Techniques, J. Stoer, ed., Springer, Berlin, 1978, pp.
109–116.

[14] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann.
Sc. Norm. Sup. Pisa Cl. Sci., 16 (1989), pp. 105–135.

[15] H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), pp. 369–
384.

[16] P.D. Loewen, Optimal Control via Nonsmooth Analysis, CRM Proc. Lecture Notes 2, AMS,
Providence, RI, 1993.

[17] P. Soravia, Discontinuous viscosity solutions to Dirichlet problems for the Hamilton-Jacobi
equations with convex Hamiltonians, Comm. Partial Differential Equations, 18 (1993), pp.
1493–1514.

[18] P. Soravia, Pursuit–evasion problems and viscosity solutions of Isaacs equations, SIAM J.
Control Optim., 31 (1993), pp. 604–623.

[19] A.I. Subbotin, Generalization of the fundamental equation of the theory of differential games,
Dokl. Akad. Nauk SSSR, 254 (1980), pp. 293–297.

[20] A.I. Subbotin, Generalized Solutions of First-Order PDEs, the Dynamical Optimization Per-
spective, Birkhaüser, Boston, 1995.

[21] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New
York, 1972.

[22] P.R. Wolenski and Y. Zhuang, Proximal analysis and the minimal time function, SIAM J.
Control Optim., 36 (1998), pp. 1048–1072.

[23] J.J. Ye, Optimal Control of Piecewise Deterministic Markov Processes, Ph.D. thesis, Dalhousie
University, Halifax, NS, Canada, 1990.

[24] J.J. Ye and Q.J. Zhu, Hamilton-Jacobi theory for a generalized optimal stopping time problem,
Nonlinear Anal., 34 (1998), pp. 1029–1053.



LONG TIME BEHAVIOR FOR SOME DYNAMICAL NOISE FREE
NONLINEAR FILTERING PROBLEMS∗
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Abstract. A possible approach to studying the accuracy of optimal nonlinear filtering is to
look at the conditional law on an arbitrary neighborhood of the current (unknown) state as the time
goes to infinity. This paper is devoted to a restricted class of systems with a deterministic state
equation, and under additional assumptions, results concerning the concentration of the conditional
law are shown, as is how estimating the current state could be different from estimating the initial
condition. The assumptions on the system could seem quite restrictive; however, they concern only
the “observability” of the system, without any reference to ergodicity as in previous works.
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1. Introduction. The optimal filtering of nonlinear systems, in particular in
the framework of stochastic differential equations of Itô type, is now a well-studied
problem: the conditional law of the current state, given the past observations, is the
solution of the Kushner–Stratonovitch equation. For numerical purposes, the Zakai
equation, which gives an unnormalized conditional law, is also used. See, for instance,
[14] for a review on nonlinear filtering. Nevertheless, a crucial question is still open
concerning the “accuracy” of the filtering: that is, as time increases and as we obtain
more and more observations, what can we say about the conditional law of the current
state? What are the conditions to be imposed on the system in order to control in
some sense the filtering error?

Some results have been proved in [8] and [9] by Kunita when the state process
is ergodic. Let us also mention that the results presented in [8] have been extended
to the noncompact case in [7] by Ji. If we look at this problem as an asymptotic
stability problem of the Kushner–Stratonovitch equation (which can be considered as a
stochastic dynamical system on the infinite dimensional space of probability measures
on the state space), it becomes clear that it is closely related to the sensitivity of the
filter to the prior distribution. That is, given an erroneous initial distribution, does
the filter give results close to the ones obtained with the correct initialization, as
the time goes to infinity? Using again ergodicity arguments, Ocone and Pardoux [13]
showed some results concerning this topic. Note that this question about stability was
already addressed in the linear case by Bucy and Joseph [2].

Nevertheless, it seems natural that without any ergodicity, only some good fitting
between the dynamics and the observations should be sufficient (related to some
“observability” notion) to control the filtering error, say, to make it asymptotically
bounded for large time. This has been an open problem since the early developments
of the theory and may be considered as both challenging for the scientist and crucial
for practical purposes.

The aim of the present paper is to deal with such problems, in the restricted
framework of noise free dynamics, that is, with identically zero diffusion coefficient
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http://www.siam.org/journals/sicon/38-4/29012.html
†IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France (Frederic.Cerou@irisa.fr).

1086



LONG TIME BEHAVIOR FOR SOME FILTERING PROBLEMS 1087

on the state equation. This is a much simpler but nontrivial model, used with success
in some applications (such as passive target tracking), and for which well-adapted
numerical algorithms have been developed (see [1] and [3] for details). In fact we can
adopt a direct approach here: as we can write an explicit formula for the conditional
unnormalized density, under some assumptions ensuring a uniform good “observabil-
ity,” we can directly estimate the long time behavior of the conditional law. More
precisely we will show that for any ball of fixed radius centered at the current state
(and also moving with it), the integral of the conditional density on the ball converges
in probability to 1 as time goes to infinity. This criterion comes from practice—say
tracking problems—when the output consists of confidence regions, and it will ensure
that these regions will be included at large times in arbitrarily small neighborhoods
of the current state. We will investigate the general case without special behavior
of the dynamics, for which we need good observations on the whole space, and the
linear Gaussian case, for which we can give the behavior of the conditional covari-
ance matrix. Even though the assumptions imposed on the coefficients still seem too
restrictive for practical use, the main purpose of this work is to illustrate that the
ergodicity conditions are not needed to study the accuracy of the filter at large times.

Before studying the filtering problem we present a particular approach to an
estimation problem, keeping in mind that the method developed will be useful in
what follows.

2. Estimation. We consider the following estimation problem:

dY (t) = S (t,X0) dt+ dBt,

where S is a measurable function from R×R
d into R

m, X0 ∈ R
d is a random vector,

and B denotes standard m-dimensional Brownian motion. We denote by P0 the law
of X0. For all x ∈ R

d we take the notation

g(t, x) = S(t, x)− S(t,X0).

We assume that X0 and B are independent. This section is devoted to the study of the
asymptotic behavior of the conditional law of X0, given the observations {Ys, s ≤ t},
as t → +∞. This is a well-studied problem (see [6], for instance) but the standard
approach is difficult to use for related filtering problems that we will study in the
next sections, so we present here some methods that will be useful later. Assume that
the following hypotheses are fulfilled, ensuring the existence of a conditional density
with respect to P0 given by a Bayes formula. Let {FY

t , t ≥ 0} be the filtration of the
process Y, and ∀ t ≥ 0

∀x ∈ R
d,

∫ t

0

‖S(s, x)‖ ds <∞,(1)

P

(∫ t

0

‖S(s,X0)‖2 ds <∞
)
= 1,(2)

and

P

(∫ t

0

∥∥E [S(s,X0) | FY
s

]∥∥2 ds <∞
)
= 1.(3)
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Then by [12, Theorem 7.23, p. 289], the Bayes formula gives for all bounded continuous
ψ

E
[
ψ(X0) | FY

t

]
= G

∫
Rd

ψ(x) exp

[
−1
2

∫ t

0

S2(s, x) ds+

∫ t

0

S(s, x) dYs

]
P0(dx),

where G is a FY
t measurable normalizing factor. After dividing G and multiplying

the integral term by exp [− 1
2

∫ t
0
S2(s,X0) ds−

∫ t
0
S(s,X0) . dBs], we get the following

form for the unnormalized a posteriori law ν0
t :

ν0
t (A) =

∫
A

ft(x)P0(dx) =

∫
A

exp

[∫ t

0

g(s, x).dBs − 1
2

∫ t

0

g2(s, x)ds

]
P0(dx)(4)

for all Borel sets A. Let us denote by µ0
t the normalized conditional law. In the whole

section we suppose that the following hypothesis is fulfilled.
(H1). There are two functions v and V from R+ into R+ and a positive constant

C such that 1 ≤ V (t)
v(t) ≤ C and

∀(x1, x2) ∈ R
d×R

d, v(t)‖x1−x2‖2 ≤
∫ t

0

‖S(s, x1)−S(s, x2)‖2ds ≤ V (t)‖x1−x2‖2.

Notice that it is reasonable to assume that
∫ t
0
‖S(s, x)‖2 ds <∞ for some x and that

then assumption (H1) is much stronger than (1)–(3).
Main result. We have the following proposition concerning the concentration of

the conditional law.
Proposition 2.1. Let us denote

B0
a = {x ∈ R

d, ‖x−X0‖ ≤ a}.
Assume that (H1) is fulfilled, and limt→+∞ V (t) = +∞. Then ∀ a > 0

µ0
t

(B0
a

) P−→ 1 as t→ +∞.
Moreover, we have the following estimate concerning the rate of convergence:

∀ 0 < β < a2

4C
, exp(βV (t))

(
1− µ0

t

(B0
a

)) P−→ 0 as t→ +∞.

To prove this proposition, we will need some auxiliary results to control the
stochastic integral which appears in the likelihood function ft.

Proposition 2.2. Assume that the upper estimate in (H1) is valid. Then there
exists A1 > 0 such that ∀ a > 0,

E

[
sup

‖x−X0‖≤a

∣∣∣∣
∫ t

0

g(s, x).dBs

∣∣∣∣
]
≤ A1a

√
V (t).

Proof. We note

B0
a =

{
x ∈ R

d/‖x−X0‖ ≤ a
}
.

Since X0 and B are independent, we can assume that P = PX0 ⊗PB on some proba-
bility space ΩX0×ΩB . We denote by EX0

(resp., EB) the expectation over ΩX0
(resp.,
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ΩB). Given X0, the integral in the supremum is a Gaussian process, so [11, Theorem
11.17, p. 321] gives the estimate

E

[
sup

‖x−X0‖≤a

∣∣∣∣
∫ t

0

g(s, x).dBs

∣∣∣∣
]
= 2EX0

EB

[
sup

‖x−X0‖≤a

∫ t

0

g(s, x).dBs

]

≤ 48EX0

[∫ ∞

0

(
logN

(B0
a, dUt ; ζ

)) 1
2 dζ

]
,

where dUt the pseudometric given by

dUt
(x1, x2) = ‖Ut(x1, x2)‖L2(Ω)

=

[∫ t

0

|S(s, x1)− S(s, x2)|2ds
] 1

2

with

Ut(x1, x2) =

∫ t

0

(S(s, x1)− S(s, x2)) .dBs

and N
(B0

a, dUt ; ζ
)
is the smallest number of balls of radius ζ, for the pseudometric

dUt , needed to cover B0
a. The hypothesis above gives

dUt(x1, x2) ≤ (V (t)) 1
2 ‖x1 − x2‖ ≤ K(V (t)) 1

2 ‖x1 − x2‖∞,

where K comes from the equivalence of the norms in R
d. So we get

N
(B0

a, dUt
; ζ
) ≤ N (B0

a,K(V (t))
1
2 ‖.‖∞; ζ

)

= N

(
B0
a, ‖.‖∞;

ζ

K(V (t))
1
2

)

≤
(
2aK(V (t))

1
2

ζ
+ 1

)d

.

From this follows
∫ ∞

0

(
logN

(B0
a, dUt ; ζ

)) 1
2 dζ

≤
∫ ∞

0

(
logN

(
B0
a, ‖.‖∞;

ζ

K(V (t))
1
2

)) 1
2

dζ

≤
∫ 2aK(V (t))

1
2

0

d
1
2

(
log

(
2aK(V (t))

1
2

ζ
+ 1

)) 1
2

dζ

= d
1
2 2aK(V (t))

1
2

∫ 1

0

(
log

(
1 +

1

u

)) 1
2

du
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with the change of variables

u =
ζ

2aK(V (t))
1
2

.

As 0 ≤ (log (1 + 1
u

)) 1
2 ≤ 1√

u
, the last integral is convergent, and the proposition is

proved.
Proposition 2.3. Assume that the upper estimate in (H1) is valid. Then there

exists A2 > 0 such that ∀ a > 0,

E


 sup

‖x−X0‖≥a

∣∣∣∣∣
∫ t
0
g(s, x).dBs

‖x−X0‖2
∣∣∣∣∣

 ≤ A2a

−1
√
V (t).

Proof. Let n0 be the greatest relative integer such that 2
n0 ≤ a. The triangular

inequality gives

E


 sup

‖x−X0‖≥a

∣∣∣∫ t0 g(s, x).dBs

∣∣∣
‖x−X0‖2


 ≤ ∑

n≥n0

1

22n
E

[
sup

2n≤‖x−X0‖≤2n+1

∣∣∣∣
∫ t

0

g(s, x).dBs

∣∣∣∣
]

≤
∑
n≥n0

1

22n
E

[
sup

‖x−X0‖≤2n+1

∣∣∣∣
∫ t

0

g(s, x).dBs

∣∣∣∣
]

≤ A1(V (t))
1
2

∑
n≥n0

2n+1

22n
(Proposition 2.2)

≤ A1(V (t))
1
2 2−n0

∑
p≥0

2p+1

22p

≤ A1(V (t))
1
2
2

a

∑
p≥0

2p+1

22p
.

Because 2n0 ≤ a ≤ 2n0+1, the convergence of the series concludes the proof.
Proof of Proposition 2.1. First note that it is sufficient to show that ∀a > 0 and

0 < β < a2

4C ,

exp(βV (t))

∫
B0,c

a
ft(x)P0(dx)∫

B0
a
ft(x)P0(dx)

P−→ 0 as t→ +∞.(5)

We note that it is equivalent to show that convergence (5) holds for every increasing
sequence of positive times tk with limk→+∞ tk = +∞. We will use the characterization
of the convergence in probability in terms of almost sure convergence. That is, from
any subsequence t� we have to extract a subsubsequence tn on which (5) holds almost
surely (a.s.). From Propositions 2.2 and 2.3, as limt→+∞ V (t) = +∞, we obviously
have

1

V (t)
sup

‖x−X0‖≤a

∣∣∣∣
∫ t

0

g(s, x).dBs

∣∣∣∣ P−→ 0 as t→ +∞
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and

1

V (t)
sup

‖x−X0‖≥a

∣∣∣∣∣
∫ t
0
g(s, x).dBs

‖x−X0‖2
∣∣∣∣∣

P−→ 0 as t→ +∞.

Thus, from any t� we can extract an increasing sequence of positive times tn, with
limn→+∞ tn = +∞, such that the two previous convergences hold a.s. Then we need
to show only that on this sequence, convergence (5) holds a.s. as well. Using (H1), we
get ∫

B0,c
a

ftn(x)P0(dx)

≤
∫
B0,c

a

exp

[
−1
2
v(tn)‖x−X0‖2 +

∫ tn

0

g(s, x).dBs

]
P0(dx)

≤
∫
B0,c

a

exp

[
−V (tn)‖x−X0‖2

(
1

2C
− 1

V (tn)
sup

x∈B0,c
a

∣∣∣∣∣
∫ tn
0
g(s, x).dBs

‖x−X0‖2
∣∣∣∣∣
)]
P0(dx)

≤
∫
B0,c

a

exp

[
−V (tn)
4C

‖x−X0‖2
]
P0(dx)

≤
∫
B0,c

a

exp

[
−V (tn)
4C

a2
]
P0(dx)

for n large enough. Thus we obtain
∫
B0,c

a

ftn(x)P0(dx) ≤ exp
[
−a

2V (tn)

4C

]
.

On the other hand, ∀ 0 < a0 ≤ a,∫
B0

a

ftn(x)P0(dx) ≥
∫
B0

a0

exp

[
−1
2
V (tn)‖x−X0‖2 +

∫ tn

0

g(s, x).dBs

]
P0(dx)

≥
∫
B0

a0

exp

[
−V (tn)

(
a20
2
+

1

V (tn)
sup
x∈B0

a

∣∣∣∣
∫ tn

0

g(s, x).dBs

∣∣∣∣
)]
P0(dx)

≥ exp [−a20V (tn)]P0(B0
a0
)

for n large enough. Note that X0 is a.s. in the support of P0, thus a.s. we have
P0(B0

a0
) > 0. Then we get

exp (βV (tn))

∫
B0,c

a
ftn(x)P0(dx)∫

B0
a
ftn(x)P0(dx)

≤ 1

P0(B0
a0
)
exp

[
V (tn)

(
β + a20 −

a2

4C

)]
,

which goes to 0 provided we took a0 <
√

a2

4C − β.
3. Dynamical noise free filtering: general case. We consider now a slightly

different situation where we are given a dynamical noise free filtering problem:{
dXt = b(Xt)dt,
dYt = h(Xt)dt+ dBt,

(6)
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where Xt takes values in R
d and Yt in R

m, X0 is a random vector with the given law
PX0 , and Bt is an m-dimensional Wiener process independent of X0. From now on,
we will assume that P0 has a density with respect to Lebesgue measure denoted by p0.
In the following, Φt(x) will denote the (deterministic) flow of the state equation; it is
the state reached by the system at time t, starting from x at t = 0. We will assume
that it is well defined for every time t and every initial condition x0. If we want to
estimate the initial state, we have a particular case of the previous problem with

S(t, .) = h(Φt(.)).

Thus, in order to estimate X0, we can apply the previous section and study the
estimation problem. But here the term “filtering” means that we are interested in the
current state Xt. So the object to be estimated is also moving, and we will say that
the filtering algorithm gives good results if the conditional law of Xt concentrates on
arbitrary balls centered at Xt (and also moving with it). The purpose of this section
is to find sufficient conditions imposed on the system (6) to have such a behavior of
the conditional law. So, to transpose the previous results on the current state Xt, we
will assume in addition that the flow verifies the next hypothesis.

(H2). ‖Φt(x1)− Φt(x2)‖ ≤ α(t) ‖x1 − x2‖ ∀ x1, x2 in R
d and ∀ t > 0 and for

some monotonous function α from R+ into R+.
Remark 3.1. Note that the monotonous character of the function α is not

restricting as we can always transform it in a nondecreasing function by taking
sup0≤s≤t α(s).

We are interested in the concentration of the a posteriori law µt of Xt on sets of
the form

Bta =
{
x ∈ R

d/‖x−Xt‖ ≤ a
}
.

Let {FY
t , t ≥ 0} be the filtration of the process Y . For all test functions ψ we have

E
[
ψ(Xt) | FY

t

]
= E

[
ψ ◦ Φt(X0) | FY

t

]

=

∫
Rd

ψ ◦ Φt(ξ)µ
0
t (dξ) .

Thus

µt
(Bta) =

∫
Rd

1Bt
a

(
Φ−1
t (ξ)

)
µ0
t (dξ)

= µ0
t

(
Φ−1
t

(Bta)) ,
which we rewrite as

µt
(Bta) =

∫
Φ−1

t (Bt
a)
ft(x) p0(x) dx∫

Rd ft(x) p0(x) dx
.(7)

This expression will converge to 1 in probability if and only if

∫
Φ−1

t (Bt
a)c
ft(x) p0(x) dx∫

Φ−1
t (Bt

a)
ft(x) p0(x) dx

→ 0 in probability as t→ +∞.(8)
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It is clear that in the case where the flow is contracting (i.e., limt→+∞ α(t) = 0), the
a priori law of Xt concentrates on the current true position, as does the conditional
law. We will come back to this case later; let us begin with the most interesting case
where the flow is not contracting but the observations are “good enough” so that the
filter gives good results.

Theorem 3.2. Assume that (H1) and (H2) are fulfilled and p0 is continuous,
bounded. Assume moreover that

V (t)

α(t)2
−→ +∞(9)

and α is bounded away from zero. Then ∀ a > 0

µt
(Bta) P−→ 1 as t→ +∞.

Moreover, we have the following estimate concerning the rate of convergence:

∀ 0 < β < a2

4C
, exp

[
β
V (t)

α2(t)

] (
1− µt

(Bta)) P−→ 0 as t→ +∞.

In order to prove this theorem we will need the next lemma.
Lemma 3.3. Let K(t) and a(t) be two functions from R+ into R+ such that

lim
t→+∞K(t)a(t)

2 = +∞.

Then ∀ d ∈ N
∗, there exists Td > 0 such that ∀ t > Td

a(t)−d

∫ +∞

a(t)

exp(−K(t)r2)rd−1dr ≤ 1

K(t)a(t)2
exp(−K(t)a(t)2).

Proof. A simple change of variables gives

a(t)−d

∫ +∞

a(t)

exp
[−K(t)r2] rd−1 dr =

1

2

1

(a(t)2K(t))
d
2

∫ +∞

a(t)2K(t)

e−zz
d
2−1 dz.

Then we conclude by observing that for m ≤ 0,
∫ +∞

λ

e−zzm dz ≤ e−λλm ∀λ ∈ R+,

and for m > 0

lim
λ→+∞

∫ +∞
λ

e−zzm dz

e−λλm
= 1.

Proof of Theorem 3.2. Assume first that α(t) is bounded, say ∀t ≥ 0, α(t) ≤ A.
Then obviously

µt
(Bta) = µ0

t

(
Φ−1
t

(Bta)) ≥ µ0
t

(
B0

a
α(t)

)
≥ µ0

t

(
B0

a
A

)
,

and in this case the result is a direct consequence of Proposition 2.1.
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Thus from now on we consider that α(t) → +∞. From Propositions 2.2 and 2.3
and (H2) we have ∀ a > 0

α(t)2

V (t)
sup

‖x−X0‖≤ a
α(t)

∣∣∣∣
∫ t

0

g(s, x) dBs

∣∣∣∣ P−→ 0

and

1

V (t)
sup

‖x−X0‖≥ a
α(t)

∣∣∣∣∣
∫ t
0
g(s, x) dBs

‖x−X0‖2
∣∣∣∣∣

P−→ 0

as t→ +∞. We use the same kind of argument as we used in Proposition 2.1. Again,
let tn be an increasing sequence of times such that limn→+∞ tn = +∞, and for which
the previous convergences hold a.s., and note that it is sufficient to show that ∀a > 0,
0 < β < a2

4C ,

exp

[
β
V (tn)

α(tn)2

] ∫
Φ−1

tn
(Btn,c

a ) ftn(x) p0(x) dx∫
Φ−1

tn
(Btn

a ) ftn(x) p0(x) dx

a.s.−→ 0 as n→ +∞.(10)

By (H2) we have ∀ t ≥ 0 and a > 0

Φ−1
t

(Bt,ca

) ⊂ B0,c
a

α(t)

and

B0
a

α(t)
⊂ Φ−1

t

(Bta) .
Then, using (H1) and (H2) and the fact that p0 is bounded, say, by K > 0,

∫
Φ−1

t (B
tn,c
a )

ftn(x) p0(x) dx

≤
∫
B0,c

a
α(tn)

exp

[
− V (tn)

C
‖x−X0‖2

(
1

2

− C

V (tn)
sup

‖x′−X0‖≥ a
α(tn)

∣∣∣∣∣
∫ tn
0
g(s, x′) dBs

‖x′ −X0‖2
∣∣∣∣∣
)]
p0(x) dx

]
p0(x) dx

≤ K
∫
B0,c

a
α(tn)

exp

[
−V (tn)
4C

‖x−X0‖2
]
dx

for n large enough, by definition of tn. Using polar coordinates we obtain

∫
Φ−1

t (B
tn,c
a )

ftn(x) p0(x) dx ≤ KSd
∫ +∞

a
α(tn)

exp

[
−V (tn)
4C

r2
]
rd−1 dr,

where Sd is the surface of the unit sphere in R
d, with the convention S1 = 2.
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On the other hand, for any a1 such that 0 < a1 ≤ a,∫
Φ−1

tn
(Bt

a)

ftn(x) p0(x) dx

≥
∫
B0

a1
α(tn)

exp


− V (tn)
α(tn)2


a21
2
+
α(tn)

2

V (tn)
sup

‖x′−X0‖≤ a1
α(tn)

∣∣∣∣
∫ tn

0

g(s, x′) dBs

∣∣∣∣



 p0(x) dx

≥ exp
[
− V (tn)
α(tn)2

a21

] ∫
B0

a1
α(tn)

p0(x) dx

for n large enough. As P0 has a continuous density p0, p0(X0) is a.s. nonzero, and
there is a small a2 > 0 such that ∀ x ∈ B0

a2
, p0(x) ≥ 1

2p0(X0). As α(tn)→ +∞, for n
large enough we have also that B0

a1
α(tn)

⊂ B0
a2
, and thus

∫
B0

a1
α(tn)

p0(x) dx ≥ 1
2
p0(X0)

∫
B0

a1
α(tn)

dx ≥ 1
2
p0(X0)Kd

(
a1
α(tn)

)d

,

where Kd is the Lebesgue’s measure of the unit ball in R
d. Finally, using Lemma 3.3,

we get for n large enough

exp

[
β
V (tn)

α(tn)2

] ∫
Φ−1

tn
(Btn,c

a ) ftn(x) p0(x) dx∫
Φ−1

tn
(Btn

a ) ftn(x) p0(x) dx

≤ exp
[
(β + a21)

V (tn)

α(tn)2

]
2KSd

Kdp0(X0)

[
a

a1

]d [
α(tn)

a

]d ∫ +∞

a
α(tn)

exp

[
−V (tn)
4C

r2
]
rd−1 dr

≤ 2KSd
Kdp0(X0)

[
a

a1

]d
4Cα(tn)

2

a2V (tn)
exp

[
V (tn)

α(tn)2

(
− a

2

4C
+ a21 + β

)]
,

which concludes the proof, provided we chose a1 <
√

a2

4C − β.
Some remarks on other cases. Now let us come back to the case α(t)→ 0. With

no observation the concentration speed around the true position follows the ratio∫
Φ−1

t (Bt
a)c
p0(x) dx∫

Φ−1
t (Bt

a)
p0(x) dx

�
∫

Φ−1
t (Bt

a)c
p0(x) dx

because the denominator converges to 1 a.s. If we have observations and (H1) is
fulfilled, we can show a faster convergence in probability. Let tn be a sequence with
the same properties as in the previous proof. Choose a2 such that

a >
a

2
√
C
> a2 > 0.

Using the same notations and arguments as in the proof of the previous theorem and
using the following notations:

Nn =

∫
Φ−1

tn
(Btn

a )
c
ftn(x) dx ,

Dn =

∫
Φ−1

tn
(Btn

a )
ftn(x) dx ,
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we get, for n large enough,

Nn ≤
∫

Φ−1
tn

(Bt
a)c
exp


v(tn)α(tn)

a
‖x−X0‖2


–1
2

a

α(tn)

+
a

α(tn)

1

v(tn)
sup

x′∈B0,c
a

α(tn)

∣∣∣∫ tn0
g(s, x′).dBs

∣∣∣
‖x′ −X0‖2




 p0(x) dx

≤ exp
[
−1
4
v(tn)

a2

α(tn)2

] ∫
Φ−1

tn
(Bt

a)c
p0(x) dx

and

Dn ≥
∫
B0

a2
α(tn)

exp


−1

2

V (tn)a
2
2

α(tn)2
− sup

x′∈B0
a2

α(tn)

∣∣∣∣
∫ tn

0

g(s, x′).dBs

∣∣∣∣

 p0(x) dx

≥
∫
B0

a2
α(tn)

exp


V (tn)a2
α(tn)


–1
2

a2
α(tn)

− α(tn)

a2V (tn)
sup

x′∈B0
a2

α(tn)

∣∣∣∣
∫ tn

0

g(s, x′).dBs

∣∣∣∣



 p0(x) dx

≥ exp
[
−C v(tn)a

2
2

α(tn)2

] ∫
B0

a2
α(tn)

p0(x) dx

≥ 1
2
exp

[
−C v(tn)a

2
2

α(tn)2

]
.

By taking the two last inequalities we have

Nn

Dn
≤ 2 exp

[
v(tn)

α(tn)2

(
−a

2

4
+ Ca22

)]∫
Φ−1

tn
(Bt

a)c
p0(x) dx.

So the convergence, this time in probability, is sped up by the exponential term.
Finally, consider some cases when the filter does not give good results. More

precisely, consider the opposite of (H2).

(H2). ‖Φt(x1)− Φt(x2)‖ ≥ α(t) ‖x1 − x2‖

∀ x1, x2 in R
d and ∀ t > 0 and for some nondecreasing function α from R+ into R+.

We can show the following proposition (opposite of Theorem 3.2).
Proposition 3.4. Assume that (H1) and (H2) are fulfilled, p0 is continuous,

bounded. Moreover assume that

V (t)

α(t)2
−→ 0(11)
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and

α(t) −→ +∞(12)

as t→ +∞. Then ∀ a > 0

µt
(Bta) P−→ 0 as t→ +∞.

Proof. We will show equivalently that

∫
Φ−1

t (Bt
a)c
ft(x)dx∫

Φ−1
t (Bt

a)
ft(x)dx

P−→ +∞ as t→ +∞.

Note that in this case it is reasonable to suppose (12); otherwise (11) would imply
that V (t) → 0, that is, by (H1), h is constant. From Propositions 2.2 and 2.3, using
(11), we have

1

α(t)2
sup

‖x′−X0‖≥ a
α(t)

∣∣∣∫ t0 g(s, x′).dBs

∣∣∣
‖x′ −X0‖2

P−→ 0

and

sup
‖x′−X0‖≤ a

α(t)

∣∣∣∣
∫ t

0

g(s, x′).dBs

∣∣∣∣ P−→ 0 .

Let tn be a sequence of positive real numbers, increasing to +∞, and such that the
above convergences take place a.s. For any b > a let

An =

{
x ∈ R

d :
a

α(tn)
≤ ‖x−X0‖ ≤ b

α(tn)

}
.

We obtain ∀ b > a

Nn =

∫
Φ−1

tn
(Btn,c

a )

ftn(x) dx

≥
∫
An

exp


α(tn)2‖x−X0‖2


− V (tn)

2α(tn)2

− 1

α(tn)2
sup

‖x′−X0‖≥ a
α(tn)

∣∣∣∫ tn0
g(s, x′).dBs

∣∣∣
‖x′ −X0‖2




 p0(x) dx

≥
∫
An

exp


b2

− V (tn)

2α(tn)2
− 1

α(tn)2
sup

‖x′−X0‖≥ a
α(tn)

∣∣∣∫ tn0
g(s, x′).dBs

∣∣∣
‖x′ −X0‖2




 p0(x) dx

≥ 1

2

∫
An

p0(x) dx
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for n large enough. Using (12) and the continuity of p0 we get

Nn ≥ p0(X0)

4
Kd
bd − ad
α(tn)d

.

On the other hand,

Dn =

∫
Φ−1

tn
(Btn

a )

ftn(x) dx

≤
∫
{
‖x−X0‖≤ a

α(tn)

} exp
[

sup
‖x′−X0‖≤ a

α(tn)

∣∣∣∣
∫ tn

0

g(s, x′).dBs

∣∣∣∣
]
p0(x) dx

≤ 2p0(X0)Kd
ad

α(tn)d
,

again for n large. Then, for arbitrary large M > 0, we have that for n large enough,

Nn

Dn
≥ 1
8

bd − ad
ad

≥M ,

provided we chose

b ≥ a (8M + 1)
1
d .

4. Linear Gaussian case. The solution of the Riccati equation below and some
ideas of this small section are taken from [4]. We consider throughout this section the
following linear system:

{
dXt = AXt dt,
dYt = C Xt dt+ dBt, with X0 � N(m0, P0),

where A and C are matrices of respective dimensions d×d and d×m, andX0 and B are
independent. We will investigate conditions ensuring that the conditional covariance
given by the Kalman–Bucy filter tends to 0 as t → +∞. It is well known that in
this case the conditional law is Gaussian, so the above convergence is equivalent to
the concentration of the law around the true position. See [10] or [14] for a general
presentation of the Kalman–Bucy filter.

Denote by Pt the conditional covariance. In our particular case we can write the
Riccati equation for Pt as

Ṗt = APt + PtA
∗ − Pt C∗ C Pt,(13)

where ∗ denotes the transpose and the dot the differential with respect to t, P0 being
the initial condition. We can solve this equation explicitly. First we state the following
lemma.

Lemma 4.1. Let M and N be two symmetric positive semidefinite h×h matrices
(i.e., 〈N x, x〉 ≥ 0 and 〈M x, x〉 ≥ 0 ∀ x). Then if M or N is invertible, I +MN is
also invertible.

Proof. Suppose N is invertible (the case M invertible is similar). Then N > 0
and so is N−1. Thus N−1 +M > 0 and we conclude that (N−1 +M)N = I +MN
is also invertible.

Now we can solve (13). This is the purpose of the next lemma.
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Lemma 4.2. If P0 is invertible, then Pt is also and

Pt = e
tA
(
P−1

0 +Q(t)
)−1

etA
∗

with

Q(t) =

∫ t

0

erA
∗
C∗ C erA dr.

Proof. The solution is unique because P �→ F (P ) = AP + PA∗ − PC∗CP is
locally Lipschitz. As P0 is invertible, by Lemma 4.1, I +Q(t)P0 is also invertible and
so is Pt rewritten as

Pt = e
tA P0 (I +Q(t)P0)

−1
etA

∗
.

Then a simple computation shows that Pt is a solution of (13).

Now we can state the result.

Proposition 4.3. Assume that P0 is invertible. Then Pt → 0 as t→ +∞ if and
only if the pair (A,C) is detectable, and for any eigenvalue λ of A, �e(λ) ≤ 0.

Proof. First recall that Pt is symmetric positive definite. As Pt is diagonalizable,
with real positive eigenvalues, showing the convergence of Pt is equivalent to the
following: ∀x ∈ R

d, x∗P−1
t x→ +∞, or more simply for x in a basis of R

d. Note that
it is also equivalent to consider complex vectors: take x = x1 + ix2 with x1 and x2 in
R
d, and write

x∗ P−1
t x = (x∗1 − ix∗2)P−1

t (x1 + ix2) = x
∗
1 P

−1
t x1 + x

∗
2 P

−1
t x2.

So throughout the proof we will work in C
d.

Consider the Jordan form of the matrix A, say J, and call T the corresponding ba-
sis transformation. Then x∗P−1

t x→ +∞ ∀x ∈ C
d if and only if u∗iP

−1
t ui → +∞ ∀ui

in the Jordan basis.

We have two cases. First assume that ui is in the stable subspace of A, i.e.,
associated with a submatrix Jk of the Jordan form and an eigenvalue λk with strictly
negative real part. Then obviously

u∗i P
−1
t ui ≥ u∗i e−tA∗

P−1
0 e−tA ui =

∥∥e−tA ui
∥∥2
P−1

0

→ +∞.

Second case: ui is in the unstable subspace of A, i.e., associated with a Jordan sub-
matrix with pure imaginary eigenvalue. In this case we write

u∗i P
−1
t ui ≥

∫ t

0

u∗i e
−(t−s)A∗

C∗ C e−(t−s)A ui ds

=

∫ t

0

∥∥∥C e−(t−s)A ui

∥∥∥2 ds

=

∫ t

0

∥∥∥C T e−(t−s)J T−1 ui

∥∥∥2 ds.(14)

Let mk be the dimension of the subblock corresponding to ui, k0 the rank of the first
term of the subblock, and 6 the rank of ui in the corresponding basis of the eigenspace.
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J and e−(t−s)J are block diagonal (see [10] or [5] for precisions on the Jordan form).
Denoting by Jk the corresponding subblock, we have

e−(t−s)Jk = e−λk(t−s)



1 . . . −(t−s)mk−1

(mk−1)!

. . .
...

0 1


 .

Then observe that, M being the number of subblocks,

‖C T e−(t−s)J (T−1 ui)‖2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

C T




e−(t−s)J1

. . . 0
e−(t−s)Jk

0
. . .

e−(t−s)JM



.




0
...
0
1
0
...
0




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≥‖C uk0‖2
(
(t− s)�−1

(6− 1)!
)2

−
l−1∑
q=1

‖C uk0+q‖2
(
(t− s)q−1

(q − 1)!
)2

.

Remark that uk0 is an eigenvector of A, so, by the dual version of the Hautus lemma
1

(see [15, pp. 93 and 200]) and the assumption that (A,C) is detectable, uk0 �∈ kerC.
Thus ‖Cuk0‖ > 0 and for t large enough, (14) is bigger than, say, Ki

∫ t
0
(t− s)2�−2 ds

for some Ki > 0. This gives the divergence to +∞.
Now we prove the converse. We again have two cases. First assume that there

is some eigenvalue of A, say λi, with �e(λi) > 0. Let ui be a normalized associated
eigenvector. Then

u∗i e
−tA∗

P−1
0 e−tA ui −→ 0

and ∫ t

0

∥∥∥C e−(t−s)A ui

∥∥∥2 ds ≤ ‖C‖2
∫ t

0

e−2(t−s)�e(λi) ds < +∞,

which proves that Pt �→ 0.
Finally, consider the second case: assume that all the eigenvalues of A have non-

positive real parts but that the pair (A, C) is not detectable. Then, again using the
Hautus lemma, there exists an eigenvector ui of A associated to some eigenvalue λi
such that ui ∈ kerC and �e(λi) = 0. Then we have

u∗i e
−tA∗

P−1
0 e−tA ui ≤ ‖ui‖2P−1

0

and ∫ t

0

∥∥∥C e−(t−s)Aui

∥∥∥2 ds = 0,
1Which tells us that (A,C) is observable if and only if

[
λiI−A

C

]
is full rank ∀ λi eigenvalues of

A. Here we apply this to the unstable part of the system.
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which concludes the proof.
Remark 4.4. Keeping in mind that Pt is diagonalizable, the last proof shows that

when Pt goes to 0 and the unstable subspace of A is nontrivial, the smallest eigenvalue
of P−1

t is at least of order t (take 6 = 1), that is, the largest eigenvalue of Pt is at
most of order 1/t, which gives an estimate on the order of convergence.
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Kalman–Bucy, Mémoire de DEA, Université de Provence, Marseille, France, 1988.

[5] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra,
Academic Press, New York, 1974.

[6] I. A. Ibragimov and R. Z. Khasminskii, Statistical Estimation. Asymptotic Theory, Appl.
Math. 16, Springer-Verlag, New York, Berlin, 1981.

[7] D. Ji, Asymptotic Analysis of Nonlinear Filtering Problems, Ph.D. thesis, Brown University,
Providence, RI, 1988.

[8] H. Kunita, Asymptotic behavior of the nonlinear filtering errors of Markov processes, J. Mul-
tivariate Anal., 1 (1971), pp. 365–393.

[9] H. Kunita, Ergodic properties of nonlinear filtering processes, in Spatial Stochastic Processes:
Festschrift in honor of T. E. Harris, K. L. Alexander and J. C. Watkins, eds., Progr. in
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ON THE MINIMIZING PROPERTY OF A SECOND ORDER
DISSIPATIVE SYSTEM IN HILBERT SPACES∗
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Abstract. We study the asymptotic behavior at infinity of solutions of a second order evolution
equation with linear damping and convex potential. The differential system is defined in a real
Hilbert space. It is proved that if the potential is bounded from below, then the solution trajectories
are minimizing for it and converge weakly towards a minimizer of Φ if one exists; this convergence
is strong when Φ is even or when the optimal set has a nonempty interior. We introduce a second
order proximal-like iterative algorithm for the minimization of a convex function. It is defined by an
implicit discretization of the continuous evolution problem and is valid for any closed proper convex
function. We find conditions on some parameters of the algorithm in order to have a convergence
result similar to the continuous case.

Key words. dissipative system, linear damping, asymptotic behavior, weak convergence, con-
vexity, implicit discretization, iterative-variational algorithm

AMS subject classifications. 34G20, 34A12, 34D05, 90C25
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1. Introduction. Consider the following differential system defined in a real
Hilbert space H:

u′′ + γu′ +∇Φ(u) = 0,(1.1)

where γ > 0 and Φ : H → R is differentiable. It is customary to call this equation non-
linear oscillator with damping. Here, the damping or friction has a linear dependence
on the velocity. This is a particular case of the so-called dissipative systems. In fact,
given u solution of (1.1) define E(t) := 1

2 |u′|2 + Φ(u); it is direct to check that E′ =
−γ|u′|2. Thus, the energy of the system is dissipated as t increases. Although (1.1)
appears in various contexts with different physical interpretations, the motivation for
this work comes from the dynamical approach to optimization problems.

Roughly speaking, any iterative algorithm generating a sequence {xk}k∈N may
be considered as a discrete dynamical system. If it is possible to find a continuous
version for the discrete procedure, one expects that the properties of the corresponding
continuous dynamical system are close to those of the discrete one. This occurs,
for instance, for the now classical proximal method for convex minimization: given
x0 ∈ H, solve the iterative scheme

(Prox)
xk+1 − xk

λk
+ ∂f(xk+1) � 0,

where λk > 0, f : H → R ∪ {∞} is a closed proper convex function and ∂f denotes
the usual subdifferential in convex analysis. (Prox) is an implicit discretization for the
steepest descent method, which consists of solving the following differential inclusion:

(SD) x′ + ∂f(x) � 0.

∗Received by the editors April 20, 1998; accepted for publication (in revised form) September
17, 1999; published electronically April 4, 2000. This work was partially supported by FONDECYT
grants 1961131 and 1990884.
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Under suitable conditions, both the trajectory {x(t) : t → ∞} defined by (SD) and
the sequence {xk} generated by (Prox) converge toward a particular minimizer of f
(see [5, 6, 7] for (SD) and [18] for (Prox); see also [12] for a survey on these and
new results). The dynamical approach to iterative methods in optimization has many
advantages. It provides a deep insight into the expected behavior of the method,
and sometimes the techniques used in the continuous case can be adapted to obtain
results for the discrete algorithm. On the other hand, a continuous dynamical system
satisfying nice properties may suggest new iterative methods.

This viewpoint has motivated increasing attention in recent years; see, e.g., [1, 2,
3, 4, 8, 13, 14]. In [3], Attouch, Goudou, and Redont deal with nonconvex functions
that have, a priori, many local minima. The idea is to exploit the dynamics defined
by (1.1) to explore critical points of Φ (i.e., solutions of ∇Φ(x) = 0). If Φ is coercive
(bounded level sets) and of class C1 with a locally Lipschitz gradient, then it is
possible to prove that for any u solution of (1.1) we have ∇Φ(u(t)) → 0 as t → ∞.
The convergence of the trajectory {u(t) : t→∞} is a more delicate problem. When
Φ is coercive, an obvious sufficient condition for the convergence of the trajectory
is that the critical points, also known as equilibrium points, are isolated. Certainly,
this is not necessary. In one dimension (H = R) and without additional conditions,
the solution always converges toward an equilibrium (see, e.g., [10]). The proof relies
on topological arguments that are not generalizable to higher dimensions. Indeed,
this is no longer true even in two dimensions: it is possible to construct a coercive
C1 function defined on R

2 whose gradient is locally Lipschitz and for which at least
one solution of (1.1) does not converge as t → ∞ (see [3]). Thus, a natural question
is to find general conditions under which the trajectory converges in the degenerate
case, that is, when the set of equilibrium points of Φ contains a nontrivial connected
component. A positive result in this direction has recently been given by Haraux and
Jendoubi [11], where convergence to an equilibrium is established when Φ is analytic.
However, this assumption is very restrictive from the optimization point of view.

Motivated by the previous considerations, in this work we focus our attention on
the asymptotic behavior as t→∞ of the solutions of (1.1) when Φ is assumed to be
convex. The paper is organized as follows. In section 2 we prove that if Φ is convex
and bounded from below, then the trajectory {u(t) : t→∞} is minimizing for Φ. If
the infimum of Φ on H is attained, then u(t) converges weakly towards a minimizer of
Φ. The convergence is strong when Φ is even or when the optimal set has a nonempty
interior. In section 2.2 we give a localization result for the limit point, analogous
to the corresponding result for the steepest descent method [13]. In section 2.4 we
generalize the convergence result to cover the equation u′′ + Γu′ +∇Φ(u) = 0, where
Γ : H → H is a bounded self-adjoint linear operator which we assume to be elliptic:
there is γ > 0 such that for any x ∈ H, 〈Γx, x〉 ≥ γ|x|2. We refer to this equation as
nonlinear oscillator with anisotropic damping. This equation appears to be useful to
diminish oscillations or even eliminate them, and also to accelerate the convergence of
the trajectory. In section 2.3 we give an heuristic motivation of the above mentioned
facts, which is based on an analysis of a quadratic function. Still under the convexity
condition on Φ, section 3 deals with the discretization of (1.1). Here, we consider the
implicit scheme

uk+1 − 2uk + uk−1

h2
+ γ

uk+1 − uk
h

+∇Φ(uk+1) = 0,

where h > 0. Since Φ is convex, the latter is equivalent to the following variational
problem:
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uk+1 = argmin

{
Φ(x) +

1 + γh

2h2
|x− zk|2 : x ∈ H

}
,

where zk = uk + 1
1+γh (uk − uk−1). This procedure does not require Φ to be differ-

entiable and allows us to introduce the following more general iterative-variational
algorithm:

1

λk
(uk+1 − (1 + αk)uk + αkuk−1) + ∂εkf(uk+1) � 0,(1.2)

where εk, λk > 0, αk ∈ [0, 1[, f : H → R ∪ {∞} is a closed proper convex function
and ∂εf is the ε-approximate subdifferential in convex analysis. We call (1.2) the
inertial proximal method. We find conditions on the parameters αk, εk, and λk in
order to have a convergence result similar to the continuous case. Finally, in section
4 we state some of the questions opened by this work. Let us mention that the first
to consider (1.1) for finite dimensional optimization problems was B. T. Polyack [16].
He studied a two-step discrete algorithm called the “heavy-ball with friction” method,
which may be interpreted as an explicit discretization of (1.1). Both approaches are
complementary; however, the analysis and the type of results in the implicit and
explicit cases are different.

2. Dissipative differential system. Throughout this paper, H is a real Hilbert
space, 〈·, ·〉 denotes the associated inner product, and | · | stands for the corresponding
norm. We are interested in the behavior at infinity of u : [0,∞[→ H, a solution of
the following abstract evolution equation:

(Eγ ;u0, v0)

{
u′′ + γu′ +∇Φ(u) = 0,
u(0) = u0, u

′(0) = v0,

where γ > 0, Φ : H → R, and u0, v0 ∈ H are given. Note that if we assume that the
gradient ∇Φ is locally Lipschitz, then the existence and uniqueness of a local solution
for (Eγ ;u0, v0) follow from standard results of differential equations theory. In that
case, to prove that u is infinitely extendible to the right, it suffices to show that its
derivative u′ is bounded. Set

E(t) :=
1

2
|u′(t)|2 + Φ(u(t)).

Since E′(t) = −γ|u′(t)|2, the function E is nonincreasing. If we suppose that Φ is
bounded from below, then u′ is bounded.

2.1. Asymptotic convergence. In that which follows, we suppose the exis-
tence of a global solution of (Eγ ;u0, v0). We write inf Φ for the infimum value of Φ
on H; thus, inf Φ > −∞ will mean that Φ is bounded from below. We denote by
Argmin Φ the set {x ∈ H : Φ(x) = inf Φ}. On the nonlinearity we shall assume

(hΦ) Φ ∈ C1(H; R) is convex and inf Φ > −∞.
Theorem 2.1. Suppose that (hΦ) holds. If u ∈ C2([0,∞[;H) is a solution of

(Eγ ;u0, v0), then u′ ∈ L2([0,∞[;H), u′(t)→ 0 as t→∞, and
lim
t→∞ Φ(u(t)) = inf Φ.(2.1)

Furthermore, if Argmin Φ �= ∅, then there exists û ∈ Argmin Φ such that u(t) ⇀ û
weakly in H as t→∞.
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We begin by noticing that u′ is bounded (see the argument above). In order to
prove the minimizing property (2.1), it suffices to prove that

lim sup
t→∞

Φ(u(t)) ≤ Φ(x)

for any x ∈ H. Fix x ∈ H and define the auxiliary function ϕ(t) := 1
2 |u(t)−x|2. Since

u is a solution of (Eγ), it follows that

ϕ′′ + γϕ′ = 〈∇Φ(u), x− u〉+ |u′|2,
which together with the convexity inequality Φ(u) + 〈∇Φ(u), x− u〉 ≤ Φ(x) yields

ϕ′′ + γϕ′ ≤ Φ(x)− Φ(u) + |u′|2.(2.2)

We do not have information on the behavior of Φ(u(t)) but we know that E(t) is
nonincreasing. Thus, we rewrite (2.2) as

ϕ′′ + γϕ′ ≤ Φ(x)− E(t) +
3

2
|u′|2.

Given t > 0, for all τ ∈ [0, t] we have

ϕ′′(τ) + γϕ′(τ) ≤ Φ(x)− E(t) +
3

2
|u′(τ)|2.

After multiplication by eγτ and integration we obtain

ϕ′(t) ≤ e−γtϕ′(0) +
1

γ
(1− e−γt)[Φ(x)− E(t)] +

3

2

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ.

We write this equation with t replaced by θ, and use the fact that E(t) decreases and
integrate once more to obtain

ϕ(t) ≤ ϕ(0) +
1

γ
(1− e−γt)ϕ′(0) +

1

γ2
(γt− 1 + e−γt)[Φ(x)− E(t)] + h(t),(2.3)

where

h(t) :=
3

2

∫ t

0

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

Since E(t) ≥ Φ(u(t)), (2.3) gives

1

γ2
(γt− 1 + e−γt)Φ(u(t)) ≤ ϕ(0) +

1

γ
(1− e−γt)ϕ′(0) +

1

γ2
(γt− 1 + e−γt)Φ(x) + h(t).

Dividing this inequality by 1
γ2 (γt− 1 + e−γt) and letting t→∞ we get

lim sup
t→∞

Φ(u(t)) ≤ Φ(x) + lim sup
t→∞

γ

t
h(t).

It suffices to show that h(t) remains bounded as t→∞. By Fubini’s theorem

h(t) =
3

2

∫ t

0

∫ t

τ

e−γ(θ−τ)|u′(τ)|2dθdτ =
3

2γ

∫ t

0

|u′(τ)|2(1− e−γ(t−τ))dτ.
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Note that from the equality E′ = −γ|u′|2 it follows that

1

2
|u′|2 + Φ(u) + γ

∫ t

0

|u′(τ)|2dτ = E0,

and in particular,

∫ t

0

|u′(τ)|2dτ ≤ E0 − inf Φ

γ
<∞.

Then u′ ∈ L2([0,∞[;H), and

h(t) ≤ 3

2γ

∫ t

0

|u′(τ)|2dτ ≤ 3

2γ

∫ ∞

0

|u′(τ)|2dτ <∞.

On the other hand, since E(·) is nonincreasing and bounded from below by inf Φ,
it converges as t → ∞. If limt→∞E(t) > inf Φ, then limt→∞ |u′(t)| > 0 because of
(2.1). This contradicts the fact that u′ ∈ L2. Therefore, limt→∞E(t) = inf Φ, hence
u′(t)→ 0 as t→∞.

The task now is to establish the weak convergence of u(t) when Argmin Φ �= ∅.
For this purpose, we shall apply the Opial lemma [15], which holds interest in that
it allows one to prove convergence without knowing the limit point. We state it as
follows.

Lemma (Opial). Let H be a Hilbert space, let {u(t) : t→∞} ⊂ H be a trajectory,
and denote by W the set of its weak limit points

W := {y ∈ H : ∃tk →∞ s.t. u(tk) ⇀ y}.
If there exists ∅ �= S ⊂ H such that

∀z ∈ S, lim
t→∞ |u(t)− z| exists,(2.4)

thenW �= ∅. Moreover, ifW ⊂ S, then u(t) converges weakly toward û ∈ S as t→∞.
In order to apply the above result, we must find an adequate set S. Suppose that

there exists û ∈ H such that u(tk) ⇀ û for a suitable sequence tk →∞. The function
Φ is weak lower-semicontinuous, because Φ is convex and continuous; hence

Φ(û) ≤ lim inf
k→∞

Φ(u(tk)) = lim
t→∞ Φ(u(t)) = inf Φ,

and therefore û ∈ Argmin Φ. According to the Opial lemma, we have only to prove
that

∀z ∈ Argmin Φ, lim
t→∞ |u(t)− z| exists.

For this, fix z ∈ Argmin Φ and define ϕ(t) := 1
2 |u(t) − z|2. The following lemma

provides a sufficient condition on [ϕ′]+, the positive part of the derivative, in order to
ensure convergence for ϕ.

Lemma 2.2. Let θ ∈ C1([0,∞[; R) be bounded from below. If [θ′]+ ∈ L1([0,∞[; R),
then θ(t) converges as t→∞.

Proof. Set

w(t) := θ(t)−
∫ t

0

[θ′(τ)]+dτ.
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Since w(t) is bounded from below and w′(t) ≤ 0, then w(t) converges as t→∞, and
consequently θ(t) converges as t→∞.

On account of this result, it suffices to prove that [ϕ′]+ belongs to L1(0,∞). Of
course, to obtain information on ϕ′ we shall use the fact that u(t) is solution of (Eγ).
Due to the optimality of z, it follows from (2.2) that

ϕ′′ + γϕ′ ≤ |u′|2.(2.5)

Lemma 2.3. If ω ∈ C1([0,∞[; R) satisfies the differential inequality

ω′ + γω ≤ g(t)(2.6)

with γ > 0 and g ∈ L1([0,∞[; R), then [ω]+ ∈ L1([0,∞[; R).
Proof. We can certainly assume that g ≥ 0, for if not, we replace g by |g|.

Multiplying (2.6) by eγt and integrating we get

ω(t) ≤ e−γtω(0) +

∫ t

0

e−γ(t−τ)g(τ)dτ.

Thus

[ω(t)]+ ≤ e−γt[ω(0)]+ +

∫ t

0

e−γ(t−τ)g(τ)dτ,

and Fubini’s theorem gives
∫∞
0

∫ t
0
e−γ(t−τ)g(τ)dτdt = 1

γ

∫∞
0
g(τ)dτ <∞.

Recalling that |u′|2 ∈ L1([0,∞[; R), the proof of the theorem is completed by
applying Lemma 2.3 to (2.5).

We say that ∇Φ is strongly monotone if there exists β > 0 such that for any
x, y ∈ H we have

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ β|x− y|2.

A weaker condition is the strong monotonicity over bounded sets, that is to say, for
all K > 0 there exists βK > 0 such that for any x, y ∈ B[0,K] we have

〈∇Φ(x)−∇Φ(y), x− y〉 ≥ βK |x− y|2.(2.7)

If the latter property holds, then we have strong convergence for u(t) when the in-
fimum of Φ is attained. The argument is standard: let û be the (unique) minimum
point for Φ and set K := max{supt≥0 |u(t)|, |û|}; then from (2.7) we deduce

Φ(û) +
βK
2
|u(t)− û|2 ≤ Φ(u(t)).(2.8)

Since we have proven that limt→∞ Φ(u(t)) = inf Φ = Φ(û), estimate (2.8) implies
u(t)→ û strongly in H. Note that we do not need to apply the Opial lemma.

The latter is the case of a nondegenerate minimum point. When Φ admits multiple
minima, it is not possible to obtain strong convergence without additional assumptions
on Φ or the space H. For instance, we have the following.

Theorem 2.4. Under the hypotheses of Theorem 2.1, if either
(i) Argmin Φ �= ∅ and Φ is even

or
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(ii) int(Argmin Φ) �= ∅,
then

u(t)→ û strongly in H as t→∞,

where û ∈ Argmin Φ.
Proof. The proof is adapted from the corresponding results for the steepest de-

scent method; see [7] for the analogous hypothesis of (i) and [6] for (ii).
(i) Fix t0 > 0 and define g : [0, t0]→ R by

g(t) := |u(t)|2 − |u(t0)|2 − 1

2
|u(t)− u(t0)|2.

Then g′(t) = 〈u′(t), u(t) + u(t0)〉 and g′′(t) = 〈u′′(t), u(t) + u(t0)〉 + |u′(t)|2.
Consequently

g′′(t) + γg′(t) = 〈−∇Φ(u(t)), u(t) + u(t0)〉+ |u′(t)|2.

Since E(t) = 1
2 |u′(t)|2 + Φ(u(t)) is decreasing and Φ is even, we deduce that

E(t) ≥ 1

2
|u′(t0)|2 + Φ(−u(t0))

for all t ∈ [0, t0]. By the convexity of Φ we conclude that

E(t) ≥ 1

2
|u′(t0)|2 + Φ(u(t)) + 〈∇Φ(u(t)),−u(t)− u(t0)〉

and hence that

1

2
|u′(t)|2 ≥ 〈−∇Φ(u(t)), u(t) + u(t0)〉.

Thus

g′′(t) + γg′(t) ≤ 3

2
|u′(t)|2.

The standard integration procedure yields

g(t0)− g(t) ≤ 1

γ
(e−γt − e−γt0)g′(0) +

3

2

∫ t0

t

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

Therefore, for all t ∈ [0, t0] we have that

1

2
|u(t)− u(t0)|2 ≤ |u(t)|2 − |u(t0)|2 +

1

γ
(e−γt − e−γt0)g′(0) + h(t0)− h(t),(2.9)

where

h(t) =
3

2

∫ t

0

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

On the other hand, in the proof of Theorem 2.1 we have shown that h(t) is convergent
as t → ∞. We also proved that for all z ∈ Argmin Φ the limt→∞ |u(t) − z| exists.
Since Φ is convex and even, we have 0 ∈ Argmin Φ whenever the infimum is realized.
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In that case, |u(t)| is convergent as t→∞ and we infer from (2.9) that {u(t) : t→∞}
is a Cauchy net. Hence u(t) converges strongly as t → ∞ and, by Theorem 2.1, the
limit belongs to Argmin Φ.

(ii) Let z0 ∈ int(Argmin Φ). There exists ρ > 0 such that for every z ∈ H with
|z − z0| ≤ ρ, then z ∈ int(Argmin Φ). In particular, if |z − z0| ≤ ρ, then ∇Φ(z) = 0.
Consequently,

〈∇Φ(x), x− z0〉 ≥ 〈∇Φ(x), z − z0〉
for every x ∈ H and z with |z − z0| ≤ ρ. Hence,

〈∇Φ(x), x− z0〉 ≥ ρ|∇Φ(x)|
for every x ∈ H. Applying this inequality to x = u(t) we deduce that

−〈u′′ + γu′, u− z0〉 ≥ ρ|u′′ + γu′|.
Set ϕ(t) := 1

2 |u(t)− z0|2. We thus obtain

−ϕ′′ + |u′|2 − γϕ′ ≥ ρ|u′′ + γu′|.
Integrating this inequality yields

ϕ′(0)− ϕ′(t) +

∫ t

0

|u′(τ)|2dτ + γ(ϕ(0)− ϕ(t)) ≥ ρ
∫ t

0

|u′′(τ) + γu′(τ)|dτ.

We have already proved that the limt→∞ ϕ(t) exists and limt→∞ ϕ′(t) = 0. More-
over, u′ ∈ L2(0,∞;H). As a conclusion, u′′ + γu′ ∈ L1(0,∞;H). We deduce that
the limt→∞ u′(t) + γu(t) exists, which finishes the proof because u′(t) → 0 as t →
∞.

2.2. Localization of the limit point. In the proof of Theorem 2.1 we have
used the differential inequality (2.2), which in some sense measures the evolution of
the system. A simpler but analogous inequality appears in the asymptotic analysis
for the steepest descent inclusion (SD). This was used by B. Lemaire in [13] to locate
the limit point of the trajectories of (SD). Following this approach, in this section we
give a localization result of the limit point of the solutions of (Eγ). For simplicity of
notation, set S := Argmin Φ and we denote by projS : H → S the projection operator
onto the closed convex set S.

Proposition 2.5. Let u be solution of (Eγ ;u0, v0) and û ∈ S be such that
u(t) ⇀ û weakly as t→∞. Then, for all x ∈ S

|û− x| ≤ |u0 +
1

γ
v0 − x|+ 1

γ
δ(u0),(2.10)

where δ(u0) =
√

2[Φ(u0)− inf Φ]1/2. Consequently

(i) |û− projS(u0 +
1

γ
v0)| ≤ d(u0 +

1

γ
v0, S) +

1

γ
δ(u0),

where d(u0, S) is the distance between u0 and the set S.
(ii) If S is an affine subspace of H, then

|û− projS(u0 +
1

γ
v0)| ≤ 1

γ
δ(u0).



1110 FELIPE ALVAREZ

If, moreover, Φ is a quadratic form, then

u(t)→ projS(u0 +
1

γ
v0) strongly in H as t→∞.

Proof. Let x ∈ S and set ϕ(t) := 1
2 |u(t) − x|2. The inequality (2.2) and the

optimality of x give ϕ′′ + γϕ′ ≤ |u′|2. Hence

ϕ(t) ≤ ϕ(0) +
1

γ
(1− e−γt)ϕ′(0) +

∫ t

0

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

Due to the weak lower-semicontinuity of the norm and Fubini’s theorem, we can let
t→∞ to obtain

1

2
|û− x|2 ≤ 1

2
|u0 − x|2 +

1

γ
〈v0, u0 − x〉+

1

γ

∫ ∞

0

|u′(τ)|2dτ.(2.11)

On the other hand, from the energy equation

1

2
|u′|2 + Φ(u) + γ

∫ t

0

|u′(τ)|2dτ =
1

2
|v0|2 + Φ(u0),

it follows that ∫ ∞

0

|u′(τ)|2dτ ≤ 1

γ

[1

2
|v0|2 + Φ(u0)− inf Φ

]
.

Replacing the last estimate in (2.11), it easy to show that (2.10) holds.
For (i), it suffices to take x = projS(u0 + 1

γ v0) in (2.10).

For (ii), let e := û− projS(u0 + 1
γ v0). If e �= 0, then set

xr := projS

(
u0 +

1

γ
v0

)
− rd

(
u0 +

1

γ
v0, S

) e
|e| ,

which belongs to S. An easy computation shows that∣∣∣u0 +
1

γ
v0 − xr

∣∣∣− |û− xr| =
(√

1 + r2 − r
)
d
(
u0 +

1

γ
v0 − x, S

)
− |e|,

which together with (2.10) yields

|e| ≤
(√

1 + r2 − r
)
d
(
u0 +

1

γ
v0 − x, S

)
+

1

γ
δ(u0).

Letting r →∞ we get the result.
Finally, suppose that Φ(x) = 1

2 〈Ax, x〉 where A : H → H is a positive and self-
adjoint bounded linear operator. Then S = {x ∈ H | Ax = 0} the null space of A.
Let z ∈ S; for all t ≥ 0 we have that

〈u′(t)− v0, z〉+ γ〈u(t)− u0, z〉 =

∫ t

0

〈u′′(τ) + γu′(τ), z〉dτ

=

∫ t

0

〈−Au(τ), z〉dτ

=

∫ t

0

−〈u(τ), Az〉dτ = 0.

Since u′(t)→ 0 and u(t)→ û ∈ S strongly (Φ is even) as t→∞, we can deduce that〈
û−

(
u0 +

1

γ
v0

)
, z
〉

= 0

for all z ∈ S, which completes the proof.
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2.3. Linear system: Heuristic comparison. Before proceeding further, it is
interesting from the optimization viewpoint to compare the behavior of the trajectories
defined by

(Eγ) u′′ + γu′ +∇Φ(u) = 0,

with the steepest descent equation

(SD) u′ +∇Φ(u) = 0,

and with the continuous Newton’s method

(N) u′ +∇2Φ(u)−1∇Φ(u) = 0.

For simplicity, in this section we restrict ourselves to the associated linearized systems
in a finite dimensional space. We shall consider H = R

N and assume that Φ ∈
C2(RN ; R). Related to (SD), we have the linearized system around some x0 ∈ R

N ,
which is defined by

(LSD) x′ +∇2Φ(x0)(x− x0) +∇Φ(x0) = 0.

We assume that the Hessian matrix∇2Φ(x0) is positive definite. An explicit computa-
tion shows that x(t)→ x̂ := x0−∇2Φ(x0)−1∇Φ(x0) as t→∞. In fact, the solutions
of (LSD) are of the form y(t) = x̂ + η(t), where η solves the homogeneous equation
η′ + ∇2Φ(x0)η = 0. Take a matrix P such that P−1∇2Φ(x0)P = diag(λ1, . . . , λN ),
where λi > 0, and set Pξ = η. We obtain the system ξ′i+λiξi = 0, whose solutions are
ξi(t) = Cie

−λit. Generally speaking, if there is a λi << 1, we will have a relative slow
convergence towards the solution; on the other hand, when dealing with large λi’s
the numerical integration by an approximate method will present stability problems.
Thus we see that the numerical performance of (SD) is strongly determined by the
local geometry of the function Φ.

We turn now to the linearized version of (N), given by

(LN) y′ + y − x̂ = 0.

The solutions are of the form y(t) = x̂+e−ty(0), which are much better than the pre-
vious ones. The major properties are (1) the straight-line geometry of the trajectories;
(2) that the rate of convergence is independent of the quadratic function to be min-
imized. Certainly, this is just a local approximation of the original function and the
global behavior of the trajectory may be complicated. Nevertheless, this outstanding
normalization property of Newton’s system makes it effective in practice, due to the
fact that the associated trajectories are easy to follow by a discretization method.
Of course, an important disadvantage of (N) is the computation of the inverse of the
Hessian matrix, which may be involved for a numerical algorithm.

Finally, we consider

(LEγ) z′′ + γz′ +∇2Φ(x0)(z − x0) +∇Φ(x0) = 0.

For this equation we have z(t) = x̂ + ε(t), where ε solves the homogeneous problem
ε′′ + γε′ +∇2Φ(x0)ε = 0. Setting Pδ = ε with P as above, then δi satisfies δ′′i + γδ′i +
λiδi = 0. It is a simple matter to show that |δi(t)| ≤ Cie−µi(γ)t with µi :]0,∞[→]0,∞[
continuous and Ci a constant independent of γ. In fact, µi(γ) = γ

2 if γ ∈]0, 2
√
λi] and
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µi(·) is nonincreasing on ]2
√
λi,∞[. Moreover, if γ ≥ 2

√
λi, then the corresponding

δi(t) does not present oscillations. Thus the choice γ = 2
√
λi gives µi =

√
λi, the

greatest rate that can be obtained. But we can get any value in the interval ]0,
√
λi];

for instance, when λi > 1 we obtain µi = 1 either with γ = 2 or γ = λi + 1. The
last choice has the advantage that the associated trajectory is not oscillatory, which
is interesting by numerical reasons. Note that we should take a different parameter γ
according to the corresponding eigenvalue λi.

Therefore, the presence of the damping parameter γ gives us a control on the
behavior of the solutions of (Eγ) and, in particular, on some qualitative properties
of the associated trajectories. For a general Φ we must take into account that (a) a
careful selection of the damping parameter γ should depend on the local geometry of
the function Φ, leading to a nonautonomous damping; (b) this selection could give a
different value of γ for some particular directions, leading to an anisotropic damping.
No attempt has been made here to develop a theory in order to guide these choices.

2.4. Linear and anisotropic damping. In the preceding section we have seen
that it may be of interest to consider an anisotropic damping. With the aim of
contributing to this issue, in this section we establish the asymptotic convergence for
the solutions of the following system:

(EΓ;u0, v0)

{
u′′ + Γu′ +∇Φ(u) = 0,
u(0) = u0, u

′(0) = v0,

where Γ : H → H is a bounded self-adjoint linear operator, which we assume to be
elliptic:

(hΓ) there exists γ > 0 such that for any x ∈ H, 〈Γx, x〉 ≥ γ|x|2.
Theorem 2.6. Suppose (hΦ) and (hΓ) hold. If u ∈ C2([0,∞[;H) is a solution

of (EΓ;u0, v0), then it satisfies u′ ∈ L2([0,∞[;H), u′(t)→ 0 as t→∞, and
lim
t→∞ Φ(u(t)) = inf Φ.(2.12)

Furthermore, if Argmin Φ �= ∅, then there exists û ∈ Argmin Φ such that u(t) ⇀ û
weakly in H as t→∞.

Proof. We only need to adapt the proof of Theorem 2.1. First, note that the
properties of existence, uniqueness, and infinite extendibility to the right of the so-
lution follow by similar arguments. Likewise, the energy E(t) := 1

2 |u′(t)|2 + Φ(u(t))
satisfies E′ = −〈Γu′, u′〉, and we can deduce that u′ ∈ L2.

Next, define the operator A : H → H by Ax := Γx − γx, with γ > 0 given by
(hΓ). Fix x ∈ H and set ϕ(t) := 1

2 |u(t)− x|2 and ρ(t) := 1
2 〈A(u(t)− x), u(t)− x〉, in

such a way that

ϕ′′ + γϕ′ + ρ′ = 〈∇Φ(u), x− u〉+ |u′|2.(2.13)

As in the proof of Theorem 2.1, (2.13) gives

ϕ′(t) +

∫ t

0

e−γ(t−τ)ρ′(τ)dτ ≤ e−γtϕ′(0) +
1

γ
(1− e−γt)[Φ(x)− E(t)] + r(t),(2.14)

with

r(t) :=
3

2

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ,
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the only difference being the term
∫ t
0
e−γ(t−τ)ρ′(τ)dτ . An integration by parts yields

∫ t

0

e−γ(t−τ)ρ′(τ)dτ = ρ(t)− e−γtρ(0)− γ
∫ t

0

e−γ(t−τ)ρ(τ)dτ.

Setting f(t) :=
∫ t
0
e−γ(t−τ)ρ(τ)dτ , we have

∫ t

0

e−γ(t−τ)ρ′(τ)dτ = f ′(t)− e−γtρ(0).

Thus, we can rewrite (2.14) as

ϕ′(t) + f ′(t) ≤ e−γt(ϕ′(0) + ρ(0)) +
1

γ
(1− e−γt)[Φ(x)− E(t)] + r(t).

We leave it to the reader to verify that the minimizing property (2.12) can now be
established as in Theorem 2.1. The proof of u′(t)→ 0 as t→∞ is analogous.

When Argmin Φ �= ∅, we fix z ∈ Argmin Φ and consider the corresponding func-
tions ϕ and ρ as above (with x replaced by z). Using the optimality of z, it follows
that

ϕ′(t) + f ′(t) ≤ e−γt(ϕ′(0) + ρ(0)) +

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ,(2.15)

with f associated with ρ as above. Integrating this inequality we conclude that ϕ(t)
stays bounded as t → ∞, but we cannot deduce its convergence. Then, we rewrite
(2.15) in the form

ϕ′(t) +

∫ t

0

e−γ(t−τ)ρ′(τ)dτ ≤ e−γtϕ′(0) +

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ,

and we conclude that [ϕ′(t) +
∫ t
0
e−γ(t−τ)ρ′(τ)dτ ]+ ∈ L1([0,∞[; R). We note that

ϕ′(t) +

∫ t

0

e−γ(t−τ)ρ′(τ)dτ = µ′(t) + ξ′(t),

where

µ(t) :=
1

2γ
〈Γ(u(t)− z), u(t)− z〉,

and

ξ(t) := − 1

γ

∫ t

0

e−γ(t−τ)ρ′(τ)dτ.

By virtue of Lemma 2.2, if we show that ξ(t) is bounded from below, then µ(t) + ξ(t)
converges as t → ∞. Since ρ′(t) = 〈Au′(t), u(t) − z〉, there exists a constant M > 0
independent of t such that |ρ′(t)| ≤ M |u′(t)|√ϕ(t) for any t > 0. We conclude that
ρ′(t) → 0 as t → ∞. From this fact it follows easily that ξ(t) → 0 as t → ∞.
Therefore, µ(t) + ξ(t) converges as t→∞, hence µ(t) converges as well.

The proof is completed by applying the Opial lemma to the trajectory {u(t) : t→
∞}, where the Hilbert space H is endowed with the inner product 〈〈·, ·〉〉 : H×H → R

defined by 〈〈x, y〉〉 := 1
γ 〈Γx, y〉 and its associated norm.
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Remark 1. In Theorems 2.1, 2.4, and 2.6 we do not require any coerciveness
assumption on Φ. When Argmin Φ �= ∅, the dissipativeness in the dynamics suffices
for the convergence of the solutions. If the infimum value is not realized, the trajectory
may be unbounded as in the one-dimensional equation u′′ + γu′ + eu = 0, whose
solutions u ∈ C2([0,∞[; R) are so that u(t) → −∞ and u′(t) → 0 as t → ∞. In
any case, our results assert that the dynamical system defined by (Eγ) (or more
generally by (EΓ)) is dissipative in the sense that every trajectory evolves towards a
minimum of the energy. Certainly, there is a strong connection with the concept of
point dissipativeness or ultimately boundedness in the theory of dynamical systems,
where the Lyapunov function associated with the semigroup is usually supposed to
be coercive (cf. [9, gradient systems]).

Remark 2. To ensure local existence and uniqueness of a classical solution for
the differential equation, it suffices to require a local Lipschitz property on ∇Φ. Ac-
tually, in some situations this hypothesis is not necessary and the existence may be
established by other arguments. For instance, that is the case of the Hille–Yosida
theorem for evolution equations governed by monotone operators and the theory of
linear and nonlinear semigroups for partial differential equations. Note that such a
Lipschitz condition on the gradient is not used in the asymptotic analysis of the tra-
jectories. Therefore, the previous asymptotic results remain valid for other classes of
infinite dimensional dissipative systems provided the existence of a global solution.
It is not our purpose to develop this point here for the continuous system because it
exceeds the scope of this paper. However, in the next section we consider an implicit
discretization of the continuous system. As we will see, the existence of the discrete
trajectory is ensured by variational arguments. This will allow us to apply the discrete
scheme to nonsmooth convex functions and to adapt the asymptotic analysis to this
case.

3. Discrete approximation method. Once we have established the existence
of a solution of an initial value problem, we are interested in its numerical values. We
must accept that most differential equations cannot be solved explicitly; we are thus
led to work with approximate methods. An important class of these methods is based
on the approximation of the exact solution over a discrete set {tn}: associated with
each point tn we compute a value un, which approximates u(tn) the exact solution at
tn. Generally speaking, these procedures have the disadvantage that a large number
of calculations has to be done in order to keep the discretization error en := un−u(tn)
sufficiently small. In addition to this, the estimates for the errors strongly depend on
the length of the discretization range for the t variable. It turns out that these methods
are not well adapted to the approximation of the exact solution on an unbounded
domain.

Nevertheless, there is an important point to note here. If our objective is the
asymptotic behavior of the solutions as t goes to∞, then the accurate approximation
of the whole trajectory becomes immaterial. We present a discrete method whose
feature is that no attempt is made to approximate the exact solution over a set of
points but that the discrete values are sought only to preserve the asymptotic behavior
of the solutions.

3.1. Implicit iterative scheme. Dealing with the discretization of a first order
differential equation y′ = F (y), it is classical to consider the implicit iterative scheme

yk+1 − yk
h

= F (yk+1),(3.1)
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where h > 0 is a parameter called step size. In the case of equation (Eγ), or more
precisely its first order equivalent system, (3.1) corresponds to recursively solve

uk+1 − 2uk + uk−1

h2
+ γ

uk+1 − uk
h

+∇Φ(uk+1) = 0.(3.2)

Since Φ is convex, (3.2) is equivalent to the following variational problem:

uk+1 = argmin

{
Φ(x) +

1 + γh

2h2
|x− zk|2 : x ∈ H

}
,

where zk = uk+ 1
1+γh (uk−uk−1). This motivates the introduction of the more general

iterative procedure

uk+1 = argmin

{
Φ(x) +

1

2λ
|x− zk|2 : x ∈ H

}
,

where zk = uk+α(uk−uk−1), λ and α are positive. Note that when α = 0, we recover
the standard (Prox) iteration. If α > 0, the starting point for the next iteration is
computed as a development in terms of the velocity of the already generated sequence.
Therefore, this iterative scheme defines a second order dynamics, while (Prox) is
actually of a first order nature.

We have been working under the assumption that Φ is differentiable. However,
for the above iterative variational method this regularity is no longer necessary. Thus,
in that which follows f : H → R ∪ {∞} denotes a closed proper convex function (see
[17]), which eventually realizes the value ∞, and we consider

uk+1 = argmin

{
f(x) +

1

2λ
|x− zk|2 : x ∈ H

}
,(3.3)

where zk = uk+α(uk−uk−1). In terms of the stationary condition, (3.3) is equivalent
to

1

λ
(uk+1 − (1 + α)uk + αuk−1) + ∂f(uk+1) � 0,

where ∂f is the standard convex subdifferential [17].

3.2. Convergence for the variational algorithm. By numerical reasons, it
is natural to consider the following approximate iterative scheme:

1

λk
(uk+1 − (1 + αk)uk + αkuk−1) + ∂εkf(uk+1) � 0,(3.4)

where αk is nonnegative, λk is positive, and ∂εf is the ε-subdifferential. Note that a
sequence {uk} ⊂ H satisfying (3.4) always exists. Indeed, given uk−1, uk ∈ H, we can
take uk+1 as the unique solution of the strongly convex problem min{f(x) + 1

2λk
|x−

zk|2 : x ∈ H} with zk as above.
Theorem 3.1. Assume that f is closed proper convex and bounded from below.

Let {uk} ⊂ H be a sequence generated by (3.4), where
(i) 0 ≤ αk ≤ 1 and {λk} is bounded from below by a positive constant,
(ii) the sequence {αk/λk} is nonincreasing and

∑
λkεk <∞.

Then

lim
k→∞

1

λk
(uk+1 − (1 + αk)uk + αkuk−1) = 0,(3.5)
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and in particular limk→∞ d(0, ∂εkf(uk+1)) = 0.
When Argmin f �= ∅, assume in addition that
(iii) there exists ᾱ ∈]0, 1[ such that 0 ≤ αk ≤ ᾱ, and {λk} is bounded from above
if there is at least one αk > 0.

Then, there exists û ∈ Argmin f such that uk ⇀ û weakly as k →∞.
Proof. The proof consists of adapting the analysis done for the differential equa-

tion (Eγ). We begin by defining the discrete energy by

Ek+1 =
αk
2λk
|uk+1 − uk|2 + f(uk+1),

and we study the successive difference Ek+1 − Ek. Since αk/λk ≤ αk−1/λk−1,

Ek+1 − Ek ≤ αk
2λk

(|uk+1 − uk|2 − |uk − uk−1|2
)

+ f(uk+1)− f(uk).

By definition of ∂εkf , (3.4) yields

f(uk+1)− f(uk) ≤ − 1

λk
〈uk+1 − (1 + αk)uk + αkuk−1, uk+1 − uk〉+ εk.

As we can write

〈uk+1 − (1 + αk)uk + αkuk−1, uk+1 − uk〉 = |uk+1 − uk|2 − αk〈uk − uk−1, uk+1 − uk〉,

we have

Ek+1 − Ek ≤ − αk
2λk
|uk+1 − 2uk + uk−1|2 − 1− αk

λk
|uk+1 − uk|2 + εk,

and consequently

N∑
k=1

[
αk
2λk
|uk+1 − 2uk + uk−1|2 +

1− αk
λk

|uk+1 − uk|2
]
≤ E1 − EN+1 +

N∑
k=1

εk.

Noting that

E1 − EN+1 +

N∑
k=1

εk ≤ E1 − inf f +
∑

εk <∞,

and because 0 ≤ αk ≤ 1, we deduce that

∑ αk
2λk
|uk+1 − 2uk + uk−1|2 <∞

and

∑ 1− αk
λk

|uk+1 − uk|2 <∞.(3.6)

As 0 ≤ αk ≤ 1 and λk is bounded from below by a positive constant, we have

lim
k→∞

αk
λk
|uk+1 − 2uk + uk−1| = lim

k→∞
(1− αk)

λk
|uk+1 − uk| = 0.
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Writing

uk+1 − (1 + αk)uk + αkuk−1 = αk(uk+1 − 2uk + uk−1) + (1− αk)(uk+1 − uk),

we conclude that (3.5) holds.
Suppose now that Argmin f �= ∅. We apply the Opial lemma to prove the weak

convergence of {uk}. On account of (3.5), it is sufficient to show that for any z ∈
Argmin f , the sequence of positive numbers {|uk−z|} is convergent. Fix z ∈ Argmin f ;
since uk+1 satisfies (3.4), we have

f(uk+1)− 1

λk
〈uk+1 − (1 + αk)uk + αkuk−1, z − uk+1〉 ≤ f(z) + εk,

and by the optimality of z

〈uk+1 − uk, uk+1 − z〉 − αk〈uk − uk−1, uk+1 − z〉 ≤ λkεk.(3.7)

Set ϕk := 1
2 |uk − z|2. It is direct to check that for any k ∈ N

ϕk+1 = ϕk + 〈uk+1 − uk, uk+1 − z〉 − 1

2
|uk+1 − uk|2.

Since 〈uk−uk−1, uk+1−z〉 = 〈uk−uk−1, uk−z〉+ 〈uk−uk−1, uk+1−uk〉, (3.7) shows
that

ϕk+1 − ϕk − αk
(
ϕk − ϕk−1 +

1

2
|uk − uk−1|2 + 〈uk − uk−1, uk+1 − uk〉

)
≤ λkεk,

and therefore

ϕk+1 − (1 + αk)ϕk + αkϕk−1 ≤ δk,
where δk = αk|uk − uk−1|2 + αk

2 |uk+1 − uk|2 + λkεk. Using (iii) and (3.6) it follows
that

∑ |uk+1−uk|2 <∞, thus
∑
δk <∞. Set θk := ϕk −ϕk−1; the above inequality

implies

[θk+1]+ ≤ ᾱ[θk]+ + δk.

Thus

[θk+1]+ ≤ ᾱk[θ1]+ +

k−1∑
j=0

ᾱjδk−j ,

which yields

∞∑
k=0

[θk+1]+ ≤ 1

1− ᾱ

(
[θ1]+ +

∞∑
k=1

δk

)
<∞.

Set wk := ϕk −
∑k
j=1[θj ]+. Since ϕk ≥ 0 and

∑
[θj ]+ < ∞, wk is bounded from

below. As {wk} is nonincreasing we have that it converges. Hence {ϕk} converges,
which completes the proof of the theorem.

For simplicity, we have considered in this section the isotropic damping system.
However, a similar analysis can be done for the anisotropic damping associated with
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an elliptic self-adjoint linear operator Γ : H → H. The variational problem associated
with the implicit discretization is

uk+1 = argmin

{
Φ(x) +

1

2h2
|x− zk|2(I+hΓ) : x ∈ H

}
,

where zk = uk + (I + hΓ)−1(uk − uk−1) and for any y ∈ H,

|y|(I+hΓ) :=
√
〈(I + hΓ)y, y〉.

For a function f : H → R ∪ {∞} closed proper and convex, the latter motivates the
scheme

R(uk+1 − (I + S)uk + Suk−1) + ∂f(uk+1) � 0,

where R : H → H is a linear positive definite operator and S : H → H is linear
and positive semidefinite. If we assume both R and I − S are elliptic, it is possible
to obtain a convergence result like the previous one. It suffices to adapt the main
arguments. Since the basic ideas are contained in the proof of Theorems 2.6 and 3.1,
we shall go no further in this matter.

4. Some open problems. In the case of multiple optimal solutions, our con-
vergence results do not provide additional information on the point attained in the
limit. A possible approach to overcome this disadvantage may be to couple the dissi-
pative system with approximation techniques such as regularization, interior-barrier
or globally defined penalizations, and viscosity methods. In the continuous case, this
alternative has been considered with success for the steepest descent equation in [2]
and for Newton’s method in [1], giving a characterization for the limit point under
suitable assumptions on the approximate scheme. On account of these results, one
may conjecture that this can be done for the equations considered in the present work.

On the other hand, we have seen that the behavior of the trajectories depends
on a relation between the damping and the local geometry of the function we wish to
minimize. This remark leads us to the obvious problem of the choice of the damping
parameter, made in order to have a better control on the trajectory. This is also a
problem in the discrete algorithm. Usually we have an incomplete knowledge of the
objective function, which makes the question more difficult. We think that a first step
in this direction may be the study of more general damped equations, with nonlinear
and/or nonautonomous damping.
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Abstract. Closing the loop around an exponentially stable, single-input, single-output, regular
linear system—subject to a globally Lipschitz, nondecreasing actuator nonlinearity and compensated
by an integral controller with time-dependent gain k(t)—is shown to ensure asymptotic tracking of
a constant reference signal r, provided that (a) the steady-state gain of the linear part of the system
is positive, (b) the reference value r is feasible in an entirely natural sense, and (c) the function
t �→ k(t) monotonically decreases to zero at a sufficiently slow rate. This result forms the basis of a
simple adaptive control strategy that ensures asymptotic tracking under conditions (a) and (b).

Key words. adaptive control, infinite-dimensional regular systems, input nonlinearities, integral
control, saturation, robust tracking
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1. Introduction. The paper has, as a precursor, the article [9] which contains
an extension, to infinite-dimensional systems with input nonlinearities, of the well-
known principle (see, for example, [5], [13], and [17]) that closing the loop around a
stable, linear, finite-dimensional, continuous-time, single-input, single-output plant,
with transfer function G(s) compensated by a pure integral controller C(s) = k/s,
will result in a stable closed-loop system that achieves asymptotic tracking of arbitrary
constant reference signals, provided that |k| is sufficiently small and G(0)k > 0. In
particular, in [9] it is shown that the above principle may remain valid if the plant to
be controlled is a single-input, single-output, continuous-time, infinite-dimensional,
regular (as defined in section 2 below) linear system subject to an input nonlinearity
φ. More precisely, if φ is globally Lipschitz and nondecreasing, if G(0) > 0, and if the
constant reference signal r is feasible (in the sense that [G(0)]−1r is in the closure of
the image of φ), then there exists k∗ > 0 such that, ∀k ∈ (0, k∗), the output y(t) of
the closed-loop system (shown in Figure 1) converges to r as t → ∞. Therefore, if a
(regular) plant is known to be stable, if the input nonlinearity is of the above class, if
G(0) �= 0, and if the sign of G(0) is known (in principle, the latter information can be
obtained from plant step response data), then the problem of tracking feasible signals
r by low-gain integral control reduces to that of tuning the gain parameter k. In a
nonadaptive, linear, finite-dimensional context, one such controller design approach
(“tuning regulator theory”[5]) has been successfully applied in process control (see,
for example, [4] and [14]). Furthermore, the problem of tuning the integrator gain
adaptively has been addressed recently in a number of papers: see, for example, [3]
and [15], [16] for the finite-dimensional case (with input constraints treated in [15]),
and [10], [11], [12] for the linear infinite-dimensional case.

The present paper addresses aspects of adaptive tuning of the integrator gain
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Fig. 1. Low-gain control with input nonlinearity.

for infinite-dimensional regular linear systems (with transfer function G), subject to
input nonlinearities φ of the same class as considered in its precursor [9]. In [9], the
constant-gain case is treated; there, the existence of a value k∗ > 0, with the property
that asymptotic tracking of feasible reference signals r is ensured for every fixed gain
k ∈ (0, k∗), is established. Let k∗∗ denote the supremum of all such k∗. In [9], it is
shown that k∗∗ ≥ κ∗/λ, where λ > 0 is a Lipschitz constant for φ and κ∗ denotes the
supremum of all numbers κ > 0 such that

1 + κRe
G(s)

s
≥ 0 ∀ s withRe s > 0.

For lower bounds and formulae for κ∗ in terms of plant data, we refer to [8]. In
general, k∗∗ is a function of the plant data and so, in the presence of uncertainty, may
fail to be computable. In such cases, it is natural to consider time-dependent gain
strategies t �→ k(t) > 0 capable of attaining sufficiently small values. Theorem 3.8 has
the following flavor: if k(·) monotonically decreases to zero sufficiently slowly, then
asymptotic tracking of feasible reference signals is achieved. The practical utility of
this result is limited insofar as the gain function is selected a priori: no use is made of
the instantaneous output information y(t) from the plant to update the gain. Utilizing
the available output information, Theorem 3.13 establishes the efficacy of the simple
adaptive gain strategy

k(t) =
1

l(t)
, where l̇(t) = |r − y(t)|, l(0) = l0 > 0,

and shows that, if the reference signal r is such that [G(0)]−1r ∈ imφ is not a critical
value of φ, then the monotone function t �→ k(t) > 0 converges to a positive limit as
t→∞.

2. Preliminaries on regular linear systems. We assemble some fundamen-
tal facts pertaining to regular linear systems and tailored to later requirements; the
reader is referred to [20], [21], [22], [23], [24], and [9] for full details. This section is
prefaced with the remark that the class of regular linear infinite-dimensional systems
is rather general: it includes most distributed parameter systems and all time-delay
systems (retarded and neutral) which are of interest in applications. Although there
exist abstract examples of well-posed, infinite-dimensional systems that fail to be reg-
ular, the authors are of the opinion that any physically motivated, well-posed, linear,
continuous-time, autonomous control system is regular.

First, some notation: for a Hilbert space H and any τ ≥ 0, Rτ denotes the
operator of right-shift by τ on Lp

loc(R+, H), where R+ := [0,∞); the truncation
operator Pτ : Lp

loc(R+, H)→ Lp(R+, H) is given by (Pτu)(t) = u(t) if t ∈ [0, τ ] and
(Pτu)(t) = 0 otherwise; for α ∈ R, we define the exponentially weighted Lp-space
Lp
α(R+, H) := {f ∈ Lp

loc(R+, H)| f(·) exp(−α ·) ∈ Lp(R+, H)}; B(H1, H2) denotes
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the space of bounded linear operators from a Hilbert space H1 to a Hilbert space H2;
for α ∈ R, Cα := {s ∈ C |Re s > α}; the Laplace transform is denoted by L.

Well-posed systems. The concept of a well-posed linear system was introduced
by Weiss [24]. An equivalent definition can be found in [19].

Definition 2.1. Let U , X, and Y be real Hilbert spaces. A well-posed linear
system with state space X, input space U , and output space Y is a quadruple Σ =
(T,Φ,Ψ,F), where T = (Tt)t≥0 is a C0-semigroup of bounded linear operators on
X; Φ = (Φt)t≥0 is a family of bounded linear operators from L2(R+, U) to X such
that, ∀ τ, t ≥ 0,

Φτ+t(Pτu+Rτv) = TtΦτu+Φtv ∀ u, v ∈ L2(R+, U) ;

Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to L2(R+, Y ) such that
Ψ0 = 0 and, ∀ τ, t ≥ 0,

Ψτ+tx0 = PτΨτx0 +RτΨtTτx0 ∀ x0 ∈ X;

and F = (Ft)t≥0 is a family of bounded linear operators from L2(R+, U) to L2(R+, Y )
such that F0 = 0 and, ∀ τ, t ≥ 0,

Fτ+t(Pτu+Rτv) = PτFτu+Rτ (ΨtΦτu+ Ftv) ∀ u, v ∈ L2(R+, U).

For an input u ∈ L2
loc(R+, U) and initial state x0 ∈ X, the associated state

function x ∈ C(R+, X) and output function y ∈ L2
loc(R+, Y ) of Σ are given by

x(t) = Ttx0 +ΦtPtu,(1a)

Pty = Ψtx0 + FtPtu.(1b)

Σ is said to be exponentially stable if the semigroup T is exponentially stable:

ω(T) := lim
t→∞

1

t
ln ‖Tt‖ < 0.

Ψ∞ and F∞ will denote the unique operators X → L2
loc(R+, Y ) and L2

loc(R+, U)→
L2

loc(R+, Y ), respectively, satisfying

Ψτ = PτΨ∞, Fτ = PτF∞ ∀ τ ≥ 0.(2)

IfΣ is exponentially stable, then the operatorsΦt andΨt are uniformly bounded;Ψ∞
is a bounded operator from X into L2(R+, Y ), and F∞ maps L2(R+, U) boundedly
into L2(R+, Y ). Since PτF∞ = PτF∞Pτ ∀ τ ≥ 0, F∞ is a causal operator.

Regularity. Weiss [20] has established that, if α > ω(T) and u ∈ L2
α(R+, U),

then F∞u ∈ L2
α(R+, Y ) and there exists a unique holomorphic G : Cω(T) → B(U, Y )

such that

G(s)(Lu)(s) = [L(F∞u)](s) ∀ s ∈ Cα,

where L denotes Laplace transform. In particular, G is bounded on Cα ∀ α > ω(T).
The function G is called the transfer function of Σ.

Σ and its transfer functionG are said to be regular if there exists a linear operator
D such that

lim
s→∞, s∈R

G(s)u = Du ∀ u ∈ U,
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in which case, by the principle of uniform boundedness, it follows that D ∈ B(U, Y ).
The operator D is called the feedthrough operator of Σ.

Generating operators. The generator of T is denoted by A with domain
dom(A). Let X1 be the space dom(A) endowed with the graph norm. The norm
on X is denoted by ‖ · ‖, whilst ‖ · ‖1 denotes the graph norm. Let X−1 be the
completion of X with respect to the norm ‖x‖−1 = ‖(λI − A)−1x‖, where λ ∈  (A)
is any fixed element of the resolvent set  (A) of A. Then X1 ⊂ X ⊂ X−1 and
the canonical injections are bounded and dense. The semigroup T can be restricted
to a C0-semigroup on X1 and extended to a C0-semigroup on X−1. The exponential
growth constant is the same on all three spaces. The generator on X−1 is an extension
of A to X (which is bounded as an operator from X to X−1). We shall use the same
symbol T (respectively, A) for the original semigroup (respectively, its generator)
and the associated restrictions and extensions. With this convention, we may write
A ∈ B(X,X−1). Considered as a generator on X−1, the domain of A is X.

By a representation theorem due to Salamon [19] (see also Weiss [22, 23]), there
exist unique operators B ∈ B(U,X−1) and C ∈ B(X1, Y ) (the control operator and
the observation operator of Σ, respectively) such that, ∀ t ≥ 0, u ∈ L2

loc(R+, U) and
x0 ∈ X1,

ΦtPtu =

∫ t

0

Tt−τBu(τ) dτ and (Ψ∞x0)(t) = CTtx0.

B is said to be bounded if it is so as a map from the input space U to the state space
X; otherwise, B is said to be unbounded. C is said to be bounded if it can be extended
continuously to X; otherwise, C is said to be unbounded. If T is exponentially stable,
then there exist constants β, γ > 0 such that, ∀ t ≥ 0, u ∈ L2(R+, U), and x0 ∈ X1,

‖ΦtPtu‖ =
∥∥∥∥
∫ t

0

Tt−τBu(τ) dτ

∥∥∥∥ ≤ β‖u‖L2(0,t;U),(3)

‖Ψ∞x0‖L2(0,t;Y ) =

(∫ t

0

‖CTτx0‖2dτ
)1/2

≤ γ‖x0‖,(4)

wherein, with slight abuse of notation, we write ‖u‖L2(0,t;U) and ‖Ψ∞x0‖L2(0,t;Y ) to
denote ‖Ptu‖L2(R +;U) and ‖PtΨ∞x0‖L2(R +;U), respectively. The Lebesgue extension
of C was adopted in [23] and is defined by

CLx0 = lim
t→0

C
1

t

∫ t

0

Tτx0 dτ,

where dom(CL) is the set of all those x0 ∈ X for which the above limit exists. Clearly
X1 ⊂ dom(CL)⊂ X. Furthermore, for any x0 ∈ X, we have that Ttx0 ∈ dom(CL)
for almost all (a.a.) t ≥ 0 and

(Ψ∞x0)(t) = CLTtx0 a.a. t ≥ 0.(5)

If Σ is regular, then for any x0 ∈ X and u ∈ L2
loc(R+, U), the functions x(·) and y(·),

defined by (1a), satisfy the equations

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,(6a)

y(t) = CLx(t) +Du(t)(6b)
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for a.a. t ≥ 0 (in particular x(t) ∈ dom(CL) for a.a. t ≥ 0). The derivative on the
left-hand side of (6a) has, of course, to be understood in X−1. In other words, if we
consider the initial-value problem (6a) in the space X−1, then for any x0 ∈ X and
u ∈ L2

loc(R+, U), (6a) has unique strong solution (in the sense of Pazy [18, p. 109])
given by the variation of parameters formula

t �→ x(t) = Ttx0 +

∫ t

0

Tt−τBu(τ) dτ.(7)

It has been demonstrated in [20] that if Σ is regular, then (sI −A)−1BU ⊂ dom(CL)
∀ s ∈  (A), and the transfer function G can be expressed as

G(s) = CL(sI −A)−1B +D ∀ s ∈ Cω(T),

which is familiar from finite-dimensional systems theory. The operators A, B, C, and
D are called the generating operators of Σ.

Two technical lemmas. In essence, part (a) of the following lemma provides an
estimate, in the L2(R+, X) topology, for the solution of the initial-value problem (6a)
with initial data x0 ∈ X and input u ∈ L2(R+, U), part (b) asserts that the solution
is in L∞(R+, X) whenever x0 ∈ X and u ∈ L∞(R+, U), whilst part (c) establishes
that the initial-value problem, again with initial data x0 ∈ X, has a convergent-input,
convergent-state property. Parts (a) and (c) constitute Lemma 2.2 of [9]; proof of part
(b) is implicit in the argument establishing Lemma 2.2 of [9].

Lemma 2.2. Let (A,B,C,D) be the generating operators of an exponentially
stable regular system Σ = (T,Φ,Ψ,F).

(a) There exist constants α0, α1 > 0 such that ∀ (x0, u) ∈ X × L2(R+, U), the
solution x(·) of the initial-value problem (6a) satisfies

‖x‖L2(R +,X) ≤ α0‖x0‖+ α1‖u‖L2(R +,U).

(b) ∀ (x0, u) ∈ X×L∞(R+, U), the solution x(·) of the initial-value problem (6a)
satisfies

x ∈ L∞(R+, X).

(c) If u ∈ L∞(R+, U) and limt→∞ u(t) = u∞ exists, then, ∀x0 ∈ X, the solution
x(·) of the initial-value problem (6a) satisfies

lim
t→∞ ‖x(t) +A−1Bu∞‖ = 0.

The next lemma shows that, for finite-dimensional U and Y , the impulse response
of an exponentially stable regular system with bounded B (or bounded C) is the sum
of a weighted L1-function and a point mass at 0.

Lemma 2.3. Let (A,B,C,D) be the generating operators of an exponentially
stable regular system Σ = (T,Φ,Ψ,F). Assume that either B or C is bounded.

(a) There exists α < 0 such that, ∀u ∈ U ,

L−1(G(·)u−Du) ∈ L1
α(R+, Y ).

(b) If U = R
m and Y = R

p, then

L−1(G) ∈ L1
α(R+,R

p×m) + (Rp×m) δ0,

where δ0 denotes the unit point mass at 0.
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Proof. Suppose that B is bounded, and set G0(s) := G(s)−D = C(sI −A)−1B.
Fix u ∈ U and choose (bn) ⊂ X1 such that limn→∞ ‖Bu − bn‖ = 0 (such a sequence
exists by denseness of X1 in X). Consequently, Ψ∞Bu, Ψ∞bn ∈ L2(R+, Y ), and

lim
n→∞ ‖Ψ∞Bu−Ψ∞bn‖L2(R +,Y ) = 0.

Hence, ∀ s ∈ C0,

G0(s)u = lim
n→∞C(sI −A)−1bn = lim

n→∞

∫ ∞

0

(Ψ∞bn)(t)e
−st dt = [L(Ψ∞Bu)](s).

Note that, by exponential stability, Ψ∞Bu ∈ L2
β(R+, Y ) for some β < 0, and hence

Ψ∞Bu ∈ L1
α(R+, Y ) ∀ α ∈ (β, 0), which yields part (a) in the case of bounded

B. This result together with the duality between admissible control and observation
operators (see [23]) yields part (a) in the case of bounded C. Part (b) is an immediate
consequence of part (a).

3. Integral control of regular systems with input nonlinearities. The
problem of tracking constant reference signals r will be addressed in a context of
uncertain single-input (u(t) ∈ R), single-output (y(t) ∈ R) linear systems, having a
nonlinearity φ in the input channel:

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,

y(t) = CLx(t) +Dφ(u(t)).
(8)

We consider quadruples (A,B,C,D), with C having Lebesgue extension CL, of class
R defined below.

Definition 3.1. Let R denote the class of quadruples (A,B,C,D) which are the
generating operators of a regular linear system Σ, with state space X, input space R,
output space R, and transfer function G, satisfying

(a) Σ is exponentially stable; (b) G(0) > 0.

The following property of R is readily verified.
Proposition 3.2. If (A,B,C,D) ∈ R, then (A + εI,B,C,D) ∈ R ∀ ε > 0

sufficiently small.
Admissible input nonlinearities are those functions φ of class N defined below.
Definition 3.3. Let N be the class of functions φ : R → R with the properties

(a) φ is monotone nondecreasing; (b) φ satisfies a global Lipschitz condition (with
Lipschitz constant λ), that is, for some λ, |φ(u)− φ(v)| ≤ λ|u− v| ∀u, v ∈ R.

As an example of φ ∈ N , consider the input nonlinearity in Figure 2 below.
Let (εn) ⊂ (0,∞) be a sequence with εn ↓ 0 as n → ∞. For each φ ∈ N , define

φ	 : R→ R by

φ	(ξ) = lim sup
n→∞

φ(ξ + εn)− φ(ξ)

εn
.

Note that 0 ≤ φ	(ξ) ≤ λ ∀ ξ ∈ R, where λ is a Lipschitz constant for φ. Moreover,
as the (pointwise) upper limit of a sequence of continuous functions, φ	 is Borel
measurable, and so its composition φ	 ◦ u with a Lebesgue measurable function u is
Lebesgue measurable; furthermore, by the same argument as used in proving Lemma
3.5 of [9], a chain rule applies to such compositions, which we now record.
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Fig. 2. Nonlinearity with saturation and dead zone.

Proposition 3.4. Let φ ∈ N and let u : R+ → R be absolutely continuous.
Then, φ ◦ u is absolutely continuous and

(φ ◦ u)′(t) = φ	(u(t))u̇(t) for a.a. t ∈ R+.

The Clarke [2] directional derivative φo(u; v) of φ ∈ N at u in direction v is given by

lim sup
w→u
h↓0

φ(w + hv)− φ(w)

h
.

Define φ−(·) := −φo(·;−1). By upper semicontinuity of φo, φ− is lower semicontinu-
ous. By definition of φ	 and monotonicity of φ ∈ N (with Lipschitz constant λ), we
have

0 ≤ φ−(u) ≤ φ	(u) ≤ λ ∀ u.(9)

u ∈ R is said to be a critical point (and φ(u) is said to be a critical value) of φ if
φ−(u) = 0.

3.1. Integral control with time-varying gain. Let (A,B,C,D) ∈ R, φ ∈ N ,
and k ∈ L∞(R+,R). We denote, by r ∈ R, the value of the constant reference signal to
be tracked by the output y(t). In Proposition 3.6 of [9], it is shown that the following
condition is necessary for solvability of the tracking problem: [G(0)]−1r ∈ clos(imφ).
Reference values r satisfying this condition are referred to as feasible.

We will investigate integral control action

u(t) = u0 +

∫ t

0

k(τ)[r − CLx(τ)−Dφ(u(τ))] dτ,

with time-varying gain k(·), leading to the following nonlinear system of differential
equations:

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,(10a)

u̇(t) = k(t)[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R.(10b)

For a ∈ (0,∞], a continuous function

[0, a)→ X × R, t �→ (x(t), u(t))

is a solution of (10) if (x(·), u(·)) is absolutely continuous as a (X−1 × R)-valued
function, x(t) ∈ dom(CL) for a.a. t ∈ [0, a), (x(0), u(0)) = (x0, u0), and the differential
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equations in (10) are satisfied almost everywhere (a.e.) on [0, a), where the derivative
in (10a) should be interpreted in the space X−1.

1

An application of a well-known result on abstract Cauchy problems (see Pazy [18,
Theorem 2.4, p. 107]) shows that a continuous (X ×R)-valued function (x(·), u(·)) is
a solution of (10) if and only if it satisfies the following integrated version of (10):

x(t) = Ttx0 +

∫ t

0

Tt−τBφ(u(τ)) dτ,(11a)

u(t) = u0 +

∫ t

0

k(τ)[r − CLx(τ)−Dφ(u(τ))] dτ.(11b)

The next result asserts that (10) has a unique solution: the proof is contained in the
appendix.

Lemma 3.5. Let (A,B,C,D) ∈ R, φ ∈ N , k ∈ L∞(R+), and r ∈ R. For each
(x0, u0) ∈ X × R, there exists a unique solution (x(·), u(·)) of (10) defined on R+.

In [9], the constant-gain case is considered in the context of systems (A,B,C,D) ∈
R with input nonlinearities φ ∈ N : there, the existence of a value k∗ > 0, with the
property that asymptotic tracking of feasible reference signals r is ensured for all fixed
gains k ∈ (0, k∗), is established. However, k∗ is, in general, a function of the plant data
and so, in the presence of plant uncertainty, may fail to be computable in practice.
In such circumstances, one might be led näıvely to consider a time-dependent gain
strategy t �→ k(t) > 0 with k(t) approaching zero as t tends to infinity.

The main result of this section is contained in the following two theorems which
confirm the validity of the above näıvety provided that the gain approaches zero
sufficiently slowly. In particular, Theorem 3.6 proves that if t �→ k(t) > 0 is chosen to
be bounded and monotone decreasing to zero, then the unique solution of (10) is such
that both x(·) and φ(u(·)) converge. The essence of Theorem 3.8 is the assertion that
if, in addition, r is feasible and k(·) approaches zero sufficiently slowly, then φ(u(·))
converges to the value φr := [G(0)]−1r, thereby ensuring asymptotic tracking of r.

Theorem 3.6. Let (A,B,C,D) ∈ R, φ ∈ N , and r ∈ R. Let k : R+ → (0,∞)
be a bounded, monotone function with k(t) ↓ 0 as t → ∞. ∀ (x0, u0) ∈ X × R, the
unique solution (x(·), u(·)) of (10) satisfies

(a) limt→∞ φ(u(t)) exists and is finite, and
(b) limt→∞ ‖x(t) +A−1Bφ∗‖ = 0, where φ∗ := limt→∞ φ(u(t)).

Proof. Let (x0, u0) ∈ X×R be arbitrary. Let λ be a Lipschitz constant for φ ∈ N
(and so 0 ≤ φ	(u) ≤ λ ∀ u ∈ R). By Lemma 3.5, there exists a unique solution of
(10) on R+. We denote this solution by (x(·), u(·)) and introduce new variables by
writing φr = [G(0)]−1r and defining

z(t) := x(t) +A−1Bφ(u(t)), v(t) := φ(u(t))− φr ∀ t ∈ R+.(12)

By regularity, it follows that z(t) ∈ dom(CL) for a.a. t ∈ R+. Moreover, by Proposi-
tion 3.4, v̇(t) = φ	(u(t))u̇(t) for a.a. t ∈ R+. Since (z, v) is absolutely continuous as

1Being a Hilbert space, X−1 × R is reflexive, and hence any absolutely continuous (X−1 × R)-
valued function is a.e. differentiable and can be recovered from its derivative by integration; see [1,
Theorem 3.1, p. 10].
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an (X−1 × R)-valued function, we obtain by direct calculation

ż = Az − kφ	(u)A−1B(CLz +G(0)v),(13a)

z(0) = x0 +A−1Bφ(u0),

v̇ = −kφ	(u)(CLz +G(0)v),(13b)

v(0) = φ(u0)− φr.

We claim that there exist positive constants γ1, γ2, and σ1 such that, ∀ t, s with
σ1 ≤ s ≤ t,

∫ t

s

|CLz| |kφ	(u)v| ≤ γ1‖z(s)‖
(∫ t

s

k2φ	(u)v2

)1/2

+ γ2

∫ t

s

k2φ	(u)v2.(14)

In order to prove (14), let us first estimate
∫ t
s
|CLz|2. For notational convenience,

write w = φ	(u) [CLz +G(0)v]. As a solution of (13a), z(·) satisfies

z(τ) = Tτ−sz(s)−A−1

∫ τ

s

Tτ−ξBk(ξ)w(ξ) dξ

∀ s with 0 ≤ s ≤ τ . Invoking (4) and (5) and noting that CLA
−1 maps X boundedly

into R, there exist constants α0, α1 > 0 such that

∫ t

s

|CLz(τ)|2dτ ≤ α0‖z(s)‖2 + α1

∫ t

s

∥∥∥∥
∫ τ

s

Tτ−ξBk(ξ)w(ξ)dξ

∥∥∥∥
2

dτ(15)

∀ 0 ≤ s ≤ t. By Lemma 2.2 (part (a)), interpreted in the context of the initial-value
problem

ζ̇ = Aζ +Bkw, ζ(s) = 0,

we have
(∫ t

s

∥∥∥∥
∫ τ

s

Tτ−ξBk(ξ)w(ξ)dξ

∥∥∥∥
2

dτ

)1/2

≤ α2

(∫ t

s

|kw|2
)1/2

for some constant α2. Therefore, by (15) and monotonicity of k, it follows that, for
some constants α3, α4 > 0,

(∫ t

s

|CLz|2
)1/2

≤ α3‖z(s)‖+ k(s)α4

(∫ t

s

|φ	(u)|2|CLz|2
)1/2

+ α4G(0)

(∫ t

s

|kφ	(u)v|2
)1/2

∀ 0 ≤ s ≤ t.(16)

Fix σ1 > 0 such that δ := k(σ1)α4λ < 1. Then,

k(s)α4

(∫ t

s

|φ	(u)|2|CLz|2
)1/2

≤ δ

(∫ t

s

|CLz|2
)1/2

∀ σ1 ≤ s ≤ t,

and so, by (16),

(∫ t

s

|CLz|2
)1/2

≤ β1‖z(s)‖+ β2

(∫ t

s

k2φ	(u)v2

)1/2

∀ σ1 ≤ s ≤ t,(17)
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with β1 = α3/(1− δ) and β2 = α4G(0)
√
λ/(1− δ). We may now deduce that, ∀ t, s

with σ1 ≤ s ≤ t,

∫ t

s

|CLz| |kφ	(u)v| ≤
(∫ t

s

|CLz|2
)1/2(∫ t

s

|kφ	(u)v|2
)1/2

≤ β1

√
λ‖z(s)‖

(∫ t

s

k2φ	(u)v2

)1/2

+ β2

√
λ

∫ t

s

k2φ	(u)v2,

which is (14) with γ1 = β1

√
λ and γ2 = β2

√
λ. By (13b), for a.a. t ≥ 0,

v(t)v̇(t) = −k(t)G(0)φ	(u(t))v2(t)− k(t)φ	(u(t))v(t)CLz(t),(18)

and hence

v(t)v̇(t) ≤ −k(t)G(0)φ	(u(t))v2(t) + |CLz(t)| |k(t)φ	(u(t))v(t)|.
Integrating this inequality and using (14) and monotonicity of k yields, ∀ t, s with
σ1 ≤ s ≤ t,

v2(t) ≤ v2(s) + 2γ1

√
k(s)‖z(s)‖

(∫ t

s

kφ	(u)v2

)1/2

+ 2

∫ t

s

(kγ2 −G(0))kφ	(u)v2.(19)

By positivity ofG(0) and monotonicity of k(·), there exists σ ≥ σ1 such that, ∀ τ ≥ σ,
(k(τ)γ2 −G(0)) ≤ − 1

2G(0) < 0. Therefore, it follows from (19) that

0 ≤ v2(σ) + 2γ1

√
k(σ)‖z(σ)‖

(∫ t

σ

kφ	(u)v2

)1/2

−G(0)

∫ t

σ

kφ	(u)v2 ∀ t ≥ σ,

and so ∫ ∞

σ

kφ	(u)v2 <∞.(20)

Moreover, by (14) we deduce that
∫ ∞

σ

|CLz| |kφ	(u)v| <∞.(21)

Combining (18), (20), and (21) shows that there exists a number ν ∈ R+ such that

lim
t→∞ v2(t) = v2(σ) + 2 lim

t→∞

∫ t

σ

vv̇ = ν,

whence assertion (a) of the theorem. Assertion (b) now follows by Lemma 2.2 (part
(c)).

LetM denote the space of finite signed Borel measures on R+.
Lemma 3.7. Let (A,B,C,D) ∈ R, φ ∈ N , and (x0, u0) ∈ X × R. Assume that

L−1(G) ∈ M. Let k : R+ → (0,∞) be bounded and such that
∫ t
0
k =: K(t) → ∞ as

t → ∞. Let r ∈ R be feasible, that is, φr := [G(0)]−1r ∈ clos(imφ). Let (x(·), u(·)) :
R+ → X × R be the unique solution of (10).

If limt→∞ φ(u(t)) exists and is finite, then the following statements hold:
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(a) limt→∞ φ(u(t)) = φr,
(b) limt→∞ ‖x(t) +A−1Bφr‖ = 0,
(c) limt→∞[r − y(t) + (Ψ∞x0)(t)] = 0, where y(t) = CLx(t) +Dφ(u(t)),
(d) if φr ∈ imφ, then limt→∞ dist (u(t), φ−1(φr)) = 0, and
(e) if φr ∈ int(imφ), then u(·) is bounded.
Proof. By hypothesis, there exists φ∗ ∈ R such that limt→∞ φ(u(t)) = φ∗. The

essence of the proof is to show that φ∗ = φr. Setting

y0(t) = (Ψ∞)(x0)(t), y1(t) = (L−1(G) 2 φ(u))(t),

we have

u̇(t) = k(t)[G(0)(φr − φ∗)− y0(t)− (y1(t)−G(0)φ∗)].

Seeking a contradiction, suppose that |φr − φ∗| �= 0. Since limt→∞ φ(u(t)) = φ∗ and
L−1(G) ∈ M, it follows that limt→∞ y1(t) = G(0)φ∗ (see [7, Theorem 6.1, part (ii),
p. 96]). Let s > 0 be such that

|y1(t)−G(0)φ∗| ≤ 1
2G(0)|φr − φ∗| ∀ t ≥ s.

As a consequence we obtain

− 1
2k(t)G(0)|φr − φ∗| − k(t)|y0(t)| ≤ u̇(t)− k(t)G(0)(φr − φ∗)

≤ 1
2k(t)G(0)|φr − φ∗|+ k(t)|y0(t)| ∀ t ≥ s.(22)

Since φr �= φ∗, either φr > φ∗ or φr < φ∗. If φr > φ∗, then

1
2k(t)G(0)(φr − φ∗)− k(t)|y0(t)| ≤ u̇(t) ∀ t ≥ s,

which, on integration, yields

1
2G(0)(K(t)−K(s))(φr − φ∗)−

∫ t

s

k(τ)|y0(τ)|dτ ≤ u(t)− u(s) ∀ t ≥ s.

By exponential stability, y0 ∈ L2
α(R+,R) for some α < 0, and thus y0 ∈ L1(R+,R),

which in turn implies that ky0 ∈ L1(R+,R). Since K(t)→∞ as t→∞, we conclude
that u(t)→∞ as t→∞, whence the contradiction

φr ≤ sup φ = lim
t→∞φ(u(t)) = φ∗ < φr.

If φr < φ∗, then

u̇(t) ≤ k(t)|y0(t)| − 1
2k(t)G(0)|φr − φ∗| ∀ t ≥ s,

which, on integration, yields u(t)→ −∞ as t→∞ and the contradiction

φr < φ∗ = lim
t→∞φ(u(t)) = inf φ ≤ φr.

Therefore, we may conclude that limt→∞ φ(u(t)) = φr, which is assertion (a). Asser-
tion (b) follows from Lemma 2.2, part (c); assertion (c) is a consequence of assertion
(a), together with the identity

r − y(t) + (Ψ∞x0)(t) = G(0)φr − (L−1(G) 2 φ(u))(t),
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and the fact that limt→∞(L−1(G) 2 φ(u))(t) = G(0)φr.
To prove assertion (d), let φr ∈ imφ and suppose that the claim is false. Then

there exists a sequence (tn) ⊂ R+ with limn→∞ tn =∞ and ε > 0 such that

dist (u(tn), φ
−1(φr)) ≥ ε ∀ n.(23)

If the sequence (u(tn)) is bounded, we may assume without loss of generality that it
converges to a finite limit u∞. By continuity of φ and assertion (a), we have that
φ(u∞) = φr, and thus u∞ ∈ φ−1(φr). This contradicts (23). So, suppose that (u(tn))
is unbounded. Without loss of generality, we may then assume that limn→∞ u(tn) =
∞. By monotonicity and assertion (a), it follows that φr = supφ. Since φr ∈ imφ,
there exists ξ∗ such that φ(ξ∗) = φr = supφ = maxφ. By monotonicity of φ, φ(ξ) =
φr = maxφ ∀ ξ ≥ ξ∗. In particular, we see that u(tn) ∈ φ−1(φr) for all sufficiently
large n, which contradicts (23).

Now, assume that φr ∈ int(imφ) and, for contradiction, suppose that assertion
(e) is false. Then there exists a sequence (tn) ⊂ (0,∞) with tn →∞ and |u(tn)| → ∞
as n → ∞. Without loss of generality, we may assume that limn→∞ u(tn) = ∞. By
monotonicity, it then follows that φr = limn→∞ φ(u(tn)) = supφ, contradicting the
assumption that φr ∈ int(imφ).

For α ∈ R, we define the exponentially weighted space Mα as the set of all
locally finite signed Borel measures µ on R+ (see, e.g., [6]) with the property that the
weighted measure E �→ ∫

E
e−αtµ(dt) belongs toM.

Theorem 3.8. Let (A,B,C,D) ∈ R, φ ∈ N , and (x0, u0) ∈ X×R. Assume that
L−1(G) ∈ M. Let k : R+ → (0,∞) be bounded, monotone, and such that k(t) ↓ 0
and

∫ t
0
k =: K(t) → ∞ as t → ∞. Let r ∈ R be feasible, that is, φr := [G(0)]−1r ∈

clos(imφ).
The unique solution (x(·), u(·)) : R+ → X × R of (10) satisfies
(a) limt→∞ φ(u(t)) = φr,
(b) limt→∞ ‖x(t) +A−1Bφr‖ = 0,
(c) limt→∞[r − y(t) + (Ψ∞x0)(t)] = 0, where y(t) = CLx(t) +Dφ(u(t)),
(d) if φr ∈ imφ, then limt→∞ dist (u(t), φ−1(φr)) = 0,
(e) if φr ∈ int(imφ), then u(·) is bounded, and
(f) if φr ∈ imφ is not a critical value of φ, then the convergence in (a) and (b)

is of order exp(−ρK(t)) for some ρ > 0; moreover, the convergence in (c) is
of the same order, provided that L−1(G) ∈Mα for some α < 0.

Remark 3.9. (i) The assumption that L−1(G) ∈M (or that L−1(G) ∈Mα for
some α < 0) is not very restrictive and seems to be satisfied in all practical examples
of exponentially stable systems. In particular, this assumption is satisfied if B or C
is bounded (see Lemma 2.3).

(ii) Since (Ψ∞x0)(t) converges exponentially to 0 as t→∞ ∀ x0 ∈ X1 = dom(A),
it follows from (c) that the error e(t) = r − y(t) converges to 0 ∀ x0 ∈ dom(A).
(Moreover, the convergence is of order exp(−ρK(t)) if the extra assumptions in (f)
are satisfied.) If C is bounded, then this statement is true ∀ x0 ∈ X. If C is unbounded
and x0 �∈ dom(A), then e(t) does not necessarily converge to 0 as t → ∞. However,
e(t) is small for large t in the sense that e(t) = e1(t) + e2(t), where the function e1 is
bounded with limt→∞ e1(t) = 0 and e2 ∈ L2

α(R+,R) for some α < 0.
(iii) In particular, (d) asserts that u(t) converges as t→∞ if the set φ−1(φr) is

a singleton, which, in turn, will be true if φr ∈ imφ is not a critical value of φ.
Proof. Assertions (a)–(e) follow immediately from Theorem 3.6 combined with

Lemma 3.7. It remains only to establish assertion (f). By hypothesis, φr ∈ imφ is
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not a critical value of φ, and so, by monotonicity, its preimage φ−1(φr) is a singleton
{ur} and

φ	(ur) ≥ φ−(ur) =: φ−
r > 0.

Therefore, by assertion (d), u(t) → ur as t → ∞. By lower semicontinuity of φ−,
there exists σ1 > 0 such that

φ	(u(t)) ≥ φ−(u(t)) ≥ 1
2φ

−
r > 0 ∀ t ≥ σ1.(24)

Define ρ := 1
4G(0)φ−

r > 0, and introduce exponentially weighted variables given by

ze(t) := exp(ρK(t))[x(t) +A−1Bφ(u(t))],(25a)

ve(t) := exp(ρK(t))[φ(u(t))− φr](25b)

∀ t ∈ R+. Since (ze, ve) is absolutely continuous as an (X−1 × R)-valued function,
and using Proposition 3.4, we obtain by direct calculation

że = (A+ ρkI)ze − kφ	(u)A−1B(CLze +G(0)ve),(26a)

ze(0) = x0 +A−1Bφ(u0),

v̇e = −kφ	(u)(CLze +G(0)ve) + ρkve,(26b)

ve(0) = φ(u0)− φr.

For each (t, s) with 0 ≤ s ≤ t, define

U(t, s) := exp(ρ[K(t)−K(s)])Tt−s.(27)

We briefly digress to prove a technicality.
Lemma 3.10. Let s ∈ R+, u ∈ L2

loc(R+), and, on [s,∞), define a function p by

p(t) :=

∫ t

s

U(t, ξ)Bu(ξ)dξ.

Then, ∀ t, p(t) ∈ X and, as an X−1-valued function, p is absolutely continuous with

ṗ(t) = (A+ ρk(t)I)p(t) +Bu(t) a.e.

Proof. On [s,∞), define a function q by

q(t) := e−ρK(t)p(t) =

∫ t

s

Tt−ξBe−ρK(ξ)u(ξ) dξ.

Clearly, q(t) ∈ X ∀ t and so p(t) ∈ X ∀ t. Moreover, q is absolutely continuous as an
X−1-valued function and, by Pazy [18, Theorem 2.9, p. 109], for a.a. t ≥ s,

q̇(t) = Aq(t) + e−ρK(t)Bu(t).

Thus, as an X−1-valued function, p is absolutely continuous with

ṗ(t) = ρk(t)eρK(t)q(t) + eρK(t)q̇(t) = (A+ ρk(t)I)p(t) +Bu(t)

for a.a. t ≥ s.
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Returning to the proof of the theorem, for notational convenience write

we := φ	(u) [CLze +G(0)ve] .

Let s ∈ R+ and, on [s,∞), define f := f1 −A−1f2 with

f1(t) := U(t, s)ze(s), f2(t) :=

∫ t

s

U(t, ξ)Bk(ξ)we(ξ)dξ.

Clearly, f1(t) ∈ X ∀ t and, as an X−1-valued function, f1 is absolutely continuous
with

ḟ1(t) = (A+ ρk(t)I)f1(t) a.e.

By Lemma 3.10, it now follows that f(t) ∈ X ∀ t and, as an X−1-valued function, f
is absolutely continuous with

ḟ(t) = (A+ ρk(t)I)f1(t)−A−1 ((A+ ρk(t)I)f2(t) +Bwe(t))

= (A+ ρk(t)I)f(t)−A−1Bwe(t) a.e.

In view of (26a) (together with uniqueness of solutions), we may now conclude that

ze(t) = U(t, s)ze(s)−A−1

∫ t

s

U(t, ξ)Bk(ξ)we(ξ) dξ ∀ t, s with 0 ≤ s ≤ t.(28)

By exponential stability of the semigroup T, there exist constants N , ν > 0 such
that ‖Tt‖ ≤ N exp(−νt) ∀ t ∈ R+. Let ε ∈ (0, ν) be sufficiently small such that
(A+ εI,B,C,D) ∈ R (recall Proposition 3.2). Fix σ2 > σ1 such that

k(σ2) < min{ε/ρ, ν/(ρN)}.(29)

Again, we digress to prove a technicality.
Lemma 3.11. There exists constant γ > 0 such that, ∀ u ∈ L2

loc(R+),

(∫ t

s

∥∥∥∥
∫ τ

s

U(τ, ξ)Bu(ξ)dξ

∥∥∥∥
2

dτ

) 1
2

≤ γ

(∫ t

s

u2(ξ)dξ

) 1
2

∀ s, t ≥ σ2 with s ≤ t.

Proof. Let s ≥ σ2 and let u ∈ L2
loc(R+) be arbitrary. On [s,∞) define (as before)

the function p : t �→ ∫ t
s
U(t, ξ)Bu(ξ)dξ . By Lemma 3.10, for a.a. t ≥ s, we have

ṗ(t) = Ap(t) + ρk(t)p(t) +Bu(t). Therefore,

p(t) =

∫ t

s

Tt−ξρk(ξ)p(ξ) dξ +
∫ t

s

Tt−ξBu(ξ) dξ ∀ t ≥ s.

Using exponential stability of the semigroup T, monotonicity of k, and Lemma 2.2
(part (a)), we may conclude

(∫ t

s

‖p(ξ)‖2dξ
) 1

2

≤ ρNν−1k(σ2)

(∫ t

s

‖p(ξ)‖2dξ
) 1

2

+ α1

(∫ t

s

u2(ξ) dξ

) 1
2

∀ t ≥ s.

By (29), 1− ρNν−1k(σ2) > 0, and the result follows.
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Once more, we return to the proof of the theorem. By monotonicity of k, K(t)−
K(s) ≤ k(s)(t− s)∀ t, s with 0 ≤ s ≤ t. Since k(σ2) ≤ ε/ρ, it follows that

exp(ρ[K(t)−K(s)]) ≤ exp(ε[t− s]) ∀ t, s with σ2 ≤ s ≤ t.(30)

Observe that, ∀ t, s with σ2 ≤ s ≤ t,

|CLU(t, s)ze(s)| = |CLTt−sze(s)| exp(ρ[K(t)−K(s)])

≤ |CLTt−s exp(ε[t− s])ze(s)|.
Invoking (4), (5) (in the context of the regular system (A + εI,B,C,D)), (28), and
Lemma 3.11, and recalling that CLA

−1 maps X boundedly into R, there exist con-
stants α2, α3 > 0 such that

(∫ t

s

|CLze|2
)1/2

≤ α2‖ze(s)‖+ k(s)α3

(∫ t

s

|φ	(u)|2|CLze|2
)1/2

+ α3G(0)

(∫ t

s

|kφ	(u)ve|2
)1/2

(31)

∀ t, s with σ2 ≤ s ≤ t.
Inequality (31) is the exponentially weighted version of (16). Following the ar-

gument in the proof of Theorem 3.6, (31) may be used to derive an exponentially
weighted version of (14), i.e., there exist positive constants γ1, γ2 > 0 and σ3 ≥ σ2

such that

∫ t

s

|CLze| |kφ	(u)ve| ≤ γ1‖ze(s)‖
(∫ t

s

k2φ	(u)v2
e

)1/2

+ γ2

∫ t

s

k2φ	(u)v2
e(32)

∀ t, s with σ3 ≤ s ≤ t.
By (26b), for a.a. t ≥ 0,

ve(t)v̇e(t) = −k(t)G(0)φ	(u(t))v2
e + ρk(t)v2

e(t)− k(t)φ	(u(t))ve(t)CLze(t).(33)

By (24), G(0)φ	(u(t))− ρ ≥ 1
2G(0)φ−

r − ρ = ρ > 0 ∀ t ≥ σ3. Hence, we have

ve(t)v̇e(t) ≤ − 1
2ρk(t)v

2
e(t) + |CLze(t)| |k(t)φ	(u(t))ve(t)| for a.a. t ≥ σ3.

Integrating this inequality and using (32) and monotonicity of k yields, ∀ t, s with
t ≥ s ≥ σ3,

v2
e(t) ≤ v2

e(s) + 2γ1

√
λk(s)‖ze(s)‖

(∫ t

s

kv2
e

)1/2

−
∫ t

s

(ρ− 2kγ2λ)kv
2
e .(34)

Fix σ ≥ σ3 such that ρ− 2k(t)γ2λ > 1
2ρ ∀ t ≥ σ. From (34) and (32), we deduce

∫ ∞

σ

kv2
e <∞.

Hence, by (34), ve(·) = exp(ρK(·))[φ(u(·)) − φr] is bounded and so the convergence
in (a) is of order exp(−ρK(t)). We proceed to prove that the convergence in (b) is of
the same order. Define xr := −A−1Bφr, and introduce a new variable given by

xe(t) = exp(ρK(t))[x(t)− xr] ∀ t ≥ 0.
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It suffices to show that xe(·) is bounded. By (8) and (25), we have

ẋe = (A+ ρkI)xe +Bve, xe(0) = x0 − xr,

and so, ∀ t ≥ σ,

xe(t) = Tt−σxe(σ) +
∫ t

σ

Tt−ξBve(ξ) dξ +

∫ t

σ

Tt−ξρk(ξ)xe(ξ) dξ.

Therefore, by boundedness of ve together with Lemma 2.2 (part (b)) and exponential
stability of T, there exists a constant β > 0 such that

sup
s∈[σ,t]

‖xe(s)‖ ≤ β + ρNν−1k(σ) sup
s∈[σ,t]

‖xe(s)‖ ∀ t ≥ σ.

Since σ ≥ σ2, we have, by (29), ρNν−1k(σ) < 1, and hence we may conclude bound-
edness of xe. Therefore, the convergence in part (b) is of order exp(−ρK(t)).

It remains only to prove that the convergence in (c) is also of order exp(−ρK(t)),
provided that µ := L−1(G) ∈ Mα for some α < 0. Denoting the unit-step function
by θ, we have ∀ t ≥ 0

|r − y(t) + (Ψ∞x0)(t)| ≤ |[µ 2 (φ(u)− φrθ)(t)]|+ |φr[(µ 2 θ)(t)−G(0)]|.(35)

For convenience we set w(t) = exp(ρK(t)) ∀ t ≥ 0. We have already shown that the
function t �→ w(t)|φ(u(t)) − φr| remains bounded as t → ∞. If we extend w to a
function defined on R by setting w(t) = 1 ∀ t < 0, then it is easy to show that w is a
submultiplicative weight function in the sense of [7, p. 118]. Moreover, since µ ∈Mα,
the measure µw : E �→ ∫

E
w(t)µ(dt) belongs toM. Hence, by [7, Theorem 3.5, part

(i), p. 119], we may conclude that the function t �→ w(t)[µ2(φ(u)−φrθ)](t) is bounded
on R+.

Since µw ∈M (a space of finite measures),
∫∞
0

w(t)|µ|(dt), where |µ| denotes the
total variation of µ. Hence

|w(t)[(µ 2 θ)(t)−G(0)]| = w(t)

∣∣∣∣
∫ ∞

t

µ(dτ)

∣∣∣∣ ≤
∫ ∞

0

w(τ)|µ|(dτ) <∞,

showing that the function t �→ w(t)[(µ2θ)(t)−G(0)] is bounded on R+. Consequently,
appealing to (35), we deduce that the function

R+ → R, t �→ exp(ρK(t))|r − y(t) + (Ψ∞x0)(t)|

is bounded.

3.2. Adaptive gain. Whilst Theorem 3.8 identifies conditions under which the
tracking objective is achieved through the use of a monotone gain function, the result-
ing control strategy is somewhat unsatisfactory insofar as the gain function is selected
a priori: no use is made of the output information from the plant to update the gain.
We now consider the possibility of exploiting this output information to generate, by
feedback, an appropriate gain function. In particular, let the gain k(·) be generated
by the law:

k(t) =
1

l(t)
, l̇(t) = |r − y(t)|, l(0) = l0 > 0,(36)
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which yields the feedback system

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,(37a)

u̇(t) = (1/l(t))[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R,(37b)

l̇(t) = |r − CLx(t)−Dφ(u(t))|, l(0) = l0 ∈ (0,∞).(37c)

The concept of a solution of this feedback system is the obvious modification of the
solution concept defined in subsection 3.1. The proof of the following existence and
uniqueness result can be found in the appendix.

Lemma 3.12. Let (A,B,C,D) ∈ R, φ ∈ N , and r ∈ R. For each (x0, u0, l0) ∈
X ×R× (0,∞), the initial-value problem given by (37) has a unique solution defined
on R+.

We now arrive at the main adaptive control result.
Theorem 3.13. Let (A,B,C,D) ∈ R, φ ∈ N , and let r ∈ R be such that

φr := [G(0)]−1r ∈ clos(imφ). Assume that L−1(G) ∈M.
∀ (x0, u0, l0) ∈ X × R × (0,∞), the unique solution of the initial-value problem

given by (37) is such that assertions (a) to (e) of Theorem 3.8 hold. Moreover, if
φr ∈ imφ is not a critical value and L−1(G) ∈ Mα for some α < 0, then the
monotone gain k converges to a positive value.

Proof. Set k(t) = 1/l(t). Since l(·) is monotone increasing, either l(t) → ∞ as
t → ∞ (Case 1), or l(t) → l∗ ∈ (0,∞) as t → ∞ (Case 2). We consider these two
cases separately.

Case 1. In this case, k(t) ↓ 0 as t → ∞ and the hypotheses of Theorem 3.6 are
satisfied. Therefore, (φ(u))(·) converges. It follows that limt→∞(L−1(G) 2 φ(u))(t)
converges (and so, in particular, is a bounded function). Moreover, by exponential
stability, Ψ∞x0 ∈ L1(R+,R), and it follows from

l̇(t) = |r − y(t)| ≤ |r − (L−1(G) 2 φ(u))(t)|+ |(Ψ∞x0)(t)|,

via integration that

k(t) =
1

l(t)
≥ 1

α+ βt
∀ t ≥ 0,(38)

where

α := l0 +

∫ ∞

0

|Ψ∞x0(τ)| dτ, β ≥ sup
t≥0
|r − (L−1(G) 2 φ(u))(t)|.

Therefore, assertions (a) to (e) of Theorem 3.8 hold.
Case 2. In this case, k(t) → k∗ := 1/l∗ > 0 as t → ∞. By boundedness of l(·)

and (36), we may conclude that e(·) := r − CLx(·) −Dφ(u(·)) ∈ L1(R+) and so (by
(10b)) u(t) converges to a finite limit as t→∞. Consequently, φ(u(t)) converges to a
finite limit as t→∞, and hence, by Lemma 3.7, assertions (a) to (e) of Theorem 3.8
hold.

Finally, assume that φr ∈ imφ is not a critical value and that L−1(G) ∈ Mα

for some α < 0. We will show that the monotone gain k converges to a positive
value. Seeking a contradiction, suppose that the monotone function l is unbounded
(equivalently, k(t) ↓ 0 as t → ∞). Then the hypotheses of Theorem 3.6 are satisfied
and so (38) holds. By Theorem 3.8, φ(u(·)) converges to φr, and y(·) − (Ψ∞x0)(·)
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converges to r; moreover, the convergence is of order exp(−ρK(t)) for some ρ > 0;
that is, there exists constant L > 0 such that

|r − y(t) + (Ψ∞x0)(t)| ≤ L exp(−ρK(t)) ∀ t ∈ R+.(39)

Choose γ ≥ β such that ρ/γ < 1. By (38), k(t) = 1/l(t) ≥ (α + γt)−1 ∀ t ∈ R+.
Therefore,

K(t) =

∫ t

0

k ≥ ln[((α+ γt)/α)1/γ ] ∀ t ≥ 0.

Consequently for a.a. t ≥ 0,

l̇(t) = |r − y(t)| ≤ L exp(−ρK(t)) + |(Ψ∞x0)(t)| ≤M(α+ γt)−η + |(Ψ∞x0)(t)|,

where η = ρ/γ ∈ (0, 1) and M = Lαη. Since, by exponential stability, Ψ∞x0 ∈
L1(R+,R), integration gives

l(t) ≤ N(α+ γt)1−η ∀ t ≥ 0,

for some suitable constant N > 0. It follows that

−K(t) = −
∫ t

0

k ≤ −(Nγη)−1 [(α+ γt)η − αη] ∀ t ≥ 0.

Therefore, exp(−ρK(·)) is of class L1(R+,R), and, by (39), it follows that |r− y(·) +
(Ψ∞x0)(·)| is also of class L1(R+,R). Since Ψ∞x0 ∈ L1(R+,R), we have |r− y(·)| ∈
L1(R+,R). This contradicts the supposition of unboundedness of l(·). Therefore, l(·)
is bounded.

4. Example: Controlled diffusion process with output delay. Consider
a diffusion process (with diffusion coefficient a > 0 and with Dirichlet boundary
conditions), on the one-dimensional spatial domain I = [0, 1], with scalar nonlinear
pointwise control action (applied at point xb ∈ I, via a nonlinearity φ with Lips-
chitz constant λ > 0) and delayed (delay h ≥ 0) pointwise scalar observation (output
at point xc ∈ I). We formally write this single-input, single-output system (previ-
ously considered, in a nonadaptive control context, in the precursor [9] to the present
paper) as

zt(t, x) = azxx(t, x) + δ(x− xb)φ(u(t)), y(t) = z(t− h, xc),

z(t, 0) = 0 = z(t, 1) ∀ t > 0.

For simplicity, we assume zero initial conditions:

z(t, x) = 0 ∀ (t, x) ∈ [−h, 0]× [0, 1].

With input φ(u(·)) and output y(·), this example qualifies as a regular linear system
with transfer function given by

G(s) =
e−sh/a sinh(xb

√
s ) sinh((1− xc)

√
s )

a
√
s sinh

√
s

.
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controlled output y(·)

control input φ(u(·))

gain k(·)

(i)

(i)

(i)

(ii)

(ii)

(iii)

(iii)

(iii)

15

300

1

15

30

1

0 15

30

1
2

1

0

Fig. 3. Controlled output, control input, and adapting gain.

Therefore, by Theorem 3.8, the adaptive integral control

u(t) =

∫ t

0

k(t)[r − y(t)] dt, k(t) =
1

l(t)
,

where the evolution of l(t) is given by the adaptation law

l̇(t) = |r − y(t)|, l(0) = l0 > 0,

guarantees asymptotic tracking of every constant reference signal r satisfying

r

G(0)
=

ar

xb(1− xc)
∈ clos(imφ).

For purposes of illustration, we adopt the following values:

a = 0.1, xb =
1

3
, xc =

2

3
, h = 0.1.

We consider a nonlinearity φ of saturation type, defined as follows

u �→ φ(u) :=



1, u ≥ 1,

u, u ∈ (0, 1),

0, u ≤ 0,

in which case λ = 1. For unit reference signal r = 1, we have

r

G(0)
=

a

xb(1− xc)
= 0.9 ∈ int(imφ).
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Figure 3 depicts the behavior of the system (with reference r = 1) under adaptive
integral control in each of the following three cases:

(i) l0 = 1, (ii) l0 = 2, (iii) l0 = 4.

This figure was generated using SIMULINK simulation software within MATLAB
wherein a truncated eigenfunction expansion, of order 10, was adopted to model the
diffusion process.

5. Appendix: Proof of Lemmas 3.5 and 3.12. In proving Lemmas 3.5 and
3.12, we will first study an abstract Volterra integrodifferential equation. Let α ≥ 0,
and let wα ∈ C([0, α],Rn). Consider the initial-value problem

ẇ(t) = (V w)(t), t ≥ α,(40a)

w(t) = wα(t), t ∈ [0, α],(40b)

where the operator V : C(R+,R
n)→ L1

loc(R+,R
n) is causal and weakly Lipschitz in

the following sense.
∀ α ≥ 0, δ > 0, ρ > 0, and θ ∈ C([0, α],Rn), there exists a continuous function

f : [0, δ]→ R+, with f(0) = 0, such that

∫ α+ε

α

‖(V v)(t)− (V w)(t)‖ dt ≤ f(ε) sup
α≤t≤α+ε

‖v(t)− w(t)‖

∀ ε ∈ [0, δ] and ∀ v, w ∈ C(α, δ, ρ, θ), where

C(α, δ, ρ, θ) := {w ∈ C([0, α+ δ],Rn)| w(t) = θ(t) ∀ t ∈ [0, α],

‖w(t)− θ(α)‖ ≤ ρ ∀ t ∈ [α, α+ δ]}.
A solution of the initial-value problem (40) on an interval [0, β), where β > α, is a
function w ∈ C([0, β),Rn), with w(t) = wα(t) ∀ t ∈ [0, α], such that w is absolutely
continuous on [α, β) and (40a) is satisfied for a.a. t ∈ [α, β).

Strictly speaking, to make sense of (40), we have to give a meaning to (V w)(t),
t ∈ [0, β), when w is a continuous function defined on a finite interval [0, β) (recall
that V operates on the space of continuous functions defined on the infinite interval
R+). This can be done easily using causality of V : ∀ t ∈ [0, β), (V w)(t) := (V w∗)(t),
where w∗ : R+ → R

n is any continuous function with w∗(s) = w(s) ∀ s ∈ [0, t].
Proposition 5.1. For every α ≥ 0 and every wα ∈ C([0, α],Rn), there exists a

unique solution w(·) of (40) defined on a maximal interval [0, tmax), with tmax > α.
Moreover, if tmax <∞, then

lim sup
t→tmax

|w(t)| =∞.(41)

Proof. Fix α ≥ 0, wα ∈ C([0, α],Rn) arbitrarily. Define a continuous extension
w∗
α : R+ → R

n of wα by setting w∗
α(t) = wα(α) ∀ t > α. For later convenience, we

introduce the continuous function

ε �→ g(ε) :=

∫ α+ε

α

‖(V w∗
α)(t)‖ dt.

We proceed in three steps.
Step 1. Existence and uniqueness on a small interval.
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For each ε ∈ (0, 1), define

Cε := C(α, ε, 1, wα),

which, endowed with the metric

(v, w) �→ sup
α≤t≤α+ε

‖v(t)− w(t)‖,

is a complete metric space.
Existence and uniqueness of a solution on a small interval is proved by showing

that

(Γw)(t) :=



wα(t), 0 ≤ t ≤ α,

wα(α) +

∫ t

α

(V w)(τ) dτ, α ≤ t ≤ α+ ε

defines a contraction on Cε for sufficiently small ε > 0.
By the weak Lipschitz property of V , there exists a continuous function f : [0, 1]→

R+ with f(0) = 0, such that, ∀ ε ∈ (0, 1), v, w ∈ Cε, and t ∈ [α, α+ ε],

‖(Γw)(t)− wα(α)‖ ≤
∫ α+ε

α

‖(V w)(τ)‖ dτ

≤ g(ε) +

∫ α+ε

α

‖(V w)(τ)− (V w∗
α)(τ)‖ dτ

≤ g(ε) + f(ε)

≤ 1 for all sufficiently small ε > 0(42)

and

‖(Γv)(t)− (Γw)(t)‖ ≤
∫ α+ε

α

‖(V v)(τ)− (V w)(τ)‖ dτ
≤ f(ε) sup

α≤τ≤α+ε
‖v(τ)− w(τ)‖

≤ 1
2 sup
α≤τ≤α+ε

‖v(τ)− w(τ)‖ for all sufficiently small ε > 0.(43)

By (42), Γ(Cε) ⊂ Cε for all sufficiently small ε > 0. Consequently, we obtain from
(43) that Γ is a contraction on Cε for all sufficiently small ε > 0.

Step 2. Extended uniqueness.
Let v : [0, β1) → R

n and w : [0, β2) → R
n, β1, β2 > α, be solutions of (40)

(existence of v and w is ensured by Step 1).
We claim that v(t) = w(t) ∀ t ∈ [0, β), where β = min{β1, β2}. Seeking a

contradiction, suppose that there exists t ∈ (0, β) such that v(t) �= w(t). Defining

t∗ = inf{t ∈ (0, β) | v(t) �= w(t)},

it follows that t∗ > α (by Step 1), t∗ < β (by supposition), and v(t∗) = w(t∗) (by
continuity of v and w). Clearly, the initial-value problem

ż(t) = (V z)(t), t ≥ t∗ ; z(t) = v(t), t ∈ [0, t∗]
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is solved by v and w. This implies (by the argument in Step 1) that there exists an
ε > 0 such that v(t) = w(t) ∀ t ∈ [0, t∗ + ε), which contradicts the definition of t∗.

Step 3. Continuation of solutions.
Let α ≥ 0 and wα ∈ C([0, α],Rn) be arbitrary and, as before, let w∗

α be the
continuous extension of wα with w∗

α(t) = wα(α) ∀ t > α.
Let w be a solution of (40) on the interval [0, β), α < β < ∞. In order to prove

that w can be extended to a maximal solution (which satisfies (41) if tmax <∞), it is
sufficient to show that w can be continued to the right (beyond β) if w is bounded on
[0, β). Suppose that w is bounded. Set δ := β−α and ρ =: sup{‖w(τ)−wα(α)‖ |α <
τ < β}. By the weak Lipschitz property of V , there exists continuous f : [0, δ]→ R+,
with f(0) = 0, such that ∀ ε ∈ (0, δ)

∫ α+ε

α

‖(V w)(τ)‖ dτ ≤ g(ε) + ρf(ε),

implying, by boundedness of g and f on [0, δ], that V w ∈ L1([0, β],Rn) and so the
following limit exists:

lim
t↑β

∫ t

α

(V w)(τ) dτ =: L ∈ R
n,

whence

L+ wα(α) = lim
t↑β

(Γw)(t).

Now w(t) = (Γw)(t) ∀ t ∈ [0, β). Therefore, defining w(β) = L + wα(α) we can
extend w into a continuous function on [0, β]. Finally, by the argument in Step 1, the
initial-value problem

ż(t) = (V z)(t), t ≥ β ; z(t) = w(t), t ∈ [0, β]

has a unique solution w∗ on [0, β + ε) for some ε > 0. By causality of V , the
function w∗ is a solution of (40) on [0, β+ε), and so w∗ is a proper right continuation
of w.

Remark 5.2. In what follows, we shall invoke Proposition 5.1 only in the special
case α = 0. Note, however, that Steps 2 and 3 in the above proof of the proposition
required the local existence and uniqueness result in the more general context of α ≥ 0.

In the following, Proposition 5.1 will be used to prove Lemmas 3.5 and 3.12.
First note that, by setting k(t) = 1/l(t), the adaptive feedback system (37) (with
(A,B,C,D) ∈ R) can be written in the following form which will be more convenient
for our purposes:

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,(44a)

u̇(t) = k(t)[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R,(44b)

k̇(t) = −k2(t)|r − CLx(t)−Dφ(u(t))|, k(0) = k0 ∈ (0,∞).(44c)

The feedback systems (10) and (44) are both of the form

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X(45a)

u̇(t) = κ(t)θ(t)[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R,(45b)

θ̇(t) = h(θ(t))|r − CLx(t)−Dφ(u(t))|, θ(0) = θ0 ∈ R,(45c)
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where κ ∈ L∞(R+,R) and h : R→ R is locally Lipschitz. To recover (10) from (45),
set h(θ) ≡ 0 and θ0 = 1 (in this case κ(·) plays the role of the gain function k(·)).
Considering the special case κ(t) ≡ 1 and h(θ) = −θ2 gives the adaptive feedback
equations (44) (with k(·) = θ(·)).

For a ∈ (0,∞], a continuous function

[0, a)→ X × R× R, t �→ (x(t), u(t), θ(t))

is a solution of (45) if (x(·), u(·), θ(·)) is absolutely continuous as a (X−1 × R × R)-
valued function, x(t) ∈ dom(CL) for a.a. t ∈ [0, a), (x(0), u(0), θ(0)) = (x0, u0, θ0),
and the differential equations in (45) are satisfied almost everywhere on [0, a), where
the derivative in (45a) should be interpreted in the space X−1.

On noting that CLx(t)+Dφ(u(t)) = (Ψ∞x0)(t)+(F∞φ(u))(t) (withΨ∞ and F∞
defined by (2)), the variable x(t) can be eliminated from (45b) and (45c) to obtain

u̇(t) = κ(t)θ(t)[r − (Ψ∞x0)(t)− (F∞φ(u))(t)], u(0) = u0,(46a)

θ̇(t) = h(θ(t))|r − (Ψ∞x0)(t)− (F∞φ(u))(t)|, θ(0) = θ0.(46b)

In order to proceed we need the following lemma.
Lemma 5.3. ∀ α ≥ 0, v ∈ C([0, α],R), δ > 0, and ρ > 0, there exist γ1, γ2 > 0

such that ∀ ε ∈ [0, δ] and u,w ∈ C(α, δ, ρ, v)
∫ α+ε

α

|(F∞φ(u))(τ)− (F∞φ(w))(τ)| dτ ≤ εγ1 sup
α≤τ≤α+ε

|u(τ)− w(τ)|,(47)

∫ α+ε

α

|(F∞φ(u))(τ)| dτ ≤ εγ1ρ+
√
εγ2.(48)

Proof. Let α ≥ 0, v ∈ C([0, α],R), δ > 0, ρ > 0, and u,w ∈ C(α, δ, ρ, v). Let λ
be a Lipschitz constant for φ ∈ N . Then, using the Cauchy–Schwarz inequality and
the boundedness of F∞ as an operator from L2(R+,R) into L2(R+,R), we obtain ∀
ε ∈ [0, δ],

∫ α+ε

α

|F∞φ(u)− F∞φ(w)| ≤ √ε
(∫ α+ε

α

|F∞φ(u)− F∞φ(w)|2
)1/2

≤ √ελ‖F∞‖
(∫ α+ε

α

|u− w|2
)1/2

≤ ελ‖F∞‖ sup
α≤τ≤α+ε

|u(τ)− w(τ)|,

which is (47) with γ1 = λ‖F∞‖.
To establish (48), define a continuous extension v∗ : R+ → R of v by setting

v∗(t) = v(α) ∀ t > α. Applying (47), it follows ∀ ε ∈ [0, δ] that

∫ α+ε

α

|(F∞φ(u))(τ)| dτ ≤
∫ α+ε

α

|(F∞φ(v∗))(τ)| dτ + εγ1 sup
α≤τ≤α+ε

|u(τ)− v∗(τ)|

≤ √ε
(∫ α+δ

α

|(F∞φ(v∗))(τ)|2
)1/2

dτ + εγ1ρ,
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which yields (48) with γ2 := (
∫ α+δ

α
|(F∞φ(v∗))(τ)|2 dτ)1/2.

Lemmas 3.5 and 3.12 are special cases of the following corollary.
Corollary 5.4. Let (A,B,C,D) ∈ R, φ ∈ N , r ∈ R, κ ∈ L∞(R+,R), and

let h : R → R be locally Lipschitz. If h(θ) ≤ 0 ∀ θ ∈ R and h(0) = 0, then ∀
(x0, u0, θ0) ∈ X × R × (0,∞), the initial-value problem given by (45) has a unique
solution defined on R+.

Proof. Let (x0, u0, θ0) ∈ X×R×(0,∞). It is clear that the map V : C(R+,R
2)→

L1
loc(R+,R

2) given by

V

(
u

θ

)
(t) =


κ(t)θ(t)[r − (Ψ∞x0)(t)− (F∞φ(u))(t)]

h(θ(t))|r − (Ψ∞x0)(t)− (F∞φ(u))(t)|




is causal, and it follows from Lemma 5.3 via a routine argument that it is also weakly
Lipschitz. Hence it follows from Proposition 5.1 that the initial-value problem (46)
has a unique solution (u, θ) on a maximal interval of existence [0, tmax). To prove
that tmax = ∞, we first show that θ is bounded on [0, tmax). Note that since h ≤ 0,
θ(·) is nonincreasing, and combining this with the assumption that θ0 > 0, we see
that boundeness of θ(·) follows if we can show that θ(t) > 0 ∀ t ∈ [0, tmax). Seeking a
contradiction, suppose that there exists a t∗ ∈ (0, tmax) such that θ(t∗) = 0. Consider
the following initial-value problem on [0, tmax):

ζ̇(t) = h(ζ(t))|e(t)|, ζ(t∗) = 0,(49)

where e(t) = r − (Ψ∞x0)(t) − (F∞φ(u))(t). Then θ(·) is a solution of (49). Since
h(0) = 0, the function ζ ≡ 0 is also a solution of (49). By uniqueness it follows that
θ ≡ 0, which is in contradiction to θ0 > 0. Therefore, the function θ(·) is bounded on
[0, tmax) and hence there exists a constant γ > 0 such that

|κ(t)θ(t)| ≤ γ ∀ t ∈ [0, tmax).

Let [0, T ) be an arbitrary interval with [0, T ) ⊂ [0, tmax) and T < ∞. Multiplying
(46a) by u and estimating we obtain that, ∀ τ ∈ [0, T ),

u(τ)u̇(τ) ≤ γ[r2 + (Ψ∞x0)
2(τ) + u2(τ) + |(F∞φ(u))(τ)u(τ)| ].(50)

Integrating (50) from 0 to t and combining the estimate

∫ t

0

|(F∞φ(u))u| ≤
∫ t

0

|F∞(φ(u)− φ(0))| |u| + 1

2

(∫ t

0

(F∞φ(0))2 +

∫ t

0

u2

)
,

the Cauchy–Schwarz inequality, and the global Lipschitz property of φ, we can show
readily that there exist positive constants α and β such that, ∀ t ∈ [0, T ),

u2(t) ≤ α+ β

∫ t

0

u2(τ) dτ.

An application of Gronwall’s lemma then shows that u2(t) ≤ αeβt ∀ t ∈ [0, T ). Hence
u is bounded on [0, T ). Since this holds ∀ T with T ≤ tmax and T <∞, it follows by
Proposition 5.1 that tmax =∞.

Finally, to obtain a solution of (45), define

x(t) = Ttx0 +

∫ t

0

Tt−τBφ(u(τ)) dτ.(51)
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By well-posedness, x is a continuous X-valued function, and moreover, since A, con-
sidered as a generator on X−1, is in B(X,X−1), the function t �→ Ax(t) is a continuous
X−1-valued function. Consequently, by Pazy [18, Theorem 2.4, p. 107], we have that
in X−1

ẋ(t) = Ax(t) +Bφ(u(t)) ∀ t ∈ R+.

It follows that (x, u, θ) is the unique solution of (45) defined on R+.
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Basel, 1989, pp. 401–416.
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Abstract. We examine the question of control of Maxwell’s equations in a heterogeneous
medium with a nonsmooth boundary by means of control currents on the boundary of that medium.
This requires the introduction and analysis of some functions spaces. Some energy estimates are
established which allow us to get the control results owing to the Hilbert uniqueness method. We
finally give an application to an inverse source problem.

Key words. Maxwell’s equations, interface problems, singularities, control, inverse problem

AMS subject classifications. 93C20, 35B37, 35A20
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1. Introduction. Recently the controllability and stabilization of Maxwell’s
equations gave rise to many works. To obtain the controllability results, four ap-
proaches are commonly used, namely the method of moments, the energy decay
method of Russell, the skew symmetric operators method of Bensoussan and the
Hilbert uniqueness method (HUM) of Lions [23]. The method of moments [31, 19]
consists in reducing the control problem to the question of finding solutions to a count-
able set of moment problems related to some eigenfunctions and is only convenient
for particular regions. The energy decay method [18, 1] uses the so-called Russell’s
“controllability via stability” principle. The skew symmetric operators method takes
advantage of the purely imaginary point spectrum to obtain (sufficient) algebraic char-
acterization of the exact controllability, algebraic conditions which are checked for the
Maxwell’s equations by the multiplier method [4]. The HUM is based on observation
estimates (or energy estimates) of the adjoint problem. Such estimates are obtained
either by the multiplier method [22, 20] or by microlocal analysis [24, 29, 30]. The
above-mentioned papers require regularity properties of the solutions which are satis-
fied if the electric permittivity ε and the magnetic permeability µ are smooth (mainly
for the sake of simplicity they assume that ε = µ = 1) and the involved domain Ω is
smooth. Our first goal is then to extend some of their results to the nonsmooth case
(i.e., ε and µ piecewise constant and nonsmooth boundaries) using HUM.

The stabilization of Maxwell’s equations with Ohm’s law or with Silver–Müller
absorbing boundary conditions is treated in [18, 28, 29, 30].

The relationship between exact controllability results and some inverse problems
was underlined by Yamamoto [33] for the wave equation. For Maxwell’s equations with
constant permittivity and permeability, the determination of antennas from boundary
measurements was obtained in [34]. Our second goal is to extend his result to the
inhomogeneous case and to show reconstruction of antennas from boundary measure-
ments.

Let us now define our framework and shortly describe our results. Let Ω be a
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1999; published electronically April 4, 2000.
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bounded, simply connected domain with a Lipschitz boundary Γ. We suppose that
Ω is occupied by an electromagnetic medium of electric permittivity ε and magnetic
permeability µ, which are real-valued bounded functions and uniformly positive def-
inite (i.e., there exist ε0, µ0 > 0 such that ε(x) ≥ ε0, µ(x) ≥ µ0 for all x ∈ Ω).
Two particular cases will retain our attention: First is the case when ε and µ are
smooth and constant near Γ and a smooth boundary Γ. Second is the case when ε
and µ are piecewise constant with Lipschitz polyhedral subdomains, in the sense that
we assume that there exists a partition P of Ω in a finite set of Lipschitz polyhedra
Ω1, . . . ,ΩJ such that on each Ωj , ε = εj and µ = µj , where εj and µj are positive con-
stants (throughout this paper a Lipschitz polyhedron is a bounded, simply connected
Lipschitz domain with piecewise plane boundary).

For any T > 0, we denote by QT the cylinder Ω×]0, T [ and by ΣT = Γ×]0, T [
its lateral boundary. If Γ0 is a fixed open part of Γ, we will write Σ0T = Γ0×]0, T [.
When no confusion is possible we drop the index T .

We now consider (nonstationary) Maxwell’s equations:




ε∂E∂t − curlH = 0 in QT ,

µ∂H∂t + curlE = 0 in QT ,
div(εE) = div(µH) = 0 in QT ,
H × ν = J on Σ0T ,
H × ν = 0 on ΣT \ Σ0T , E · ν = 0 on ΣT ,
E(0) = E0, H(0) = H0 in Ω,

(1.1)

where ν denotes the unit outer normal vector on Γ. This means that we suppose
that the time evolution of the electric field E and magnetic field H is driven by an
externally applied density of current J flowing tangentially on Γ0.

In that paper we want to find sufficient conditions that guarantee that the next
exact controllability problem is solvable: Given a time T > 0 and initial data {E0, H0},
find a surface density of current J in appropriate function spaces such that the solution
of (1.1) satisfies

E(T ) = H(T ) = 0 in Ω.

As already mentioned, this exact controllability problem was already investigated in
[1, 19, 20, 22, 24, 29, 30, 31] but in the smooth case. Our goal is then to extend some
of their results to the inhomegeneous case and for nonsmooth boundaries, which re-
quires some nontrivial adaptations. The first step is to introduce and analyze adapted
function spaces. Existence results for equations like (1.1) with homogeneous bound-
ary conditions follow from semigroup theory. Afterwards we shall attack the exact
controllability problem by means of the HUM of Lions [23] as in [22]. In that case,
the exact controllability problem is equivalent to the unique solvability of the adjoint
problem of (1.1), which is obtained with the help of observation estimates. In the
general situation, we introduce the notion of weak and strong observation estimates
satisfied by Σ0. In both cases, we conclude the exact controllability with different
controls on Σ0. When ε and µ are smooth and constant near Γ and Γ is smooth, the
strong observation estimate can be deduced from [24, 30], when Σ0 satisfies the geo-
metrical control property. These authors actually use microlocal analysis extending
the method which has been developed by Bardos, Lebeau, and Rauch in [3] for the
wave equation. When ε and µ are piecewise constant with Lipschitz polyhedra Ωj ,
using multiplier techniques, we prove that Σ satisfies the weak and strong observation
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estimates under some assumptions ensuring regularity properties of some function
spaces [9, 10] as well as a geometrical condition (namely the condition (6.17)) in order
to avoid internal control (in the homogeneous case, the first assumptions reduce to
the convexity of Ω, while the geometrical condition (6.17) disappears). In this setting,
a nonglobal strong observation estimate (i.e., for Σ0 
= Σ) is probably available using
microlocal analysis, but this requires more investigations (see [6, 7] in the case of the
wave equation with Dirichlet boundary conditions in nonsmooth domains). Note that
the multiplier technique has the advantage of allowing us to get an estimate of the
minimal time T0 for which the observation estimates hold. Consequently, we obtain
an estimate of the minimal time of control. Remark that when ε and µ are in C1(Ω̄)
and Γ is smooth, the multiplier method allows us to show that Σ satisfies the weak
and strong observation estimates under some monotonicity assumptions on ε and µ.
Carleman’s estimate for Maxwell’s equations with ε and µ in C2(Ω̄) has been recently
proved in [35, 14]. Such an estimate yields controllability results but with another
kind of boundary controls.

As an application of the above results, we finally solve an inverse source problem
in the spirit of [33, 34], namely the determination and reconstruction of antennas from
boundary measurements.

Note that we have not considered Maxwell’s equations with Ohm’s law (which
consists in adding to the left-hand side of the first equation of (1.1) the term σE,
when σ ≥ 0 is the conductivity of the medium) because our method only yields a
controllability result for σ small enough. Probably another choice of the boundary
observation would be more judicious.

The schedule of the paper is the following one: In section 2, we introduce some
function spaces and prove some useful properties. Section 3 is devoted to the well-
posedness of the adjoint problem of (1.1), established using the theory of maximal
dissipative operators. In section 4, we introduce the notion of observation estimates
and deduce from them the exact controllability results using the HUM. Section 5 is
devoted to the inverse source problem. Finally, in section 6, for ε and µ piecewise
constant with Lipschitz polyhedral subdomains, we establish different observation
estimates for Σ adapting to our setting the results of [22, section 3], and we give an
estimate of the minimal time of control.

2. Functions spaces. For any s ≥ 0, Hs(Ω) denotes the usual Sobolev space on
Ω [17]. In what follows, D(Ω) is the space of all C∞ functions with compact support
in Ω while C∞(Ω̄) is the space of restrictions to Ω of functions from D(R3).

Let us now introduce the following spaces (compare with [21, 22]):

J(Ω, ε) = {χ ∈ L2(Ω)3|div(εχ) = 0},(2.1)

Ĵ(Ω, ε) = {χ ∈ J(Ω, ε)|χ · ν = 0 on Γ}.(2.2)

According to the definition of the spaces J(Ω) and Ĵ(Ω) in [21, 22] corresponding
to ε constant, we first prove the following lemma.

Lemma 2.1. The space J(Ω, ε) is equal to the closure in L2(Ω)3 of

X = {ϕ ∈ L2(Ω)3|εϕ ∈ C∞(Ω̄) and div(εϕ) = 0}.

Similarly, the space Ĵ(Ω, ε) is equal to the closure in L2(Ω)3 of

X̂ = {ϕ ∈ L2(Ω)3|εϕ ∈ D(Ω) and div(εϕ) = 0}.
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Proof. Let us first assume that ε = 1. In that case, the second density result is
proved in Theorem I.2.8 of [16]. For the first one, let us fix u ∈ J(Ω, 1). Then by
Theorem I.3.4 of [16], there exists ψ0 ∈ H1(Ω)3 such that

u = curlψ0.

Since C∞(Ω̄) is dense in H1(Ω) (see, for instance, Theorem 1.4.2.1 of [17]), there
exists a sequence of ψn ∈ C∞(Ω̄)3 such that

curlψn → curlψ0 in L2(Ω)3, as n→∞.

Consequently, curlψn belongs to C∞(Ω̄), is divergence-free, and converges to u in
L2(Ω)3.

For an arbitrary ε, we simply use the equivalence ϕ ∈ J(Ω, ε) (resp., Ĵ(Ω, ε)) if
and only if εϕ ∈ J(Ω, 1) (resp., Ĵ(Ω, 1)).

For the different formulations of our Maxwell equation (1.1), we further need the
following spaces:

J1
ν (Ω, µ)= {χ ∈ Ĵ(Ω, µ)| curlχ ∈ L2(Ω)3},(2.3)

J1
τ (Ω, ε)= {χ ∈ J(Ω, ε)| curlχ ∈ L2(Ω)3 and χ× ν = 0 on Γ},(2.4)

J�ν (Ω, ε, µ)= {χ ∈ J1
ν (Ω, µ)| curl(ε−1 curlχ) ∈ L2(Ω)3(2.5)

and curlχ× ν = 0 on Γ},
J�τ (Ω, ε, µ)= {χ ∈ J1

τ (Ω, ε)| curl(µ−1 curlχ) ∈ L2(Ω)3(2.6)

and curlχ · ν = 0 on Γ}.

When ε and µ are constant in Ω and Ω has a C1,1 boundary, the above spaces
coincide with those introduced in [21, 22], owing to Theorems 2.9 and 2.12 of [2] and
the results from [8, 9]. When ε = µ = 1 and Ω is a polyhedral domain, these spaces
no longer coincide, in general, with those of [21, 22] according to the results of [8, 9]
(see also [5, 15]; note that if Ω is convex, then the spaces J1

ν (Ω, 1) and J1
τ (Ω, 1) are

embedded into H1(Ω)). Indeed in these papers, it is shown that any function in the
above spaces admits a decomposition into a regular part with the optimal regularity
(H1 for the first two spaces and H2 for the last two ones) and a singular part induces
by some singularities of the Laplace operator with Dirichlet and Neumann conditions
in Ω. The same kind of results were recently extended to the case when ε and µ are
piecewise constant with polyhedral subdomains in [10].

For further purposes, we need the following results.
Theorem 2.2. There exist two positive constants c1, c2 such that

‖χ‖J1
ν (Ω,µ) ≤ c1‖ curlχ‖L2(Ω)3 ∀χ ∈ J1

ν (Ω, µ),(2.7)

‖χ‖J1
τ (Ω,ε) ≤ c2‖ curlχ‖L2(Ω)3 ∀χ ∈ J1

τ (Ω, ε).(2.8)

Proof. The proof is based on the compact embeddings of J1
ν (Ω, µ) and J1

τ (Ω, ε)
into L2(Ω)3 [32].

Lemma 2.3. The space J1
τ (Ω, ε) is dense in J(Ω, ε), while J1

ν (Ω, µ) is dense in
Ĵ(Ω, µ).

Proof. Endow L2(Ω)3 with the inner product

(χ, ϕ) =

∫
Ω

εχ · ϕ dx,
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and let P be the orthogonal projection on J(Ω, ε) in L2(Ω)3. As D(Ω) is dense in
L2(Ω), the subspace PD(Ω)3 is clearly dense in J(Ω, ε). Consequently the first density
result will be proved if the inclusion

PD(Ω)3 ⊂ J1
τ (Ω, ε)(2.9)

holds. Fix χ ∈ D(Ω)3; then for any ϕ ∈ D(Ω)3, we have∫
Ω

curl(Pχ) · ϕ dx =

∫
Ω

εPχ · (ε−1 curlϕ) dx.

As the function ε−1 curlϕ belongs to J(Ω, ε), the usual property of the projection
yields ∫

Ω

curl(Pχ) · ϕ dx =

∫
Ω

εχ · (ε−1 curlϕ) dx.

This last identity shows that

curl(Pχ) = curlχ.(2.10)

This implies that curl(Pχ) belongs to L2(Ω)3, and by Green’s formula [16, section
I.2], we have ∫

Ω

curl(Pχ) · ϕ dx =

∫
Ω

ε(Pχ) · (ε−1 curlϕ) dx

+ 〈(Pχ)× ν, ϕ〉,∀ϕ ∈ H1(Ω)3.

As the function ε−1 curlϕ still belongs to J(Ω, ε), we get∫
Ω

curl(Pχ) · ϕ dx =

∫
Ω

εχ · (ε−1 curlϕ) dx

+ 〈(Pχ)× ν, ϕ〉,∀ϕ ∈ H1(Ω)3.

Owing to (2.10), we arrive at

〈(Pχ)× ν, ϕ〉 = 0 ∀ϕ ∈ H1(Ω)3,

which shows that

(Pχ)× ν = 0 on Γ.

This property and (2.10) prove that the inclusion (2.9) holds.
The second density result is similarly proved by endowing L2(Ω)3 with the in-

ner product
∫
Ω

µχ · ϕ dx and considering the orthogonal projection on Ĵ(Ω, µ) in
L2(Ω)3.

3. Weak and strong solutions of the adjoint Maxwell equation. The
homogeneous adjoint problem to (1.1) is (see section 5 for a justification)




µ∂ϕ∂t − curlψ = 0 in Q,

ε∂ψ∂t + curlϕ = 0 in Q,
div(µϕ) = div(εψ) = 0 in Q,
ϕ× ν = 0, ψ · ν = 0 on Σ,
ϕ(0) = ϕ0, ψ(0) = ψ0 in Ω.

(3.1)
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Contrary to [22], where a vector potential is used leading to a second order evo-
lution equation, we shall prove existence of (3.1) by keeping the first order system
(compare with [13, 18]). For that reason, let us introduce the Hilbert space

H = J(Ω, µ)× Ĵ(Ω, ε),

equipped with the inner product

((
ϕ
ψ

)
,

(
ϕ1

ψ1

))
H

=

∫
Ω

{µϕϕ̄1 + εψψ̄1} dx.

Now define the operator A as

D(A) = J1
τ (Ω, µ)× J1

ν (Ω, ε),

A

(
ϕ
ψ

)
=

(
µ−1 curlψ
−ε−1 curlϕ

)
.

We then see that formally problem (3.1) is equivalent to

{
∂Φ
∂t = AΦ,
Φ(0) = Φ0,

(3.2)

when Φ =
( ϕ
ψ

)
and Φ0 =

( ϕ0
ψ0

)
.

We shall prove that this problem (3.2) has a unique solution using Lumer–
Phillips’s theorem [27] by showing the following lemma.

Lemma 3.1. A and −A are maximal dissipative operators.
Proof. We start with the dissipativeness of ±A; in other words we need to show

that

�(AΦ,Φ)H = 0 ∀Φ ∈ D(A).(3.3)

With the above notation we have

(AΦ,Φ)H =

∫
Ω

{curlψϕ̄− curlϕψ̄} dx.

But the definition of D(A) implies that ϕ belongs to H0(curl,Ω), where (see [16, 2])

H0(curl,Ω) = {χ ∈ L2(Ω)3| curlχ ∈ L2(Ω)3 and χ× ν = 0 on Γ}.
Moreover, by section I.2.3 of [16], the space D(Ω)3 is dense in H0(curl,Ω). Conse-
quently, there exists a sequence ϕn of functions in D(Ω)3 such that

ϕn → ϕ in H0(curl,Ω), as n→∞.

Now applying Green’s formula (I.2.22) of [16] to the couple (ϕn, ψ), we get

∫
Ω

{curlψϕ̄n − curl ϕ̄nψ} dx = 0.

Taking the limit on n, we arrive at the identity

∫
Ω

curlψϕ̄ dx =

∫
Ω

curlϕψ̄ dx.
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The real part of this identity yields (3.3).

Let us now pass to the maximality. This means that for all
( f
g

)
in H, we are

looking for
( ϕ
ψ

)
in D(A) such that

(I ±A)

(
ϕ
ψ

)
=

(
f
g

)
.

Equivalently, we have

ψ = g ± ε−1 curlϕ(3.4)

and

ϕ + µ−1 curl(ε−1 curlϕ) = f ∓ µ−1 curl g.

This last problem has a unique solution ϕ in J1
τ (Ω, µ) because its variational formu-

lation is∫
Ω

{ε−1 curlϕ curl θ̄ + µϕθ̄} dx =

∫
Ω

{µfθ̄ ∓ g curl θ̄} dx ∀θ ∈ J1
τ (Ω, µ).(3.5)

This problem has a unique solution by the Lax–Milgram lemma because the bilinear
form defined as the left-hand side is directly coercive on J1

τ (Ω, µ).
It then remains to show that ψ given by (3.4) belongs to J1

ν (Ω, ε). By (3.5), we
see that

curlψ = ±µ(f − ϕ),

which shows that curlψ ∈ L2(Ω)3. The other properties of ψ follow from (3.4) and
from the fact that g ∈ Ĵ(Ω, ε) and ϕ ∈ J1

τ (Ω, µ) (recall that the boundary condition
ϕ× ν = 0 implies that curlϕ · ν = 0).

Since Lemma 2.3 guarantees the density of D(A) into H, by Lumer–Phillips’s
theorem (see, for instance, Theorem I.4.3 of [27]), we conclude that A generates a
C0-group of contraction T (t). Therefore, we have the following existence result.

Theorem 3.2. For all Φ0 ∈ H, the problem (3.2) has a weak solution Φ ∈
C([0,∞), H) given by Φ = T (t)Φ0. If, moreover, Φ0 ∈ D(Ak), with k ∈ N∗, the
problem (3.2) has a strong solution Φ ∈ C([0,∞), D(Ak)) ∩ C1([0,∞), D(Ak−1)).

In the particular case k = 1 and 2, our result is in accordance with those from
[22] because we easily see that

D(A2) = J�τ (Ω, µ, ε)× J�ν (Ω, µ, ε).

To finish this section, we establish the conservation of energy for weak and strong
solutions.

Lemma 3.3. If Φ =
( ϕ
ψ

)
is a weak solution of problem (3.2) (or equivalently

(3.1)), define the energy at time t by

E(t) =
1

2

∫
Ω

{µ|ϕ(x, t)|2 + ε|ψ(x, t)|2} dx.

Then we have

E(t) = E(0) ∀t ≥ 0.(3.6)
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Proof. Since D(A) is dense in H, it suffices to prove (3.6) for
( ϕ0
ψ0

)
in D(A).

For such an initial datum, ϕ and ψ are differentiable and therefore

d

dt
E(t) = �

∫
Ω

{
µ

∂ϕ

∂t
ϕ̄ + ε

∂ψ

∂t
ψ̄

}
dx

= �
∫

Ω

{curlψϕ̄− curlϕψ̄} dx

= �
(

A

(
ϕ
ψ

)
,

(
ϕ
ψ

))
H

= 0,

owing to (3.3).

Lemma 3.4. If Φ =
( ϕ
ψ

)
is a strong solution of problem (3.2) (or equivalently

(3.1)) with initial datum in D(A), define the modified energy at time t by

Ẽ(t) =
1

2

∫
Ω

{µ−1| curlψ(x, t)|2 + ε−1| curlϕ(x, t)|2} dx.

Then we have

Ẽ(t) = Ẽ(0) ∀t ≥ 0.(3.7)

Proof. The proof is a direct consequence of the fact that

d

dt
Ẽ(t) = �

(
A

(
∂ϕ
∂t
∂ψ
∂t

)
,

(
∂ϕ
∂t
∂ψ
∂t

))

H

.

Let us finally notice that the compact embeddings of J1
τ (Ω, µ) and J1

ν (Ω, ε) into
L2(Ω)3 imply that D(A) is also compactly embedded into H. This fact and the
monotonicity of A guarantee that A has a discrete spectrum included in the imaginary
axis and that the set of associated eigenvectors forms an orthonormal basis of H.

4. Exact controllability. We start with the following definition.
Definition 4.1. Let Γ0 be an open part of Γ and T > 0. We say that Σ0 =

Γ0×(0, T ) satisfies the (ε, µ)-strong observation estimate (in short (ε, µ)-SOE) if there
exists C > 0 such that

Ẽ(0) ≤ C

∫
Σ0

ε−1| curlϕ|2dσdt(4.1)

for all solutions (ϕ,ψ) of (3.1).
We say that Σ0 satisfies the (ε, µ)-weak observation estimate (in short (ε, µ)-

WOE) if there exists C > 0 such that

Ẽ(0) ≤ C

∫
Σ0

(ε−1| curlϕ|2 + µ−1| curlψ|2)dσdt(4.2)

for all solutions (ϕ,ψ) of (3.1).
We will see that the weak and strong observation estimates yield control results

at time T . Here are two examples where they hold. If ε and µ are smooth and
constant near Γ and if Γ is smooth, then combining the results from [3] and the
techniques from [24, 30], we can define the rays of the principal symbol, the diffractive
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points of Σ and finally we can say that Σ0 satisfies the geometrical control property
if any ray encounters a nondiffractive point of Σ0 (see [3, 24, 30] for the details). The
method developed in [24, 30] then allows us to show that if Σ0 satisfies the geometrical
control property, then Σ0 satisfies the (ε, µ)-SOE. If ε and µ are piecewise constant
with Lipschitz polyhedral subdomains, we shall give in section 6 sufficient conditions
ensuring that Σ satisfies the weak and strong observation estimates; we further obtain
an explicit upper bound on the constants C appearing in (4.1) and (4.2).

If Σ0 satisfies the (ε, µ)-SOE, the expression

‖{ϕ0, ψ0}‖F1
=

(∫
Σ0

| curlϕ|2dσdt

)1/2

,(4.3)

defines a norm on J�τ (Ω, µ, ε) × J�ν (Ω, µ, ε). We then define F1 as the closure of this
space for the norm (4.3). From (4.1), the following algebraic and topological inclusion
holds:

F1 ⊂ J1
τ (Ω, µ)× J1

ν (Ω, ε).

Unfortunately, this space does not furnish boundary controls in L2(Σ0)
3. We then

use the next argument inspired from [22].
Lemma 4.2. If Σ0 satisfies the (ε, µ)-SOE, then

E(0) ≤ C sup
x∈Γ0

ε(x)

∫
Σ0

|ψ|2dσdt(4.4)

for all solutions (ϕ,ψ) of (3.1) with initial data satisfying

ϕ0 ∈ J1
τ (Ω, µ), ψ0 ∈ J1

ν (Ω, ε),

where C is the constant appearing in (4.1).
Proof. Introduce the auxiliary functions

θ =

∫ t

0

ψ(s)ds + θ0, χ =

∫ t

0

ϕ(s)ds + χ0,

where θ0, χ0 are chosen such that

θ0 ∈ J�ν (Ω, µ, ε), curl θ0 = µϕ0,(4.5)

χ0 ∈ J�τ (Ω, µ, ε), curlχ0 = −εψ0,(4.6)

whose existence follows from the next lemma. Since θ, χ are solutions of (3.1) with
initial data θ0, χ0, applying the estimate (4.1), we obtain

E(0) ≤ C

∫
Σ0

ε−1| curlχ|2dσdt

≤ C sup
x∈Γ0

ε(x)

∫
Σ0

|ψ|2dσdt,

because curlχ = −εψ.
Lemma 4.3. The mappings

J�ν (Ω, µ, ε)→ J1
τ (Ω, µ) : θ0 → µ−1 curl θ0,

J�τ (Ω, µ, ε)→ J1
ν (Ω, ε) : χ0 → ε−1 curlχ0
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are onto.
Proof. We first prove that the first mapping is onto. Let us fix ϕ ∈ J1

τ (Ω, µ). By
Lemma 3.1 of [10], there exists ψ ∈ H1(Ω) such that

curlψ = µϕ in Ω,

ψ · ν = 0 on Γ.

We now look for θ0 in the form

θ0 = ψ +∇u,

where u has to be determined so that θ0 belongs to J�ν (Ω, µ, ε). We see that it holds
if

div(εθ0) = 0 in Ω,

θ0 · ν = 0 on Γ.

From the expression of θ0, this is equivalent to

div(ε∇u) = −div(εψ) in Ω,

∂u

∂ν
= 0 on Γ.

Therefore, it remains to look for the solution u ∈ H1(Ω) of the above problem, whose
variational formulation is∫

Ω

ε∇u∇v dx = −
∫

Ω

εψ · ∇v dx ∀v ∈ H1(Ω).

This last problem has a unique (up to an additive constant) solution since the right-
hand side is a continuous linear form on H1(Ω)/R.

The proof of the surjectivity of the second mapping is similar, replacing Lemma
3.1 of [10] by Lemma 3.2 of [10].

Thanks to Lemma 4.2, if Σ0 satisfies the (ε, µ)-SOE, the expression

‖{ϕ0, ψ0}‖F2 =

(∫
Σ0

|ψ|2dσdt

)1/2

,(4.7)

defines a norm on J1
τ (Ω, µ)× J1

ν (Ω, ε). If we define F2 as the closure of this space for
the norm (4.7), from (4.4), the following algebraic and topological inclusion holds:

F2 ⊂ J(Ω, µ)× Ĵ(Ω, ε).

If Σ0 satisfies the (ε, µ)-WOE, we deduce from (4.2) (see [22] for the details) that

‖{ϕ0, ψ0}‖F3 =

(∫
Σ0

(| curlϕ|2 + | curlψ|2)dσdt

)1/2

(4.8)

is a norm on J�τ (Ω, µ, ε)× J�ν (Ω, µ, ε). We then define F3 as the closure of this space
for the norm (4.8), and we have the following algebraic and topological inclusion:

F3 ⊂ J1
τ (Ω, µ)× J1

ν (Ω, ε).(4.9)
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Following section 4 of [22], we deduce that the above observation estimates and
the use of HUM allow us to prove exact controllability results for our Maxwell’s
equations. Here the main difficulty is to make precise the transposition method (the
remainder is made exactly as in [22] and is therefore omitted).

Let us now assume that a solution {E,H} of (1.1) exists such that

E ∈ C([0, T ], J1
ν (Ω, ε)) ∩ C1([0, T ], Ĵ(Ω, ε)),

H ∈ C([0, T ], J1
τ (Ω, µ)) ∩ C1([0, T ], J(Ω, µ)),

which is the case if E0 ∈ J1
ν (Ω, ε), H0 ∈ J1

τ (Ω, µ), and J is sufficiently regular.
Fix also a solution {ϕ,ψ} of (3.1) with initial data {ϕ0, ψ0} in J1

τ (Ω, µ)×J1
ν (Ω, ε)

with the regularity (thanks to Theorem 3.2)

ϕ ∈ C([0, T ], J1
τ (Ω, µ)) ∩ C1([0, T ], J(Ω, µ)),

ψ ∈ C([0, T ], J1
ν (Ω, ε)) ∩ C1([0, T ], Ĵ(Ω, ε)).

Then we may write

0 =

∫ t

0

∫
Ω

[ε(E′ − ε−1 curlH) · ψ − µ(H ′ − µ−1 curlE) · ϕ] dxds.

Applying integration by parts in s and Green’s formula in x (allowed thanks to the
assumptions (6.1)–(6.2)), we get

∫
Ω

(µH(t)ϕ(t)− εE(t)ψ(t))dx =

∫
Ω

(µH0ϕ0 − εE0ψ0)dx

−
∫ t

0

∫
Γ0

J · ψdσds.

We rewrite this identity as

〈{H(t),−E(t)}, {ϕ(t), ψ(t)}〉(4.10)

= 〈{H0,−E0}, {ϕ0, ψ0}〉 −
∫ t

0

∫
Γ0

J · ψdσds.

In our two applications J is fixed such that the mapping

j : {ϕ0, ψ0} →
∫ t

0

∫
Γ0

J · ψdσds

is a continuous linear form on Fk, k = 2 or 3. Consequently, the arguments of section
4 of [22] guarantee the existence of a solution {H,−E} ∈ C([0, T ], F ′

k) of (4.10) for
all {ϕ,ψ} solutions of (3.1) with initial data {ϕ0, ψ0} in Fk (this solution {H,−E} is
then called the weak solution of (1.1)) with the property

E(T ) = H(T ) = 0,

once {H0,−E0} ∈ F ′
k is fixed such that (which is always possible)

〈{H0,−E0}, {ϕ0, ψ0}〉 = ‖{ϕ0, ψ0}‖2Fk
.

In the case k = 2, J = −ψ ∈ L2(Σ)3, and we directly arrive at the following
theorem.
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Theorem 4.4. Assume that Σ0 satisfies the (ε, µ)-SOE. Then for all {H0,−E0} ∈
H, the control J = −ψ ∈ L2(Σ0)

3 drives our system (1.1) to rest at time T .

In the case k = 3, as in [22], we impose that

−
∫ t

0

∫
Γ0

J · ψdσds =

∫ t

0

∫
Γ0

(|ψ′|2 + | curlψ|2)dσds,

since the continuity of j is then guaranteed. This yields

J = ψ′′ − µσ × ϕ′ ∈ (H1(0, T ;L2(Γ0)
3)′(4.11)

⊕ L2(Σ0)× L2(0, T ;H−1/2(curl,Γ0)
′).

Indeed, from the inclusion (4.9), we deduce that

ϕ,ψ ∈ H1(0, T ;H−1/2(Γ0)
3).(4.12)

Moreover, writing

curlψ = ν × ∂ψ

∂ν
+ σ × ψ,

where σ is a tangential differential operator of order 1, we see that

| curlψ|2 = µϕ′σ × ψ = µ(ϕ′ · ν)(σ × ψ) · ν,

because ϕ× ν = 0 on Σ. Moreover, as curlψ ∈ L2(Σ)3, we get

(σ × ψ) · ν = curlψ · ν ∈ L2(Σ).(4.13)

The easily checked identity

(σ × ψ) · ν = curlψT on Γ

and (4.12)–(4.13) imply that

ψT ∈ L2(0, T ;H−1/2(curl,Γ0)),

where

H−1/2(curl,Γ0)) = {χ ∈ H−1/2(Γ0)
2| curlχ ∈ L2(Γ0)}.

Here curlχ = ∂χ2

∂τ1
− ∂χ1

∂τ2
is the scalar curl of χ = (χ1, χ2) when {τ1, τ2} is a direct

orthonormal basis on Γ.

Therefore µσ × ϕ′ is defined as

〈µσ × ϕ′, ψ〉 =

∫ t

0

∫
Γ0

µ(ϕ′ · ν)(σ × ψ) · ν dσdt.

Accordingly, we have proved the following theorem.

Theorem 4.5. Assume that Σ0 satisfies the (ε, µ)-WOE. Then for all {H0,−E0} ∈
D(A)′, the control J given by (4.11) drives our system (1.1) to rest at time T .
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5. Determination of antennas. As in [33, 34], we shall give an application of
the above results to an inverse problem, namely the determination and reconstruction
of antennas from boundary measurements. From [33], we remark that the determina-
tion of antennas is simply based on the observation estimate (4.4) and on the isomor-
phic property of the integral operator K, defined by (5.5) hereafter, proved in [33]
(see Theorem 5.1 below). On the contrary, from [33], we see that the reconstruction
formula requires the observation estimate (4.4) (which yields the exact controllability
result with control in L2(Σ0)

3) and appropriate properties of the operators K and Φ
(defined by (5.8)) obtained in [33] (see Theorem 5.2 below). For that last problem,
we do not use a relationship between the observation and the eigenvectors orthogonal
basis but duality arguments.

To be more precise we consider Maxwell’s equations where the volume current is
injected from the exterior:




ε∂E∂t − curlH = j in Q,

µ∂H∂t + curlE = 0 in Q,
div(εE) = div(µH) = 0 in Q,
E × ν = 0, H · ν = 0 on Σ,
E(0) = 0, H(0) = 0 in Ω.

(5.1)

Here j(x, t) corresponds to an antenna and causes the electric and magnetic fields
by (5.1). As in [33, 34], we assume that

j(x, t) = λ(t)f(x) for x ∈ Ω, t > 0.

The case λ(t) = cos(ωt) for some fixed ω ∈ R corresponds to an exterior current
varying harmonically in time.

The problem that we will solve is the following one: Assume that λ is given.
Determine f from the observation of H on a part Σ0 of the boundary Σ. Here we
will be concerned with the uniqueness, stability and reconstruction problems. These
results are based on the results from Theorem 4.4 exchanging the role of ε and µ;
therefore from now on we assume that Σ0 satisfies the (µ, ε)-SOE.

The uniqueness and stability are mainly direct and were treated in [34] in the
homogeneous case (ε and µ constant in Ω). To our knowledge, the reconstruction of
f from the observation of H on Σ0 is new even in the homogeneous case.

Hereafter we assume that

λ ∈ C1([0,∞)) and λ(0) 
= 0.(5.2)

The regularity assumption on λ guarantees that for any f ∈ J(Ω, ε), there exists a
unique solution to (5.1) in C1([0, T ];J(Ω, ε)× Ĵ(Ω, µ)), denoted by {E(f), H(f)}.

We start with the uniqueness and stability results (compare with Theorems 4.1
and 4.2 of [34]).

Theorem 5.1. Under the above assumptions, there exists a positive constant C
such that

∫
Ω

ε|f(x)|2 dx ≤ C

∫
Σ0

(
|H(f)(x, t)|2 +

∣∣∣∣∂H(f)

∂t
(x, t)

∣∣∣∣
2
)

dσdt.(5.3)

Therefore, if the solution {E(f), H(f)} of (5.1) satisfies H(f) = 0 on Σ0, then f = 0.
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Proof. By Duhamel’s principle, we have

E(f) = K(ϕ(f)), H(f) = K(ψ(f)),(5.4)

where K is the integral operator defined by

(Kψ)(x, s) =

∫ t

0

λ(t− s)ψ(x, s) ds ∀x ∈ Γ0, t ∈ [0, T ],(5.5)

and {ϕ(f), ψ(f)} is the unique solution (in C([0, T ];J(Ω, ε)× Ĵ(Ω, µ))) of




ε∂ϕ(f)
∂t − curlψ(f) = 0 in Q,

µ∂ψ(f)
∂t + curlϕ(f) = 0 in Q,

div(εϕ(f)) = div(µψ(f)) = 0 in Q,
ϕ(f)× ν = 0, ψ(f) · ν = 0 on Σ,
ϕ(f)(0) = f, ψ(f)(0) = 0 in Ω.

(5.6)

As Lemma 3 of [33] shows that the assumption (5.2) guarantees that K is an isomor-
phism from L2(Γ0 × (0, T ))3 into H1(0, T ;L2(Γ0)

3), there exists a positive constant
C(λ, T ) (which means that the constant depends only on λ and T ) such that

∫
Σ0

|ψ(f)(x, t)|2 dσdt ≤ C(λ, T )

∫
Σ0

(
|H(f)(x, t)|2 +

∣∣∣∣∂H(f)

∂t
(x, t)

∣∣∣∣
2
)

dσdt.(5.7)

The conclusion now follows from the estimate (4.4).
We now pass to the reconstruction of f from the knowledge of H(f) on Σ0. First

we need to introduce the following mappings. Thanks to Theorem 4.4, the mapping
Π hereafter is well defined.

Π : J(Ω, ε)× Ĵ(Ω, µ)→ L2(Σ0)
3 : (ϕ0, ψ0)→ J(ϕ0, ψ0),

where J(ϕ0, ψ0) is the control (given by Theorem 4.4) which drives the problem




ε∂ϕ∂t − curlψ = 0 in Q,

µ∂ψ∂t + curlϕ = 0 in Q,
div(εϕ) = div(µψ) = 0 in Q,
ϕ× ν = −J(ϕ0, ψ0), ψ · ν = 0 on Σ0,
ϕ× ν = 0 on Σ \ Σ0, ψ · ν = 0 on Σ,
ϕ(0) = ϕ0, ψ(0) = ψ0 in Ω

to rest at time T . Moreover, let us consider the bounded operator (see [33])

Φ : L2(Σ0)
3 → H1(0, T ;L2(Γ0)

3) : η → θ,(5.8)

where θ is the unique solution of the Volterra integral equation (of the second kind):

λ(0)θ′(x, t) +

∫ T

t

(λ′(ξ − t)θ′(x, ξ) + λ(ξ − t)θ(x, ξ)) dξ = η(x, t) ∀(x, t) ∈ Σ0,

θ(x, 0) = 0 ∀x ∈ Γ0.
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According to section 3, we can finally fix the orthonormal basis {Φk}k∈Z of
J(Ω, ε) × Ĵ(Ω, µ) of eigenvectors of the operator A (exchanging the role of ε and
µ). For all k ∈ Z, we shall write Φk = {ϕk, ψk}.

We are now ready to state the reconstruction result.
Theorem 5.2. For all k ∈ Z, set

θk = ΦΠΦk.(5.9)

Then we have ∫
Ω

εfϕk dx = (H(f), θk)H1(0,T ;L2(Γ0)3) ∀k ∈ Z.(5.10)

Consequently, we have

f =
∑
k∈Z

(H(f), θk)H1(0,T ;L2(Γ0)3)ϕk.

Proof. Since the set {Φk}k∈Z is a basis of J(Ω, ε)× Ĵ(Ω, µ), we may write

(f, 0) =
∑
k∈Z

ckΦk,

where

ck =

∫
Ω

εfϕk dx.

Therefore it remains to prove the identity (5.10).
By (5.4) and the definition of θk, we have

(H(f), θk)H1(0,T ;L2(Γ0)3) = (K(ψ(f)),ΦΠΦk)H1(0,T ;L2(Γ0)3)

= (ψ(f),K∗ΦΠΦk)H1(0,T ;L2(Γ0)3).

Since it was shown in [33] (identity (5.9)) that K∗Φ = I, the above identity becomes

(H(f), θk)H1(0,T ;L2(Γ0)3) =

∫
Σ0

ψ(f) ·ΠΦk dσdt.(5.11)

If we denote by {ϕ̃k, ψ̃k} the (weak) solution of




ε∂ϕ̃k

∂t − curl ψ̃k = 0 in Q,

µ∂ψ̃k

∂t + curl ϕ̃k = 0 in Q,

div(εϕ̃k) = div(µψ̃k) = 0 in Q,
ϕ̃k × ν = −ΠΦk on Σ0,

ϕ̃k × ν = 0 on Σ \ Σ0, ψ̃k · ν = 0 on Σ,

ϕ̃k(0) = ϕk, ψ̃k(0) = ψk in Ω,

ϕ̃k(T ) = ψ̃k(T ) = 0 in Ω,

(5.12)

we have (see section 4)

〈{ϕ̃k(0), ψ̃k(0)}, {ϕ̃0, ψ̃0}〉 =

∫
Σ0

ΠΦk · ψ̃ dσdt
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for all {ϕ̃, ψ̃} solutions of the adjoint problem to (5.12), i.e.,




ε∂ϕ̃∂t − curl ψ̃ = 0 in Q,

µ∂ψ̃∂t + curl ϕ̃ = 0 in Q,
div(εϕ̃) = div(µψ) = 0 in Q,

ϕ̃× ν = 0, ψ̃ · ν = 0 on Σ,

ϕ̃(0) = ϕ̃0, ψ̃(0) = ψ̃0 in Ω.

Since the pair {ϕ(f), ψ(f)} solution of (5.6) is also solution of the above problem, we
get

〈{ϕ̃k(0), ψ̃k(0)}, {f, 0}〉 =

∫
Σ0

ΠΦk · ψ(f) dσdt.(5.13)

The conclusion follows from the two identities (5.11) and (5.13).
Remark 5.3. When ε and µ are piecewise constant with Lipschitz polyhedral

subdomains, the above observation and reconstruction results hold for Σ0 = Σ under
the assumptions of Corollary 6.11 (exchanging the rule of ε and µ). In that case
the constant C appearing in (5.3) may be estimated as follows (see Lemma 4.2 and
Corollary 6.11)

C ≤ C(λ, T )
supx∈Γ µ(x) supx∈Γ m(x) · ν(x)

2(T − T0)
,

where C(λ, T ) is the constant appearing in (5.7) and T0 may be estimated by (6.26).
Similar results from partial observation (i.e., Σ0 
= Σ) hold when Σ0 satisfies the

geometrical control property under the assumptions that ε and µ are smooth and
constant near Γ and that Γ is smooth (without estimation of the constant in (5.3));
for nonsmooth ε, µ and Γ, some investigations are still necessary (see sections 1 and
4).

6. Checking the observation estimates. In this section, we assume that Ω is
a Lipschitz polyhedron. We further suppose that ε and µ are piecewise constant with
Lipschitz polyhedra Ωj . As already mentioned, we will give sufficient conditions on
the partition P and the parameters ε and µ such that the strong and weak observation
estimates hold. First of all, we need to introduce the space PH1(Ω,P) of piecewise
H1 functions relatively to the partition P; more precisely

PH1(Ω,P) = {ϕ ∈ L2(Ω)|ϕj ∈ H1(Ωj) ∀j = 1, . . . , J},

where, of course, ϕj means the restriction of ϕ to Ωj .
For all j = 1, . . . , J , we denote by Fjk, k = 1, . . . , kj , the open faces of the

boundary of Ωj . Let Fint = {Fjk|Fjk ⊂ Ω} be the set of interior faces (contained in
Ω) and let Fext be the set of exterior faces (contained in Γ).

6.1. Some identities. As in [22], the observation estimates will be obtained
with the help of an identity with multiplier, which, in our case, will be permitted
under the following regularity assumptions:

J1
τ (Ω, µ) ↪→ PH1(Ω,P)3,(6.1)

J1
ν (Ω, ε) ↪→ PH1(Ω,P)3.(6.2)
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Owing to Theorem 3.5 of [10], the first inclusion (resp., second) holds if the operator
−∆Dir

µ (resp. −∆Neu
ε ) has no edge singular exponents in (0, 1] and no corner singular

exponents in (0, 1/2] (see [10] for the right definitions). Before going on, let us remark
that the above assumptions do not guarantee (see Theorem 7.1 of [10]) that the spaces
J�τ (Ω, µ, ε) and J�ν (Ω, µ, ε) are embedded into the space of piecewise H2 functions (as
it is the case when ε and µ are constant and Γ is smooth [22]). Consequently, the
integrations by parts used hereafter in order to establish the identity with multiplier
require careful attention.

As already mentioned, when ε and µ are constant, the above inclusions hold if Ω
is convex or if Ω has a C1,1 boundary. Here are three examples when the inclusions
(6.1) and (6.2) hold. In the first one, we leave the general setting of this section, but
all the results below still hold for that example.

Example 6.1. Assume that ε and µ are constant. If Ω has a smooth boundary
except at some points xk, k = 1, . . . ,K, where it coincides with a revolution cone
centered at xk with opening θk ∈]0, π[, then thanks to [8, section 2] and [11, section
18.D], (6.1) holds for all θk ≤ θ0

∼= 134◦ (which is nonconvex if one θk is larger than
90◦). On the other hand, by [8, section 2] and Proposition 10 of [12], (6.2) holds
∀θk ∈]0, π[.

Example 6.2. If Ω is a parallelepiped divided into two subdomains separated by a
plane parallel to two faces, then by the results from section 7.a of [10], the assumptions
(6.1) and (6.2) hold.

Example 6.3. Assume that Ω is convex and that any edge of any Ωj is an edge of
Ω (see Figures 1 and 2). Denote by εmin = minj=1,...,J εj and εmax = maxj=1,...,J εj .
If the ratio µmin

µmax
(resp., εmin

εmax
) is sufficiently close to 1, then (6.1) (resp., (6.2)) holds.

Let us sketch the proof of (6.1). With the notation from [10], if we denote by νµ,c
(resp., νµ,e) the smallest eigenvalue of the Laplace–Beltrami operator LDir

µ,c (resp.,

LDir
µ,e) associated with the corner c (resp., edge e) (a corner (resp., edge) is any corner

(resp., edge) of any Ωj), by the min-max principle we have

νµ,c ≥ µmin

µmax
ν1,c,

νµ,e ≥ µmin

µmax
ν1,e.

We further recall that (see [10]) the smallest singular exponent λµ,c (resp., λµ,e) of
−∆Dir

µ associated with the corner e (resp., edge e) is given by

λµ,c = −1

2
+

√
νµ,c +

1

4
,

λµ,e =
√

νµ,e.

Consequently, λµ,c > 1
2 (resp., λµ,e > 1) if and only if νµ,c > 3

4 (resp., νµ,e > 1).
As the convexity of Ω and the assumption on P guarantee that λ1,c > 1

2 and
λ1,e > 1, we conclude that λµ,c > 1

2 and λµ,e > 1 if

µmin

µmax
> max

{
3

4ν1,c
,

1

ν1,2

}

for all corners c and all edges e.
Note that the assumption on the edges is made for the sake of simplicity; indeed if

one edge e of some Ωj is included into one face of Ω or included into Ω, then λ1,e = 1
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Fig. 1.

Fig. 2.

and the above argument does not allow us to conclude that λµ,e > 1 (see [26] for some
numerical examples). Nevertheless in some particular cases (as in Figure 3), a direct
calculation shows that λµ,e > 1 if the ratio µmin

µmax
is sufficiently close to 1.

We further introduce a vector field m defined by

m(x) = x− x0,

where x0 is a fixed point.
Let us now fix ϕ0 ∈ J�τ (Ω, µ, ε) and ψ0 ∈ J�ν (Ω, µ, ε), and let ϕ,ψ be the solution

of (3.1) which has the regularity (due to Theorem 3.2)

ϕ ∈ C2([0,∞), J(Ω, µ)) ∩ C1([0,∞), J1
τ (Ω, µ)) ∩ C([0,∞), J�τ (Ω, µ, ε)),(6.3)

ψ ∈ C2([0,∞), Ĵ(Ω, ε)) ∩ C1([0,∞), J1
ν (Ω, ε)) ∩ C([0,∞), J�ν (Ω, µ, ε)).(6.4)

We start with a technical property.
Lemma 6.4. Under the above assumptions, ψ satisfies

m · ∇ψj ∈ H(curl,Ωj) ∀j = 1, . . . , J,

where we recall that (see [16, 2]) H(curl,Ω) = {ψ ∈ L2(Ω)3| curlψ ∈ L2(Ω)3}.
Proof. The fact that m · ∇ψj belongs to L2(Ωj)

3 follows from the inclusion

J�ν (Ω, µ, ε) ⊂ J1
ν (Ω, ε)
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Fig. 3.

and the assumption (6.2).
For the curl, we make use of the identity

curl(m · ∇ψ) = curlψ + m · ∇(curlψ).(6.5)

But the regularity (6.4) implies that

µ−1 curlψ ∈ J1
τ (Ω, µ),

and by the assumption (6.1) we conclude that curlψ ∈ PH1(Ω,P).
We now prove the following identity.
Lemma 6.5. Under the above assumptions, we have (hereafter ψ′ means the time

derivative of ψ)

1

2

∫
Σ

m · ν(ε|ψ′|2 − µ−1| curlψ|2)dσdt(6.6)

+
1

2

∫
Q

(µ−1| curlψ|2 − 3ε|ψ′|2)dxdt + X1 + I1 + I2 + I3 = 0,

where we have set

X1 = −
∫

Ω

εψ′m · ∇ψdx|T0 ,

I1 =
∑

F∈Fint

∫
F×(0,T )

ϕ′ × νF [m · ∇ψ]F dσdt,

I2 =
1

2

∑
F∈Fint

∫
F×(0,T )

m · νF [ε|ψ′|2]F dσdt,

I3 = −1

2

∑
F∈Fint

∫
F×(0,T )

µ−1m · νF [| curlψ|2]F dσdt,

where the jump [q]F = qj−qj′ if F belongs to ∂Ωj and to ∂Ωj′ , while νF is the normal
vector directed from Ωj to Ωj′ .
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Proof. Since ϕ′ belongs to PH1(Ω,P), by Lemma 6.4, Green’s formula yields
∫
Q

ϕ′ curl(m · ∇ψ)dxdt =

∫
Q

curlϕ′m · ∇ψdxdt + I1.

As curlϕ′ = −εψ′′, an integration by parts in t leads to∫
Q

ϕ′ curl(m · ∇ψ)dxdt =

∫
Q

εψ′m · ∇ψ′dxdt + X1 + I1.(6.7)

To transform the first term of this right-hand side, we use the identity

ψ′m · ∇ψ′ =
1

2
div(m|ψ′|2)− divm

2
|ψ′|2.(6.8)

Moreover, in order to integrate by parts in the term
∫
Q

εdiv(m|ψ′|2), we shall check
that

m|ψ′
j |2 ∈Wp(div,Ωj) ∀j = 1, . . . , J(6.9)

for some p > 1. Here we use the space

Wp(div,Ω) = {u ∈ Lp(Ω)3|divu ∈ Lp(Ω)}.
In the event that p = 2, Wp(div,Ω) is nothing else than H(div,Ω) [16]. Note that
if u ∈ Wp(div,Ω), then its trace u · ν belongs to W−1/p,p(Γ) and the next Green’s
formula holds (the proof follows the same line as the one given in [16] for p = 2):

∫
Ω

(u · ∇v + divuv) dx = 〈u · ν, v〉 ∀v ∈W 1,q(Ω),(6.10)

when 1/p + 1/q = 1.
Let us now verify (6.9). First, as ψ′

j belongs to H1(Ωj)
3, the Sobolev imbedding

theorem leads to

|ψ′
j |2 ∈ Lp(Ωj) ∀p ≤ 3.

Secondly, using the identity (6.8), it remains to check that

ψ′
jm · ∇ψ′

j ∈ Lp(Ωj)(6.11)

for some p > 1. Using again the above regularity of ψ′
j , the Sobolev imbedding

theorem, and Hölder’s inequality, we arrive at (6.11) for all p ≤ 3/2. Therefore, (6.9)
also holds for all p ≤ 3/2.

Using (6.9) and (6.10), we obtain
∫
Q

εdiv(m|ψ′|2) = I2 +
1

2

∫
Σ

εm · ν|ψ′|2dσdt.

Inserting this identity into (6.7), we arrive at
∫
Q

ϕ′ curl(m · ∇ψ)dxdt =
1

2

∫
Σ

εm · ν|ψ′|2(6.12)

−3

2

∫
Q

ε|ψ′|2dxdt + X1 + I1 + I2.
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In a second step using the identity (6.5), we have

∫
Q

µ−1 curlψ curl(m · ∇ψ)dxdt = −1

2

∫
Q

µ−1| curlψ|2dxdt(6.13)

+
1

2

∫
Q

µ−1div(m| curlψ|2)dxdt.

As before, in order to integrate by parts in the second term of this right-hand side,
we readily check that

m| curlψj |2 ∈Wp(div,Ωj) ∀j = 1, . . . , J

for all p ≤ 3/2. This regularity and (6.10) allow us to transform (6.13) into

∫
Q

µ−1 curlψ curl(m · ∇ψ)dxdt = −1

2

∫
Q

µ−1| curlψ|2dxdt(6.14)

−I3 +
1

2

∫
Σ

µ−1m · ν| curlψ|2dσdt.

The difference between (6.12) and (6.14) directly gives (6.6).
The second interesting identity is the goal of the next lemma.
Lemma 6.6. Under the above assumptions, we have

∫
Q

ε|ψ′|2dxdt =

∫
Q

µ−1| curlψ|2dxdt−X2,(6.15)

where we have set

X2 =

∫
Ω

µϕ · ϕ′dx|T0 .

Proof. We multiply the identity ψ′ + ε−1 curlϕ = 0 by εψ′ and integrate on Q.
This gives

0 =

∫
Q

ε|ψ′|2dxdt +

∫
Q

curlϕψ′dxdt.

In this second term we can integrate by parts in each Ωj , since ψ′
j is in H1(Ωj) and

ϕj in H(curl,Ωj). This leads to

0 =

∫
Q

ε|ψ′|2dxdt +

∫
Q

ϕ curlψ′dxdt,

because the jump of ϕ × νF · ψ′ is zero through any interior face F . Using now the
fact that curlψ′ = µϕ′′ and an integration by part in t, we arrive at (6.15).

At this stage, we are able to give the main identity with multiplier (compare with
the identity (3.12) of [22]).

Lemma 6.7. With the above assumptions and notation, it holds that

1

2

∫
Q

(ε−1| curlϕ|2 + µ−1| curlψ|2)dxdt(6.16)

=
1

2

∫
Σ

m · ν(ε−1| curlϕ|2 − µ−1| curlψ|2)dσdt + X1 + X2 + I1 + I2 + I3.
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Proof. The identity (6.6) may be equivalently written∫
Q

ε|ψ′|2dxdt +
1

2

∫
Q

(ε|ψ′|2 − µ−1| curlψ|2)dxdt

=
1

2

∫
Σ

m · ν(ε|ψ′|2 − µ−1| curlψ|2)dσdt + X1 + I1 + I2 + I3.

Substituting (6.15) into this identity, we get (6.16) because ψ′ = −ε−1 curlϕ.
At this stage, to obtain the observation estimates, we need a geometrical assump-

tion in order to cancel the interface terms Ii, i = 1, 2, 3 (to avoid internal control!).
Namely we assume that x0 may be chosen such that

m · νF = 0 on F ∀F ∈ Fint.(6.17)

Note that this condition holds in the setting of Example 6.2. Actually it holds
if and only if the planes containing the interior faces have (at least) one point in
common (see Figures 1 and 3 for some examples and Figure 2 for a counterexample).

Lemma 6.8. Under the assumption (6.17), we have

Ii = 0 ∀i = 1, 2, 3.

Proof. The nullity of I2 and I3 is direct. For I1, we use the fact that ψ × νF is
continuous through any interior face F . Consequently, we can prove that

(ϕ′ × νF )[m · ∇ψ]F = (ϕ′ × νF )m · νF
[
∂ψT
∂νF

]
F

on F,

where ψT = ψ − (ψ · νF )νF is the tangent part of ψ.

6.2. Some estimates. We are now ready to formulate the desired estimates.
Theorem 6.9. Let ϕ,ψ be the solution of (3.1) with the regularity (6.3)–(6.4).

Assume that (6.1), (6.2), and (6.17) hold. Then there exists a minimal time T0 > 0
such that

(T − T0)Ẽ(0) ≤ 1

2

∫
Σ

m · ν(ε−1| curlϕ|2 − µ−1| curlψ|2)dσdt.(6.18)

Proof. The assumption (6.2) and Theorem 2.2 guarantee the existence of two
positive constants C1, C2 such that

(∫
Ω

ε|∇χ|2 dx

)1/2

≤ C1

(∫
Ω

µ−1| curlχ|2 dx

)1/2

∀χ ∈ J1
ν (Ω, ε),(6.19)

(∫
Ω

µ|χ|2 dx

)1/2

≤ C2

(∫
Ω

ε−1| curlχ|2 dx

)1/2

∀χ ∈ J1
τ (Ω, µ).(6.20)

These two estimates allow us to estimate X1 and X2; namely, by the Cauchy–Schwarz
inequality, we have

|X1| ≤ 2R(x0)C1Ẽ(0),

|X2| ≤ 2C2Ẽ(0),

where we have set

R(x0) = max
x∈Ω̄
|x− x0|.
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Starting from the identity (6.16), recalling that the Ii are zero, and using the
above estimates, we obtain (6.18) with

T0 = 2 max(C1R(x0), C2).(6.21)

Corollary 6.10. Under the assumptions of Theorem 6.9, ΣT satisfies the (ε, µ)-
WOE for all T > T0 with

C ≤ supx∈Γ m(x) · ν(x)

2(T − T0)
.(6.22)

Corollary 6.11. In addition to the above hypotheses (6.1), (6.2), and (6.17),
if we assume that Γ is star-shaped with respect to some point x0 (for which (6.17)
holds), i.e.,

m · ν ≥ 0 on Γ,(6.23)

then ΣT satisfies the (ε, µ)-SOE for all T > T0, with C estimated by (6.22).
Proof. Under the assumption (6.23), the estimate (6.18) simplifies to

(T − T0)Ẽ(0) ≤ 1

2

∫
Σ

m · νε−1| curlϕ|2dσdt,(6.24)

which proves the corollary.
Example 6.12. If ε and µ are constant, then Theorems 4.4 and 4.5 hold if Ω is

convex, if it has a C1,1 boundary or if it satisfies the hypothesis of Example 6.1. The
same results hold in the setting of Example 6.2. Finally, in the case of Example 6.3,
they hold if, in addition to the hypotheses prescribed in Example 6.3, the assumption
(6.17) holds (see Figures 1 and 3).

6.3. Estimate of the minimal time of control. We finish the paper by giving
an upper bound on the constants C1 and C2 appearing in (6.19) and (6.20), which
yields an estimate of the minimal time T0 for which the observation estimates hold
and consequently for which control results hold.

Lemma 6.13. If (6.2) holds, then (6.19) holds with C1 ≤ C
1/2
J , where we have set

CJ = maxj=1,...,J{εjµj}.
Proof. By Lemma 2.2 and Theorem 2.1 of [10], it holds that

∫
Ω

ε|∇χ|2 dx =

∫
Ω

ε(| curlχ|2 + |divχ|2) dx ∀χ ∈ HT (Ω, ε),

where the space HT (Ω, ε) is defined by

HT (Ω, ε) = {χ ∈ PH1(Ω,P)3|div(εχ) ∈ L2(Ω) and χ · ν = 0 on Γ}.

Since the assumption (6.2) guarantees that J1
ν (Ω, ε) ⊂ HT (Ω, ε), the above identity

implies that

∫
Ω

ε|∇χ|2 dx =

∫
Ω

ε| curlχ|2 dx ∀χ ∈ J1
ν (Ω, ε).

This identity allows us to conclude because ε ≤ CJµ
−1.

Lemma 6.14. If (6.1) and (6.17) hold, then (6.20) holds with C2 ≤ R(x0)C
1/2
J .
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Proof. Fix χ ∈ J1
τ (Ω, µ). By Green’s formula, we have

∫
Ω

µ curlχ · (m× χ) dx =

∫
Ω

µχ · curl(m× χ) dx

+
∑

F∈Fint

∫
F

χ× νF · [µm× χ]F dσ.

By the assumption (6.17) and the fact that [µχ · νF ]F = 0 on F , we conclude that
[µm×χ]F is orthogonal to F ∀ F ∈ Fint. As χ× νF is tangent to F , for all F ∈ Fint,
the boundary terms of the above identity are equal to zero. Since

curl(m× χ) = −2χ + (m · ∇)χ,

the above identity becomes

2

∫
Ω

µ|χ|2 dx =

∫
Ω

µ(χ · (m · ∇)χ− curlχ · (m× χ)) dx.

By the Cauchy–Schwarz inequality, we get

(6.25)

2

(∫
Ω

µ|χ|2 dx

)1/2

≤ R(x0)

{(∫
Ω

µ|∇χ|2 dx

)1/2

+

(∫
Ω

µ| curlχ|2 dx

)1/2
}

.

As before, the assumption (6.1) and Lemma 2.2 and Theorem 2.1 of [10] imply that

∫
Ω

µ|∇χ|2 dx ≤ CJ

∫
Ω

ε−1| curlχ|2 dx.

Inserting this estimate in (6.25) and using the fact that µ ≤ CJε
−1, we arrive at the

conclusion.
Corollary 6.15. Under the assumptions of Theorem 6.9, we have

T0 ≤ 2R(x0)

(
max

j=1,...,J
{εjµj}

)1/2

.(6.26)

Remark 6.16. In the case where ε and µ are constant in the whole of Ω, the
above estimate reduces to T0 ≤ 2R(x0)

√
εµ, which is in accordance with the estimate

obtained for the wave equation [23] and with Theorem 1.3 of [20]. In particular, if
Ω is convex, then for x0 ∈ Ω such that 2R(x0) = diam Ω, we hit the optimal time
of control since the speed of propagation of the electromagnetic wave is 1√

εµ . In the

case where ε and µ are piecewise constant, the estimate (6.26) is rather good since its
right-hand side only retains the slower wave.
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[6] N. Burq, Contrôlabilité exacte des ondes dans des ouverts peu réguliers, Asymptot. Anal., 14
(1997), pp. 157–191.

[7] N. Burq and J.-M. Schlenker, Contrôle de l’équation des ondes dans des ouverts comportant
des coins, Bull. Soc. Math. France, 126 (1998), pp. 601–637.
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1, France, 1996.

[16] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations,
Springer Ser. Comput. Math. 5, Springer-Verlag, New York, 1986.

[17] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathe-
matics 21, Pitman, Boston, 1985.

[18] B. V. Kapitonov, Stabilization and exact boundary controllability for Maxwell’s equations,
SIAM J. Control Optim., 32 (1994), pp. 408–420.

[19] K. A. Kime, Boundary controllability of Maxwell’s equations in a spherical region, SIAM J.
Control Optim., 28 (1990), pp. 294–319.

[20] V. Komornik, Boundary stabilization, observation and control of Maxwell’s equations,
Panamer. Math. J., 4 (1994), pp. 47–61.

[21] O. A. Ladyzhenskaya and V. A. Solonikov, The linearization principle and invariant man-
ifolds for problems of magnetohydrodynamics, J. Soviet Math., 8 (1977), pp. 384–422.

[22] J. E. Lagnese, Exact boundary controllability of Maxwell’s equations in a general region, SIAM
J. Control Optim., 27 (1989), pp. 374–388.
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A NEW SUBOPTIMAL APPROACH TO THE FILTERING PROBLEM
FOR BILINEAR STOCHASTIC DIFFERENTIAL SYSTEMS∗
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Abstract. The aim of this paper is to present a new approach to the filtering problem for
the class of bilinear stochastic multivariable systems, consisting in searching for suboptimal state-
estimates instead of the conditional statistics. As a first result, a finite-dimensional optimal linear
filter for the considered class of systems is defined. Then, the more general problem of designing
polynomial finite-dimensional filters is considered. The equations of a finite-dimensional filter are
given, producing a state-estimate which is optimal in a class of polynomial transformations of the
measurements with arbitrarily fixed degree. Numerical simulations show the effectiveness of the
proposed filter.

Key words. square integrable martingales, wide-sense Wiener processes, stochastic bilinear
systems, Kronecker algebra, Kalman–Bucy filtering, polynomial filtering, vector Ito formula
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1. Introduction. Let us consider the class of nonlinear stochastic systems de-
fined on some probability space, namely (Ω,F , P ), described by the Ito equations

dX(t) = A(t)X(t)dt+B1(X(t), dW (t)),(1.1)

dY (t) = C(t)
(
X(t)

)
dt+B2(X(t), dW (t)),(1.2)

whereX(t) ∈ Rn; Y (t) ∈ Rq;W (t) ∈ Rp is a standard Wiener process with respect to
some increasing family of σ-algebras, namely {Ft}; A(t), C(t) are matrices of proper
dimensions; B1 and B2 are bilinear forms. System (1.1), (1.2) is commonly referred
to in the literature as a bilinear stochastic system (BLSS) [4], [5], [6], [7], [8], [10].

The problem we are faced with consists in searching for finite-dimensional filters
for the BLSS (1.1), (1.2). Indeed, for such a system even the linear optimal finite-
dimensional filtering problem is still an interesting one.

With the name of finite-dimensional filter, we understand a stochastic differential
equation in the form

dz(t) = f(z(t))dt+ g(z(t))dY (t),(1.3)

endowed with an output transformation

X̂(t) = h(z(t)),(1.4)

where {z(t), t > 0} is some process taking values on a finite-dimensional linear space.
We say that (1.3), (1.4) is a finite-dimensional optimal filter for system (1.1), (1.2) if

X̂(t) = E(X(t)/FYt ),(1.5)
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where we have denoted FYt the σ-algebra generated by the observations {Y (s), 0 ≤
s ≤ t}.

As is well known, the optimal filter for system (1.1), (1.2) is an infinite-dimensional
one. Nevertheless, from an application point of view, it becomes crucial to look for
finite-dimensional approximations of the optimal filter.

In this paper we will derive, as an auxiliary result, the optimal linear filtering equa-
tions for a BLSS in the form of (1.1), (1.2) which will result in the finite-dimensional
form (1.3), (1.4). We point out that in [3] the optimal linear filter is derived in
the more general setting of linear stochastic equations driven by wide-sense Wiener
(WSW) processes, resulting in a Kalman–Bucy scheme [1], [2]. Then, the optimal
linear filter is defined for a scalar BLSS by representing the bilinear form as a WSW
process. We will follow the same basic methodology in deriving the optimal linear
filter for a vector BLSS.

Because of the infinite-dimensionality of the optimal filter for system (1.1), (1.2),
it is of a great interest from an application point of view to search for finite-dimensional
suboptimal filters showing a better performance with respect to the linear one.

This suboptimal approach has been recently developed for discrete-time systems
in [9], [10], where a general polynomial filter of any arbitrarily fixed degree is defined
for linear non-Gaussian systems [9] and bilinear systems [10]. The polynomial filter
is able to produce, recursively, the optimal state-estimate in a class of polynomials
of all the currently available measurements including the linear transformations. For
this reason, in a non-Gaussian setting, it represents an improvement of the classical
Kalman filtering. Indeed, many numerical simulations have shown that the improve-
ment in performance may be very large especially when noise distributions are very
far from Gaussianity.

In this paper we will propose this suboptimal approach for the filtering problem
of continuous-time BLSSs. This will allow us to define a finite-dimensional filter in
the form (1.3), (1.4), giving the optimal state-estimate in a suitably defined class of
polynomial transformations of the measurements.

The program of the polynomial filtering methodology consists essentially in the
following three steps.

(i) A class of polynomial estimators is defined.
(ii) The problem of finding the optimal filter for the BLSS in the above class

of polynomial estimators is reduced to an optimal linear filtering problem
for a suitable augmented system. The augmented system will result in a
linear SDE with WSW diffusions. In particular, the state of the augmented
system (augmented state) contains the original state, its Kronecker powers,
and also Kronecker products with the observation process. The output of
the augmented state (augmented observation) contains the original output
process together with its Kronecker powers up to a fixed degree.

(iii) A Kalman–Bucy scheme is applied to the augmented system. This will give
us the required polynomial filter.

The paper is organized as follows. Section 2 deals with point (i). In section 3,
the overall setup of the problem is presented. Sections 4, 5, and 6 are concerned
with some preliminary results. In particular, in section 4, a method for transforming
a vector BLSS in a linear system with WSW diffusions is presented. In section 5 a
vector Ito formula is defined by using the Kronecker formalism. In section 6, a general
formula defining the stochastic differential of the Kronecker power of some process,
solution of a bilinear SDE, is found. In section 7, point (ii) is treated. Finally, in
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section 8, the complete solution of the problem is presented, resulting in a system
of equations which defines a polynomial filter (of an arbitrarily fixed degree) for a
BLSS. In section 9, numerical simulations are presented for a linear and third degree
polynomial filter applied to a second order BLSS. A comparision is made with respect
to the extended Kalman filter, which shows an unstable behavior for the presented
case. Two appendices are included in order to make the paper more readable.

2. Suboptimal filtering. This section is devoted to the definition of the class
of estimators considered in this paper. First of all, let us recall some results of linear
filtering [3].

Let I be an interval (bounded or not) in the real line and consider a family
{ξt, t ∈ I} of L2 random variables valued on some finite-dimensional euclidean space.
For t ∈ I, let us define the subspace Lt(ξ) ⊂ L2 linearly spanned by {ξs, s ≤ t} as the
L2-closure of the set L′

t(ξ):

L′
t(ξ)

∆
=

{
λ ∈ L2 : ∃j ∈ N,∃t1, . . . , tj ∈ I, t1 ≤ · · · ≤ tj ≤ t,

∃ matrices Mt1 , . . . ,Mtj ,∃ a vector b, such that λ =

j∑
i=1

Mtiξti + b
}
.

Let Π(·/Lt(ξ)) denote the orthogonal projection operator onto Lt(ξ). Then, for any
given L2 random variable η we can define the optimal linear estimate of η given
{ξs, s ≤ t} as Π(η/Lt(ξ)). Now, suppose there exists an integer ν such that

E(‖ξt‖2ν) ≤ +∞ ∀ t ∈ I.
Let us denote byX [i] the ith Kronecker power of a vectorX. We can give the following
definition.

Definition 2.1. We call νth degree polynomial estimate of η given {ξs, s ≤ t}
the random variable Π(η/P(ν)

t (ξ)), where

P(ν)
t (ξ)

∆
=Lt(ξ(ν))

and ξ(ν) is the process

ξ(ν)
∆
=




ξ[ν]

ξ[ν−1]

...
ξ
1


 .

From Definition 2.1 we see that Π(η/P(ν)
t ) is the mean square optimal estimate

of η among all estimates, namely λ, that are either in the form

λ =

k∑
i,j=1

Mi,jξ
[j]
ti + b

for such a k ∈ N, t1, . . . , tk ∈ I, t1 ≤ · · · ≤ tk for such a vector b and matrices

Mi,j , i, j = 1, . . . , k, or are mean square limits of these. Π(η/P(ν)
t ) includes the linear

estimates and, moreover,

P(ν)
t (ξ) ⊂ P(ν+1)

t (ξ) ∀ ν ≥ 1,
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so that, for the polynomial estimates η̂(ν) = Π(η/P(ν)
t (ξ)), η̂(ν+1) = Π(η/P(ν+1)

t (ξ))
one has

E(‖η − η̂(ν+1)‖2) ≤ E(‖η − η̂(ν)‖2) ∀ ν ≥ 1.

That is, the estimation quality is not decreasing for increasing ν.
Now, the aim of this paper can be expressed in a more precise manner as follows:

for any given ν find a finite-dimensional filter in the form (1.3), (1.4) such that X̂(t)
is the optimal νth degree polynomial estimate of the state of system (1.1), (1.2). Such
a filter will be referred to in the following as a νth degree polynomial filter.

A crucial topic involved in the derivation of the polynomial filter is the linear
estimation of stochastic processes generated by linear models driven by WSW pro-
cesses, which we briefly describe below (see [3, Chap. 15], for a detailed discussion
with proofs).

Let W̃ (i)(t) ∈ Rl, i = 1, . . . ,m, be mutually uncorrelated WSW processes. Let
us consider the linear stochastic system

dX(t) = A(t)X(t)dt+

m∑
i=1

Bi(t)dW̃
(i)(t), X(0) = X̄,

dY (t) = C(t)X(t)dt+

m∑
i=1

Di(t)dW̃
(i)(t), Y (0) = 0,

(2.1)

where t ∈ [0 tM ], X(t) ∈ Rn, Y (t) ∈ Rq, A(t), C(t), Bi(t), Di(t), i = 1, . . . ,m, are
suitably dimensioned matrices and X̄ is a square integrable random vector. Model
(2.1) can be interpreted as a continuous-time linear non-Gaussian system. We can
consider the processes X,Y evolving in suitable L2 spaces of square integrable random
vectors. Let us denote with X̂(t) the optimal linear estimate of X(t), that is X̂(t) =
Π(X(t)/Lt(Y )). Then the following system of equations can be easily derived from
[3, Thm. 15.3]:

(2.2)

dX̂(t) = A(t)X̂(t)dts

+

(
m∑
i=1

Bi(t)Di(t)
T + P (t)C(t)T

)
R(t)

−1
(dY (t)− C(t)X̂(t)dt),

dP (t)

dt
= A(t)P (t) + P (t)A(t)T +Q(t)

−
(

m∑
i=1

Bi(t)Di(t)
T + P (t)C(t)T

)
R(t)

−1

(
m∑
i=1

Bi(t)Di(t)
T + Pt(t)C(t)

T

)T
,

X̂(0) = E(X̄), P (0) = E
(
(X̄ − E(X̄))(X̄ − E(X̄))T

)
,

where

R(t)
∆
=

m∑
i=1

Di(t)Di(t)
T ; Q(t)

∆
=

m∑
i=1

Bi(t)Bi(t)
T ,

and P (t) represents the filtering error covariance matrix. Note that in (2.2) the
nonsingularity of the matrix function R(t) over the time interval [0 tM ] is required.
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As we will see in the next section, the BLSSs can be represented in the form
(2.1). Then, (2.2) will allow us to obtain the optimal linear filter for a BLSS. This is
a crucial point in the methodology here described. The way to derive the polynomial
filter equations will consist indeed in reducing the original filtering problem to a linear
one for a suitably defined BLSS.

3. The system to be filtered. Let T = [0 t
M
], let (Ω,F , P ) be a probabil-

ity triple, and let {Ft}, t ∈ T , be a family of nondecreasing sub-σ-algebras of F .
Moreover let (W (t),Ft) be an Rp-valued standard Wiener process and X̄ ∈ Rn an
F0-measurable random variable, independent of W , such that

E(‖X̄‖2ν) < +∞

for some integer ν ≥ 1. For the random variable X̄ we suppose the moments, namely

m
(i)

X̄
,

m
(i)

X̄

∆
=E(X̄ [i]), i = 1, . . . , 2ν,(3.1)

are known. Let us consider the stochastic system

dX(t) = A(t)X(t)dt+H(t)u(t)dt(3.2)

+

p∑
k=1

(
BkX(t) + Fk

)
dWk(t), X(0) = X̄,

dY (t) = C(t)X(t)dt(3.3)

+

p∑
k=1

(
DkX(t) +Gk

)
dWk(t), Y (0) = 0,

where A(t) ∈ Rn×n, C(t) ∈ Rq×n, H(t) ∈ Rn×m, Bk ∈ Rn×n, Fk ∈ Rn, Dk ∈ Rq×n,
Gk ∈ Rq, for k = 1, . . . , p, Wk(t) denotes the kth component of the standard Wiener
process W (t) ∈ Rp, and u(t) ∈ Rm is a deterministic input. Equation (3.2) is
endowed with the initial condition X(0) = X̄. In the following, we shall denote with
Iα, α = 0, 1, . . ., the α×α identity matrix; we assume I0 = 1. We make the following
assumption on system (3.2), (3.3).

Assumption 3.1. There exists a k̄, 1 ≤ k̄ ≤ p, such that the matrix Dk̄D
T
k̄

is
nonsingular.

Remark 3.2. Assumption 3.1 implies that we can assume, without loss of gener-
ality, that there exists a k̄, 1 ≤ k̄ ≤ p, such that

Dk̄ = [Iq 0].(3.4)

Indeed, let k̄ be such that Dk̄D
T
k̄
is nonsingular, and define the matrix T ∈ Rn×n as

T =

[
Dk̄
R

]
,

where R ∈ R(n−q)×n is chosen such that the whole T results in a nonsingular matrix.
It is easy to verify that Dk̄T

−1 = [Iq 0]. Hence we can always modify system (3.2),
(3.3) by using T as a matrix performing a change of coordinates in the state space,
and we can ensure that the representation (3.4) holds for at least one k̄ ∈ {1, . . . , p}.
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The problem we are faced with consists in finding a finite-dimensional filter in
the form of (1.3), (1.4), such that

X̂(t) = Π
(
X(t)/P(ν)

t (Y )
)
,(3.5)

where the space P(ν)
t (Y ) is given by Definition 2.1.

As above mentioned (see point (ii) in the introduction), we will prove that there
exists an augmented linear system for which the optimal linear filtering problem is
equivalent to the original polynomial filtering problem for system (3.2), (3.3). To this
purpose, in the next two sections we state some preliminary results.

4. Optimal linear filtering for BLSSs. Before treating the more general poly-
nomial case, in this section we limit ourselves in considering the optimal linear filtering
problem for the BLSS (3.2), (3.3). The reason for considering this particular case in
advance is twofold. First of all, as we will see later, the polynomial case reduces to
the linear one once a suitable augmented system has been constructed. Moreover,
the optimal (finite-dimensional) linear filtering problem for a BLSS is interesting by
itself, in that it was up to now unsolved in the general case [3]. In this section, we give
a solution of this problem, in that we will prove the existence of a linear stochastic
system with WSW diffusions, which is equivalent to the original BLSS (3.2), (3.3).
Indeed, a version of the classical Kalman–Bucy theory [3] solves the optimal linear
filtering problem in this case.

LetM ∈ Rα×α be a symmetric positive semidefinite matrix, such that rank(M) =
ρ ≤ α. As is well known, there exists a full rank matrix N ∈ Rα×ρ such that
NNT =M . We will use the notation

M ( 1
2 ) ∆
=N,

that is, a “rectangular square root” of the matrix M . Note that, by definition, the

matrix M (1/2)TM (1/2) is nonsingular.
Let ξ be a random vector; in the following we will use the notation cov(ξ, ξ) =

E
(
(ξ−E(ξ))(ξ−E(ξ))T ). Let us denote m

X
(t) = E(X(t)), ΨX(t) = cov(X(t), X(t)),

where X is the state process of system (3.2), (3.3). Moreover, let us denote m̄
X

=
E(X̄) and Ψ̄X = cov(X̄, X̄), where X̄ is the initial state vector of (3.2).

Theorem 4.1. Let us consider the system (3.2), (3.3). Suppose that the matrix
ΨX(t) is nonsingular for any t ∈ T . Let us consider, for k = 1, . . . , p, the integers
ρk ≤ n, σk ≤ q such that

ρk =
∆ rank

{
Bk ·ΨX(t) ·BkT

}

σk =
∆ rank

{
Dk ·ΨX(t) ·DkT

} ∀ t ∈ T.(4.1)

Then there exists the representation

dX(t) = A(t)X(t)dt+H(t)u(t) +

2p∑
k=1

B̃k(t)dW̃k,1(t), X(0) = X̄,(4.2)

dY (t) = C(t)X(t)dt+

2p∑
k=1

D̃k(t)dW̃k,2(t), Y (0) = 0,(4.3)
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where, for k = 1, . . . , p: B̃k(t) ∈ Rn×ρk and D̃k(t) ∈ Rn×σk are given by

B̃k(t)
∆
=

(
Bk ·ΨX(t) ·BTk

)( 1
2 )

,(4.4)

D̃k(t)
∆
=

(
Dk ·ΨX(t) ·DkT

)( 1
2 )

(4.5)

for k = p+ 1, . . . , 2p:

B̃k(t)
∆
=Bk−pE

(
X(t)

)
+ Fk−p,(4.6)

D̃k(t)
∆
=Dk−pE

(
X(t)

)
+Gk−p.(4.7)

For i = 1, 2, the set {W̃k,i, k = 1, . . . , 2p} is a set of 2p mutually uncorrelated standard
WSW processes. In particular, for k = 1, . . . , p, W̃k,1(t) ∈ Rρk , W̃k,2(t) ∈ Rσk ; for
k = p+ 1, . . . , 2p:

W̃k,1(t) = W̃k,2(t) =Wk−p(t).(4.8)

Proof. For k = 1, . . . , p, let us define the processes W̃k,1, W̃k,2 as

W̃k,1(t) =

∫ t

0

(
B̃k(τ)

T B̃k(τ)
)−1
B̃k(τ)

TBk
(
X(τ)−m

X
(τ)

)
dWk(τ),(4.9)

W̃k,2(t) =

∫ t

0

(
D̃k(τ)

T D̃k(τ)
)−1
D̃k(τ)

TDk
(
X(τ)−m

X
(τ)

)
dWk(τ),(4.10)

where B̃k, D̃k are given by (4.4), (4.5). Let us show that W̃k,i, i = 1, 2, are standard
WSW processes. As a matter of fact, using well-known properties of the Ito integral
and (4.4), it results, for s < t:

E
(
W̃k,1(t)W̃k,1(s)

T )
=

∫ s

0

(
B̃k(τ)

T B̃k(τ)
)−1
B̃k(τ)

T
(
BkΨX(τ)B

T
k

)
B̃k(τ)

(
B̃k(τ)

T B̃k(τ)
)−1

dτ

=

∫ s

0

(
B̃k(τ)

T B̃k(τ)
)−1
B̃k(τ)

T
(
B̃k(τ)B̃k(τ)

T
) · B̃k(τ)(B̃k(τ)T B̃k(τ))−1

dτ

= Iρk · s.
Similarly, taking again an s < t, it can be proved that

E
(
W̃k,2(t)W̃k,2(s)

T )
= Iσk

· s,
and hence, since the Wiener’s process components W1, . . . ,Wp, are mutually inde-

pendent, we have that, for i = 1, 2, {W̃k,i, k = 1, . . . , p} is a family of mutually
independent (vector) WSW processes with identity covariance.

Now let us show that, for k = 1, . . . , p (almost surely),

B̃k(t)dW̃k,1(t) = Bk
(
X(t)−m

X
(t)

)
dWk(t),(4.11)

D̃k(t)dW̃k,2(t) = Dk
(
X(t)−m

X
(t)

)
dWk(t).(4.12)

From the hypotheses the symmetric positive-definite matrix Ψ(t)1/2 is well defined.
Hence, for any y(t) ∈ Rn we can define ȳ(t) ∈ Rn such that y(t) = Ψx(t)ȳ(t). Next,
let us consider the decomposition ȳ(t) = ȳ1(t) + ȳ2(t), where

(4.13) ȳ1(t) ∈ R(
ΨX(t)

1/2BTk
)
, ȳ2(t) ∈

{
R(

ΨX(t)
1/2BTk

)}⊥
= N (

BkΨX(t)
1/2

)
,
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where N (M), R(M) denote the null-space and the range, respectively, of a matrix
M . Using (4.13) and choosing a z̄(t) such that ȳ1(t) = ΨX(t)

1/2Bkz̄(t), we have

Bky(t) = BkΨX(t)
1
2 ȳ(t) = BkΨX(t)

1
2 ȳ1(t) = BkΨX(t)B

T
k z̄(t) = B̃k(t)B̃k(t)

T z̄(t),

where the definition of B̃k(t), given by (4.4) has been used. It follows that for any
y(t) ∈ Rn there exists a z(t) ∈ Rρk (indeed z(t) = B̃k(t)

T z̄(t)) such that

Bky(t) = B̃k(t)z(t) ∀ t ∈ T.(4.14)

Then, for any y(t) we have

B̃k(t)
(
B̃k(t)

T B̃k(t)
)−1

B̃k(t)
TBky(t) = B̃k(t)

(
B̃k(t)

T B̃k(t)
)−1

B̃k(t)
T B̃k(t)z(t)

= B̃k(t)z(t) = Bky(t),

from which, using the definition of W̃k,1 given by (4.9), equality (4.11) follows. A
similar argument can be used to prove (4.12).

Finally, by adding and subtracting the state-expectation m
X
(t), in the bilinear

forms of (3.2), (3.3) and taking into account (4.11), (4.12), we obtain the representa-
tion (4.2), (4.3). The thesis follows as soon as it is proven that, for i = 1, 2, W̃k′,i(t)

(p + 1 ≤ k′ ≤ 2p) is uncorrelated with W̃k′′,i(t) (1 ≤ k′′ ≤ p). As a matter of fact,
from (4.8), for p+ 1 ≤ k′ ≤ 2p, k′′ �= k′ − p,

E
(
W̃k′′,1(t)W̃k′,1(t)

T
)
= E

(
W̃k′′,1(t)Wk′−p(t)T

)
= 0,

and, for k′′ = k′ − p,
E
(
W̃k′′,1(t)W̃k′,1(t)

T
)
= E

(
W̃k′′,1(t)Wk′′(t)

T
)

= E

(∫ t

0

(
B̃k′′(τ)

T B̃k′′(τ)
)−1
B̃k′′(τ)

TBk′′
(
X(τ)−m

X
(τ)

)
dWk′′(τ) ·

∫ t

0

dWk′′(τ)

)

=

∫ t

0

E
((
B̃k′′(τ)

T B̃k′′(τ)
)−1
B̃k′′(τ)

TBk′′
(
X(τ)−m

X
(τ)

))
dτ = 0.

In the same way, it is possible to show that E
(
W̃k′′,2(t)W̃k′,2(t)

T
)
= 0 for p + 1 ≤

k′ ≤ 2p.
In the following theorem a sufficient condition will be given which guarantees the

nonsingularity of ΨX(t). Let us consider a time-invariant version of the BLSS given
by (3.2), (3.3):

dX(t) = AX(t)dt+Hu(t)dt+

p∑
k=1

(BkX(t) + Fk)dWk(t), X(t0) = X̄,(4.15)

dY (t) = CX(t)dt+

p∑
k=1

(DkX(t) +Gk)dWk(t), Y (t0) = 0,(4.16)

where t0 ∈ R is any “initial time.” We suppose that system (4.15), (4.16) is well
defined over the time interval [t0 ∞).

Theorem 4.2. Let the matrix ΨX(t0) be nonsingular (or the pair (A,Fk) of
the state equation (4.15) be controllable for at least one k = 1, . . . , p); then the state
covariance matrix ΨX(t) is nonsingular for any t ≥ t0, (t > 0).
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Proof. Let us denote X̃(t) = X(t)−m
X
(t). Taking the expectations of (4.15), we

have

dm
X
(t) = Am

X
(t)dt+Hu(t)dt, m

X
(0) = m̄

X
.

Subtracting this from (4.15) results in

dX̃(t) = AX̃(t)dt+

p∑
k=1

BkX̃(t)dWk(t)+

p∑
k=1

(BkmX
(t)+Fk)dWk(t), X̃(t0) = X̄−m̄

X

or

X̃(t) = eA(t−t0)X̃(t0) +

p∑
k=1

∫ t

t0

eA(t−τ)BkX̃(τ)dWk(τ)

+

∫ t

t0

eA(t−τ)(BkmX
(τ) + Fk)dWk(τ).

(4.17)

From (4.17) the following equation is easily recognized to hold for ΨX(t):

ΨX(t) = e
A(t−t0)ΨX(t0)eA

T (t−t0) +
p∑
k=1

∫ t

t0

eA(t−τ)BkΨX(τ)BTk e
AT (t−τ)dτ

+

p∑
k=1

∫ t

t0

eA(t−τ)(BkmX
(τ) + Fk)(BkmX

(τ) + Fk)
T eA

T (t−τ)dτ.

(4.18)

The thesis follows by noting that the three terms in the right-hand side of (4.18)
are at least symmetric nonnegative definite and, in particular, the nonsingularity
of φX(t0) implies the positive definiteness of the first term, whereas the hypothesis
of controllability of (A,Fk) for some k implies the positive definiteness of the term∫
eA(t−τ)FkFTk e

AT (t−τ)dτ .
Remark 4.3. Note that, when theorem 4.2 holds with t0 < 0, it results that,

for any finite time-interval T ⊂ [t0 + ∞), the state-covariance has the property
ΨX(t) > α · I ∀ t ∈ T (I denotes the identity) for some real number α > 0, (it is
unifomly nonsingular in T ).

Now, we can state the following theorem, which defines the optimal linear filter
for a BLSS.

Theorem 4.4. Let the time-invariant BLSS as defined in (4.15), (4.16) be given.
Let the hypotheses of Theorem 4.2 be satisfied. Moreover, let us suppose that

(H1) rank(Dk) = q or rank(Gk) = q for some k.
Then, with reference to the notations of section 2, the optimal linear estimate
of the state process X, namely X̂, and the error covariance

P (t) = E
(
(X(t)− X̂(t))(X(t)− X̂(t))T

)

satisfy the following system of equations:

dm
X
(t)

dt
= Am

X
(t) +Hu(t), m(0) = m̄,(4.19)

dΨX(t)

dt
= AΨX(t) + ΨX(t)A

T +

p∑
k=1

BkΨX(t)B
T
k
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+

p∑
k=1

(BkmX
(t) + Fk)(BkmX

(t) + Fk)
T , ΨX(0) = Ψ̄X ,(4.20)

B̃k(t) =




(
Bk ·ΨX(t) ·BTk

)( 1
2 )

, 1 ≤ k ≤ p,
Bk−pmX

(t) + Fk−p, p+ 1 ≤ k ≤ 2p,

(4.21)

D̃k(t) =




(
Dk ·ΨX(t) ·DTk

)( 1
2 )

, 1 ≤ k ≤ p,
Dk−pmX

(t) +Gk−p, p+ 1 ≤ k ≤ 2p,

(4.22)

R(t) =

2p∑
i=1

D̃i(t)D̃i(t)
T ,(4.23)

dP (t)

dt
= AP (t) + P (t)AT +R(t),

−
(

2p∑
i=1

B̃i(t)D̃i(t)
T + P (t)CT

)
R(t)−1

(
2p∑
i=1

B̃i(t)D̃i(t)
T + P (t)CT

)T
,(4.24)

P (0) = Ψ̄X ,(4.25)

dX̂(t) = AX̂(t)dt+

(
2p+1∑
i=1

B̃i(t)D̃i(t)
T + P (t)CT

)
R(t)−1(dY (t)− CX̂(t)dt),(4.26)

X̂(0) = m̄.(4.27)

Proof. (4.19) readily derives by taking the expectations of both sides of (4.15).
Moreover, (4.20) is easily obtained by differentiating (4.18). From Theorem 4.2 and
Remark 4.3, ΨX(t) is uniformly nonsingular in T . Then, we can apply Theorem 4.1
in order to put system (4.15), (4.16) in the form of a linear stochastic system with
suitable WSW state and output diffusions, deriving from (4.2), (4.3). Note that such
an equivalent system is a time-varying one even if it is derived from the time-invariant
BLSS (4.15), (4.16). Now from (4.22), (4.23) it results that

R(t)
∆
=

p∑
k=1

DkΨX(t)D
T
k +

p∑
k=1

(DkmX
(t) +Gk)(DkmX

(t) +Gk)
T ,

which is uniformly nonsingular in T , by the hypothesis (H1) (and possibly by the
uniform nonsingularity of ΨX(t)). The thesis easily derives from an application of [3,
Thm. 15.3] to the representation (4.2), (4.3).

Remark 4.5. In the general case, when the BLSS is time-varying the uniform
nonsingularity of ΨX(t) cannot be guaranteed. Nevertheless, in all the cases of a
nonsingular ΨX(t), the equations of the optimal linear filter can be still derived us-
ing the representation given by Theorem 4.1. The resulting system of equations is
formally similar to (4.19)–(4.27), but the constant parameters are replaced with the
corresponding time-varying ones.

5. The vector Ito formula in the Kronecker formalism. In this section,
by using a formalism derived from the Kronecker algebra, we present a new version of
the Ito formula which has, with respect to the classical formulation, the advantage of
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being much more compact and will allow us to calculate, for a given stochastic process
φ, the stochastic differential of the process φ[h], where [h] is any integer Kronecker
power.

Let x ∈ Rn and F be any C2 function in Rm×p; we introduce the matrix (d/dx)⊗
F (x), having dimensions m× (n · p), defined as

d

dx
⊗ F (x) ∆

=
[∂F (x)
∂x1

· · · ∂F (x)
∂xn

]
,(5.1)

where the operator d/dx is given by

d

dx

∆
=

[ ∂
∂x1

· · · ∂

∂xn

]
.(5.2)

Note that in (5.1) the rules defining the Kroneker product between matrices (see
Definition A.1) are formally satisfied, provided that the “multiplication” between the
differential operator ∂/∂xi and a matrix function F (x) is conventionally defined as

∂

∂xi
· F (x) = ∂F (x)

∂xi
,

where the right-hand side has the usual meaning. Similarly, we can define the opera-
tor:

d

dx
⊗ d

dx

∆
=

[ ∂2

∂x2
1

∂2

∂x1∂x2
· · · ∂

2

∂x2
n

]
.

Also in this case the composition rule of the Kronecker product is satisfied, but the
“multiplication” between the differential operators ∂/∂xi and ∂/∂xi had to be inter-
preted as resulting in the differential operator ∂2/∂xi∂xj . In general, we will adopt
the convention: the multiplication between a differential operator and a function F
results in a function (the derivative of F ), whereas the multiplication between two
differential operators results in a differential operator (the second order differential
operator). Obviously, this convention could be generalized in order to give a precise
meaning to the quantity

d[h]

dx[h]
⊗ F (x)

for any integer h ≥ 0. However, in this paper we are concerned at most with second-
order derivatives.

It is easy to recognize that for any matrix, namely M , and for any pair of dif-
ferentiable matrix functions having suitable dimensions, namely V (x) and W (x), it
results that

d

dx
⊗ (V (x)⊗W (x)) =

( d
dx

⊗ V (x)
)
⊗W (x) + V (x)⊗

( d
dx

⊗W (x)
)
,(5.3)

d

dx
⊗ (MW (x)) =M

( d
dx

⊗W (x)
)
.(5.4)

Moreover, the following “associative” property holds:

d

dx
⊗ d

dx
⊗ F (x) =

( d
dx

⊗ d

dx

)
⊗ F (x) = d

dx
⊗

( d
dx

⊗ F (x)
)
.
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Using the above notation, we can prove the following lemma, which will be very
useful in the following sections.

Lemma 5.1. For any integer h ≥ 1 and x ∈ Rn, it results that

d

dx
⊗ x[h] = Uhn (In ⊗ x[h−1]),(5.5)

and for any h > 1,

d

dx
⊗ d

dx
⊗ x[h] = Ohn(In2 ⊗ x[h−2]),(5.6)

where the matrices CTu,v, u, v ∈ N, are the commutation matrices defined by Theorem
A.3 and

Uhn
∆
=

(
h−1∑
τ=0

CTn,nh−1−τ ⊗ Inτ

)
, Ohn

∆
=

h−1∑
τ=0

h−2∑
s=0

(CTn,nh−1−τ ⊗ Inτ )(In ⊗ CTn,nh−2−s ⊗ In).

Proof. According to the definition of the differential operator (5.1) and using
(5.3), we have

Qh
∆
=
d

dx
⊗ x[h] =

d

dx
⊗

(
x⊗ x[h−1]

)
= In ⊗ x[h−1] + x⊗

(
d

dx
⊗ x[h−1]

)

= In ⊗ x[h−1] + x⊗Q(h−1),

(5.7)

from which, using Theorem A.3, we obtain

d

dx
⊗ x[h] =

h−1∑
τ=0

x[h−1−τ ] ⊗ In ⊗ x[τ ] =

h−1∑
τ=0

CTn,nh−1−τ

(
In ⊗ x[h−1−τ ]

)
⊗ x[τ ],

from which (5.5) follows, taking into account the property (A.3c).
Similarly, by exploiting (5.3), (5.5), and (A.3c), it results that

d

dx
⊗ d

dx
⊗ x[h]

=
d

dx
⊗

((
h−1∑
τ=0

CTn,nh−1−τ ⊗ Inτ

)(
In ⊗ x[h−1]

))

=

h−1∑
τ=0

(
CTn,nh−1−τ ⊗ Inτ

)(
d

dx
⊗

(
In ⊗ x[h−1]

))

=

h−1∑
τ=0

(
CTn,nh−1−τ ⊗ Inτ

)(
In ⊗

(
d

dx
⊗ x[h−1]

))

=

h−1∑
τ=0

(
CTn,nh−1−τ ⊗ Inτ

)(
In ⊗

((
h−2∑
s=0

CTn,nh−2−s ⊗ Ins

)(
In ⊗ x[h−2]

)))

=

h−1∑
τ=0

h−2∑
s=0

(
CTn,nh−1−τ ⊗ Inτ

)(
In ⊗

((
CTn,nh−2−s ⊗ Ins

)(
In ⊗ x[h−2]

)))

=

h−1∑
τ=0

h−2∑
s=0

(
CTn,nh−1−τ ⊗ Inτ

)((
In ⊗

(
CTn,nh−2−s ⊗ Ins

))(
In ⊗

(
In ⊗ x[h−2]

)))
,
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so that the proof is completed.
Now, we are able to rewrite the vector valued version of the Ito formula in the

Kronecker formalism.
Theorem 5.2. Let (Xt,Ft) be a vector-continuous semimartingale in Rn de-

scribed by the Ito stochastic differential

dXt = dβt + dMt,(5.8)

where (βt,Ft) is an almost surely continuous bounded variation process and (Mt,Ft)
is a square integrable martingale. Let

F : Rn → Rp

be a continuous function endowed with the first and second derivatives. Then the
process Zt = F (Xt) is a square integrable semimartingale, whose differential is given
by

dZt =

(
d

dx
⊗ F (x)

)
x=Xt

dXt +
1

2

(
d

dx
⊗ d

dx
⊗ F (x)

)
x=Xt

(dMt)
[2],(5.9)

with (dMt)
[2] denoting the associate quadratic variation process whose arguments are

(dMt)
[2] =



d < M1,M1 >t
d < M1,M2 >t

...
d < Mn,Mn >t


 ,(5.10)

with obvious meaning of symbols [11, 12].
Proof. Formula (5.10) can be directly verified by using the Ito formula in the scalar

case (see for instance [11, Thm. 4.2.1]) and by taking into account the definition of
the differential operator d/dx.

6. Stochastic differential for the Kronecker power of a BLSS solution.
Using the Ito formula, in the version given by Theorem 5.2, we can now prove the
following theorem, which defines the stochastic differential for the power process of
the solution of a bilinear SDE. This will be the fundamental tool in the derivation of
the augmented system.

Theorem 6.1. Let φ(t) ∈ Rd be the process defined by the following SDE:

dφ(t) = (Γ(t)φ(t) + γ(t))dt+

p∑
k=1

(Θkφ(t) + χk)dWk(t),(6.1)

where Γ(t),Θk ∈ Rd×d, γ(t), χk ∈ Rd. Then, defining

Φ2
∆
=

p∑
k=1

Θ
[2]
k , Φ1

∆
=

p∑
k=1

(Θk ⊗ χk + χk ⊗Θk), Φ0
∆
=

p∑
k=1

χ
[2]
k ,(6.2)

it results for i ≥ 2 that

dφ[i](t) =
(
M0

i (t)φ
[i](t) +M1

i (t)φ
[i−1](t) +M2

iφ
[i−2](t)

)
dt

+

p∑
k=1

(
G0
k,iφ

[i](t) + G1
k,iφ

[i−1](t)
)
dWk(t),
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where

M0
i (t) = U

i
d(Γ(t)⊗ Idi−1) +

1

2
Oid(Φ2 ⊗ Idi−2),

M1
i (t) = U

i
d(γ(t)⊗ Idi−1) +

1

2
Oid(Φ1 ⊗ Idi−2),

M2
i =

1

2
Oid

(
Φ0 ⊗ Idi−2

)
,

G0
k,i = U

i
d(Θk ⊗ Idi−1),

G1
k,i = U

i
d(χk ⊗ Idi−1).

Proof. By using property (A.3c) the following formula is easily recognized to hold

for any k = 0, 1, . . ., j = 1, 2, . . ., ψ ∈ Rσ, M ∈ Rr×σ
k

:

(
Ir ⊗ ψ[j]

)
Mψ[k] = (M ⊗ Iσj )ψ[k+j].(6.3)

Let us apply Theorem 5.2 for X = φ, F (φ) = φ[i], dβ = (Γφ + γ)dt, and dM = dΛ,
where Λ is the martingale:

Λ(t)
∆
=

∫ t

0

p∑
k=1

(
Θk(τ)φ(τ) + χk(τ)

)
dWk(τ).

Using formulas (5.5), (5.6), it results that (understanding time dependencies)

dφ[i] = U id

(
Id ⊗ φ[i−1]

)
(Γφdt+ γdt+ dΛ) +

1

2
Oid

(
Id2 ⊗ φ[i−2]

)
(dΛ)[2].(6.4)

By exploiting the definition (5.10) it results that

(dΛ)[2] =
(
Φ2φ[2] +Φ1φ+Φ0

)
dt,(6.5)

where Φ2, Φ1, and Φ0 are given by (6.2). By substituting (6.5) in (6.4) and using
formula (6.3), the thesis follows.

7. The augmented system. Let us return to consider the BLSS (3.2), (3.3).
In this section, by means of a repeated application of Theorem 6.1, we will show
that the process (X,Y ) and its powers up to a certain degree represent a solution
of a suitably defined bilinear SDE. The latter will be next transformed into a linear
system with WSW diffusions, generating the powers of the observation Y up to the
required degree (the augmented system).

Let x ∈ Rd and h be a positive integer. We recall that the following relations
hold, linking together the reduced hth Kroneker power of x [3], [15], namely x[h] and

the (ordinary) hth Kronecker power x[h]:

x[h] = Thd x[h], x[h] = T̃
h
d x

[h],(7.1)

where Thd and T̃hd are suitably dimensioned transformation matrices [3].
Let us define the process Z as

Z(t)
∆
=

[
Y (t)
X(t)

]
(7.2)
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and let δ = dim(Z). Moreover, let us define the augmented process:

Z(t)
∆
=



Z(t)
Z[2](t)

...
Z[ν](t)


 .(7.3)

We can derive an SDE for the process Z in the following way. First, note that, from
(3.2), (3.3), Z satisfies the following SDE:

dZ(t) =
(
Ã(t)Z(t) + α(t)

)
dt+

p∑
k=1

(
BkZ(t) + β̃k

)
dWk(t),(7.4)

where

Ã(t)
∆
=

[
0 C(t)
0 A(t)

]
; α(t)

∆
=

[
0
Hu

]
; Bk

∆
=

[
0 Dk
0 Bk(t)

]
; βk =

[
Gk
Fk

]
.(7.5)

Next, by applying Theorem 6.1 to the process Z, it results for i = 2, . . . , ν that

dZ [i](t) =
(
L0
i (t)Z

[i](t) + L1
i (t)Z

[i−1](t) + L2
iZ

[i−2](t)
)
dt

+

p∑
k=1

(
V 0
k,iZ

[i](t) + V 1
k,iZ

[i−1](t)
)
dWk(t),

(7.6)

where

L0
i (t) = U

i
δ

(
Ã(t)⊗ Iδi−1

)
+

1

2
Oiδ (Ψ2 ⊗ Iδi−2) ,(7.7)

L1
i (t) = U

(i)
δ (α(t)⊗ Iδi−1) +

1

2
Oiδ (Ψ1 ⊗ Iδi−2) ,(7.8)

L2
i =

1

2
Oiδ (Ψ0 ⊗ Iδi−2) ,(7.9)

V 0
k,i = U

i
δ

(
B̃k ⊗ Iδi−1

)
,(7.10)

V 1
k,i = U

i
δ(βk ⊗ Iδi−1),(7.11)

and Ψ2, Ψ1, and Ψ0 are given by

Ψ2
∆
=

p∑
k=1

B̃
[2]
k , Ψ1

∆
=

p∑
k=1

(
B̃k ⊗ βk + βk ⊗ B̃k

)
, Ψ0

∆
=

p∑
k=1

β
[2]
k .

Observing that, from (7.1) we have

Z [i] = T iδZ[i], Z[i] = T̃
i
δZ

[i],

and using (7.6), we can state the following proposition.
Proposition 7.1. The process Z defined in (7.3) satisfies the bilinear SDE

dZ(t) = (A(t)Z(t) + U(t))dt+
p∑
k=1

(BkZ(t) + Vk
)
dWk(t),(7.12)
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where

A(t) =




Ã(t) 0 . . . 0
L1

2(t) T̃ 2
δ L

0
2(t)T

2
δ 0

L2
3 T̃ 3

δ L
1
3(t)T

2
δ T̃ 3

δ L
0
3(t)T

3
δ

...
. . .

. . .
. . .

0 . . . T̃ νδ L
2
νT

ν−2
δ T̃ νδ L

1
ν(t)T

ν−1
δ T̃ νδ L

0
ν(t)T

ν
δ



,(7.13)

Bk =




B̃k 0 . . . 0

V 1
k,2 T̃ 2

δ V
0
k,2T

2
δ

...

0 T̃ 3
δ V

1
k,3T

2
δ T̃ 3

δ V
0
k,3T

3
δ

...
. . .

. . .

0 . . . T̃ νδ V
1
k,νT

ν−1
δ T̃ νδ V

0
k,νT

ν
δ



,(7.14)

U(t) =




α(t)
L2

2

0
...
0


 , Vk =



βk
0
...
0


 .(7.15)

The block matrices in (7.13), (7.14) are given by (7.7)–(7.11) and (7.5), and the
matrices T̃ ·

· , T
·
· , are the reduction matrices defined in (7.1).

Now, we can use Theorem 4.1 in order to rewrite the bilinear SDE (7.12) in
the form of a linear SDE with WSW diffusion term. The underlying hypothesis
is that the covariance matrix of the process Z defined in (7.3), namely ΦZ(t), is
uniformly nonsingular over T . There are many ways to assure this, starting from
some suitable, nonrestrictive hypothesis on the original system. As a matter of fact,
since we are here concerned with a finite interval T , it is easy to recognize that the
uniform nonsingularity of ΦZ(t) is assured as soon as it is assumed that the covariance
of the initial original state X(0) is positive definite. Henceforth, we will understand
the uniform nonsingularity in T of ΦZ(t).

Proposition 7.2. Let ρk, k = 1, . . . , p, be the ranks of the matrices Bk, given in
(7.12). Then the process Z satisfies the SDE

dZ(t) =
(A(t)Z(t) + U(t))dt+

2p∑
k=1

B̃k(t)dW̃k(t),(7.16)

where W̃k, k = 1, . . . , 2p are independent standard WSW processes, W̃k ∈ Rρk for
k = 1, . . . , p, W̃k =Wk ∈ R, for k = p+ 1, . . . , 2p, and

B̃k(t) ∆
=

{(BkΨZ(t)BTk )( 1
2 )
, 1 ≤ k ≤ p,

Bk−pmZ
(t) + Vk−p, p+ 1 ≤ k ≤ 2p,

(7.17)

with m
Z
= E(Z).

In order to write down the equations of the augmented system we need to split
out the vector SDE (7.12) into two SDEs: one for the observed components of Z and
the other one for the remaining entries.
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From the definition (7.2) we see that the components of the vector Z are of the
form

Xi11 · · ·Xinn · · ·Y j11 · · ·Y jqq ,(7.18)

where Xl, Yl denote the lth component of vectors X,Y , respectively, and 0 ≤ il, jr ≤ ν
for l = 1, . . . , n, r = 1, . . . , q,

∑n
l=1 il ≤ ν,

∑q
r=1 jr ≤ ν. The observed components

are those of the form (7.18) with i1 = · · · = in = 0. Denote by Y the vector of all
such components:

Y ∆
=



Y
Y[2]

...
Y[ν]


 .

Moreover, let us denote by EY the (0, 1)-matrix such that

Y = EYZ.(7.19)

It is easy to recognize that

EY =




E1
Y 0 . . . 0

0 E2
Y

. . .
...

. . .
. . .

0 . . . 0 EνY


 ,(7.20)

where the diagonal blocks EjY , j = 1, . . . , ν are defined as

EjYZ[j] = Y[j](7.21)

and have the expressions

EjY = [Iq 0][j]T jδ ,(7.22)

where T jδ is the expansion matrix defined in (7.1). Let us denote with X the aggregate
vector of all the components in Z which are not components of Y. Moreover, let us
denote by EX the (0, 1)-matrix such that

X = EXZ.(7.23)

A simple way to compute EX is just to remove from the identity matrix IdZ with
dZ = dim(Z) (note that IdZ includes all the rows of EY) all those rows which are rows
of EY .

From the above the aggregate matrix I,

I ∆
=

[ EY
EX

]
(7.24)

results to be invertible. Let us consider the matrices I1, I2 such that

Z = I1Y + I2X .(7.25)
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Note that, from (7.19), (7.23), and because of the invertibility of the matrix I, it
results that the matrices I1, I2 defined in (7.25) are obtained by means of a suitable
partition of the matrix I−1 = [I1 I2].

Using (7.19), (7.23), (7.25), and (7.12), we can now state the following proposition.
Proposition 7.3. The processes X , Y defined in (7.23) and (7.19) satisfy the

pair of SDEs (augmented system)

dX (t) =
(A1(t)Y(t) +A2(t)X (t) + U1(t)

)
dt+

2p∑
k=1

B1
k(t)dW̃k(t),(7.26)

dY(t) = (C1(t)Y(t) + C2(t)X (t) + U2(t)
)
dt+

2p∑
k=1

D1
k(t)dW̃k(t),(7.27)

where

(7.28)

A1(t) = EXA(t)I1, A2(t) = EXA(t)I2, U1(t) = EXU(t), B1
k(t) = EX B̃k(t),

C1(t) = EYA(t)I1, C2(t) = EYA(t)I2, U2(t) = EYU(t), D1
k(t) = EY B̃k(t),

A, B̃k, U , are the matrix coefficients of (7.16), the matrices EX , EY , I1, I2, are
defined by means of (7.19), (7.23), (7.25), and {W̃k, k = 1, . . . , 2p} is a set of mutually
uncorrelated standard WSW processes.

8. Polynomial filter equations. Proposition 7.3 states that the augmented
observation process Y defined in (7.19) can be generated as the output process of the
augmented representation (7.26), (7.27). This implies that the problem of finding the
νth degree polynomial filter for the original system (7.26), (3.3) is now reduced to
an optimal linear filtering problem for the linear system (7.26), (7.27). Indeed, by
denoting with X̂ (t) the optimal linear estimate given {Ys, s ≤ t} of the augmented
state X (t), we have (see section 2)

X̂ (t) = Π
(
X (t)/Lt(Y)

)
.

On the other hand, from Definition 2.1 and taking into account the structure of the

augmented observation Y, it results that Lt(Y) = P(ν)
t (Y ), where Y is the original

observation process given by (3.3). Hence we have

X̂ (t) = Π
(
X (t)/P(ν)

t (Y )
)
,

and, as we will see later, we can get X̂(t) (which is given by (3.5)) by extracting a
suitable subvector in X̂ (t).

In [3] the optimal linear filter is defined for the class of linear stochastic systems
whose noise terms are represented by WSW processes. System (7.26), (7.27) comes
within this class of systems, and we can use here the same approach as in [3] in order
to obtain the optimal linear filter with respect to the augmented observation process
Y (and, hence the optimal νth degree polynomial filter with respect to the original
observed process Y ). In order to do this, first of all we state the following theorem,
whose proof is given in Appendix B, showing the uniform nonsingularity in T of the
output-noise covariance of system (7.26), (7.27), namely

R(t)
∆
=

2p∑
k=1

D1
k(t)D1

k(t)
T .(8.1)
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Indeed, the uniform nonsingularity of (8.1) is required, in order to apply the Kalman–
Bucy scheme to system (7.26), (7.27).

Theorem 8.1. The noise covariance matrix function of the augmented measure-
ment equation (7.27), given by (8.1), is uniformly nonsingular over T .

Proof. See Appendix B.
Now, we can prove the main theorem, defining the νth degree polynomial filter for

system (3.2), (3.3). We remind readers that ρk is the dimension of the WSW process
W̃k when k = 1, . . . , p, and for k = p+1, . . . , 2p, W̃k =Wk ∈ R. Let us denote with γ
the dimension of the augmented process Z. Moreover, we shall denote with cov(χ, η)
the cross-covariance between two random variables χ, η. Finally, we shall denote with
M† the Moore–Penrose pseudoinverse of the square matrix M .

Theorem 8.2. The νth order polynomial filter for system (3.2), (3.3) is described
by the following system of equations:

dm
Z
(t)

dt
= A(t)m

Z
(t) + U(t),(8.2)

B̄k(t) = BkmZ
(t) + Vk, 1 ≤ k ≤ p,(8.3)

dΨZ(t)

dt
= A(t)ΨZ(t) + ΨZ(t)A(t)

T
+

p∑
k=1

BkΨZ(t)BTk +

p∑
k=1

B̄k(t)B̄k(t)T ,(8.4)

B̃k(t) =
(
BkΨZ(t)BTk

)( 1
2 )

, 1 ≤ k ≤ p,(8.5)

J (t) =

p∑
k=1

EX
(B̃k(t)B̃k(t)T + B̄k(t)B̄k(t)T

)ETY ,(8.6)

R(t) =

p∑
k=1

EY
(
B̃k(t)B̃k(t)T + B̄k(t)B̄k(t)T

)
ETY ,(8.7)

Q(t) =

p∑
k=1

EX
(
B̃k(t)B̃k(t)T + B̄k(t)B̄k(t)T

)
ETX ,(8.8)

dP(t)

dt
= A2(t)P(t) + P(t)A2(t)

T +Q(t)

−
(
J (t) + P(t)C2(t)

T )R(t)−1(J (t) + P(t)C2(t)
T
)T
,(8.9)

dX̂ (t) =
(
A1(t)Y(t) +A2(t)X̂ (t) + U1(t)

)
dt+

(
J (t) + P(t)C2(t)

T
)
R(t)−1

·(dY(t)− (C1(t)Y(t) + C2(t)X̂ (t) + U2(t)
)
dt

)
,(8.10)

X̂(t) = TνX̂ (t),(8.11)

where Tν is the operator extracting the first n entries of a vector, the matrices A(t),
U(t), A1(t),A2(t), B1(t),B2(t),U1(t),U2(t) are defined in (7.16) and (7.28), the matri-
ces Bk are defined in (7.14), ρk = rank(Bk), and (8.2), (8.4), (8.9), (8.10) are endowed
with the initial conditions

m
Z
(0) = E(X (0)),

ΨZ(0) = cov(X (0),X (0)),

X̂ (0) = E(X (0)) + cov(X (0),Y(0))cov(Y(0),Y(0))†(Y(0)− E(Y(0))),
P(0) = cov(X (0),X (0))− cov(X (0),Y(0))cov(Y(0),Y(0))†cov(X (0),Y(0))T .
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Proof. Equations (8.6)–(8.10) easily derive from an application of [3, Thm. 15.3]
to the representation (7.26), (7.27). The augmented-state covariance ΨZ(t), appearing
in the definition of B̃k given by (8.5) (see also (7.17)), satisfies the ODE (8.4). This
can be readily proved in the same way of (4.20), but the time-varying BLSS (7.12) is
considered now, and the semigroup generated by {A(t), t ∈ T} should be used.

The so-obtained estimate X̂t is the optimal one among all the linear transforma-
tion of the augmented observation process {Ys, s ≤ t}, and hence it is the νth degree
polynomial estimate of the augmented state Xt. In order to obtain the νth degree
polynomial estimate of the state Xt of the original system (3.2), (3.3), first of all note
that, because X̂t is the L2-projection of Xt onto the closed subspace linearly spanned
by {Ys, s ≤ t}, we have that each entry of X̂t agrees with the L2-projection (onto the
same subspace) of the corresponding entry in Xt. Now, by definition, X (t) includes
the components of the original state Xt. From (7.2), (7.3), and by the definition of
the extracting operator EX , it results that these components are placed in the first n
entries of the vector X . Hence, X̂(t) can be obtained simply by extracting the first n
components of X̂t, that is (8.11).

9. Simulation example. In order to test the algorithm described in the pre-
vious sections, the filtering problem for the following second-order system has been
considered:

dX(t) = AX(t)dt+BX(t)dW (t) + UdN(t), X(0) = 0,(9.1)

dY (t) = CX(t)dt+DX(t)dV (t), Y (0) = 0,(9.2)

where

A =

[
a1 1
0 a2

]
, B =

[
b1 0
0 b2

]
, U =

[
u1

u2

]
,

C = [ 1 1 ] , D = [ g 0 ] ,

and W , N , and V are mutually independent scalar Wiener processes.
The well-known extended Kalman filter (EKF) was up to now the classical tool

for the filtering of a nonlinear system in the form of (9.1), (9.2). However, noth-
ing is known about the working conditions or the performances of the EFK. In the
present case, for instance, the EKF does not work at all. Indeed the state-expectation
is zero and hence the state process is expected to cross the zero. Since the term
DX̂(t)X̂(t)TDT (X̂ denoting the EKF estimation) needs to be inverted in the EKF
equations, we should expect a failure of the algorithm. This really happens in the
simulations we carried out for several values of the parameters a1, a2, b1, b2, u1, u2, g.
We have always observed a sudden and strong deviation to infinity. In order to
improve the working conditions we have substituted the term DX̂(t)X̂(t)TDT with
ε + DX̂(t)X̂(t)TDT , where the number ε has been chosen small enough. In these
cases we have observed an improvement of the algorithm, in that for a small initial
time-interval the EKF shows a good performance, even better than the third-degree
polynomial filter below described (no theoretical argument is known about this). How-
ever, unavoidably, the EKF diverges in spite of the trick used, whereas the polynomial
filters continue to work.

The linear, the second degree (quadratic), and the third degree (cubic) filters
have been built up by using (8.2)–(8.11). We remind the reader that the matrices
A, U , Bk, and Vk that appear in the filter equations are the system-matrices of the
augmented (7.12). These matrices can be obtained from the original system-matrices
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by using the formulas given in section 7 for any polynomial degree. We show below
our simulation results for the linear and cubic filters, with the following values of the
parameters:

a1 = −0.01, a2 = −0.5, u1 = 30, u2 = 2,

b1 = 0.1, b2 = 0.1, g = 0.1.
(9.3)

We do not show graphs related to the quadratic filter simulation because, in our case,
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Fig. 9.3

Fig. 9.4

the quadratic filter does not show any valuable improvement with respect to the linear
case. Differently from the EKF, for the polynomial filters we are able to compute the
a priori state-estimate error variances that are entries of the matrix P(t) given by
(8.9), that is P1,1(t), P2,2(t) for the first and second state components, respectively.
In our example these values are growing with time. The reason for this is that system
(9.1), (9.2), with the values given by (9.3), is unstable. Nevertheless, as shown in
Figure 9.1, the time-evolution of P1,1(t) for the cubic filter (namely P

C
(t)) is ever less

than the P1,1(t) for the linear filter (namely P
L
(t)). In Figure 9.2 the evolution of
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the ratio ρ(t) = P
L
(t)/P

C
(t) is shown. We can see that ρ(t) stabilizes over the value

ρ̄ = 1.30. Hence the improvement in the a priori performance of the cubic filter with
respect to the linear one can be considered almost 30%.

The time-evolutions of filtered paths for the linear and cubic filters, compared
with the corresponding true 1st component state path, are reported in Figures 9.3,
9.4. As we can see, even a visual comparison between the signal time-evolutions shows
a valuable improvement in the estimation quality of the cubic filter with respect to
the linear one. Several Monte Carlo runs have been carried out. For each one of
these runs, the ratio, namely ρ

S
, between the sampled error variances of the linear

and cubic filters has been computed. We have chosen the paths with ρ
S
= 1.35.

The simulation of the EKF confirms also in this case its unsatisfactory behavior.
Indeed, after almost 0.01 time units the EKF estimate starts up and quickly goes to
infinity.

All the simulations have been carried out using the standard functions of the
Matlab software package for Windows. The computer was a PC, endowed with a 200
MHz Pentium processor.

10. Conclusions. Equations (8.2)–(8.11) define a finite-dimensional filter for
the BLSS (3.2), (3.3) which is optimal in a class of polynomial estimates. Although
the considered class does not include all the polynomials of the currently available
measurements, it includes the linear estimates, and, moreover, it defines a nonde-
creasing sequence of spaces for increasing polynomial degree. This implies that the
polynomial filter had to improve the estimation performance for increasing polynomial
degree.

We underline that the proposed filter is finite-dimensional. Of course, it is always
possible to approximate the optimal filter (for instance, by applying a finite-elements
method to the Zakai equation, as shown in [13]) with an arbitrary approximation de-
gree. However, the more accurately the approximation level is chosen, the heavier the
computational burden of the algorithm is. The computational effort is prohibitive even
for small approximation degrees. Moreover, it makes no sense, within this approach,
to use a large approximation degree in order to make the filtering algorithm really
implementable. Counterwise, our suboptimal approach allows us to get meaningful
estimates also for small polynomial degrees, which do not present difficult implemen-
tation problems.

In section 4 we have presented the equations of the optimal linear filter for a BLSS.
We highlight that this result is interesting by itself in that it was up to now known
only for the scalar case. The main tool is given by Theorem 4.1, stating the existence
of a linear representation for a general vector BLSS. The optimal linear filter is then
obtained by an application of a classical Kalman–Bucy scheme. Nevertheless, in the
framework of this paper, the main purpose of Theorem 4.1 remains its application to
the bilinear SDE (7.12), which allows us to obtain the linear representation (7.16).

Theorem 8.1 states that the output noise covariance of the augmented system is
uniformly nonsingular, as required by the Kalman–Bucy scheme, provided that the
output noise covariance of the original system (3.2), (3.3) is nonsingular. The proof
is presented in Appendix B.

In section 9 a numerical simulation is shown, where a second-order BLSS has been
filtered using the polynomial filters up to the third degree. The EFK has been also
simulated, however its performance is resulted to be unsatisfactory. The simulation
results show that the estimation quality really improves as polynomial degree grows,
and for the cubic filter we obtained an improvement valuable over 30% with respect
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to the linear filter.
We stress that, due to the well-known approximation capabilities of the polyno-

mial functions, with the aim to define better and better implementable approximation
schemes of the optimal filter, the use of polynomial estimators appears to be very
promising.

Appendix A. Kronecker algebra.
Throughout this paper, we have widely used Kronecker algebra [14], [15]. Here,

for the sake of completeness, we recall some definitions and properties on this subject.
Definition A.1. Let M and N be matrices of dimension r × s and p × q,

respectively. Then the Kronecker product M ⊗ N is defined as the (r · p) × (s · q)
matrix

M ⊗N =


m11N . . . m1sN
. . . . . . . . . . . . . . . . . .
mr1N . . . mrsN


 ,

where the mij are the entries of M .
Of course this kind of product is not commutative.
Definition A.2. Let M be the r × s matrix

M = [m1 m2 . . . ms ] ,(A.1)

where mi denotes the ith column of M , and then the stack of M is the r · s vector

st(M) = [mT1 m2 . . . ms ]
T
.(A.2)

Observe that a vector as in (A.2) can be reduced to a matrix M as in (A.1) by
considering the inverse operation of the stack denoted by st−1. With reference to the
Kronecker product and the stack operation, the following properties hold [15]:

(A+B)⊗ (C +D) = A⊗ C +A⊗D
+B ⊗ C +B ⊗D,(A.3a)

A⊗ (B ⊗ C) = (A⊗B)⊗ C,(A.3b)

(A · C)⊗ (B ·D) = (A⊗B) · (C ⊗D),(A.3c)

(A⊗B)T = AT ⊗BT ,(A.3d)

st(A ·B · C) = (CT ⊗A) · st(B),(A.3e)

u⊗ v = st(v · uT ),(A.3f)

tr(A⊗B) = tr(A) · tr(B),(A.3g)

where A, B, C, and D are suitably dimensioned matrices, u and v are vectors, and
tr(M) denotes the trace of a square matrix M . The Kronecker power of the matrix
M is defined as

M [0] = 1,

M [n] =M ⊗M [n−1] =M [n−1] ⊗M, n > 0.

As an easy consequence of (A.3b) and (A.3g), it follows that

tr(A[h]) =
(
tr(A))h.(A.3h)
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It is easy to verify that for u ∈ Rr, v ∈ Rs, the ith entry of u⊗ v is given by

(u⊗ v)i = ul · vm; l =

[
i− 1

s

]
+ 1, m = |i− 1|s + 1,(A.4)

where [·] and | · |s denote integer part and s-modulo, respectively. Although the
Kronecker product is not commutative, the following property holds [9, 15].

Theorem A.3. For any given pair of matrices A ∈ Rr×s, B ∈ Rn×m, we have

B ⊗A = CTr,n(A⊗B)Cs,m,(A.5)

where the commutation matrix Cu,v is the (u · v) × (u · v) matrix such that its (h, l)
entry is given by

{Cu,v}h,l =
{
1 if l = (|h− 1|v)u+

([
h−1
v

]
+ 1

)
,

0 otherwise.
(A.6)

Observe that C1,1 = 1; hence in the vector case when a ∈ Rr and b ∈ Rn, (A.5)
becomes

b⊗ a = CTr,n(a⊗ b).(A.7)

Corollary A.4. For any given matrices A,B,C,D, having dimensions nA ×
mA, nB×mB, nC×mC , nD×mD, respectively, denoted with I(l), the identity matrix
in Rl, we have

A⊗B ⊗ C ⊗D =
(
I(nA)⊗ CTnCnD,nB

)
(A⊗ C ⊗D ⊗B) (I(mA)⊗ CmCmD,mB

) .

Proof. See [3].

Appendix B. Proof of Theorem 8.1. We need to state in advance some
preliminary definitions and lemmas.

Let δ and j be two positive integers.
Definition B.1. Let r, s ∈ {1, 2, . . . , δj}. The pair (r, s) is said to be (δ, j)-

redundant ((δ, j)-R for short) if ∀ x ∈ Rδ, it results that
(
x[j]

)
r
=

(
x[j]

)
s
, where(

x[j]
)
l
denotes the lth entry of the vector x[j]. Otherwise, the pair (r, s) is said to be

(δ, j)-nonredundant ((δ, j)-NR for short).
Example B.2. The pair (2, 3) is (2, 2)-R; however, it is (3, 2)-NR. The pairs (1, 1),

(2, 2), . . . are (δ, j)-NR for any δ and j.
Remark B.3. Let x ∈ Rδ. For some s, r ∈ {1, 2, . . . , δj} let us consider the

multi-indexes s1, . . . , sj and r1, . . . , rj in {1, . . . , δ} defined by the identities

(
x[j]

)
s
= xs1xs2 · · ·xsj ,

(
x[j]

)
r
= xr1xr2 · · ·xrj .

Then, we immediately realize that (r, s) is (δ, j)-R if and only if there exists a permu-
tation of indexes transforming s1, . . . , sj in r1, . . . , rj (and vice versa).

Remark B.4. It is easy to verify that the (δ, j)-R condition defines an equivalence
relation in the set {1, 2, . . . , δj}. We shall denote with ρ(s; δ, j) the equivalence class
generated by s ∈ {1, . . . , δj} via the (δ, j)-R relation

ρ(s; δ, j)
∆
=

{
r ∈ N : 1 ≤ r ≤ δj , (s, r) is (δ, j)−R

}
.(B.1)
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We shall denote with δj the number of equivalence classes of the (δ, j)-R rela-
tion, partitioning the set {1, 2, . . . , δj}. Moreover, we introduce the sets ρ′(s; δ, j),
ρ′′(s; δ, j) ⊂ ρ(s; δ, j) defined as

ρ′(s; δ, j) ∆
=

{
i ∈ ρ(s; δ, j)

/[
i

δj−1

]
=

[ s

δj−1

]}
,(B.2)

ρ′′(s; δ, j) ∆
= ρ(s; δ, j) \ ρ′(s; δ, j),(B.3)

where we have used in (B.2) the notation [ · ] to indicate the integer part. The above
defined sets have the following meaning. Let x ∈ Rδ and note that

x[j] =



x1 · x[j−1]

x2 · x[j−1]

...
xδ · x[j−1]


 ,(B.4)

where every subvector xix
[j−1] has dimension δj−1. By setting l = [s/δj−1] and

observing in (B.4) the structure of x[j], we realize that the set defined in (B.2) is
composed with the integers i such that (i, s) is (δ, j)-R and

(
x[j]

)
i
∈ xlx[j−1]. Coun-

terwise, the set defined in (B.3) is composed with the integers i such that (i, s) is
(δ, j)-R and

(
x[j]

)
i
does not belong to xlx

[j−1]. Let us denote by |n1|n2 the remainder
of the integer division n1/n2. Then, again from (B.4), it is easily recognized that

(
x[j]

)
s
= xl

(
x[j−1]

)
r
, r

∆
= |s|δj−1 .(B.5)

Remark B.5. Note that the number δj agrees with the number of entries of x[j]

for x ∈ Rδ.
Lemma B.6. Let r, s ∈ {1, . . . , δj−1} such that (r, s) is (δ, j − 1)-R. Then, for

any l = 0, 1, . . . , δ − 1, the pair (r + lδj−1, s + lδj−1) is (δ, j)-R. Counterwise, if
r, s ∈ {1, . . . , δj} are (δ, j)-R and r′ = s′ with

r′ ∆
=

[ r

δj−1

]
, s′ ∆

=
[ s

δj−1

]
,

then, denoting r′′ = |r|δj−1 , s′′ = |s|δj−1 , it results that (r′′, s′′) is (δ, j − 1)-R.
Proof. From Definition B.1 it results that

(
x[j−1]

)
r
=

(
x[j−1]

)
s

∀ x ∈ Rδ.(B.6)

From (B.4) we see that

(
x[j]

)
r+lδj−1 = xl

(
x[j−1]

)
r
,

(
x[j]

)
s+lδj−1 = xl

(
x[j−1]

)
s
,

and hence, from (B.6),

(
x[j]

)
r+lδj−1 =

(
x[j]

)
s+lδj−1 .

Counterwise, if r, s ∈ {1, . . . , δj} are (δ, j)-R, then, taking into account (B.5), we have

(
x[j]

)
r
= xr′

(
x[j−1]

)
r′′ = xs′

(
x[j−1]

)
s′′ =

(
x[j]

)
s

∀ x ∈ Rδ.(B.7)
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Since, by hypothesis, r′ = s′, (B.7) implies that
(
x[j−1]

)
r′′ =

(
x[j−1]

)
s′′ .

Let I ⊂ N and n ∈ N. In the following, we will use the notation I−n to indicate
the translated set:

I − n = {i / i ∈ N, ∃i′ ∈ I, such that i = i′ − n}.(B.8)

Lemma B.7. Suppose that [ s

δj−1

]
= l < δ.(B.9)

Then, for any q < δ − l it results that
ρ′(s; δ, j) = ρ′(s+ qδj−1; δ, j)− qδj−1,

where ρ′ is the set defined in (B.2).
Proof. It suffices to show that for any r ∈ {1, . . . , δj} such that [r/δj−1] = l

and such that (r, s) is (δ, j)-NR ((δ, j)-R), the pair (r + qδj−1, s+ qδj−1) is (δ, j)-NR
((δ, j)-R).

Suppose first that (r, s) is (δ, j)-NR. Let x ∈ Rδ and z = x[j]. From the structure
(B.4) of the vector z and taking into account (B.9), we see that zs, zr ∈ xl · x[j−1].
Hence since (s, r) is (δ, j)-NR, we have that, there exist integers h1, . . . , hδ and
h′1, . . . , h

′
δ, h1 + · · ·+ hδ = h′1 + · · ·+ h′δ = j − 1 such that it results that

zs = xl · xh1
1 · · ·xhδ

δ ,

zr = xl · xh
′
1

1 · · ·xh′
δ

δ .
(B.10)

Since zr �= zs it follows that

xh1
1 · · ·xhδ

δ �= xh′
1

1 · · ·xh′
δ

δ .(B.11)

Again, looking at (B.4), we readily realize that

zs+qδj−1 = xl+q · xh1
1 · · ·xhδ

δ ,(B.12)

and

zr+qδj−1 = xl+q · xh
′
1

1 · · ·xh′
δ

δ ,(B.13)

and hence, taking into account (B.11), it follows that zs+qδj−1 �= zr+qδj−1 ; that is
(s+ qδj−1, r + qδj−1) is (δ, j)-NR.

Next, suppose that (r, s) is (δ, j)-R. Then zs, zr ∈ xl · x[j−1], zs = zr, and
by (B.10) it follows that hi = h′i, i = 1, . . . , δ. This in turn implies, taking into
account (B.12), (B.13), that zs+qδj−1 = zr+qδj−1 ; that is (s + qδj−1, r + qδj−1) is
(δ, j)-R.

Lemma B.8. Let (r, s) be a (δ, j)-R pair such that
[ r

δj−1

]
= l,

[ s

δj−1

]
= m, l < m < δ.(B.14)

Then for any q < δ − l the pair (r + qδj−1, s+ qδj−1) is (δ, j)-NR.
Proof. As in the proof of Lemma B.7 it is readily verified that, for some integers

h1, . . . , hδ such that h1 + · · ·+ hδ = j − 1, it results that

zr = xl · xh1
1 · · ·xhl

l · · ·xhm
m · · ·xhδ

δ .(B.15)



1198 F. CARRAVETTA, A. GERMANI, AND M. K. SHUAKAYEV

Since zs = zr, (B.15) implies that

zs = xm · xh1
1 · · ·xhl+1

l · · ·xhm−1
m · · ·xhδ

δ .

Hence we have

zr+qδj−1 = xl+q · xh1
1 · · ·xhl

l · · ·xhm
m · · ·xhδ

δ = xl+q
zr
xl
,

zs+qδj−1 = xm+q · xh1
1 · · ·xhl+1

l · · ·xhm−1
m · · ·xhδ

δ = xm+q
zs
xm
.

From this, since zr = zs and l �= m, it follows that zr+qδj−1 �= zs+qδj−1 .
Let us consider the state and output processes X,Y , of system (3.2), (3.3). We

remind the reader that q and δ are the dimensions of the vectors Y and Z = [Y T XT ]T ,
respectively. Note that the components of Z [j] can be divided into two groups: the
one including monomials composed only with components of the vector Y , and the
other one including the remaining monomials. We shall call the components belonging
to the former group the Y -monomials.

Let us consider the extraction matrix EY defined in (7.19), and recall that the
diagonal blocks EjY , j = 1, . . . , ν, appearing there are such that (7.21) holds. According
to the above defined notation (see Remark B.5), we shall denote by qj the dimension

of the vector Y[j]. Finally, let us consider the reduction matrix T̃ jδ defined in (7.1)

and the matrix U jδ defined in (5.5). We can prove the following lemma.

Lemma B.9. There exists a full (row) rank matrix, namely Ljδ, having dimensions
qj × qδj−1, such that

EjY T̃ jδU jδ = [Ljδ 0 ] .

Proof. Using (7.21) and property (5.4) we have

EjY
( d
dZ

⊗ Z[j]

)
=
d

dZ
⊗ EjYZ[j] =

d

dZ
⊗ Y[j]

=
[ ∂
∂Y

∂

∂X

]
⊗ Y[j] =

[ ∂
∂Y

⊗ Y[j] 0
]
.

(B.16)

On the other hand, by (7.1), (5.3), and using formula (5.5),

EjY
( d
dZ

⊗ Z[j]

)
= EjY

( d
dZ

⊗ T̃ jδZ [j]
)
= EjY T̃ jδU jδ

(
Iδ ⊗ Z [j−1]

)

= EjY T̃ jδU jδ
[
Iq ⊗ Z [j−1] 0

0 Iδ−q ⊗ Z [j−1]

]
.

(B.17)

Using (B.16), (B.17), and defining Ljδ as the matrix composed by the first qδj−1

columns of EjY T̃ jδU jδ , it results that

[ ∂
∂Y ⊗ Y[j] 0 ] = [Ljδ S ]

[
Iq ⊗ Z [j−1] 0

0 Iδ−q ⊗ Z [j−1]

]
,

from which it follows that S = 0 and

d

dY
⊗ Y[j] = L

j
δ

(
Iq ⊗ Z [j−1]

)
.(B.18)
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Let V = (d/dY )⊗ Y[j]. Note that the components of the matrix V are either zero or
they are monomials of j− 1st degree. It results that V has linearly independent rows
(in the sense of linear independence of monomial functions). As a matter of fact, any
row is different from zero, and there cannot exist two (nonzero) similar monomials
on the same column, because Y[j] has not repeated entries. Hence Ljδ necessarily has

linearly independent rows. Indeed, suppose there exists u �= 0 such that uTLjδ = 0;
then we would have uTV = 0 ∀ Y ∈ Rq, which is a contradiction.

Lemma B.10. Let s ∈ {1, . . . , qδj−1} and denote with λi, i = 1, . . . , qδj−1, the
ith column of the matrix Ljδ. The following properties hold:

(A) ∀ i ∈ {1, . . . , qδj−1}, λi has zero entries, but possibly one, nonnegative;
(B) the set {λi/ i ∈ ρ′(s; δ, j)}, with ρ′(s; δ, j) given by (B.2), is a set of linearly

dependent vectors;
(C) if the sth component of Z [j] is not a Y -monomial, then λs = 0.
Proof. Let us define l and r as

l
∆
=

[ s

δj−1

]
, r

∆
= |s|δj−1 .(B.19)

Consider again the relation (B.18):

d

dY
⊗ Y[j] =

[ ∂
∂Y1
Y[j] . . . ∂

∂Yq
Y[j]

]
= Ljδ

(
Iq ⊗ Z [j−1]

)
.(B.20)

From (B.20) it results that

∂

∂Yl
Y[j] = L̃

(l)Z [j−1],(B.21)

where

L̃(l) ∆
= [λ(l−1)δj−1+1 λ(l−1)δj−1+2 . . . λlδj−1 ] .

Now, from (B.21) we see that each component of (∂/∂Yl)Y[j] either is equal to zero or

is equal (unless an integer positive coefficient) to some component of Z [j−1]. Let h be
the position of a nonzero entry of (∂/∂Yl)Y[j], and let r ∈ {1, . . . , δj−1} be a position

for which it appears (unless a coefficient, and possibly repeated) in Z [j−1]. Then it
results that the hth row of L̃ has, possibly, nonzero (hence positive) elements in the
set ρ(r; δ, j − 1). Indeed, this set of positions is determined by the position (r) of the
component to be extracted in Z [j−1], endowed with all its (δ, j − 1)-R positions.

Let i ∈ {1, . . . , lδj−1} such that λ(l−1)δj−1+i has a nonzero component, namely

the hth. Then
(
λ(l−1)δj−1+i

)
k
= 0 for k = 1, . . . , qj and k �= h. As a matter of fact,

if
(
λ(l−1)δj−1+i

)
k
�= 0, and k �= h, then some monomial, equal to the ith, would be

taken in Z [j−1], and hence we would have two equal components in (∂/∂Yl)Y[j], which
is impossible because Y[j] has no redundancies. This proves part (A) of the lemma.

From the above it follows that all the columns {λ(l−1)δj−1+i, i ∈ ρ(r; δ, j−1)} have
zero entries, but possibly one, placed in the same position h for any i ∈ ρ(r; δ, j − 1).
Hence, they constitute a set of linearly dependent vectors. Part (B) of the lemma
follows as soon as it is noticed that, using Lemma B.6 and taking into account (B.19),
it results that {λ(l−1)δj−1+i, i ∈ ρ(r; δ, j − 1)} = {λi, i ∈ ρ′(s; δ, j)}.

Finally, in order to prove part (C), note that, since l ≤ q (and hence, by recalling
the structure of Z, given by (7.2), it results that Zl = Yl), we have that the sth
component of Z [j] is of the form YlZ

h1
1 · · ·Zhδ

δ , where the powers h1, . . . , hδ are such
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that h1 + · · · + hδ = j − 1, and it is not a Y -monomial by the hypothesis. Hence
the monomial Zh1

1 · · ·Zhδ

δ is not a Y -monomial of Z [j−1], and then it cannot belong
to the left-hand side of (B.21). This in turn implies, again by (B.21), that the rth
column of L̃(l) (that is the sth column of Ljδ, because l, r are defined by (B.19)) must
be zero.

Before proving Theorem 8.1, we need to give the following definition.
Definition B.11. We define the (δ, j)-Kronecker space, namely K(δ, j), as the

following subspace of Rδ
j

:

K(δ, j) = span
({
z ∈ Rδ

j
/

∃x ∈ Rδ such that z = x[j]
})
.

Remark B.12. From Definition B.11 it follows that

K(δ, j) =
{
z ∈ Rδ

j
/
zr = zs if (r, s) is (δ, j)−R

}
.

Proof of Theorem 8.1. By exploiting the definition of D1
k given in (7.28), and the

definition of B̃k given by (7.17), we can rewrite the matrix R(t), defined in (8.1), as

R(t) =

p∑
k=1

EYBkΦZ(t)BTk ETY +

p∑
k=1

EY
(BkmZ

(t) + Vk
)(BkmZ

(t) + Vk
)TETY .(B.22)

We will prove the theorem by showing that the matrix EYBkΦZBTk ETY is uniformly
nonsingular for some k = 1, . . . , p, or (which is the same because ΦZ(t) is uniformly
nonsingular over T ) that EYBk is a full (row) rank matrix for some k.

In order to verify this, first of all note that, from Assumption 3.1 and Remark
3.2, it results that there exists a k̄ such that rank(Dk̄) = q (we remind the reader that
q is the dimension of the original observation Y ). Indeed, we have

Dk̄ = [Iq 0].(B.23)

For such a k̄, let us show that

rank
(EYBk̄) = q + q2 + · · ·+ qν ;(B.24)

that is, it is a full (row) rank matrix (remember that qi is the dimension of Y[i]).
From the definition of Bk and EY , given in (7.14) and (7.20), respectively, using (7.10)
and taking into account the block triangular structure of Bk, it results that condition
(B.24) is equivalent to:

rank
(E1

YB̃k̄
)
= q,(B.25)

rank
(EjY T̃ jδU jδ (B̃k̄ ⊗ Iδj−1)T jδ

)
= qj ∀ j = 2, . . . , ν.(B.26)

Now, from (7.22) we see that E1
Y ∈ Rq×δ, E1

Y = [Iq 0]. Hence, by the definition of

B̃k given in (7.5) and taking into account (B.23), it results that E1
YB̃k̄ = [0 Iq 0], and

hence condition (B.25) is verified.
It remains to prove (B.26). In order to do this, first note that, from the definition

of B̃k given in (7.5) and taking into account (B.23), we can consider the following
partition of the matrix B̃k̄ ⊗ Iδj−1 :

B̃k̄ ⊗ Iδj−1 =

[
M1

M2

]
,(B.27)
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where M1 has dimensions qδj−1 × δj and has the following structure:

M1 = [ 0 Iqδj−1 0 ] ,(B.28)

where the first null-block has dimensions qδj−1×qδj−1. Using Lemma B.9 and (B.27),
we have

EjY T̃ jδU jδ (B̃k̄ ⊗ Iδj−1)T jδ = [Ljδ 0 ]

[
M1

M2

]
T jδ = LjδM1T

j
δ .(B.29)

Now note that the range of the expansion matrix T jδ is equal to the Kronecker space

K(δ, j) (we remind the reader that T jδ performs the operation Z [j] = T jδZ[j]). Then
by (B.29), we have that (B.26) is implied by the following condition: the operator

LjδM1 : Rδ
j → Rqj , restricted to K(δ, j) is surjective.

Let y ∈ Rqj , and we will prove that there exists a z ∈ K(δ, j) such that
y = LjδM1z. By Lemma B.9, rank(Ljδ) = qj ; then there exist qj indexes. 1 ≤
i1, i2, . . . , iqj ≤ qδj−1, such that the columns λi1 , λi2 , . . . , λiqj (λi denotes as usual the

ith column of Ljδ) are linearly independent. For every is, s = 1, . . . , qj , let us consider
the sets ρ′(is; δ, j) ⊂ ρ(is; δ, j) defined in (B.2). Let us define λ̄is as

λ̄is
∆
=

∑
i∈ρ′(is;δ,j)

λi.(B.30)

From Lemma B.10, parts (A) and (B), we have that the set {λ̄is , s = 1, . . . , qj} is a set
of linearly independent vectors, and hence there exist real numbers αi1 , αi2 , . . . , αiqj ,

such that

y = αi1 λ̄i1 + · · ·+ αiqj λ̄iqj .(B.31)

Now let us show that the elements of the set {is + qδj−1 s = 1, . . . , qj} are pair-
wise (δ, j)-NR. To this purpose, for any pair (ir, is), r �= s, r, s = 1, . . . , qj , we can
distinguish the following two cases.

(i) [
ir
δj−1

]
=

[
is
δj−1

]
.

In this case, since λir and λis are linearly independent, it follows that (ir, is)
is (δ, j)-NR. Indeed, if (ir, is) were (δ, j)-R, then Lemma B.10, part (B) would
imply that λir and λis are linearly dependent vectors. Hence, since (ir, is) is
(δ, j)-NR, Lemma B.7 implies that (ir + qδ

j−1, is + qδ
j−1) is (δ, j)-NR.

(ii)

i′r
∆
=

[
ir
δj−1

]
�=

[
is
δj−1

]
∆
= i′s.(B.32)

In this case, if (ir, is) is (δ, j)-R then Lemma B.8 directly implies the same
conclusion of (i). Else, if (ir, is) is (δ, j)-NR, then we can show that (ir +
qδj−1, is + qδ

j−1) is again (δ, j)-NR. For, let h1, . . . , hδ, h
′
1, . . . , h

′
δ such that

h1 + · · ·+ hδ = h′1 + · · ·+ h′δ = j − 1 and(
Z [j]

)
ir

= Zi′rZ
h1
1 · · ·Zhδ

δ ,(
Z [j]

)
is
= Zi′sZ

h′
1

1 · · ·Zh′
δ

δ ,
(B.33)
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where i′r, i
′
s are given by (B.32). Since λir and λis are linearly independent

(hence nonzero), Lemma B.10, part (C) implies that both the monomials in
(B.33) are Y -monomials. If (ir + qδ

j−1, is + qδ
j−1) were (δ, j)-R, we should

have

Zi′r+qZ
h1
1 · · ·Zhδ

δ = Zi′s+qZ
h′
1

1 · · ·Zh′
δ

δ ,

which is possible if and only if

hi′r+q = h
′
i′r+q − 1, hi′s+q = h

′
i′s+q

+ 1,

hi = h
′
i ∀ i �= i′r + q, i′s + q.

(B.34)

Now i′r, i
′
s ≤ q, and then we have that Zi′r+q and Zi′s+q are not components

of the vector Y , hence condition (B.34) can be verified if and only if both the
monomials in (B.33) are not Y -monomials, which is a contradiction.

Since the elements of the set {is+ qδj−1, s = 1, . . . qj} are pairwise (δ, j)-NR, we
have that

ρ(is + qδ
j−1; δ, j) ∩ ρ(ir + qδj−1; δ, j) = ∅ ∀ r, s = 1, . . . , qj , r �= s.(B.35)

From (B.35) it results that the following vector z ∈ Rδ
j−1

is well defined:

zl =

{
αis if l ∈ ρ(is + qδj−1; δ, j),
0 otherwise.

(B.36)

Noting that, by construction, z ∈ K(δ, j), the theorem is proven as soon as it is shown
that y = LjδM1z with y given by (B.31).

Let z′ =M1z. By the structure of the matrix M1 (B.28), it follows that

z′l =
{
αis if l ∈ ρ(is + qδj−1; δ, j)− qδj−1,
0 otherwise,

(B.37)

where the definition of translated set, given by (B.8), has been used. Observing (B.37),
(B.31), and the definition of the λ̄iss (B.30), we see that the equality y = Ljδz

′, and
hence the theorem is implied by the condition

∑
i∈ρ′(is;δ,j)

λi =
∑

i∈ρ(is+qδj−1;δ,j)−qδj−1

λi ∀ s = 1, . . . , qj .(B.38)

Now, from Lemma B.7 we have ρ′(is; δ, j) = ρ′(is + qδj−1; δ, j)− qδj−1; moreover, by
(B.3)

ρ(is + qδ
j−1; δ, j) = ρ′(is + qδj−1; δ, j) ∪ ρ′′(is + qδj−1; δ, j),

and hence (B.38) becomes

∑
i∈ρ′′(is+qδj−1;δ,j)−qδj−1

λi = 0 ∀ s = 1, . . . , qj ,

which is implied by

λi = 0 ∀ i ∈ ρ′′(is + qδj−1; δ, j)− qδj−1.(B.39)
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In order to prove (B.39), first note that by Lemma B.8, for any i ∈ ρ′′(is+qδj−1; δ, j)−
qδj−1, we must have that (i, is) is (δ, j)-NR and such that (i + qδj−1, is + qδ

j−1) is
(δ, j)-R. Now, let h1, . . . , hδ, h

′
1, . . . , h

′
δ such that h1 + · · ·+hδ = h′1 + · · ·+h′δ = j− 1

and (
Z [j]

)
i
= Zi′Z

h1
1 · · ·Zhδ

δ ,(
Z [j]

)
is
= Zi′sZ

h′
1

1 · · ·Zh′
δ

δ ,
(B.40)

with i′ = [i/δj−1], i′s = [is/δ
j−1]. Since (i + qδj−1, is + qδ

j−1) is (δ, j)-R, it results
that

Zi′+qZ
h1
1 · · ·Zhδ

δ = Zi′s+qZ
h′
1

1 · · ·Zh′
δ

δ ,

which in turn implies the following condition:

hi′+q = h
′
i′+q − 1, hi′s+q = h

′
i′s+q

+ 1,

hi = h
′
i ∀ i �= i′ + q, i′s + q.

(B.41)

Since i′, i′s ≤ q, Zi′+q and Zi′s+q are not components of the vector Y . Hence, condition
(B.41) implies that both the monomials in (B.40) are not Y -monomials. In partic-
ular, since

(
Z [j]

)
i
is not a Y -monomial, Lemma B.10, part (C) gives λi = 0, that

is (B.39).
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Abstract. We consider in this paper constrained Markov decision processes. This type of control
model has many applications in telecommunications and other fields [E. Altman and A. Shwartz,
IEEE Trans. Automat. Control, 34 (1989), pp. 1089–1102, E. A. Feinberg and M. I. Reiman, Probab.
Engrg. Inform. Sci., 8 (1994), pp. 463–489, A. Hordijk and F. Spieksma, Adv. in Appl. Probab., 21
(1989), pp. 409–431, A. Lazar, IEEE Trans. Automat. Control, 28 (1983), pp. 1001–1007, P. Nain
and K. W. Ross, IEEE Trans. Automat. Control, 31 (1986), pp. 883–888, K. W. Ross and B. Chen,
IEEE Trans. Automat. Control, 33 (1988), pp. 261–267]. We address the issue of the convergence
of the value and optimal policies of the problem with discounted costs, to the ones for the problem
with expected average cost. We consider the general multichain ergodic structure. We present two
stability results in this paper. We establish the continuity of optimal values and solutions of as well
as some type of robustness of some suboptimal solutions in the discount factor. Our proof relies
on same general theory on continuity of values and solutions in convex optimization that relies on
well-known notions of Γ-convergence.

Key words. optimization, sensitivity analysis, constrained Markov decision processes

AMS subject classifications. 93E20, 93B35, 90C40

PII. S0363012997280294

1. Introduction. We consider a sequence MPn, n = 1, 2, . . . of constrained
Markov decision processes (CMDPs), and a “limit” one, denoted by MP∞, or simply
by MP. These are defined on some vector spaces, possibly infinite dimensional ones.
MP is assumed to be feasible (it has at least one solution). However, for any given n,
MPn need not be feasible, and even if it is, it need not possess an optimal solution (i.e.,
it may only have ε-optimal solutions). We are interested in the following questions.

(i) Do the values of MPn converge to the value of MP?
(ii) Do optimal (or almost optimal) policies converge in some sense?
(iii) Given an (almost) optimal policy forMPn, will it be an almost optimal policy

for MP if n is sufficiently large?
(iv) Conversely, given an optimal policy for MP, will it be an almost optimal

policy for MPn for all n sufficiently large?
By reducing our control problem to equivalent mathematical programs, we show that
the epigraph theory and the Γ-convergence theory provide sufficient conditions for
having convergence in the sense of (i) and (ii) above. It turns out that the answers for
(iii) and for (iv) are in general negative, unlike the unconstrained case. The reason
is that an optimal policy for MPn may be unfeasible for MP, and vice versa. We
shall, however, establish sufficient conditions for the following slightly weaker versions
of (iii) and (iv).
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(iii′) Given an optimal policy for MPn, can we perturb it “slightly” so that it
becomes almost optimal for MP if n is sufficiently large?

(iv′) Given an optimal policy for MP, can we perturb it “slightly” so that it
becomes almost optimal for MPn for all n sufficiently large?

The answers for (iii′) and (iv′) follow from continuity properties of the solu-
tions and values of mathematical programming. We use in particular notions of Γ-
convergence (see [16] and [37]). We extend and adapt existing theorems and tools for
the sensitivity of solutions of convex optimization to obtain the appropriate framework
for analyzing CMDPs.

We focus here on the convergence in the discount factor αn as it converges to some
limit within the unit interval. We present sufficient conditions for the convergence of
the values and of optimal policies, as well as some robustness properties of suboptimal
policies. Related results were already obtained in [1] but had a strong restriction on
the ergodic structure of the controlled model. It was required to have a single ergodic
class under any stationary policy. This condition enabled us to restrict our problem
to stationary policies, for which some general theorem on approximation [2] could
be used. In the present paper we make no assumption on the ergodic structure,
thus allowing a multichain situation. For such ergodic structure, it is known that
stationary policies need not be optimal (nor even ε-optimal) for the expected average
cost criterion, and one has to use either Markov policies (see [25, 27]) or mixed-
stationary policies (this term was raised by Feinberg [21] in a similar context; it refers
to policies that are highly nonstationary). We use the latter approach to establish,
with the help of the results from the first part of the paper, the convergence of the
values and policies.

We briefly mention some related work on the continuity and sensitivity analysis
of mathematical programs and of control problems. Many papers and books studied
similar problems in the case of finite dimensional state, e.g., [17, 24, 36]. Several
special issues of scientific journals were devoted to these questions, as well as other
related sensitivity, stability, and parametric analysis: Mathematical Programming 21,
1984, Annals of Operations Research 27, 1990. Convergence results for constrained
dynamic control problems were obtained in [1, 2, 4, 6, 8]. Conditions were obtained
there for the convergence in the transition probabilities, in the horizon, and in the
immediate cost. These results were applied to adaptive control problems [6] and
to problems of finite state approximations of CMDPs. Similar questions to those
addressed in this paper were studied in [23] and in [43], and some of the results
there are close to those in the first part of our paper. The main difference lies in
the types of assumptions made. In [23] the central assumption is stated in terms
of constraints set convergence making the use of a metric. In [43] less regularity on
the constraints sets are required (convergence of the constraint sets in the Hausdorff
topology). Nevertheless only points (i) and (ii) are studied there. Some related
questions but in the context of min-max problems and Stakelberg equilibrium are
studied in [31, 32, 34]. Some other references related to the current paper are [13, 16,
28, 33, 42, 44].

2. CMDPs: The convergence in the discount factor. We consider CMDPs,
known also as controlled Markov chains, with a general ergodic structure (multichain).
We consider the discounted cost and the average cost. We shall obtain new results
on the convergence of the values and optimal policies of the discounted cost, as the
discount factor tends to one, to the value and to optimal policies corresponding to
the expected average cost. A similar result for the special unichain case was obtained
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in [1].
Consider a Markov decision process (MDP) with a finite state spaceX = {0, 1, . . . ,

N} and a finite action space A. Without loss of generality, we assume that in any
state x all actions in A are available. The probability to go from state x to state
y given that action a is used is given by the transition probability Pxay. A policy
u in the policy space Uh is described as u = (u1, u2, . . .), where ut, applied at time
epoch t, is a probability measure over A conditioned on the whole history of actions
and state prior to t, as well as the state at time t. Given an initial distribution β
on X, each policy u induces a probability measure denoted by Puβ on the space of
sample paths of states and actions (which serves as the canonical sample space Ω).
The corresponding expectation operator is denoted by Euβ . On this probability space
are defined the state and action processes, Xt, At, t = 1, 2, . . . .

A Markov policy u ∈ UM is characterized by the dependence of ut+1 on the
current state and the time only. A stationary policy g ∈ US is characterized by a single
conditional probability measure pg·|x over A, so that pgA|x = 1; under g, Xt becomes a

Markov chain with stationary transition probabilities, given by P gxy =
∑
a∈A pga|xPxay.

The class of stationary deterministic policies UD is a subclass of US , and every
g ∈ UD is characterized by a mapping g:X→ A, so that pg·|x = δg(x)(·) is concentrated
at the point g(x) for each x. Let L be the number of stationary deterministic policies
among UD, and enumerate the policies in UD such that UD = {u1, . . . , uL}.

It will often be useful to extend the definition of a policy u = (u1, u2, . . .) so as to
allow ut to depend not only on the history, but also on some additional randomizing
mechanism. In particular, for any finite class of policies G ⊂ Uh, we define M(G)
to be the class of mixed policies generated by G. We call these mixed-G policies. A
mixed-G policy q̂ is identified with a distribution q over G; the controller first uses q
to choose some policy u ∈ G and then proceeds with that policy from time 1 onwards.
Define U :=M(UD). Finally, we denote U = Uh ∪ U .

Definition 2.1. For any initial distribution q over the set UD, we shall identify
the policy m(q) ∈ U to be the one that chooses initially the policy uj with probability
qj.

Remark 2.2. Although we consider here a more general definition of policies than
Uh, these policies are in fact equivalent to those in Uh (details are given in Remark
3.1). A randomization over actual classes of policies has already been considered
in [20, 29]. An alternative for the randomization over policies is the randomization
over the strategic measures they generate. If we identify a policy with the strategic
measure it generates, then it follows that the large class M(Uh) is equivalent to the
class of Markov policies UM , as was shown in [19].

For any given distribution β for the initial state (at time 1) and a policy u, define
a probability measure Puβ on which the stochastic processes Xt and At of the states
and actions are defined. When β is concentrated on some state x (i.e., β = δx), we
shall use the notation Pux instead of Puβ .

Let c : X × A → R and d : X × A → R
K be immediate cost functions, d =

(d1, d2, . . . , dk).
Fix some discount factor α ∈ [0, 1), and define the normalized discounted costs

corresponding to an initial distribution β and a policy u by

Cα(β, u) =

∞∑
t=1

(1− α)Euβα
t−1c(Xt, At),
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Dk
α(β, u) =

∞∑
t=1

(1− α)Euβα
t−1dk(Xt, At), k = 1, . . . ,K.

Define the average costs associated with a policy u and with an initial distribution β
on X:

Cea(β, u) = lim
t→∞

1

t
Euβ

[
t∑

s=1

c(Xs, As)

]
,

Dk
ea(β, u) = lim

t→∞
1

t
Euβ

[
t∑

s=1

dk(Xs, As)

]
, k = 1, . . . ,K.

Given a vector V ∈ R
K , we consider the subset ΠV ⊂ U of policies satisfying the

constraints

D(β, u) ≤ V.(2.1)

A policy u ∈ ΠV is called feasible. We introduce the following constrained problem
(COP): find a policy u∗ that achieves

C(β) := inf
u∈ΠV

C(β, u).(2.2)

In (2.1) and (2.2), the costs stand for either the discounted or the average cost. The
COP is said to be feasible if ΠV is nonempty.

We are now ready to state the first main result.
Theorem 2.3 (convergence of the value). Assume that the following Slater con-

dition holds: there exists some policy v ∈ U such that

Dk(β, v) ≤ V k − η ∀k = 1, . . . ,K(2.3)

for some η > 0. Then, the value converges in the discount factor:

lim
α→1

Cα(β) = Cea(β).

The proof of this theorem, as well as the convergence of optimal policies, are
delayed to the next section.

3. Convergence of the values and the policies. In order to be able to define
the convergence of optimal policies, we shall show that one may restrict the search
of optimal policies to the simple subclasses of policies U , without loss of optimality.
Moreover, we should relate the solutions of the COP to solutions of mathematical
programming, in order to be able to apply the tools that we developed. Note that
the control problem is already of the form of a mathematical program, but the cost
is not convex in the policies. We shall show that when restricting to U , the costs are
convex functions.

There are several ways to solve (2.2). For the discounted cost, the solution was
given by Kallenberg in [27] using a linear program (LP) approach. For the expected
average cost, there are several possible LP approaches: the one by Hordijk and Kallen-
berg [25, 27], the one by Feinberg [21], and a related one by Altman and Shwartz [9];
for a definition slightly different than in (2.2), an efficient LP method for computing
ε-optimal solutions was obtained by Ross and Varadarajan; see [40, 41]. Lagrangian
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techniques have also been used to solve CMDPs with a single constraint; see Beutler
and Ross [11, 12] and Sennott [45, 46]. The relation between the Lagrange and the
LP approaches was pointed out in [10].

Remark 3.1. All the references above considered the solution of the constrained
MDP among the policies Uh. However, a standard argument due to Derman and
Strauch [18] shows (in a constructive way) that for any policy u ∈ U, there exists an
equivalent policy χ ∈ UM under which the marginal probabilities of the states and
actions are the same as those under u, and in particular, both the discounted and the
expected average costs are the same. Thus below, whenever we obtain an optimal
policy among U , one may consider the policy χ instead without loss of optimality.
Note, however, that one cannot in general restrict further to the stationary policies
US . Indeed, it is shown in [25, 27] that they are not sufficient for the expected average
cost with a general multichain structure.

We would like to prove the convergence results by showing that there is a corre-
spondence between values and optimal solutions of the control problem, and values
and optimal solutions of related LPs, and then use the general results from the pre-
vious section. While this is possible for the unichain case, it turns out that for the
multichain case, the LP introduced by Kallenberg [27] for the discounted cost is com-
pletely different than any of the LPs for the expected average cost (e.g., the number of
decision variables is different). Therefore, as a first step, we shall introduce a new LP
method for computing the value and optimal policies for the discounted cost problem,
which is an adaptation of the one for the expected average cost in Feinberg [21] and
Altman and Shwartz [9]. This will allow us to have the same type of LP for both the
discounted and the average cost.

Denote the simplex S(L) := {γ ∈ RL : γi ≥ 0, i = 1, . . . , L,
∑L
i=1 γi = 1}.

Introduce the following LPα : Find γ∗ ∈ S(L) that achieves

C∗α := min
γ∈S(L)

L∑
i=1

γiCα(β, u
i), such that (s.t.)(3.1)

Dkα(γ) :=
L∑
i=1

γiD
k
α(β, u

i) ≤ V k, k = 1, . . . ,K.(3.2)

Define Cα(γ) :=
∑L
i=1 γiCα(β, u

i). We say that the LP is feasible if the subset of S(L)
satisfying the constraints (3.2) is nonempty.

Theorem 3.2 (relation between LP and the CMDP, the discounted cost).
(i) For any γ ∈ S(L), the policy m(γ) ∈ U (see Definition 2.1) satisfies

Cα(β,m(γ)) = Cα(γ), Dk
α(β,m(γ)) = Dkα(γ), k = 1, . . . ,K.

(ii) For any vector of costs

{Cα(β, u), Dk
α(β, u), k = 1, . . . ,K},

achievable by some policy u ∈ U, there exists some v ∈ U achieving the same
vector of costs.

(iii) COPα is feasible if and only if LPα is and the optimal values are the same:
C∗α = Cα(β). Moreover, if γ∗ is optimal for LPα, then m(γ∗) is optimal for
COPα.
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Proof. Denote

fα(β, u; y, a) := (1− α)

∞∑
t=1

αt−1Puβ (Xt = y,At = a), x ∈ X, a ∈ A,

and let fα(β, u) be the vector whose (y, a)th elements are given by fα(β, x; y, a). Then
(see, e.g., [14])

Cα(β, u) = c · fα(β, u) =
∑
y∈X

∑
a∈A

c(y, a)fα(β, u; y, a),(3.3)

with a similar representation for the costsDk
α(β, u). For any class of policies U , denote

Lα(β, U) = ∪u∈Ufα(β, u). It is known that the set Lα(β,Uh) is convex, compact,
and its extreme points are contained in {fα(β, u), u ∈ UD}; see [14, 27]. For any
probability γ over UD, we clearly have

fα(β,m(γ)) =

L∑
i=1

γifα(β, u
i).(3.4)

Consequently, Lα(β,U) is convex, compact, and its extreme points are {fα(β, u), u ∈
UD}.

Combining this with (3.3), we conclude that the set of achievable costs

∪u∈U{Cα(β, u), Dk
α(β, u), k = 1, . . . ,K}(3.5)

is also convex, compact, and its extreme points are

{Cα(β, u), Dk
α(β, u), k = 1, . . . ,K, u ∈ UD}.(3.6)

By combining (3.3) with (3.4), we get, for any probability γ over UD,

Cα(β,m(γ)) =

L∑
i=1

γiCα(β, u
i), Dk

α(β,m(γ)) =

L∑
i=1

γiDα(β, u
i), k = 1, . . . ,K.

Hence, the set of performance measures achievable by u ∈ U is also convex, compact,
with the extreme points in the set (3.6), and thus, equal to the set (3.5) achievable
by all policies. This establishes (i) and (ii) and implies (iii).

The LP method corresponding to (3.1) for the expected average cost, due to
Feinberg [21], is the same: LPea : Find γ∗ ∈ S(K) that achieves

C∗ea := min
γ∈S(L)

L∑
i=1

γiCea(β, u
i), s.t.(3.7)

Dkea(γ) :=
L∑
i=1

γiD
k
ea(β, u

i) ≤ V k, k = 1, . . . ,K.(3.8)

Define Cea(γ) :=
∑L
i=1 γiCea(β, u

i).
Theorem 3.3 (relation between LP and the CMDP, the expected average cost).
(i) For any γ ∈ S(L), the policy m(γ) ∈ U (see Definition 2.1) satisfies

Cea(β,m(γ)) = Cea(γ), Dk
ea(β,m(γ)) = Dkea(γ), k = 1, . . . ,K.
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(ii) For any vector of costs

{Cea(β, u), Dk
ea(β, u), k = 1, . . . ,K}

achievable by some policy u ∈ U, there exists a dominating v ∈ U , i.e., such
that

Cea(β, v) ≤ Cea(β, u), Dk
ea(β, v) ≤ Dk

ea(β, u), k = 1, . . . ,K.

(iii) COPea is feasible if and only if LPea is and the optimal values are the same:
C∗ea = Cea(β). Moreover, if γ∗ is optimal for LPea, then m(γ∗) is optimal for
COPea.

Proof. Denote

f tea(β, u; y, a) := t−1
t∑

s=1

Puβ (Xs = y,As = a), x ∈ X, a ∈ A,

and let f tea(β, u) be the vector whose (y, a)th elements are given by f
t
ea(β, x; y, a). For

any u ∈ UD, since the state process is a Markov chain, it is known that

fea(β, u) = lim
t→∞ f tea(β, u) exists,(3.9)

and it is straightforward to show that

Cea(β, u) = c · fea(β, u) =
∑
y∈X

∑
a∈A

c(y, a)fea(β, u; y, a),(3.10)

with a similar representation for the costs Dk
ea(β, u). It is then clear that (3.9) and

(3.10) hold in fact for any u ∈ U , which establishes (i).
For a fixed initial distribution β, for any policy v ∈ Uh, and for any accumulation

point f of the sequence f tea(β, u), there exists some u ∈ U such that fea(β, u) = f .
This is a direct consequence of Theorem 2 in [25] and is a special case of the result
in [21] (who studies the semi-Markov case). Combining this with the fact that (3.9)
and (3.10) hold for any u ∈ U establishes (ii), by using Corollary 2.5 in [7]. Finally,
(iii) is a consequence of (i) and (ii).

For a given u ∈ U we shall understand below πδ(u) = m(πδ(γ)), where γ is such
that u = m(γ) and πδ is defined in (B.17). We are now ready to state the second
main result for MDPs.

Theorem 3.4. Assume that the Slater condition (2.3) holds. Consider a se-
quence αn converging to 1, and let COPn be the constrained optimal control problem
corresponding to the discount factor αn. Let δ be such that η > δ > 0. Then we have
the following.

(i) Let un ∈ U be εn-optimal for COPn, lim supn εn ≤ ε. Then there exists
N(ε, δ) such that ∀n ≥ N(ε, δ), πδ(un) is O(ε+ δ)-optimal for COPea.

(ii) Let u ∈ U be optimal for COPea. Then there exists N(ε, δ) such that ∀n ≥
N(ε, δ), πδ(u) is O(ε+ δ)-optimal for COPn.

(iii) Let un ∈ U be optimal for COPn and let γn ∈ S(L) be such that un = m(γn).
Assume that γn converges to some γ. Then m(γ) is optimal for COPea.

Proof of Theorems 2.3 and 3.4. We apply below Theorems B.1, B.4, and B.15,
which present sensitivity results for general convex optimization problems, to obtain
the convergence of the optimal values and the convergence and robustness of policies
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LPα to the optimal value of LPea, and consequently, by Theorems 3.2(ii), (iii), and
3.3(ii), (iii), the convergence for the original constrained optimal control problems. It
remains to show that the required conditions in Theorems B.1, B.4, and B.15 hold.

It is well known that for any u ∈ UD,
lim
α→1

Cα(β, u) = Cea(β, u), lim
α→1

Dk
α(β, u) = Dk

ea(β, u), k = 1, . . . ,K.(3.11)

Choose an arbitrary u ∈ U , and let γ be such that u = m(γ). Then, due to Theorems
3.2(i) and 3.3(i),

|Cα(β, u)− Cea(β, u)|

≤
∣∣∣∣∣∣
L∑
j=1

γj
[
Cα(β, u

j)− Cea(β, u
j)
]
∣∣∣∣∣∣

≤ max
1≤j≤L

|Cα(β, uj)− Cea(β, u
j)|,

which does not depend on u.
With the same applied to the costs Dk, this implies that (3.11) holds for any

u ∈ U , and that the convergence is uniform over U . Equivalently, for any γ ∈ S(L),
lim
α→1
Cα(γ) = Cea(γ), lim

α→1
Dkα(γ) = Dkea(γ), k = 1, . . . ,K(3.12)

uniformly in γ. This establishes conditions (A.2) and (A.3).
The set S(L) is clearly convex. As the costs are linear in γ, conditions (A.4) and

(A.5) hold. Since γ is bounded in a simplex, this implies condition (A.6).
It follows from condition (2.3) and from Theorem 3.3 that there exists some η > 0

and some γ ∈ S(L) such that the policy m(γ) satisfies

Dkea(γ) = Dk
ea(β,m(γ)) ≤ V k − η, k = 1, . . . ,K.

This establishes condition (A.7). Finally, condition (A.8) trivially holds, as V = Vn
do not depend on n.

4. Concluding remarks. We have presented sufficient conditions for the con-
tinuity of the optimal values of constrained optimization problems and established
several results on convergence of optimal solutions. Using these general tools, we ob-
tained a new result for the convergence of discounted MDPs to the expected average
cost one, under a general multichain ergodic structure. This was done by showing that
one could restrict without loss of optimality to some subclass of policies, and then
that an equivalent LP can be used to compute the values and the optimal policies.
Since our results in the first part of the paper hold for convex programs and not just
for LPs, this suggests that they could be used for establishing convergence properties
in control problems with more complex cost functions.

One can further use the continuity of the optimal values and solutions of con-
strained opimtization to obtain other important features in constrained control of
Markov chains. One can obtain convergence of the values and optimal policies of
finite horizon problems to infinite ones, and one can establish the convergence of
problems with finite state spaces to those with infinite state spaces (see [1, 3]). An-
other interesting question is on the structure of optimal policies in CMDPs. Ross
[38] has shown that CMDPs with finite state and action spaces have optimal station-
ary policies that require at most K + 1 randomizations, where K is the number of
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constraints. Borkar [15] has extended this to a countable state space. Our approach
allows us to obtain the same result as Borkar using the fact that limits of policies that
are optimal for truncated (finite state) problems (which can be chosen with no more
than K + 1 randomization, according to [38]) are optimal for the original countable
state problem (see details in [1, 3]).

Appendix A. Solutions of convex optimization. Let X be a convex subset
of a topological vector space Vn = (V 1

n , . . . , V
K
n ) ∈ R

K , n = 1, 2, . . . ,∞, (V∞ = V )
and

Cn : X → R, n = 1, . . . ,∞ (C∞ = C),

Dn : X → R
K , n = 1, . . . ,∞ (D∞ = D),

∆n = {x ∈ X : Dn(x) ≤ Vn} , n = 1, 2, . . . ,∞ (∆∞ = ∆).

We define the values of the constrained problems:

Rn = inf
u∈∆n

Cn(u); R = inf
u∈∆

C(u).

We want to answer the following questions.
(i) Does Rn → R when n→∞ ?
(ii) Convergence of policies: Let π : X → ∆, and fix some ε ≥ 0. Let εn be a

sequence of positive real numbers such that limn→∞ εn ≤ ε. Assume that
u∗n is an εn-optimal policy for the nth optimal cost function Rn. Is π(u∗n)
“almost” optimal for the limit optimal cost function R, for n large enough?

(iii′) Robustness of the optimal policy: If u∗ is ε-optimal for the limit optimal
cost function, can we derive of it an “almost” optimal policy for the nth
approximating optimal cost function for all n large enough?

(iv′) Let u ∈ X be some limit point of u∗n, defined above. Is u ε-optimal for the
limit optimal cost function?

We can give an answer to questions (i) and (iv′) using the notion of Γ-convergence
[16]. In fact, let X be a topological space, N (u) the set of all open neighborhoods of
u ∈ X, and Fn a sequence of functions from X to R ∪∞.

We define

Γ− limn→∞Fn(u) = sup
V ∈N (u)

limn→∞ inf
y∈V

Fn(y),

Γ− limn→∞Fn(u) = sup
V ∈N (u)

limn→∞ inf
y∈V

Fn(y).

We say that Fn Γ-converge to F if and only if

Γ− limn→∞Fn(u) ≤ F (u) ≤ Γ− limn→∞Fn(u).(A.1)

It is known that if there exists F that verifies (A.1) we obtain properties about
minima and minimizers of function F (see [16]). As these properties are related with
questions (i) and (iv′) of our problem, we are going to rewrite them in the context of
Γ-convergence and ask for some assumptions on the data problem in order to obtain
(A.1) for an appropriate definition of Fn and F .



CONTINUITY FOR CONTROLLED MARKOV CHAINS 1213

We assume there exists M1 > 0 such that

lim
n→∞Dn = D, uniformly in

⋃
k≥M1

∆k ∪∆,(A.2)

lim
n→∞Cn = C, uniformly in

⋃
k≥M1

∆k ∪∆,(A.3)

D : X → R
K is a lower semicontinuous and convex function,(A.4)

C : X → R is a lower semicontinuous and convex function,(A.5)

∃M > 0 such that −M ≤ C(x) ∀x ∈ X,(A.6)

∃v ∈ U,∃η > 0 such that Dk(v) ≤ V k − η ∀k = 1, . . . ,K,(A.7)

Vn → V, n→∞.(A.8)

We shall denote by (H) the set of hypotheses (A.2)–(A.8).
For any vector V ∈ R

K and any constant v ∈ R, we shall understand below V + v
to mean the vector in R

K obtained by adding the constant v to each of the components
of V. We shall say that x ∈ X is ε-optimal for Rn if x ∈ ∆n and Cn(x) ≤ Rn + ε.

Appendix B. Key theorems for approximations. In this section we shall
prove the approximation theorems.

Let us define

Fn(u) =

{
Cn(u) if u ∈ ∆n,
∞ if u �∈ ∆n

(B.1)

and

F (u) =

{
C(u) if u ∈ ∆,
∞ if u �∈ ∆.(B.2)

We first establish the Γ-converge of Fn.
Theorem B.1. If (H) holds, then Fn Γ-converge to F as n→∞.
Proof. Let x be such that D(x) < V (then F (x) = C(x)). Let ε be a positive real

number. Because of the lower semicontinuity (l.s.c.) of C there exists U ∈ N (x) such
that

C(x)− ε < C(y) ∀y ∈ U.(B.3)

Now, given δ > 0, we can take N1 ≥M1 such that if n ≥ N1, then, from (A.3),

|Cn(y)− C(y)| < δ when y ∈
⋃

k≥M1

∆k ∪∆,(B.4)
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and finally, by (A.2) and (A.8), it is possible to choose N ≥ N1 such that x ∈ ∆n for
all n ≥ N . Then we have

inf
y∈U

Fn(y) = inf
y∈U∩∆n

Cn(y) when n ≥ N.(B.5)

Taking into account the relations

U ∩∆n ⊂
⋃

k≥M1

∆k ∪∆,

U ∩∆n ⊂ U,

we obtain, from (B.3) and (B.4) for all n ≥ N ,

C(x)− ε− δ ≤ inf
y∈U∩∆n

C(y)− δ ≤ inf
y∈U∩∆n

Cn(y),

and from the arbitrariness of δ it follows that

C(x)− ε ≤ lim inf
n→∞ inf

y∈U
Fn.(B.6)

On the other hand, if V ∈ N (x) and n ≥ N , then

inf
y∈V

Fn(y) ≤ Cn(x),

and taking into account that Cn(x) converge to C(x), we obtain

lim sup
n→∞

inf
y∈V

Fn(x) ≤ C(x) ∀V ∈ N (x).(B.7)

Finally, from (B.6) and (B.7) and because ε is also arbitrarily chosen, we deduce

sup
V ∈N (x)

lim inf
n→∞ inf

y∈V
Fn(y) = C(x),

sup
V ∈N (x)

lim sup
n→∞

inf
y∈V

Fn(y) = C(x);

that is,

(Γ− limFn)(x) = F (x).

Now, we consider the second case: let x be such that D(x) > V (then F (x) = ∞).
Because of the l.s.c. of D, given λ > 0, there exists U ∈ N (x) such that if ε is
sufficiently small, then

V + ε < D(x)− λ < D(y) ∀y ∈ U.

Let N ≥M1 be such that (by hypotheses (A.8) and (A.2))

|V − Vn| < ε

2
and |D(y)−Dn(y)| < ε

2
∀y ∈

⋃
k≥M1

∆k ∪∆
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whenever n ≥ N . Therefore, if n ≥ N and y ∈ U ∩ (⋃k≥M1
∆k∪∆), then Dn(y) > Vn

and then Fn(y) = ∞. On the other hand, if y ∈ U \ (⋃k≥M1
∆k ∪∆), we also have

Fn(y) =∞. Thus, for all n ≥ N

Fn(y) =∞ ∀y ∈ U,
and from that it follows that

lim inf
n→∞ inf

y∈U
Fn(y) = lim sup

n→∞
inf
y∈U

Fn(y) =∞;

that is,

(Γ− limFn)(x) = F (x).

Now, we consider the last case. Let x be such that D(x) = V . We will use the
following property: If U ∈ N (x) and δ > 0, there exists y ∈ U such that

D(y) < V and C(y) < C(x) + δ.(B.8)

In fact, because of (A.7) there exists v ∈ ∆ such that D(v) < V . From the convexity
of C and D it follows that the segment [v, x] is contained in ∆, and we have

D((1− t)v + tx) ≤ (1− t)D(v) + tD(x) < V,

C((1− t)v + tx) ≤ (1− t)C(v) + tC(x)

for all t ∈ [0, 1]. Then we can choose t sufficiently close to 1 and y = (1 − t)v + tx
such that y ∈ U and C(y) < C(x) + δ.

Now, let V ∈ N (x), and let δ > 0. We can choose y ∈ V such that (B.8) holds.
Then, because of (A.2) and (A.8), there exists k ∈ N such that y ∈ ∆n for all n ≥ k.
Then

lim inf
n

inf
x∈V

Fn(x) ≤ lim inf
n

Cn(y) = C(y) ≤ C(x) + δ,

and from the arbitrariness of δ it follows that

lim inf
n

inf
x∈V

Fn(x) ≤ C(x).(B.9)

Let ε be a positive real number. Let U ∈ N (x) be such that (because of the l.s.c. of
C)

C(x)− ε

2
< C(y) ∀y ∈ U,(B.10)

and let x0 ∈ U be such that (by the property proved above)

D(x0) < V.

Then x0 satisfies C(x) − ε < C(x0). There exists (by assumptions (A.2) and (A.8))
N1 ≥ M1 such that Dn(x0) < Vn for all n ≥ N1. Finally, taking into account (B.10)
and (A.3), we can take N ≥ N1 such that if n ≥ N , then

C(x)− ε < Cn(y) ∀y ∈ U ∩
( ⋃
k≥M1

∆k ∪∆
)
.(B.11)
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Then we have

C(x)− ε ≤ lim inf
n→∞ inf

y∈U
Fn(y),

where the last inequality follows from (B.11) and the relation

x0 ∈ U ∩∆n ⊂ U ∩
( ⋃
k≥M1

∆k ∪∆
)

∀n ≥ N.

Now, because of the arbitrariness of ε, we have

sup
V ∈N (x)

lim inf
n

inf
x∈V

Fn(x) ≥ C(x).(B.12)

From (B.9) it holds that for all V ∈ N (x) and (B.12) we have

(Γ− lim
n
Fn)(x) = F (x).

The Γ-convergence of Fn to F is proved. With some additional hypotheses we
can answer (i) (Theorem B.3) and (iv) (Theorem B.5). Theorem B.4 gives an answer
to (iv) for ε = 0.

Definition B.2. We say that the sequence (Gn) is equicoercive if for all t ∈ R

there exists a closed countably compact subset Kt of X such that {Gn ≤ t} ⊆ Kt for
every n ∈ N.

Theorem B.3 (see Dal Maso [16]). Suppose that (Gn) is equicoercive in X and
that Γ-converge to a function G in X. Then

min
x∈X

G(x) = lim
n→∞ inf

x∈X
Gn(x).

Theorem B.4 (see Dal Maso [16]). Assume that (Fh) Γ-converge to a function
F in X. For every h ∈ N, let xh be a minimizer of Fh in X (or, more generally,
an εh-minimizer, where (εh) is a sequence of real numbers converging to 0). If x is a
cluster point of (xh), then x is a minimizer of F in X, and

F (x) = lim sup
h→∞

Fh(xh).

If (xh) converges to x in X, then x is a minimizer of F in X, and

F (x) = lim
h→∞

Fh(xh).

Theorem B.5 (see Rockafellar–Wets [37]). Let X = R
N . Suppose that (fn)

Γ-converge to f with −∞ < inf f <∞. Then we have the following.
1. inf fn → inf f if and only if there exist for every ε > 0 a compact set B ⊂ R

N

and k ∈ N such that

inf
B
fn ≤ inf fn + ε ∀n ≥ k.

2. For all ε ≥ 0,

lim sup
n

(ε−argminfn) ⊂ ε−argminf,

and consequently,

lim sup
n

(εn−argminfn) ⊂ argminf whenever εn ↘ 0.
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3. Under the assumption that inf fn → inf f , there exists a sequence εn ↘ 0 such
that εn−argminfn → argminf . Conversely, if such a sequence exists, and if
argminf �= ∅, then inf fn → inf f .

Corollary B.6. Suppose (fn) is an equicoercive sequence of real functions in
R
n that Γ-converges to f . Let ε > 0 and δ > 0, and let xn ∈ ε−argminfn. Then there

exists N ∈ N such that

B(xn, δ) ∩ ε−argminf �= ∅
whenever n ≥ N .

Proof. If it is not true, then there exists a subsequence (xnk
) such that

B(xnk
, δ) ∩ ε−argminf = ∅.(B.13)

Now, if t = ε + sup(infx∈Rn fn, n ∈ N) (it is finite), then there exists a compact set
Kt such that {fn ≤ t} ⊆ Kt for every n ∈ N, and then the sequence (xnk

) has a limit
point x. By statement 2 of Theorem B.5, x ∈ ε−argminf . But, if k is sufficiently
large, then x ∈ B(xnk

, δ), and this contradicts (B.13).
We cannot answer (iii), as we cannot directly construct the function of the type

of π from the Γ-convergence. But we can answer the following question:
(iii′′) If x0 is ε-optimal for R, is it possible to find an arbitrarily small neighborhood

of x0 and an ε-optimal policy x(n) for Rn for n sufficiently large?
Theorem B.7. Suppose that the sequence (Fn) Γ-converges to a function F and

min
x∈X

F (x) = lim
n

inf
x∈X

Fn(x).(B.14)

If x0 ∈ ε−argminF , U ∈ N (x0), and ε > ε, then there exists N ∈ N such that

U ∩ ε−argminFn �= ∅ when n ≥ N.

Proof. By definition,

F (x0) = sup
V ∈N (x0)

lim inf
n

inf
y∈V

Fn(y) = sup
V ∈N (x0)

lim sup
n

inf
y∈V

Fn(y).

Then, if U ∈ N (x0), we have

lim sup
n

inf
y∈U

Fn(y) ≤ F (x0).

Thus, given λ > 0, there exists N1 such that

inf
y∈U

Fn(y) ≤ F (x0) + λ when n ≥ N1.

For each n ≥ N1 we can choose yn ∈ U such that

Fn(yn) ≤ F (x0) + 2λ when n ≥ N1.(B.15)

On the other hand, it follows from (B.14) that there exists N ≥ N1 such that

F (x0)− ε− λ ≤ inf
x∈X

Fn(x) when n ≥ N.(B.16)

Finally, from (B.15) and (B.16), we obtain

0 ≤ Fn(yn)− inf
x∈X

Fn(x) ≤ ε+ 3λ
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for all n ≥ N , and then, by choosing λ sufficiently small, we have

yn ∈ U ∩ ε−argminFn ∀n ≥ N.

To answer questions (ii) and (iii), we present the following definitions and results.
Definition B.8. For each δ such that 0 < δ < η (where η is defined in (A.7))

and for each u ∈ X we set

εδ(u) = min {λ : λ ∈ [0, 1], and λD(v) + (1− λ)D(u) ≤ V − δ} ,

and

πδ(u) = εδ(u)v + (1− εδ(u))u.(B.17)

Remark B.9. πδ(u) ∈ ∆, because of the convexity of X we have πδ(u) ∈ X, and
by the definition of εδ(u) and the fact that D is a convex function (A.4), we have

D(πδ(u)) ≤ V − δ.(B.18)

Remark B.10. Let δ be such that 0 < δ < η. If (A.2), (A.4), (A.7), and (A.8)
hold, there exists N(δ) such that πδ(u) ∈ ∆n if n ≥ N(δ) ∀u ∈ X. In fact, by (A.2)
there exists N(δ) such that if n ≥ N(δ), Dn(πδ(u)) ≤ D(πδ(u)) + δ/2 ∀u ∈ X, and
by (B.18)

Dn(πδ(u)) ≤ D(πδ(u)) +
δ

2
≤ V − δ +

δ

2
≤ V − δ

2
.

Then, by (A.8) we have that there exists N̂ such that V − δ/2 ≤ Vn if n ≥ N̂ , so, we
have Dn(πδ(u)) ≤ Vn for all n ≥ N(δ) = max(N(δ), N̂).

Lemma B.11. Let δ be such that 0 < δ < η. If (A.2), (A.7), and (A.8) hold, then

lim sup
n→∞

{
sup
u∈∆n

εδ(u)

}
≤ δ

η
.

Proof. By definition of ∆n we have that ∀u ∈ ∆n, Dn(u) ≤ Vn. By (A.2) and
(A.8) we have

∀ε̂ > 0 ∃N(ε̂) such that ∀n ≥ N(ε̂),∀u ∈ ∆n, D(u) ≤ V + 2ε̂.(B.19)

By (A.7) and (B.19) we have ∀ε̂ > 0, u ∈ ∆n, λ ∈ [0, 1],

λD(v) + (1− λ)D(u) ≤ λ(V − η) + (1− λ)(V + 2ε̂).(B.20)

But

λ(V − η) + (1− λ)(V + 2ε̂) ≤ V − δ ⇐⇒ λ ≥ 2ε̂+ δ

2ε̂+ η
∀ε̂ > 0.(B.21)

By (B.20) and (B.21) we obtain

[
2ε̂+ δ

2ε̂+ η
, 1

]
⊆ {λ ∈ [0, 1] : λD(v) + (1− λ)D(u) ≤ V − δ} ∀ε̂ > 0 ∀u ∈ ∆n,
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and then, by definition of εδ(u), we have

εδ(u) ≤ 2ε̂+ δ

2ε̂+ η
∀u ∈ ∆n, n ≥ N(ε̂) ∀ε̂ > 0.

From this last inequality we deduce

sup
u∈∆n

εδ(u) ≤ 2ε̂+ δ

2ε̂+ η
n ≥ N(ε̂) ∀ε̂ > 0,

and this last inequality implies

lim sup
n→∞

[
sup
u∈∆n

εδ(u)

]
≤ δ

η
.

Remark B.12. Let δ be such that η > δ > 0. In the same way of Lemma B.11,
and if (A.7) holds, we can prove that

sup
u∈∆

εδ(u) ≤ δ

η
.

For the proof it is only necessary to remark that (B.20) and (B.21) become

λD(v) + (1− λ)D(u) ≤ λ(V − η) + (1− λ)V,

λ(V − η) + (1− λ)V ≤ V − δ ⇐⇒ λ ≥ δ

η
.

Lemma B.13. Let δ be such that η > δ > 0. If (A.2), (A.5), (A.6), (A.7), and
(A.8) hold, then

lim sup
n→∞

[
sup
u∈∆n

{C(πδ(u))− C(u)}
]
≤ (C(v) +M)

δ

η
.

Proof. ∀u ∈ ∆n by (A.5) and (B.17) we obtain

C(πδ(u))− C(u) ≤ εδ(u)C(v) + (1− εδ(u))C(u)− C(u) = εδ(u)[C(v)− C(u)].

Then by this last equation, (A.6), and Lemma B.11 we have

lim sup
n→∞

sup
u∈∆n

εδ(u)[C(v)−C(u)] ≤ (C(v)+M) lim sup
n→∞

sup
u∈∆n

εδ(u) ≤ (C(v)+M)
δ

η
.

Remark B.14. Let δ be such that 0 < δ < η. By Remark B.12 and if (A.5) and
(A.7) hold, we can obtain

sup
u∈∆
{C(πδ(u))− C(u)} ≤ (C(v) +M)

δ

η
.

Theorem B.15. Suppose that (H) holds and let Fn and F defined by (B.1) and
(B.2), respectively. We also suppose

lim
n

inf
x∈X

Fn(x) = inf
x∈X

F (x).

Then,
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1. If u ∈ ε−argminF and λ > 0, there exist N ∈ N and δ > 0 such that if
n ≥ N , then

πδ(u) ∈ (ε+ λ)−argminFn.(B.22)

2. Let un ∈ ε−argminFn and λ > 0. There exist N ∈ N and δ0 > 0 such that if
n ≥ N and δ < δ0, then

πδ(un) ∈ (ε+ λ)−argminF.(B.23)

Proof.
1. We have

Cn(πδ(u))− C(u) = [Cn(πδ(u))− C(πδ(u))] + [C(πδ(u))− C(u)] .

From the convergence of (Cn) to C, Remark B.14, and taking into account
that for each δ > 0 if n is sufficiently large then πδ(u) ∈ ∆, it follows that if
λ > 0 is given, we can choose N1 ∈ N and δ > 0 sufficiently small, such that
if n > N , then each term in the right side of the last equation is less than λ

3 ,
and the equation becomes

Cn(πδ(u))− C(u) <
2

3
λ.

Then, keeping in mind the ε-optimality of u, we have

Cn(πδ(u)) < C(u) +
2

3
λ < inf

x∈X
F (x) + ε+

2

3
λ < inf

x∈X
Fn(x) + ε+ λ

if n ≥ N for some N ≥ N1, and that is (B.22).
2. We have

C(πδ(un))− Cn(un) = [C(πδ(un))− C(un)] + [C(un)− Cn(un)] .

From Lemma B.13 and the convergence of (Cn) to C, if λ > 0 is given, we can
choose N1 ∈ N and δ > 0 sufficiently small, such that if n > N1, then each
term in the right side of the last equation is less than λ

3 , and the equation
becomes

C(πδ(un))− Cn(un) <
2

3
λ.

Then, keeping in mind the ε-optimality of un, we have

C(πδ(un)) < Cn(un) +
2

3
λ < inf

x∈X
Fn(x) + ε+

2

3
λ < inf

x∈X
F (x) + ε+ λ

if n ≥ N for some N ≥ N1, and that is (B.23).
Proposition B.16. Suppose (H) holds. We set Kε,n = ε−argminFn, Kε =

ε−argminF , Rn = infx∈X Cn(x), and R = infx∈X C(x). Then

Kε,n ∩Kε �= ∅.



CONTINUITY FOR CONTROLLED MARKOV CHAINS 1221

Proof. Let x ∈ K ε
4
⊂ Kε; then D(x) ≤ V . We will consider the case D(x) = V .

The case D(x) < V is similar and simpler. Let w ∈ ∆ be such that D(w) < V . Then
the segment [w, x] is contained in ∆. Besides,

C((1− t)w + tx) ≤ (1− t)C(w) + tC(x) < C(x) +
ε

4

if t ∈ [T, 1], for some T with 0 < T < 1. We take a such t, and we put x0 = (1−t)w+tx.
Then x0 ∈ K ε

2
⊂ Kε, and D(x0) < V , from which it easily follows that x0 ∈ ∆n if

n ≥ N1 for some N1 ∈ N. We can take N ≥ N1 such that for every n ≥ N

|Cn(x0)− C(x0)| < ε

4
and |Rn −R| < ε

4
.

Therefore, if n ≥ N , we have

Cn(x0) < C(x0) +
ε

4
< R+

3

4
ε < Rn + ε,

that is x0 ∈ Kε,n, and then

Kε ∩Kε,n �= ∅ ∀n ≥ N.

REFERENCES

[1] E. Altman, Asymptotic properties of constrained Markov decision processes, Z. Oper. Res., 37
(1993), pp. 151–170.

[2] E. Altman, Denumerable constrained Markov decision problems and finite approximations,
Math. Oper. Res., 19 (1994), pp. 169–191.

[3] E. Altman, Constrained Markov Decision Processes, in Stochastic Modeling, Chapman and
Hall/CRC, Boca Raton, FL, 1999.

[4] E. Altman and V. A. Gaitsgory, Stability and singular perturbations in constrained Markov
decision problems, IEEE Trans. Automat. Control, 38 (1993), pp. 971–975.

[5] E. Altman and A. Shwartz, Optimal priority assignment: A time sharing approach, IEEE
Trans. Automat. Control, AC-34 (1989), pp. 1089–1102.

[6] E. Altman and A. Shwartz, Adaptive control of constrained Markov chains, IEEE Trans.
Automat. Control, 36 (1991), pp. 454–462.

[7] E. Altman and A. Shwartz, Markov decision problems and state-action frequencies, SIAM
J. Control Optim., 29 (1991), pp. 786–809.

[8] E. Altman and A. Shwartz, Sensitivity of constrained Markov decision problems, Ann. Oper.
Res., 32 (1991), pp. 1–22.

[9] E. Altman and A. Shwartz, Time-sharing policies for controlled Markov chains, Oper. Res.,
41 (1993), pp. 1116–1124.

[10] E. Altman and F. Spieksma, The linear program approach in Markov decision problems
revisited, Z. Oper. Res., 42 (1995), pp. 169–188.

[11] F. J. Beutler and K. W. Ross, Optimal policies for controlled Markov chains with a con-
straint, J. Math. Anal. Appl., 112 (1985), pp. 236–252.

[12] F. J. Beutler and K. W. Ross, Time-average optimal constrained semi-Markov decision
processes, Adv. Appl. Probab., 18 (1986), pp. 341–359.

[13] J. R. Birge and R. J. Wets, Designing approximatin schemes for stochastic optimization
problems, Math. Programming Stud., 27 (1986), pp. 54–102.

[14] V. S. Borkar, A convex analytic approach to Markov decision processes, Probab. Theory
Related Fields, 78 (1988), pp. 583–602.

[15] V. S. Borkar, Ergodic control of Markov chains with constraints—the general case, SIAM J.
Control Optim., 32 (1994), pp. 176–186.

[16] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations
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Abstract. We present a class of nonlinear adaptive image restoration filters which may be
steered to preserve sharp edges and contrasts in the restorations. From a theoretical point of view
we discuss the associated variational problems and prove existence of solutions in certain Sobolev
spaces W 1,p or in a BV -space. The degree of regularity of the solution may be understood as a
mathematical explanation of the heuristic properties of the designed filters.
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1. Motivation and purpose. Various inverse problems require reconstructing
an unknown density function u(x), x ∈ Ω ⊂ Rn, from a finite number of measurements
of the form ∫

Ω

(
ak(x)u(x) + bk(x) · ∇u(x)

)
dx = ck, k = 1, . . . , N.(1.1)

Examples of particular interest are in medical imaging, where the data ck represent
attenuation coefficients of transmission x-rays, or in image restoration, where the ck
are gray levels at pixels k of a blurred version of the true image u(x). Restoring the
original u(x) is usually an ill-posed problem, and the inevitable measurement noise
may make this a difficult task. One way to restore u(x) in the presence of noise is to
stabilize inversion of (1.1) by introducing a regularizing functional of the form

I[u] =

∫
Ω

h
(
u(x),∇u(x)) dx,(1.2)

closely related to the specific restoration problem. Introducing linear operators A,B
by

(Au)k =

∫
Ω

ak(x)u(x) dx, (Bv)k =

∫
Ω

bk(x) · v(x) dx,(1.3)

we consider the following inverse methods which we call the tolerance and the penal-
ization approaches, respectively:

(P )tol

minimize I[u]
subject to

∣∣Au+B∇u− c| ≤ ε,∫
Ω

u(x) dx = 1
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and

(P )pen

minimize I[u] + α
2 |Au+B∇u− c|2

subject to

∫
Ω

u(x) dx = 1

(| · | = Euclidean norm). A well-known method based on the scheme (P )pen is
Tychonov-regularization, where the functional (1.2) is a square norm of u(x) or ∇u(x)
(cf. [16, 12, 13]). However, in image restoration this choice is known to produce poor
results, and more sophisticated functionals I[u] are required. In our present work,
we shall consider a class of functionals I[u] of information type that are particularly
suited for image restoration problems and that we motivate by a heuristic argument.
The remaining parts of the paper address the mathematical problems arising from
this choice.

The values u(x) are relative gray levels of the unknown image, hence the nor-
malization

∫
u dx = 1. Since gray levels are nonnegative, we require reconstructions

u(x) ≥ 0, and this may be guaranteed by our choice of I[u]. For the moment consider
the model (P )tol. The data being noisy, we should not force equality Au+B∇u = c,
but allow for a tolerance ε > 0, typically estimated using a χ2-statistics (cf. [18]).
The role of the functional I[u] is now to avoid picking highly irregular objects u which
would fit the tolerance condition. In other terms, minimizing I[u] subject to the con-
straint |Au+B∇u− c| ≤ ε to some degree means filtering the unknown object u(x).
However, as mentioned before, default choices like I[u] =

∫
Ω
|∇u|2 dx tend to smooth

away sharp edges in the image. Smoothing while retaining edges is needed, and this
requires adapting the filter to the image.

Consider the class of functionals (1.2) defined through the integrands

h(u, ξ) =



uφ
(
ξ/u) if u > 0,

φ0+(ξ) if u = 0,

+∞ otherwise,

(1.4)

where φ : Rn → R is a convex functional and φ0+ denotes its recession function,
needed to render the functional h lower semicontinuous (lsc),

φ0+(ξ) = sup
t>0

φ(η + tξ)− φ(η)
t

,

for an arbitrary fixed η in domφ (cf. [21, p. 66ff]). Then h is jointly convex in (u, ξ),
and (1.4) will be called Csiszár information measures. An important special case is
φ(t) = |t|2, which is Fisher’s information (cf. [19]). Notice that since h(u, ξ) = +∞
for u < 0, the objectives (1.4) force nonnegative solutions, as required.

In order to motivate the inverse approach based on (1.4), let us specialize even
further by considering functionals of the form φ(ξ) = ψ(|ξ|) for convex ψ : R → R.
Since |∇u| is invariant under rigid motions, so is h(u,∇u) defined through (1.4);
hence, this choice will lead to methods invariant under rigid motions of the image.
Proceeding in a purely formal way, we first do a change of variables u(x) = ev(x) to
account for the condition u(x) > 0. The Euler–Lagrange equation for the transformed
problem (P )pen is then

− div

(
ψ′(|∇v|)
|∇v| ∇v

)
− ψ′(|∇v|)|∇v|+ ψ(|∇v|)(1.5)

+ α(AT − divBT )(Aev +B(∇ev)− c) = 0
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with adjoints AT , BT , and div BT defined as

AT (λ) =

N∑
k=1

λkak, BT (λ) =

N∑
k=1

λkbk, divBT (λ) =

N∑
k=1

λkdivbk.

Consider the case Ω ⊂ R
2. Following an idea originating from [8] and extended in

[2, 26], sharp edges (contrasts) in the image v(x, y) occur along level curves v(x, y) = c,
the indication being that the gradient ∇v(x, y) becomes large. In this case, smoothing
across the edge v(x, y) = c should be dispensed with, while smoothing along the edge
is still needed to suppress irregular behavior.

For a point (x, y) on the level curve v = c, consider the adapted cartesian coor-
dinates T (x, y), N(x, y) meaning tangential and normal directions to the level curve
v = c at (x, y):

N(x, y) =
∇v(x, y)
|∇v(x, y)| , T (x, y) ⊥ N(x, y).

Expanding the divergence term in (1.5) gives

−div
(
ψ′(|∇v|)
|∇v| ∇v

)
= −ψ

′(|∇v|)
|∇v| ∆v −

(
ψ′′(|∇v|)
|∇v|2 − ψ

′(|∇v|)
|∇v|3

)
∇v · ∇2v · ∇v.

Observe that the Laplacian is invariant under orthogonal transformations, ∆v =
vxx + vyy = vTT + vNN , and secondly that ∇v

|∇v| · ∇2v · ∇v
|∇v| = vNN . Then the Euler

equation in (T,N)-coordinates reads

−
(
ψ′(|∇v|)
|∇v|

)
vTT − ψ′′(|∇v|) vNN − ψ′(|∇v|)|∇v| + ψ(|∇v|)

+α(AT − divBT )(Aev +B(∇ev)− c) = 0.

Suppose |∇v| is small, indicating that v = c is not an edge, and hence smoothing
should be encouraged. Assuming (i) ψ′(0) = 0 and (ii) ψ′′(0) > 0, in a neighborhood
of (x, y), the Euler equation is qualitatively of the form

−ψ′′(0)
(
vTT + vNN

)
+ ψ(0) + α(AT − divBT )(Aev +B(∇ev)− c) = 0.

Due to vTT + vNN = vxx + vyy = ∆v, this may be considered as having a strong
smoothing effect around (x, y).

Assume, on the other hand, that |∇v| is large at (x, y), indicating an edge. Then
we wish to smooth in T -direction but not inN -direction. This is achieved, for instance,
by having

(iii)
ψ′(t)
t
� ψ′′(t)

for large t. The coefficient of vNN then being negligible in a neighborhood of (x, y),
the differential equation is qualitatively of the form

−C vTT − ψ′(|∇v|)|∇v|+ ψ(|∇v|) + α(AT − divBT )(Aev +B(∇ev)− c) = 0,

indicating a preference for smoothing in T -direction, since as before the tendency to
smoothing is governed by the second order terms. As an example for (iii), consider a
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ψ which for large t behaves like ψ(t) = tp for some p > 1. This gives ψ′(t)
t

/
ψ′′(t) =

1/(p− 1), which could be made as large as desired by choosing p close to 1.
The conditions (i)–(iii) do not entirely fix the function ψ, so further evidence

(theoretical and numerical) is needed to propose a best choice. The present paper,
rather, addresses the theoretical aspects of the models (P )tol and (P )pen, particularly
the question of existence of solutions. Our method of proving existence may be
considered a fairly general scheme including a large variety of possible applications. It
does not rely on compactness arguments but exploits the convexity of the problems.

A second problem associated with the variational methods (P )pen and (P )tol is
to justify the Euler–Lagrange equation (1.5), formally derived above. This problem,
which is difficult, is treated in [10].

It is intuitively clear that the choices ψ(t) = |t|p discussed above should lead to
image restorations exhibiting more and more sharp edges when p > 1 approaches
1. One way to corroborate this in the variational context is by showing that the
solutions of the corresponding programs (P )pen and (P )tol are in a Sobolev space
W 1,1+ε(p), with ε(p) → 0 as p → 1 (cf. Example 3 at the end of section 6). In the
limiting case p = 1, we would get solutions which degrade to BV -functions, allowing
even for discontinuities. We mention that the latter is sometimes considered as a
natural setting for image processing, particularly if the purpose is segmentation or
edge detection (cf. [17, 5, 24, 27]).

Numerical experiments for special choices ψ(t) have been presented in [19, 20].
The authors of [2, 26] report experiments with objectives of the form h(u, ξ) = φ(|ξ|)
built on a related philosophy. A comparative study of adaptive filters will be presented
elsewhere. We mention that the class of functionals (1.4) has various other applica-
tions. See in particular [18] for variational problems involving Fisher’s information
(p = 2).

2. Outline of the method. We start by giving an outline of our method of
proving existence of solutions and then point to the steps which cause particular
difficulties. Our approach may be called a bidual relaxation scheme: Writing (P ) for
any of the formulations (P )pen or (P )tol and proceeding in a formal way, we first
obtain a concave dual program (P ∗). Formal means that we do not try to find a dual
pair of Banach spaces in which the duality may be justified rigorously. In a second
step we repeat the same for (P ∗), but this time we use the full convexity machinery.
This means we prove a Lagrange multiplier theorem for (P ∗). The multiplier ū is an
element of the dual Banach space M(Ω̄) of signed Radon measures and an optimal
solution to a properly defined convex bidual (P ∗∗). We may therefore interpret ū
as a generalized solution to the original program (P ). In a third step we show that
under mild additional conditions, we get a solution ū in a Sobolev space or even in a
classical space C1(Ω̄).

Notice that this scheme has been used various times. However, the difficulties
are in the details; in particular, technical problems arise if we are not satisfied with
solutions in a BV -space, but wish to prove regularity results (cf. section 4). For
complementary literature we refer to [7, 3, 4, 2].

Let us now consider some of the details. First, dualizing (P ∗) requires a Lagrange
multiplier theorem. This type of result typically needs a constraint qualification
hypothesis, which should not be artificial in the light of the original problem (P ).
The existence result Proposition 4.1 in fact avoids any such hypothesis by providing
a solution u ∈M(Ω̄), the space of Radon measures.

The second step in our scheme is to show that the generalized solution u ∈M(Ω̄)



ADAPTIVE IMAGE RECONSTRUCTION 1227

is a BV -function. This is done in Proposition 4.3 and requires a richness hypothesis
(A1). Condition (A1) excludes objectives (1.2) where h(x, ξ) is linear in ξ. With
h(x, ξ) = g(x) + η · ξ linear in ξ, it is possible to construct examples where the
generalized solution ū is not a BV -function, although this may be guaranteed under
coercivity assumptions on g(x). We consider objectives (1.2) linear in ξ as of minor
importance for possible applications and therefore do not pursue their analysis here.

In a third step of Proposition 4.6, we show that the solution ū, so far a BV -
function, is an element of the Sobolev space W 1,1(Ω) if a slightly stronger regularity
hypothesis (A2) is satisfied. Hypothesis (A2) may be understood as a weak coercivity
condition on h, implying in particular that for fixed x, h(x, ξ) grows stronger than
linearly in ξ as |ξ| → ∞.

In practice, it is often enough to have solutions in W 1,1(Ω), in particular, if
the natural domain of the functional Ih is a better Sobolev space W 1,p(Ω) for some
p > 1. Here the solution will automatically be an element of W 1,p(Ω). In section
6 we present an extended version of this observation, showing that under a stronger
hypothesis (A3), the solution ū is improved to be of classW 1,p(Ω) for some p > 1, with
the possibility to having classical solutions if p is large enough. Hypothesis (A3) is
seen to be a coercivity condition on h, satisfied, e.g., if h∗ grows at most polynomially
(see section 6).

We mention that bidual relaxation as presented here is not aimed at image restora-
tion exclusively. In fact, the hypotheses (A1)–(A3) are fairly general and ensure a
broad applicability. Nonetheless, in image enhancement, (A2) and (A3) might be con-
sidered too strong, in particular under the agreement that images be best represented
as BV -functions. This point of view, initiated by Osher and Rudin [23, 24, 25], is
widely accepted if the aim is edge detection or segmentation (cf. [13, 15, 6]), although
it is clear that many images continue to be modeled as continuous or even smooth
functions. This is particularly so in cases where the physical image generating process
is taken into account (astronomy, medical imaging). We hold that our approach of
modeling images in Sobolev spaces may offer a compromise.

3. Lagrangian formulation for (P )pen. In this section we present the first
part of the scheme for program (P )pen. We provide a suitable Lagrangian formulation
and a corresponding concave dual program (P ∗). The second step of the relaxation
scheme, dualizing the dual to obtain the bidual, will be presented in section 4.

For the following, let us fix some notations and definitions. Let Ω be a bounded
open subset of R

N , and suppose ak ∈ C(Ω), bk ∈ C1(Ω)n for k = 1, . . . , N . (It would
be sufficient to require piecewise continuity of ak and piecewise continuous differen-
tiability of bk.) Then the linear operators A and B defined by (1.3) are bounded on
L1(Ω) and L1(Ω)

n, respectively.
Let h : R×R

n → R∪{∞} be a proper convex lsc function with nonempty domain
domh (cf. [21]). Then

Ih[u] =

∫
Ω

h(u(x),∇u(x)) dx

is a proper convex lsc functional defined for all u ∈ W 1,1(Ω). Notice that we do
not exclude the possibility Ih[u] = +∞, as would, for instance, occur for a classical
functional like

∫
Ω
|∇u|2 dx, whose natural domain is W 1,2(Ω). A value Ih[u] = +∞

simply means that u does not contribute to the minimization process. On the other
hand, Ih[u] = −∞ is impossible as a consequence of the lower semicontinuity of Ih
(cf. [22] for this and other facts about convex integral functionals).
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In cases when we wish to force positivity of the solution, we require h(u, ξ) = +∞
whenever u < 0. Then Ih[u] = +∞ unless u ≥ 0 almost everywhere (a.e.) on Ω.

To avoid trivial situations, we will generally assume that (P )pen and (P )tol are
feasible. More precisely, we assume existence of a function u ∈ C1(Ω) with Ih[u] <∞,∫
Ω
u(x) dx = 1, respectively, |Au + B∇u − c| ≤ ε in the case of the tolerance model.

The value of program (P ) will be denoted by V (P ), and we will require V (P ) > −∞
because otherwise no optimal solution exists. So altogether we adopt −∞ < V (P ) <
∞ as our standing hypothesis. In the present section we consider (P )pen. Analogous
results for (P )tol will be presented in section 5.

We proceed to give a Lagrangian formulation of (P )pen. By introducing dummy
variables v = ∇u and e = Au+Bv − c and by defining

Jh(u, v) :=

∫
Ω

h(u(x), v(x)) dx

we rewrite (P )pen in the form

minimize Jh(u, v) +
α

2
|e|2

subject to ∇u = v, Au+Bv − c = e,∫
Ω

u(x) dx = 1

(P )pen

with e ∈ R
N and u ∈ C1(Ω), v ∈ C(Ω)n. This suggests using the Lagrangian

L(u, v, e;w, λ, µ) = Jh(u, v) +
α

2
|e|2 + 〈w,∇u− v〉

+ λ · (Au+Bv − c− e) + µ
(∫

Ω

u(x) dx− 1

)
,

where 〈., .〉 denotes the dual form either between C(Ω̄)n andM(Ω̄)n or between L1(Ω)
n

and L∞(Ω)n. We can now write (P )pen in the equivalent form

inf
u,v,e

sup
w,λ,µ

L(u, v, e;w, λ, µ).(3.1)

As usual, the corresponding concave dual program is then defined by switching the
inf and sup:

sup
w,λ,µ

inf
u,v,e

L(u, v, e;w, λ, µ).(3.2)

We do not attempt to prove directly that (P ) and (P ∗) are equivalent or at least
have equal values, since this will follow later as a consequence of the bidual relaxation
scheme. Instead, we investigate (3.2) a little further by explicitly calculating the inner
infimum.

To do this, we start by calculating the partial Legendre–Fenchel transform of L
in its first three variables, defined as

L∗(y, z, d;w, λ, µ) = sup
u,v,e

(〈u, y〉+ 〈v, z〉+ e · d− L(u, v, e;w, λ, µ)),
and then recognize −L∗(0, 0, 0;w, λ, µ) as the objective of the dual (3.2), to be max-
imized over (w, λ, µ). While [21] is the basic reference for notions from finite di-
mensional convexity, a rigorous justification of (P ∗) as obtained below would call for
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methods as used in section 4 or in [7]. In particular, it would require calculating the
conjugate L∗ with respect to the space C(Ω̄) and its dual M(Ω̄), the space of signed
Radon measures on Ω̄. Instead of calculating (Jh)

∗, defined on a space of measures,
we restrict the dual to the classical spaces C(Ω̄) and C1(Ω̄)n, where it suffices to
calculate Jh∗ with the approach described as formal in section 2.

Written as a convex program, the dual is of the following form:

minimize Jh∗(y, z) +
1

2α
|λ|2 + λ · c+ µ

subject to y = div z + div BTλ−ATλ− µ,
y ∈ C(Ω), z ∈ C1(Ω)n, λ ∈ R

N , µ ∈ R.

(P ∗)

Here h∗ is the Legendre–Fenchel conjugate of h and Jh∗(y, z) :=
∫
Ω
h∗(y(x), z(x)) dx.

Example 1. For the class of Csiszár information measures (1.4) we have

h∗(y, z) =

{
0, y + φ∗(z) ≤ 0,

∞, y + φ∗(z) > 0.

As is easy to see, (P ∗) has feasible points, so the value V (P ∗) < +∞. Also, the
fact that the dual was obtained by flipping sup and inf gives V (P ∗) ≥ −V (P ) > −∞,
so V (P ∗) is finite. The relation V (P ∗) ≥ −V (P ) is often referred to as weak duality
(cf. [7]).

4. Existence of solutions for (P )pen. The second part of our scheme now
requires dualizing (P ∗) again to obtain what we call a bidual relaxation (P ∗∗) of
the original program (P )pen. As opposed to the formal way we employed to derive
(P ∗), we shall now have to rigorously dualize (P ∗). As a consequence, the bidual
(P ∗∗) will be formulated in a dual Banach space, a space of measures. In a third
step, also presented in the section, we will show that under reasonable conditions, the
generalized solutions are functions in the Sobolev space W 1,1(Ω). A fourth step, to
be presented in section 6, will examine under what circumstances a classical solution
in C1(Ω) may be obtained.

As before, duality requires an appropriate Lagrangian formulation, which we ob-
tain by attaching a multiplier u ∈M(Ω̄) to the equality constraint in (P ∗). The dual
Lagrangian is then

LD(y, z, λ, µ;u)=Jh∗(y, z) +
1

2α
|λ|2 + λ · c+ µ+ 〈u, div z + divBTλ−ATλ− µ− y〉,

and an equivalent way of writing (P ∗) is the minimax form:

inf
y∈C(Ω)

z∈C1(Ω)n

λ∈R
N , µ∈R

sup
u∈M(Ω)

LD(y, z, λ, µ;u).

(P ∗)

Switching inf and sup leads to the corresponding bidual program,

sup
u

inf
y,z,λ,µ

LD(y, z, λ, µ;u),(P ∗∗)

and immediately gives V (P ∗∗) ≤ V (P ∗) (weak duality). Proving equality requires
more work.
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Proposition 4.1. We have V (P ∗∗) = V (P ∗), and (P ∗∗) admits an optimal
solution u ∈M(Ω).

Proof. (a) Let us first consider the case where h is not affine. The function
f : C(Ω)→ R ∪ {+∞}, defined by

f(η) = inf

{
Jh∗(y, z) +

1

2α
|λ|2 + λ · c+ µ : y ∈ C(Ω), z ∈ C1(Ω)n, λ ∈ R

N , µ ∈ R,

div z + divBTλ−ATλ− µ− y = η

}
,

is proper convex lsc and we have f(0) = V (P ∗), which is finite. According to the
general theory (cf. [7]) it remains to show that ∂f(0), the subdifferential of f at 0, is
nonempty, since every u with −u ∈ ∂f(0) is a solution to (P ∗∗), showing in addition
V (P ∗) = V (P ∗∗). Notice here that f , being defined on C(Ω), has subgradients in
the dual space M(Ω). Proving ∂f(0) �= ∅ requires two arguments. First we establish
the existence of a supporting functional. Then we argue that the latter must be
continuous since f is lsc.

(b) By the Hahn–Banach theorem, existence of a supporting functional will follow
if we show that 0 is an algebraic interior point of domf . That means for every
η ∈ C(Ω) we have to find ρ > 0 such that ρη ∈ domf . Equivalently, we have to show
that for every η ∈ C(Ω) we can find . > 0 such that the equation

div z + divBTλ−ATλ− µ− y = .η

admits a solution (y, z, λ, µ) with (y, z) ∈ dom Jh∗ .
As h is not affine, dom h∗ consists of at least two points. By convexity this means

that either the projection Πy(dom h∗) of dom h∗ on the first coordinate contains a
ball |y − y0| ≤ ε, or that Πz(domh∗) contains a segment.

(c) First consider the case where Πy(domh
∗) has nonempty interior. By convexity

there exists an affine function y �→ z(y) such that (y, z(y)) ∈ dom h∗ for all |y−y0| ≤ ε
and some fixed y0. Let z(y) = ay+b, with a, b ∈ R

n. Setting y(x) = y0+ỹ(x), µ = −y0,
and λ = 0, we have to solve the linear equation

a · ∇ỹ − ỹ = .η

for ‖ỹ‖∞ ≤ ε. Assuming without loss that a1 �= 0, a possible solution is the smooth
function

ỹ(x) = . c(x) ex1/a1 , where c(x) =
1

a1

∫ x1

ξ1

η(ξ, x2, . . . , xn) e
ξ/a1 dξ

with a suitable ξ1 ∈ R. For . sufficiently small we get in fact ‖ỹ‖∞ ≤ ε; hence
(ỹ(x), z(ỹ(x))) ∈ dom h∗ for every x ∈ Ω and hence (ỹ, z(ỹ)) ∈ dom Jh∗ by continuity
of ỹ. So in the first case the problem is solved.

(d) Now consider the case where Πy(dom h∗) = {y0}. Since h is not affine,
Πz(domh

∗) contains at least two points. This means that (eventually with a change
of coordinates) domh∗ contains a convex set of the form

{y0} × {z01} × · · · × {z0r} ×Bn−r,

with Bn−r an open ball with center (z0,r+1, . . . , z0n) in a subspace of dimension n−r ≥
1. In the worst case n− r = 1, the first n− 1 coordinates are fixed, but zn is free to
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vary on an interval. Choosing y ≡ y0, µ = −y0, and z = z0+ z̃ with z̃ = (0, . . . , 0, z̃n),
defined by

z̃n = .

∫ xn

ξn

η(x1, . . . , xn−1, ξ) dξ,

we get a z having div z = .η. Also |z(x) − z0| ≤ ε for all x ∈ Ω if . is sufficiently
small. Then (y, z) ∈ dom Jh∗ as required. So in both subcases, 0 is an algebraic
interior point of dom f , and a supporting functional at 0 exists. Continuity of the
latter follows from the lower semicontinuity of Jh∗ . This completes the argument
started in (a).

(e) Finally, consider the case where h is affine, and hence dom h∗ consists of
a single point (y0, z0). Define the function f : C(Ω) → R ∪ {∞} as before. Since
the value V (P ∗) is finite, 0 ∈ dom f , and since the operators A,B have a finite
dimensional range, dom f itself is contained in a finite dimensional linear subspace L
of C(Ω). Linearity of A,B even gives domf = L. Choose a supporting functional at
0 ∈ L, and extend it to a continuous linear functional on all of C(Ω).

Proposition 4.1 gives existence of a solution of (P ∗∗) in M(Ω). We argue that
under mild additional assumptions, ū is in fact a function. We will even show a little
more, namely, every u feasible for (P ∗∗) satisfies u ∈ Lσ(Ω) for some σ > 1. Consider
u ∈M(Ω) with

inf
y,z,λ,µ

LD(y, z, λ, µ;u) > −∞,

where the infimum is over y ∈ C(Ω̄), z ∈ C1(Ω̄)n, and λ ∈ R
N , µ ∈ R as before.

Exploiting the form of LD leads to three conditions:

inf
y,z

(Jh∗(y, z) + 〈u, div z − y〉) > −∞,(4.1)

inf
λ

(
1

2α
|λ|2 + λ · c+ 〈u, divBTλ−ATλ〉

)
> −∞,(4.2)

inf
µ

(µ− 〈u, µ〉) > −∞, i.e.,

∫
Ω

du = 1.(4.3)

As we shall see, the first condition allows for regularity considerations, while (4.2)
and (4.3) will lead back to the original formulation of the constraints in (P ).

First consider condition (4.1). We want to show that under suitable assumptions
on h every feasible u possesses a Radon–Nikodym derivative lying in every space
Lσ(Ω) with 1 < σ < n

n−1 . To do this we will need the following estimation for the
Newton potential of a function ϕ ∈ C∞

0 (Ω): Let ϕ be an element of C∞
0 (Ω) and

consider the corresponding Newton potential

v(x) =

∫
Ω

Γ(x− s)ϕ(s) ds

with

Γ(x− s) =
{

1
2π log |x− s|, n = 2,

1
n(2−n)ωn

|x− s|−(n−2), n > 2,

where ωn is the volume of the unit ball in R
n. Then we have v ∈ C2(Ω), ∆v = ϕ, and

Dkv(x) =

∫
Ω

DkΓ(x− s)ϕ(s) ds(4.4)
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(cf. [9, Chapter 4]).
Lemma 4.2. Let 1 < σ < n

n−1 . Then

|Dkv(x)| ≤ K ‖ϕ‖σ′ for all x ∈ Ω and for every σ′ > n,(4.5)

where the constant K depends only on σ′ and Ω, and 1/σ + 1/σ′ = 1.
Proof. Using (4.4) and Hölder’s inequality

|Dkv(x)| ≤ ‖DkΓ(x− .)‖σ ‖ϕ‖σ′

provided ‖DkΓ(x− .)‖σ is finite. But for n ≥ 2 we have

∫
Ω

|DkΓ(x− s)|σ ds = C1

∫
Ω

( |xk − sk|
|x− s|n

)σ
ds ≤ C2

∫ R

0

r(n−1)(1−σ) dr

with Ω ⊂ {z ∈ R
n : |z| ≤ R} using n-dimensional spherical coordinates. As the last

integral is finite for (n− 1)(1− σ) > −1, or what is the same, σ < n
n−1 , the lemma is

proved.
Now we want to use (4.5) and (4.1) to show that the map ϕ �→ 〈u, ϕ〉 is bounded

on C∞
0 (Ω) with respect to the ‖.‖σ′ -norm, hence the Radon–Nikodym derivative of u

is an element of Lσ(Ω), (1/σ + 1/σ′ = 1). To do this, we need to impose a richness
condition on the domain of h∗:

Πz(dom h∗) contains a segment.(A1)

As before, Πz : (y, z)→ z denotes the projection onto the last n coordinates.
Remark 1. Let us discuss the meaning of (A1). If Πz(dom h∗) does not contain

a segment, dom h∗ ⊂ R×{z} for some z ∈ R
n. This implies h(x, y) = g(x) + y · z for

a convex function g, that is, h is linear in its second variable. We observe in a first
place that z must be in the linear hull of the bk. Therefore, in cases where we have
no constraints on derivatives, b = 0 implies z = 0, leaving us with a problem without
reference to derivatives. In case b �= 0, the problem may be analyzed rather along
classical lines as found in [7], although in general the result of Proposition 4.3 below
is no longer valid. We consider objectives h(x, ξ) linear in ξ as of minor importance
for possible applications and do not pursue this class of objectives any further.

Proposition 4.3. Under the assumption (A1) every u ∈ M(Ω) feasible for
(P ∗∗) is absolutely continuous with respect to Lebesgue measure. Its Radon–Nikodym
derivative lies in Lσ(Ω) whenever 1 < σ < n

n−1 . Furthermore, for every such u there

exists a signed Borel vector measure m = m(u) ∈M(Ω)n satisfying

〈u, div z〉 = −〈m(u), z〉 for all z ∈ C1(Ω)n.

Remark 2. m(u) is an extension of the distribution vector ∇u on C(Ω)n and shall
as well be denoted as ∇u. Notice however that this measure contains singular parts
supported on ∂Ω.

Proof. Step 1. Using a reduction argument similar to the one employed in the
proof of Proposition 4.1, we may without loss assume that Πz(domh

∗) has nonempty
interior in R

n. The general case consists in repeating the same argument in the affine
subspace generated by Πz(domh

∗), which by (A1) has dimension ≥ 1.
With these arrangements, assumption (A1) guarantees the existence of a ball

|z − z0| ≤ ε and an affine function y = y(z) such that (y(z), z) ∈ dom h∗ for all
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|z − z0| ≤ ε. Consider ϕ ∈ C∞
0 (Ω) with ‖ϕ‖σ′ ≤ ε

K ( 1
σ + 1

σ′ = 1) for the constant
K from (4.5) and let v be the corresponding Newton potential. Then using (4.5) we
have |Dkv(x)| ≤ ε. Setting z = z0 +∇v and y = y(z) we get from (4.1)

Jh∗(y(z), z) + 〈u, ϕ− y(z)〉 > −∞.
Now by construction we have |Jh∗(y(z), z)+ 〈u,−y(z)〉| ≤ K1 for some K1 > 0, so we
get

inf
‖ϕ‖σ′≤ ε

K

〈u, ϕ〉 > −∞.

By linearity we conclude that the functional ϕ �→ 〈u, ϕ〉 is bounded on (C∞
0 (Ω), ‖.‖σ′)

which is a dense subspace of Lσ′(Ω). For short u ∈ Lσ(Ω).
Step 2. For the second statement we have to show that for feasible u the func-

tional z �→ 〈u, div z〉 is bounded on (C1(Ω), ‖.‖∞). This follows from (4.1) and the
boundedness of Jh∗(y(z), z) and 〈u,−y(z)〉 on the ball ‖z‖∞ ≤ r.

For the following suppose condition (A1) is satisfied. In order to simplify our
arguments, we continue to consider the case where Πz(domh

∗) has nonempty interior
in R

n. Performing the same steps in the affine subspace L generated by dom(h∗) will
settle the general case.

As a consequence of Propositions 4.1 and 4.3, and on exploiting the structure of
LD, (P

∗∗) now reads

(P ∗∗) inf
u

{
sup

{〈u, y〉+ 〈∇u, z〉 − Jh∗(y, z) : y ∈ C(Ω), z ∈ C1(Ω)n
}

+sup
{
− 1

2α
|λ|2 − λ · c+ 〈u,ATλ− divBTλ〉 : λ ∈ R

N
}
:

∫
Ω

u(x) dx = 1

}
.

To calculate the inner supremum over y and z we would like to use the following result
of Rockafellar’s [21] describing the conjugate of a convex integral functional Jh∗ with
respect to the dual pairing (C(Ω)× C(Ω)n,M(Ω)×M(Ω)n).

Lemma 4.4 (see Rockafellar [21]). Let Ω be a compact subset of R
n and suppose

int(dom h∗) �= ∅. Then for µ ∈ M(Ω) ×M(Ω)n with Lebesgue decomposition µ =
µa + µs the conjugate of Jh∗ equals

J∗
h∗(µ) =

∫
Ω

h∗∗
(
dµa
dx

)
dx+

∫
Ω

sup
w∈domh∗

(
w · dµs

dϑ

)
dϑ,

where µs is absolutely continuous with respect to the nonnegative Borel measure ϑ.
In order to apply Lemma 4.4 to (P ∗∗), we first need to replace the supremum over

z ∈ C1(Ω) by a supremum z ∈ C(Ω). That this may be done without changing its
value is guaranteed by the following lemma, whose proof will be given in the appendix.

Lemma 4.5. Let m be a measure inM(Ω), f ∈ L1(Ω,m), g ∈ L1(Ω,m)k (k ∈ N),
and Φ : R

k → R ∪ {∞} be a proper convex lsc function. Then for the proper convex
lsc functional

F (z) =

∫
Ω

[Φ(z(x))f(x) + z(x) · g(x) ] dm(x)

on L1(Ω,m)k we have

inf
z∈C1(Ω)k

F (z) = inf
z∈L1(Ω,m)k

F (z).
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Furthermore, the values of the infima over all function spaces F with C1(Ω)k ⊂ F ⊂
L1(Ω,m)k agree.

Applying Lemma 4.5 to (P ∗∗) with k = n + 1, letting z(x) stand for the pair
(y(x), z(x)), g(x) =∇u(x), and letting Φ(z(x))f(x) represent the term h∗(y(x), z(x))+
u(x)y(x), we are now allowed to calculate

sup
y∈C(Ω)

z∈C(Ω)n

(〈u, y〉+ 〈∇u, z〉 − Jh∗(y, z))(4.6)

in (P ∗∗), and Lemma 4.4 then shows that (4.6) equals

Jh∗∗(u, (∇u)a) +
∫

Ω

sup
z∈Πz(domh∗)

(
z · d(∇u)s

dϑ
(x)

)
dϑ(x),(4.7)

where ∇u = (∇u)a + (∇u)s denotes Lebesgue decomposition and d(∇u)s � dϑ. A
possible choice for ϑ is, for instance, the total variation of d(∇u)s. For every feasible
u we get in particular∫

Ω

sup
z∈Πz(domh∗)

(
z · d(∇u)s

dϑ
(x)

)
dϑ(x) =

∫
Ω

σΠz(domh∗)

(
d(∇u)s
dϑ

(x)

)
dϑ(x) <∞.

(4.8)

Here σΠz(domh∗)(y) denotes the support function of the convex set Πz(domh
∗) (cf.

[21]).
Example 2. For the Csiszár information measures (1.4) we have Πz(domh

∗) =
domφ∗. From [21, Theorem 13.3] we deduce σdomφ∗ = φ0+, the recession function
of φ:

φ0+(y) = lim
λ→∞

1

λ
(φ(x+ λy)− φ(x)) for an arbitrary x ∈ domφ.

For the particular case φ(t) = |t|p, p > 1, we have

φ0+(y) =

{
∞ if y �= 0,

0 if y = 0,

while the case p = 1, φ(t) = |t| gives φ0+(y) = |y|. So for p > 1 the singular part of ∇u
in (4.7) must vanish, since φ0+((d(∇u)s/dϑ)(x)) < ∞ only for (d(∇u)s/dϑ)(x) = 0
a.e. On the other hand, in case p = 1 we cannot argue that (∇u)s = 0, so we only
get u ∈ BV (Ω).

In general we need the assumption

Πz(domh
∗) is an affine subspace of dimension ≥ 1(A2)

to get u ∈ W 1,1(Ω). Notice that (A2) readily implies (A1). To understand the
meaning of (A2), consider the case where Πz(domh

∗) = R
n. Then h(x, ξ) is coercive

in its ξ-variable. More precisely, Πz(domh
∗) = R

n implies that for every fixed x,
h(x, ξ) grows stronger than linearly as |ξ| → ∞.

Proposition 4.6. If assumption (A2) is satisfied, every u which is feasible for
(P ∗∗) lies in W 1,1(Ω), and (P ∗∗) has the form

(P ∗∗) inf
u∈W 1,1(Ω)

{
Ih[u] +

α

2
|Au+B∇u− c|2 :

∫
Ω

u(x) dx = 1

}
.
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Remark 3. This means that (P ∗∗) coincides with (P )pen, formulated in the
Sobolev spaceW 1,1(Ω). Notice again here that this does not exclude situations where
the natural space for the objective Ih[u] is smaller, e.g., domIh ⊂ W 1,2(Ω). In this
case, u �∈ W 1,2(Ω) will have Ih[u] = ∞ and the solution will automatically be an
element of W 1,2(Ω).

Proof. As before, we present the argument in the case Πz(domh
∗) = R

n, i.e.,
where the affine subspace L generated by dom h∗ has dimension n. The general case
is settled by repeating the argument in L.

Under these circumstances, condition (A2) in tandem with h = h∗∗ allows reduc-
ing (4.7) to Jh(u,∇u) = Ih[u]. Indeed, with z ∈ Πz(domh

∗) arbitrary, the supremum
under the integral sign in (4.7) is +∞, unless (∇u)s = 0. Hence (∇u)a = ∇u, and
the claim follows. Further, we can write (4.2) in the form

sup
λ∈RN

(
− 1

2α
|λ|2 − λ · c+ 〈u,ATλ− divBTλ〉

)

= sup
λ∈RN

(
λ · (Au+B∇u− c)− α

2
|λ|2

)
=

1

2α
|Au+B∇u− c|2,

so (P ∗∗) is (P )pen formulated in the space W 1,1(Ω).
Propositions 4.3 and 4.6 now yield the main result for (P )pen.
Theorem 4.7. Under the hypothesis (A2), the penalization model (P )pen admits

a solution u ∈W 1,1(Ω).

5. Existence of solutions for (P )tol. Similar to (P )pen, the tolerance model
(P )tol can be written in the form

inf
u,v,e

sup
w,λ,µ,ν≥0

L̃(u, v, e;w, λ, µ, ν)

with

L̃(u, v, e;w, λ, µ, ν) = Jh(u, v) + 〈w,∇u− v〉+ λ · (Au+Bv − c− e)

+µ

(∫
Ω

u(x) dx− 1

)
+ ν(|e|2 − ε2).

Here we get the analogous results by similar reasoning so we will only cite the main
theorem.

Theorem 5.1. If (A2) is satisfied, the tolerance model (P )tol admits a solution
u ∈W 1,1(Ω).

6. Regularity. In this section we show that the regularity of the solutions ū of
(P )pen and (P )tol may be improved to give ū ∈ W 1,p(Ω) for some p > 1 if condition
(A2) is strengthened. For 1 ≤ . ≤ r consider the condition

there exists a measurable function y �→ y(z), R
n → R, such that

(i) |y(z)| ≤ K(1 + |z|)) for every z ∈ R
n, and

(ii) Jh∗(y(z), z) is bounded on a ball {z ∈ C1(Ω) : ‖z‖r ≤ C}.
(A3)

Clearly (A3) implies (A2) and may be understood as a coercivity condition on the
integrand h. Notice that (A3) is, for instance, satisfied if h∗ satisfies the growth
condition

(ii′) h∗(y, z) ≤ K(1 + |y|r/) + |z|r),
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which translates into a coercivity condition for h. In this case, y(z) = |z|ρ satisfies (i).
Corollary 6.1. Suppose (A3) (with 1 ≤ . ≤ r) is satisfied. Then every u

feasible for (P )pen (resp., (P )tol) lies in W
1,p(r,))(Ω) with

p(r, .)




=∞, . = r = 1,

= r
r−1 , . = 1 < r,

= r
r−1 , . > 1 and r > n(.− 1),

< n()−1)
n()−1)−1 , . > 1 and r ≤ n(.− 1).

In particular, this is true for the solution u of (P )pen or (P )tol.
For the proof we need the following.
Lemma 6.2. Given u ∈ W 1,1(Ω) with ∇u ∈ Lp(Ω)n for some p > 1 we have

u ∈W 1,p(Ω).
Proof. We have to show u ∈ Lp(Ω). Consider the sequence

un(x) =



u(x), |u(x)| ≤ n,
n, u(x) > n,

−n, u(x) < −n.

Then [28, Corollary 2.1.8] gives

∇un(x) =
{
∇u(x), |u(x)| < n,
0, |u(x)| ≥ n,

hence un ∈ W 1,p(Ω) for all n. We want to show that ‖un‖p is bounded so the Fatou
lemma will give the result. Following [1, Theorem 4.20] for each ε > 0 there exists a
set Ωε ⊂⊂ Ω such that for every v ∈W 1,p(Ω),

‖v‖p ≤ Kε‖∇v‖p +K‖v‖p,Ωε

with K = K(p,Ω). (Here ‖v‖pp,Ωε
=
∫
Ωε
|v(x)|p dx.) Now since u ∈ Lloc

p (Ω) (cf. [11,

Theorem 4.5.13]) we have ‖u‖p,Ωε <∞, and from the definition of un we get

‖un‖p ≤ Kε‖∇un‖p +K‖un‖p,Ωε ≤ Kε‖∇u‖p +K‖u‖p,Ωε = C <∞
for every n. Now, using un(x)→ u(x) a.e., Fatou’s lemma provides

‖u‖p ≤ lim inf
n→∞ ‖un‖p ≤ C,

hence u ∈ Lp(Ω).
We proceed to complete the proof of the corollary.
Proof. We give the argument for (P )pen, the tolerance case being similar. Suppose

u ∈W 1,1(Ω) is feasible for (P )pen. By Proposition 4.6, it is then feasible for (P ∗∗) as
well, so we have

inf
z∈C1(Ω)n

(Jh∗(y(z), z) + 〈u, y(z)〉+ 〈∇u, z〉) > −∞.(6.1)

We want to construct a decreasing (possibly breaking off) sequence of exponents
rk ≥ r such that the term Jh∗(y(z), z) + 〈u, y(z)〉 is bounded on a ball ‖z‖rk ≤ C,
giving ∇u ∈ Lpk(Ω) with pk = rk

rk−1 by (6.1). Lemma 6.2 will imply u ∈W 1,pk(Ω).
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The procedure is the following. Suppose we have already constructed rk > r, pk =
rk/(rk − 1) > 1, with u ∈ W 1,pk(Ω) by the argument above. Then by the Sobolev
embedding theorem (cf. [1, p. 97]) we have u ∈ Lsk(Ω) with

sk

{
arbitrary if pk ≥ n,
= npk
n−pk if pk < n.

Using Hölder’s inequality and condition (i) of (A3) we have

|〈u, y(z)〉| ≤ ‖u‖sk‖y(z)‖s′k ≤ K̃ ‖u‖sk‖z‖)s′k
with 1

sk
+ 1
s′k

= 1. On the other hand, condition (ii) of (A3) implies that Jh∗(y(z), z)

is bounded on ‖z‖r ≤ C. Hence we choose rk+1 = max(r, .s′k). By construction the
sequence (rk) is strictly decreasing unless rk = r, the lowest exponent we can possibly
achieve. As soon as rk = r for some index k, the process stops giving u ∈W 1, r

r−1 (Ω).
(Notice that if pk ≥ n for some k, we can always choose sk large enough to guarantee
.s′k ≤ r, viz. rk+1 = r.)

Now we want to compute the rk explicitly: From Theorem 4.7 we know u ∈
W 1,1(Ω), i.e., p0 = 1, giving s1 = n

n−1 and r1 = max(r, .n). So we can actually stop
after the first step if r ≥ .n. Otherwise we get p1 = )n

)n−1 ,{
s1 = n)

n)−)−1 and r2 = max(r, n)
2

1+) ) for n)
n)−1 < n,

r2 = r if n)
n)−1 ≥ n.

Proceeding like this we get

rk =

{
n
k → 0 if . = 1,

n )−1
1−)−(k+1) ↘ n(.− 1) if . > 1,

so the process will break off, giving u ∈ W 1, r
r−1 (Ω), unless . > 1 and r ≤ n(. − 1).

In the latter case we still get u ∈W 1,p(Ω) for every p < n()−1)
n()−1)−1 .

Example 3. For the Csiszár information measures with φ(t) = |t|p discussed in
the preparatory section 1, we may choose y(z) = K|z|p′ ( 1

p +
1
p′ = 1), so r := . := p′

will do, and the corollary gives u ∈W 1,p̃(Ω) with

p̃

{
= p, p > n,

< n
n−p+1 = 1 + p−1

n−p+1 , p ≤ n.

In particular, for p close to 1 we have p̃ = 1 + ε(p) and u ∈ W 1,1+ε(p)(Ω) with
ε(p) := p−1

n−p+1 ↓ 0 for p ↓ 1.
Appendix. We still have to prove Lemma 4.5.
Lemma 4.5. Let m be a measure inM(Ω), f ∈ L1(Ω,m), g ∈ L1(Ω,m)k (k ∈ N),

and Φ : R
k → R ∪ {∞} be a proper convex lsc function. Then for the proper convex

lsc functional

F (z) =

∫
Ω

[Φ(z(x))f(x) + z(x) · g(x) ] dm(x)

on L1(Ω,m)k we have

inf
z∈C1(Ω)k

F (z) = inf
z∈L1(Ω,m)k

F (z).
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Furthermore, the values of the infima over all function spaces F with C1(Ω)k ⊂ F ⊂
L1(Ω,m)k agree.

Proof. We give the argument in the case where dom Φ has nonempty interior in
R
k, the general case being reducible to the former.

It is sufficient to show that for any z ∈ L1(Ω, µ)
m with F (z) < ∞ and any

ε0 > 0 we can find a y ∈ C1(Ω)m such that F (y) ≤ F (z) + ε0. The construction
of such a y will be divided into three steps. First we will prove the existence of a
function z̃ ∈ L1(Ω, µ)

m with values only in int(dom Φ) having F (z̃) ≤ F (z) + ε0
3 .

Then we will modify z̃ to get a function z̃n0
which maps Ω into a compact subset

of int(dom Φ), again having F (z̃n0) ≤ F (z̃) + ε0
3 . For the last step we will use the

Lipschitz continuity of Φ on compact subsets of int(dom Φ) to find a suitable measure
ν such that the approximation of z̃n0 with respect to ν by C1(Ω)m-functions will
also approach F (z̃n0). This will finally prove the existence of a y ∈ C1(Ω)m with
F (y) ≤ F (z̃n0) +

ε0
3 , giving F (y) ≤ F (z) + ε0 altogether.

Step 1. Consider z ∈ L1(Ω, µ)
m with F (z) <∞. Then we have z(x) ∈ domΦ a.e.

for every representative of z. In particular, we can choose a measurable representative
also denoted by z having z(x) ∈ domΦ for all x ∈ Ω.

For fixed ε > 0, δ > 0 we define the set-valued mapping

Γ(x) = {ζ ∈ int(dom Φ) : |ζ − z(x)| ≤ ε, Φ(ζ) ≤ Φ(z(x)) + δ} for all x ∈ Ω.

We want to show that Γ admits a measurable selector using the Kuratovski and Ryll-
Nardczevski measurable selection theorem [14]: Suppose Γ is a measurable set-valued
mapping with nonempty closed images. Then there exists a measurable z̃ : Ω → R

m

having z̃(x) ∈ Γ(x) for every x ∈ Ω.

As will be seen, for sufficiently small ε, δ, this selector satisfies F (z̃) ≤ F (z) + ε0
3 .

We have to verify three properties of Γ:

Γ(x) is closed for every x ∈ Ω: Fix x ∈ Ω and suppose (ζn) is a sequence in Γ(x)
converging to some ζ ∈ int(dom Φ). Then we have |ζ−z(x)| = limn→∞ |ζn−z(x)| ≤ ε
and Φ(ζ) ≤ lim infn→∞ Φ(ζn) ≤ Φ(z(x)) + δ, so ζ ∈ Γ(x) and Γ(x) is closed in
int(dom Φ).

Γ(x) is nonempty for all x ∈ Ω: Since Φ is proper convex and lsc, epi Φ is a closed
convex subset of R

m × R with

epiΦ = int(epi Φ)

(cf. [21, p. 46]). Hence any point (z(x),Φ(z(x))) ∈ epi Φ can be approximated by a
sequence (ζn,Φ(ζn) + δn) ∈ int(epi Φ); that means ζn ∈ int(dom Φ) and δn > 0. But
then we must have ζn ∈ Γ(x) for n sufficiently large, so Γ(x) is nonempty.

Γ is measurable: We have to show that for each measurableM ⊂ R
m the preimage

Γ−1(M) is a measurable subset of Ω. Here, without loss of generality, we can assume
M ⊂ int(dom Φ). We get

Γ−1(M)=
{
x ∈ Ω : ∃ ζ ∈M : z(x) ∈ B(ζ, ε),Φ(z(x)) ≥ Φ(ζ)− δ}

=
{
x ∈ Ω : ∃ y ∈ B(0, ε), ∃ ζ ∈M : z(x) = y + ζ, Φ(z(x)) ≥ Φ(ζ)− δ}

=
{
x ∈ Ω : ∃ y ∈ B(0, ε) : (z(x),Φ(z(x)))∈ epi (Φ− δ) ∩ (M × R) + {(y, 0)}}

=
{
x ∈ Ω : (z(x),Φ(z(x))) ∈ epi (Φ− δ) ∩ (M × R) +B(0, ε)× {0}}

= (z,Φ(z))−1 (epi (Φ− δ) ∩ (M × R) +B(0, ε)× {0}) .
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Since epi (Φ− δ) is closed and therefore measurable, Γ−1(M) is now the preimage of
a measurable set under the measurable map x �→ (z(x),Φ(z(x))); hence Γ−1(M) is
measurable.

Now we can apply the selection theorem of Kuratovski and Ryll-Nardczevski to
get a measurable function z̃ with z̃(x) ∈ Γ(x) for all x ∈ Ω. By the definition of Γ we
have z̃ ∈ L1(Ω, µ)

m and

F (z̃) ≤ F (z) + δ
∫

Ω

|f(x)| dµ(x) + ε
∫

Ω

|g(x)| dµ(x),

so for sufficiently small δ and ε, F (z̃) ≤ F (z) + ε0
3 , and the first step is proven.

Step 2. Without loss of generality, assume 0 ∈ int(dom Φ) and Φ(0) = 0. Now
choose an increasing sequence (Dn) of compact subsets of R

m having 0 ∈ D1 and

Dn ↑ int(dom Φ), Dn ⊆ {ζ ∈ R
m : |Φ(ζ)| ≤ n}, Dn ⊂ int (Dn+1).

Defining Ωn = z̃−1(Dn) = {x ∈ Ω : z̃(x) ∈ Dn} and letting z̃n = χΩn · z̃, we have
z̃n(x)→ z̃(x) and Φ(z̃n(x))→ Φ(z̃(x)) pointwise, since Ωn ↑ Ω. Now

|F (z̃n)| ≤
∫

Ω

|Φ(z̃(x))f(x) + z̃(x) · g(x)| dµ(x) for all n ∈ N

and dominated convergence implies F (z̃n) → F (z̃), so we can choose some n0 ∈ N

with F (z̃n0
) ≤ F (z̃) + ε0

3 .
Step 3. Now we have z̃n0(x) ∈ Dn0 for all x ∈ Ω, so if we want to approach z̃n0

by smooth functions we can restrict ourselves to functions with values in Dn0+1 since
Dn0 is a compact subset of int (Dn0+1) having a positive distance from its boundary.
But for each y ∈ C1(Ω)m with values in Dn0+1 we get

|F (z̃n0)− F (y)| ≤
∫

Ω

|z̃n0(x)− y(x)| (Ln0+1|f(x)|+ |g(x)|) dµ(x),

where Ln0+1 denotes the Lipschitz constant of Φ onDn0+1. So we have to approximate
z̃n0

with respect to the measure dν = (Ln0+1|f |+ |g|) dµ. Choosing y ∈ C1(Ω)m with
‖z̃n0

− y‖L1(Ω,ν)m ≤ ε0
3 (notice z̃n0 ∈ L1(Ω, ν)

m, hence such a y exists), we finally get

F (y) ≤ F (z̃n0) +
ε0
3
≤ F (z̃) + 2

ε0
3
≤ F (z) + ε0,

and the proof is complete.
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1. Introduction. LMI techniques are now well-rooted as a unifying framework
for formulating and solving problems in control theory with a remarkable degree of
simplicity. The main thrust of these techniques is that certain complicated control
problems can be solved very efficiently. Specifically, the interior-point methods for
semidefinite programming have worst-case polynomial complexity with respect to the
problem size. From a practical viewpoint, extensive experience shows that interior-
point methods solve problems in roughly less than a hundred iterations, independent
of the problem size. Each elementary iteration reduces to solving a least-square prob-
lem which incurs the main computational overhead. Recent and thorough studies of
interior-point techniques for semidefinite programming are, among others, Jarre [23],
Vandenberghe and Boyd [43], Rendl, Vanderbei, and Wolkowicz [34], and the master
book by Nesterov and Nemirovski [28].

Basically, the simple feasibility problem of semidefinite programming consists in
seeking a solution to the LMI

F0 + z1F1 + · · ·+ zrFr < 0 ,(1.1)

where the Fi’s are given real symmetric matrices and the zi’s are the sought deci-
sion variables. A significantly more complicated generalization of problem (1.1) is the
feasibility problem

F0(θ) + z1(θ)F1(θ) + · · ·+ zr(θ)Fr(θ) < 0,(1.2)

where θ := [θ1, . . . , θN ]
T is an additional parameter allowed to take any value in a

compact set H of RN , typically a polytope. In contrast to problem (1.1) the problem
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data, Fi(θ), are now symmetric matrix-valued functions of θ, and we are seeking
(arbitrary) functions of θ, zi(θ) such that the LMI constraints (1.2) hold for any
admissible value of θ. The complexity of problem (1.2) is twofold:

1. It is infinite-dimensional since the zi(.)’s are sought in the infinite-dimensional
space of functions of θ.

2. This is an infinitely constrained LMI problem for which each constraint cor-
responds to a given point in the range of θ.
A common and practical approach to overcome the difficulties arising from dimension-
ality is to select a finite basis of functions for the zi’s and reconsider the problem over
the resulting spanned finite-dimensional space. In such a case, problem (1.2) simplifies
to an LMI problem of the form

F0(θ) + z1F1(θ) + · · ·+ zrFr(θ) < 0, ∀θ ∈ H,(1.3)

where z1, . . . , zr are conventional scalar decision variables as in (1.1) and H is a com-
pact set. Such problems are referred to as robust semidefinite programming problems
in [4] and are designated here as parameterized LMI (PLMI) problems to stress the
connections with the LMI control theory literature.

For reasons raised above, PLMI feasibility problems still have high complexity
and are even known to be NP-hard [4]. The aim of this paper is to develop systematic
relaxation techniques to turn, potentially conservatively, this problem into a standard
LMI problem. A fruitful technique for turning PLMI problems into conventional LMI
problems is the well-known S-procedure [45, 14]. With this approach, scaling or multi-
pliers are utilized to eliminate the LMI parameter-dependence. The price to pay is the
insuperable conservatism of the resulting conditions and also the extra computational
effort, often prohibiting, introduced by the multiplier variables. This paper exploits
competitive techniques invoking directional convexity concepts to derive a finite set of
LMI conditions. Generally speaking, the approach requires significantly less variables
than S-procedure techniques whilst producing more LMI constraints. Since the flop
cost of interior-point techniques is roughly linear with respect to the size of the LMI
constraint but polynomial with respect to the number of decision variables, the pro-
posed techniques offer a valuable alternative to S-procedure techniques. It is, however,
difficult to draw definitive conclusions at this stage since the respective performance
of each technique is probably problem-dependent. As demonstrated in the body of the
paper, the techniques therein also offer possibilities for handling polytopic represen-
tations, that is when the parameter θ designates polytopic coordinates,

∑N
i=1 θi = 1,

θi ≥ 0. We also briefly discuss relaxations of linear objective minimization problems
subject to PLMI constraints and PLMI problems subject to algebraic constraints on
the parameter θ.

The scope of applications of PLMIs is quite large and goes far beyond the area
of robust control theory. In [4, 5], Ben-Tal and Nemirovski lay the foundations of
robust convex programming and investigate its theoretical tractability in conjunction
with the analysis of some generic uncertain convex programs. The same stream of
ideas are applied to a truss topology design problem in [6]. In [29], the authors pro-
vide a thorough study of the regularity properties of solutions to PLMIs using the
S-procedure and discuss its implications for a variety of topics: linear programming,
polynomial interpolation, integer programming, and so forth. Our contribution is in
line with that of [29] or what is called “approximate robust counterpart” of an uncer-
tain semidefinite programming problem in [4]. The general instance of the problems is
essentially intractable and we are constructing relaxed forms, generally conservative,
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that are directly amenable to the use of interior-point methods. Note also that alter-
native techniques to those considered here are developed in [40] using either convex
approximations or difference convex (d.c.) representations.

This work is mostly control theory oriented, and special attention is paid to the
following topics:

(i) Quadratic programming. It is shown that some neither convex nor concave
quadratic programming problems can be converted into boolean programming prob-
lems. The results so introduced constitute the core of the subsequent derivations and
have a direct impact for relaxing PLMI problems.

(ii) Lyapunov-based stability and performance analysis. A rich catalog of Lyapunov-
based stability and performance criteria for uncertain systems can be handled via
PLMIs, thus providing generalizations of the single quadratic Lyapunov function ap-
proach.

(iii) µ-analysis. PLMIs have direct applications in the µ-analysis context or ro-
bust non-singularity analysis and can be utilized to refine the computation of upper-
bounds.

(iv) Linear parameter-varying (LPV) control synthesis. PLMIs and the concepts
developed here are also central in LPV control synthesis to overcome the difficulties
arising from gridding phases and reduce the computational efforts.

The paper is structured as follows. Section 3 discusses a variety of directional
convexity concepts and their implications in functional optimization. These results
are then extended to PLMI problems in section 4. Important robust and LPV control
issues mentioned above are investigated in section 5. Numerical examples illustrating
the techniques and tools are given in section 6.

2. Preliminaries. The following definitions and notations are used throughout
the paper.

R and C denote the sets of real and complex numbers, respectively. MT is the
transpose of the matrix M , and M∗ denotes its complex-conjugate transpose. The
notation TrM stands for the trace of M . For Hermitian or symmetric matrices, M >
N means that M −N is positive definite and M ≥ N means that M −N is positive
semidefinite.

Let S be a convex subset of Rn. A function f : S → R is quasi-convex if and only
if for all u, v in S and α in [0, 1],

f(αu+ (1− α)v) ≤ max {f(u), f(v)} .

Strict quasi-convexity is obtained when the inequality is strict for all 0 < α < 1. This
notion is weaker than convexity, which requires

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v) .

The relative interior, the closure, and the relative boundary of S are denoted as riS,
clS, and rbdS, respectively. We then have rbdS = clS \ riS.

A polytope Π in Rn is defined as the compact set

Π :=

{
L∑
i=1

αivi :

L∑
i=1

αi = 1, αi ≥ 0, vi ∈ Rn

}
.

Equivalently, it is also the convex hull of the set V = {v1, . . . , vL}, denoted coV . The
notation vertΠ designates the set of vertices of Π, vertΠ := V . The affine hull, aff S,
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of a set S is defined as the set of all affine combinations of elements of S, i.e.,

aff S :=

{
k∑
i=1

αisi : si ∈ S,

k∑
i=1

αi = 1

}
.

The direction space associated to aff S is defined as aff S − s0, where s0 is any point
of aff S. The notation #S stands for the number of elements in a set S.

3. Extreme point results. This section introduces some useful tools that per-
mit us to convert the maximization of a function over a polytope Π into the combi-
natorial problem of maximizing f over vertΠ. We begin with a general result which
is the core of the subsequent derivations.

Theorem 3.1 (Central result). Consider a polytope Π and assume that for any
x in Π, there exists a direction d in the direction space of aff Π such that f is quasi-
convex on the line segment

Ld(x) := {z ∈ Π : z = x+ λd, λ ∈ R} .
Then, f has a maximum over Π in rbdΠ.

Proof. Assume f has a maximum x̂ in ri Π. Consider a line segment Ld(x̂) where
f is quasi-convex. From this property, we infer that f has a maximum point in rbdΠ∩
Ld(x̂), and therefore

f(x̂) ≤ f(x̄),

for some x̄ in rbdΠ ∩ Ld(x̂).
By virtue of Theorem 3.1, the search of a maximum point is reduced to exploring

the relative boundary of Π. This result is analogous to the well-known maximum
principle for analytic functions of complex variables. Although this constitutes an
appealing result which might find applications, it is still hardly tractable for our
particular purpose. A stronger result is obtained by forcing the directions d to be
parallel to the edges of the polytope. The corollary below clarifies this fact.

Corollary 3.2 (Multi-quasi-convexity). Consider a polytope Π and the di-
rections d1, . . . , dq determined by the edges of Π. Assume that for any x in Π, the
function f is quasi-convex on the line segments Ldi(x) for i = 1, . . . , q. Then, f has
a maximum over Π at a vertex of Π.

Proof. Immediate by application of Theorem 3.1 to Π and to the (polytopic) faces
and edges of Π.

An obvious consequence of Theorem 3.1 is the following.
Corollary 3.3. Under the hypotheses of Corollary 3.2, the following conditions

are equivalent:
(i) f(x) < 0 ∀x ∈ Π.
(ii) f(x) < 0 ∀x ∈ vertΠ.

As claimed previously, the maximization problem in Corollary 3.2 and the sign
verification problem in Corollary 3.3 are turned into simpler combinatorial problems of
lower complexity. This is a consequence of the multi-quasi-convexity property defined
in Corollary 3.2. Note that the term multi-quasi-convex emphasizes the fact that f is
separately quasi-convex along parallels to the edges of the polytope. This property is
attached to the function f but is also intimately related to the particular geometry
of the polytope.

Quasi-convexity is a less stringent requirement than usual convexity, the counter-
part being the difficulty of its verification even for differentiable functions. Alternative
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conditions that are more easily amenable to numerical computation are derived by
replacing quasi-convexity with convexity in Theorem 3.1 and Corollaries 3.2 and 3.3.
For twice continuously differentiable functions, Corollary 3.2 then becomes as follows.

Corollary 3.4 (Multiconvexity).With the definitions in Corollary 3.2, f has a
maximum over Π in vertΠ whenever it holds that

∂2 f(x+ λdi)

∂λ2
≥ 0 ∀x ∈ Π, i = 1, . . . , q .(3.1)

Affine functions are trivially multi-quasi-convex functions, so any of the above
results is applicable. It is instructive to consider the case in which f is a quadratic
function and Π is a hyperrectangle.

Corollary 3.5 (Quadratic functions). Consider a quadratic function, f(x) =
xTQx+ cTx+ a, and assume Π is a hyperrectangle with edges paralleling the axes of
coordinates, that is, x = [x1, . . . , xn]

T with

αi ≤ xi ≤ βi, i = 1, . . . , n .

Assume further that

Qii ≥ 0, i = 1, . . . , n.(3.2)

Then, f has a maximum over Π in vertΠ.
Proof. From Corollary 3.4, the conditions (3.2) express multiconvexity of the

quadratic function.
Clearly, the conditions (3.2) are less demanding than (global) convexity which

requires Q ≥ 0. When such conditions hold, the maximization of f over the polytope
Π reduces to a boolean programming problem [35], which is much simpler (though
possibly costly) than the maximization of a general f . One possible advantage is that
some costly but practically useful concave minimization techniques, such as simplicial
and conical partitioning (branch and bound) techniques like those of Tuy and Thach,
might be used to find a global optimal solution. The reader is referred to the book of
Tuy [41] for a thorough treatment.

4. Relaxation of PLMIs. This section presents some applications of these re-
sults to PLMIs whose coefficients are dependent on a parameter evolving in a polytopic
set. To emphasize the fact that these parameters might be interpreted as uncertainties
or scheduled variables of robust control or LPV control problems, the free variable x
is denoted θ or α, hereafter.

Before proceeding further, it is instructive to have in mind the following important
facts from [4]. Consider the “robust counterpart” (parameterized convex program in
our terminology) of a general uncertain convex program:

minimize cT z ,
subject to F (z, θ) ∈ K,∀θ ∈ H,

(4.1)

where K is a closed convex cone, H is a generalized ellipsoidal set including as in-
stances standard ellipsoids but also ellipsoidal cylinders and polyhedras, F (z, θ) is
K-concave with respect to z. A key additional assumption is that F (z, θ) must be K-
concave with respect to θ. With these assumptions in place, Ben-Tal and Nemirovski
established the following:

(i) The robust counterpart of an uncertain linear program is a conic quadratic
program; thus it is perfectly tractable.
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(ii) The robust counterpart of an uncertain quadratically constrained convex
quadratic program is a semidefinite program, hence tractable, but is NP-hard for
intersections of ellipsoidal uncertainty sets.

(iii) The robust counterpart of an uncertain semidefinite program is generally
NP-hard even for a single ellipsoidal uncertainty set.

The problems examined in what follows fall within the latter class, so they are
generally NP-hard. They also generally fail to satisfy the K-concavity in θ, mentioned
above. By virtue of its inherent complexity, one must, as a last resort, use relaxation
techniques to end up with tractable “approximate” programs. Again with reference
to [4], we take advantage of some directional K-concavity instead of complete K-
concavity in the uncertain parameter to derive such relaxations.

4.1. PLMIs with quadratic parameter dependence. We consider PLMIs
in the class

L(z, α) := M0(z) +

L∑
i=1

αiMi(z) +

L∑
i,j=1

αiαjMij(z) < 0,(4.2)

where z stands for the decision variable and M0(.), Mi(.), and Mij(.) are real sym-
metric matrix-valued and linear functions of z. In addition, it is supposed that the
parameter α = [α1, . . . , αL]

T evolves in the simplex

Γ :=

{
α :

L∑
i=1

αi = 1, αi ≥ 0

}
.(4.3)

Note that the problem presented in (4.2) involves infinitely many LMIs associated
with each value of the parameter α and is known to be intractable [4]. By enforcing
some constraints of geometric nature on the functional dependence in α, it is however
possible to reduce, potentially conservatively, the problem to solving a finite number
of LMIs. This is established in the next proposition.

Proposition 4.1. The infinite set of LMIs (4.2) is feasible for some z whenever
the finite set of LMIs

M0(z) +Mk(z) +Mkk(z) < 0,(4.4)

Mii(z) +Mjj(z)− (Mij(z) +Mji(z)) ≥ 0,(4.5)

where 1 ≤ k ≤ L and 1 ≤ i < j ≤ L, is feasible for some z.
Proof. Note first that the conditions (4.2) are equivalent to xTL(z, α)x < 0 ∀

x = 0. For fixed x = 0, consider xTL(z, α)x as function of α. By virtue of Corollary
3.4, it is negative whenever it is multiconvex along lines paralleling the edges of Γ
and furthermore is negative over vert Γ. The remainder of the proof follows from the
fact that vert Γ is composed of the canonical basis of RL, and the directions of the
edges of Γ are determined by vectors with all but two zero coordinates, the nonzero
coordinates having opposite signs:

d1 := [1,−1, 0, . . . , 0],
d2 := [1, 0,−1, 0, . . . , 0], . . . .

Repeating the reasoning for all x = 0 yields the condition (4.4) and (4.5), as
desired.
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Remarks. By strengthening the conditions in (4.4), one can slightly relax the
multiconvexity requirement in (4.5). As an example, the solutions (z, Zi) to the LMI
feasibility problem

M0(z) +
L∑
i=1

αiMi(z) +
L∑

i,j=1

αiαjMij(z) < −
L∑
i=1

α2
iZi ∀α ∈ Γ,

Zi ≥ 0, i = 1, . . . , L,

give solutions z to the feasibility problem (4.2). Arguing as in proposition 4.1, associ-
ated sufficient solvability conditions are easily obtained as

M0(z) +Mk(z) +Mkk(z) < −Zk,(4.6)

Mii(z) +Mjj(z)− (Mij(z) +Mji(z)) ≥ −(Zi + Zj),(4.7)

Zk ≥ 0 ,(4.8)

where 1 ≤ k ≤ L and 1 ≤ i < j ≤ L. Due to the strict nature of (4.6), the non-
strict inequalities in (4.7) and (4.8) can be changed into strict inequalities without any
loss of generality. In the strict form, such problems are readily solved using interior-
point semidefinite programming techniques such as those in [8, 42, 27]. Note also that
the Zi’s can be chosen as general symmetric matrices whose size is that of the LMI
condition (4.2). Less costly characterizations are obtained by using diagonal or scalar
matrices instead, such as

Zi = diagλi or Zi = λi I .

When Γ is a hyperrectangle and the LMIs (4.2) are expressed in terms of the
Cartesian coordinates of α (as opposed to polytopic ones), the main result in [18] is
recovered as a special case. Assume θ := [θ1, . . . , θN ]

T ranges over a hyperrectangle,
denoted H, that is,

θi ≤ θi ≤ θ̄i .(4.9)

Then

L(z, θ) := M0(z) +

N∑
i=1

θiMi(z) +

N∑
i,j=1

θiθjMij(z) < 0 ∀θ ∈ H

whenever

L(z, θ) < 0, θ ∈ vertH,
Mii(z) ≥ 0, i = 1, . . . , N.

As before, one can relax the multiconvexity requirement above by replacing these
conditions with

L(z, θ) < −
N∑
i=1

θ2
i λiI, θ∈ vertH(4.10)

Mii(z) ≥ −λiI, i= 1, . . . , N.(4.11)

More generally, any nonpositive matrix-valued function of θ is a good candidate for
the right-hand side of (4.10). More complicated polynomial functions lead naturally
to more costly characterizations. From our practical experience, a reasonable com-
promise between computational efficiency and tightness of the test is obtained with
nonhomogeneous functions of the form −(λ0 +

∑N
i=1 θ

2
i λi) I .
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4.2. Gridding techniques. The techniques developed in sections 3 and 4 pro-
vide sufficient and computationally simple conditions for checking the sign of a func-
tion or the feasibility of a PLMI problem. These conditions may introduce conser-
vatism though it turns out to be small from our practical experience. A different
technique which is guaranteed to provide a nonconservative answer but is potentially
optimistic and generally computationally intensive, is to use a fine gridding of the
parameter range and solve a finite set of LMIs corresponding to each point on the
grid. Denoting the grid as G, the PLMI problem (4.2) is then replaced with the finite
set of LMIs

M0(z) +

L∑
i=1

αiMi(z) +

L∑
i,j=1

αiαjMij(z) < 0, α ∈ G .

Such a technique is currently used in stability analysis and LPV control. It is,
however, limited to problems of reasonable size, say less than three parameters. There
is also the risk of missing a critical value of the parameter, hence leading to overly opti-
mistic answers. With the approaches presented earlier, these difficulties are inherently
ruled out. These techniques can be mixed with gridding approaches, hence offering
alternative possibilities. Indeed, instead of gridding the entire parameter range, there
is only a need to grid a surface of lower dimension whenever the function is quasi-
convex or convex along some direction. This is an immediate consequence of Theorem
3.1. A simple illustration of this fact is given below. For the sake of simplicity, we
restrict the discussion to 2 parameters θ1 and θ2 evolving in the normalized square

|θ1| ≤ 1, |θ2| ≤ 1 ,(4.12)

and we consider the PLMI problem

M0(z) +

2∑
i=1

θiMi(z) +

2∑
i,j=1

θiθjMij(z) < 0 .(4.13)

A potential technique for checking the feasibility of this problem consists first of
enforcing convexity in the direction of θ1. This is equivalent to the LMI constraint

M11(z) ≥ 0 .(4.14)

Thanks to this condition, it is then enough to grid the line segments

θ1 = ±1 and |θ2| ≤ 1

to check the feasibility of (4.13).
Finally, let us note that the approaches presented in the previous subsections

are also very useful for developing a global optimization algorithm solving PLMIs.
Indeed, the main difficulty in global optimization is “the curse of dimensionality,” i.e.,
the size of the space where the global search is performed. Thus exploiting convexity
properties such as directional convexity is very important for developing an efficient
global optimization algorithm (see, e.g., [24, 41]) since it allows us to drastically
simplify the problem by limiting the global search to a restricted region of the feasible
domain. For instance, with condition (4.14), it is sufficient to perform a global search
for (4.13) just on the line segment |θ2| ≤ 1 instead of on the square (4.12) in R2.
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4.3. PLMIs with polynomial parameter dependence. In this section, we
are considering polynomially θ-dependent PLMIs of the form

L(θ, z) :=
∑
ν∈J

θ[ν]Mν(z) < 0 ,(4.15)

where the terms Mν(z) denote symmetric matrix-valued functions of the decision
variable z that are linear in z. The notation [ν] is the vector of partial degrees [ν] =
[ν1, . . . , νN ] associated with the lexicographically ordered term

θ[ν] = θν11 θν22 . . . θνNN ,

with the convention θ[0] = 1. It is assumed that θ ranges over a hyperrectangle H as
in (4.9). J is a set of N -tuples of partial degrees describing the polynomial expansion
(4.15). Again exploiting Corollary 3.4, it is possible to reduce (conservatively) this
problem to a finitely constrained LMI problem. The symbols dk and d designate the
partial and total degrees in the matrix polynomial expansion.

Lemma 4.2. Consider the PLMI (4.15), where θ ranges over a hyperrectangle.
Then the LMI conditions

L(θ, z) < 0 ∀θ ∈ H(4.16)

hold for some z, whenever the finite family of LMI conditions

L(θ, z) < 0 ∀θ ∈ vertH,(4.17)

(−1)m ∂2m

∂θ2
l1
. . . ∂θ2

lm

L(θ, z) ≤ 0, ∀θ ∈ vertH ,(4.18)

where

1 ≤ l1 ≤ l2 ≤ · · · ≤ lm ≤ N, 1 ≤ m ≤ d

2
,

2#{lj = k : j ∈ {1, . . . ,m}} ≤ dk, k = 1, 2, . . . , N,

are feasible for some z.
Proof. The proof is obtained by a repeated use of Corollary 3.4.
As an example, consider the PLMI feasibility problem

L(z, θ) := M0(z) + θ2
1θ2M112(z) + θ3

2M222(z) < 0, |θi| ≤ 1 .

Replacing this problem with, for instance,

L̃(z, θ) := M0(z)+ θ2
1θ2M112(z)+ θ3

2M222(z)+λ0I+λ1θ
2
1I+λ2θ

2
2I < 0, |θi| ≤ 1,

and using Lemma 4.2 yields the LMI conditions:

L̃(z, θ) < 0 ∀θ ∈ vertH

−λ1

2
I ≤M112(z) ≤ λ1

2
I, −λ2

3
I ≤M222(z) ≤ λ2

3
I, λ1 ≥ 0, λ2 ≥ 0 .

It is of interest to note that when PLMIs also involve full-matrix parameters ∆j , it is
more appropriate for computational reasons to take advantage of a combined use of
directional convexity concepts and of the S-procedure to formulate a feasibility test.
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4.4. Algebraically constrained PLMI problems. PLMI problems with al-
gebraic constraints are described as

L(z, θ) < 0 ∀θ ∈ H(4.19)

subject to

g1(θ) = 0, . . . , gq(θ) = 0 ,(4.20)

where g1, . . . , gq are polynomials in θ. Note that for consistency, the algebraic surface
(4.20) should have a nonvoid intersection with the hypercube H.

It is readily verified that solutions to the unconstrained PLMI problem

L(z, θ) <
q∑
i=1

gi(θ)
2λiI ∀θ ∈ H,(4.21)

λi ≥ 0, i = 1, . . . , q,(4.22)

also solve (4.19)–(4.20). Recast as the sufficient conditions (4.21)–(4.22), the hard
problem (4.19)–(4.20) can be handled with the technical machinery developed in sec-
tion 4 and is therefore amenable to a conventional LMI problem. Once again, there is
some practically useful flexibility for selecting the right-hand side of the first inequality
in (4.21).

4.5. Linear objective minimization under PLMI constraints. The direc-
tional convexity concepts introduced previously are applicable with minor changes
to linear objective minimization problems subject to PLMI constraints. This means
problems of the form

minimize cT z
subject to L(z, θ) < 0, θ ∈ H ,

(4.23)

where c is a given vector and the inequalities constitute a PLMI constraint. It is also
possible to handle min-max problems of the form

minimize max
θ∈H

c(θ)T z

subject to L(z, θ) < 0, θ ∈ H ,
(4.24)

using standard manipulations [4, 29]. Defining

z̃ =

[
z
λ

]
, c̃ =

[
0
1

]
, L̃(z̃, θ) =

[L(z, θ) 0
0 c(θ)T z − λ

]
,

problem (4.24) is equivalently formulated as

minimize c̃T z̃

subject to L̃(z̃, θ) < 0, θ ∈ H ,
(4.25)

which has a form similar to problem (4.23).
In this form, provided that the parameter dependence is polynomial, such prob-

lems are easily converted into standard LMI problems using directional convexity
concepts. This is left to the reader. Finally, we note that since these concepts amount
to shrinking the z-feasible set, the optimal value of the relaxed LMI optimization
problem is an upper bound for problems (4.23) and (4.24).



PARAMETERIZED LINEAR MATRIX INEQUALITIES 1251

5. Applications in control theory. The techniques and tools presented in
sections 3 and 4 enjoy a wide scope of applications. They are useful for the anal-
ysis of both the stability and the performance of uncertain systems. Potentially, all
Lyapunov-based stability and performance measures can be handled with the pro-
posed techniques which are more general and less conservative than single quadratic
function approaches [7, 3]. They also have implications in the context of µ analysis
where some upper bounds can be refined into less conservative upper bounds. An-
other important domain of application concerns LPV control techniques. For brevity,
we only report a few of these applications.

5.1. Robust stability. We consider the linear uncertain system

ẋ = A(α)x, A(α) := α1A1 + · · ·+ αLAL ,(5.1)

where α is a fixed uncertain parameter evolving in the simplex (4.3). It follows that
the uncertain matrix A(α) ranges over a matrix polytope

A(α) ∈ co {A1, . . . , AL} .

We are seeking a quadratic parameter-dependent Lyapunov function with similar
structure,

V (x, α) := xT (α1X1 + · · ·+ αLXL )x,

establishing stability of the uncertain system for all admissible dynamics. If we make
explicit the Lyapunov conditions for stability

V (x, α) > 0,
d

dt
V (x, α) < 0 ∀x = 0 ,

we obtain

α1X1 + · · ·+ αLXL > 0,
A(α)T (α1X1 + · · ·+ αLXL) + (α1X1 + · · ·+ αLXL)A(α) < 0 ,

which constitutes a PLMI problem. Thus, Proposition 4.1 can be used to convert the
problem into a finite number of LMI feasibility conditions. The following sufficient
test for robust stability is derived.

Proposition 5.1. Assume one of the Ai’s is stable. Then, the uncertain sys-
tem (5.1) is stable whenever there exist symmetric matrices X1, . . . , XL and scalars
λ1, . . . , λL such that the following LMI conditions hold for k = 1, . . . , L and 1 ≤ i <
j ≤ L:

ATkXk +XkAk < −λkI,
ATi Xi +XiAi +ATj Xj +XjAj − (ATi Xj +XjAi +ATj Xi +XiAj) ≥ −(λi + λj)I,

λk ≥ 0 .

In such case, the Lyapunov function V (x, α) establishes stability of the uncertain
system (5.1).

Proof. The above conditions ensure that d
dtV (x, α) < 0 for all admissible values

of the parameter. Moreover, V (x, α) is a candidate Lyapunov function since at least
one of the Ai’s is stable, and since α1X1 + · · · + αLXL cannot be singular, we infer
that α1X1 + · · ·+ αLXL > 0 for all α in the simplex (4.3).
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5.2. Robust performance. As claimed earlier, the proposed techniques are
potentially applicable to any Lyapunov-based performance measure. We illustrate
this claim with the H2 performance criterion. See [9] for a Lyapunov characterization
of the H2 norm.

Consider the uncertain system

ẋ = A(α)x+B(α)w,
z = C(α)x,

(5.2)

where [
A(α) B(α)
C(α) 0

]
∈ co

{[
A1 B1

C1 0

]
, . . . ,

[
AL BL
CL 0

]}
.

By virtue of Proposition 4.1, and paralleling the argument in Proposition 5.1, we
deduce that the H2 norm from w to z of the uncertain system (5.2) is bounded by
ν for all values of α in the simplex (4.3) whenever there exist symmetric matrices
X1, . . . , XL, Q and scalars λ1, . . . , λL such that the following LMI conditions hold:

Uk(Xk) < −λkI,
Vi(Xi) + Vj(Xj)− (Vi(Xj) + Vj(Xi)) ≥ −(λi + λj)I,

λk ≥ 0,

[
Pk CTk
Ck Q

]
> 0, TrQ < ν

for k = 1, . . . , L and 1 ≤ i < j ≤ L, with the definitions

Ui(Xj) :=

[
ATi Xj +XjAi XjBi

BT
i Xj −I

]
, Vi(Xj) :=

[
ATi Xj +XjAi XjBi

BT
i Xj 0

]
.

Extensions and reformulations for time-varying uncertain parameters, pole clus-
tering in LMI regions, H∞ and passivity constraints, and many others are straightfor-
ward. When the dependence on the parameter is polynomial, the same line of attack
is still valid with the assistance of Lemma 4.2.

5.3. µ analysis. The structured singular value (SSV) or µ is an important linear
algebra tool to study a class of matrix perturbation problems [11, 12, 36]. Since many
robust stability/performance problems can be recast as one of computing µ with
respect to an appropriate block-diagonal structure, it is also particularly useful in
control theory and practice. The computation of µ involves an optimization problem
which is not convex and is known to be NP-complete [32], so that it is difficult to
compute µ exactly. Fortunately, it is possible to compute lower and upper bounds for
µ with reasonable computational effort [13, 46]. This is the approach considered in
this section.

The computation of µ can be formulated as computing the smallest norm pertur-
bation for which the matrix I −∆M becomes singular, where M denotes the plant’s
transfer function at some given frequency and ∆ stands for uncertainties which are
generally assumed to have a specific block-diagonal structure. In this section, we as-
sume without loss of generality that uncertainties are real, ∆ij ∈ R, and range over
a polytope

∆ ∈ co {∆1, . . . ,∆L} .
Extensions to mixed real/complex uncertainties are readily derived.



PARAMETERIZED LINEAR MATRIX INEQUALITIES 1253

Our goal is to determine sufficient conditions for which I − ∆M remains non-
singular for all admissible uncertainties. Our approach is inspired by the work in
[15, 26] and goes as follows. A necessary and sufficient condition for the nonsingularity
of (I −∆M) is the existence of a parameter-dependent matrix F (∆), such that

F (∆)(I −∆M) + (I −∆M)∗F (∆)∗ < 0 .(5.3)

The awkward condition (5.3) is simplified by restricting the search of F (∆) matrices
to those having the form

F (∆) :=

L∑
i=1

αiFi ,

where the αi’s are the coordinates of ∆ in the convex decomposition

∆ :=

L∑
i=1

αi∆i .

With these restrictions, it is not difficult to see that inequality (5.3) takes a form
similar to (4.2), that is, a PLMI feasibility problem. Therefore, by a direct applica-
tion of Proposition 4.1 or its refined version (4.6)–(4.8), sufficient conditions for the
nonsingularity of I −∆M express as the existence of suitably dimensioned complex
matrices F1, F2, . . . , FL such that

Fk + F ∗
k − (Fk∆kM + (Fk∆kM)∗) < −λkI,

(Fi∆iM + Fj∆jM)− (Fi∆jM + Fj∆iM) + (3)∗ ≤ (λi + λj)I,
λk ≥ 0 .

This new upper bound for µ reduces to the upper bound proposed by Fu and
Barabanov in [15] when F = F1 = · · · = FL; thus it is less conservative but also more
costly. It is also less conservative than the more classical upper bound in [13], as is
easily proved by choosing F = F1 = · · · = FL = −D − jM∗G. A similar approach,
though somewhat more conservative, has been proposed by Chen and Sugie in [10].

5.4. Linear parameter-varying control. In this section, we more thoroughly
investigate how the concepts and tools introduced can be utilized in the context of
LPV control. For clarity, we recall the general statement of the problem.

We are considering an LPV plant with state-space realization

ẋ = A(θ)x+B1(θ)w +B2(θ)u,
z = C1(θ)x+D11(θ)w +D12(θ)u,
y = C2(θ)x+D21(θ)w ,

(5.4)

where

A ∈ Rn×n, D12 ∈ Rp1×m2 , and D21 ∈ Rp2×m1

define the problem dimension. It is assumed that
(A1) the state-space data A(θ), B1(θ), . . . are bounded continuous functions of θ,
(A2) the time-varying parameter θ(t) := [θ1(t), . . . , θN (t)]

T and its rate of varia-
tion θ̇(t), defined at all times and continuous, evolve in hyperrectangles H and Hd,
that is,

θi(t) ∈ [θi, θ̄i] ∀t ≥ 0 ,(5.5)

θ̇i(t) ∈ [νi, ν̄i] ∀t ≥ 0 .(5.6)
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The assumptions (A1) and (A2) are general. They secure existence and uniqueness
of the solutions to (5.4) for given initial conditions and also specify the parameter
trajectories under consideration.

With these assumptions in place, the general LPV control problem with guaran-
teed L2-gain performance consists of finding a dynamic LPV controller with state-
space equations

ẋK = AK(θ, θ̇)xK +BK(θ, θ̇)y,

u = CK(θ, θ̇)xK +DK(θ, θ̇)y,
(5.7)

which ensures internal stability and a guaranteed L2-gain bound γ for the closed-loop
operator (5.4)–(5.7) from the disturbance signal w to the error signal z, that is,

∫ T

0

zT z dτ ≤ γ2

∫ T

0

wTw dτ ∀T ≥ 0

for all admissible parameter trajectories θ(t).
Sufficient solvability conditions for this problem can be derived using a suitable

extension of the bounded real lemma [44] and by confining the search of (Lyapunov)
variables to some finite-dimensional subspace of functions of θ. The next theorem
provides such a set of conditions for the general LPV control problem. An alternative
approach, based on polytopic covering techniques, is proposed by Yu and Sideris in
[47]. For technical reasons that are clarified in the proof, we also assume that

(A3) the matrices [BT
2 (θ) DT

12(θ) ] , [C2(θ) D21(θ) ] have full row-rank over
H.

Note that the dependence of data and variables on θ, or θ̇, is generally dropped
for simplicity.

Theorem 5.2. With the assumptions (A1)–(A3) in force, the following conditions
are equivalent:

(i) The bounded real lemma conditions with L2-gain performance level γ hold
for some quadratic Lyapunov function

V (x, xK , θ) :=

[
x
xK

]T
P (θ)

[
x
xK

]
,

where P (θ) is continuously differentiable, and for some LPV controller (5.7).
(ii) There exist continuously differentiable parameter-dependent symmetric ma-

trices X(θ) and Y (θ) such that the following PLMI problem is feasible:

[ NX 0
0 I

]T  Ẋ +XA+ATX XB1

BT
1 X −γI

CT1
DT

11

C1 D11 −γI



[ NX 0

0 I

]
< 0,(5.8)

[ NY 0
0 I

]T  −Ẏ + Y AT +AY Y CT1
C1Y −γI

B1

D11

BT
1 DT

11 −γI



[ NY 0

0 I

]
< 0,(5.9)

[
X I
I Y

]
> 0(5.10)

for all (θ, θ̇) on H ×Hd and where NX and NY designate any bases of the nullspaces
of [C2 D21 ] and [BT

2 DT
12 ], respectively.
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(iii) There exist continuously differentiable parameter-dependent symmetric ma-
trices X(θ) and Y (θ) and a scalar σ solving the PLMI problem:


 Ẋ +XA+ATX XB1 CT1

BT
1 X −γI DT

11

C1 D11 −γI


− σ


 CT2
DT

21

0


 [C2 D21 0 ] < 0,(5.11)


−Ẏ + Y AT +AY Y CT1 B1

C1Y −γI D11

BT
1 DT

11 −γI


− σ


 B2

D12

0


 [BT

2 DT
12 0 ] < 0 ,(5.12)

[
X I
I Y

]
> 0(5.13)

for all (θ, θ̇) on H ×Hd.
Proof. See Appendix A.
Equipped with Theorem 5.2, it is relatively straightforward to show how multi-

convexity concepts can be used to reduce complexity in LPV control problems with
polynomial parameter-dependence.

For simplicity of the presentation, it is first assumed the the state-space data in
(5.4) and the Lyapunov variables are affine functions of the parameter θ, that is,

(A4) A(θ) := A0 +

N∑
i=1

θiAi, B1(θ) := B10 +

N∑
i=1

θiB1i . . . .

Theorem 5.3. With the assumptions (A1)–(A4) above, there exists an LPV con-
troller (5.7) solution to the LPV control problem with guaranteed L2-gain performance
with level γ whenever there exist symmetric matrices X0, X1, . . . , XN and Y0, Y1, . . . ,
YN and scalars λ0, λ1, . . . λN , µ0, µ1, . . . µN , and σ such that

(5.14)
 Ẋ +XA+ATX XB1 CT1

BT
1 X −γI DT

11

C1 D11 −γI


− σ


 CT2
DT

21

0


 [C2 D21 0 ] < −

(
λ0 +

N∑
i=1

θ2
i λi

)
I,

(5.15)
−Ẏ + Y AT +AY Y CT1 B1

C1Y −γI D11

BT
1 DT

11 −γI


− σ


 B2

D12

0


 [BT

2 DT
12 0 ] < −

(
µ0 +

N∑
i=1

θ2
i µi

)
I,

[
X I
I Y

]
> 0(5.16)

for (θ, θ̇) ∈ vertH × vertHd and

[
XiAi +ATi Xi XiB1i

BT
1iXi 0

]
− σ

[
CT2iC2i CT2iD21i

DT
21iC2i DT

21iD21i

]
≥ −λiI,(5.17)

[
YiA

T
i +AiYi YiC

T
1i

C1iYi 0

]
− σ

[
B2iB

T
2i B2iD

T
12i

D12iB
T
2i D12iD

T
12i

]
≥ −µiI ,(5.18)

and

λ0 ≥ 0, λi ≥ 0, µ0 ≥ 0, µi ≥ 0(5.19)
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for i = 1, . . . , N with the notations

X := X0 +

N∑
i=1

θiXi, Y := Y0 +

N∑
i=1

θiYi .

Proof. The proof is a direct consequence of Theorem 5.2 combined with an appli-
cation of Proposition 4.1 or Lemma 4.2 to the particular case where data and variables
are affine with respect to θ.

Remarks. The conditions in Theorem 5.3 constitute a standard semidefinite pro-
gramming problem. The linear objective γ should be minimized subject to a finite
number of LMI constraints, and a number of softwares are available for this purpose.
The characterization is easily modified to encompass any polynomial parameter de-
pendence for both the state-space data and the variables X(θ) and Y (θ) by direct
application of Lemma 4.2. The multiconvexity requirements in (5.17) and (5.18) can
be relaxed using the simple techniques in section 4. When either the multiconvexity
approach is too conservative or brute force gridding of the parameter range is too
costly (more than two parameters), it might be appropriate to enforce multiconvexity
along some direction and to grid a surface of lower dimension. See the examples in
section 6 for illustrations.

5.4.1. LPV controller construction. The PLMI conditions (ii) and (iii) in
Theorem 5.2 are equivalent and provide lossless solvability conditions for problem (i).
The characterization in Theorem 5.3 may be conservative but give tractable conditions
for solving the same problem. Clearly, when any of the latter problems is feasible, the
state-space data (5.7) of an LPV controller solving the problem can be constructed
for any pair (θ, θ̇) in H ×Hd from any solutions X(θ), Y (θ), and σ by the very same
algebraic formulae. For completeness, we provide the following sequential scheme:

(i) Compute DK solution to

σ(D11 +D12DKD21) < γ,(5.20)

and set Dc� := D11 +D12DKD21.
(ii) Compute B̂K and ĈK solutions to the linear matrix equations


 0 D21 0
DT

21 −γI DT
c�

0 Dc� −γI



[
B̂
T

K

3

]
= −


 C2

BT
1 X

C1 +D12DKC2


 ,(5.21)


 0 DT

12 0
D12 −γI Dc�

0 DT
c� −γI



[
ĈK

3

]
= −


 BT

2

C1Y
(B1 +B2DKD21)

T


 .(5.22)

(iii) Compute

ÂK =− (A+B2DKC2)
T

+
[
XB1 + B̂KD21 (C1 +D12DKC2)

T
] [−γI DT

c�

Dc� −γI
]−1 [

(B1 +B2DKD21)
T

C1Y +D12ĈK

]
.

(5.23)
(iv) Solve for N , M , the factorization problem

I −XY = NMT .
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(v) Finally, compute AK , BK , and CK with the help of

AK = N−1(XẎ +NṀT + ÂK −X(A−B2DKC2)Y

−B̂KC2Y −XB2ĈK)M
−T ,(5.24)

BK = N−1(B̂K −XB2DK),(5.25)

CK = (ĈK −DKC2Y )M
−T .(5.26)

The reader might consult [17, 16, 22, 37, 1] for details on this construction.

6. Numerical examples. In this section, the concepts and tools developed
above are illustrated by some numerical examples. All LMI-related computations were
performed on an ULTRA 1 SUN station using the LMI control toolbox [19].

6.1. Stability analysis. We consider the following example from [39]. The A
matrix of the uncertain system is given in the form

A(θ1, θ2) =


−2 + θ1 0 −1 + θ1

0 −3 + θ2 0
−1 + θ1 −1 + θ2 −4 + θ1


 .

We are seeking the maximum rectangle in the (θ1, θ2) space for which stability is
guaranteed. In this context, Proposition 5.1 is directly applicable to the polytope of
extreme values of the parameters θ1 and θ2. The uncertain system is found stable for
all values of θ1 and θ2 in the rectangle

−1e6 ≤ θ1 ≤ 1.7499, −1e6 ≤ θ2 ≤ 2.99 .

This result is consistent with the true domain of stability (θ1 < 1.75, θ2 < 3) and is
markedly superior to existing results [39].

6.2. LPV synthesis example. The following example provides an illustration
of the proposed LPV control synthesis techniques. The discussion emphasizes the
complexity and cost associated with various LPV synthesis strategies. The problem
setup comes from [33]. It has been slightly complicated to incorporate two time-varying
parameters for illustration purposes while retaining the same design specifications.

The LPV model of the longitudinal dynamics of the missile is given as

[
α̇
q̇

]
=

[ −0.89 1
−142.6

] [
α
q

]
+

[
0 −0.89

178.25 0

] [
wθ1
wθ2

]
+

[−0.119
−130.8

]
δfin,

[
wθ1
wθ2

]
=

[
θ1 0
0 θ2

] [−1 0
1 0

] [
α
q

]
,

[
ηz
q

]
=

[−1.52 0
0 1

] [
α
q

]
,

where α, q, ηz, and δfin denote the angle of attack, the pitch rate, the vertical ac-
celerometer measurement, and the fin deflection, respectively; and θ1, θ2 are two
time-varying parameters, measured in real time, resulting from changes in missile
aerodynamic conditions (angle of attack from 0 up to 20 degrees). The synthesis
structure used in this problem is depicted in Figure 6.1.

The problem specifications are as follows:
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K0

We

e

missile

η

q

u

G

Wu

δfin

ηc

−

−

[
θ1 0
0 θ2

]

2+0.06 s
s

Fig. 6.1. Synthesis structure.

(i) A settling time of 0.2 second with minimal overshoot and zero steady-state
error for the vertical acceleration ηz in response to a step command ηc.

(ii) The controller must achieve an adequate high-frequency roll-off for noise
attenuation and to withstand neglected dynamics and flexible modes. Magnitude con-
straints of 2 are also imposed to the control signal δfin.

Moreover, those specifications must be met for all parameter values:

|θ1| ≤ 1, |θ2| ≤ 1 .

An integrator has been introduced on the acceleration channel to ensure zero
steady-state error. It turns out that the resulting LPV controller K is obtained as the
composition of the operators K0 and

[
2+0.06 s

s 0
0 1

]
.

The weighting functions We and Wu were chosen to be

We = 0.8, Wu =
0.001s3 + 0.03s2 + 0.3s+ 1

1e-5s3 + 3e-2s2 + 30s+ 10000
.

The design synthesis consists of the computation of a parameter-dependent con-
troller K0(θ1, θ2) such that all specifications above are met. For simplicity of the dis-
cussion, we assume that the LPV model can be considered as a parameterized family
of linear time-varying models. Similar conclusions can be drawn with time-varying
parameters with bounded rates of variation. The synthesis problem is attacked via
three different strategies with increasing conservatism and decreasing computational
effort:

(i) The full gridding approach makes use of a 6 × 6 point gridding of the pa-
rameter range of (θ1, θ2).

(ii) The mixed strategy uses a grid in the θ2 direction and enforces multicon-
vexity along the θ1 direction.

(iii) The multiconvexity approach enforces multiconvexity in both directions θ1

and θ2.
Results and numerical features of each technique are collected in Table 6.1.
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Fig. 6.2. Time domain responses—LPV controller 1 full-gridding technique.
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Fig. 6.3. Time domain responses—LPV controller 2 mixed technique.

Table 6.1
Numerical comparisons of LPV synthesis techniques.

# of gridding points # of LMIs cputime Achieved perf. level
Full gridding 36 108 17 min. 24 sec. 0.1265
Mixed strategy 12 30 6 min. 20 sec. 0.1282
Multiconvexity 0 16 3 min. 12 sec. 0.1293

It is instructive to see that all techniques provide about the same performance
level. This indicates that there is no significant growth of conservatism when using
multiconvexity concepts to reduce or eradicate the gridding points. This is confirmed
by the time-domain simulations in Figures 6.2–6.4, which correspond, for each derived
LPV controller, to parameter values at the vertices and the center of the (θ1, θ2)
range. Performance specs, as well as the roll-off property of the controllers, have been
found to be satisfactory for each technique. In spite of the consistency in the results,
it must be born in mind that the multiconvex synthesis is the only one to provide
theoretical stability and performance guarantees at any operating condition of the
parameter range. The full-gridding technique gives similar guarantees solely at the
grid points, and the achieved performance γ is necessarily a lower bound of the actual
performance. The situation is slightly more embarrassing for the mixed strategy since
the performance level is overestimated in the direction of θ2 and underestimated in the
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Fig. 6.4. Time domain responses—LPV controller 3 multiconvexity technique.

direction of θ1. So we cannot decide whether the result is conservative or optimistic
on the whole parameter range. Nevertheless, the approach is of practical interest for
computational reasons. It appears clearly in Table 6.1 that LPV syntheses exploiting
either partial or complete multiconvexity are significantly cheaper than full-gridding
techniques. This difference is likely to be even more dramatic for problems involving
more than two parameters for which full gridding is practically prohibited. This is
a direct consequence of the exponential growth of the number of LMIs in the full-
gridding approach. Note that we do not account for scalar dimensional constraints of
the type λi, µi ≥ 0 in Table 6.1, as they negligibly affect the overall computational
time.

Any of the LPV synthesis techniques considered in this section turn out to be less
conservative than linear fractional transformation (LFT) gain-scheduling techniques
[30, 2, 20, 38] which disregard the parameter variation rates. About 10 percent degra-
dation of the performance level has been observed in this simple application. Finally,
the techniques behave as theoretically expected and provide valuable LPV synthesis
alternatives.

7. Conclusion. A general framework for relaxing PLMI problems into conven-
tional LMI problems has been introduced. The techniques are simple and exploit or
enforce directional convexity properties of PLMI problems. A nonexhaustive list of
implications of the proposed techniques in control theory have been examined with
a particular focus on LPV synthesis, a most important emerging technique in recent
years.

This work raises some open questions, some of which might be beyond reach, but
also suggests some directions for future research:

(i) For affine PLMI problems, directional convexity concepts are less conserva-
tive than the S-procedure but a theoretical comparison is still lacking in the general
case. From the viewpoint of computational efforts, one can hardly draw definitive con-
clusions but the proposed approach is better exploited by using primal SDP interior-
point techniques since it involves less decision variables than the S-procedure. We note
experimentally that the multiconvexity approach is more efficient for problems with
significantly more states than parameters, which is a common situation in control
applications.

(ii) An unsolved issue is the following: Is it possible to exploit directional quasi-
convexity instead of directional convexity for some classes of PLMI problems?
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(iii) Other topics not examined in this paper and for which the proposed tech-
niques might prove useful are robust least-squares and robust interpolation and ap-
proximation. The relaxation of some intractable generic robust convex programs is
also of interest.

Appendix A. Proof of Theorem 5.2. Following [44], the LPV control problem
with guaranteed L2-gain performance γ is solvable whenever one can find an LPV
controller such that a suitable extension of the bounded real lemma is satisfied with a
quadratic parameter-dependent Lyapunov function, continuously differentiable with
respect to θ. This is nothing else than statement (i) of the theorem.

In turn, the latter conditions are equivalent to the existence of continuously
parameter-dependent symmetric matrices X(θ) and Y (θ) such that LMI conditions
(5.8)–(5.10) hold for all (θ, θ̇) on H ×Hd. This assertion is a slight extension of the
main result in [44, 17, 22]. Assume a (closed-loop) Lyapunov function establishing
L2-gain performance is

V (x, xK , θ) :=

[
x
xK

]T
P (θ)

[
x
xK

]
,

where

P :=

[
X N
NT 3

]
and P−1 :=

[
Y M
MT 3

]
.

It trivially holds that

I −XY = NMT .

Then, defining

ΠY :=

[
Y I
MT 0

]
, ΠX :=

[
I X
0 NT

]

yields the identities PΠY = ΠX , and

ΠTY
d

dt
PΠY =

[ −Ẏ −(XẎ +NṀT )T

−(XẎ +NṀT ) Ẋ

]
,

which is the only additional term with respect to the customary H∞ control problem
in [17]. This establishes statement (ii).

To prove assertion (iii), we first note that the rates of variation θ̇i are involved
linearly in (5.8) and (5.9), and thus it suffices to assess feasibility of these LMIs over
H × vertHd. By virtue of Finsler’s lemma [31, 22], the LMIs (5.8)–(5.9) with (θ, θ̇)
ranging over H × vertHd are feasible if and only if there exists a function σ(.) of θ
such that

 Ẋ +XA+ATX XB1 CT1
BT

1 X −γI DT
11

C1 D11 −γI


− σ(θ)


 CT2
DT

21

0


 [C2 D21 0 ] < 0,(A.1)


−Ẏ + Y AT +AY Y CT1 B1

C1Y −γI D11

BT
1 DT

11 −γI


− σ(θ)


 B2

D12

0


 [BT

2 DT
12 0 ] < 0 .(A.2)
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Therefore, we end up with an infinite set of LMIs whose members are all of the form

Ψ(θ)− σ(θ)R(θ)R(θ)T < 0, θ ∈ H .(A.3)

Denote R⊥ a continuous basis of the nullspace of RT . This is always possible [21, 25]
by virtue of assumption (A3). It follows that [R(θ) R⊥(θ) ] is a continuous invertible
matrix over H. With the proviso that the LMIs (A.3) are feasible, it is not difficult
to see using Schur complements that admissible σ are described as

(A.4)

σ(θ) > l(θ) := λ
{
(RTΨR− (RTΨR⊥)(RT⊥ΨR⊥)−1(RTΨR⊥)T )(RTRRTR)−1

}
,

θ ∈ H,

where λ(.) stands for the maximum eigenvalue of a matrix. From the continuity of
both the plant’s state-space data (assumption (A1)) and the variables X(θ) and Y (θ),
we deduce that l(θ) in (A.4) is also continuous with respect to θ. Now since H is a
compact set, the choice

σ(θ) := σ > sup
θ∈H

l(θ)

is again a valid choice for σ. It follows that the LMIs (A.1) and (A.2) are feasible if
and only if this is so for a constant sufficiently large σ. This completes the proof of
the theorem.

REFERENCES

[1] P. Apkarian and R. J. Adams, Advanced gain-scheduling techniques for uncertain systems,
IEEE Trans. Control System Tech., 6 (1997), pp. 21–32.

[2] P. Apkarian and P. Gahinet, A convex characterization of gain-scheduled H∞ controllers,
IEEE Trans. Automat. Control, 40 (1995), pp. 853–864, p. 1681.

[3] D. Arzelier, J. Bernussou, and J. M. Garcia, About quadratic stabilizability of generalized
linear systems, in Proceedings of the IEEE Conference on Decision and Control, Brighton,
UK, 1991, pp. 914–920.

[4] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998),
pp. 769–805.

[5] A. Ben-Tal and A. Nemirovski, Robust solutions to uncertain linear problems, Oper. Res.
Lett., 25 (1999), pp. 1–13.

[6] A. Ben-Tal and A. Nemirovski, Robust Truss topology design via semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 991–1016.

[7] J. Bernussou, P. L. D. Peres, and J. C. Geromel, A linear programming oriented procedure
for quadratic stabilization of uncertain systems, Systems Control Lett., 13 (1989), pp. 65–
72.

[8] S. Boyd and L. ElGhaoui, Method of centers for minimizing generalized eigenvalues, Linear
Algebra Appl., 188 (1992), pp. 63–111.

[9] S. Boyd, L. ElGhaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
Systems and Control Theory, SIAM Stud. Appl. Math., 15, SIAM, Philadelphia, 1994.

[10] G. Chen and T. Sugie, New upper bound of the real µ on the parameter dependent multiplier,
Proceedings of the IEEE Conference on Decision and Control, 1996, pp. 1293–1294.

[11] J. Doyle, Analysis of feedback systems with structured uncertainties, Proc. IEE-D, 129 (1982),
pp. 242–250.

[12] J. Doyle, J. E. Wall, and G. Stein, Performance and robustness analysis for structured
uncertainties, Proceedings of the IEEE Conference on Decision and Control, 1982, pp. 629–
636.

[13] M. K. H. Fan, A. L. Tits, and J. C. Doyle, Robustness in the presence of mixed paramet-
ric uncertainty and unmodeled dynamics, IEEE Trans. Automat. Control, AC-36 (1991),
pp. 25–38.



PARAMETERIZED LINEAR MATRIX INEQUALITIES 1263

[14] A. L. Fradkov and V. A. Yakubovich, The S-procedure and duality relations in nonconvex
problems of quadratic programming, Vestn. Lening. Univ. Math., 6 (1979), pp. 101–109. In
Russian, 1973.

[15] M. Fu and N. E. Barabanov, Improved upper bounds for the mixed structured singular value,
IEEE Trans. Automat. Control, 42 (1997), pp. 1447–1452.

[16] P. Gahinet, Explicit controller formulas for LMI-based H∞ synthesis, in Proceedings of the
American Control Conference, Baltimore, MD, IFAC, 1994, pp. 2396–2400.

[17] P. Gahinet and P. Apkarian, A linear matrix inequality approach to H∞ control, Internat.
J. Robust Nonlinear Control, 4 (1994), pp. 421–448.

[18] P. Gahinet, P. Apkarian, and M. Chilali, Parameter-dependent Lyapunov functions for
real parametric uncertainty, IEEE Trans. Automat. Control, 41 (1996), pp. 436–442.

[19] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Math-
Works Inc., Natick, MA, 1995.

[20] A. Helmersson, Methods for Robust Gain-Scheduling, Ph.D. thesis, Linkoping University,
Sweden, 1995.

[21] A. Isidori, Nonlinear Control Systems: An Introduction, 2nd ed., Springer-Verlag, Berlin,
1989.

[22] T. Iwasaki and R. E. Skelton, All controllers for the general H∞ control problem: LMI
existence conditions and state space formulas, Automatica J. IFAC, 30 (1994), pp. 1307–
1317.

[23] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear com-
bination of matrices, SIAM J. Control Optim., 31 (1993), pp. 1360–1377.

[24] H. Konno, P. Thach, and H. Tuy, Optimization on Low Rank Nonconvex Structures, Kluwer
Academic Publishers, Norwell, MA, 1997.

[25] W. Lu and J. C. Doyle, H∞ Control of nonlinear systems: A convex characterization, IEEE
Trans. Automat. Control, 40 (1995), pp. 1668–1674.

[26] G. Meinsma, Y. Shrivastava, and M. Fu, A dual formulation of mixed µ and the losslessness
of (D,G)-scaling, in Proceedings of the IEEE Conference on Decision and Control, Kobe,
Japan, 1996, pp. 1287–1292.

[27] A. Nemirovski and P. Gahinet, The projective method for solving linear matrix inequalities,
Math. Programming, 77 (1997), pp. 163–190.

[28] Y. E. Nesterov and A. S. Nemirovski, Interior Point Polynomial Methods in Convex Pro-
gramming: Theory and Applications, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia,
1994.

[29] F. Oustry, L. Elghaoui, and H. Lebret, Robust solutions to uncertain semidefinite programs,
SIAM J. Optim., 9 (1998), pp. 33–52.

[30] A. Packard, Gain scheduling via linear fractional transformations, Systems Control Lett., 22
(1994), pp. 79–92.

[31] I. R. Petersen and C. V. Hollot, A Riccati equation approach to the stabilization of uncer-
tain linear systems, Automatica J. IFAC, 22 (1986), pp. 397–411.

[32] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-complete, Math. Control Signals
Systems, 6 (1994), pp. 1–9.

[33] R. T. Reichert, Robust autopilot design using µ-synthesis, in Proceedings of the American
Control Conference, San Diego, CA, IFAC, 1990, pp. 2368–2373.

[34] F. Rendl, R. Vanderbei, and H. Wolkowicz, A primal-dual interior-point method for the
max-min eigenvalue problem, Tech. report CORR 93-30, University of Waterloo, Dept. of
Combinatorics and Optimization, Waterloo, Ontario, Canada, 1993.

[35] I. Rosenberg, 0− 1 optimization and nonlinear programming, Rev. Francaise Automat. Infor-
mat. Recherche Operationelle, 6 (1972), pp. 95–97.

[36] M. G. Safonov and J. Doyle, Minimizing conservativeness of robust singular values, in
Multivariable Control, S. G. Tzafestas, ed., Reidel, Dordrecht, Boston, London, 1984,
pp. 197–207.

[37] C. Scherer, Mixed H2/H∞ control, in Trends in Control: A European Perspective, Special
Contribution to the European Control Conference 95, Springer-Verlag, Berlin, 1995.

[38] G. Scorletti and L. E. Ghaoui, Improved linear matrix inequality conditions for gain-
scheduling, in Proceedings of the IEEE Conference on Decision and Control, New Orleans,
LA, 1995, pp. 3626–3631.

[39] D. D. Siljak, Parameter space methods for robust control design: A guided tour, IEEE Trans.
Automat. Control, 34 (1989), pp. 674–688.

[40] H. D. Tuan and P. Apkarian, Relaxations of parameterized LMIs with control applications,
Internat. J. Robust Nonlinear Control, 9 (1999), pp. 59–84.

[41] H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Publishers, Norwell, MA,



1264 PIERRE APKARIAN AND HOANG DUONG TUAN

1998.
[42] L. Vandenberghe and S. Boyd, Primal-dual potential reduction method for problems involving

matrix inequalities, Math. Programming Ser. B, 69 (1995), pp. 205–236.
[43] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[44] F. Wu, X. Yang, A. Packard, and G. Becker, Induced L2-norm control for LPV system

with bounded parameter variations rates, Internat. J. Robust Nonlinear Control, 6 (1996),
pp. 983–998.

[45] V. A. Yakubovich, The S-procedure in non-linear control theory, Vestnik Leningrad Univ.
Math., 4 (1977), pp. 73–93. In Russian, 1971.

[46] P. M. Young, M. P. Newlin, and J. C. Doyle, µ analysis with real parametric uncertainty,
in Proceedings of the IEEE Conference on Decision and Control, vol. 2, Brighton, UK,
1991, pp. 1251–1256.

[47] J. Yu and A. Sideris, H∞ control with parametric Lyapunov functions, Systems Control Lett.,
30 (1997), pp. 57–69.



PIERI HOMOTOPIES FOR PROBLEMS IN ENUMERATIVE
GEOMETRY APPLIED TO POLE PLACEMENT IN LINEAR

SYSTEMS CONTROL∗
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SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. 1265–1287

Abstract. Huber, Sottile, and Sturmfels [J. Symbolic Comput., 26 (1998), pp. 767–788] pro-
posed Pieri homotopies to enumerate all p-planes in C

m+p that meet n given (m + 1 − ki)-planes
in general position, with k1 + k2 + · · · + kn = mp as a condition to have a finite number of solu-
tion p-planes. Pieri homotopies turn the deformation arguments of classical Schubert calculus into
effective numerical methods by expressing the deformations algebraically and applying numerical
path-following techniques. We describe the Pieri homotopy algorithm in terms of a poset of simpler
problems. This approach is more intuitive and more suitable for computer implementation than the
original chain-oriented description and provides also a self-contained proof of correctness. We extend
the Pieri homotopies to the quantum Schubert calculus problem of enumerating all polynomial maps
of degree q into the Grassmannian of p-planes in C

m+p that meet mp + q(m + p) given m-planes
in general position sampled at mp + q(m + p) interpolation points. Our approach mirrors existing
counting methods for this problem and yields a numerical implementation for the dynamic pole
placement problem in the control of linear systems.

Key words. cheater’s homotopy, combinatorial root count, continuation methods, control the-
ory, dynamic pole placement problem, enumerative geometry, Grassmannian, linear system, local-
ization pattern, numerical Schubert calculus, Pieri homotopy, polynomial system, poset, quantum
Schubert calculus

AMS subject classifications. 14N10, 14M15, 65H10, 68Q40, 93B27, 93B55

PII. S036301299935657X

1. Introduction. A general method to solve geometric problems proceeds by
moving the input data to a special position, solving the special configuration, and then
deforming the solutions of the special problem into those of the original configuration.
As long as the number of solutions remains finite, this number is constant during
deformation. This principle of “conservation of number” was developed by Pieri [27],
Schubert [34], and Zeuthen [50].

A classical example in enumerative geometry as explained in [18] consists of find-
ing the two lines in projective 3-space that meet four given lines. More generally, we
want to enumerate all p-planes in C

m+p that meet mp given m-planes. In the late
nineteenth century, Schubert [35] established recursive and explicit formulas for the
number of p-planes meeting a set of mp m-planes in general position. This problem
was also treated by Pieri in [27]. In the early 1980s, Brockett and Byrnes [5] showed
that these p-planes correspond to feedback laws which control a machine whose evolu-
tion is governed by a linear system of first-order differential equations. This problem
of control theory [6], [10], [17], [48] is known as the (static) pole placement problem.
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Based on his geometric proof of Pieri’s formula [27], Sottile introduced intrinsic
deformations in [38] to solve general intersection conditions given by n planes in
general position of dimension m + 1 − ki for i = 1, 2, . . . , n. The condition that
k1 + k2 + · · ·+ kn = mp guarantees a finite number of p-planes meeting those n given
planes. In [16], Huber, Sottile, and Sturmfels reinterpreted these deformations as
computational procedures. The resulting algorithm was called the Pieri homotopy
algorithm.

Our understanding arose from a first implementation of the Pieri homotopy al-
gorithm and yielded the notion of what we call a “localization pattern.” We feel that
this is the key concept in our derivation of the algorithm. It is the vehicle through
which the combinatorial techniques for enumerating solutions are translated back into
synthetic geometry and realized. Since our aim is to understand practical complexity
issues, we excuse ourselves from the explicit use of Schubert varieties (as in [15]) in
our description. Nevertheless we obtain a self-contained proof of correctness, indepen-
dent of [16]. The backbone of our approach is the poset of localization patterns used
to count the roots combinatorially [43]. We use this poset to set up the homotopies
and to control the flow of data between them. Our current description of the algo-
rithm in [16] is both simpler than the original and also more suitable for computer
implementation.

A novel feature of this paper is the development of Pieri homotopies for the dy-
namic pole placement problem. The connection between this problem and the Schu-
bert calculus was established by Rosenthal in [31] and further developed in [28], [29],
[46], and [47]. We arrived at this generalization thanks to a hint by Sottile (explic-
itly pronounced in [40]) by reverse engineering the root counting procedure described
in [30]. Givenmp+q(m+p) generalm-planes in C

m+p sampled atmp+q(m+p) inter-
polation points, we can compute all polynomial maps of degree q producing p-planes
that meet those given m-planes at the prescribed interpolation points.

Other root counts for these enumerative problems are given in [4]. In [42], quan-
tum Gröbner and SAGBI homotopies are derived. The adjective “quantum” refers
to the important connections between this problem of enumerative geometry and
physics [7], although as mentioned in [4], one could also speak of “modular” Schubert
calculus because of the “modulo (m+p)” calculations. Another related problem is the
eigenvalue completion problem [13]. We mention [3] as a recent alternative approach
to the dynamic pole placement problem.

Homotopies for enumerative geometry are available in a separate module of the
publicly available software PHCpack [44]. The Pieri homotopy algorithm consists of
a combinatorial root count, the symbolic setup of the homotopies, and the tracing
of the solution curves. This last stage accounts for most of the computational work
and is achieved using numerical continuation methods. See [1], [22] for introductions
to and [2], [19] for recent surveys of numerical continuation. Computational experi-
ence suggests that the Pieri homotopies perform better than the Gröbner and SAGBI
homotopies described in [16]. An explanation for this might be that the Pieri homo-
topies are more finely tuned to the geometry of the intersection problem than these
other, extrinsic methods. In addition we point out that those Gröbner and SAGBI
homotopies are restricted to the hypersurface (ki = 1) intersection conditions.

In our study of the Pieri homotopy algorithm, we first specialized the general
description of [16] into the simpler case of hypersurface intersection conditions. Our
presentation below reflects this progression from the special to the general. In the
next section we show how to find the two lines in projective 3-space that meet four
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given lines. This example is then generalized to hypersurface and general intersection
conditions in the third and fourth sections. In the fifth section we describe our quan-
tum Pieri homotopies and their use in solving the dynamic pole placement problem.
The key step is the extension of our notion of localization patterns to degree q-maps of
p-planes. The development of numerical algorithms for the pole placement problem is
formulated as an open problem in [33]. At the end of this paper we list computational
experiences to illustrate the efficiency of our solution method.

2. The geometry of the Pieri deformations. We can illustrate the geometry
of the Pieri deformations on the simplest example of determining the two lines meeting
four given lines in projective 3-space.

Recall that projective 3-space is the set of 1-dimensional subspaces of C
4. We

write C
4 as the span 〈e1, e2, e3, e4〉 of the standard basis vectors e1 = (1, 0, 0, 0),

e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1). Denote the four given lines
by L1, L2, L3, and L4. Without loss of generality we assume that L3 is spanned
by the first two basis vectors, L3 = 〈e1, e2〉, and L4 by the last two basis vectors,
L4 = 〈e3, e4〉. In general, the other two lines L1 and L2 do not meet each other. This
general situation is at the right of Figure 2.1. Here we are visualizing the real positive
orthant of projective 3-space as the interior of the tetrahedron spanned by e1, e2, e3,
and e4.
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Fig. 2.1. In P
3 two thick lines meet four given lines L1, L2, L3, and L4 in a point. At the left

we see a special configuration and the general configuration is at the right.

The special position of L3 and L4 allows the following special choice of coordinates
for lines X which meet them:

X = 〈x1,x2〉 =



x11 0
x21 0
0 x32

0 x42


 .(2.1)

Here the two columns of X, its first and second generators, are chosen to be its points
of intersection with L3 and L4, respectively. Lines expressed in these coordinates
already satisfy the intersection conditions imposed by L3 and L4. Since the columns
of X may be scaled independently we have exactly the two degrees of freedom needed
to meet the two remaining intersection conditions imposed by L1 and L2.

If we take L2 = 〈e1, e3〉, as at the left of Figure 2.1, we solve the problem as
follows. The lines passing through both L2 and L3 form the plane 〈e1, e2, e3〉 which
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intersects L4 at e3. Similarly we see that lines through L2 and L4 form the plane
〈e1, e3, e4〉 which must intersect L3 at e1. Thus we see that any line other than L2

which meets L2, L3, and L4 must contain either e1 or e3. In the first case, consider
the set of lines passing through e1 and intersecting L4. These lines form a plane
〈e1, e3, e4〉 which must intersect L1 in a unique point a and thus the line 〈e1,a〉 is the
unique line through e1 intersecting L1, L2, L3, and L4. In the second case, the set
of lines through e3 which intersect L3 form a plane which intersects L1 in a unique
point a′. So we find that the line 〈e3,a

′〉 is the unique line passing through e3 and
intersecting L1, L2, L3, and L4.

An algebraic way to look at this argument goes as follows. Any line which meets
both L3 and L4 must be expressible in the form (2.1). In order for X to meet
L2 = 〈e1, e3〉 we must be able to find nontrivial linear combinations such that λ1x1 +
λ2x2 = γ1e1 + γ2e3. That is, the system



1 x11 0 0
0 x21 0 0
0 0 1 x32

0 0 0 x42






−γ1
λ1

−γ2
λ2


 = 0(2.2)

must have a nontrivial solution. This can clearly happen only when x21 = 0 or
x42 = 0. The first case then describes the plane of lines containing e1 and meeting
L4 and gives rise to the solution 〈e1,a〉 as above, while x42 = 0 yields the solution
〈e3,a

′〉.
Schubert’s principle [34], [50] of “conservation of number” suggests that the num-

ber of solutions to the general problem will be the same as the number of the solutions
in the special case we just looked at, i.e., 2. In order to adjust this argument to al-
low us to find the solutions as well as count them we must consider the process of
deforming L2 to special position.

The special position we use for L2 is given by S = 〈e1, e3〉, so our deformed
problem is the following: find all X such that det(X|L1) = 0, det(X|S) = 0,
det(X|L3) = 0, and det(X|L4) = 0. Note that the last two equations are already
satisfied when X is chosen as in (2.1). Specializing the second condition can be
achieved by moving the line S into L2 taking a convex combination (1− t)S + tL2 of
the generating matrices S and L2 with t varying from 0 to 1. Fixing the first condition
and enforcing nontrivial intersection with the moving line yields the homotopy

H(X, t) =

{
det(X|(1− t)S + tL2) = 0, where X = 〈x1,x2〉,
det(X|L1) = 0, x1 ∈ L3,x2 ∈ L4.

(2.3)

Numerical continuation methods trace the solution paths starting at the two solutions
X = 〈e1,a〉 and X = 〈e3,b〉 calculated above for t = 0 to the solutions of the original
problem at t = 1.

The straightforward application of this geometric principle of conservation of
number may fail if our special position is too special in the sense that it is a singular
point in the parameter space of configurations. This is a very subtle condition that is
a property of the special position as a member of the set of problem instances and can
not be determined by considering the geometry of the special position itself. Therefore
we need to examine the algebraic formulation of the deformation near t = 0. As local
coordinates we choose x11 = 1 and x32 = 1. Then det(X|S) = 0⇔ x21x42 = 0. So, at
t = 0, as either x21 = 0 or x42 = 0, the structure of the matrix of partial derivatives
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of the system H(X, t = 0) is

[
x42 x21

C13x42 − C14 C13x21 − C23

]
,(2.4)

with Cij the 2-by-2 minor by selecting rows i and j from the matrix representation
of L4. For L1 in general position, the two start solutions are regular and admit
well-defined deformations. For general L2, this regularity is maintained up to t = 1.

3. Pieri-type deformations for hypersurface conditions. In this section
we extend the approach of the last section to produce an algorithm for computing all
p-planes in C

m+p that intersect mp given m-planes Li in general position. In order to
have a uniform description of the algorithm, we will skip the step of specializing the
last two m-planes, and the last step of using linear algebra to intersect with the first
m-plane. Instead we will describe the algorithm solely in terms of the continuation
step which involved deforming L2 to S. Later we shall see that adding these linear
algebra steps back in amounts to truncating the algorithm as we describe it and does
yield a significant computational savings.

We represent p-planes in C
m+p by (m + p) × p-matrices whose columns form a

set of generators. Solutions to our problem are represented by variable (m + p) × p-
matrices. We move the input data into special positions such that the solution planes
have matrix representations with zero coordinates at specific positions. To specify
those positions, we need the following definition.

Definition 3.1. A localization pattern is an element of {0, �}(m+p)×p such that
all stars in a column are contiguous and the row indices in which the bottommost and
topmost stars occur strictly increase as functions of the column number. These row
indices are called the top and bottom pivots, respectively. A p-plane fits a localization
pattern if it can be represented by a matrix of generators with zero entries everywhere
the localization pattern prescribes them.

Consider, for example, the case where p = 2,m = 4 and we are looking for
all 2-planes which meet eight 4-planes. We can take the last two planes as L7 =
〈e1, e2, e3, e4〉 and L8 = 〈e3, e4, e5, e6〉. For any 2-plane that meets both these planes
nontrivially we may choose its generators such that one generator lies in L7 and the
other in L8. Such a 2-plane is represented by a variable matrix




x11 0
x21 0
x31 x32

x41 x42

0 x52

0 x62




which fits the pattern




� 0
� 0
� �
� �
0 �
0 �



.(3.1)

Planes which satisfy this localization pattern already meet L7 and L8. Equivalently,
any specialization of the variables xij in the pattern will result in a p-plane which has
nontrivial intersection with L7 and L8. Thus our problem is to find values of these
variables such that the plane represented by (3.1) meets the remaining 4-planes. We
achieve this by specializing the input planes as follows.

Definition 3.2. Given a localization pattern X, the special m-plane for the top
(bottom) pivots of X is the m-plane SX spanned by the standard basis vectors not
indexed by top (bottom) pivots.
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It turns out that p-planes, which fit a localization pattern X and meet its special
m-plane SX , must fit a set of localization patterns easily derived from X in the
following way.

Definition 3.3. A top (bottom) child of a localization pattern X is a localization
pattern obtained by turning a topmost (bottommost) star of X to a zero.

For the bottom localization pattern in Figure 3.1 having bottom pivots [3 5],
the special 4-plane is 〈e1, e2, e4, e6〉. Lemma 3.4 states that all 2-planes meeting this
special 4-plane and fitting the bottom pattern must fit one of its two children.


� 0
� �
0 �
0 �
0 �
0 0


❍❍



� 0
� �
� �
0 �
0 �
0 0


✟✟



� 0
� �
� �
0 �
0 0
0 0


 [3 4]✟

[3 5]
❍[2 5]

Fig. 3.1. A localization pattern with bottom pivots [3 5] and its two children [2 5] and [3 4]. At
the right we see the bottom pivots used as a shorthand notation.

Lemma 3.4 (hypersurface Pieri rule). Let SX be the special m-plane for top
(bottom) pivots of the localization pattern X. Every p-plane that fits X and meets SX
also fits one of the (at most p) children of X. Conversely every p-plane that fits a
child of X fits X and meets SX .

Proof. A p-plane that fits X meets SX if and only if, for all specific values for the
variables corresponding to the stars in the patternX, we can find a linear combination
of the columns of the p-plane which lies in SX . This means that the intersection of
the p-plane with SX can be represented as a linear combination of the columns of
SX . Finding this linear combination is equivalent to finding a nontrivial element of
the kernel of [X|SX ]. Since the m columns of SX have pivots distinct from those of
the p columns of X, the matrix [X|SX ] is an (m + p) × (m + p)-matrix with m + p
distinct pivot rows. So we can rearrange [X|SX ] into a triangular matrix, which is
singular precisely when one of the diagonal elements coming from X is specialized to
zero.

The repeated application of Lemma 3.4 builds up a poset diagram which allows
us to count the solution planes as shown in Figure 3.2. The poset starts at the trivial
localization pattern X0 whose ith column has its top pivot in row i and its bottom
pivot in rowm+i. While there are p-planes that do not fit X0, the set of p-planes that
do fit X0 includes those for which all Plücker coordinates are nonzero. This is a dense
open subset of the Grassmannian, and with the general position assumption on our
input planes, it will suffice to count the number of solution planes which fit X0. This
start pattern, X0 has exactly mp+p stars, and our original list of conditions contains
exactly mp given m-planes. Initially we apply Theorem 3.5 starting at X = X0 and
n = mp in the following.

Theorem 3.5. Consider a localization pattern X with p+n stars. For n = 0, X
counts for one solution. For n > 0, the number of p-planes fitting X and meeting n
general m-planes equals the sum of the number of solution planes fitting the children
of X and meeting n− 1 general m-planes.

Theorem 3.5 is proven by induction and follows from Lemma 3.7 establishing the
correctness of the Pieri homotopy. Applying the Pieri homotopy algorithm following
the root counting procedure through the poset yields an effective algorithm for actually
finding the solutions.

Definition 3.6. Let X be a localization pattern and SX the special m-plane
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[1 2] 1

[2 3] 1

[3 4] 2

[4 5] 5

[5 6] 14

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8

❍ ❍

❍ ❍

❍ ❍

❍ ❍

✟ ✟

✟ ✟

✟ ✟

✟ ✟
[1 3] 1

[2 4] 2

[3 5] 5

[4 6] 14
❍ ❍

❍ ❍

❍ ❍

✟ ✟

✟ ✟

✟ ✟
[1 4] 1

[2 5] 3

[3 6] 9
❍ ❍

❍ ❍
✟ ✟

✟ ✟
[1 5] 1

[2 6] 4
❍ ❍
✟ ✟

[1 6] 1

Fig. 3.2. Combinatorial root count for p = 2, m = 4. The brackets at the left are the bottom
pivots. The top pivots remain [1 2]. The trivial localization pattern X0 corresponds to [5 6]. The
roots are counted at the right, starting at the top and adding up the numbers at the leaves while
moving down to the root of the poset yielding 14 solutions.

for top (bottom) pivots of X. Suppose that n − 1 general intersection conditions are
satisfied for children Y of X, i.e., det(Y |Li) = 0 for i = 1, 2, . . . , n−1. To satisfy the
nth intersection condition, the Pieri homotopy H(X, t) = 0 is

H(X, t) =

{
det(X|(1− t)SX + tLn) = 0,

det(X|Li) = 0, i = 1, 2, . . . , n− 1,
t ∈ [0, 1].(3.2)

To illustrate the Pieri homotopy, we consider the situation as in going down
to [3 5], with the three 2-planes that fit the left child [2 5] and two 2-planes that fit
the right child [3 4]. Locally the situation is pictured in Figure 3.1, with the global
root counting procedure in Figure 3.2. At t = 0, n = 4, and we have already folded in
the first four intersection conditions and are moving the special 4-plane 〈e1, e2, e4, e6〉
to the fifth input plane. In general we have the situation as in the following Lemma.

Lemma 3.7. Consider a localization pattern X with p + n stars and n complex
m-planes Li in general position. Suppose we are given all p-planes that meet Li,
i = 1, 2, . . . , n− 1, and fit one of the children of X. Then the Pieri homotopy defines
regular paths of p-planes that start at the given p-planes and end at those p-planes
which meet all n general m-planes Li while fitting X.

Proof. Our working space is a product of projective spaces, with as many spaces
as there are columns in X. To describe this multiprojective space more precisely, we
count the stars inX. ForX defined by p-tuples of top and bottom pivots, respectively,
α, β ∈ N

p, we embed the p-planes into P
d1 × P

d2 × · · · × P
dp with di = βi − αi,

i = 1, 2, . . . , p. To fix an affine coordinate chart we set one coordinate to 1 in every
column by scaling the corresponding generator of the p-plane.

Essentially we are applying a multihomogeneous homotopy [23, 24] in a general
situation. By the assumption of Lemma 3.7, all p-planes at t = 0 are regular solutions,
as the m-planes Li are in general position. This general position is maintained for all
t ∈ [0, 1], ensuring the smoothness of the solution paths.

We still have to show that we will find all p-planes. Suppose that at t = 1 there
are more solutions than the number of paths we started with. Going backward with
those additional solutions from t = 1 to t = 0 we move either to a singular solution
or to a solution at infinity. But at t = 0, all solutions are regular. By Lemma 3.4, all
solutions have been found and since the localization patterns admit any affine chart,
there are no solutions at infinity for t = 0.

We remark that the root count in Figure 3.2 obtained by changing only bottom
pivots is just one possibility. One could alternatingly change bottom and top pivots
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in building up the levels of the poset. As was done in section 2, linear algebra can be
applied to intersect with the first input plane. Another, more significant optimization
includes the special position of the last two input planes. Choosing a basis so that the
last two m-planes are already in special position Lmp−1 = 〈e1, . . . , em〉 and Lmp =
〈ep+1, . . . , em+p〉 amounts to enforcing a different starting pattern for the poset. This
has two advantages. The first is that it really forces any pattern meeting all original
planes to meet the starting localization pattern regardless of the genericity of the
remaining input planes. The second is that it saves the work of doing the two final
and most costly (because of highest dimension) continuation steps.

In contrast to the approach of [16], our description treats the hypersurface Pieri
homotopy algorithm separately from the case of general intersection conditions. This
allows us to simplify the definition of special m-planes. However, when all input
m-planes are spanned by real matrices, we need the more general choice of special
m-planes as defined in [16] to enforce complex arithmetic and avoid quadratic turning
points along the solution paths. Also for the general intersection conditions we need
the definition of [16] for special m-planes. So in Definition 3.2 we replace each of the
standard basis vectors ei by vectors bi that have random complex entries in rows i and
higher (lower) for bottom (top) pivots i. We assume this adaptation of Definition 3.2
for the rest of the paper.

4. General intersection conditions. In the general case we are looking for
p-planes in C

m+p which nontrivially meet a list of generic subspaces L1, L2, . . . , Ln,
where each Li has dimension m+1−ki. It turns out each of these conditions removes
ki degrees of freedom, and thus we will expect a finite number of solutions when
k1 + k2 + · · ·+ kn = mp.

In specializing the ith (m + 1 − ki)-plane Li we move it to the intersection of
ki special m-planes. This deformation of the solution p-planes while moving Li from
general to special position proceeds in ki steps, each time specializing some of the
coordinates of our current representation for the solution planes to zero. In modeling
this deformation we need to be aware of the left and right sides of our localization
patterns when working, respectively, with bottom and top pivots.

Definition 4.1. For the localization patterns X1 and X2 we write X1 ⊃c1 X2

to indicate that X2 is the child of X1 obtained by turning the pivot in column c1 of
X1 to zero. We say that the chain of length j

C = X1 ⊃c1 X2 ⊃c2 · · · ⊃cj−1 X
j(4.1)

is bottom-left if ci ≤ ci−1, i = 2, . . . , j, for bottom pivots ci, or top-right if ci ≥ ci−1,
i = 2, . . . , j, for top pivots ci. If C is bottom-left (resp., top-right), we will call
any child Xj+1 of Xj a bottom-left child (resp., top-right child) of C if the chain
X1 ⊃c1 · · · ⊃cj−1

Xj ⊃cj Xj+1 is also bottom-left (resp., top-right).
In other words, in a bottom-left (top-right) chain, we never take away a bottom

(top) pivot in a column to the right (left) of one we have already taken. Note that
when C = X1 is a chain of length 1, we have not taken any pivots away yet and all
children of X1 are bottom-left (top-right) children of C.

Notice that the pivots of X1 ⊃c1 X2 are the same except in column c1 and that
the new pivot of X2 cannot have been a pivot of X1 (otherwise X2 would not be a
localization pattern). Thus SX1 ∩ SX2 has dimension m − 1. Similarly we can see
that the intersection SX1 ∩ SX2 with SX3 drops the dimension by 1 whenever X3 is
a child of X2 obtained by deleting a pivot in a column with index less than or equal
to c1. This justifies the dimension of the following definition.
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Definition 4.2. For a bottom-left (top-right) chain C = X1⊃c1X2⊃c2 · · · ⊃cj−1

Xj and an index 1 ≤ k ≤ j we define a special (m + 1 − k)-plane SkC to be SkC =
∩ki=1SXi , where the SXi are the special m-planes associated to the Xi in C.

From now on we assume that we work with bottom pivots.
Lemma 4.3 (general Pieri rule). Let C be a bottom-left chain of length j ending

at Xj.
(1) All p-planes fitting Xj and meeting SjC must fit at least one of Xj’s children.

(2) A child Xj+1 meets SjC if and only if Xj+1 is a bottom-left child of C, i.e.,
if and only if Xj ⊃cj Xj+1, where cj+1 ≤ cj.

Proof. Any p-plane which fits Xj and meets SjC must also meet SXj and thus
must be a child of Xj by Lemma 3.4. This proves the first claim.

Recall from the proof of Lemma 3.4 that Xj+1 meets SjC if and only if, given
any specification of the variables of Xj for which the pivot elements are nonzero, it
is possible to find a linear combination of the columns which lies in SjC . Clearly any
such linear combination must involve the decremented column cj+1 and no columns

after it, since all pivots of vectors in SjC must be nonpivots of Xj .
If cj+1 ≤ cj , then the first cj − 1 columns of Xj+1 have remained unchanged all

the way through the chain, and the last has only had successive pivots removed. Thus
SjC must contain a basis vector with a pivot row in each nonpivot of the first cj+1

columns of Xj . So if we take these basis vectors along with the first cj+1 columns of
Xj we get a set of rj column vectors with rj distinct pivots all in rows rj . Since X

j+1

is obtained from Xj by deleting the pivot of column cj+1 we find that the (cj+1)th
column must be in the span of the remaining columns, and this linear relation can be
rewritten to express a vector of SjC as a linear combination of columns of Xj+1.

On the other hand, if cj+1 > cj , then at least one nonpivot of these first cj+1

columns of Xj must have been a pivot previously and SjC must have no vector with a
pivot in this row. In other words we are looking for a solution to a subsystem of the
previous system where we have removed some number of columns (aside from that
corresponding to column cj+1 of Xj+1). Looking at just the pivot rows appearing
we get either a square triangular system with nonzeros on the diagonal (if the pivot
of column cj+1 did not appear) or a nonsquare system with nonzero pivots in each
column. In either case no nontrivial solution is possible.

Theorem 4.4. Let X1 be a localization pattern with p+
∑n−1
i=1 ki stars where the

ki are the codimension conditions specified in the problem (i.e., dim(Li) = m+1−ki).
Further suppose that C = X1 ⊃c1 X2 ⊃c2 · · · ⊃cj−1 X

j (1 ≤ j ≤ kn) is a bottom-left
chain starting at X1. For 1 ≤ k ≤ j let UkC be a generic (m + 1 − kn)-dimensional

subspace of SkC = ∩ki=1SXi . Then the number of p-planes meeting U j−1
C as well as

L1, . . . , Ln−1 and fitting Xj is equal to the sum of the numbers of p-planes meeting
U jC , L1, . . . , Ln−1 and meeting Y as Y runs over all bottom-left children of C.

As with the hypersurface case, Theorem 4.4 is proved by induction and follows
from the correctness of a homotopy. Before describing this homotopy we will show
that the theorem provides a root count procedure generalizing that of the last section.
Combining the homotopy with this counting procedure will yield an effective technique
for producing all solutions. It is a little easier to understand the implications of the
theorem for root counting if we restate it without reference to the intermediate steps
where our input planes are partially specialized.

Corollary 4.5. Suppose X is a localization pattern with p+
∑n
i=1 ki stars where

the ki are codimension conditions specified in the problem (i.e., dim(Li) = m+1−ki).
Then the number of p-planes fitting X and meeting L1, . . . , Ln is equal to the total
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Fig. 4.1. Bottom pivots for p = 2, m = 4, ki = 2, i = 1, 2, 3, 4. Only those arcs and nodes
are drawn that connect localization patterns reachable by bottom-left chains. The corresponding root
count is at the right.

number of p-planes meeting L1, . . . , Ln−1 and fitting at least one descendant Y of X
accessible as a bottom-left child of a bottom-left chain of length kn starting at X.

Proof. To see that the corollary follows from Theorem 4.4, consider applying
the theorem kn times starting from the hypothesis of Corollary 4.5. Note that the
first application of the theorem leaves us with the problem of counting the number
of p-planes meeting L1, . . . , Ln−1, and also meeting an m+ 1− kn plane lying in SX
and fitting a child of X. Each of these numbers can now be counted by applying the
theorem to the new case with n = n − 1, j = 2, and C = C1 ⊃ C2. This process
continues until all our chains have length kn and the subspace U j+1

C = SknC in the
conclusion of Theorem 4.4 is a special m+ 1− kn space and that Lemma 4.3 implies
that any p-plane fitting a bottom-left child of C will meet SjC .

Figure 4.1 illustrates the combinatorial counting method arising from Theorem 4.4
just as Figure 3.2 did for the hypersurface case. Starting at the root of the poset we
apply the theorem to the case n = 4, j = 1, C = [5 6] to see that the number of
2-planes which fit the pattern [5 6] and meet 4 general 3-planes L1, L2, L3, L4 is equal
to the number of p-planes which fit [4 6], meet the 3 general 3-planes L1, L2, L3, and
meet a general 3-plane lying inside the special 4-plane S[5 6]. A second application
of the theorem in the case n = 3, j = 2, C = [5 6] ⊃1 [4 6] now tells us that this
number is equal to the number of p-planes fitting the pattern [3 6] and meeting the
3 general 3-planes L1, L2, L3. Note that by Lemma 4.3 we do not get any solutions
fitting the pattern [4 5] (so we omitted [4 5] in Figure 4.1). Continuing, with n = 3,
j = 1, C = [3 6], we find that the number of 2-planes fitting the pattern [3 6] and
meeting L1, L2, L3 is equal to the sum of the numbers fitting the two children of [3 6]
and meeting L1, L2, and a general 3-plane lying inside of S[3 6]. Applying the theorem
with n = 3, j = 2, to the chains [3 6] ⊃1 [2 6] and [3 6] ⊃2 [3 5] we find that the total
number of 2-planes fitting the pattern defined by [3 6] and meeting L1, L2, and L3 is
equal to the sum of the numbers of 2-planes meeting L1 and L2 and fitting any of the
localization patterns defined by [1 6], [2 5], and [3 4].

It is important to note that during the intermediate steps when the chains C
have length j > 1, the number of solutions at a node depends on both the localization
pattern and the chain. Thus we can only share nodes corresponding to the j = 1 case,
i.e., those nodes with no partially specified input planes. In Figure 4.1 these cases
(with j = 1) are indicated by dotted horizontal lines. Also note that some chains
may not make it kn steps and may simply stop and fail to yield any solutions. Both
these points are illustrated by considering the localization pattern [1 5] in Figure 4.1.
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Applying Theorem 4.4 with n = 2, j = 2, on the chains [1 6] ⊃2 [1 5] yields an
equivalence with the numbers of solutions fitting [1 4] and meeting L1, while applying
the theorem to with n = 2, j = 2, and the chain [2 5] ⊃1 [1 5] yields no solutions
at all since this chain has no bottom-left children. We are now ready to define the
homotopy which provides our effective proof of Theorem 4.4.

Definition 4.6. Let X, n, j, and C be as in Theorem 4.4, and suppose that the
subspaces U jC and U j−1

C are represented by (m+p)×(m+1−kn)-dimensional matrices

made up of random linear combinations of the SjC and Sj−1
C (except that U0

C = Ln).

We define the Pieri homotopy Hj
C(X, t) = 0 to be

Hj
C(X, t) =




all maximal minors of [X|(1− t)U jC + tU j−1
C ],

all maximal minors of [X|Li] = 0,

i = 1, 2, . . . , n− 1,

t ∈ [0, 1].(4.2)

Note that while this homotopy may well have more equations than unknowns it
will turn out to define a nonsingular path of solutions through each starting point.
Here we will prove that these equations define a homotopy which can be used to find
all solutions. We will defer a discussion of techniques for actually following these
paths numerically to section six.

Lemma 4.7. Supposing that the solutions of Hj
C(X, 0) = 0 are all nonsingular as

X varies over all bottom-left extensions of C then the Pieri homotopy Hj
C(X, t) = 0

defines regular paths through these solutions which lead to all solutions of Hj
C(X, 1).

Proof. As in the proof of Theorem 3.5, our working space is the product P
d1×P

d2×
· · ·×P

dp of projective spaces where dj is the number of stars in each column of X, and
we are essentially applying a multihomogeneous homotopy [23, 24]. By assumption
all p-plane solutions at t = 0 are regular, and since U j defines an (m + 1 − kn)-
dimensional subspace of Sj−1

C we see that U j−1, which defines a generic (m + 1 −
kn)-dimensional subspace of Sj−1

C , must also define an intersection problem with a
solution set consisting of a finite number of regular p-planes. This general position is
maintained for all t ∈ [0, 1], ensuring the smoothness of the solution paths.

It remains to show that we will find all p-planes. This argument is exactly analo-
gous to the proof of Theorem 3.5 except that we rely on Lemma 4.3 to show that all
solutions found must fit some bottom-left child of C when we go backwards.

Theorem 4.4 follows from the lemma by induction. We start at the tops of the
counting poset where the localization patterns all have exactly p stars and no subspace
conditions to meet and hence define unique solutions. The hypotheses of the homotopy
lemma are then met and this forces the conditions to be met all the way down.

5. Control of linear systems and quantum Schubert calculus. This sec-
tion is organized into three parts. We first rephrase the dynamic pole placement
problem into a problem of enumerative geometry [31]. Thereafter we derive the crit-
ical dimension [47] for this problem to have a finite number of solutions. Lastly we
state the root-counting theorem [29] and prove it inductively from the correctness of
the Pieri homotopies.

Suppose we want to control a plant with n internal states x ∈ R
n that takes

m-inputs u ∈ R
m and produces p-outputs y ∈ R

p with a dynamic compensator that
has q internal states z ∈ R

q. We picture this situation schematically in Figure 5.1.

The evolution in time of the plant is described by a system of first-order differential
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u ∈ R
m

✲ x ∈ R
n ✲y ∈ R

p

✛z ∈ R
q

✻

Fig. 5.1. Control of an m-input and p-output plant by a qth-order dynamic compensator.

equations:

{
ẋ = Ax+Bu

y = Cx

with x ∈ R
n,u ∈ R

m,y ∈ R
p,

and A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n.(5.1)

The dynamic compensator obeys a qth-order differential equation, described by the
system

{
ż = Fz+Gy

u = Hz+Ky
with z ∈ R

q and
F ∈ R

q×q, G ∈ R
q×p,

H ∈ R
m×q,K ∈ R

m×p.(5.2)

After elimination of u and y, concatenation of (5.1) and (5.2) yields the following
closed-loop system:

[
ẋ
ż

]
=

[
A+BKC BH
GC F

] [
x
z

]
.(5.3)

The behavior of this closed-loop system is determined by the n+ q eigenvalues of the
matrix in (5.3). For a plant given by the matrix triplet (A,B,C) and n+q eigenvalues,
the dynamic pole placement problem asks for the matrix quadruples (F,G,H,K)
which determine the dynamic compensators that yield closed-loop systems with a
specific set of eigenvalues.

We can formulate the dynamic pole placement problem as a geometric problem. In
rewriting the characteristic equation of (5.3) the subscripts in I denote the dimension
of the identity matrix. There is only some hindsight involved in deriving (5.6). The
rest of the equivalences are deduced by elementary row and column operations.

det

(
s

[
In 0
0 Iq

]
−
[
A+BKC BH
GC F

])
= 0,(5.4)

⇔ det

[
sIn −A−BKC −BH

−GC sIq − F
]
= 0,(5.5)

⇔ det



sIn −A−BKC −BH BK −B

−GC sIq − F G 0
0 0 Ip 0
0 0 0 Im


 = 0,(5.6)

⇔ det



sIn −A 0 0 −B

0 sIq − F G 0
C 0 Ip 0
0 −H K Im


 = 0,(5.7)
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⇔ det



In 0 0 −(sIn −A)−1B
0 Iq (sIq − F )−1G 0
C 0 Ip 0
0 −H K Im


 = 0,(5.8)

⇔ det



In 0 0 −(sIn −A)−1B
0 Iq (sIq − F )−1G 0
0 0 Ip C(sIn −A)−1B
0 0 H(sIq − F )−1G+K Im


 = 0.(5.9)

The lastm+p rows and columns of (5.9) represent the intersection ofm-planes defined
by the given triplet (A,B,C) with p-planes determined by the unknown quadruple
(F,G,H,K). As these p-planes depend on the variable s introduced by the term
(sIq − F )−1, they have maximal minors of degree q and we call them degree q-maps.
Thus the dynamic pole placement problem is equivalent to the computation of all
degree q-maps into the Grassmannian of p-planes that meet n given m-planes at
prescribed s-values. It is easy to see that for each specification of an eigenvalue λi
the condition that the characteristic polynomial (5.9) vanish at s = λi enforces one
polynomial condition on the set of degree q-maps.

Note that when q = 0 we are solving the static pole placement problem (u = Ky
and F,G,H = 0) and are looking for maps of degree 0 (i.e., constant maps) which
meet a specific set of given m-planes. In this case the characteristic equation (5.9) has
degree n and we can find solution planes whenever n is less than the dimension mp
of the space of p-planes in (m + p)-dimensional space. At the critical dimension
n = mp, we expect the number of such solutions to be finite. In other words when
q = 0 and n = mp this analysis transforms the static pole placement problem into
the problem of finding all p-planes meeting a set of mp given m-planes as dealt with
in section 3. For general q we will be able to use similar methods to solve it, but
will need the following lemma which specifies the critical dimension and allows us to
produce localization patterns for our maps.

Lemma 5.1. Let q = dp + r with d, r ∈ N and r < p. The set of (m + p) × p
degree q-maps is of dimension mp+q(m+p) and has a dense open subset which can be
represented by matrices with entries of maximum degree d in all but the last r columns
and degree d+ 1 in the remaining r columns.

Proof. Given a polynomial matrix we will define the degree of a column to be
the maximum degree of any of its entries. Also note that two (m+ p)× p polynomial
matrices define the same map if there is an invertible p× p-matrix U(s) which takes
one into the other by right multiplication. Lemma 3.1 from [47] tells us that for
any (m + p) × p degree q-map X ′(s), there is a unique choice of column degrees
d1 ≤ · · · ≤ dp (with q = d1 + · · · + dp) such that the X ′(s) is equivalent to a matrix
X(s) with these column degrees. In other words the sets Ud1,...,dp of degree q-maps
which can be represented by (m + p) × p-matrices with column degrees d1, . . . , dp
disjointly cover the set of degree q-maps.

In order to find the dimension of Ud1,...,dp we will want to find a canonical form for
a general member. By a general member of Ud1,...,dp we mean a matrix X(s) whose
entries are polynomials of appropriate degrees with no algebraic relations among the
coefficients. If we write aki,j for the coefficient of sk in the (i, j)th entry of X(s), we
can express our normal form by requiring a0i,i = 1 for i = 1, . . . , p, and if for all i < j
we have aki,j = 0 if k ≤ dj − di and a0j,i = 0 if dj = di. This normal form is illustrated
in Figure 5.2 and can be achieved by the following algorithm:
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Fig. 5.2. Standard forms for m = 2, p = 5, and q = 3 with 28 and 31 stars, respectively.

for i = 1, 2, . . . , p do
Xi :=

1
a0
i,i
Xi;

for j = i+ 1, i+ 2, . . . , p do

if di = dj , then Xi := Xi − a0
j,i

a0
j,j
Xj ; zero out a0j,i;

for k = 0, 1, . . . , dj − di do Xj := Xj − aki,j
a0
i,i
skXi; zero out aki,j .

The genericity of X(s) ensures that the replacements in this algorithm each intro-
duce no zeros besides the desired one in the coefficient aki,j so that the algorithm is
well defined and will terminate having introduced exactly the zeros required for the
canonical form. It is easy to check that each of the replacements appearing in the
algorithm is equivalent to the application of an invertible transformation. Thus the
result defines the same map as the input. Also note that replacing any column of a
matrix in this form by a nontrivial linear combination of the other columns yields a
matrix which is no longer in this form. Thus any two maps in this form are equivalent
if and only if they have the same specifications for the remaining variables, i.e., the
result provides an affine chart defined on a Zariski dense open subset of Ud1,...,dp .

Since each column of degree di polynomials has (di + 1)(m + p) coefficients, the
total number of parameters we started with was (p+ q)(m+p) = mp+ q(m+p)+p2.
Finally, the algorithm specifies the p diagonal constant coefficients to 1 and introduces
at least two zeros for each ordered pair i < j. In fact the number of zeros introduced
is 2 if di = dj or 1+ dj − di otherwise. Rewriting this last number as 2+ (dj − di− 1)

and adding up over all p(p−1)
2 ordered pairs 1 ≤ i < j ≤ p we find that the number of

parameters specified is p2 +
∑
i<j max(dj − di − 1, 0). The conclusion of the lemma

now follows since the choice of column degrees specified is the only way to choose the
di’s so that they add up to q and no two differ from each other by more than 1.

The normal form used above was easy to define for general Ud1,...,dp and was used
in [47] where they use the Ud1,...,dp as cells in a cellation of the space of degree q-maps.
For our purposes we need only work in the largest of these cells Ud,...,d,d+1,...,d+1. Since
this cell has dimension mp+ q(m+ p) and each root of the degree n+ q characteristic
equation (5.9) enforces one polynomial condition on the space of degree q-maps, we will
expect no solutions whenever n is greater than the critical degree mp+ q(m+ p)− q
and a finite number of solutions when n = mp + q(m + p) − q. In both cases we
expect no solutions of a generic dynamic pole placement problem to lie on these lower-
dimensional pieces. In order to work on Ud,...,d,d+1...,d+1, however, we will want to use
a different normal form analogous to the form used in section 3. To describe it we start
by identifying (m+p)-vectors of degree d polynomials with their (m+p)(d+1)-element
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coefficient vectors as follows:




a01 + a
1
1s+ · · ·+ ad1sd

a02 + a
1
2s+ · · ·+ ad2sd

...
a0m+p + a

1
m+ps+ · · ·+ adm+ps

d


⇔




a01
a02
...

a0m+p

a11
...

a1m+p
...
ad1
...

adm+p




;(5.10)

i.e., the coefficient akj of sk in polynomial entry in row j in the representation on the
left is stored in the ((k+1)(m+ p) + j)th position in the representation on the right.

Definition 5.2. Let q = dp+ r with d, r ∈ N and r < p. A localization pattern
for (m+ p)× p-maps of degree q is given by a table of p columns of zeros and stars,
where the first p−r columns have dimension (d+1)(m+p) and the remaining columns
have dimensions (d + 2). As in the degree 0 case, all stars within a column should
be contiguous and the row indices in which the bottommost and topmost stars occur
strictly increase as a function of the column index. These row indices are called the
top and bottom pivots, respectively. It is further required that no two top (bottom)
pivots differ by m + p or more. We say that a map fits a localization pattern if it is
equivalent to a map given by a matrix of polynomials with the column degrees specified
by the pattern and zero coefficients everywhere the pattern requires them.

The dimension of the space of degree q-maps which meet a localization pattern X
with n stars is n− p. To see this note the requirement that no pivots differ by m+ p
places ensures that no multiple of any column by a power of s has a bottommost star
in a pivot row of any other column. This implies that any linear combination involving
more than one column has the lowest bottommost pivots and highest topmost pivots
of the columns used. Thus only by scaling each column can we change the entries of
a generic map fitting a localization pattern without producing a map which no longer
fits that pattern. On the other hand we may freely scale each column to set one
nonzero entry to 1. This also tells us that patterns with two equal pivots or pivots
that differ by m+ p or more will be fit by a space of dimension lower than n− p.

Given appropriate generality we can use invertible column operations to transform
the normal form for Ud,...,d,d+1,...,d+1 into a localization pattern as follows. First we
allow each column to be arbitrarily scaled and thus turn all ones into stars. Next,
we use column operations with constant scalars on the first block of p− r dimension
(d+1)(m+ p) columns to move all the zeros below the diagonal to the bottom of the
columns. We then use multiples of these columns by s to introduce p−r rows of zeros
to the tops of the block or r (d+2)(m+ p)-dimensional columns. Finally, we can use
scalar column operations on this block to move the below diagonal elements of the
normal form to the bottoms of the columns. This process is illustrated in Figure 5.3,
and by counting diagonally in each block we see that the resulting localization pattern
has top pivots [1, 2, . . . , p] and bottom pivots [d(m+ p) +m+ r + 1, . . . , d(m+ p) +
m + p, (d + 1)(m + p) + m + 1, . . . , (d + 1)(m + p) + m + 1 + r]. We thus see that
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Fig. 5.3. Transforming standard form for m = 2, p = 5, and q = 3 to top level localization
pattern.
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Fig. 5.4. Combinatorial root count for p = 2 = m, q = 1. The brackets at the left are the
bottom pivots. The top pivots remain [1 2]. The trivial localization pattern X0(s, t) corresponds to
[4 7]. The dashed line marks the transition between q = 0 and q = 1. The root count is at the right.

set of maps which fit this localization pattern has dimension mp+ q(m+ p) and will
account for all solutions of the problem of finding degree q-maps meetingmp+q(m+p)
generic m-planes at mp + q(m + p) specified s values. In analogy to the approach
used in section 3, we will proceed by successively specializing the input planes to yield
problems over smaller localization patterns involving fewer conditions.

When specializing the input planes we also must specialize the values for s by
fixing the interpolating points. For bottom pivots we focus on the highest-degree co-
efficients and move s to∞ to select those coefficients. For top pivots the lowest-degree
coefficients are specialized and we move s to 0. To deal with both situations we add an
additional variable t to homogenize the polynomials. So we consider localization pat-
terns of homogeneous polynomials and denote those by X(s, t). The special m-planes
of the hypersurface Pieri case are recycled when we evaluate X(s, t) at (s, t) = (1, 0)
for bottom pivots, or at (s, t) = (0, 1) for top pivots. The solutions to the problem in
special position can be found in the child patterns that differ from X(s, t) in exactly
one position. The analogue to Definition 3.3 is immediate. The main root-counting
theorem follows from the correctness of the Pieri homotopies. See Figure 5.4 for an
example.

Theorem 5.3. Consider a localization pattern X(s, t) with p + n stars. For
n = 0, X(s, t) counts for one solution. For n > 0, the number of maps fitting X(s, t)
and meeting n general m-planes at n values for (s, t) equals the sum of the number
of solution maps fitting the children of X(s, t) and meeting n− 1 general m-planes at
n− 1 values for (s, t).

Note that in the definition of the Pieri homotopies we abuse notation in the sense
that t denotes both the continuation parameter and the variable added to homogenize
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the maps. This abuse is justified for bottom pivots because we move t from 0 to 1 to
move the interpolation point from its specific value (s, t) = (1, 0) at ∞ to a general
value (s, t) = (sn, 1). For top pivots we swap the roles of s and t.

Definition 5.4. Let X(s, t) be a localization pattern and SX be the special
m-plane for bottom pivots at (s, t) = (1, 0). Suppose that the children Y (s, t) of
X(s, t) meet n − 1 general m-planes Li at (si, ti), i.e., det(Y (si, ti)|Li) = 0 for i =
1, 2, . . . , n− 1. To satisfy the nth intersection condition with Ln at (sn, tn), the Pieri
homotopy is defined as

H(X(s, t), s, t) =




det(X(s, t)|(1− t)SX + tLn) = 0,

(s− 1)(1− t) + (s− sn)t = 0,

det(X(si, ti)|Li) = 0,

i = 1, 2, . . . , n− 1,

t ∈ [0, 1].(5.11)

For top pivots s and t swap roles and we consider s−1
n as the target value for s.

When we remove entries from both top and bottom, two independent s-variables are
used. Theorem 5.3 follows from the correctness of the Pieri homotopy, proven in
Lemma 5.5.

Lemma 5.5. Consider a localization pattern X(s, t) with p+n stars and n complex
m-planes Li in general position at the values (si, ti). Suppose we are given all maps
that meet Li at (si, ti), i = 1, 2, . . . , n− 1, and fit one of the children of X(s, t). Then
the Pieri homotopy defines regular solution paths as t varies from 0 to 1, that start at
the given maps and end at those maps that meet all n general m-planes Li at (si, ti)
while fitting X(s, t).

Proof. Observe that in the Pieri homotopy (5.11) at (s, t) = (1, 0) we select in the
first equation with the special m-plane SX in the expansion of det(X(1, 0)|SX) = 0
those stars that are indexed by the bottom pivots. So the first equation in (5.11)
looks like

H1(X(s, t), s, t) = p(X(1, 0)) + t(f(X(s, t), s, t) +O(t)),(5.12)

where p(X(1, 0)) denotes the product of all pivot stars and where f(X(s, t), s, t) is a
polynomial not divisible by t. Ordering the variables as (s, t, xij), the matrix of all
partial derivatives of the homotopy has the following structure:



∂H1

∂s
∂H1

∂t A
1 1− sn B
0 0 C


 .(5.13)

Since the n − 1 planes Li are in general position the rank of C is n − 1. Thus the
Jacobian matrix (5.13) is of full rank if and only if ∂H1

∂s
∂H1

∂t �= 0 at (s, t) = (1, 0). We

can show that f(X(1, 0), 1, 0) �= 0, which implies ∂H1

∂t �= 0. If f(X(1, 0), 1, 0) were
equal to 0, then f(X(s, t), s, t) would be identically zero and H1 could not contain
any term that is linear in t. This could happen only for very special choices of Ln.
Hence at (s, t) = (1, 0), all solutions are regular.

To compactify our space we choose again a multihomogenization according to
the columns of the matrices. The regularity of the homotopy is maintained as t
moves to 1 since Ln is in general position. Suppose we would have more solutions
at (s, t) = (sn, 1) than the number of paths we have started with. Going backward,
when in the Pieri homotopy we let t go from 1 to 0, we would arrive at solutions at
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(s, t) = (1, 0) that do not fit any of the child patterns of X(s, t). But any other child
pattern that is not provided in the root count does not allow enough freedom to meet
the general intersection conditions Li at (si, ti) for i = 1, 2, . . . , n− 1.

We can reformulate the Pieri rule for the general case to deal with general in-
tersection conditions for any q when the codimensions conditions ki, i = 1, 2, . . . , n,
satisfy k1 + k2 + · · · + kn = mp + q(m + p). In the case where q > 0 we work with
brackets modulo (m+ p) to represent the top and bottom pivots.

Consider a chain C ending at the pattern X(s, t). Let α denote the bracket with
the indices of the basis vectors in the intersection of the special m-planes for the
patterns in the chain C. Let β denote the pivots modulo (m + p) for a child Y (s, t)
of X(s, t). Define γ as the bracket obtained from concatenating α and β, sorted in
increasing order. Note that γ may contain repeated entries. We say that Y (s, t) is a
valid child of the chain C if there exists an index i such that

|γi − γ1| < i− 1 for bottom pivots β(5.14)

or

|γl − γi| < l − i for top pivots β,(5.15)

where l is the index of the last element in γ. This rule is consistent with the general
Pieri rule for q = 0 and allows us to compute intersection numbers for any q and for
general codimension conditions.

6. Computational experiments and experiences. The Pieri homotopy al-
gorithm is part of the module of PHCpack [44] that also provides the SAGBI homo-
topies. We compare with those homotopies and give comments on the organization
of the code, numerical aspects, and applications. All timings reported concern a
166 MHz Pentium II processor with 64 Mb internal memory running Linux, unless
indicated otherwise.

6.1. Implementation issues. In setting up the Pieri homotopy algorithm, we
restricted to the case where the input planes are all in general position. In this
case, all the deformations are free from multiplicities. To solve a nongeneric, specific
instance of the problem instance we first solve a generic case and then apply a cheater’s
homotopy to obtain solutions to the original problem. The paradigm of cheater’s
homotopy [20], [21] or coefficient-parameter polynomial continuation [25], [26] makes
it straightforward to set up this homotopy. This paradigm ensures that singularities
can occur only at the end of the solution paths and only when the original problem
has singular solutions.

The general intersection conditions are represented by overdetermined polynomial
systems. A direct method to solve an overconstrained polynomial system of N equa-
tions in n unknowns is to multiply it by an n×N -matrix of random complex numbers
to construct a square system, as proposed in [36]. This reduction to a square system
destroys the geometric structure and creates many excess solution paths to follow. In
our situation, the overdetermined polynomial systems we have to deal with are the
Pieri homotopies for general intersection conditions, which are overdetermined homo-
topies. From the geometry we know which solution paths we have to follow so that
we maintain the optimal number of solution paths; see [16, section 4]. To control the
correctness and to detect numerical failures, we evaluate the original overconstrained
system at the computed end points of the paths. The complexity of Newton’s method
and path-following algorithms for overdetermined systems is analyzed in [9].
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The geometric intersection conditions treated in section 4 are expressed by de-
terminantal equations, which are a special kind of polynomial system. Just as sparse
polynomial systems allow fewer perturbations on the coefficient structure than gen-
eral polynomial systems (whence they have a better numerical condition [8] and can
be more easily solved), we expect that the polynomial systems arising from these
geometric intersection conditions are numerically easier to solve. We have done some
tests on working directly with the matrix structures, but we abandoned this approach
because the general linear algebra operations turn out to be slower than the nested
Horner schemes that are used to evaluate the expanded determinantal forms. Nev-
ertheless, we expect computational progress from Newton’s method adapted to this
specific geometric situation [11], in combination with secant methods [49].

6.2. Computational and numerical experiments. The description in [16]
leads to path following in a chain-by-chain fashion as defined by Pieri trees. Contem-
plating the posets in Figures 3.2 and 4.1 one sees that one can avoid the tracing of
many solution paths when the continuation matches the poset structure. To solve a
generic complex instance encoded by (m, p) = (4, 3), the chain-by-chain Pieri algo-
rithm takes 4 h 15 m 58 s 220 ms and has to trace 2310 solution paths. The new
poset-oriented Pieri homotopies take only 1 h 7 m 20 s 160 ms (see Table 6.1) to trace
1663 paths. This saving is only partially explained by the reduction in the number of
paths. The poset structure allows us to organize the symbolic homotopy constructors
in a much more economical way.

Table 6.1
Number of paths and timings for (m, p) = (4, 3) at every even level n, up to the total resolution

time for a generic complex intersection problem. The first total is added to the time needed for
solving a real target instance and results in the last line.

n #paths User cpu time

2 18 800 ms
4 72 6 s 918 ms
6 187 1 m 8 s 40 ms
8 462 8 m 27 s 460 ms

10 462 18 m 46 s 390 ms
12 462 38 m 42 s 360 ms

Total 1663 1 h 7 m 20 s 160 ms
Target 462 5 h 4 m 46 s 610 ms

Total 2125 6 h 13 m 15 s 840 ms

In Table 6.1 we summarize the computational results with pivoting done in a
mixed fashion. Here we are removing pivots from both the top and the bottom,
as in the original chain-by-chain original description in [16]. In this case, the Pieri
homotopy has two moving equations:

H(X, t) =




det(X|(1− t)StX + tLn) = 0,
det(X|(1− t)SbX + tLn−1) = 0,

det(X|Li) = 0,
i = 1, 2, . . . , n− 2,

t ∈ [0, 1],(6.1)

where StX and SbX are the special m-planes, respectively, for top and bottom pivots
of X. The input 4-planes for the real target problem are osculating a rational normal
curve, as prescribed in one of the Shapiro–Shapiro conjectures [32], [39], [45]. For
these inputs, all solution 3-planes turn out to be real on the examples we ran, in
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accordance with the Shapiro–Shapiro conjectures. Dividing the total time on the last
line in Table 6.1 by 462, we arrive at 48 s 476 ms cpu time as the cost for one solution,
which is the cost for one feedback law.

Note that one can change basis to bring two input 4-planes into special position
and thus save the time spent at stage n = 12 in Table 6.1. Another optimization
involves using linear algebra instead of continuation to satisfy the intersection con-
ditions at the top level of the poset; see [16, Proposition 3.1]. But this optimization
cuts off only milliseconds.

The input planes are represented by matrices of generators which are equivalent
up to a transformation of basis. We have noticed that an orthonormal representation
of the input planes—filtered through the QR-algorithm [14]—is responsible for con-
siderable computational savings and an increased numerical accuracy of the solution
planes. The difference between random and orthonormal inputs becomes especially
significant for higher-dimensional problems. For instance, the case (m, p) = (5, 3)
leads to a 15-dimensional polynomial system of cubics with 6006 solutions. A 450
MHz Intel Pentium machine needs 16 h 17 m 16 s cpu time on random inputs, whereas
it takes only 10 h 12 m 38 s on orthonormal input planes.

6.3. Comparison with SAGBI homotopies. The SAGBI homotopies were
proposed in [16] to compute all p-planes that meet mp given m-planes in general
position. The second author implemented those homotopies to verify large instances
of the Shapiro–Shapiro conjectures. See [45] for a description and [32] and [39], [41]
for other tests and related work on these conjectures.

To solve a generic complex instance, encoded by (m, p) = (4, 3), the Pieri ho-
motopy algorithm takes 1 h 7 m 20 s 160 ms (see Table 6.1). As reported in [45],
SAGBI homotopies need 2 h 23 m 27 s 630 ms for the same problem using the local-
ization patterns that lead to polynomials of lowest degree, and 5 h 23 m 36 s 840 ms
with localization patterns used by Pieri homotopies. The common optimization of
bringing two input planes into special position to diminish the dimension with two
forces those localization patterns that lead to higher-degree polynomials, increasing
the complexity of SAGBI homotopies.

SAGBI homotopies suffer from two drawbacks, not shared by the Pieri homo-
topies. First, they cannot solve the more general intersection problem treated in
section 4. Second, a polyhedral continuation is needed to start up the SAGBI homo-
topies. These continuations happen in the top dimension, which makes them compu-
tationally intensive. In addition, these homotopies are both highly nonlinear in the
continuation parameter, which leads to numerical instabilities as the problems get
larger. Although the techniques in [12] help, they always involve a lower bound that
may be too high for the machine precision.

To conclude the comparison, we contrast the analytic geometry as used in the
SAGBI homotopies with the intrinsic geometry of the Pieri homotopies. With the
SAGBI homotopies we lose all geometric information after the transformation of the
problem into a polynomial system. The Pieri homotopies use the polynomial equations
merely as a means to compute and are better able to exploit the evolving geometry.

6.4. Reality issues. The Pieri homotopies arose from the question [37], [38]
whether a problem of enumerative geometry can have all its solutions be real. The
developed software may be useful for verifying instances of conjectures such as the
Shapiro–Shapiro conjectures; see [32], [39], [41], and [45]. Note that for the quantum
Schubert calculus a counterexample to one of the analogues of the Shapiro–Shapiro
conjectures is given in [40] for the case q = 1,m = 2 = p. For engineering applications,
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where the machines are specified with real matrices, only real feedback laws are of
interest. Several explicit root counting formulas are given in [29] which allow one to
quickly determine the parity of the intersection numbers.

We end this paper describing some computational experiences with random real
inputs. Table 6.2 gives the number of paths and timings reported for solving the case
of m = 3, p = 2, and q = 1. For this random real instance, 25 real and 30 complex
maps were found. The timings are for a 350 Mhz Intel II Pentium processor, with 64
Mb internal memory, running SunOs 5.7.

Table 6.2
Number of paths and timings for (m, p) = (3, 2) for q = 1, at every odd level n. The first total

concerns the time needed for the quantum Pieri homotopy algorithm on a random complex instance.
Note that this is less than the time needed to solve a random real target system.

n #paths User cpu time

1 3 < 1ms
3 8 240ms
5 21 1s 690ms
7 55 18s 390ms
9 55 35s 560ms

11 55 1m 16s 560ms

Total 197 2m 12s 880ms
Target 55 2m 25s 280ms

Total 252 4m 39s 760ms

Table 6.3
Number of paths and timings for (m, p) = (4, 3), q = 0, and ki = 3, for i = 1, 2, 3, 4, listed

at every even level. The timings for the general Pieri homotopy algorithm, on a random complex
instance are added up into the first total. The last total includes the resolution of a random real
target system.

n #paths User cpu time

2 1 20ms
4 1 190ms
6 1 570ms
8 1 6s 800ms

10 1 4s 910ms
12 1 22s 780ms

Total 6 38s 190ms
Target 1 19s 500ms

Total 7 1m 25s 340ms

In the last example we indicate what could be done when the number of the
solution is even, following the spirit of Sottile’s original ideas [37]. In the hypersurface
case for (m, p) = (4, 3), there are 462 solution 3-planes. Since 462 is even, there
might be a chance that all of them are complex. But suppose you specialize the input
somewhat, so that we have 4 sets of three 4-planes that each meet at 1 line (= 2-plane)
common to their set. Then we may replace the original hypersurface intersection
conditions by the requirement that the solution 3-planes meet those 4 common 2-
planes. Each of these 4 2-planes gives a codimension 3 condition and as 12 = 3+3+3+3
we can apply the general Pieri algorithm which gives exactly 1 solution, which is real
for real inputs. Note that this involves the resolution of a polynomial system of 84
cubic equations in 12 variables. Table 6.3 summarizes the computations.
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Quot scheme and quatum cohomology, Math. Ann., 311 (1998), pp. 11–26.

[31] J. Rosenthal, On dynamic feedback compensation and compactifications of systems, SIAM J.
Control Optim., 32 (1994), pp. 279–296.

[32] J. Rosenthal and F. Sottile, Some remarks on real and complex output feedback, Systems
Control Lett., 33 (1998), pp. 73–80. See http://www.nd.edu/˜rosen/pole for a description
of computational aspects of the paper.

[33] J. Rosenthal and J. C. Willems, Open problems in the area of pole placement, in Open
Problems in Mathematical Systems and Control Theory, Comm. Control Engrg. Ser., V. D.
Blondel, E. D. Sontag, M. Vidyasagar, and J. C. Willems, eds., Springer-Verlag, Berlin,
1998, pp. 181–191.
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1. Introduction. In this paper we consider the problem of state feedback stabi-
lization of homogeneous control systems in R

n. This problem has been considered by
a number of authors during the last few years; see, e.g., [16, 17, 18, 19, 22, 23, 24, 27]
to mention just a few examples. Stability in this context will always mean asymptotic
stability.

Homogeneous systems appear naturally as local approximations to nonlinear sys-
tems; cf., e.g., [15]. In order to make use of this approximation property in the design
of locally stabilizing feedbacks for nonlinear systems the main idea lies in the construc-
tion of homogeneous feedbacks, i.e., feedback laws that preserve homogeneity for the
resulting closed loop system. Utilizing a corresponding homogeneous Lyapunov func-
tion, those laws can then be shown to be locally stabilizing also for the approximated
nonlinear system; cf. [15, 19, 21]. Regarding the existence of homogeneous stabilizing
feedback laws, it was shown in [16] that if the system admits a continuous, but not
necessarily homogeneous, stabilizing state feedback law, then there exists a homoge-
neous dynamic feedback stabilizing the system. Unfortunately, if we are looking for
static state feedback laws, it is generally not true that any continuously stabilizable
homogeneous system is stabilizable by a continuous and homogeneous state feedback
law, as the examples in [24] show. Even worse, there exist homogeneous systems, e.g.,
Brockett’s classical example [2], which—although asymptotically controllable—do not
admit a stabilizing continuous state feedback law at all.

Brockett’s results especially inspired the search for alternative feedback concepts.
In the present paper we are going to use discontinuous state feedback laws for which
the corresponding closed loop systems are defined as sampled systems. Although this
is not a new concept (see, e.g., [13, 14, 25]), it has recently received new attention;
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see, e.g., the survey in [26]. In particular, it was shown in [5] that (global) asymptotic
controllability is equivalent to the existence of a (globally) stabilizing discontinuous
state feedback law for the sampled closed loop system. Stability in this context means
asymptotic stability for the sampled trajectories (i.e., the feedback is evaluated only
at discrete sampling times with the values being used until the next sampling time)
where—in general—the intervals between two sampling times have to tend to zero
close to the equilibrium and far away from it. A related but slightly different concept
of a discontinuous feedback is the notion of discrete feedback introduced in [8]; here
sampled trajectories are also considered, but with fixed intersampling times. With
this approach it was possible to show in [11] that for semilinear systems asymptotic
controllability is equivalent to (exponential) discrete feedback stabilizability.

The goal of the present paper is to provide a link between these two concepts in
the framework of homogeneous systems. As in [11] we use a spectral characterization
of asymptotic controllability by means of Lyapunov exponents, and obtain stability
results for fixed sampling rates; as in [5] we construct the feedback based on a suitable
(and here also homogeneous) control Lyapunov function and obtain stability not only
for fixed intersampling times but for all sufficiently small ones. Furthermore, and
this is a key feature of our construction, the resulting stabilizing state feedback law
is homogeneous, thus rendering the corresponding closed loop system homogeneous.
All this will be done under just the assumption that the corresponding homogeneous
system is asymptotically controllable.

The organization of this paper is as follows. In section 2 we define homogeneous
systems and introduce a class of auxiliary systems we call homogeneous-in-the-state.
In some sense these systems have a built in homogeneity for each control value and
can be simplified by suitable coordinate and time transformations. Section 3 provides
the concepts of asymptotic controllability and stabilization by means of sampled feed-
back laws. After stating our main theorem at the end of this section, in section 4 we
turn to the proof of this result for systems homogeneous-in-the-state by characterizing
asymptotic controllability by means of Lyapunov exponents and constructing a suit-
able control Lyapunov function and a stabilizing feedback. After giving some hints
about a numerical approximation of this feedback law in section 5, we will return to
the homogeneous systems in section 6 and prove the stabilization result by showing
that these systems can easily be transformed into systems homogeneous-in-the-state
without losing the asymptotic controllability property. Finally, in section 7 we discuss
two examples.

2. Homogeneous systems. We consider a class of systems

ẋ(t) = g(x(t), w(t))(2.1)

on R
n, where w(·) ∈ W and W denotes the space of measurable and locally essen-

tially bounded functions from R to W ⊂ R
m. We assume that the vector field g is

continuous, g(·, w) is locally Lipschitz on R
n \ {0} for each w ∈W , and g satisfies the

following property.

Definition 2.1. We call g homogeneous if there exist ri > 0, i = 1, . . . , n,
sj > 0, j = 1, . . . ,m, and τ ∈ (−mini ri,∞) such that

g(Λαx,∆αw) = ατΛαg(x,w) for all w ∈W, α ≥ 0,(2.2)
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where

Λα =




αr1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 αrn


 and ∆α =




αs1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 αsm




are called dilation matrices. With k = mini ri we denote the minimal power (of the
state dilation) and the value τ ∈ (−k,∞) is called the degree of the system.

This definition generalizes the one given in [24] to the case of a multidimensional
control input; see, e.g., [15] for an alternative definition (equivalent on R

n) for vec-
tor fields on arbitrary manifolds. The use of dilation matrices instead of the usual
dilation functions allows a more compact notation in what follows. Observe that if
g is Lipschitz in the origin, then τ ≥ 0, and if g is globally Lipschitz, then τ = 0.
Furthermore, the definition implies g(0, 0) = 0.

Corresponding to the dilation matrix Λα we define a function N : R
n → [0,∞)

which can be interpreted as a “dilated norm” with respect to Λα. Denoting d =
2
∏n

i=1 ri we define N(x) by

N(x) :=

(
n∑

i=1

x
d
ri
i

) 1
d

(2.3)

implying N(0) = 0, N(x) > 0 if x �= 0, and N(Λαx) = αN(x).
Note that the trajectories of (2.1) may tend to infinity in finite time if τ > 0 and

that uniqueness of the trajectory may not hold if τ < 0; however, it holds away from
the origin. As long as uniqueness holds (i.e., if τ ≥ 0 or the trajectory does not cross
the origin) we denote the (open loop) trajectories of (2.1) by x(t, x0, w(·)) for each
x0 ∈ R

n and each w(·) ∈ W, where x(0, x0, w(·)) = x0. Then from Definition 2.1 we
obtain

x(t,Λαx0,∆αw(α
τ ·)) = Λαx(α

τ t, x0, w(·))(2.4)

for x0 ∈ R
n. If uniqueness fails to hold, x(·, x0, w(·)) shall denote one possible trajec-

tory; in this case we implicitly assume the definitions of section 3 below to be valid
for all possible trajectories.

In the remainder of this section we introduce and discuss a class of auxiliary
systems which are homogeneous-in-the-state and will turn out to be useful for our
analysis: Consider the class of systems

ẋ(t) = f(x(t), u(t))(2.5)

on R
n, where u(·) ∈ U and U denotes the space of measurable functions from R to

some compact set U ⊂ R
m. We assume that the vector field f is continuous, f(·, u)

is locally Lipschitz on R
n \ {0} for each u ∈ U , and f satisfies the following property.

Definition 2.2. We call f homogeneous-in-the-state if there exist ri > 0, i =
1, . . . , n and τ ∈ (−mini ri,∞) such that

f(Λαx, u) = ατΛαf(x, u) for all u ∈ U,(2.6)

where Λα is the dilation matrix as in Definition 2.1, k = mini ri is called the minimal
power, and the value τ ∈ (−k,∞) is called the degree of the system.
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Note that this definition implies f(0, u) = 0 for all u ∈ U . We denote the
trajectories of (2.5) with initial value x0 at the time t = 0 and control function
u(·) ∈ U again by x(t, x0, u(·)). Observe also that the trajectories of (2.5) may escape
in finite time if τ > 0 and that uniqueness of the trajectory may not hold in the origin
if τ < 0 (here again we use the convention as for the trajectories of (2.1)). As long as
the trajectories exist and uniqueness holds we obtain from Definition 2.2 that

x(t,Λαx0, u(α
τ ·)) = Λαx(α

τ t, x0, u(·))(2.7)

for all x0 ∈ R
n.

Besides being useful auxiliary systems for our stabilization problem for homoge-
neous systems, homogeneous-in-the-state systems themselves form an interesting class
of systems. They generalize homogeneous bilinear and semilinear systems (see, e.g.,
[6, 7, 8, 11]). One interpretation of this structure is that the control affects parame-
ters in the system rather than representing some force acting on the system; cf. the
examples in [9, 10]. For this class of systems there also exist examples which are sta-
bilizable but not with a continuous feedback law; see [26, example after Theorem A].
Note that this class can be generalized analogously to the generalization of semilinear
systems made in [11]; all results in this paper can easily be adapted to that case.

The connection between homogeneous and homogeneous-in-the-state systems is
easily seen: Given some homogeneous system (2.1) satisfying

g(Λαx,∆αu) = ατΛα(x, u)

we define

f(x, u) := g(x,∆N(x)u).(2.8)

Then it is immediate from the property N(Λαx) = αN(x) of the dilated norm N that

f(Λαx, u) = g(Λαx,∆N(Λαx)u) = g(Λαx,∆αN(x)u)

= g(Λαx,∆α∆N(x)u) = ατΛαg(x,∆N(x)u)

= ατΛαf(x, u);

i.e., f is homogeneous-in-the-state.

Homogeneous and homogeneous-in-the-state systems can be considerably simpli-
fied applying suitable coordinate and time transformations. We will make use of this
procedure for homogeneous-in-the-state systems: Using the dilated norm N from (2.3)
the function

P (x) := Λ−1
N(x)x

defines a projection from R
n\{0} ontoN−1(1) satisfying P (Λαx) = P (x) for all α > 0.

We denote the n− 1 dimensional embedded unit sphere {x ∈ R
n | ‖x‖ = 1} by S

n−1.
Then, since N(tx) is strictly increasing in t ≥ 0 the function S : N−1(1) → S

n−1,
S(x) = x/‖x‖ is a diffeomorphism between these two manifolds. Thus, we can define
a coordinate transformation y = Ψ(x) by

Ψ(x) = N(x)kS(P (x)), Ψ−1(y) = Λ k
√

‖y‖S
−1

(
y

‖y‖
)
,
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and Ψ(0) = 0, Ψ−1(0) = 0, which is continuous on R
n and C1 on R

n \ {0}. This
definition implies

Ψ(Λαx) = αkΨ(x), Ψ−1(αky) = ΛαΨ
−1(y)

and by differentiation of Ψ(Λαx) and α
kΨ(x) one sees

DΨ(Λαx) = αkΛ−1
α DΨ(x).

Thus defining

f̃(y, u) = DΨ(Ψ−1(y))f(Ψ−1(y), u)

we obtain (with x = Ψ−1(y))

f̃(αky, u) = DΨ(Λαx)f(Λαx, u) = αkΛ−1
α DΨ(x)ατΛαf(x, u) = αταkf̃(y, u)

implying

f̃(αy, u) = αγ+1f̃(y, u),

with γ = τ/k; i.e., f̃ is homogeneous-in-the-state with respect to the standard dilation
Λα = αId, with mimimal power k = 1, and with degree τ = γ.

Furthermore setting f̄(y, u) = f̃(y, u)‖y‖−γ (which defines a time transformation
for f̃) we obtain a system with degree τ = 0.

In section 4 we will therefore first consider systems satisfying

f(αx, u) = αf(x, u) for all x ∈ R
n, α ≥ 0(2.9)

and will then retranslate the results to the general case. Observe that the transformed
f is now globally Lipschitz with a uniform constant which we will denote by L.

3. Asymptotic controllability and feedback stabilization. In this section
we give the precise definitions of asymptotic controllability and feedback stabilization.
For this purpose we briefly describe the idea of sampling and the concept of control
Lyapunov functions. We formulate the concepts for system (2.1) with the obvious
modifications; however, all definitions also apply to system (2.5).

Definition 3.1. We call system (2.1) asymptotically controllable (to the origin)
if for each x0 ∈ R

n there exists wx0(·) ∈ W such that ‖x(t, x0, wx0(·))‖ → 0 as
t→∞.

We now discuss the concept of homogeneous state feedbacks. A state feedback law
is a map F : R

n →W . A homogeneous state feedback law satisfies F (Λαx) = ∆αF (x)
for all x ∈ R

n and all α ≥ 0, thus implying g(Λαx, F (Λαx)) = ατΛαg(x, F (x)); i.e.,
the closed loop system using F becomes homogeneous. Observe that W needs to
satisfy some structural condition in order to allow nontrivial homogeneous feedbacks.
In what follows we will assume

∆αW ⊆W for all α ≥ 0, where ∆αW := {∆αw |w ∈W}
which gives a necessary and sufficient condition for the fact that given some c > 0
any homogeneous map F : R

n → R
m satisfying F (x) ∈ W on {x ∈ R

d |N(x) = c}
satisfies F (x) ∈W for all x ∈ R

n.
Note that we do not require any continuity property of F . This is due to the

fact that in many examples stabilizing continuous feedbacks cannot exist; cf., e.g.,
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[26, section 2.2], where Brockett’s classical example [2] is discussed also which—in
suitable coordinates—is in fact a homogeneous system. Furthermore, even if stabi-
lizing continuous feedback laws exist, it is possible that no such law is homogeneous,
as the examples in [24] show (Brockett’s example and the first example from [24] will
be discussed in section 7). However, using discontinuous feedbacks for the solutions
of the classical closed loop system ẋ = g(x, F (x)) the usual existence and uniqueness
results might not hold. In order to obtain a meaningful solution for the closed loop
system we use the following concept of a sampled closed loop system.

Definition 3.2 (sampled closed loop system). Consider a feedback law F : R
n →

W . An infinite sequence π = (ti)i∈N0 of times satisfying

0 = t0 < t1 < t2 < · · · and ti →∞ as i→∞
is called a sampling schedule. The values

∆ti := ti+1 − ti and d(π) := sup
i∈N0

∆ti

are called the intersampling times and the sampling rate, respectively. For any sam-
pling schedule π the corresponding sampled or π-trajectory xπ(t, x0, F ) with initial
value x0 ∈ R

n at initial time t0 = 0 is defined inductively by

xπ(t, x0, F ) = x(t− ti, xi, F (xi)) for all t ∈ [ti, ti+1], i ∈ N0,

where xi = xπ(ti, x0, F ) and x(t, xi, F (xi)) denotes the (open loop) trajectory of (2.1)
with constant control value F (xi) and initial value xi.

Observe that this definition guarantees the existence and uniqueness of trajecto-
ries in positive time on their maximal intervals of existence (except possibly at the
origin if τ < 0, in which case we use the same convention as for open loop trajecto-
ries). Moreover, the sampled π-trajectories have a meaningful physical interpretation,
as they correspond to an implementation of the feedback law F using a digital con-
troller.

The next definition introduces control Lyapunov functions which will be vital for
the construction of the feedback. Here we make use of the lower directional derivatives;
see, e.g., [4] for an equivalent definition.

Definition 3.3. A continuous function V : R
n → [0,∞) is called a control

Lyapunov function (CLF) if it is positive definite (i.e., V (x) = 0 if and only if x = 0),
proper (i.e., V (x) → ∞ as ‖x‖ → ∞), and there exists a continuous and positive
definite function P : R

n → [0,∞) such that for each bounded subset G ⊂ R
n there

exists a compact subset WG ⊂W with

min
v∈cog(x,WG)

DV (x; v) ≤ −P (x) for all x ∈ G.

Here DV (x; v) denotes the lower directional derivative

DV (x; v) := lim inf
t↘0,v′→v

1

t
(V (x+ tv′)− V (x)) ,

g(x,WG) := {g(x,w) |w ∈WG}, and cog(x,WG) denotes the convex hull of g(x,WG).
The following definition now describes the stability concepts we will use in this

paper. For this definition recall that a function γ : [0,∞) → [0,∞) is of class K
if it satisfies γ(0) = 0 and is continuous and strictly increasing, and a function β :
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[0,∞)2 → [0,∞) is of class KL if it is decreasing to zero in the second and of class K
in the first argument.

Definition 3.4. We call the sampled closed loop system from Definition 3.2
(i) semiglobally practically stable with fixed sampling rate if there exists a class

KL function β such that for each open set B ⊂ R
n and each compact set K ⊂ R

n

satisfying 0 ∈ B ⊂ K there exists h > 0 such that

xπ(t, x0, F ) �∈ B ⇒ ‖xπ(t, x0, F )‖ ≤ β(‖x0‖, t)

for all x0 ∈ K and all π with d(π) ≤ h,
(ii) semiglobally stable with fixed sampling rate if (i) holds and the sampling rate

h > 0 can be chosen independently of B,
(iii) globally practically stable with fixed sampling rate if (i) holds and the sam-

pling rate h > 0 can be chosen independently of K,
(iv) globally stable with fixed sampling rate if (i) holds and the sampling rate

h > 0 can be chosen independently of K and B.
We call the stability in (i)–(iv) exponential if β can be chosen such that the

inequality β(‖x0‖, t) ≤ Ce−σt‖x0‖ holds for constants C, σ > 0 which may depend on
K, and uniformly exponential if C, σ > 0 can be chosen independently of K.

Note that each of the concepts (ii)–(iv) implies (i) which is equivalent to the s-
stability property as defined in [5]; also cf. [26, sections 3.1 and 5.1]. Hence any of
these concepts imply global stability for the (possibly nonunique) limiting trajectories
as h → 0. The difference lies “only” in the performance with a fixed sampling rate.
From the applications point of view, however, this is an important issue, since, e.g.,
for an implementation of a feedback using some digital controller, arbitrary small
sampling rates in general will not be realizable. Furthermore, if the sampling rate
tends to zero the resulting stability may be sensitive to measurement errors if the
feedback is based on a nonsmooth CLF; see [20, 26]. In contrast to this it is quite
straightforward to see that for a fixed sampling rate the stability is in fact robust to
small errors in the state measurement (small, of course, relative to the norm of the
current state of the system) if the corresponding CLF is Lipschitz; cf. [26, Theorem
E].

The main result we will prove in this paper is the following theorem on the
existence of a homogeneous CLF V and a homogeneous stabilizing feedback F .

Theorem 3.5. (a) Consider system (2.1) satisfying Definition 2.1 with dilation
matrices Λα and ∆α, minimal power k > 0, and degree τ ∈ (−k,∞), and assume
asymptotic controllability. Then there exist µ > 0 and a CLF V being Lipschitz on
R
n \ {0}, satisfying

V (Λα(x)) = α2kV (x)

and

min
v∈cog(x,Wx)

DV (x; v) ≤ −2µNτ (x)V (x)

for the function N from (2.3) and Wx = ∆N(x)U for some suitable compact subset
U ⊂W .

Furthermore there exists a feedback law F : R
n → W satisfying F (x) ∈ Wx and

F (Λαx) = ∆αF (x) for all x ∈ R
n and all α ≥ 0 such that the corresponding sampled

closed loop system is either
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(i) semiglobally stable (if τ > 0), or
(ii) globally uniformly exponentially stable (if τ = 0), or
(iii) globally practically exponentially stable (if τ < 0) with fixed sampling rate.
(b) The analogous result holds for system (2.5) satisfying Definition 2.2. Here we

obtain

min
v∈cof(x,U)

DV (x; v) ≤ −2µNτ (x)V (x),

F (x) ∈ U , and F (Λαx) = F (x) for all x ∈ R
n and all α > 0.

We will prove part (b) in section 4 and then use this result in order to prove part
(a) in section 6.

4. Stabilization of systems homogeneous-in-the-state. In this section we
will construct a Lyapunov function and a stabilizing feedback for system (2.9). Af-
terwards we retranslate this stabilization result to general systems homogeneous-in-
the-state from Definition 2.2.

We start by characterizing asymptotic controllability of (2.9). For this purpose
we introduce the finite time exponential growth rate (cf. [11, 12])

λt(x0, u(·)) = 1

t
ln
‖x(t, x0, u(·))‖

‖x0‖ .

It follows immediately from (2.9) that x(t, αx0, u(·)) = αx(t, x0, u(·)) and thus the
growth rates satisfy λt(x0, u(·)) = λt(αx0, u(·)) for all x0 ∈ R

d \ {0} and all α > 0.
The meaning of λt is described by the following proposition.

Proposition 4.1. System (2.9) is asymptotically controllable if and only if there
exist a time T > 0 and some ρ > 0 such that for each x ∈ R

n \ {0} there exists
ux(·) ∈ U with

λt(x, ux(·)) < −ρ for all t ≥ T.(4.1)

Proof. Obviously (4.1) implies exponential controllability and thus, in particular,
asymptotic controllability.

For the converse implication, since λt(x, u(·)) = λt(αx, u(·)) it is sufficient to
show (4.1) for ‖x‖ = 1, i.e. x ∈ S

n−1. Asymptotic controllability implies that for each
x ∈ S

n−1 there exist ũx(·) ∈ U , t̃x > 0, and Cx > 0 such that ‖ϕ(t̃x, x, ũx(·))‖ < 1/2,
and ‖ϕ(t, x, ũx(·))‖ < Cx for all t ∈ [0, t̃x]. By compactness of S

n−1 and continuous
dependence on the initial value we can choose the controls such that T1 = supx∈Sn−1 t̃x
and C = supx∈Sn−1 Cx are finite. Now for each x ∈ S

n−1 we define ux(·) and a
sequence ti inductively by t0 = 0 and

ti+1 = ti + t̃xi , ux(t) = ũxi(t− ti), t ∈ [ti, ti+1],

where xi = ϕ(ti, x, ux(·))/‖ϕ(ti, x, ux(·))‖. Now consider an arbitrary t > 0. Choosing
ti maximal with ti ≤ t (i.e., t− ti < T1 and ti > t− T1) this implies

λt(x, ux(·)) = ti
t
λti(x, ux(·)) + t− ti

t
λt−ti(xi, ux(ti + ·)) ≤ t− T1

t
ln

1

2
+
T1

t
lnC,

where the last expression is independent of x and negative for all t ≥ T for T > 0
sufficiently large, which yields the assertion.
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In fact, we can show something more than just the negativity of the finite time
exponential growth rates. We define the Lyapunov exponent of each trajectory by

λ(x, u(·)) := lim sup
t→∞

λt(x, u(·))

and the supremum with respect to the state and infimum with respect to the control
over these exponents by

σ := sup
x∈Rn\{0}

inf
u(·)∈U

λ(x, u(·)).

Lyapunov exponents for control systems have been utilized in the analysis of bilinear
systems (see, e.g., [6] for some basic concepts and [7] for a detailed exposition) and
for the global stabilization of semilinear and the local stabilization of differentiable
nonlinear systems at singular points [11]. In the homogeneous setup we obtain the
following characterization.

Proposition 4.2. Consider the system (2.9) and its sup-inf Lyapunov exponent
σ. Then for each ρ ∈ (0, |σ|) there exists T > 0 such that for each x ∈ R

n \ {0} there
exists ux(·) ∈ U with

λt(x, ux(·)) < −ρ for all t ≥ T.

Proof. The proof is exactly as [11, Proof of Proposition 3.4].
Since by Proposition 4.1 for our class (2.9) of homogeneous systems asymptotic

controllability immediately implies σ < 0, we obtain from Proposition 4.2 that (2.9)
is asymptotically controllable if and only if σ < 0; i.e., we obtain a characterization
of asymptotic controllability by means of Lyapunov exponents.

We will now use Proposition 4.2 for the construction of a homogeneous Lyapunov
function for system (2.9). First observe that the projection

s(t, s0, u(·)) := x(t, x0, u(·))
‖x(t, x0, u(·))‖ , s0 =

x0

‖x0‖
of (2.9) onto S

n−1 is well defined due to the homogeneity of the system. A simple
application of the chain rule shows that s is the solution of

ṡ(t) = fS(s(t), u(t)), fS(s, u) = f(s, u)− 〈s, f(s, u)〉s
and that for s0 = x0/‖x0‖ the exponential growth rate λt satisfies

λt(x0, u(·)) = λt(s0, u(·)) = 1

t

∫ t

0

q(s(τ, s0, u(·)), u(τ))dτ

with q(s, u) = 〈s, f(s, u)〉. Unfortunately, this averaged integral does not allow a
direct construction of a suitable Lyapunov function. Therefore we make use of an
approximation by discounted integrals: Defining

Jδ(s0, u(·)) :=
∫ ∞

0

e−δτq(s(τ, s0, u(·)), u(τ))dτ

and the corresponding optimal value function

vδ(s0) := inf
u(·)∈U

Jδ(s0, u(·))
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from Propositions 4.1 and 4.2 and [11, Lemma 3.5(i)] we obtain that if system (2.9)
is asymptotically controllable then for each ρ ∈ (0, |σ|) there exists δρ > 0 such that
for all δ ∈ (0, δρ] and all s0 ∈ S

n−1 the inequality

δvδ(s0) < −ρ

holds.
Note that vδ is Hölder continuous and bounded for each δ > 0; cf., e.g., [1]. We

now fix some ρ ∈ (0, σ) and some δ ∈ (0, δρ] and define

V0(x) := e2vδ(x/‖x‖)‖x‖2.

Lemma 4.3. The function V0 is a CLF which is homogeneous with degree 1 (with
respect to the standard dilation) and satisfies

min
v∈cof(x,U)

DV0(x; v) ≤ −2ρV0(x).

Proof. Homogeneity, positive definiteness, and properness follow immediately
from the definition. Now for each t > 0 the function vδ satisfies the dynamic pro-
gramming principle

vδ(s0) = inf
u(·)∈U

{∫ t

0

e−δτq(s(τ, s0, u(·)), u(τ))dτ + e−δtvδ(s(t, s0, u(·)))
}
;

see, e.g., [1]. Abbreviating q(t, s0, u(·)) = q(s(t, s0, u(·)), u(t)) and using e−δt−1 ≥ −δt
we obtain for the integral part of this equality

∫ t

0

e−δτq(τ, s0, u(·))dτ ≥
∫ t

0

q(τ, s0, u(·)) + (e−δt − 1)Mqdτ ≥ tλt(s0, u(·))−Mqδ
t2

2
,

where Mq denotes a bound of |q|. Thus with s0 = x0/‖x0‖ we obtain

V0(x0) ≥ inf
u(·)∈U

exp[2tλt(x, u(·))−Mqδt
2 + 2e−δtvδ(s(t, s0, u(·)))]‖x0‖2

= inf
u(·)∈U

e2tλ
t(x,u(·))e−Mqδt

2

e2(e
−δt−1)vδ(s(t,s0,u(·)))e2vδ(s(t,s0,u(·)))‖x0‖2

= inf
u(·)∈U

‖x(t, x0, u(·))‖2
‖x0‖2 e−Mqδt

2

e2(e
−δt−1)vδ(s(t,s0,u(·)))e2vδ(s(t,s0,u(·)))‖x0‖2

= inf
u(·)∈U

e−Mqδt
2+2(e−δt−1)vδ(s(t,s0,u(·)))V0(x(t, x0, u(·)))

≥ inf
u(·)∈U

e−Mqδt
2+2(1−e−δt)ρ/δV0(x(t, x0, u(·))).

Now for each t > 0 we choose ut(·) ∈ U such that the infimum of the last expression
is attained up to t2. Using b− b2 ≤ 1− e−b ≤ b for b > 0 we can conclude

V0(x(t, x0, ut(·)))− V0(x0) ≤ (1− e−Mqδt
2+2(1−e−δt)ρ/δ)V0(x(t, x0, ut(·))) + t2

≤ (1− e−Mqδt
2+2tρ−2δt2ρ)V0(x(t, x0, ut(·))) + t2

≤ (−2tρ+ (Mq + 2ρ)δt2)V0(x(t, x0, u(·))) + t2
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for all t > 0 sufficiently small. Denoting vt = (x(t, x0, ut(·))− x0)/t we obtain

1

t
(V0(x0 + tvt)− V0(x0)) ≤ −2ρV0(x(t, x0, u(·))) + (Mq + 2ρ)δtV0(x(t, x0, u(·))) + t

and since by compactness of U there exists a v ∈ cof(x0, U) and a sequence ti → 0
such that vti → v as i→∞ the assertion follows by the definition of DV0.

Based on V0 and using the techniques from [5] (but with a more careful evaluation
of the constants involved) we can now construct the stabilizing feedback law for system
(2.9). To this end, for β > 0 we consider the approximation of V0 via the inf-
convolution

Vβ(x) = inf
y∈Rn

{
V0(y) +

‖x− y‖2
2β2

}
.(4.2)

Observe that Vβ is locally Lipschitz and Vβ → V0 as β → 0.
Proposition 4.4. For each µ ∈ (0, ρ) there exists β > 0 such that the function

Vβ is a Lipschitz continuous CLF which is homogeneous with degree 1 (with respect
to the standard dilation) and satisfies

min
v∈cof(x,U)

DVβ(x; v) ≤ −2µVβ(x).

Furthermore there exists a feedback law F : R
n → U satisfying F (αx) = F (x) for

all x ∈ R
n, α > 0 and constants h > 0 and C > 0 such that any π-trajectory

corresponding to some partition π with d(π) ≤ h satisfies

‖xπ(t, x0, F )‖ ≤ Ce−µt‖x0‖.(4.3)

Proof. By its definition Vβ is obviously positive definite. Now for each x ∈ R
n we

denote by yβ(x) a point realizing the minimum on the right-hand side of (4.2). Since
V0 is homogeneous with degree 1 we have that

{
V0(αy) +

‖αx− αy‖2
2β2

}
= α2

{
V0(y) +

‖x− y‖2
2β2

}

and thus in particular Vβ is also homogeneous with degree 1 and hence proper, and we
can choose yβ(x) in such a way that yβ(αx) = αyβ(x). Since V0 is strictly increasing
along the rays αx in α > 0 it follows that ‖yβ(x)‖ ≤ ‖x‖.

Now we define

ζβ(x) :=
x− yβ(x)

2β2

which implies ζβ(αx) = αζβ(x).
By [5, Lemma III.1 and III.2] (or by straightforward calculations) for this vector

we can deduce the inequalities

Vβ(x+ τv) ≤ Vβ(x) + τ〈ζβ(x), v〉+ τ2‖v‖2
2β2

(4.4)

and

V0(yβ(x) + τv) ≥ V0(yβ(x)) + τ〈ζβ(x), v〉 − τ2‖v‖2
2β2

;(4.5)
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i.e., ζβ(x) is a proximal supergradient of Vβ in x and a proximal subgradient of V0 in
yβ(x) (see, e.g., [3] for an exposition of these concepts). We choose the feedback F (x)
in such a way that

〈ζβ(x), f(x, F (x))〉 = inf
u∈U
〈ζβ(x), f(x, u)〉

and F (αx) = F (x) for all x ∈ R
n \ {0} and all α > 0. The value F (0) can be chosen

arbitrarily.
Now consider points x ∈ R

n with ‖x‖ = 1, i.e. x ∈ S
n−1. For these points the

Hölder continuity of V0 (which is inherited from the Hölder continuity of vδ) and the
definitions of Vβ and ζβ imply

1

2β2
‖yβ(x)− x‖2 ≤ V0(x)− V0(yβ(x)) ≤ H‖yβ(x)− x‖ν

and thus

‖ζβ(x)‖‖yβ(x)− x‖ ≤ H̄β
2ν

2−ν with H̄ = 2
2ν−2
2−ν H

2
2−ν ,(4.6)

where H > 0 and ν ∈ (0, 1] denote the Hölder constant and exponent of V0 on
{x ∈ R

n | ‖x‖ ≤ 1}. From (4.6) and the definition of Vβ we immediately obtain

|V0(yβ(x))− Vβ(x)| ≤ H̄β
2ν

2−ν .(4.7)

Now the Lipschitz continuity of f implies that

〈ζβ(x), f(x, F (x))〉 ≤ min
u∈U
〈ζβ(x), f(yβ(x), u)〉+ L‖ζβ(x)‖‖yβ(x)− x‖

and by (4.5) and the definition of DV0 it follows that 〈ζβ(x), v〉 ≤ DV0(yβ(x), v) for all
v ∈ R

n. Thus by the linearity of the scalar product and Lemma 4.3 we can conclude

min
u∈U
〈ζβ(x), f(yβ(x), u)〉 = min

v∈cof(yβ(x),U)
〈ζβ(x), v〉 ≤ −2ρV0(yβ(x)).

Combining these inequalities with (4.6) and (4.7) yields

〈ζβ(x), f(x, F (x))〉 ≤ −2ρVβ(x) + 2ρH̄β
2ν

2−ν + LH̄β
2ν

2−ν .(4.8)

Defining

fτx :=
1

τ

∫ τ

0

f(x(t, x, F (x)), F (x))dt

and using M := sup‖x‖≤2,u∈U f(x, u) and the Lipschitz continuity of f for τ > 0
sufficiently small we obtain

‖fτx − f(x, F (x))‖ ≤MLτ, ‖fτx ‖ ≤M.

Thus by (4.4), (4.8), and the fact that ‖ζβ(x)‖ ≤ Cβ for all x ∈ S
n−1 and some

suitable Cβ > 0 we can conclude

Vβ(x(τ, x, F (x)))− Vβ(x) = Vβ(x+ τfτx )− Vβ(x)

≤ τ〈ζβ(x), fτx 〉+
τ2‖fτx ‖2
2β2

≤ τ〈ζβ(x), f(x, F (x))〉+MLτ2‖ζβ(x)‖+ τ2M2

2β2

≤ τ(−2ρVβ(x) + (2ρ+ L)H̄β
2ν

2−ν ) + τ2

(
MLCβ +

M2

2β2

)
.
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Denoting

γβ := sup
x∈Sn−1

(2ρ+ L)H̄β
2ν

2−ν

Vβ(x)
, C̃β := sup

x∈Sn−1

MLCβ

Vβ(x)
+

M2

2β2Vβ(x)

and exploiting homogeneity of x(·, x, F (x)) and Vβ , we obtain for arbitrary x �= 0

Vβ(x(τ, x, F (x)))− Vβ(x) ≤ τ(−2ρ+ γβ)Vβ(x) + τ2C̃βVβ(x).

Now let ε = ρ− µ, choose β > 0 such that γβ ≤ ε, and ∆t > 0 such that ∆tC̃β ≤ ε.
Then we obtain

Vβ(x(τ, x, F (x)))− Vβ(x) ≤ −2τµVβ(x)

for all τ ∈ (0,∆t], which implies the first assertion, and by

Vβ(x(τ, x, F (x))) ≤ Vβ(x)− 2τµVβ(x) ≤ e−2τµVβ(x)

we obtain the second assertion by the homogeneity of degree 1 of Vβ .
This proposition shows the stabilization for systems of type (2.9). In order to

prove Theorem 3.5(b) it remains to retranslate this result to general homogeneous-
in-the-state systems.

Proof of Theorem 3.5(b). Obviously, if the system defined by f is asymptotically
controllable, then the transformed system defined by f̄ is asymptotically controllable.
Thus from Proposition 4.4 we obtain V̄ = Vβ and F̄ = F satisfying the assertion for
f̄ which is homogeneous-in-the-state with Λα = αId, k = 1, and τ = 0.

We start by showing the result for the system defined by f̃(x, u) = f̄(x, u)‖x‖γ
being homogeneous-in-the-state with Λα = αId, k = 1, and τ = γ. Let Ṽ (x) = V̄ (x).
Then we immediately obtain

min
v∈cof̃(x,U)

DṼ (x; v) = ‖x‖γ min
v∈cof̄(x,U)

DṼ (x; v) ≤ −‖x‖γ2µṼ (x).

Now observe that for each control function u(·) ∈ U the trajectories x̃ and x̄ of these
systems satisfy

x̃(t, x0, u(·)) = x̄(t̄(t), x0, u(t̃(·))),(4.9)

where t̃(t) denotes the inverse of t̄(t) which is defined by

t̄(t) =

∫ t

0

‖x̃(τ, x0, u(·))‖γdt

and thus is well defined as long as the solution x̃(t, x0, u(·)) exists. If both x̃ and x̄
uniquely exist for all t ≥ 0 it is immediate that t̄(t)→∞ as t→∞.

Setting F̃ (x) = F̄ (x) a π̃-trajectory x̃π̃(t, x0, F̃ ) of

˙̃x = f̃(x̃, F̃ (x̃))(4.10)

on some interval [0, T ] on which x̃π exists becomes a π̄-trajectory x̄π̄(t̄(t), x0, F̄ ) of

˙̄x = f̄(x̄, F̄ (x̄)),(4.11)
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where π̄ = (t̄i)i∈N0
is given by t̄i = t̄(t̃i) with π̃ = (t̃i)i∈N0

. Now we distinguish the
three cases.

(i) γ > 0: By the choice of F̄ there exist C, µ, h > 0 such that inequality (4.3)
holds for each π̄-trajectory x̄π̄ of (4.11) with d(π̄) ≤ h and each x ∈ R

n. Now consider
a compact set K ⊂ R

n with 0 ∈ intK. Let CK := supx∈K ‖x‖, consider a π̃-trajectory
x̃π̃(t, x0, F̃ ) of (4.10) with d(π̃) ≤ h(CCK)−γ and x ∈ K, and assume that there exists
a (minimal) time t∗ > 0 such that ‖x̃π̃(t∗, x0, F̃ )‖ = C‖x‖. Without loss of generality
we may assume t∗ = t̃l ∈ π̃ for some l > 0, otherwise we may reduce the sampling
interval containing t∗. Then since ‖x̃π̃(t, x0, F̃ )‖ ≤ CCK for all t ∈ [0, t̃l] the rescaled
π̄ satisfies t̄i − t̄i−1 ≤ h for all i = 1, . . . , l; thus we obtain

‖x̃π̃(t̃l, x0, F̃ )‖ = ‖x̄π̄(t̄l, x0, F̄ )‖ ≤ Ce−µt̄l‖x0‖ < C‖x0‖
contradicting the choice of t∗ = t̃l. Thus ‖x̃π̃(t, x0, F̃ )‖ ≤ C‖x‖ holds for all t ≥ 0,
and hence d(π̄) ≤ h, implying

‖x̃π̃(t, x0, F̃ )‖ ≤ Ce−µt̄(t)‖x0‖

which implies the desired stability estimate with β(‖x‖, t) = Ce−µt̃(t)‖x‖ which is of
class KL because the corresponding trajectories stay inside some compact set, thus
exist for all t ≥ 0, and are unique since γ > 0, hence t̄(t)→∞ as t→∞.

(ii) γ = 0: In this case the assumption follows immediately from Proposition 4.4.
(iii) γ < 0: As in case (i) there exist C, µ, h > 0 such that inequality (4.3) holds

for each π̄-trajectory x̄π̄ of (4.11) with d(π̄) ≤ h and each x ∈ R
n. Consider a compact

set K ⊂ R
n and an open set B ⊂ R

n with 0 ∈ B ⊂ K. Let CK = supx∈K ‖x‖, CB =
infx�∈B ‖x‖/2 > 0. By continuous dependence on the initial value and compactness we
can choose s > 0 such that ‖x̃(t, x0, u)‖ ≤ 2C−1CB for all ‖x0‖ = C−1CB , all u ∈ U ,
and all t ∈ [0, s]. Then (2.7) implies (recall τ = γ < 0 and Λα = αId) the inequality
‖x̃(t, x0, u)‖ ≤ 2‖x0‖ for all ‖x0‖ ≥ C−1CB , all u ∈ U , and all t ∈ [0, s].

Now pick an arbitrary π̃-trajectory x̃π̃(t, x0, F̃ ) of (4.10) with π̃ satisfying d(π̃) ≤
min{h(C−1CB)

−γ , s} and x0 ∈ K, ‖x0‖ ≥ C−1CB , and consider an interval [t∗, t∗]
such that ‖x̃π̃(t, x, F̃ )‖ ≥ C−1CB for all t ∈ [t∗, t∗]. Then we either have t∗ = 0 = t̃0
or there exist sampling times such that t∗ ∈ [t̃i−1, t̃i]. In this case by d(π̃) ≤ s and
the choice of s we obtain ‖x̃π̃(t̃i, x0, F̃ )‖ ≤ 2‖x̃π̃(t∗, x0, F̃ )‖.

Analogously to the case γ > 0 the choice of d(π̃) now implies d(π̄) ≤ h and thus

‖x̃π̃(t, x0, F̃ )‖ ≤ Ce−µ(t̄(t)−t̄(t̃i))‖x̃π̃(t̃i, x0, F̃ )‖(4.12)

for all t ∈ [t̃i, t
∗]. This estimate implies that for each trajectory there exists a (mini-

mal) time T ≥ 0 such that the trajectory hits the set {x ∈ R
n | ‖x‖ ≤ C−1CB}, and

up to that time (4.12) implies the desired estimate with β(‖x0‖, t) = Ce−µt̄(t)‖x‖ ≤
Ce−µ(CCK)γt‖x0‖. After that time T , whenever the trajectory leaves this set at
some time t∗ ≥ T inequality (4.12) implies that it will enter again at some time
t∗ > t∗ and satisfies ‖x̃π̃(t, x0, F̃ )‖ ≤ 2CC−1CB = 2CB for all t ∈ [t∗, t∗]. Hence
‖x̃π̃(t, x0, F̃ )‖ ≤ 2CB for all t ≥ T , and since ‖x‖ ≤ 2CB implies x ∈ B we obtain the
practical stability property.

So far we have shown the existence of Ṽ and F̃ satisfying the assumptions of the
theorem for f̃ ; hence it remains to translate the results to f . To this end we define
V (x) = Ṽ (Ψ(x)) and F (x) = F̃ (Ψ(x)). This implies

DV (x; f(x, u)) = DṼ (Ψ(x))f̃(Ψ(x), u)
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and

xπ(t, x, F ) = x̃π(t,Ψ(x), F̃ )

and thus immediately the assertion since ‖Ψ(x)‖ = Nk(x).

5. Numerical approximation of V and F . In this section we briefly explain
how a numerical approximation to the CLF V and the feedback law F can be com-
puted.

Unfortunately, up to now no numerical method for the approximation of vδ, V0,
or Vβ is known, which also gives an approximation of the super- or subgradients and
thus allows the approximation of F . However, if we slightly change our feedback
concept (or, more precisely, the notion of a closed loop system) an approximation is
possible. For this purpose we introduce the following definition.

Definition 5.1. Let h : R
n → R

+ be an arbitrary map. A feedback law Fh :
R
n → U is called a discrete feedback if we apply it as a sampled feedback according to
Definition 3.2 with fixed state dependent intersampling times ∆ti = h(xπ(ti, x0, F

h)).
This definition generalizes the one given in [8] in the sense that the time step h

may now depend on x. The name “discrete feedback” is motivated by the fact that the
resulting system can be written as a discrete time system xi+1 = x(h(xi), xi, F

h(xi))
for which Fh is a feedback law in the classical sense.

Returning to our simplified system (2.9), and again fixing some ρ > 0 and
δ ∈ (0, ρ), we can apply the results from [8, 9], observing that the structural as-
sumptions on the system in these references (i.e., bi- or semilinearity, accessibility,
convexity of U) are needed only in order to show vδ(x) < 0. In particular, all the
numerical approximation results remain valid; thus we can proceed as in [8, 9] and (i)
approximate U by piecewise constant control functions, (ii) approximate the trajecto-
ries and the integral by numerical schemes, and (iii) compute an approximation of vδ
on a grid discretizing the state space S

n−1. Proceeding this way for any given ε > 0 we
find h > 0 and numerically computable functions vhδ : S

n−1 → R and Fh
S
: S

n−1 → U
such that

vhδ (s) ≤ −ρ+ ε(5.1)

and

vhδ (s) + ε ≥
∫ h

0

q(s(t, s, Fh
S
(s)), Fh

S
(s))dt+ e−δhvhδ (s(h, s, F

h
S
(s)))(5.2)

hold for each s ∈ S
n−1. This function vhδ is the function ṽaδ from [8]; inequality (5.1)

follows from [8, Theorems 3.3, 5.3, and inequality (5.4)], inequality (5.2) is easily
extracted from the proofs of [8, Lemma 5.1, Lemma 5.2, and Proposition 5.4] using
again [8, inequality (5.4)]. The feedback Fh

S
is defined by choosing a control value

minimizing the right-hand side of (5.2) using the numerical approximations of the
trajectory and the integral. Observe that the state space S

n−1 to be discretized here
is somewhat more difficult to handle than the projective space P

n−1 appearing in
[8, 9], since for n ≥ 3 a single map cannot be sufficient for the parametrization of
S
n−1 without introducing singularities. Hence, numerically, one either needs to work

directly on S
n−1, or one has to compute the solution using two parametrizations (e.g.,

the stereographic projection from the north and south pole) and consequently two
grids for the representation of vhδ in local coordinates. This method was used for the
second example in section 7.
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Defining Fh(x) = Fh
S
(x/‖x‖) analogous to Proposition 4.3 we can conclude that

the function

V h(x) := e2v
h
δ (x/‖x‖)‖x‖

is homogeneous, proper, and positive definite and satisfies

V h(x(h, x, Fh(x))) ≤ (1− 2hρ+M(ε+ εh+ h2))V h(x)

for some suitable constant M > 0 independent of h and ε; i.e., for any ρ′ ∈ (0, ρ)
there exist sufficiently small h > 0 and ε > 0 such that

V h(x(h, x, Fh(x))) ≤ (1− 2hρ′)V h(x).(5.3)

Thus the function V h is a (discrete time) Lyapunov function for the system con-
trolled by the discrete feedback Fh according to Definition 5.1 with h(x) ≡ h, which
immediately implies (exponential) stability.

As in the proof of Theorem 3.5(b) we can retranslate this result to arbitrary
homogeneous-in-the-state systems. Analogous to the proof of this theorem denote
the functions obtained for (2.9) by F̄h, V̄ h, and h̄. For the retranslation from f̄ to
f̃ we can use F̃h = F̄h and F̃h = V̄ h; however, following (4.9) we now have to use
h̃(x) = t̃(h̄, x) as intersampling times, where

t̃(h̄, x) =

∫ h̄

0

‖x̄(τ, x, Fh(x))‖−γdτ.

Passing from f̃ to f we define—again analogously to the proof of Theorem 3.5(b)—
the feedback Fh(x) = F̃h(Ψ(x)), the Lyapunov function V h(x) = Ṽ h(Ψ(x)), and
the intersampling time h(x) = h̃(Ψ(x)). This way it is straightforward to see that
(5.3)—now for the x-dependent h—remains valid and thus stability follows.

Observe that the time steps h(x) are bounded from below by some positive con-
stant on each compact set if and only if τ ≥ 0, and they are bounded on each open
set not containing the origin if and only if τ ≤ 0. In this way they behave just like the
sampling rate for the theoretical feedback law from Theorem 3.5(b); however, here
the stability is only guaranteed for these fixed intersampling times h(x) and not for
smaller ones as allowed in Definition 3.4.

6. Stabilization of homogeneous systems. We now return to the homoge-
neous system from Definition 2.1. The idea of the proof of Theorem 3.5(a) lies in
the fact that for any asymptotically controllable homogeneous system we can find
an asymptotically controllable homogeneous-in-the-state system. For this we find a
CLF and a stabilizing feedback law by Theorem 3.5(b), which—retranslated to the
homogeneous system—have the properties as stated in Theorem 3.5(a).

For this purpose recall that for each homogeneous system (2.1) we find an associ-
ated homogeneous-in-the-state system by (2.8). The following proposition shows that
this system inherits the asymptotic controllability property.

Proposition 6.1. Consider a system (2.1) satisfying Definition 2.1. Assume that
the system is asymptotically controllable. Then there exists a compact set of control
values U ⊂ W such that the homogeneous-in-the-state system (2.8) is asymptotically
controllable using control functions with values in U .

Proof. First observe that due to (2.7) it is sufficient to show that there exists a
compact U ⊂W and a time T > 0 such that any initial value x0 with N(x0) = 1 can
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be steered to some point x1 with N(x1) ≤ 1/2 in some time t < T using a measurable
control u(·) with u(t) ∈ U for almost all t ≥ 0. With this property asymptotic
controllability easily follows by induction from (2.7).

In order to show the existence of this U first observe that, denoting the trajectories
of f and g by xf and xg, respectively, the equality

xf (t, x0, u(·)) = xg(t, x0, w(·)) with u(t) = ∆−1
N(xg(t,x0,w(·)))w(t)(6.1)

holds. Now consider the initial values x0 ∈ N−1(1). For each of these points there
exists a control wx0

(·) ∈ W such thatN(xg(tx0 , x0, wx0(·))) = 1/3. Now by continuous
dependence of the solution on the initial value we obtain that for each x0 there exists
an open neighborhood Bx0

� x0 such that

N(xg(tx0 , x, wx0(·))) ≤ 1/2

for all x ∈ Bx0
. Since N−1(1) is compact and is covered by the Bx0 we find a finite

number M ∈ N of points xi0, i = 1, . . . ,M , such that the sets Uxi
0
, i = 1, . . . ,M , cover

N−1(1). Thus setting ti = txi
0
and wi(·) = wxi

0
(·) for each x0 ∈ N−1(1) there exists a

number i ∈ {1, . . . ,M} such that

N(xg(ti, x0, wi(·))) ≤ 1/2.

Now we choose ui(t) = ∆−1
N(xg(t,x0,wi(·)))wi(t) for all t ∈ [0, ti], ui(t) ∈W arbitrary for

t > ti. Then by (6.1) we immediately obtain

N(xf (ti, x, ui(·))) ≤ 1/2

for each x0 ∈ N−1(1) and some suitable i ∈ {1, . . . ,M}. Since the functions wi(·)
are locally essentially bounded, i.e., essentially bounded on [0, ti], we can conclude
that the functions ui(·) are essentially bounded. Thus ‖ui(·)‖∞ is finite for each
i = 1, . . . ,M and also supi=1,...,M ‖ui(·)‖∞ is finite; hence there exists a compact
U ⊂W such that ui(t) ∈ U for almost all t > 0 and all i = 1, . . . ,M .

Now we can complete the proof of Theorem 3.5.
Proof of Theorem 3.5(a). Consider the system homogeneous-in-the-state as de-

fined by (2.8) with U ⊂ W from Proposition 6.1. For this system from part (b)
of this theorem we obtain a CLF Vf and a feedback Ff . Setting V = Vf and
F (x) = ∆N(x)Ff (x) we immediately obtain the assertion.

7. Examples. Finally, let us illustrate our results by two examples. The first
example

g(x,w) =

(
x1 + w
3x2 + x1w

2

)
(7.1)

for x = (x1, x2)
T ∈ R

2, w ∈W = R, is taken from [24], where it has been shown that
a stabilizing continuous and homogeneous feedback law cannot exist for this system.

The vector field g is homogeneous with Λα = diag(α, α3) and ∆α = α. Thus we
obtain N(x) = (x6

1 + x2
2)

1/6. For system (7.1) a stabilizing discrete feedback Fh has
been computed numerically using the techniques of section 5. Analyzing the switching
curves of the numerical feedback in this case, it was easy to derive the feedback

F (x) =

{
N(x), x1 ≤ −x3

2,
−N(x), x1 > −x3

2,
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Fig. 7.1. Trajectories for stabilized system (7.1).

stabilizing the sampled system for all sufficiently small sampling rates. Figure 7.1
shows the corresponding (numerically simulated) sampled trajectories for some initial
values; here the intersampling times have been chosen as ∆ti = 0.01 for all i ∈ N0.

The second example is the nonholonomic integrator given by Brockett [2] as an
example for a system being asymptotically null controllable but not stabilizable by a
continuous feedback law.

In suitable coordinates (cf. [26], where the physical meaning is also discussed) it
reads

g(x,w) =


 w1

w2

x1w2


(7.2)

for x = (x1, x2, x3)
T ∈ R

3, w = (w1, w2)
T ∈W = R

2. For this g we obtain homogene-
ity with Λα = diag(α, α, α2) and ∆α = diag(α, α), hence N(x) = (x4

1 + x4
2 + x2

3)
1/4.

Again a stabilizing discrete feedback law Fh has been computed numerically following
section 5.

In this example it is also possible, in principle, to derive an explicit formula from
the numerical results; it is, however, considerably more complicated, since a number
of switching surfaces have to be identified. Hence we directly used the numerical
approximation Fh of F for the simulation shown in Figures 7.2–7.4 in different pro-
jections; the time step is h = 0.01, and the control values were chosen as U = {−1, 1}.
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Fig. 7.2. Trajectories for stabilized system (7.2), projected to the (x1, x2) plane.
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Fig. 7.3. Trajectories for stabilized system (7.2), projected to the (x1, x3) plane.
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Fig. 7.4. Trajectories for stabilized system (7.2), projected to the (x2, x3) plane.
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pp. 181–191.

[3] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conf.
Ser. Appl. Math. 57, SIAM, Philadelphia, 1989.

[4] F. Clarke, Y. Ledyaev, L. Rifford, and R. Stern, Feedback stabilization and Lyapunov
functions, SIAM J. Control Optim., to appear.

[5] F. Clarke, Y. Ledyaev, E. Sontag, and A. Subbotin, Asymptotic controllability implies
feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), pp. 1394–1407.

[6] F. Colonius and W. Kliemann, Maximal and minimal Lyapunov exponents of bilinear control
systems, J. Differential Equations, 101 (1993), pp. 232–275.

[7] F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 1999.
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ON THE EFFECT OF NEGLECTING SENSOR DYNAMICS
IN PARAMETER IDENTIFICATION PROBLEMS∗
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Abstract. In this paper, we consider a deterministic parameter identification problem for a
nonlinear control system subject to disturbances and with output measured by a sensor with fast
dynamics. We study the effect of neglecting sensor dynamics on the set of parameter values that are
consistent with the measurements. We show that when neglecting dynamics we must significantly
modify the corresponding static model of the sensor in order to obtain a set of parameter values that
contains the true value and is consistent with the measurements. We describe a correct model of the
static sensor which is in a sense minimal.

Key words. deterministic parameter identification, sensor dynamics, nonlinear control, singular
perturbations, invariance

AMS subject classifications. 93B30, 34E15, 49K40, 93C10
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1. Introduction. In deterministic parameter identification the goal is to find a
set of values of an unknown parameter vector which are consistent with the measure-
ments; for a collection of recent papers in this field see [12]. In virtually all work in this
field the dynamics of the sensor are ignored by assuming instantaneous response. This
assumption considerably simplifies the model and improves the numerical tractability
of the problem. In this paper, we show that ignoring the fast dynamics may lead
to unsatisfactory effects. More specifically, we consider a nonlinear control system
subject to disturbances whose output is measured by a sensor with fast dynamics
described by a singularly perturbed ordinary differential equation. We show that
when neglecting fast dynamics we must significantly modify the model of the sensor
in order to obtain a set of parameter values that contains the true value. We describe
a model of the static sensor which is in a sense minimal to obtain correct parameter
identification results.

The effects of neglecting sensor/actuator dynamics have been studied by Leitmann,
Ryan, and Steinberg [10], Corless, Leitmann, and Ryan [5], and Kenneth and Taylor
[8], in the context of stabilization and observation problems. In the present paper
we explore this effect from the point of view of parameter identification, a problem
which, to the authors’ knowledge, has not been considered in the literature. In our
analysis, we use tools from the recently developed proximal approach in invariance
(viability) theory [3, 4, 13].

We consider a nonlinear control system where the state equation is of the form

ẋ(t) = f(p, x(t),F(y(·))(t), v(t)), x(0) = x0.(1.1)
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Here t ∈ [0, 1] is the independent variable representing time, x(t) ∈ R
n is the state

vector, y(t) ∈ R
m represents the output signal fed back into the system, F describes a

feedback law, v(t) ∈ R
r is a disturbance, and p ∈ R

q is a parameter whose value is to
be estimated. We assume that the initial state x0 is known and the only information
about the disturbance v(·) is that it is a Lebesgue measurable function on [0, 1] with
values in V, a given closed subset of R

r. The set of disturbance functions is denoted by
V. The state trajectory x(·) is regarded as an absolutely continuous function satisfying
(1.1) almost everywhere (a.e.) in [0, 1]. The output y(t) is obtained through a sensor
with dynamics described by the output equation

εẏ(t) = g(x(t), y(t), v(t)), y(0) ∈ Y0,(1.2)

where ε is a “small” positive parameter describing the “fast” reaction of the sensor
to changes of the state and the disturbance, and the set Y0 ⊂ R

m. The sensor with
“neglected” dynamics is modeled by (1.2) with ε = 0, that is,

0 = g(x(t), y(t), v(t)).(1.3)

We consider the following parameter identification problem. Let the a priori
information for the value of the parameter p be represented by a set P ⊂ R

q; that is,
we know that p ∈ P . The goal is to find a subset of P , ideally, a single element—the
true value of p, by measuring the output y. A “true” state trajectory x̂ of the system
associated with a function v̂ ∈ V representing the uncertainty (both unknown) results
in a sensor “trajectory” ŷ according to (1.2). We assume that a subset ∆ of the
interval [0, 1] is known such that the values of ŷ(·) are available at each moment of
time t ∈ ∆. In other words, the restriction ŷ|∆ is the exactly measured output and,
correspondingly, we suppose that the feedback law F(y(·)) uses only the values of
y for t ∈ ∆. Normally, F is a causal operator: its values F(y(·))(t) depend only
on the restriction of y(·) on [0, t] ∩∆, but the causality will not be essential for the
considerations below. The data ŷ(t), t ∈ ∆ are used to reduce the uncertainty in the
parameter p replacing the a priori estimation p ∈ P by the a posteriori deterministic
estimation p ∈ P εŷ(·), where

P εŷ(·)
def
= {p ∈ P | there exist v(·) ∈ V and a solution (x(·), y(·))(1.4)

of (1.1)–(1.2) such that y(t) = ŷ(t) for all t ∈ ∆}.
Observe that this estimation depends on the speed of the response represented by ε.
Smaller values of ε correspond to faster responses. The sensor with an instantaneous
response is modeled by (1.3), and applying this model to the parameter identification
problem leads to the estimation p ∈ P 0

ŷ(·), where P
0
ŷ(·) is defined in the same way

as P εŷ(·) but with (1.2) replaced by (1.3). Note that, due to the assumptions on the
disturbance v(·), the output of the static sensor y(·) may be not absolutely continuous
in time t.

If the set ∆ consists of finitely many points (or more generally, has Lebesgue
measure zero), then the values v(t) in (1.3) can be chosen completely independently
of the function v(·) in (1.1). In such a case, the static model can be written as

0 ∈ g(x(t), y(t), V )(1.5)

or, equivalently, as

y ∈ K0(x),(1.6)
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where

K0(x)
def
= {y| 0 ∈ g(x, y, V )}.(1.7)

Taking into account that F(y(·))(t) depends only on the values y(s), s ∈ ∆, we can
then describe the set P 0

ŷ(·) in the following way:

P 0
ŷ(·)

def
= {p ∈ P | there exist v(·) ∈ V and an absolutely continuous solution x(·)(1.8)

of (1.1) corresponding to ŷ(·), v(·) such that ŷ(t) ∈ K0(x(t)) for t ∈ ∆}.
The estimation (1.8), however, can be totally wrong in certain situations. As shown
later in this paper, the set P 0

ŷ(·) may be very different from the true estimation P εŷ(·)
or even empty for arbitrarily small ε. The reason for such an effect is the fact that
the values of the measurement ŷ(t) may happen to be away from the (equilibrium) set
K0(x(t)) for some solutions (x(·), ŷ(·)) of (1.1)–(1.2) corresponding to some v(·) ∈ V.
This is a consequence of possible “singular” behavior of the singularly perturbed
equation (1.2) which occurs when the disturbance function v(·) changes rapidly in
time, at least as fast as the dynamics of the sensor (1.2). Such a singular behavior
is related to the discontinuity of the reachable set of singularly perturbed control
systems first observed in [7]. In the “regular” case, as opposed to the singular one,
the relation ŷ(t) ∈ K0(x(t)) is satisfied approximately, with error proportional to ε
and then the sensor model (1.6) needs to be ε-modified only.

The following is a simple example illustrating singular behavior. Consider two
identical systems with states x1 and x2 in R, described by

ẋ1(t) = px1(t), x1(0) = 1,

ẋ2(t) = px2(t), x2(0) = 1.

Suppose that each of the states is measured by a sensor, and that the second sensor
is faster than the first, namely,

εẏ1(t) = −y1(t) + x1(t) + v(t), y1(0) = 0,(1.9)
ε

2
ẏ2(t) = −y2(t) + x2(t) + v(t), y2(0) = 0.(1.10)

We assume that the disturbance vector v affecting the two sensors has bounded mag-
nitude, i.e., |v(t)| ≤ 1. Let the set ∆ consist of a finite number of points ti = ih,
i = 1, . . . , k, h = 1/k. Suppose that the true value of the parameter is p = 0 (the
systems are static) and that the realization of the disturbance v(·) has the form
v(t) = v0(t+ αε), where (for convenience) α = ln 2 and

v0(t) =

{
−1 for t ∈ [ti, ti + h

2 ],

1 for t ∈ (ti + h
2 , ti+1].

The solutions of (1.9) and (1.10) associated with x1(t) = x2(t) = 0 and the disturbance
v(·) just defined satisfy

ŷ1(ti) = 1 +O(ε), ŷ2(ti) =
3

2
+O(ε).

Neglecting the dynamics of the sensors results in two identical static sensor models,

yj(ti) = xj(ti) + vi, |vi| ≤ 1, i = 1, . . . , k, j = 1, 2.(1.11)
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Obviously, the set of parameters p that are consistent with the measurements ŷj(ti)
according to the sensor model (1.11) is empty. A possible way to handle this problem
is to “regularize” the static model by artificially introducing new disturbances w1 and
w2, each bounded by a constant d. Then we obtain the static sensor model

yj(ti) = xj(ti) + vi + wji , |vi| ≤ 1, |wji | ≤ d, i = 1, . . . , k, j = 1, 2.(1.12)

Since |ŷ1(ti) − ŷ2(ti)| = 1/2 + O(ε), it is clear that to ensure p = 0 ∈ P 0
ŷ one has to

take d ≥ 1/4 − O(ε). That is, even for arbitrarily small ε, the static model (1.11)
must be significantly modified to be usable for parameter identification.

In the following section we obtain a general sufficient condition for a static sensor
model of the form y ∈ K(x) to provide correct results when used instead of the
“true” model (1.2) in the parameter identification problem. In section 3 we obtain
conditions for regular behavior, where a slight modification, proportional to ε, of the
instantaneous response model (1.6) suffices to obtain correct results. In section 4 we
give a complete answer to the question of how to define the mapping K(·) of the static
sensor, in the case of singular behavior.

2. From the dynamic to a static sensor model. We use the following no-
tation. The space R

m is endowed with any Hilbert norm | · | with the scalar prod-
uct denoted by 〈·, ·〉. The corresponding unit ball is denoted by B. For a closed

set Z ⊂ R
m and a point y ∈ R

n we denote dist(y, Z)
def
= min{|y − z| | z ∈ Z}.

PZ(y)def= {z ∈ Z| |z − y| = dist(y, Z)} is the set of projections of y on the closed
set Z. The proximal normal cone to the closed set Y ⊂ R

m at the point y ∈ Y is
defined as

N⊥
Y (y)

def
= {l ∈ R

m| y ∈ PY (y + αl) for some α > 0}.

In this section we study the following abstract model of the static sensor:

y(t) ∈ K(x(t)) + cεB,(2.1)

where K : R
n ⇒ R

m is a set-valued map and c is a positive constant. Given the
measurement ŷ(·) of the system (1.1)–(1.2) for t ∈ ∆, the deterministic estimation set
of p based on the model (2.1) is described by

Pŷ(·)
def
= {p ∈ P | there exist v(·) ∈ V and a solution x(·) of (1.1) corresponding(2.2)

to ŷ(·), v(·) such that (2.1) holds for y(t) = ŷ(t), t ∈ ∆}.

We use the following assumptions.
(A) There is a compact set S ⊂ R

n such that for each p ∈ P and every v(·) ∈ V,
every solution of the differential equation

ẋ(t) = f(p, x(t),F(ŷ(·))(t), v(t)), x(0) = x0,

has values in the interior of S for all t ∈ [0, 1]. The functions f : P×R
n×R

m×V → R
n

and g : R
n ×R

m × V → R
m are locally Lipschitz continuous. There exists a constant

M such that |f(p, x,F(ŷ(·))(t), v)| ≤M for all p ∈ P , x ∈ S, t ∈ ∆, and v ∈ V .
(B) For each x ∈ S the set K(x) is nonempty and closed. There exists a constant

L such that K(x′′) ⊂ K(x′)+L|x′′−x′|B for every x′, x′′ ∈ S. In addition, we assume
Y0 ⊂ K(x0).
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(C) There exists λ > 0 such that for every x ∈ S, y ∈ K(x), l ∈ N⊥
K(x)(y), and

v ∈ V

〈g(x, y + l, v), l〉 ≤ −λ|l|2.

We will see further that assumption C plays a crucial role for passing from the
dynamic sensor model to a static one. This assumption is inspired by the recently
developed proximal approach to stability and invariance; see [3, 4, 13]. Here, in the
general case, its form is fairly abstract; in the following sections we show that in
specific cases it reduces to a computationally tractable condition.

The following theorem is the central result of the paper.
Theorem 2.1. Let assumptions A, B, and C hold, let the constant c in (2.1)

satisfy c ≥ LM/λ, and let ε > 0. Then

P εŷ(·) ⊂ Pŷ(·).

The meaning of this result is clear: if we apply the static sensor model (2.1)
under the above assumptions, then the estimation set Pŷ(·) obtained on the basis of
the measured output must contain the true value of the parameter p.

In the proof of the theorem we use the notion of contingent derivative (see, e.g.,
Aubin and Frankowska [2]) and the following lemma. We recall that ξ ∈ R

m is an
element of the contingent derivative DK(x, z; η) of the set-valued mapping K : Rn ⇒
R
m at the point (x, z) on the graph of K(·) in the direction η if

liminf
h→0+

1

h
dist(z + hξ,K(x+ hη)) = 0.

Lemma 2.2. Let the functions x : [0, 1] → R
n and y : [0, 1] → R

m be absolutely
continuous and let the set-valued mapping K : R

n ⇒ R
m satisfy assumption B. Then

the function ρ(t)
def
= dist(y(t),K(x(t))) is absolutely continuous and

ρ̇(t) ≤ min
z∈PK(x(t))(y(t))

min
ξ∈DK(x(t),z;ẋ(t))

〈ẏ(t)− ξ, y(t)− z〉
ρ(t)

for a.e. t for which ρ(t) > 0.
Proof. The absolute continuity of ρ(·) is obvious. Let t be a point where ρ(t) > 0

and each of the functions x(·), y(·), and ρ(·) is differentiable. Let z ∈ PK(x(t))(y(t))
and let ξ ∈ DK(x(t), z; ẋ(t)). Then there exist sequences hk → 0+ and ωk → 0 such
that

z + hkξ + hkωk ∈ K(x(t) + hkẋ(t)) ⊂ K(x(t+ hk)) + o(hk)B,

where o(·) is any function with o(h)/h → 0 when h → 0. Then z + hkξ + hkω
′
k ∈

K(x(t+ hk)) for some ω
′
k → 0. Hence,

ρ(t+ hk) ≤ |y(t+ hk)− z − hkξ|+ o(hk) ≤ |y(t)− z + hk(ẏ(t)− ξ)|+ o(hk).

Since |y(t) − z| = ρ(t) > 0, taking the directional derivative of the norm in the
right-hand side we obtain

ρ(t+ hk) ≤ ρ(t) + hk
〈ẏ(t)− ξ, y(t)− z〉

|y(t)− z| + o(hk).
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Rearranging the last inequality and passing to the limit with k we obtain the desired
inequality.

Proof of Theorem 2.1. Let p ∈ P εŷ(·) and let vpε (·), xpε(·) correspond to p according
to (1.4). This means that there exists a solution y(·) of (1.2) with x = xpε and
v = vpε such that y(t) = ŷ(t) for t ∈ ∆. Since P εŷ(·) and Pŷ(·) depend only on the
values of ŷ(·), these two sets will not change if we extend the domain of ŷ to [0, 1]
by taking ŷ(t) = y(t) for all t ∈ [0, 1]. In this way we ensure that ŷ(·) satisfies (1.2)
with x = xpε and v = vpε . Then, to prove the theorem, it is enough to establish
the inclusion ŷ(t) ∈ K(xpε(t)) + cεB with c = ML/λ or, equivalently, the inequality

ρ(t)
def
= dist(ŷ(t),K(xpε(t))) ≤ cε.
According to the last part of assumption B, ρ(0) = 0. Lemma 2.2 implies that

ρ(·) is absolutely continuous and for almost every t for which ρ(t) > 0 and at which
ẋpε(t) and

˙̂y(t) exist and (1.1)–(1.2) are satisfied, we have

ρ̇(t) ≤ min
z∈PK(x

p
ε (t))(ŷ(t))

min
ξ∈DK(xp

ε(t),z;ẋp
ε(t))

〈 ˙̂y(t)− ξ, ŷ(t)− z〉
ρ(t)

.(2.3)

The term 〈 ˙̂y(t), ŷ(t)− z〉 can be estimated by

〈ε−1g(xpε(t), ŷ(t), v
p
ε (t)), ŷ(t)− z〉 ≤ −

λ

ε
(ρ(t))2,

where in the last estimation we use assumption C and the relations

ŷ(t)− z ∈ N⊥
K(xp

ε(t))(z), |ŷ(t)− z| = ρ(t).

Hence,

ρ̇(t) ≤ −λ
ε
(ρ(t))2 + min

z∈PK(x
p
ε (t))(ŷ(t))

min
ξ∈DK(xp

ε(t),z;ẋp
ε(t))

|〈ξ, ŷ(t)− z〉|
ρ(t)

≤ −λ
ε
(ρ(t))2 + min

z∈PK(x
p
ε (t))(ŷ(t))

min
ξ∈DK(xp

ε(t),z;ẋp
ε(t))
|ξ|.(2.4)

In order to estimate the last term we prove that assumption B implies

min
ξ∈DK(x,z;l)

|ξ| ≤ L|l|(2.5)

for every x ∈ S, z ∈ K(x), and l ∈ R
n. Indeed, for every h > 0 there exists zh ∈

K(x+hl) such that |z−zh| ≤ Lh. Thus the sequence ξh = (zh−z)/h has a subsequence
ξhk

converging to a point ξ, and |ξ| ≤ L. Since z + hkξhk
= zhk

∈ K(x + hkl), we
obtain that ξ ∈ DK(x, z; l); hence (2.5) holds.

Taking into account assumption A and (2.5), from (2.4) we obtain

ρ̇(t) ≤ −λ
ε
ρ(t) + LM.

The above inequality need not be fulfilled for those t for which ρ(t) = 0, but it is
sufficient (together with ρ(0) = 0) to verify that the desired inequality ρ(t) ≤ cε
holds. The proof is complete.

The two coupled equations (1.1)–(1.2) represent a singular perturbation model.
In the realm of singular perturbations, one usually assumes a certain type of stability
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for the fast dynamics. For our model such an assumption means that the function g
describing the dynamic sensor must ensure a certain tracking property for the solution
of (1.2). Here we use the following assumption.

(D) There exists a positive constant λ such that for every x ∈ S, y1, y2 ∈ R
m,

and v ∈ V,

〈g(x, y2, v)− g(x, y1, v), y2 − y1〉 ≤ −λ|y1 − y2|2.

Assumption D is related to the so-called one-sided Lipschitz condition which is
used in the analysis of stiff differential equations. For various versions of this condition,
see [6, 14]. In the case of a function g which is invertible and differentiable in y,
assumption D is implied by the (uniform) negative definiteness of the matrix ∂g/∂y
with respect to the scalar product 〈·, ·〉. Note that this scalar product was arbitrarily
chosen, and therefore the familiar, in the linear case, requirement that the real parts
of the eigenvalues be negative is covered.

Under assumption D, assumption C has the following equivalent form which will
be used in the next section.

Proposition 2.3. If assumptions A, B, and D are satisfied, then assumption C
is equivalent to the following:

〈g(x, y, v), l〉 ≤ 0 for all x ∈ S, y ∈ K(x), v ∈ V, l ∈ N⊥
K(x)(y).(2.6)

Proof. Suppose that assumption C is satisfied and assume that, on the contrary,

〈g(x, y, v), l〉 = δ > 0

for some x ∈ S, y ∈ K(x), v ∈ V, and l ∈ N⊥
K(x)(y), say, with |l| = 1. Then

〈g(x, y + αl, v), αl〉 ≥ 〈g(x, y, v), αl〉 − L′α2 = δα− L′α2 > 0

for all sufficiently small positive α. Here L′ is the Lipschitz constant of g in a neigh-
borhood of the point (x, y, v). This contradicts assumption C, since αl ∈ N⊥

K(x)(y).

Now, let (2.6) be fulfilled. Then for every x, y, v, l chosen as in assumption C, we
have 〈g(x, y, v), l〉 ≤ 0. Applying assumption D for y1 = y ∈ K(x) and y2 = y1 + l we
obtain

〈g(x, y + l, v), l〉 ≤ 〈g(x, y + l, v), l〉 − 〈g(x, y, v), l〉

= 〈g(x, y2, v)− g(x, y1, v), y2 − y1〉 ≤ −λ|l|2.

This completes the proof.

3. The regular case. In this section we obtain conditions for regularity of the
sensor model. By regularity we mean the following: there exists a small, that is, pro-
portional to ε, modification of the static sensor model (1.5), obtained by neglecting
the sensor dynamics, which provides correct results when used for deterministic pa-
rameter identification. Specifically, we answer the question under what circumstances
assumptions B and C are satisfied by the equilibrium mapping K0(·) defined in (1.7).

First, note that K0(x) is a closed set, provided that V is compact. Further, the
Lipschitz-type assumption in B for K0 is standard in the set-valued framework, for
sufficient conditions; see [2]. From [14] it follows that if assumption D is fulfilled, then
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K0(x) is nonempty for every x ∈ S. The remaining condition for the initial value of
the observation is a natural requirement, meaning that at the beginning of the process
the sensors are in equilibrium (ẏ = 0). An alternative condition is to suppose that
some interval [0, δ], δ > 0, does not contain points from the set ∆.

Thus, the critical requirement for regularity is represented by assumption C.
In the following we suppose that assumption D holds. Then (2.6) is equivalent

to C, according to Proposition 2.3. We focus on (2.6) in the special case where the
function g has the form

g(x, y, v) = g0(x, y) + C(x)v.

Here g0 : S × R
m → R

m and C : S → R
n×r are Lipschitz continuous functions with

respect to x, uniformly in y. We suppose that for all x ∈ S the function g0(x, ·)
is invertible, differentiable, and with locally Lipschitz derivative, and the derivative
∂g0/∂y(x, y) is invertible for all y. We also suppose that the set V is convex and
compact.

Proposition 3.1. Under the assumptions listed in the above paragraph, the
map K0(·) is nonempty and compact-valued and Lipschitz continuous. Moreover,
assumption C is equivalent to the following:

−∂g0
∂y
(x, ϕ(x, v))C(x)TV (v) ⊂ C(x)TV (v) for all x ∈ S, for all v ∈ V,(3.1)

where ϕ(x, v) is the unique solution of the equation 0 = g0(x, y) + C(x)v and TV (v)
is the tangent cone to V at v.

Proof. We already know that the set K0(x) is closed and nonempty. Since
K0(x) = g−1

0 (x,−C(x)V ), where the inversion is with respect to the second argu-
ment, the first claim follows from the classical inverse function theorem.

By Proposition 2.3, assumption C is equivalent to (2.6). According to the prox-
imal characterization of the strong invariance property with respect to a differential
inclusion obtained in [9] (see also [3]) and the tangential characterization of the same
property [1], the relation (2.6) (for the set K0(x)) is equivalent to

g(x, ȳ, V ) ⊂ TK0(x)(ȳ) for all x ∈ S, ȳ ∈ K0(x).(3.2)

Since x is fixed, we skip the dependence of x in the rest of the proof.
Let v̄ ∈ V and ȳ be arbitrary vectors satisfying the relation 0 = g(ȳ, v̄), that is,

ȳ = ϕ(v̄). Then (3.2) can be rewritten as C(V − v̄) ⊂ TK0(x)(ȳ) or, equivalently, as

CTV (v̄) ⊂ TK0(x)(ȳ) for all v̄ ∈ V.

It remains to prove that

TK0(ȳ) = −
[
∂g0
∂y
(ȳ)

]−1

CTV (v̄).(3.3)

The inclusion of TK0(ȳ) in the right-hand side can be verified by applying the
definition of the contingent cone. To prove the inverse inclusion we first define the
function

ωh(η)
def
=

g0(ȳ + hη)− g0(ȳ)
h

− ∂g0
∂y
(ȳ)η,
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where h is a positive parameter and η ∈ R
m. A standard estimation implies that

ωh(·) is Lipschitz continuous with Lipschitz constant L′h/2, where L′ is the Lipschitz
constant of ∂g0∂y (·) at ȳ. Then for every fixed ξ ∈ R

m with |ξ| ≤ 1 and for all sufficiently
small h, the operator

η �→ ξ −
[
∂g0
∂y
(ȳ)

]−1

ωh(η)

maps 2B into 2B and is contractive; it therefore has a fixed point η̂h(ξ) and obviously

|η̂h(ξ)− ξ| ≤ L′

2

∣∣∣∣
[
∂g0
∂y
(ȳ)

]−1 ∣∣∣∣h.(3.4)

Now take an arbitrary element ξ, |ξ| ≤ 0.5 from the right-hand side of (3.3).
There exist a sequence hk → 0 and a sequence vk ∈ V such that

ξ = −
[
∂g0
∂y
(ȳ)

]−1

C lim
k

vk − v̄
hk

.

Then ξk → ξ for ξk
def
= − [∂g0∂y (ȳ)]−1C(vk − v̄)/hk. Since |ξk| ≤ 1 for all sufficiently

large k we can define ηk = η̂hk
(ξk). We have

hk
∂g0
∂y
(ȳ)ξk = −C(vk − v̄) = −g0(ȳ)− Cvk.

From the definition of ηk, we obtain

g(ȳ + hkηk, vk) = g0(ȳ) + hk
∂g0
∂y
(ȳ)ηk + hkωhk

(ηk) + Cvk

= g0(ȳ) + hk
∂g0
∂y
(ȳ)ξk + Cvk = 0.

This means that ξ ∈ TK0(ȳ) since ηk → ξ according to (3.4). The proof is now
complete.

To better understand condition (3.1) we denote A = (∂g0/∂y)(x, y), C = C(x)
and consider the case where V is a box, V = [α1, β1]× · · · × [αr, βr].

Proposition 3.2. Condition (3.1) is equivalent to the following: each column of
the matrix C is an eigenvector of the matrix A corresponding to an eigenvalue that
is real and nonpositive.

Proof. Let (3.1) be fulfilled. We shall prove the claim for the first column of C.
The case r = 1 is obvious; therefore we suppose that r > 1.

Denote by ei ∈ R
r the vector with the ith component equal to one and all the

other components equal to zero. Then e1 ∈ TV ((α1, v2, . . . , vr)) for every vi ∈ [αi, βi].
Condition (3.1) implies that l

def
= − ACe1 ∈ CTV ((α1, v2, . . . , vr)). Hence, given

σ = (σ2, . . . , σr) with all σi ∈ {−1, 1}, by choosing appropriate v2, . . . , vr we con-
clude that l has the representation l = Czσ, where 〈e1, zσ〉 ≥ 0 and sign〈ei, zσ〉 = σi
for i = 2, . . . , r. Taking an arbitrary σ′ = (σ3, . . . , σr) (if r > 2) and a convex combi-
nation of z(−1,σ′) and z(1,σ′), we can represent l as l = Cz′σ′ , where now 〈e1, z′σ′〉 ≥ 0,
〈e2, z′σ′〉 = 0, and sign〈ei, z′σ′〉 = σ′

i for i = 3, . . . , r (if r > 2). Proceeding by in-
duction we obtain the representation l = Cz, where 〈e1, z〉 ≥ 0 and 〈ei, z〉 = 0 for
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i = 2, . . . , r. That is, l = −AC1 = γC1, where C1 is the first column of C and γ ≥ 0.
This completes the proof of the necessity. The proof of the sufficiency is straightfor-
ward.

Let us consider again the example in the introduction. Here r = 1 and

A =

(−1 0
0 −2

)
, C =

(
1
2

)
.

The vector C is not an eigenvector; therefore, as was argued in the introduction, the
dynamic sensor model (1.9)–(1.10) is not regular. The regularity condition would be
fulfilled, however, if the second sensor (1.10) were identical to the first one.

Let us consider the same example, but for a moment forget that the disturbance
v ∈ [−1, 1] is the same for the two sensors. That is, we pass to the case r = 2 with

C =

(
1 0
0 2

)
.

Here the two columns of C are obviously eigenvectors of A corresponding to the
eigenvalues −1 and −2, respectively; therefore the use of the static sensor model

y1 = x1 + v1, y2 = x2 + v2, v1, v2 ∈ [−1− cε, 1 + cε]

is justified. This model, however, is not minimal; it is “too pessimistic.” In the next
section we show a way to find a minimal static model providing correct results for the
parameter identification problem.

4. The singular case. In the preceding section we showed that the static sensor
model (1.6) obtained by simply neglecting the sensor dynamics can be applied for
deterministic estimation of the parameter p in very special cases only. Specifically,
for a linear time-invariant system, the condition described in Proposition 3.2 is not
generic. In this section we show how to construct a static sensor model, represented
by a set K(x), larger than K0(x), which satisfies the requirements of Theorem 2.1.

First we recall some notions from [1]. A set Y ⊂ R
m is strongly invariant (merely

“invariant” in the terminology in [1]) with respect to the differential inclusion ẏ ∈ G(y)
if every trajectory y(·) of this differential inclusion starting from a point of Y never
leaves Y . For any set Y and for a mapping G that is Lipschitz continuous, there
exists a unique minimal closed set—the so-called invariance envelope of Y (denoted
InvG(Y )) that contains Y and is strongly invariant with respect to G.

Going back to the identification problem, let us suppose that the measurement
data ŷ(t), t ∈ ∆ are given, that assumptions A and D from section 2 are fulfilled,

and that the equilibrium mapping K0(·) satisfies assumption B. Denote K̄(x)
def
=

InvG(x,·)(K0(x)), where G(x, y) = g(x, y, V ). We also suppose that the function g
has the following Lipschitz property with respect to x: there is a constant Lx such
that

|g(x′, y, v)− g(x′′, y, v)| ≤ Lx|x′ − x′′| for all x′, x′′ ∈ S for all y ∈ K̄(x′).
Theorem 4.1. Let the conditions listed in the last paragraph hold. Then K̄ is the

unique minimal (with respect to pointwise inclusion) mapping from S to the subsets
of R

m satisfying assumptions B and C such that K0(x) ⊂ K̄(x) for all x ∈ S.
Proof. For x ∈ S the set K̄(x) is closed by definition and nonempty, since

K0(x) ⊂ K̄(x) is nonempty according to [14]. Let us prove the Lipschitz property.
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Let x′, x′′ ∈ S, y′′ ∈ K̄(x′′). We prove that

dist(y′′, K̄(x′)) ≤ L+
Lx
λ
.(4.1)

The invariance envelope InvG(x,·)(K0(x)) is the closure of the set of all points y(t), t ≥
0, where y(·) is a trajectory of ẏ ∈ G(x, y) starting from a point of K0(x). Then for
an arbitrary δ > 0 there exist y′′0 ∈ K0(x

′′), T > 0, and a measurable v(·) : [0, T ] �→ V
such that the (unique) solution y2 of the equation

ẏ(t) = g(x′′, y(t), v(t)), y(0) = y′′0 ,(4.2)

satisfies |y′′−y2(T )| ≤ δ. There is y′0 ∈ K0(x
′) such that |y′0−y′′0 | ≤ L|x′−x′′|. Denote

by y1(·) the solution of (4.2) with x′, y′0 instead of x′′, y′′0 . Then y1(T ) ∈ K̄(x′), hence
dist(y′′, K̄(x′)) ≤ |y1(T ) − y2(T )| + δ. Denote d(t) = |y1(t) − y2(t)|. Whenever
differentiable and nonzero, d(·) satisfies

ḋ(t) =
〈ẏ1(t)− ẏ2(t), y1(t)− y2(t)〉

d(t)

=
〈g(x′, y1(t), v(t))− g(x′′, y2(t), v(t)), y1(t)− y2(t)〉

d(t)
≤ Lx|x′ − x′′| − λd(t).

Here we used the Lipschitz property of g and assumption D. From here we conclude
that d(t) ≤ (L+ Lx/λ)|x′ − x′′| which implies (4.1) since δ was arbitrarily chosen.

The condition ŷ(0) ∈ K̄(x0) is fulfilled since it is assumed for K0(x0). It remains
to show that assumption C holds. Under D, assumption C is equivalent to (2.6),
according to Proposition 2.3. From [3, 9], the latter is equivalent to the strong in-
variance of K̄(x). In addition, K̄(x) is the smallest strongly invariant set containing
K0(x). This completes the proof.

Since the set K0(x) consists only of equilibrium points of the mapping G(x, ·), its
invariant envelope can be described as the limit (in the sense of Painlevé–Kuratowski)

K̄(x) = lim
T→+∞

Rx(T ),

where Rx(T ) is the reachable set at T of the system

ẏ(t) = g(x, y(t), v(t)), y(0) ∈ K0(x), v(t) ∈ V.
The reachable set can be analytically found only in exceptional cases (like in the
example below), but there are efficient methods for its enclosure and approximation;
see, e.g., the survey [11].

Let us compute the set K̄(x) for the example considered in the introduction and
in section 3. Easy calculations give us

Rx(t) = e

(−t 0
0 −2t

)
K0(x) +

∫ t

0

e

(−t+ s 0
0 −2t+ 2s

)((
x1

2x2

)
+

(
1
2

)
[−1, 1]

)
ds.

Integrating and taking the limit for t→ +∞ we get

K̄(x) =

(
x1

x2

)
+

∫ +∞

0

(
e−s 0
0 e−2s

)(
1
2

)
[−1, 1] ds.
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Fig. 1. Various models of the static sensor.

The last integral of a set-valued mapping is in the sense of Aumann; see, e.g., [2]. Its
calculation gives the set R = {(y1, y2) ∈ R

2| 0.5y2
1+y1−0.5 ≤ y2 ≤ −0.5y2

1+y1+0.5}.
Finally we have

K̄(x) =

(
x1

x2

)
+R.

The set K̄(x) is given on Figure 1 for x = 0. Note the difference with the formally
obtained static model K0(0) as well as with the two regularizations, K1 as discussed
in the introduction and K2 in section 3.
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Abstract. We reduce the admissibility of finite-dimensional control operators for an evolution
system (satisfying certain mild regularity conditions) to that for a semigroup control system, for which
there are plenty of results available in the literature. One such necessary and sufficient condition
is the Carleson measure criterion. We prove this condition explicitly for evolution systems without
the regularity assumption mentioned above. We also look at some examples which show that our
respective hypotheses are necessary.

Key words. admissibility, evolutionary equations, control theory, Carleson measure, completely
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1. Introduction. This paper deals with control theory for nonautonomous,
infinite-dimensional dynamical systems which arise from Volterra integral equations.
Classical theory for C0-semigroups considers the (autonomous) system

x′(t) = Ax(t) +Bu(t), t ≥ 0,
x(0) = x0,

(1)

where x is a function with values in the state space X, u is a function with values
in the control space, and B is the control operator. In order that the uncontrolled
system has a solution, we assume that A is the generator of a C0-semigroup T (·) in
X. Particularly in boundary control problems unbounded control operators arise. A
detailed example is given in [6].

We will be interested in the case where the control space is one-dimensional.
Any finite-dimensional control operator can be obtained as a sum of one-dimensional
operators. Consequently, the solution to (1) will be obtained as a sum if the individual
solutions exist. We will write b instead of B, where b is a nonzero element of the range
space of B.

This equation was studied in [7] and [10] and later generalized to B of higher rank
in [4]. Interesting cases arise when B is unbounded, in other words, when B cannot
be identified by an element b of its range space in X, but only in a larger space; see
also [2]. This paper also deals with the preliminary question of which operators B are
admissible, and not which operators B make the system controllable [3]. Necessary
and sufficient criteria were established for admissibility of the control element b in the
C0-semigroup case in the aforementioned papers.

We are interested in a generalized version of this setting, namely, the generalized
(Volterra) system:

x′(t) = (da ∗Ax)(t) + bu(t),
x(0) = x0
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tronically May 11, 2000. This research was supported by a Deutsche Forschungsgemeinschaft Fel-
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http://www.siam.org/journals/sicon/38-5/32819.html
†Fakultät für Mathematik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin

(mjung@math.tu-berlin.de).

1323



1324 MICHAEL JUNG

for a a scalar-valued function of bounded variation. Integrating these equations with
respect to time, we are thus led to consider the following problem:

x(t) = x0 + (a ∗Ax)(t) + (1 ∗ bu)(t), t ≥ 0.(2)

We wrote the equation in a derivative-free way. This will be of convenience later on
and indeed is slightly more general with the appropriate requirement on a than had
we chosen to write it in its original setting (1).

It is the purpose of this paper to determine necessary and sufficient conditions
under which b will be a suitable control element for (2) in an L2-setting. In section
3 we will reduce the admissibility for an evolution system to that for a semigroup
system under certain regularity conditions. This, in particular, extends the known
Carleson measure criterion. In section 2 we will prove this with less regularity needed.
These will depend on A and a, of course. The corresponding problem for semigroups
was considered in [7] and [10]. We will see that the semigroup conditions remain valid
if a is completely positive. Completely positive functions were studied intensively in
[9]. Consequently, many control operators known for semigroups can also be used in
the Volterra integral equation case.

Let us start by presenting the terminology used in this setting: R+ = (0,∞)
and C+ = {λ ∈ C : �(λ) > 0}. Assume that X is the (Banach) state space and
u ∈ L2(R+). We have a complete solution theory for the uncontrolled equation in the
case that A is a closed operator, a is of subexponential growth, and some compatibility
conditions are met (see [9, section 1]). For the time being, we assume these conditions
are met. If S(·) is the solution family to the uncontrolled equation (mapping x0 onto
the solution), the (mild) solution to (2) is formally obtained via the variation of
constants formula and can be expressed as

x(t) =
d

dt
(S ∗ (x0 + 1 ∗ bu))(t) = S(t)x0 + (S ∗ bu)(t), t ≥ 0.

We therefore call b admissible if the above equation can be made rigorous. (We
understand that to mean that b is an admissible control element.) Let X−1 be the
completion of X with the norm ‖(λI −A)−1 · ‖, where λ is in the resolvent set ρ(A);
different values of λ ∈ ρ(A) yield equivalent norms. S extends to a solution family in
that space. We assume in the present paper that b ∈ X−1. In the semigroup case it
was proven (see [11]) that this has to be the case if b is to be admissible.

Definition 1.1. If there exist a t0 > 0 and c > 0, such that ‖(S∗bu)(t0)‖ ≤ c‖u‖2
for all u ∈ L2([0, t0]), then b is called admissible (for time t0 > 0).

This is a direct generalization of the standard definition, e.g., given in [11]. Note
that if this definition is true for t0 > 0, then it is also true for all 0 < t < t0, while
it need not be true for t > t0 (in contrast to the semigroup case). This definition
is unaffected by a reflection of u about the ordinate, so we may integrate over the
product Sbu where convenient, instead of calculating the convolution. The set XS

denotes the set of admissible vectors that are admissible for all times.
We make some notational conventions. Functions defined on some subset of the

real axis are trivially extended without stating this fact each time. For functions
f ∈ Lp(R) and g ∈ BV (R), we have for their convolution f ∗ dg ∈ Lp(R). A complex-
valued measure µ ∈M(R+) is called Laplace transformable if

∫ ∞

0

e−εt|dµ(t)| <∞
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for some ε > 0. We define the Laplace transform L for all Laplace transformable
measures

L(dµ)(z) =
∫ ∞

0

e−ztdµ(t), �(z) > ε.(3)

We extend the transform of a function analytically in the component of C which con-
tains (ε,∞) and denote this extension with the same symbol. The Laplace transform
L and the Fourier transform F are related via L(dµ)(iz) = F(dµ)(z) for appropriate
transformable measures µ ∈M(R+) and z ∈ R. Let

e0(t) =

{
1 for t > 0,
0 for t ≤ 0,

the Heaviside function.
We recall a definition from [1]. A function a ∈ L1

loc(R+) is called completely
positive if there exists a nonnegative, nondecreasing, and concave function k : R+ → R

such that

zL(a)(z)L(dk)(z) = 1, z ≥ 0.(4)

A measure µ ∈M(R+) is called completely positive if it is Laplace transformable and
zL(dµ)(z)L(dk)(z) = 1, accordingly. The function k can be decomposed as

k(t) = k0 + k∞t+
∫ t

0

k1(τ)dτ, t > 0,(5)

with k1 nonnegative, nonincreasing, and k1(∞) = 0. See section 4 in [9] for more
details on completely positive functions.

A family S is called solution family to (2) if it is strongly continuous on X and
on X1 := (D(A), ‖ · ‖ + ‖A · ‖), S(0) = I and satisfies S(t)x = x + A(a ∗ S)(t)x for
x ∈ X; in particular, (a ∗ S)(t)x ∈ X1.

2. Admissibility for diagonal operators. We restrict ourselves to let a be
a completely positive, Laplace transformable function and A be a diagonal operator
in this section. More specifically, let X = l2(N) and Aen = λnen for en the nth
unit vector. We also assume, without loss of generality, that σ := supn∈N

�(λn) < 0.
There are no requirements with regard to accumulation points. Many operators can
be represented in this way; the most important class is normal generators with a
compact resolvent in a Hilbert space. Then (2) has a unique strongly continuous
diagonal solution family S(t)en = s−λn(t)en (see [9, section 4]). The scalar function
sλ satisfies the equation

sλ(t) = 1 + λ(a ∗ sλ)(t), t ≥ 0.

We now introduce the notion of a Carleson measure (see [8, chapter 8], [7]).
Note, that the element b can be interpreted as a vector (bn)n, although generally not
in l2(N). The vector b has an associated measure µb, where µb(M) =

∑
−λn∈M |bn|2,

which depends on (λn)n; we will also denote that measure with b, in the hope of not
having introduced too much ambiguity.

Definition 2.1. Let R(h, k) = {z ∈ C+ : 0 < �(z) < h, |�(z) − k| < h}. Then
b is called a Carleson measure, if there exists a M > 0, such that for all h > 0 and
k ∈ R:

∑
−λn∈R(h,k) |bn|2 ≤Mh.
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We may now formulate and prove the main theorem of this section, giving a
necessary condition for admissibility of (2) in the sense of Definition 1.1. A sufficient
condition is given in the next section (Theorem 3.2). The condition here is essentially
the same—the Carleson measure criterion—as in the semigroup case. It has been
proved that the Carleson measure criterion is equivalent to admissibility for diagonal,
analytic, and invertible semigroups (see, e.g., [11]). The new results encompass the
semigroup case, but the theorem below yields the criterion’s necessity without the
restrictions given in the next section for general operators (Theorem 3.3), whereas
it is sufficient for admissibility, as we shall also see in the next section. Why the
restrictions κ > 0 and α <∞ (see below) are required will be seen from the examples;
what proved to be a necessary and sufficient criterion in the semigroup case cannot
be applied without precaution in the Volterra integral equation case.

We assume the same properties on A and a as before. We define three char-
acteristic values for a. Let k : R+ → R be the function related with a as in (4).
Then

κ := lim
t→0

k(t) = k0,

ω := lim
t→∞ k(t)/t = k∞,

α := lim
t→0

k′(t) = k1(0+) + k∞.

Note that all these values are nonnegative but α may be infinite. The limit (of the
increasing sequence) for α need not exist.

We use the subordination principle to represent sλ: there exists a function
w : R

2
+ → R+, such that

sλ(t) = −
∫ ∞

0

eλsdsw(t, s)

= −L(d·w(t, ·))(−λ), t ≥ 0, �(λ) < 0.

(See [9, Theorem 4.1 and Corollary 4.5].) The function w has certain properties we
will now exploit.

We set w0(t, s) = w(t, s) − e0(t − κs), t, s ≥ 0. We state the following lemma
without proof. It is not hard to check, given the properties of w listed in [9, section
4].

Lemma 2.2. If α <∞, then lim(t,s)→0 w0(t, s) = w0(0, 0) = 0 and for each ε > 0
there exists t0 > 0, such that for all 0 < t ≤ t0 holds ‖w0(t, ·)‖BV [0,t0] < ε.

Theorem 2.3. Let κ > 0, α < ∞. If b is admissible for T > 0, then b is a
Carleson measure.

Proof. We have already stated that admissibility holds for all 0 < t0 ≤ T . We
shall prove that there exists t0 > 0 and m > 0, such that for all h > 0 and k ∈ R

there exists u ∈ L2[0, t0] with ‖u‖2 = 1, such that

∣∣∣∣
∫ t0

0

sλ(t)u(t)dt

∣∣∣∣ =
∣∣∣∣
∫ t0

0

∫ ∞

0

eλsdsw(t, s)u(t)dt

∣∣∣∣ ≥ mh−1/2

for −λ ∈ R(h, k) ∩ σ(−A). This is sufficient to prove the claim, because

∑
−λn∈R(h,k)

|bn|2 ≤
∑

−λn∈R(h,k)

∣∣∣∣bn
∫ t0

0

sλn
(t)u(t)dt

∣∣∣∣
2

/(m2h−1)
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≤ m−2h
∑
n∈N

∣∣∣∣bn
∫ t0

0

sλn
(t)u(t)dt

∣∣∣∣
2

≤ m−2h

∥∥∥∥
∫ t0

0

S(t)bu(t)dt

∥∥∥∥
2

≤ cm−2 h.

Therefore let ε = infz∈R(0,1) |z−1(1− e−z)| and choose 0 < t0 ≤ T , such that

sup
t∈[0,t0]

‖w0(t, ·)‖BV [0,t0] < ε/2.

Then let ũ(t) = e0(κ/h − t)eikt/κ and u(t) = ũ(t)/‖ũ‖2 = h−1/2κ1/2ũ(t). We then
obtain with w0(t, s) = w(t, s)− e0(t− κs), t, s ≥ 0, from Lemma 2.2∣∣∣∣

∫ t0

0

sλ(t)ũ(t)dt

∣∣∣∣ =
∣∣∣∣
∫ t0

0

∫ ∞

0

eλsdsw(t, s)ũ(t)dt

∣∣∣∣
≥
∣∣∣∣
∫ t0

0

eλt/κũ(t)dt

∣∣∣∣− ε2
∫ t0

0

|ũ(t)|dt

≥
∣∣∣∣
∫ κ/h

0

e(λ+ik)t/κdt

∣∣∣∣− ε2
∫ κ/h

0

dt

=

∣∣∣∣κ1− e
(λ+ik)/h

λ+ ik

∣∣∣∣− εκ2h
≥ εκ

2h
.

We have silently assumed κ/h ≤ t0. If this does not hold, the corresponding claim
holds with t0 replacing κ/h. Since all λn fulfill �(λn) > −σ, we can safely assume
h ≥ σ and there exists a constant c > 0, such that κ/h ≤ ct0. We find∣∣∣∣

∫ t0

0

sλ(t)u(t)dt

∣∣∣∣ ≥ min(c, 1)
εκ

2h‖ũ‖2 ≥ min(c, 1)
εκ1/2

2
h−1/2.

This finishes the proof.
A converse of this theorem is shown in the next section (Theorem 3.2).
We now take a look at the situation in which κ = 0. Then, if α < ∞, we find

by [9, p. 95, case 2] that a(t)dt has a jump at zero. But this implies that a is not
absolutely continuous. Consequently, a cannot be completely positive in that case.
We are thus not able to use the subordination principle as we did in the theorems
above. A minor extension is possible however. Although the sufficiency theorem,
Theorem 2.3, can be proved, if a is just a (completely positive) measure, necessity is
not true; the following provides a counterexample if κ = 0.

Example 2.4. Let Aen = (−1 + in5/3)en and let b ∈ X−1. Choose a(t) = δ0;
then a(t)dt is completely positive. (The corresponding k of (4) equals k(t) = t.) We
have w(t, s) = e−s and sλ(t) = (1 − λ)−1. Regarding admissibility, we obtain from
(2) x(t) = Ax(t) + (1 ∗ bu)(t), which yields (S ∗ bu)(t) = (I − A)−1b(1 ∗ u)(t), which
satisfies Definition 1.1 obviously (for u ∈ L2([0, T ])). Thus all b are admissible. But
let bn = n ∈ N, for instance; then (bn)n ∈ X−1. We have for h = n5/3 > 1

h−1
∑

−λn∈R(h,ω)

|bn|2 = n−5/3
n∑
j=0

j = n−5/3(n2 − n)/2,
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which is obviously not bounded, i.e., b is not a Carleson measure.
The next example shows that κ > 0 and α < ∞ are a necessary requirement in

Theorem 2.3.
Example 2.5. Let Aen = −nen and let bn = nγ for n ∈ N with 0 < γ < 1/2.

Choose a(t) = (πt)−1/2 (the corresponding k of (4) equals k(t) = 2(t/π)1/2); then we
infer from [9, section 4] that

sn(t) =
2√
π
en

2t

∫ ∞

n
√
t

e−r
2

dr.

Let 0 < β < 1. First we estimate the L2([0, T ])-norm of sn:

‖sn‖22 =
4

π

∫ T

0

(
en

2t

∫ ∞

n
√
t

e−r
2

dr

)2

dt

≤ 4

π

∫ T

0

(
en

2t

∫ ∞

n
√
t

e−rn
√
tdr

)2β (∫ ∞

n
√
t

en
2t−r2dr

)2−2β

dt

≤ 4

π

∫ T

0

(
1

n2t

)β (∫ ∞

0

e−r
2

dr

)2−2β

dt

= C(T, γ, β)n−2β .

Now we show that b is indeed admissible:

∞∑
n=0

|bn|2
∣∣∣∣
∫ T

0

s−n(t)u(t)dt
∣∣∣∣ ≤

∞∑
n=0

|bn|2‖s−n‖22‖u‖22

≤ C(T, γ, β)‖u‖22
∞∑
n=0

n2(γ−β),

which is bounded if β − γ > 1/2. But b is not a Carleson measure

h−1
∑

−λn∈R(h,ω)

|bn|2 = (1/n)

n∑
k=0

k2γ = O(n2γ), n→∞,

for h = n (n ∈ N). Moreover, by choosing γ, β appropriately, it is easy to see that b
may lie outside any fractional power space between X and X−1.

Moreover, we can improve the above example, if we choose a(t) = tδ with δ <
−1/2. Since S(·) is analytic and ‖AS(·)‖ ∈ L2(R+), we have S ∗ bu = AS ∗ A−1u ∈
C(R+, X) (see [9, Example 2.1 and Theorem 2.2]). Again, all b ∈ X−1 are admissible.

We can improve the example in another direction and show that α < ∞ is nec-
essary. Choose k(t) = 1 + 2(t/π)1/2, the corresponding a; then κ > 0 but α <∞. A
similar but more lengthy calculation yields the same result as above. Note that

sn(t) = nπ
−1

∫ ∞

0

e−rtr−1/2(r + (r − n)2)−1dr

in this case.

3. Admissibility for general operators. For nondiagonal operators some sig-
nificant results are available with respect to admissibility. In fact, admissibility is
equivalent to ‖(λ − A)−1b‖2 ≤ K/|�(λ)| for some K > 0 in some right half-plane
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in the case of normal or left-invertible semigroups (see [4]). For more results in that
line, see [5]. However, a general criterion for admissibility seems not to be known
even in the autonomous case. We will therefore try to relate the Volterra integral
equation to the underlying Cauchy problem, thereby reducing the question to that
problem. We again assume A is the generator of a C0-semigroup in a Banach space
X. Then it is known (for the semigroup case) that any admissible b is a vector in
X−1 (see [11]). X−1 can also be viewed as the “smallest” space Y containing X,
such that A : D(A) ⊂ X → Y has a continuous extension. Again we assume a is
completely positive. Then the solution family to (2) for b = 0 can be represented
similarly as in the section before as

S(t) =

∫ ∞

0

T (s)dsw(t, s), t ≥ 0,(6)

where T is the semigroup generated by A.
The space of admissible vectors XT for the semigroup case is continuously embed-

ded in X−1. If we can present S(t) as a perturbation of T (t) with the perturbing part
mapping X−1 into X, we have equality for the space of admissible vectors, XT = XS .
This idea is inspired by the fact that S(t) is an integral of T (·) for t ≥ 0 and inte-
grals have smoothing properties. For this to work we need regularity of the involved
integral kernels as we will see.

We thus need to decompose w in (6) into regular and singular parts. An informal
calculation yields

S(t) =

∫ ∞

0

T (s)wr(t, s)ds+
∑
wjs(t)T (tj),

where wjs gives the level of the jumps of w(t, ·) at tj . This is made precise in the
following lemma.

Lemma 3.1. The function w can be decomposed as

w(t, s) = e−ωsw0(t− κs, s) + e−αse0(t− κs)
for t, s > 0. (a) Let k1 be the nonnegative, nonincreasing function given in (5). w0 is
nonnegative, w0(·, s) is nondecreasing, w0(t, ·) is nonincreasing, and w0(0+, s) = 0.
If k1 ∈ W 1,2

loc ([0,∞)), then w0 ∈ W 1,2
loc ([0,∞)2). (b) If k1 ∈ W 2,2

loc ([0,∞)), then also

w0 ∈W 2,2
loc ([0,∞)2).

Proof. Let T > 0; we will calculate all L2-norms on [0, T ]. From [9, Proposition
4.10] we infer that w0 ∈ W 1,1

loc (R
2
+). Note that we may set κ = ω = 0, since this will

not change the regularity. Moreover, let l(t) = − ∫ t
0
sdk1(s). Then l

′(t) = tk1′(t) and

∂tw0(t, s) = st
−1

∫ t

0

l′(t− r)drw(r, s) + t−1 lim
h→0

h−1

∫ t+h

t

l(t+ h− r)drw(r, s).

To estimate the L2-norm of the first term we use a simple convolution estimate and
|r/t| ≤ 1 for r ∈ [0, t]. But for the second term we get, using the fact that k1 is
nonincreasing, the following estimate:

∣∣∣∣ limh→0
h−1

∫ t+h

t

l(t+ h− r)drw(r, s)
∣∣∣∣

≤ lim
h→0

h−1

∫ h

0

∫ h−r

0

u|dk1(u)| |drw(t+ r, s)|
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≤ lim
h→0

∫ h

0

|k1(h− r)− k1(0)| |drw(t+ r, s)|
≤ lim
h→0

sup
s∈[0,h]

|k1(s)− k1(0)|.‖w(·, s)‖BV = 0.

On the other hand, we have

−∂sw0(t, s) = (k1 ∗ ∂tw0)(t, s) + e
−αs(k1(t)− α)

for almost all t, s > 0. We thus get for calculating the norm of w0 in W 1,2([0, T ]2)

‖∂tw0(·, s)‖2 ≤ s‖k1′‖2‖w(·, s)‖BV ≤ s‖k1′‖2,
‖∂sw0(·, s)‖2 ≤ T 1/2‖k1‖2‖∂tw0(·, s)‖2 + e−αs‖k1‖2 + T 1/2αe−αs

from which follows the claim.

We now calculate the second derivatives in case (b) for t > 0. First we get

s−1∂2
tw0(t, s) = t

−1

∫ t

0

(k1
′(r)− rt−1k1

′(r))drw(t− r, s)(7)

+ t−1

∫ t

0

rk1
′′(r)drw(t− r, s)(8)

+ lim
h→0

h−1

∫ t+h

t

l′(t+ h− r)drw(r, s).(9)

Note that from the first part of the proof we may infer with k1 ∈W 2,2([0, T ]) we have

‖∂tw0(·, s)‖∞ ≤ s‖k1′‖∞‖w(·, s)‖BV ≤ s‖k1′‖∞ <∞.

We estimate the second part of the right side of (7) (the first part is clearly bounded)
and obtain

∫ T

0

∣∣∣∣
∫ t

0

rt−2k1
′(t− r)drw(r, s)

∣∣∣∣
2

dt

=

∫ T

0

∣∣∣∣
∫ t

0

rt−2k1
′(t− r)∂rw0(r, s)dr

∣∣∣∣
2

dt

≤
∫ T

0

t−2

∫ t

0

|k1′(t− r)|2dr
∫ t

0

|∂rw0(r, s)|2dr dt
< C‖k1‖W 2,2

(uniformly in s ∈ [0, T ]). Now we calculate the desired bound for (8) using a standard
estimate for convolutions.

∫ T

0

∣∣∣∣
∫ t

0

rt−1k1
′′(r)drw(t− r, s)

∣∣∣∣
2

dt

=

∫ T

0

∫ t

0

|k1′′(r)|2drw(t− r, s)dt
≤ C‖k1′′‖2.
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We estimate (9) using the fact that w(·, s) is differentiable with bounded derivative
for t > 0.

lim
h→0

∣∣∣∣h−1

∫ t+h

t

(t+ h− r)k1′(t+ h− r)drw(r, s)
∣∣∣∣

≤ lim
h→0

∫ h

0

|k1′(h− r)||drw(t+ r, s)| = 0.

Thus ‖∂2
tw0(·, s)‖2 ≤ 3Cs‖k1‖W 2,2 , which concludes the proof for ∂2

tw0. We have for
the remaining derivatives for almost all t, s > 0

−∂t∂sw0(t, s) = (k1 ∗ ∂2
tw0)(t, s) + e

−αsk1′(t) + ∂tw0(0, s)k1(t),

−∂2
sw0(t, s) = (k1 ∗ ∂s∂tw0)(t, s)− αe−αs(k1(t)− α).

Consequently,

‖∂t∂sw0(·, s)‖2 ≤ ‖k1‖1‖∂2
tw0(·, s)‖2 + e−αs‖k1′‖2 + ∂tw0(0, s)‖k1‖2,

‖∂2
sw0(·, s)‖2 ≤ ‖k1‖1‖∂s∂tw0(·, s)‖2 + αe−αs(‖k1‖1 + αT 1/2),

which concludes the proof for the remaining derivatives.
Note that we have omitted the proof of the measurability for the derivatives in

question. This can be proven by standard mollifier arguments.
We are now in a position to prove some relationships that hold between the spaces

of admissible vectors XT and XS .
Theorem 3.2. Suppose that a ∈ L1

loc(R+) is a completely positive function with

κ > 0 and let k1 ∈W 1,2
loc ([0,∞)). Then b is admissible for the Volterra case (i.e., (2))

if it is admissible for the autonomous case (i.e., (1)).
Proof. w(t, ·) can be decomposed according to Lemma 3.1 into a regular part

with density wr(t, ·) ∈ L2([0, t/κ]) and a singular part ws(t, ·) with a jump at t/κ of
level e−αt/κ. We thus may estimate two terms in the admissibility equation which
correspond to the regular and singular parts, respectively. For the first we get (using
CT/κ as the L2([0, T/κ])-norm of T (·)b)∥∥∥∥∥

∫ T

0

∫ ∞

0

T (s)bu(t)wr(t, s)ds dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ T

0

∫ t/κ

0

T (s)bu(t)wr(t, s)ds dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ T/κ

0

T (s)b

∫ T

κs

u(t)wr(t, s)dt ds

∥∥∥∥∥
≤ CT/κ

∥∥∥∥∥
∫ T

κ(·)
u(t)wr(t, ·)dt

∥∥∥∥∥
2

≤ CT/κ


∫ T

0

∥∥∥∥∥
∫ T

κs

u(t)wr(t, s)dt

∥∥∥∥∥
2

ds




1/2

≤ CT/κ
(
‖u‖22

∫ T

0

‖wr(·, s)‖2ds
)1/2

≤ CT/κ‖wr‖2‖u‖2.
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For the singular part we have
∥∥∥∥∥
∫ T

0

∫ ∞

0

T (s)bu(t)dws(t, s) dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ T

0

e−αt/κT (t/κ)bu(t)dt

∥∥∥∥∥
≤ CT/κκ‖e−α(·)u(κ·)‖2 ≤ CT/κ‖u‖2.

Note that we have proven a partial converse of Theorem 2.3 in view of the results
from [11].

This theorem can be generalized in that one may consider control operators with
a range space of higher dimension. Moreover, functions w with more jumps than just
at zero can be dealt with on the same basis of proof, but giving a priori conditions
on a is more difficult. We thus have XT ⊂ XS . Be reminded that Theorem 2.3 does
not require κ > 0 for the same result in the diagonal case.

As to the necessity of the condition on k1, we observe Example 2.5 again. There,
we found b that was not admissible for the semigroup generated by A, but admissible
for the equation

x(t) = x0 + (a ∗Ax)(t) + (1 ∗ bu)(t).
In that case k(t) = 2

√
t/π and thus k1(t) = 1/

√
tπ. But k1 /∈W 1,2

loc ([0,∞)).
Assume that the hypothesis of Theorem 3.2 holds, except that κ = 0. Then the

decomposition of w into a regular part with density wr and a singular part yields
a trivial singular part and wr(t, ·) ∈ L2([0, T ]). Now assume wr(t, ·) ∈ W 1,2([0, T ]).
Thus

‖(S ∗ bu(T − ·))(T )‖ =
∥∥∥∥∥
∫ T

0

∫ ∞

0

T (s)bu(t)wr(t, s)ds dt

∥∥∥∥∥ .

We remark that
∫ t
0
v(s)T (s)x ds ∈ D(A) for all x ∈ X, if v ∈ W 1,1([0, t]), which is

easy to prove. (Use AT (·) = T ′(·) and partial integration.) We then need to see that

v(·) =
∫ T

0

u(t)wr(t, ·)dt ∈W 1,1([0, T ]).

But this is true, since wr(t, ·) ∈ W 1,2([0, T ]) ⊂ W 1,1([0, T ]). Therefore any b ∈ X−1

is admissible in this situation (κ = 0).
Theorem 3.3. Suppose that a ∈ L1

loc(R+) is a completely positive function with

κ > 0 and let k1 ∈W 2,2
loc ([0,∞)). Then b is admissible for the Volterra case (i.e., (2))

if and only if it is admissible for the autonomous case (i.e., (1)).
Proof. By Lemma 3.1, S(t) can be expressed as

S(t) = e−αt/κT (t/κ) +
∫ t/κ

0

T (s)wr(t, s)ds,(10)

where wr ∈W 1,1
loc ([0,∞)2). Now let κ > 0. Since XT ⊂ X−1, for a given t > 0,

b �→
∫ ∞

0

wr(·, s)T (s)b ds
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maps XT into L2([0, t], X). Observe that the integral vanishes outside of a compact
interval.

Thus XS = XT if we require more regularity on k1. The representation (10)
is however interesting in its own right. The subordinated solution family under this
condition is an additive perturbation of the (shifted and rescaled) semigroup with a
very “smooth” operator. The perturbation maps not only X−1 into X and, similarly,
X into X1 but also is uniformly continuous (cf. [9, section 4]).

In closing we would like to remark that extensions of the presented results to
infinite-dimensional control operators are possible. In particular, Theorems 3.2 and
3.3 remain valid even for infinite-dimensional B. An eigenvector expansion in a Hilbert
space is also possible for certain constellations. A full-fledged analysis of the infinite-
dimensional case is however beyond the scope of this paper; we refer to [12] and [5] for
operator generalizations of the Carleson measure criterion in the autonomous case.

Acknowledgment. I would like to thank an unnamed referee for some invaluable
suggestions, improving, in particular, the examples.
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1993, pp. 367–378.



ABSTRACT OPTIMAL LINEAR FILTERING∗

VLADIMIR N. FOMIN† AND MICHAEL V. RUZHANSKY‡

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1334–1352

Abstract. The linear optimal filtering problems in infinite dimensional Hilbert spaces and their
extensions are investigated. The quality functional is allowed to be a general quadratic functional
defined by a possibly degenerate operator. We describe the solution of the stable and the causal
filtering problems. In the case of causal filtering, we establish the relation with a relaxed causal
filtering problem in the extended space. We solve the last problem in continuous and discrete cases
and give the necessary and sufficient conditions for the solvability of the original causal problem as
well as the conditions for the analogue of the Bode–Shannon formula to define an optimal filter.
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1. Introduction. We consider the linear optimal filtering problems in infinite
dimensional Hilbert spaces and their extensions. Briefly, the problem is as follows.
Let H ′, H ′′ be Hilbert spaces and z = [ xy ] a random element in H = H ′ ×H ′′, where
x and y are unobservable and observable components of z in H ′ and H ′′, respectively.
The correlation operator of z is assumed to be bounded in H and we denote by H a
subset of all linear operators h : H ′′ → H ′. The H-optimal linear filtering problem is a
problem of the estimations of the unobservable component x based on the realizations
of the observable component y in the form

x̂ = hy(1.1)

solving the minimization problem in H

J(h)→ inf
h∈H

,(1.2)

where the quality functional J is defined by

J(h) = E||D(x− x̂)||2(1.3)

with a suitable norm in (1.3) and a linear operator D : H ′ → H ′. The operator
D here is an arbitrary operator in general. In that which follows we will sometimes
assume that it has an adjoint D∗ and that it is continuous if the other operators
in the problem are continuous. The choice of operator D allows us to perform the
minimization of the quality functional J(h) with respect to some of the variables. In
this case D is not bijective and its choice is dictated by the problem at hand. If D is
bijective, then, as we shall see, the minimization in (1.2) is performed with respect to
all variables with certain weights assigned. This leads to the linear transformation of
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the solution for D = I, I being the identity operator. If D is degenerate, the solution
of (1.2) is not unique and we will provide formulas for it.

If H consists of all continuous linear operators h, the problem (1.1), (1.2), (1.3) is
called stable. IfH ′ andH ′′ are Hilbert resolution spaces, one has a time structure inH
and in its terms defines an “independent of the future” class of the causal continuous
operators H. In this case the problem is called causal.

If H ′ and H ′′ are finite dimensional (the time set T is discrete and finite), the
problem (1.1), (1.2), (1.3) is quite trivial: the causal operators become the lower
triangular matrices in a natural basis. In the case of the nondegenerate correlation
matrix Ry of the random vector y and the identity matrix D, the problem (1.2) is
solvable in the class of the causal weight operators, the solution is unique, and it can
be effectively expressed in the terms of the Holetsky factorization [2] of Ry. This
result finds various applications [11], [9].

In the case of the discrete time T = Z and a stationary partially observable
process (time series) z, the problem (1.2) was first treated by Kolmogorov [8]. In
the case of the continuous time its solution was first obtained by Wiener [11], who
also developed a method for the synthesis of the transfer function of the optimal
filter. The Wiener–Kolmogorov optimal filtering theory of the stationary processes
was universally accepted partly due to the interpretation of the optimal filter given by
Bode and Shannon [1], where the signal y is being “prewhitened” first and the result
is optimally processed. The solution representation for optimization problem (1.2),
allowing the mentioned interpretation, bears the name of the Bode–Shannon formula.

However, in many applications one estimates only the specific components of x
or their combination, which is represented by the degenerate matrix D in the quality
functional (1.3) and the solutions of the generalized finite dimensional problems can
be found in [10]. In this case the solution need not be unique and there are conditions
on the degeneracy of D for which the Bode–Shannon formula still defines an optimal
filter.

On the other hand, the infinite dimensional applications required the development
of the filtering theory in Hilbert [3] and sometimes Banach spaces [4], [7]. The unob-
servable component of a process can be formed by the infinite dimensional filter. For
example, it can be given by several differential equations with delay or by differential
integral equations. In this case it is not possible to use the methods developed for
the finite dimensional state space. The method discussed in the paper allows us to
formulate such infinite dimensional problems and provides techniques for their solu-
tions. For the applications of this theory to the problem of the linear estimation of the
parameters of a signal based on the observations of its realizations see, for example,
[4]. In this paper the stable filtering problem will be solved for the general quadratic
quality functional (1.3). The solution of the causal filtering problem need not exist in
general. We will establish necessary and sufficient conditions of solvability by relaxing
the problem, thus allowing a slightly general class of the weight operators in (1.2).
The relaxed problem can be solved and the analysis of its solution can be used for the
construction of minimizing sequences. The solutions will be given for continuous and
discrete resolutions. The conditions for the analogue of the Bode–Shannon formula
of [4] to define an optimal filter will also be given.

Some of the literature we are referring to is in Russian, and for the sake of com-
pleteness, the results of [4] needed in this paper will be briefly reviewed. We will
not give the complete proofs of them in order to avoid technicalities which are unim-
portant to the nature of the results of this paper. One can consult [5] for some of
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the details. A preliminary version of this paper appeared as a preprint [6] while the
second author worked at Utrecht University.

In section 2 we fix the notation related to the concept of the extended Hilbert
space and random elements in it. In section 3 we formulate and give the solution of the
general linear filtering problem in extended Hilbert spaces in Theorem 3.1. The stable
linear filtering problem is solved in section 4 (Theorem 4.1). Section 5 is devoted to
the causal filtering problem. In subsections 5.1 and 5.2 we discuss Hilbert resolution
spaces, their extensions, and linear operators in extended spaces. In subsection 5.3 we
formulate the problem. The corresponding relaxed problem is solved in subsection 5.4
(Theorem 5.8). In subsection 5.5 we treat the case of the discrete resolution of the
identity (Theorem 5.11) and give necessary and sufficient conditions of the solvability
of the original problem (Theorem 5.12). In section 6 the concept of the spectral
factorization will be discussed, and the conditions for the Bode–Shannon formula to
define an optimal filter will be given in Theorem 6.4.

2. Preliminaries. In this section we will briefly introduce several constructions,
which will be used throughout this paper.

2.1. Extended Hilbert spaces and linear operators. Here we will briefly
review a concept of the extended Hilbert space (see also [5]). Let H be a complex
Hilbert space with an inner product 〈·, ·〉 and let F ⊂ H be a linear dense subset of
H. We will need the notion of F -weak convergence in H.

Definition 2.1. A sequence ψl ∈ H is called an F -weakly Cauchy sequence if

lim
l,m→∞

〈ψl − ψm, φ〉 = 0 for all φ ∈ F.

Let Ψ be a set of all F -weakly Cauchy sequences ψ = {ψl}, ψl ∈ H, l ∈ N. Let
F∼= be an equivalence relation in Ψ: ψ

F∼= ξ if limm→∞〈ψm − ξm, φ〉 = 0 for all φ ∈ F .

Then it is not difficult to check that the quotient space HF ≡ Ψ/
F∼= of Ψ with respect

to the equivalence relation
F∼= is a linear Hausdorff topological space.

Every element ψ̄ ∈ HF defines a functional ψ̄∗ : F → C by ψ̄∗(φ) = liml→∞〈ψl, φ〉,
where {ψl} is a sequence from ψ̄. This duality is an extension of the inner product in
H and we will denote this also by ψ̄∗(φ) = 〈ψ̄, φ〉. The following relation is obvious.

Proposition 2.1. HF is complete in F -weak topology and F ⊂ H ⊂ HF .

The pair (F,HF ) is called an equipment of H, and H with such an equipment is
called an equipped Hilbert space. We will also use a construction which gives a space
equivalent to HF .

Definition 2.2. The space F ∗ is a space of all the elements f for which there
exists a sequence fl ∈ H∗ such that f(φ) = liml→∞ fl(φ) for all φ ∈ F .

Obviously, F ∗ is complete with respect to the topology of componentwise conver-
gence on F . This implies the completeness of HF in view of the following.

Proposition 2.2.

(i) F ∗ is isomorphic to HF .
(ii) Let ψ̄ ∈ HF . Define for the corresponding ψ̄∗ ∈ F ∗ a “norm” |ψ̄∗|F∗ =

supφ∈F
|〈ψ̄,φ〉|
|φ|H . Then ψ̄ ∈ H if and only if |ψ̄∗|F∗ <∞. In this case |ψ̄∗|F∗ =

|ψ̄|H .
The proof easily follows from the definitions above. Let A : H → H be a linear

operator defined in a dense subspace D(A) of H. Recall the following.
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Definition 2.3. Let D∗ ⊂ H be a space of all elements φ ∈ H for which there
exist f(φ) ∈ H such that 〈Aψ, φ〉 = 〈ψ, f(φ)〉 for all ψ ∈ D(A). The operator adjoint
to A is defined as A∗ : D∗ → H, such that A∗φ = f(φ).

One then has D∗ = D(A∗). An operator A is called symmetric if D(A) ⊂ D(A∗)
and for every φ, ψ ∈ D(A) holds 〈Aψ, φ〉 = 〈ψ,Aφ〉. A symmetric operator A is called
self-adjoint if D(A) = D(A∗).

Let Ā : D(Ā) → HF be an extension of A. Assume F ∩D(Ā) to be dense in H.
Similar to the definition above, define D∗ as a space of all φ ∈ F for which there exist
f(φ) ∈ F such that 〈Āψ̄, φ〉 = 〈ψ̄, f(φ)〉 for all ψ̄ ∈ D(Ā). Let Ā∗ : D∗ → HF be
an operator defined by 〈Āψ̄, φ〉 = 〈ψ̄, Ā∗φ〉 for all ψ̄ ∈ D(Ā), φ ∈ D∗. The F -weak
closure of Ā∗ is called the adjoint to Ā in HF and will be also denoted by Ā∗. As
above, Ā is called symmetric if D(Ā) ⊂ D(Ā∗) and A is symmetric. A symmetric
operator Ā is called self-adjoint if D(Ā) = D(Ā∗).

Example 2.1. Let M be a smooth manifold and let H = L2(M) with respect
to some positive smooth density on M . Let Fk be a space of k-times continuously
differentiable compactly supported functions in M . Then the Fk-weak completion of
H is a space of distributions of order k in M .

Example 2.2. Let H = l2(N) with its standard inner product and let A : l2 → l2

be defined by (Aφ)n =
∑∞
k=1 Ankφk with suitable conditions on Ank. Let F ⊂ H be

a set of all the sequences consisting of a finite number of nonzero elements. Then F
is dense in H and F ⊂ D(A) ⊂ H. For the extension of H with respect to F one has
HF = R

N, the space of all the sequences with values in R. One readily checks that
the above extension of A yields a linear operator Ā in l̄2 = HF defined by a matrix
Ank with D(Ā) = {φ :

∑∞
k=1 |Ankφk|2 <∞, n ∈ N}. An important particular case of

this example is the following.

Example 2.3. Let T = (ts, tf) be a subinterval of R and letH = L2(T) be equipped
with the standard inner product. Let F be the space of L2-integrable continuously
differentiable functions on T. Then HF contains not only functions f ∈ L2(T) but
their generalized derivatives Df as well. In the filtering problems of time series,
one normally encounters a discrete set t ⊂ T without accumulation points (with the
possible exception of its endpoints). There is a natural correspondence between this
set and the Hilbert space l2(t) over it. The space L2(T) is infinite dimensional while
l2(t) is infinite dimensional only if t is infinite. If t is finite, the space l2(t) is a
standard Euclidean space.

Example 2.4. In this example D denotes the generalized derivative as in Example
2.3 (no relation with the operator D in (1.3)). Let the partially observable element
z = ( x

Dy ) satisfy Ez = 0. Let x = x(·) ∈ R
n be a L2-continuous random process with

realizations x ∈ L2(T). Let Dy be a scalar random process related to x by a linear
“observation scheme”:

dy(t) = C∗(t)x(t)dt+ dw(t),(2.1)

where w(·) ∈ L2(T) is a standard Gaussian–Wiener process (Ew(t) = 0, w(ts) =
0, Ew(t)w(t′) = min{t, t′}), independent of x, and C : T→ R

n is a given continuous
function. The correlation operator Rx = Exx∗ of a random element x is an integral
operator in L2(T),

(Rxφ)(t) =

∫ tf

t′=ts
Rx(t, t

′)φ(t′)dt′,(2.2)
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where Rx(·, ·) = Ex(t)x∗(t′) is the correlation matrix of the random process x =
{x(t), t ∈ T}. This matrix is continuous on T × T because x is L2-continuous. The
random element (process) y is now a generalized element with realizations in L2(T)F
(see Example 2.3). Its correlation operator RDy = EDy(Dy)∗ is given by

RDy = C∗RxC + I,(2.3)

where the operator C : L2(T)→ L2(T) is determined by (Cψ)(t) = C(t)ψ(t), ψ(·) ∈
L2(T), and I is the identity operator in L2(T). Formula (2.3) defines the bounded
operator Ry : L2(T) → L2(T) which can be viewed as a singular integral operator
with the kernel

RDy(t, t
′) = C∗(t)Rx(t, t′)C(t) + δ(t− t′)
= K(t, t′) + δ(t− t′).(2.4)

The correlation operator between x and Dy is given by

RxDy = RxC.(2.5)

Formulas (2.3), (2.5) allow us to represent the full correlation operator Rz = Ezz∗ of
the partially observable element z as

Rz =

∥∥∥∥ Rx RxDy
R∗
xDy RDy

∥∥∥∥ =
∥∥∥∥ Rx RxC
C∗Rx C∗RxC + I

∥∥∥∥ .(2.6)

2.2. Generalized random elements. Let F, H, HF be as above and let
(Ω,A, P ) be a probability space, where P is a complete measure.

Definition 2.4. A mapping z : Ω → HF is called a random HF -element if for
every φ ∈ F the following hold:

(i) z∗φ = 〈z, φ〉 : Ω→ C is a random variable.
(ii) E(z∗φ) = (Ez)∗φ for some Ez ∈ HF .
(iii) There exists c such that E|(z − Ez)∗φ|2 ≤ c|φ|2H for all φ ∈ F .
Without loss of generality, we will consider the centralized elements, Ez∗φ = 0 for

all φ ∈ F . Then Ez∗φz∗φ = E|z∗φ|2 = 〈φ,Rzφ〉 is a quadratic form in F . A linear
operator Rz is called the correlation operator of z. Property (iii) of the definition
implies that Rz is a continuous operator on F and, therefore, it can be extended
to a continuous self-adjoint operator in H, Rz ∈ L(H). Thus, we have proved the
following.

Proposition 2.3. Rz ∈ L(H), R∗
z = Rz, and Rz ≥ 0 in the sense of quadratic

forms.
In analogy with the classical case we will write Rz = Ezz∗. Note that Definition

2.4 is equivalent to the condition that z : Ω→ HF is measurable, centralized, and has
the continuous correlation operator, where Ω and HF are equipped with σ-algebras
A and one generated by the open sets of F -weak topology in HF , respectively.

Example 2.5. The random processes can be interpreted as random generalized
elements of a Hilbert space. Let T > 0 and H = L2(m,T ) be a Hilbert space of
m-vector functions on [0, T ] equipped with the standard inner product. Let w =
{w(t), 0 ≤ t ≤ T} be a Gauss process, such that almost all realizations of w are

elements of L2(m,T ) and E
∫ T
0
|w(t)|2dt < ∞. Then Rw is a nuclear operator. If

T = +∞, then almost all realizations of w �∈ L2(m,T ), but for F = Ccomp([0, T ]) the
realizations of w are elements of L2(m,T )F .
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Example 2.6. Now we return to Example 2.3 and assume that T = R, (ts = −∞,
tf = ∞). Assume that the partially observable process z is stationary. A stationary
linear filter takes the form

x̂(t) =

∫ ∞

−∞
h(t− t′)dy(t′), t ∈ R.(2.7)

Suppose that the optimal filter must minimize the quality functional given by

J(h) = E|x(t)− x̂(t)|2,(2.8)

where we can observe that because we assume that the process is stationary, the
quality functional J(h) does not depend on t. Let Gz(ω), ω ∈ R, denote the symbol
of the correlation operator Rz. Recall that the symbol is just the Fourier transform
of the correlation matrix Rz(·). The matrix Gz(·) is also called the spectral density
of the stationary process z. Then in view of (2.7) the symbol Hopt(·) of the transfer
operator hopt (the symbol is called the transfer function of the optimal filter and is
equal to the Fourier transform of the weight function h(·)) is given by

Hopt(ω) = Gx(ω)C[C
∗Gx(ω)C + 1]−1,(2.9)

where C ∈ R
n is the vector from (2.1). This vector C does not depend on t since z is

stationary. If instead of (2.8) we take the quality functional

J(h) = E|D(x(t)− x̂(t))|2(2.10)

with a degenerate matrix D, then the transfer function of an optimal filter is not
unique; see Theorem 3.1.

3. Linear filtering. Let H = H ′ × H ′′, where H ′ and H ′′ are Hilbert spaces
with inner products 〈·, ·〉H′ and 〈·, ·〉H′′ , respectively. Let F ′ ⊂ H ′ and F ′′ ⊂ H ′′ be
linear dense subsets. The elements φ ∈ H can be interpreted as φ =

[
φ′

φ′′

]
with φ′ ∈

H ′, φ′′ ∈ H ′′. Let F = F ′×F ′′. We will consider random HF elements z = [ xy ], with
x and y random H ′

F ′ - and H ′′
F ′′ -elements, respectively. The correlation operator Rz

will be assumed continuous on H, which is natural in view of Proposition 2.3, and
will have the following block form:

Rz =

[
Rx Rxy
Ryx Ry

]
,

where we write Rx = Exx∗, Ry = Eyy∗, Rxy = R∗
yx = Exy∗.

Let h : H ′′
F ′′ → H ′

F ′ be linear. We assume now that there exists an operator
h∗ : H ′

F ′ → H ′′
F ′′ defined on the whole of H ′

F ′ , such that for every φ′ ∈ F ′, φ′′ ∈ F ′′

one has

(hφ′′)∗φ′ = (φ′′)∗(h∗φ′).(3.1)

Relation (3.1) defines h∗ uniquely and h∗ is the adjoint to the operator h.
Let x and y be the unobservable and observable components of z, respectively.

We define the random H ′
F ′ -element x̂ by

x̂ = hy.(3.2)
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One readily checks that x̂ is a random element in the sense of Definition 2.4 in view
of our assumptions on h. Then Rx̂ = hRyh

∗ : H ′ → H ′ is involutive in H ′ as the
correlation operator of a random element x̂. The element x̂ is interpreted as a linear
estimate of the nonobservable component x of a random HF element z, based on the
realizations of its observable component y. The relation (3.2) is called a linear filter
with weight operator h.

Let a linear operator D : H ′
F ′ → H ′

F ′ have an adjoint D∗. We define the quality
functional as

Jφ′(h) = E|〈φ′, D(x− x̂)〉|2, φ′ ∈ F ′.(3.3)

Let H be a given subset of linear operators h : H ′′
F ′′ → H ′

F ′ . Then the H-optimal
filtering problem is defined as a problem of the minimization of the functionals

Jφ′(h)→ inf
h∈H

,(3.4)

defined by (3.3), (3.2) for every φ′ ∈ F ′.
We will need a notion of the pseudo inversion of an operator. Let A : H → H be

a Hermitian linear operator in a Hilbert space H. Let QA be an orthogonal projection
on the image of A, QA : H → ImA. The space QAH is invariant for A and we write
A−1QA for the inverse of A in QAH. The operator

A+ = QA ◦A−1QA ◦QA

is called the pseudo inverse of A. It follows that

A+A = AA+ = QA.(3.5)

One readily checks that (3.5) determines A+ uniquely and thus we have the following.
Proposition 3.1. Let A be a Hermitian operator. The solution of

〈Ag − f,Ag − f〉 → inf
g∈H

, f ∈ H,

with minimal norm defines a linear functional of f which is given by g = A+f .
We will not prove this fact here since we will not use it explicitly. Assume that

H is a space of all linear operators h : H ′′
F ′′ → H ′

F ′ . Then the solution of the
H-optimal filtering problem is given by the following.

Theorem 3.1. Let the correlation operator Rz of a random H element z be
continuous in H and let R+

y denote the pseudo inverse operator for the correlation
operator Ry of y in H ′′. Then the minimization problem (3.4) in the class H of all
weight operators h : H ′′

F ′′ → H ′
F ′ is solvable and any solution is of the form

hopt = RxyR
+
y +Q,(3.6)

where Q : H ′′
F ′′ → H ′

F ′ is any linear operator satisfying DQQRy = 0 and QRy is
the kernel of Ry. Moreover, one has

inf
h∈H

Jφ′(h) = Jφ′(hopt) = 〈φ′, D[Rx −RxyR
+
y R

∗
xy]D

∗φ′〉.

The proof follows the lines of the proof of Theorem 4.1, which is given in the
next section. The existence of D∗ ensures the decomposition (4.3), from which the
statement of Theorem 3.1 follows.
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4. Linear stable filtering. If H is a space of all continuous linear operators
from H ′′ to H ′, then the linear filters of the form (3.2) with weight operator in
H are called stable and the H-optimal filtering problem is called the stable filtering
problem. In this case one allows φ′ ∈ H ′ in (3.3) and the minimization problem can
be reformulated for scalar functionals

J(h) = sup
φ′∈H′

E|〈φ′, D(x− x̂)〉|2
|φ′|2H′

.(4.1)

Now we are ready to describe the solution of the linear stable filtering problem. Let
us assume that Ry is continuously invertible in its image RyH

′′, which means that
there exists a neighborhood U of zero such that σ(Ry) ∩ U = {0}, σ(Ry) being the
spectrum of Ry. We will also assume that the operator D in the quality functional
(3.3) is continuous in H ′ and has an adjoint D∗.

Theorem 4.1. Let the correlation operator Rz of a random H element z be
continuous in H and assume that the correlation operator Ry of y has the continuous
pseudo inverse operator R+

y in H ′′. Then the minimization problem (3.4) in the class
H of all continuous weight operators h : H ′′ → H ′ is solvable and any solution is of
the form

hopt = RxyR
+
y +Q,(4.2)

where Q : H ′′ → H ′ is any linear continuous operator satisfying DQQRy
= 0. More-

over, one has

inf
h∈H

Jφ′(h) = Jφ′(hopt) = 〈φ′, D[Rx −RxyR
+
y R

∗
xy]D

∗φ′〉H′ .

The operators (4.2) are also optimal in the problem with quality functional (4.1) and

inf
h∈H

J(h) = J(hopt) = |D[Rx −RxyR
+
y R

∗
xy]D

∗|H′ .

Proof. First we rewrite the quality functionals (3.3) as

Jφ′(h) = 〈φ′, RD(x−hy)φ′〉,

where RD(x−hy) is the correlation operator of D(x − hy), and using the existence of
D∗ and h∗ we have

RD(x−hy) = E[D(x− hy)][D(x− hy)]∗ = DE(x− hy)(x− hy)D∗

= D[Rx −Rxyh
∗ − hRyx + hRyh

∗]D∗.

This means

Jφ′(h) = 〈φ′, D[Rx −Rxyh
∗ − hRyx + hRyh

∗]D∗φ′〉
= 〈φ′, D[Rx −RxyR

+
y R

∗
xy]D

∗φ′〉
+ 〈φ′, D(h−RxyR

+
y )Ry(h−RxyR

+
y )

∗D∗φ′〉.
(4.3)

Here only the second term depends on h and it is a nonnegative quadratic form
attaining its minimum if and only if D(h−RxyR

+
y )QRy

= 0 in view of Proposition 2.3.
The set of all continuous h satisfying this equation is precisely the set of hopt in (4.2)
for all linear continuous Q : H ′′ → H ′ satisfying DQRy = 0. For such hopt the second
term in (4.3) is zero, implying the second statement of the theorem. It follows from
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(4.3) that functionals (4.2) are also optimal for the problem (4.1) and one readily
verifies the last statement of the theorem. The proof is complete.

Remark 4.1. If the kernel of Ry is nontrivial (QRy �= IH′′), then one has

h = hopt+ h̃(IH′′ −QRy
), where QRy

is the orthogonal projection on the image of Ry,

and Jφ′(h) = Jφ′(hopt) for every linear continuous operator h̃ : H ′′ → H ′. If Ry is
bijective (QRy

= IH′′), then R+
y = R−1

y and hopt = RxyR
−1
y + Q, DQ = 0. If D is

bijective, then the only solution of (3.4) is hopt = RxyR
+
y .

Remark 4.2. These methods can be applied for the problems of linear estimation
of the parameters of a signal based on the observations of its realizations.

We will not discuss it here, but the reader can consult [4] and [5] for the detailed
applications.

5. Linear causal filtering. In this section we will give the solution of the gen-
eralized linear causal filtering problem. However, we need some preliminary notions
and results first.

5.1. Hilbert resolution spaces and causal operators. Let H be a Hilbert
space, let T = (ts, tf ), −∞ ≤ ts < tf ≤ +∞, and let PT = {Pt, t ∈ T} be a family of
commutative projectors Pt : H → H, P 2

t = Pt, PtPs = PsPt, t, s ∈ T. Let PT satisfy
the following two properties:

(i) Monotonicity : PtPs = Ps for t ≥ s, t, s ∈ T.
(ii) Completeness: limt→ts Pt = 0H , limt→tf Pt = IH , where the limits are taken

in the strong operator topology.
Note, that condition (i) is equivalent to the fact that PsH ⊂ PtH, t ≥ s. We assume
the family PT to be bounded uniformly in t: supt∈T

|Pt| <∞ and strongly continuous
from the left: limε→0+ Pt−εφ = Ptφ for every φ ∈ H. Such family PT is called
a resolution of the identity of H and (H,PT ) is called a Hilbert resolution space.
If PT consists of the orthogonal projectors Pt = P ∗

t , then it is called a Hermitian
resolution of the identity. In this case the condition of the uniform boundedness in t
is automatically satisfied since |Pt| ≤ 1.

Let H = H ′ ×H ′′, where (H ′,P′
T ), (H

′′,P′′
T ) are Hilbert resolution spaces. Then

H may be equipped with the canonical resolution of the identity

Pt =

[
P ′
t 012

021 P ′′
t

]
, t ∈ T,(5.1)

where 012 : H
′′ → H ′, 021 : H

′ → H ′′ are zero operators.
Definition 5.1. Let A : D(A) → H be a linear densely defined operator. A

is called finite from above if there exists a measurable, essentially bounded function
τ : T → T, such that for almost all t ∈ T the operator PtA is bounded in H and if
t− τ(t) ∈ T, then

PtA = PtAPt−τ(t)(5.2)

on D(A) ∩ Pt−τ(t)D(A). The function τ = τ+(·) is called the upper characteristic
of A. A finite from above operator A with characteristic τ+(·) is called τ -causal or
τ+-finite.

The space of all τ+-finite operators will be denoted by A
τ and A

0 = ∪τAτ .
0-causal operators are called causal. For φ ∈ H one can consider a trajectory
{Ptφ, t ∈ T} connecting φ and zero in H. Then (5.2) means that a τ -causal op-
erator A considered as a shift operator along these trajectories does not depend on a
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future with respect to the resolution; namely, it follows from the completeness of PT

that PtAφ is independent of Psφ for s > t− τ(t). One also has a notion of finiteness
from below, given in the following.

Definition 5.2. Let A : D(A) → H be a linear densely defined operator. A
is called finite from below if there exists a measurable, essentially bounded function
τ : T→ T, such that for almost all t ∈ T the operator (IH − Pt)A is defined in D(A)
and if t− τ(t) ∈ T, then

(IH − Pt)A = (IH − Pt)A(IH − Pt−τ(t))(5.3)

on D(A)∩(IH−Pt−τ(t))D(A). The function τ = τ−(·) is called the lower characteristic
of A. A finite from below operator A with characteristic τ−(·) is called τ -anticausal.

Definition 5.3. Let A : D(A) → H be a linear densely defined operator. A is
called finite if it is finite from above and below.

Note that for the Hermitian resolution of the identity, A is finite from below if
and only if A∗ is finite from above and in this case τ−(A) = τ+(A

∗). 0-anticausal
operators are called anticausal and one writes Aτ for all τ = τ−-anticausal operators,
A0 = ∪τAτ . If A ∈ A

0∩A0 and τ+ = τ− = τ , then A is called τ -local. 0-local operator
is called local. Every operator commuting with PT is local. We will need the following
property.

Lemma 5.4 (see [4]). Let A ∈ A
τ (resp., Aτ ), A′ ∈ A

τ ′
(resp., Aτ ′). Then B =

AA′ (if the composition exists) is finite from above (resp., below) with characteristic
β(t) = τ(t) + τ ′(t− τ(t)).

Example 5.1. Let H = L2(R) and (hφ)(t) =
∫ +∞
−∞ h(t, s)φ(s)ds. Hilbert space L2

becomes a resolution space when equipped with a family PT defined by

Ptφ(s) =

{
φ(s) if s ≤ t,

0 if s > t.

One readily sees that h is τ -causal (anticausal) if and only if h(t, s) = 0 for s >
min(t, t− τ(t)), (s < max(t, t− τ(t))). In particular, h is local if and only if h = 0.

5.2. Extended Hilbert resolution spaces. Assume now that H is infinite
dimensional and tf = +∞. An element φ ∈ H is called finite if there exist t∗(φ) ∈
T, t∗ < ∞, such that Ptφ = φ for all t ≥ t∗. Let F be a space of all finite elements
of H. Then F is dense in H and H̄ = HF is called the t-extension or t-completion
of H. We write t − limn→∞ φn = φ if for every t ∈ T one has limn→∞ Ptφn = Ptφ;
φn, φ ∈ H. This defines t-convergence in H and the associated Hausdorff topology is
weaker than the canonical inner product topology of H. Note that H is not complete
with respect to t-convergence. One readily checks the following simple proposition.

Proposition 5.1. The completion of H with respect to t-topology is isomorphic
to HF , the F -weak completion of H.

A densely defined operator A in H is called t-continuous if for every sequence
φn ∈ D(A) with t − limn→∞ φn = 0 one has t − limn→∞ Aφn = 0. Note that
a general continuous operator in H need not be t-continuous. Now we collect the
further properties following [4] (see also [5], [3]).

Lemma 5.5. The following hold:
(i) Operator A is t-continuous if and only if it is finite.
(ii) If A is t-continuous, then by Proposition 5.1 it allows an extension to an

operator Ā in H̄: Ā|H = A. In particular, every Pt ∈ PT , being a local
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operator, allows an extension to P̄t in H̄. The family PT is a resolution of
the identity in H̄. One can generalize the notions of causality for H̄, in
particular, P̄t are local in H̄.

(iii) For every t ∈ T and φ̄ ∈ H̄ holds P̄tφ̄ ∈ PtH.
(iv) A restriction of τ -causal operator Ā in H̄ to H defines a τ -causal operator A

in H.
(v) If |φ̄|H̄ = supt∈T

|P̄tφ̄|H , then |φ̄|H̄ < ∞ if and only if φ̄ ∈ H. In this case
|φ̄|H̄ = |φ̄|H .

(vi) Let Ā : H̄ → H̄ be linear τ -causal. Then there exists an operator Ā∗ : H̄ → H̄
uniquely defined by

(P̄tĀP̄t−τ(t)φ̄)∗ψ = (P̄t−τ(t)φ̄)∗Ā∗P̄tψ

for every ψ ∈ F, φ̄ ∈ H̄, t ∈ T. The operator Ā∗ is the adjoint to Ā and is
(−τ)-anticausal.

Definition 5.6. An operator Ā : H̄ → H̄ is called τ -bounded for a measurable
function τ : T→ T if

sup
φ̄∈H̄

sup
t∈T

|P̄tĀφ̄|H
|P̄t−τ(t)φ̄|H

<∞.

0-bounded operators are called stable [3].
We collect the properties of τ -bounded operators in the following.
Lemma 5.7. The following hold:
(i) Let Ā : H̄ → H̄ be τ -bounded. Then H is an invariant subspace for Ā and

the restriction Ā|H is continuous.
(ii) Let Ā : H̄ → H̄ be τ -bounded for τ ≥ 0. Then Ā is τ -causal with respect to

PT .
(iii) An operator Ā : H̄ → H̄ is stable if and only if

(a) Ā is causal,
(b) H is an invariant subspace of Ā,
(c) the restriction Ā|H is continuous in H.

5.3. Linear causal filtering problem. Let (H ′,P′
T ), (H

′′,P′′
T ) be Hermitian

resolution spaces. Let H = H ′×H ′′ be equipped with the resolution defined by (5.1).
We denote by H

τ the space of all linear continuous τ -causal operators h : H ′′ → H ′.
Let D : H ′ → H ′ be continuous with the adjoint D∗ : H ′ → H ′. Then the optimal
linear causal filtering problem is the minimization problem

Jφ′(h)→ inf
h∈Hτ

(5.4)

for every φ′ ∈ H ′, where Jφ′(h) is defined by

Jφ′(h) = E|〈φ′, D(x− hy)〉|2, h ∈ H
τ .(5.5)

It turns out that the condition of the continuity of weight operators is very restrictive
for the solution of the problem (5.4). In general, the optimal filtering problem in the
class of continuous weight operators can be unsolvable or can be very complicated.
At the same time, if we drop the continuity condition the problem can be solved. It
is relatively simple to check whether the weight operator of the determined optimal
filter is continuous. In this way one can obtain solutions for the original continuous
problem. We will apply the methods presented in [4]; namely, first we relax the
problem (5.4) allowing h to be unbounded. Analyzing the solution of the relaxed
problem we derive the conditions for the solvability of (5.4).
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5.4. Generalized linear causal filtering problem. Let H̄ ′, H̄ ′′ be the t-
completions of H ′ and H ′′, respectively. Let H̄

τ be the space of all linear τ -causal
operators h̄ : H̄ ′′ → H̄ ′, such that for every t ∈ T the operators P̄ ′

t h̄h̄
∗P̄ ′

t : P
′
tH

′ →
P ′
tH

′ are continuous. Assume z to be a random H̄ element, and, therefore, Rz =
Ezz∗, z = [ xy ], is bounded on the space F of finite elements in H and can then be
continuously extended to the whole of H. The problem is to find linear estimates of
a random H ′ element x based on the realizations of a random H ′′ element y of the
form

x̂ = h̄y,(5.6)

minimizing for every t ∈ T the functional

J (t)(h̄) = E|DP̄t(x− x̂)|2H′ .(5.7)

Note that J (t)(h̄) is finite for h̄ ∈ H̄
τ , t ∈ T; therefore the problem of the minimization

J (t)(h̄)→ inf
h̄∈H̄τ

(5.8)

for every t ∈ T is correctly posed. Let us reformulate the problem (5.8) now. For
φ′ ∈ H ′ we define

J
(t)
φ′ (h̄) = E|〈φ′, DP ′

t (x− x̂)〉H′ |2 = E|〈φ′, DP ′
t (x− h̄x)〉H′ |2

= 〈φ′, DP ′
t [Rx −Rxyh̄

∗ − h̄Ryx + h̄Ryh̄
∗]P ′

tD
∗φ′〉H′ .

(5.9)

Now, the problem (5.8) is equivalent to the problem

J
(t)
φ′ (h̄)→ inf

h̄∈H̄τ
(5.10)

for every φ′ ∈ H ′.
Theorem 5.8. Let Rz = Ezz∗ satisfy the following:

(i) The operators R
(t,t)
z = P̄tRzP̄t : PtH → PtH are continuous for every t ∈ T.

(ii) The operators P ′′
t RyP

′′
t : H ′′ → H ′′ are positive in the invariant subspace

P ′′
t H

′′ for every t ∈ T.
Then for every t ∈ T there exist x̂t ∈ P ′

tH
′ such that for every φ ∈ H ′ one has

E|〈φ′, D(x− x̂t)〉H′ |2 = inf
h∈H̄τ

E|〈φ′, D(x− P ′
thy)〉H′ |2.

The estimates x̂t are given by

x̂t = R(t,t−τ(t))
xy (R(t−τ(t),t−τ(t))

y )−1P ′′
t−τ(t)y +QtP

′′
t−τ(t)y,(5.11)

where R
(t,t−τ(t))
xy = P ′

tRxyP
′′
t−τ(t), R

(t,t)
y = P ′′

t RyP
′′
t , (R

(t,t)
y )−1 means the inverse

of R
(t,t)
y in the invariant subspace P ′′

t−τ(t)H
′′, and any Qt : H ′′ → H ′ such that

DQtQRy = 0. Moreover,

E|〈φ′, D(x− x̂t)〉H′ |2 = 〈φ′, D[P ′
tRxP

′
t

−R(t,t−τ(t))
xy (R(t−τ(t),t−τ(t))

y )−1R(t−τ(t),t)
yx ]D∗φ′〉H′ .
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Proof. In view of (5.11) we rewrite (5.9) as

J
(t)
φ′ (h̄) = 〈φ′, D[P ′

tRxP
′
t −R(t,t−τ(t))

xy h̄∗

− h̄R(t−τ(t),t)
yx + h̄R(t−τ(t),t−τ(t))

y h̄∗]D∗φ′〉H′ .
(5.12)

The minimization problem (5.10) is now the same as the minimization of the function-

als (5.12) in the invariant for R
(t−τ(t),t−τ(t))
y subspace H ′′

t−τ(t) = P ′′
t−τ(t)H

′′. This

is the minimization problem (3.4) for H ′ = P ′
tH

′ and H ′′ = H ′′
t−τ(t). Theorem 4.1

together with the invertibility of R
(t−τ(t),t−τ(t))
y by the assumption (ii) of Theorem

5.8 imply the solution of the problem in the form given by (5.11) and the last formula
of the theorem.

Remark 5.1. In view of the discussion above it is easy to see that problem (5.4)
is solvable if and only if the solution of (5.8) is a continuous τ -causal operator. In
this case the restriction of this operator to H ′′ gives a solution to (5.4).

The detailed discussion and the solutions of these problems for D = IH′ can be
found in [4], [5], [7]. We will treat further the spaces with the discrete resolution of
the identity. In general, the problems described above can be reduced to the discrete
case by a suitable approximation of PT by discrete resolutions of the identity; see [4]
for the details.

5.5. Discrete resolutions of the identity. We assume now that PT is a piece-
wise constant operator valued functional on T with at most a countable number of
discontinuity points without accumulations in T. Let t = {tk, k ∈ K} be a finite or
a countable ordered subset of T without accumulation points, K = Z ∩ (0,K), t0 =
ts, tK = tf , K finite or K = +∞. The discrete resolution of the identity in H corre-
sponding to t ⊂ T is the set Pt = {Pt, t ∈ t}. The family of the orthogonal projectors
Qk = Ptk − Ptk−1

, k ∈ K, determines the resolution Pt uniquely due to the relation
Pt =

∑
k:tk≤tQk. These projectors are mutually orthogonal: QkQl = QlQk = 0H for

k �= l.
Definition 5.9. A family QK of the mutually orthogonal projectors Qk is called

the orthogonal resolution of the identity if QK is complete in a sense that Qk → OH
for k → ks and

∑
l≤kQl → IH for k → kf . The pair (H,QK) is called the discrete

resolution space.
Every linear operator R : H → H can be decomposed with respect to QK into

blocks Rkl = QkRQl and R =
∑
k,l∈K

Rkl. The definitions of finiteness, causality,
and anticausality can be reformulated in terms of the discrete structure QK . The
function τ in Definitions 5.1, 5.2 is replaced by τ : t → t with a property that
τ(tk) = tl, k, l ∈ K, and the latter corresponds to a function κ : K → K such that
τ(tk) = tκ(k). In analogy to the continuous case one has the following.

Definition 5.10. A linear operator R : H → H is called κ-causal (strictly κ-
causal, κ-anticausal) if Rkl = 0H for l > k − κ(k) (l ≥ k − κ(k), l < k − κ(k)),
respectively. It is called neutral if it is causal and anticausal.

For a linear operator R : H → H we denote its κ-causal, anticausal, and neutral
components by R[κ] =

∑
l≤k−κ(k) Rkl, R[κ] =

∑
l≥k−κ(k) Rkl, R[[κ]] =

∑
l=k−κ(k) Rkl,

respectively.
Now we are ready to formulate the optimal causal filtering problem for the discrete

resolution space H = H ′×H ′′, H ′, H ′′ equipped with the orthogonal resolutions of the
identity Q

′
K and Q

′′
K , respectively. Let H

κ denote the space of all κ-causal continuous
operators h : H ′′ → H ′ and x̂k = Q′

kx̂, yk = Q′′
ky, hkl = Q′

khQ
′′
l . Then the problem
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is the linear estimation

x̂k =
∑

l≤k−κ(k)
hklyl(5.13)

minimizing the functionals

Jφ′(h) = E|〈φ′, D(x− hy)〉|2 → inf
h∈Hκ

(5.14)

for every φ ∈ H ′. Note that this is the same as the minimization of

Jk(h) = E|D(xk − x̂k)|2 → inf
h∈Hκ

(5.15)

for every k ∈ K, where xk = Q′
kx.

In analogy with the continuous case we will treat the relaxed problem first, replac-
ing the condition of the continuity of h by the continuity of hk = Q′

kh =
∑
l∈K

hkl :
H ′′ → H ′ for every k ∈ K. The space of all linear κ-causal operators for which all the
correspondent operators hk are continuous will be denoted by H̄

κ. Note that because
Jk are finite when Rz is bounded, the problem

Jk(h) = E|D(xk − x̂k)|2 → inf
h∈H̄κ

, k ∈ K,(5.16)

is correctly posed. Note that if H̄ ′, H̄ ′′ are the completions of H ′, H ′′ in t-topology,
then the space H̄

κ is isomorphic to the space of all κ-causal operators from H̄ ′′ to H̄ ′.
The problem now becomes

Jk(h) = E|DQ′
k(x− h̄y)|2 → inf

h̄∈H̄κ
, k ∈ K.(5.17)

In analogy to Theorem 5.8 and Theorem 2.3 in [4] we have the following.
Theorem 5.11. Let Rz = Ezz∗ be continuous and Ry satisfy PtkRyPtk ≥ εPtk

for some ε > 0 and for every k ∈ K. Then all the solutions h̄opt : H̄ ′′ → H̄ ′ of the
problem (5.17) are given by

h̄opt =
∑
k∈K

Q′
kRxyP

′′
tk−κ(k)

(P ′′
tk−κ(k)

RyP
′′
tk−κ(k)

)−1P ′′
tk−κ(k)

+Q,(5.18)

where Q ∈ H̄
κ satisfies DQ′

kQ = 0. One has

inf
h∈H̄κ

Jk(h̄) = Jk(h̄opt)

= |DP ′
tk
[Rx −RxyP

′′
tk−κ(k)

(P ′′
tk−κ(k)

RyP
′′
tk−κ(k)

)−1P ′′
tk−κ(k)

Ryx]P
′
tk
D∗|.

The proof is similar to the proof of Theorem 5.8 and is based on the calculations of
x̂k as an optimal estimate in the subspace of H ′′ spanned by y′l = Q′

ky, l ≤ k− κ(k).
Similar to [4, Theorem 2.4] for the solution of the original problem (5.15) we have the
following.

Theorem 5.12. Let the assumptions of Theorem 5.11 be satisfied. Then the
problem (5.15) is solvable if and only if the solution h̄ : H̄ ′′ → H̄ ′ of (5.17) is κ-
bounded. In this case the image of H ′′ under h̄ is contained in H ′ and the restriction
h̄|H′′ is the solution of (5.15).

Proof. Under the assumptions of Theorem 5.12, formula (5.18) defines the optimal
linear filters for (5.17). If h̄opt is κ-finite, the operator h̄opt|H′′ is continuous and
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defines the weight operators for the solutions of (5.15). If h̄opt is not κ-bounded, the
converse is also obvious from Lemma 5.7.

Note that by taking finite partial sums in (5.18) one obtains minimizing sequences
for the problem. These minimizing sequences are also available in the case when h̄ is
not κ-bounded and the problem (5.15) is not solvable in H

κ.

6. Bode–Shannon representation of optimal filters. First we will briefly
review the results on the spectral factorization of the operators which we need in
order to discuss the application of Bode–Shannon theory (cf. [1], [4], [9], [10]) in our
setting. Detailed discussion on various types of spectral factorization and separation
of the operators can be found in [4].

Let PT be a Hermitian resolution of the identity in H. As in the previous section
we denote by H̄ a t-completion of H and by t a discrete linearly ordered subset of T.
Let Gt be a space of all bijective operators Ḡ : H̄ → H̄ such that P̄tḠP̄t and P̄tḠ

−1P̄t
are continuous as operators from PtH to PtH for every t ∈ t. Note that Gt contains
the space of all causal, causally invertible operators in H.

Definition 6.1. An operator Ḡ ∈ Gt is called spectrally factorizable if there
exists a causal with respect to PT operator Ū : H̄ → H̄, such that the inverse of Ū
exists and is causal in H̄ and Ḡ = Ū Ū∗, where Ū∗ is the adjoint of Ū .

Let Ḡ = Ū Ū∗ be a spectral factorization of Ḡ. If Ū , Ū−1 are stable (Definition
5.6), the restrictions Ū |H , Ū−1|H are causal and continuous inH in view of Lemma 5.7.
This implies that the restriction G = Ḡ|H is continuous in H and we can summarize
it in the following.

Definition 6.2. A continuous operator G : H → H is called strongly spectrally
factorizable if there exists a continuous causal operator U : H → H with continuous
and causal inverse, such that G = UU∗, where U∗ is the adjoint of U .

We call operator Ḡ ∈ Gt positive if the operators P̄tḠP̄t, P̄tḠ
−1P̄t : PtH → PtH

are nonnegative for every t ∈ t. The following are Theorems 2.5 and 2.6 in [4] (see
also [7], [3]).

Theorem 6.3.
(i) Every positive operator Ḡ ∈ Gt is spectrally factorizable. A causal with respect

to the discrete resolution P̄t operator Ū factorizing Ḡ is unique up to the
multiplication from the right by a neutral unitary in H̄ operator.

(ii) Let Ḡ ∈ Gt and assume that the restriction G = Ḡ|H is positive and contin-
uous in H. Then G is strongly spectrally factorizable. A causal with respect
to the discrete resolution QK operator U factorizing G is unique up to the
multiplication from the right by a neutral unitary in H operator.

It is convenient in the discrete case (H,QK) to denote by GK the space of all
bijective operators Ḡ : H̄ → H̄ such that for every k ∈ K the operators

k∑
l=0

k∑
m=0

Q̄lḠQ̄m,

k∑
l=0

k∑
m=0

Q̄lḠ
−1Q̄m

are continuous fromHk =
⊕k

l=0 Q̄lH toHk. Ḡ ∈ GK is called positive if the operators
in the definition of GK are nonnegative for every k ∈ K.

Let H = H ′ × H ′′ be equipped with the orthogonal resolution of the identity

given by Qk =
[
Q′

k 0

0 Q′′
k

]
, Q′

k ∈ Q
′
K , Q′′

k ∈ Q
′′
K . The κ-causal filters are given by

x̂k =

k−κ(k)∑
l=0

hklyl,
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where hkl : Q
′′
l H

′′ → Q′
kH

′ are linear continuous. The corresponding filter h̄ : H̄ ′′ →
H̄ ′ is defined by having its blocks equal to hkl.

Theorem 6.4. Assume that Rz ∈ GK , that Ry : H ′′ → H ′′ is positive and
κ ≥ 0. Then all optimal linear filters for the discrete generalized linear causal filtering
problem (5.17) are of the form

h̄opt = [Rxy(U
−1)∗][κ]U−1 +Q,(6.1)

where U is a causal operator strongly factorizing Ry, [Rxy(U
−1)∗][κ] is the κ-causal

component of Rxy(U
−1)∗ : H̄ ′′ → H̄ ′, and any Q ∈ H̄

κ such that DQ = 0. One has

inf
h̄∈H̄κ

Jk(h̄) = Jk(h̄opt)

= |DQk[Rx −RxyR
−1
y Ryx + [Rxy(U

−1)∗][κ̄]([Rxy(U
−1)∗][κ̄])

∗]QkD
∗|.

Proof. Let L = Rxy(U
−1)∗ − [Rxy(U

−1)∗][κ] denote the strictly anticausal com-
ponent of Rxy(U

−1)∗. Rewriting Jk(h̄) in analogy with (4.3) we have

E|〈φ′, DQ′
k(x− h̄y)〉|2 = 〈φ′, DQ′

k[Rx −Rxyh̄
∗ − h̄Ryx + h̄Ryh̄

∗]Q′
kD

∗φ′〉
= 〈φ′, DQ′

k[Rx −RxyR
−1
y Ryx]Q

′
kD

∗φ′〉
+ 〈φ′, DQ′

k(h̄U −M − L)(h̄U −M − L)∗Q′
kD

∗φ′〉
= 〈φ′, DQ′

k[Rx −RxyR
−1
y Ryx]Q

′
kD

∗φ′〉
+ 〈φ′, DQ′

k(h̄U −M)(h̄U −M)∗Q′
kD

∗φ′〉
+ 〈φ′, DQ′

k[(h̄U −M)L∗ − L(h̄U −M)∗]Q′
kD

∗φ′〉,

(6.2)

where M denotes [Rxy(U
−1)∗][κ], Rxy(U−1)∗ = L+M . Note that in the last equality

in (6.2) the first term is constant in h, the second one is quadratic in h̄U−M, and the
third is linear. Now, an application of Lemma 5.4 yields the κ-causality of h̄U −M,
and in view of strict causality of L∗ again by Lemma 5.4, the operator (h̄U −M)L∗

is strictly κ-causal. It follows that Q′
k(h̄U − M)L∗Q′

k = 0 if κ ≥ 0. This means
that the linear term in (6.2) vanishes and the minimum is attained if and only if the
quadratic term in (6.2) is zero. This is the case of h̄U −M = S for any S ∈ H̄

κ

such that DS = 0. Multiplication by 0-causal operators U, U−1 does not change κ-
causality in view of Lemma 5.4 and we obtain formula (6.1) with Q = SU−1. The last
formula of the theorem follows from the substitution of h̄opt into the last expression of
(6.2).

Corollary 6.5. For D = IH′ the only operator in (6.1) is obtained by taking
Q = 0. This operator is called the Bode–Shannon weight operator and the filter (5.13)
is called the Bode–Shannon filter.

Corollary 6.6. If Rz is stable, R−1
y exists and is continuous in H, and stable

operator Rxy(U
−1)∗ has the stable κ-causal component, then the original linear opti-

mal causal filtering problem (5.15) is solvable and all optimal weight operators are the
restrictions of h̄opt in (6.1) to H ′′.

The proof is similar to the proof of Theorem 5.12 and is left as an exercise. The
reader can consult [4] for the application to the finite dimensional stationary processes,
where the conditions of Corollary 6.6 are reduced to the conditions in terms of analytic
functions.

Remark 6.1. If the operator D∗D in (1.3) allows a spectral factorization

D∗D = D̃∗D̃
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with a causal operator D̃, and in addition Ry is positive and the problem (1.2) is
solvable, then an optimal weight operator must solve the equation

D̃h = (D̃Rxy(U
−1)∗)[κ]U−1.

Although in this paper we prove the Bode–Shannon formula for the optimal fil-
tering problem with the discrete time only, its analogue is valid for the continuous
time as well. We use this opportunity to demonstrate it. We return to Example 2.3.

Example 6.1. Assume that the filter takes the form

x̂(t) =

∫ t−τ

0

h(t, t′) dy(t′), ts ≤ t− τ ≤ tf ,(6.3)

where τ ∈ R is given. In this case the causality of the filter (6.3) is determined by the
family Pt, t ∈ (ts, tf), of projections from Example 5.1. The quality functional is

Jt(h) = E|x(t)− x̂(t)|2, ts ≤ t− τ ≤ tf .(6.4)

The Bode–Shannon formula for the optimal τ -causal filter is (cf. Theorem 6.4 and
(2.5))

hopt = [RxC(U
−1)∗](τ)U−1,(6.5)

where I+U is the spectral factor for RDy. It means that C
∗RxC+I = (I+U)(I+U)∗

with the causal and causally invertible operator I+U . [·](τ) stands for the τ -separation
of the corresponding operator. We will not analyze formula (6.5) in detail here, but
note that in the nonoperator terms it has the form

x̂(t) =

∫ t−τ

ts

g(t, t′) dv(t′),(6.6)

where

g(t, t′) = Rx(t, t
′)C(t′)−

∫ t′

ts

Rx(t, t
′)C(t′′)Q(t′, t′′) dt′′,

dv(t) = dy(t)−
[∫ t

ts

Q(t, t′)dy(t′)
]
dt,(6.7)

and function Q(·, ·) solves the equation

Q(t, t′) +
∫ t

ts

Q(t, t′′)K(t′′, t′)dt′′ = K(t, t′), Q(t, t′) = 0, t′ > t,(6.8)

and K(·, ·) is the function from (2.4). Note that g(t, t′) = 0 when t′ > t − τ . See
Theorem 2.1 in [5] for the details. (6.8) is a special case of the Hopf–Wiener equation.

Example 6.2. Formulas (6.6)–(6.8) for the optimal filter simplify considerably in
the stationary case (see Example 2.6). The reason is that it is possible to reformulate
the problem in frequency terms. Instead of the noncausal filter (2.7) the estimation
is performed now with the causal filter

x̂(t) =

∫ t−τ

−∞
h(t− t′)dy(t′), t ∈ R.(6.9)



ABSTRACT OPTIMAL LINEAR FILTERING 1351

In terms of the symbols of the involved operators, the Bode–Shannon formula (6.5)
acquires the form

Hopt(ω) = [GxDy(ω)[1 + U(−ω)]−1](τ)[1 + U(ω)]−1,(6.10)

where U(·) is analytic in the lower half space and can be found from the factorization
condition

C∗Gy(ω)C + 1 = [1 + U(ω)][1 + U(−ω)](6.11)

(see Theorem 2.4 in [5]). τ -separation [·](τ) in this case is determined by

L̃(ω) =

∫ ∞

−∞
e−iωtL(t)dt→ [L̃(ω)](τ) =

∫ ∞

τ

e−iωtL(t)dt.(6.12)

There are effective algorithms for the factorization and τ -separation in this case [5].
Example 6.3. Let us discuss finally a relation with the Kalman–Bucy filter. In

many applications it is often assumed that the nonobservable component x of the
partially observable process satisfies the stochastic equation

dx(t) = A(t)x(t)dt+B(t)dw′(t),(6.13)

where A(·), B(·) are continuous and bounded on T matrix valued functions, w′(·)
is the standard Gaussian–Wiener process independent of the observation error w(·)
in (2.1). If the initial state x(0) is given, formulas (2.1), (6.13) uniquely define the
correlation operator of the partially observable process z = ( x

Dy ) (D is the generalized
derivative here). This provides a principal possibility to construct the optimal τ -
causal filter. However, it is sometimes problematic to use equations (6.6)–(6.8) not
only because it is complicated to calculate the weight function g(·, ·), but also because
one is required to store all the previously calculated values of the process. At the same
time, the recursive approach of (2.1), (6.13) allows us to derive recursive formulas for
the optimal filters. Such formulas do not require us the computationally complicated
factorization procedure. They also do not require us to store the whole “history” of
the process for further calculations. In the case of classical filtration (τ = 0) these
equations are the well-known Kalman–Bucy filter. We will not give these equations
here since they can be found in almost any book on recursive filtering; see, for example,
[5]. In the problems with τ �= 0 such formulas can also be derived and they can
be viewed as a generalization of the Kalman–Bucy filter. However, this is a large
independent topic and we will not pursue it here. We only note that in the derivation
of such formulas the Bode–Shannon representation (6.5) of the optimal filter turns
out to be very useful.
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Abstract. This paper investigates robust filtering design problems in H2 and H∞ spaces for
discrete-time systems subjected to parameter uncertainty which is assumed to belong to a convex
bounded polyhedral domain. It is shown that, by a suitable change of variables, both design problems
can be converted into convex programming problems written in terms of linear matrix inequalities
(LMI). The results generalize the ones available in the literature to date in several directions. First,
all system matrices can be corrupted by parameter uncertainty and the admissible uncertainty may
be structured. Then, assuming the order of the uncertain system is known, the optimal guaranteed
performance H2 and H∞ filters are proven to be of the same order as the order of the system.
Comparisons with robust filters for systems subjected to norm-bounded uncertainty are provided in
both theoretical and practical settings. In particular, it is shown that under the same assumptions
the results here are generally better as far as the minimization of a guaranteed cost expressed in
terms of H2 or H∞ norms is considered. Some numerical examples illustrate the theoretical results.

Key words. linear systems, discrete-time systems, parameter uncertainty, filtering, linear ma-
trix inequalities
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1. Introduction. State estimation has been one of the fundamental issues in
the control area and there have been a lot of works following those of Kalman (in
the stochastic framework [1]) and Luenberger (in the deterministic one [3, 12]). For
control purpose, the will to estimate an unmeasurable linear combination of the state
variables is clearly justified, for instance, by the separation principle well known in the
case of models without uncertainty. For systems subjected to parameter uncertainty
no such principle has been stated; however, there has been an increasing interest in
the robust H∞ literature and, aside from the robust control area, a large number of
papers have addressed the dual problem of robust state estimation. A special issue
of the Journal of Nonlinear and Robust Control was devoted to this problem in 1996
([10]; see also [13] and the references therein).

In the late contributions to robust filtering, the problem is formulated in a Kalman
stochastic-like context where the state estimation of uncertain dynamic systems in the
presence of process noise is based upon noisy measurements. The filter determination
is carried out by defining a suitable performance index in terms of the state estimation
error variance. Fundamentally, two kinds of performance indexes have been consid-
ered according to the a priori assumptions on the input noise. In the classical H2

filtering approach the noise characteristics are known leading to the minimization of
the H2 norm of the transfer function from the process noise to the estimation error.
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For uncertain systems, an upper bound on the previous performance index is estab-
lished in terms of a single quadratic Lyapunov function, which naturally motivates the
denomination of quadratic guaranteed cost state estimation [9, 13, 19]. More recently,
the H∞ filtering approach has been developed from the loose assumption of bounded-
ness of the noise variance. In this case, the performance index to be minimized being
the worst case H∞ norm from the process noise to the estimation error [11, 16, 18].
All contributions cited rely on a particular uncertainty representation, namely, norm-
bounded uncertainty. In this case, the mathematical model of the uncertain system
exhibits explicitly a nominal model located at the center of the hyper ellipsoid of un-
certainty in the parameter space. The results developed for the filtering problem are
quite close to the ones derived in the robust control area due to the dual relationship
of both problems. In this sense, one can classify the results and solvability conditions
according to the Riccati-type equations as in [3, 20] or the linear matrix inequalities
(LMI) as in [4]. Some comments concerning the two problems can be made for the
mixed H2/H∞ filtering approach [8, 10].

Taking into account convex polytopic type uncertainty, [7] raises some difficulties
linked to the fact that we are faced to structured uncertainty and the system repre-
sentation does not explicitly exhibit any particular nominal model. For instance, the
necessary and sufficient stabilizability conditions for dynamic output feedback control
have only recently received some answer in terms of nonlinear matrix inequalities [5].

In this paper, we solve the state estimation problem for an uncertain discrete-
time system under convex polytopic uncertainty addressing the H2 as well as the
H∞ settings. It is shown that by restricting our attention to the class of linear and
time-invariant filters, the filtering problem can be solved using the now classical LMI
machinery [2]. Although a great effort has been made toward the synthesis of robust
control for convex bounded uncertain systems [7, 5, 14, 15], in the literature to date
there is no available result for linear filtering design of systems subjected to this class
of parameter uncertainty. The lack of results on the robust filtering problem for
convex polytopic uncertain systems appears to be due to the fact that the estimation
error cannot be bounded by means of the solution of a Riccati-like equation. Here,
it is considered that all matrices, namely, the state, input, and output matrices, are
uncertain parameter dependent and also that structured uncertainties are allowed. A
very interesting case of this new potentiality is the design of decentralized filters [6, 17].
Moreover, our approach allows to prove that even under parametric uncertainty the
optimal filter order equals the order of the system supposed to be known. To ease the
presentation only the stationary case is treated in detail, although the same lines can
be used to deal with the nonstationary case.

The notation used throughout is as follows. Capital letters denote matrices and
small letters denote vectors. For scalars we use small Greek letters. For matrices or
vectors (′) indicates transpose. For symmetric matrices X > 0 (≥ 0) indicates that
X is positive definite (nonnegative definite). Finally, for square matrices trace[X]
denotes the trace function of X being equal to the sum of its eigenvalues. For a
transfer function T (ζ) analytic outside the unit circle, ‖T (ζ)‖2 and ‖T (ζ)‖∞ denote
the standard H2 and H∞ norms, respectively. Furthermore, for the sake of easing the
notation of partitioned symmetric matrices the symbol (•)′ denotes generically each
of its symmetric blocks.

2. Problem statement. Let us consider the following linear time-invariant
system

x(k + 1) = Ax(k) +Bw(k),(2.1)
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y(k) = Cx(k) +Dw(k),(2.2)

z(k) = Lx(k),(2.3)

where x ∈ Rn is the state, w ∈ Rm is the zero mean, white noise input with identity
power spectrum density matrix, y ∈ Rr is the measured output, and z ∈ Rs is the
vector to be estimated. It is assumed that

1. All matrix dimensions are known.
2. Matrix M ∈ R(n+r)×(n+m) defined as

M :=

[
A B
C D

]
(2.4)

is unknown but it belongs to a given convex bounded polyhedral domain
Dc. Hence, from [7] each uncertain matrix of this set can be written as an
unknown convex combination of N given extreme matrices M1,M2, . . . ,MN ,
that is, M ∈ Dc if and only if

M =
N∑
i=1

λiMi(2.5)

holds for some λ1 ≥ 0, λ2 ≥ 0, . . . , λN ≥ 0 such that λ1 + · · ·+ λN = 1.
3. Matrix L is known.

It is important to make clear that the mathematical description of the convex poly-
topic domain Dc is sufficiently general to include, as a particular case, many uncertain
systems with practical appealing. For instance, only some elements of M may be un-
known and several elements of M may depend on the same unknown parameter.
These two situations can easily be accommodated by a proper choice of the set of
extreme matrices.

At this point, it is important to compare the above uncertainty description charac-
terized by the convex set Dc with norm-bounded uncertainty as considered in [13, 18].
A system subjected to norm-bounded parameter uncertainty is such that matrix M
belongs to the set Dn and each matrix is written in the form

M =M0 +HΩE(2.6)

for some matrix Ω ∈ Rp×q such that Ω′Ω ≤ I, where M0 defines the nominal sys-
tem and H ∈ R(n+r)×p and E ∈ Rq×(n+m) are known matrices. From the Schur
complement formula [2], it is seen that

Ω′Ω ≤ I ⇐⇒
[
I Ω

(•)′ I

]
≥ 0,(2.7)

which makes clear that the uncertainty represented by matrix Ω belongs to a convex
set and the same is true for M since it depends affinely on the matrix Ω. The
conclusion is that the set Dn is convex but not necessarily a polyhedral set. In some
important cases (see the examples in section 6) Dn is also polyhedral. This occurs
when the uncertain matrix presents some a priori known structure, as, for instance,
Ω′Ω diagonal. In these situations it is always possible to determine a finite number
of extreme matrices Mi, i = 1, . . . , N such that Dn = Dc. In the general case this
equality does not hold. However, Dn being convex, it is again possible to determine
N matrices Ωi, i = 1, . . . , N , on the boundary of the LMI (2.7) such that with
Mi =M0 +HΩiE, i = 1, . . . , N , there holds

Dc ⊂ Dn,(2.8)
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and Dc tends toward Dn as the number of extreme matrices N increases. It is clear
that the contrary also holds since due to convexity it is always possible to determine
N matrices Ωi, i = 1, . . . , N , not on the boundary of the LMI (2.7) such that Dn ⊂ Dc
and Dc tend toward Dn as the number of extreme matrices N increases. Hence, for
N sufficiently large, the set Dn may be replaced by Dc within any desired precision.
Of course, the main advantage in doing this is that Dc can accommodate many par-
ticular structures of the uncertain matrix which cannot be directly exploited, without
introducing conservatism, with Dn. However, it is important to point out that by
adopting this approximation, the number of LMI to be handled may be very large.

To make this point clear let us consider the uncertain system of [18] which is
more general than the one considered in [13]. We have A = A0 + H1ΩE, B = B0,
C = C0 +H2ΩE, and D = D0 which can be written in the form (2.6), that is,

M =

[
A0 B0

C0 D0

]
+

[
H1

H2

]
Ω
[
E 0

]
.(2.9)

However, if we want to consider a more general uncertain model defined by A =
A0 + H̄1Ω1Ē1, B = B0, C = C0 + H̄2Ω2Ē2, and D = D0, then we now must write

M =

[
A0 B0

C0 D0

]
+

[
H̄1 0
0 H̄2

] [
Ω1 0
0 Ω2

] [
Ē1 0
Ē2 0

]
,(2.10)

putting in evidence that (2.10) can be written as (2.9) withH1 := [H̄1 0], H2 := [0 H̄2],
and E′ := [Ē′

1 Ē
′
2]. However, the uncertain matrix Ω must be constrained to present

the block diagonal structure

Ω =

[
Ω1 0
0 Ω2

]
.(2.11)

As discussed before, this structure can approximately be treated with Dc and N
sufficiently large. On the contrary, to apply directly the results of [13, 18] the a priori
structure of Ω cannot be taken into account and consequently some conservatism on
the robust filter design is necessarily introduced.

The problems to be dealt with in this paper are now formulated. We restrict
ourselves to design an estimate ẑ of z given by ẑ = F · y, where F is a linear, finite
dimensional, and time-invariant operator producing at any time the estimation error
e := z − ẑ. Defining TM (ζ) the transfer function from the noise input w to the
estimation error e, our goals are to solve the following design problems.

• H2 filtering problem: Find a guaranteed estimation performance index ρ2(·)
such that

sup
M∈Dc

‖TM (ζ)‖22 ≤ ρ2(F)(2.12)

and given µ > 0 find all filters F ∈ C such that (2.12) holds for ρ2(F) = µ.
Among all feasible filters, find the optimal one that minimizes ρ2(F) over C.
• H∞ filtering problem: Find a guaranteed estimation performance index ρ∞(·)

such that

sup
M∈Dc

‖TM (ζ)‖2∞ ≤ ρ∞(F)(2.13)

and given µ > 0 find all filters F ∈ C such that (2.13) holds for ρ∞(F) = µ.
Among all feasible filters, find the optimal one that minimizes ρ∞(F) over C.
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In the above problems, the feasible set C is used to impose a particular class of
linear, finite dimensional, and causal operators. In the present case, we consider C as
the set of all linear time-invariant operators with state space realization of the form

x̂(k + 1) = Af x̂(k) +Bfy(k),(2.14)

ẑ(k) = Cf x̂(k),(2.15)

where the matrices Af ∈ Rnf×nf , Bf ∈ Rnf×r, and Cf ∈ Rs×nf and the scalar nf > 0
are to be determined. In other words C is taken as the set of all linear time-invariant
operators of any order and with strictly proper transfer functions. Moreover, it is
considered that the initial condition of system (2.1) as well as the initial condition of
the filter (2.14) are both zero. Connecting the filter to the system (2.1)−(2.3) we can
write the transfer function TM (ζ) as

TM (ζ) := C̃(ζI − Ã)−1B̃,(2.16)

where matrices Ã, B̃, and C̃ of compatible dimensions are given by

Ã :=

[
A 0
BfC Af

]
, B̃ :=

[
B
BfD

]
, C̃ :=

[
L −Cf

]
.(2.17)

Some well-known results extensively used in this paper, namely, the Schur com-
plement and partitioned LMI, can be found in [2, 14].

3. H2 filtering. This section is devoted to H2 filter design, as stated before.
First we analyze the classical situation where all system parameters are precisely
known, that is, matrix M ∈ Dc is arbitrary but fixed and nf = n. In that which
follows the optimal robust H2 filter is obtained. Its dimension is proved to be equal
to that of the uncertain system and a comparison with the results available in the
literature to date is provided.

It is well known that for µ > 0 the inequality ‖TM (ζ)‖22 < µ holds if and only if
there exist symmetric matrices P̃ and W such that

trace[W ] < µ,

[
P̃ P̃ C̃ ′

(•)′ W

]
> 0,


 P̃ ÃP̃ B̃

(•)′ P̃ 0
(•)′ (•)′ I


 > 0,(3.1)

where it is important to notice that in the above problem all constraints are taken
strictly (see [3]). Hence, the minimum value of µ in (3.1) gives ‖TM (ζ)‖22 = µ+ε, where
ε > 0 is an amount arbitrarily small defined by the designer during the optimization
process.

Our main purpose is, if possible, to convert the nonlinear matrix inequality ap-
pearing in (3.1) into LMI. If this goal is accomplished, the H2 filter design problem
turns out to be a convex programming problem which can be solved by very efficient
numerical methods. To this end, let us partition P̃ and its inverse as

P̃ :=

[
X U

(•)′ X̂

]
, P̃−1 :=

[
Y V

(•)′ Ŷ

]
,(3.2)

where X,Y ∈ Rn×n and X̂, Ŷ ∈ Rnf×nf are all symmetric and positive definite
matrices. Multiplying the first row of P̃ by the first column of P̃−1 reveals that
XY +UV ′ = I, and taking into account the partition of P̃ and that of its inverse we
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get Y −1 = X − UX̂−1U ′. The key observation is that for any given symmetric and
positive definite matrices such that X > Y −1 and U square (nf = n) and nonsingular,
then from the first equality above we have V also nonsingular. Consequently, due to
the second equality it is always possible to find X̂ > 0 ensuring that P̃ > 0. From this
partition of matrix P̃ let us introduce the following one-to-one change of variables:

[
Af Bf
Cf 0

]
:=

[
V 0
0 I

]−1 [
Q F
G 0

] [
U ′X−1 0

0 I

]−1

,(3.3)

where the indicated inverses exist due to the fact that X is symmetric and positive
definite and matrices V and U are both nonsingular. It is interesting to observe that
in the above parameterization, one of matrices V or U can be freely defined by the
designer without any loss of generality. This claim is easily seen from the filter transfer
function

Ff (ζ) := Cf (ζI −Af )
−1
Bf

= GX (ζV U ′ −QX)
−1
F,(3.4)

which depends only on the product of matrices V and U ′ being given by V U ′ =
I − Y X. The importance of this fact is that by choosing one of these matrices, we
can get a filter with a particular state space realization. This point will be addressed
in more detail in that which follows. Denoting Z := X−1, the next theorem gives a
partial solution, expressed in terms of LMI, to the H2 filtering problem stated in the
previous section for M ∈ Dc fixed and n = nf .

Theorem 1. Let M ∈ Dc be given. All filters F ∈ C such that n = nf and
‖TM (ζ)‖22 < µ are given by (3.3), where U and V are full rank matrices such that
UV ′ = I − Z−1Y . Moreover, the scalar µ, matrices Q, G, F, and the symmetric
matrices Y , Z, W satisfy the LMI

trace[W ] < µ,(3.5)


 Z Z L′ −G′

(•)′ Y L′

(•)′ (•)′ W


 > 0,(3.6)




Z Z ZA ZA ZB
(•)′ Y Y A+ FC +Q Y A+ FC Y B + FD
(•)′ (•)′ Z Z 0
(•)′ (•)′ (•)′ Y 0
(•)′ (•)′ (•)′ (•)′ I


 > 0.(3.7)

Proof. From the fact that nf = n and matrices U and V are nonsingular the
relation (3.3) is a one-to-one transformation. Defining the square and full rank matrix

J̃ :=

[
X−1 Y

0 V ′

]
(3.8)

it can be verified that the second inequality in (3.1) multiplied to the left by the full
rank matrix J ′ := diag[J̃ ′, I] and to the right by J provides the LMI (3.6). Further-
more, doing the same to the third inequality in (3.1) with matrix J := diag[J̃ , J̃ , I]
we get the LMI (3.7), which together with (3.5) proves the proposed theorem.
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Notice that as in [7, 6] the main idea to get the above result stems from the defini-
tion of the new set of variables (3.3) which converts the problem under consideration
to a convex feasibility problem expressed in terms of LMI only. If the LMI given
in Theorem 1 are feasible, then a particular filter state space realization is readily
obtained. For instance, the choice V = V ′ = −Y leads to U ′Z = I − Y −1Z in which
case (3.3) provides the feasible filter

Cf = G
(
I − Y −1Z

)−1
, Af = −Y −1Q

(
I − Y −1Z

)−1
, Bf = −Y −1F.(3.9)

It is interesting to observe that the classical H2 optimal filter can be recovered
from the LMI (3.5)−(3.7) if we replace these inequalities by nonstrict ones and restrict
our attention to the filters generated from Z → 0. Doing so, to keep feasibility we
must impose

G = L, Q = −Y A− FC,(3.10)

which together with the choice W = LY −1L′ enables us to write

trace[LY −1L′] < µ,


 Y Y A+ FC Y B + FD

(•)′ Y 0
(•)′ (•)′ I


 > 0.(3.11)

Considering for simplicity that BD′ = 0 and DD′ = I, defining P := Y −1, and
choosing F = −Y APC ′(CPC ′ + I)−1 we have

min
P>0

trace[LPL′],

APA′ − P −APC ′(CPC ′ + I)−1CPA′ +BB′ < 0,(3.12)

which comes from the Schur complement of inequality (3.11). From the well-known
results on the monotonicity of the Riccati equation, it is clear that the optimal solu-
tion to problem (3.12) is arbitrarily close to the symmetric and nonnegative definite
solution of the algebraic discrete Riccati equation

APA′ − P −APC ′(CPC ′ + I)−1CPA′ +BB′ = 0.(3.13)

In addition, from (3.9) the optimal filter state space realization is given by matrices
Cf = L, Af = −Y −1Q = A − BfC and Bf = −Y −1F = APC ′(CPC ′ + I)−1 which
we recognize as being the Kalman filter. The above manipulations prove that the
Kalman filter is on the boundary of the LMI (3.5)−(3.7) and hence is close (within
any prespecified precision) to the optimal solution of the convex problem consisting
of the minimization of µ under the LMI constraints provided in Theorem 1. Of course
the main goal of Theorem 1 is to treat not precisely known systems but systems
subjected to parameter uncertainty as will become clear in that which follows.

Referring back to the result of Theorem 1, it is interesting to notice that it is
always possible to eliminate the matrix variable G since it appears only in the LMI
(3.6). In fact, permuting the second and third columns and rows we get an equivalent
LMI 

 Z L′ −G′ Z
(•)′ W L
(•)′ (•)′ Y


 > 0,(3.14)
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which using the Schur complement can be rewritten in the equivalent form
[
Z − ZY −1Z L′ −G′ − ZY −1L′

(•)′ W − LY −1L′

]
> 0,(3.15)

and from [14] we are able to say that the LMI (3.6) can be replaced by

[
Y L′

(•)′ W

]
> 0,

[
Z Z

(•)′ Y

]
> 0(3.16)

together with G = L(I − Y −1Z). This is important because the number of free
variables in problem (3.5)−(3.7) becomes smaller and we are sure that no conservatism
is introduced. Moreover, this formula for G enables us to impose, with no loss of
generality, that Cf = L as already considered in [18] and the references therein.
Indeed, this occurs if we set U = U ′ = Z−1 − Y −1 since

Cf = G(U ′Z)−1

= L(I − Y −1Z)Z−1
(
Z−1 − Y −1

)−1

= L,(3.17)

and solving the equation XY + UV ′ = I we get V = V ′ = −Y . These two matrices
are of full rank as required to generate the optimal filter matrices from Theorem 1
variables. Hence, we have proven the following result.

Theorem 2. Let M ∈ Dc be given. All filters F ∈ C such that n = nf and
‖TM (ζ)‖22 < µ are given by matrices

Cf = L, Af = −Y −1Q
(
I − Y −1Z

)−1
, Bf = −Y −1F,(3.18)

where the scalar µ, matrices Q, F , and the symmetric matrices Y , Z, W satisfy the
LMI (3.7) and

trace[W ] < µ,

[
Y L′

(•)′ W

]
> 0.(3.19)

From the previous results it is not difficult to verify that there is no hope to
determine a filter of dimension nf �= n with smaller value of ‖TM (ζ)‖2 than those

provided by Theorem 2. In fact, taking nf < n, matrix J̃ in (3.8) is no longer square
but still exhibits full row rank. From this, relaxing the strict character of the basic
inequalities (3.6) and (3.7) and performing the same calculations as before we see that
(3.6) and (3.7) still hold. However, it is no longer possible to solve Y −1 = X−UX̂−1U ′

unless Y and X are such that rank(X − Y −1) = nf . This constraint is not convex
and so convexity of the associated feasibility problem is lost. More important is the
fact that if it exists the feasible reduced order filter will produce a greater or at most
equal value of ‖TM (ζ)‖2. On the other hand, taking nf > n then matrix J̃ in (3.8) is
not square but presents full column rank. So, to adopt the same reasoning as before,
we need to replace it by the square and nonsingular matrix

J̃ =

[
X−1 Y 0

0 V ′ S

]
,(3.20)

where S of compatible dimensions spans the null space of U . Adopting the same
steps as before, we see that both inequalities (3.6) and (3.7) must hold once again,
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and in the affirmative case, it is possible to construct a feasible filter which produces
the same value of ‖TM (ζ)‖2 as the full order filter with n = nf . Let us now turn our
attention to the robust H2 filter design. To this end we need the following result.

Lemma 1. Assume F ∈ C is a given filter and consider the problem

ρ2(F) := min
P̃


trace[C̃P̃ C̃ ′] :


 P̃ ÃiP̃ B̃i

(•)′ P̃ 0
(•)′ (•)′ I


 > 0 , i = 1, 2, . . . , N


 ,

(3.21)

where matrices Ãi and B̃i are the same as Ã and B̃ with the submatrices A, B, C,
and D of M , replaced by those of the extreme matrices

Mi :=

[
Ai Bi
Ci Di

]
, i = 1, 2, . . . , N.(3.22)

If problem (3.21) is feasible, then ρ2(F) is a valid upper bound to ‖TM (ζ)‖22 for all
M ∈ Dc, that is, it satisfies inequality (2.12).

Proof. Consider that for some F ∈ C, problem (3.21) has been solved providing
P̃ > 0. For any M ∈ Dc, there exists a convex combination such that

M =
N∑
i=1

λi

[
Ai Bi
Ci Di

]
.(3.23)

Hence, keeping in mind the structures of matrices Ã and B̃ given in (2.17) we get


 P̃ ÃP̃ B̃

(•)′ P̃ 0
(•)′ (•)′ I


 =

N∑
i=1

λi


 P̃ ÃiP̃ B̃i

(•)′ P̃ 0
(•)′ (•)′ I


 > 0.(3.24)

Applying to the above inequality the Schur complement formula together with (3.21),
we have the upper bound to the H2 norm of the transfer function TM (ζ)

‖TM (ζ)‖22 = trace

[ ∞∑
k=0

C̃ÃkB̃B̃′Ã
′kC̃ ′

]

< trace[C̃P̃ C̃ ′]
< ρ2(F) for all M ∈ Dc,(3.25)

which is the desired result.

The upper bound to the H2 norm of TM (ζ) provided by Lemma 1 deserves some
comments. In the case of precisely known parameters it coincides with the true value
of ‖TM (ζ)‖22 and so does not introduce any conservatism. This case is obtained for
N = 1 and the filter synthesis procedure of Theorem 2 is valid. For convex polytopic
systems it suffices to include as many LMI as the number of extreme matrices needed
to define Dc. The other matrices in the interior of Dc are automatically considered. In
this sense we can say that the worst situation certainly occurs in an extreme point of
the uncertain domain. Finally, adopting the same reasoning as before, the following
result is proven.
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Theorem 3. The optimal H2 robust filter which minimizes ρ2(F) for all F ∈ C is
a filter with dimension nf = n given by (3.18), where matrices Q, F and the symmetric
matrices Z, Y , W minimize µ under the constraints (3.19) and




Z Z ZAi ZAi ZBi
(•)′ Y Y Ai + FCi +Q Y Ai + FCi Y Bi + FDi
(•)′ (•)′ Z Z 0
(•)′ (•)′ (•)′ Y 0
(•)′ (•)′ (•)′ (•)′ I


 > 0(3.26)

for all i = 1, 2, . . . , N . Furthermore, the minimum H2 guaranteed performance cost
satisfying (2.12) is given by ρ2(F) = trace[W ].

Notice that the proof of Theorem 3 follows the same pattern as before. The
structure of the constraint in (3.21) is identical to (3.1), where each submatrix of M
is replaced by the corresponding submatrix of Mi, i = 1, 2, . . . , N . At this point it is
important to stress that the parameter uncertainty we can handle with Theorem 3 is
more general than the very recent results of [13, 18].

Our purpose now is to compare the previous results of this section with the best
ones available in the literature to date [13]. Given a domain Dn we assume the scalar
N (possibly infinite) and the extreme matrices Mi, i = 1, 2, . . . , N , are determined
such that Dc = Dn.

The key observation is that the full order, i.e., nf = n, robust filter matrices
(Āf , B̄f , C̄f ) provided in those references are given from the symmetric and nonneg-
ative solutions of two algebraic discrete Riccati equations depending on the nominal
model and on matrices H1, H2, and E in (2.9). Moreover, these solutions depend
on a parameter ε > 0 which is optimized to get the best guaranteed performance.
Hence, with the optimal value ε� > 0 a symmetric and nonnegative definite matrix P̄
is determined such that

‖TM (ζ)‖22 ≤ trace[C̃P̄ C̃ ′], ÃP̄ Ã′ − P̄ + B̃B̃′ ≤ 0 for all M ∈ Dn.(3.27)

This solution presents two important properties. As expected C̄f = L and P̄ can be
partitioned as

P̄ =

[
P1 P2

P2 P2

]
≥ 0,(3.28)

where P1 and P2 are symmetric and nonnegative definite matrices. Perturbing slightly
matrices P1 and P2 if necessary in order that these matrices become positive definite
and the inequalities in (3.27) and (3.28) become strict, choosing Mi ∈ Dn for i =
1, 2, . . . , N so as to produce Dc = Dn, and taking into account (3.27), we conclude
that with

Z := P−1
1 , U := P2, Y = −V := (P1 − P2)−1(3.29)

there exist matrices Q and F easily determined from (Āf , B̄f ) and (3.3) such that
all LMI in (3.26) are feasible. In addition to P1 > P2 in (3.28), choosing W >
L(P1 − P2)L′ the corresponding cost is given by

Trace[W ] = trace[L(P1 − P2)L′] + ε,(3.30)

which differs from the minimum upper bound of (3.27) by an amount of order ε > 0
which once again can be taken arbitrarily small. This proves that Theorem 3 generally
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provides a robust filter with better or at least equal performance than [13]. Moreover,
Theorem 3 applies to more general models subjected to parametric uncertainties and
no unidimensional search (with respect to the parameter ε) is needed. These aspects
will be illustrated by means of numerical examples.

4. H∞ filtering. In this section the problem ofH∞ filtering design is addressed.
The same main lines adopted to deal with H2 filters are again used. First the classical
H∞ filter is analyzed forM ∈ Dc fixed and n = nf . In that which follows the optimal
guaranteed robust H∞ filter is determined, and it is proven that it exhibits the same
dimension of the uncertain plant. Finally a comparison with the very recent results
of [18] is provided.

It is well known that the transfer function from the input noise to the estimation
error satisfies the inequality ‖TM (ζ)‖2∞ < µ for µ > 0 if and only if there exists a
symmetric matrix P̃ such that



P̃ ÃP̃ B̃ 0

(•)′ P̃ 0 P̃ C̃ ′

(•)′ (•)′ I 0
(•)′ (•)′ (•)′ µI


 > 0.(4.1)

In order to convert this nonlinear matrix inequality into an LMI we proceed by parti-
tioning the matrix variable P̃ and its inverse as indicated in (3.2). Introducing again
the matrix variable Z := X−1 we have the following result.

Theorem 4. Let M ∈ Dc be given. All filters F ∈ C such that n = nf and
‖TM (ζ)‖2∞ < µ are given by (3.3) where U and V are full rank matrices such that
UV ′ = I − Z−1Y . Moreover, the scalar µ, the matrices Q, G, F , and the symmetric
matrices Y , Z satisfy the LMI




Z Z ZA ZA ZB 0
(•)′ Y Y A+ FC +Q Y A+ FC Y B + FD 0
(•)′ (•)′ Z Z 0 L′ −G′

(•)′ (•)′ (•)′ Y 0 L′

(•)′ (•)′ (•)′ (•)′ I 0
(•)′ (•)′ (•)′ (•)′ (•)′ µI



> 0.(4.2)

Proof. From the fact that nf = n and matrices U and V are nonsingular the
relation (3.3) is a one-to-one transformation. Defining the square and full rank matrix
J̃ as indicated in (3.8), the multiplication of (4.1) to the left by J ′ := diag[J̃ ′, J̃ ′, I, I]
and to the right by J provides the LMI (4.2).

Choosing V = V ′ = −Y we get U ′Z = I − Y −1Z and (3.3) provides once again
the filter state space realization

Cf = G
(
I − Y −1Z

)−1
, Af = −Y −1Q

(
I − Y −1Z

)−1
, Bf = −Y −1F,(4.3)

from which it is interesting to observe that the H∞ filter design problem differs from
the H2 one in the following relevant aspect concerning matrix G. In the previous
design it could be eliminated from the associated LMI constraint by applying the
Schur complement together with the result of [14]. If we do the same to (4.2) it is
again possible to split that inequality into two LMI. However, the value of matrix G
will depend on the system matrices M and L. This solution is not valid for robust
filter design since by assumption matrix M is not known.
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As for H2 filters, it is possible to recover the H∞ central filter by allowing Z → 0.
Considering for ease that BD′ = 0, DD′ = I, and (4.2) with nonstrict inequality, the
possible choice of Z → 0 leads necessarily to G = L and Q = −Y A − FC. In this
case the remaining variables have to satisfy the LMI



Y Y A+ FC Y B + FD 0

(•)′ Y 0 L′

(•)′ (•)′ I 0
(•)′ (•)′ (•)′ µI


 > 0.(4.4)

To get the central H∞ filter we define the new variable P := (Y − µ−1L′L)−1 and
impose F = −Y APC ′(CPC ′ + I)−1. Performing the Schur complement to inequality
(4.4) we have

APA′ − (P−1 + µ−1L′L
)−1 −APC ′(CPC ′ + I)−1CPA′ +BB′ < 0.(4.5)

Consequently, under the assumption that (4.2) is feasible, that is, it admits an interior
point, there always exits a feasible solution arbitrarily close to the symmetric and
positive definite solution of the algebraic discrete Riccati equation

APA′ − (P−1 + µ−1L′L
)−1 −APC ′(CPC ′ + I)−1CPA′ +BB′ = 0,(4.6)

in which case the state space representation of the associated filter is given by matrices
Cf = L, Af = A − BfC, and Bf = APC ′(CPC ′ + I)−1 being the central H∞ filter
which clearly satisfies ‖TM (ζ)‖2∞ < µ. Furthermore, the minimum value of µ such that
a solution P > 0 to (4.6) exists provides a central filter with optimal H∞ performance.

Referring back to the general problem, it is important to stress that nothing is
gained in terms of the performance index under consideration if we consider nf �= n.
Indeed, for nf < n, besides (4.2), a supplementary nonconvex constraint must be
added which may cause performance deterioration. On the other hand for nf > n the
same LMI (4.2) still must hold and so it is always possible to reduce the filter order
to nf = n keeping the same performance level. We are now in position to analyze the
robust H∞ filter.

Lemma 2. Assume F ∈ C is a given filter and consider the problem

ρ∞(F) := min
P̃ ,µ



µ :



P̃ ÃiP̃ B̃i 0

(•)′ P̃ 0 P̃ C̃ ′

(•)′ (•)′ I 0
(•)′ (•)′ (•)′ µI


 > 0 , i = 1, 2, . . . , N



,(4.7)

where matrices Ãi and B̃i are the same as Ã and B̃ with the submatrices A, B, C, and
D of M , replaced by those of the extreme matrices M1,M2, . . . ,MN . If problem (4.7)
is feasible, then ρ∞(F) is a valid upper bound to ‖TM (ζ)‖2∞ for all M ∈ Dc, that is,
it satisfies inequality (2.13).

The proof of Lemma 2 follows the same lines of that for Lemma 1 and is thus
omitted. Notice that the index i = 1, 2, . . . , N does not appear in matrix C̃ due
to our assumption that matrix L is fixed and known. For N = 1 the upper bound
provided by Lemma 2 matches with ‖TM (ζ)‖2∞ which means that no conservatism is
introduced. The next theorem is the main result of this section and states that the
optimal H∞ robust filter can be determined from a convex programming problem.
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Theorem 5. The optimal H∞ robust filter which minimizes ρ∞(F) for all F ∈ C
is a filter with dimension nf = n and state space realization given by (4.3) where
matrices Q, G, F and the symmetric matrices Z, Y minimize µ under the constraint




Z Z ZAi ZAi ZBi 0
(•)′ Y Y Ai + FCi +Q Y Ai + FCi Y Bi + FDi 0
(•)′ (•)′ Z Z 0 L′ −G′

(•)′ (•)′ (•)′ Y 0 L′

(•)′ (•)′ (•)′ (•)′ I 0
(•)′ (•)′ (•)′ (•)′ (•)′ µI



> 0(4.8)

for all i = 1, 2, . . . , N . Furthermore, the minimum H∞ guaranteed performance cost
satisfying (2.13) is given by ρ∞(F) = µ.

Paper [18] proposes the most general method for H∞ filter design dealing with
norm-bounded uncertainty acting on matrices A and C of model (2.1)−(2.3). The
procedure depends on the existence of a parameter ε > 0 such that two algebraic
Riccati equations admit symmetric, nonnegative, and stabilizing solutions. In the
affirmative case, a full order H∞ filter defined by the triplet of matrices (Āf , B̄f , C̄f )
with C̄f = L is determined such that

‖TM (ζ)‖2∞ < µ, ÃP̄ Ã′ −
(
P̄−1 + µ−1C̃ ′C̃

)−1

+ B̃B̃′ ≤ 0 for all M ∈ Dn(4.9)

hold for some matrix P̄ exhibiting the partitioned structure (3.28) where P1 and P2

are symmetric and nonnegative definite matrices. Perturbing slightly matrices P1

and P2 if necessary and assuming that N extreme matrices Mi for all i = 1, 2, . . . , N
have been determined such that Dc = Dn then we can say that with (4.9) there exist
matrices Q, G, and F easily determined from (Āf , B̄f , C̄f ) and (3.3) such that all LMI
in (4.8) are feasible. This means that the filter of [18] is always feasible for Theorem 5
but the contrary, of course, is not always true unless Dn is defined by a one-block
uncertain matrix.

5. H2 and H∞ decentralized filtering. Another important point of the de-
sign procedure provided in the present paper concerns theH2 andH∞ filter structures.
In signal and systems estimation when the overall system is described by a number
of units coupled together by means of an interconnection network, it is of interest to
know whether it is possible to connect local filters in order to estimate the local state
variables [6, 17]. Assuming no parameter uncertainty exists, the model is given by
(2.1)−(2.3), where B, C, D, and L but not A are block diagonal matrices. The goal
is to determine a filter as (2.14)−(2.15) with Af , Bf , and Cf block diagonal matrices
of compatible dimensions. In this case the filter can be split into a set of local filters
acting on each subsystem level. Recalling that the inverse of a block diagonal matrix
is also a block diagonal matrix and that the product of block diagonal matrices is
a block diagonal matrix, then (3.18) or more generally (4.3) reveals that our goal is
accomplished provided we include in the H2 and H∞ filtering design problems these
additional constraints: matrices Z, Y , Q, G, and F are block diagonal. Fortunately
this corresponds to constrain to zero some entries of those matrices and convexity is
preserved. Of course the same reasoning can be drawn for the design of robust filters.

6. Illustrative examples. In this section we solve the H2 filter design problem
for several systems of the form (2.1)−(2.3) to illustrate the most important aspects
of the theory introduced so far. In all examples the uncertainty acts on matrix A
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only but is of unstructured and structured types. The procedure given in [13], which
is based on a necessary and sufficient condition for guaranteed cost state estimation,
has been implemented and it is used for comparison purposes.

Consider a linear discrete-time system with

B =

[
1 0 0
0 1 0

]
, C =

[
1 0

]
, D =

[
0 0

√
2
]
, L =

[
1 1

]
.(6.1)

Optimal H2 filter: The nominal matrix A = A0 is given by

A0 =

[
0.9 0.1
0.01 0.9

]
.(6.2)

For N = 1 corresponding to the nominal system, Theorem 3 provides the Kalman
optimal H2 filter Fkal with the associated minimum cost ρ2(Fkal) = 8.0759 and state
space realization

Akal =

[
0.4427 0.1000
−0.1615 0.9000

]
, Bkal =

[
0.4573
0.1715

]
, Ckal =

[
1 1

]
.(6.3)

Robust H2 filter: Consider an uncertain system with A = A0 + ∆A where A0 is
given by (6.2) and

∆A =

[
0 0.06α

0.05β 0

]
=

[
0.06 0

0 0.05

] [
α 0
0 β

] [
0 1
1 0

]
,(6.4)

where |α| ≤ 1 and |β| ≤ 1. This is a two-block uncertainty which can be exactly
described by the set Dc but not by the set Dn unless the uncertain matrix is taken
as diagonal, that is, Ω := diag[α, β]. However, the results available in the literature
to date [13, 18] cannot be directly applied unless the block diagonal structure of Ω is
not imposed, in which case some conservatism is necessarily introduced. The design
procedure of [13] with the best value for the parameter ε = 1.5264e − 04 provides a
suboptimal guaranteed cost H2 filter Fsub with state space realization

Asub =

[
0.0335 0.1014
−0.2551 0.9117

]
, Bsub =

[
0.8667
0.2652

]
, Csub =

[
1 1

]
.(6.5)

On the other hand, applying Theorem 3 with N = 4 matrices corresponding to the
extreme points of the uncertain domain we get the optimal guaranteed cost H2 filter
Fopt given by

Aopt =

[
0.0383 0.0982
−0.3681 0.8986

]
, Bopt =

[
0.8490
0.3779

]
, Copt =

[
1 1

]
.(6.6)

Table 6.1 shows, for each filter, the value of the guaranteed H2 cost ρ2(F) as well as
the maximum value of ‖TM (ζ)‖22 with respect to the matrixM which depends through
(6.4) on the uncertain parameters α and β. As expected, the Kalman filter, which is
optimal for the nominal system, is the worst under parametric uncertainty. The filter
of [13] is suboptimal with respect to the guaranteed cost because, as we have said
before, the two-block structure of the uncertainty matrix Ω cannot be considered in
the design procedure proposed. It is interesting to observe that the filter determined
from Theorem 3 is the better one with respect to guaranteed H2 cost as well as the
true worst case value of the H2 estimation cost.
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Table 6.1
H2 filter performance: multiblock uncertainty.

Filter Fkal Fsub Fopt

ρ2(F) − 129.7915 100.0278

supM∈Dc
‖TM (ζ)‖22 49.4994 38.2183 30.0664

Table 6.2
H2 filter performance: one-block uncertainty.

Filter Fkal N = 2 N = 4 N = 8 Fopt

ρ2(F) − 9.6796 13.0219 13.0446 13.0446

supM∈Dn
‖TM (ζ)‖22 12.9427 − − 11.8646 11.8646

Robust H2 filter: Consider now an uncertain system with A = A0 + ∆A where
A0 is given by (6.2) and

∆A =

[
0 0.06α

0 0.05β

]
=

[
0.06 0

0 0.05

][
α

β

] [
0 1

]
,(6.7)

where the uncertain parameters are such that α2+β2 ≤ 1. This case of only one-block
uncertainty is exactly described by the domain Dn with Ω′ = [α β]′. Using [13] the
following optimal guaranteed H2 cost filter is obtained:

Aopt =

[
0.3521 0.1069

−0.2211 0.9400

]
, Bopt =

[
0.5479

0.2311

]
, Copt =

[
1 1

]
.(6.8)

In this case, the uncertainty domain cannot be exactly represented by the poly-
topic domain Dc. However, Table 6.2 shows that with the extreme matrices calculated
from [

αi

βi

]
=

[
cos(2πi/N)

sin(2πi/N)

]
, i = 1, 2, . . . , N,(6.9)

for N = 8 the problem given in Theorem 3 provides the same guaranteed cost optimal
robust filter which, in addition, performs better that the nominal Kalman filter.

7. Conclusion. The robust filtering problem has been addressed in this paper
in the case when convex polytopic uncertainty is present on the dynamic, input,
and output matrices. Unlike Kalman-type approaches using Riccati equations that
generally deal with unstructured (one-block) norm-bounded uncertainty, the uncertain
type handled here may be highly structured and then encompasses most of the results
available in the literature to date. The filtering problem has been solved using H2

and H∞ optimization formulations, both with LMI machinery. Indeed, the proposed
filter parameterization enables us to define parametric optimization problems in terms
of linear matrix inequalities, a feature which is now known to be very fortunate
since it allows the use of very efficient numerical solvers. Some illustrative numerical
examples have been developed to show the usefulness of the proposed approach and its
superiority for dealing with structured (multiblock) uncertainty. The LMI tool can be
exploited to solve efficiently complex problems with structured uncertainty (interval
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as well as norm-bounded type) in the presence of convex constraints expressed in
terms of LMI as, for instance, structural and integral quadratic constraints.
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1. Introduction. In contrast to the optimal control of linear systems with a
convex objective, where first order necessary optimality conditions are already suffi-
cient for optimality, higher order conditions such as second order sufficient optimality
conditions (SSC) should be employed to verify optimality for nonlinear systems. Sec-
ond order sufficient optimality conditions have also proved to be useful for showing
important properties of optimal control problems such as local uniqueness of optimal
controls and their stability with respect to certain perturbations. Moreover, they may
serve as an assumption to guarantee the convergence of numerical methods in opti-
mal control. In this respect, we refer to the general expositions by Maurer and Zowe
[15] and Maurer [14] for different aspects of second order sufficient optimality con-
ditions. The approximation of programming problems in Banach spaces is discussed
in Alt [2]. Moreover, Alt [3], [4] has established a general convergence analysis for
Lagrange–Newton methods in Banach spaces.

Meanwhile, an extensive number of publications have been devoted to different
aspects of second order sufficient optimality conditions for control problems governed
by ordinary differential equations. The well-known two-norm discrepancy has in par-
ticular received a good deal of attention. We refer, for instance, to Ioffe [13] and
Maurer [14].

First investigations of second order sufficient optimality conditions for control
problems governed by partial differential equations have been published by Goldberg
and Tröltzsch [11], [12] for the boundary control of parabolic equations with nonlin-
ear boundary conditions. In [9], Casas, Tröltzsch, and Unger have extended these
ideas to elliptic boundary control problems with pointwise constraints on the con-
trol. Moreover, they tightened the gap between second order necessary and sufficient
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optimality conditions. This was done by the consideration of sets of strongly active
constraints according to Dontchev et al. [10]. This technique is also related to first
order sufficient optimality conditions introduced by Maurer and Zowe [15]. It should
be mentioned that as many as four norms have to be used in this case (L∞-norm for
differentiation, L2-norm to formulate second order sufficient optimality conditions,
L1-norm for the first order sufficient optimality condition, and certain Lp-norms to
obtain optimal regularity results).

Bonnans [5] has shown that a very weak form of second order sufficient condi-
tions can be used to verify local optimality for a particular class of semilinear elliptic
control problems with constraints on the control: If the second order derivative of
the Lagrange function is a Legendre form, then it suffices to have its positivity in all
critical directions.

In our paper, the results of [9] will be extended to additional constraints on the
state. In this way, we are continuing the investigations by Casas and Tröltzsch [8] on
second order necessary conditions. We also rely on general ideas of Maurer and Zowe
[15], combining their approach with a detailed splitting technique.

At the beginning, we aimed to establish second order sufficient optimality condi-
tions for boundary control problems governed by semilinear elliptic equations in do-
mains of arbitrary dimension with general pointwise constraints on the control and the
state. However, we soon recognized that pointwise state-constraints lead to essential
and somewhat surprising difficulties. To establish second order sufficient optimality
conditions for problems with pointwise state-constraints given on the whole domain,
we had to restrict ourselves to two-dimensional domains with controls appearing lin-
early in the boundary condition. These obstacles might indicate some limits for the
“traditional” type of second order sufficient optimality conditions for control problems
governed by PDEs.

If pointwise state-constraints are imposed on compact subsets of the domain, while
the other quantities are sufficiently smooth, then arbitrary dimensions can be treated
without restrictions on the nonlinearities. In this case the adjoint state belongs to
L∞(Γ). Moreover, we are able to avoid the assumption of linearity of the boundary
condition with respect to the control by introducing some extended form of second
order optimality conditions.

2. The optimal control problem. We consider the problem: Minimize the
functional

F0(y, u) =

∫
Ω

f(x, y(x)) dx+

∫
Γ

g(x, y(x), u(x)) dS(x)(2.1)

subject to the equation of state

{−∆y(x) + y(x) = 0 in Ω,
∂νy(x) = b(x, y(x), u(x)) on Γ,

(2.2)

to the constraints on the state y

Fi(y) = 0, i = 1, . . . ,m,(2.3)

E(y) ∈ K,(2.4)

and to the constraints on the control u

ua(x) ≤ u(x) ≤ ub(x) almost everywhere (a.e.) onΓ.(2.5)
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In this setting, Ω ⊂ R
n is a bounded domain with a Lipschitz boundary Γ according to

the definition by Nečas [17]. Moreover, sufficiently smooth functions f : Ω × R → R

and g, b : Γ × R
2 → R are given. The symbol ∂ν is used for the derivative in the

direction of the unit outward normal ν on Γ. The functionals Fi : C(Ω) → R,
i = 1, . . . ,m, are supposed to be twice continuously Fréchet differentiable, that is, to
be of class C2. By E we denote a mapping of class C2 from C(Ω) into a real Banach
space Z. K ⊂ Z is a nonempty convex closed set, and ua, ub : Γ → R are functions
of L∞(Γ) satisfying ua(x) ≤ ub(x) on Γ.

The control u is looked for in the control space U = L∞(Γ), while the state y is
defined as a weak solution of (2.2) in the state space C(Ω) ∩H1(Ω) = Y , that is,

∫
Ω

(∇y∇v + yv) dx =

∫
Γ

b(·, y, u)v dS ∀v ∈ H1(Ω).(2.6)

We endow Y with the norm ‖y‖Y = ‖y‖C(Ω) + ‖y‖H1(Ω). The following assumptions

are imposed on the given quantities.

(A1) For each fixed x ∈ Ω or Γ, respectively, the functions f = f(x, y), g =
g(x, y, u), and b = b(x, y, u) are of class C2 with respect to (y, u). For fixed
(y, u), they are Lebesgue measurable with respect to x ∈ Ω or x ∈ Γ, respec-
tively.

Throughout the paper, partial derivatives are indicated by associated subscripts. For
instance, byu stands for ∂2b/∂y∂u . By b′(x, y, u) and b′′(x, y, u) we denote the gradient
and the Hessian matrix of b with respect to (y, u):

b′(x, y, u) =

(
by(x, y, u)
bu(x, y, u)

)
, b′′(x, y, u) =

(
byy(x, y, u) byu(x, y, u)
buy(x, y, u) buu(x, y, u)

)
;

|b′| and |b′′| are defined by adding the absolute values of all entries.
In the next assumption, fixed parameters p > n − 1 and s, r are used, which

depend on n. For the possible (minimal) choice of s and r we refer to the discussion
of regularity in (3.13). Roughly speaking, we have y|Γ ∈ Ls(Γ) and y ∈ Lr(Ω) in the
linearized system (2.2) if u ∈ L2(Γ). As usual, s′ and r′ denote conjugate numbers.
For instance, s′ is defined by 1/s′ + 1/s = 1.

(A2) For all M > 0 there are constants CM > 0, functions ΨM
f ∈ L(r/2)′(Ω),

ΨM,1
g ∈ L(s/2)′(Γ), ΨM,2

g ∈ L2(s/2)′(Γ), ΨM,3
g ∈ L∞(Γ), and a continuous,

monotone increasing function η ∈ C(R+ ∪ {0}) with η(0) = 0 such that
(i)

by(x, y, u) ≤ 0 a.e. x ∈ Γ, ∀(y, u) ∈ R
2,(2.7)

b(·, 0, 0) ∈ Lp(Γ), for a p > n− 1,
|b′(x, y, u)|+ |b′′(x, y, u)| ≤ CM ,
|b′′(x, y1, u1)− b′′(x, y2, u2)| ≤ CM η(|y1 − y2|+ |u1 − u2|)
for almost all x ∈ Γ and all |y|, |u|, |yi|, |ui| ≤M , i = 1, 2;

(ii) f(·, 0) ∈ L1(Ω), fy(·, 0) ∈ Lr′(Ω), fyy(·, 0) ∈ L(r/2)′(Ω)
|fyy(x, y1)− fyy(x, y2)| ≤ ΨM

f (x) η(|y1 − y2|)
∀ x ∈ Ω, |yi| ≤M , i = 1, 2;
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(iii) g(·, 0, 0) ∈ L1(Γ), gy(·, 0, 0) ∈ Ls′(Γ), gu(·, 0, 0) ∈ L2(Γ),

gyy(·, 0, 0) ∈ L(s/2)′(Γ), gyu(·, 0, 0) ∈ L2(s/2)′(Γ), guu(·, 0, 0) ∈ L∞(Γ)
(here, · stands for x)

|gyy(x, y1, u1)− gyy(x, y2, u2)| ≤ ΨM,1
g (x)η(|y1 − y2|+ |u1 − u2|),

|gyu(x, y1, u1)− gyu(x, y2, u2)| ≤ ΨM,2
g (x)η(|y1 − y2|+ |u1 − u2|),

|guu(x, y1, u1)− guu(x, y2, u2)| ≤ ΨM,3
g (x)η(|y1 − y2|+ |u1 − u2|),

for almost all x ∈ Γ and all |yi| ≤M, |ui| ≤M .

Remark 2.1. Notice that the estimates in (i)–(iii) imply boundedness and Lip-
schitz properties of b, f, g, b′, f ′, g′ in several L-spaces. We omit them, because they
follow from the mean value theorem.

(A3) (i) Let us define the norm

‖y‖2 = ‖y‖C(A) + ‖y‖Lr(Ω) + ‖y‖Ls(Γ)

for y ∈ C(Ω), where A ⊂ Ω is a certain measurable compact subset. Here
A stands for a set, where we know y ∈ C(A) for Neumann boundary
data given in L2(Γ). In the case n = 2 we may take A = Ω, while A ⊂ Ω
is needed for n > 2. For A = ∅ we put ‖y‖C(A) = 0.

We assume at a fixed reference state y ∈ C(Ω) that

|F ′
i (y)y| ≤ CF ‖y‖2 ∀y ∈ C(Ω),

|F ′′
i (y)[y1, y2]| ≤ CF ‖y1‖2‖y2‖2 ∀y1, y2 ∈ C(Ω)

holds with some CF > 0. Moreover, we require with a CM > 0

|F ′
i (y1)y − F ′

i (y2)y| ≤ CM‖y1 − y2‖2‖y‖2,

|(F ′′
i (y1)− F ′′

i (y2))[y, v]| ≤ CM η(‖y1 − y2‖C(Ω))‖y‖2‖v‖2

∀ yj with ‖yj‖C(Ω) ≤M , j = 1, 2, ∀ y, v from C(Ω), and ∀ i = 1, . . . ,m.

(ii) Analogous assumptions are imposed on E : C(Ω) → Z, where ‖ · ‖Z is
to be substituted for | · |. For instance,

‖E′(y)y‖Z ≤ CE‖y‖2 ∀y ∈ C(Ω)

is supposed.

We shall explain the main constructions of our paper by the following canonical ex-
ample (P) that fits in the general setting.

Example (P). Minimize

1

2

∫
Ω

(y − yd)2dx+
α

2

∫
Γ

u2dS

subject to

−�y + y = 0 in Ω,
∂νy = u− y3 on Γ,

and

|u| ≤ 1, y(0) ≤ y0
in the open unit ball Ω ⊂ R

3 around zero, where α > 0, y0 ∈ R, and yd ∈
L∞(Ω) are given. Here, we have Z = R, K = R

−, A = {0}, E(y) = y(0)−y0,
and we need y ∈ C(Ω) to make E well defined.
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3. The state equation and first order necessary optimality conditions.
It can be shown that the equation (2.2) admits for each u ∈ Uad a unique weak
solution y = y(u) ∈ Y , where Uad = {u ∈ L∞(Γ) |ua(x) ≤ u(x) ≤ ub(x) a.e. onΓ}.
Moreover, there is a constant M such that

‖y(u)‖Y ≤M ∀u ∈ Uad.(3.1)

In particular, it holds that ‖y‖C(Ω) ≤ M . Casas and Tröltzsch [8] have proved that

the mapping u �→ y(u) from L∞(Γ) into Y is of class C2. Furthermore, the Lipschitz
property

‖y(u1)− y(u2)‖2 ≤ C2‖u1 − u2‖L2(Γ)

holds for all u1, u2 ∈ Uad, where C2 is a positive constant and ‖ ·‖2 is defined in (A3).
For fixed u ∈ Uad we have b(·, y, u) ∈ Lp(Γ), hence the weak solution y ∈ Y of (2.2)
belongs to the space

Yq,p = {y ∈ H1(Ω) | −∆y + y ∈ Lq(Ω), ∂νy ∈ Lp(Γ)},
which is known to be continuously embedded into Y = C(Ω)∩H1(Ω) for each q > n/2
and each p > n− 1.

In all of what follows we assume that a reference pair (y, u) ∈ Y × Uad is given,
satisfying, together with an associated adjoint state ϕ ∈ W 1,σ(Ω) ∀σ < n/(n − 1),
and with Lagrange multipliers

λ = (λ1, . . . , λm)T ∈ R
m, z∗ ∈ Z∗,

the associated standard first order necessary optimality conditions. We will just as-
sume them. They can be proved following Casas [7], Bonnans and Casas [6], or Zowe
and Kurcyusz [23]. The first order optimality system to be satisfied by (y, u) consists
of the state equations (2.2), the constraint u ∈ Uad, the adjoint equations

−∆ϕ+ ϕ = fy(·, y) +

m∑
i=1

λiF
′
i (y)|Ω + (E′y)∗z∗|Ω in Ω,(3.2)

∂νϕ = by(·, y, u)ϕ+ gy(·, y, u) +

m∑
i=1

λiF
′
i (y)|Γ + (E′y)∗z∗|Γ on Γ(3.3)

for the adjoint state ϕ, the complementary slackness condition

〈z∗, κ− E(y)〉 ≤ 0 ∀κ ∈ K,(3.4)

and the variational inequality∫
Γ

(gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x)))(u(x)− u(x)) dS(x) ≥ 0(3.5)

∀ u ∈ Uad. We have F ′
i (y) ∈ C(Ω)

∗
, i = 1, . . . ,m, and E′(y)∗z∗ ∈ C(Ω)

∗
; hence

these quantities can be identified with real Borel measures on Ω. Let a nonnegative
function β ∈ L∞(Γ) and real Borel measures µΩ and µΓ concentrated on Ω and Γ,
respectively, be given. Then the problem{−∆ϕ+ ϕ = µΩ in Ω,

∂νϕ+ βϕ = µΓ on Γ
(3.6)
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admits a unique solution ϕ ∈ W 1,σ(Ω) ∀ σ < n/(n − 1) (see Casas [7]; the reader is
also referred to Stampacchia [20] for the Dirichlet case). In view of this, we may write

ϕ = ϕ0 +

m∑
i=1

λiϕi + ϕE ,

where ϕ0, ϕi, and ϕE solve (3.6) for µΩ = fy, F
′
i (y)|Ω, E′(y)∗z∗|Ω, and µΓ = gy,

F ′
i (y)|Γ, E′(y)∗z∗|Γ, respectively. We have at least ϕ0, ϕi, and ϕE in W 1,σ(Ω). More-

over, ϕ satisfies the formula of integration by parts

∫
Ω

(−∆y + y)ϕdx+

∫
Γ

(∂νy + βy)ϕdS(x) =

∫
Ω

y dµΩ +

∫
Γ

y dµΓ(3.7)

∀ y ∈ Yq,p, where q > n/2, p > n−1. It is easy to verify that the optimality conditions
can be expressed by the Lagrange function

L(y, u, ϕ, λ, z∗) = F0(y, u) −
∫

Ω

(−∆y + y)ϕdx−
∫

Γ

(∂νy − b(·, y, u))ϕdS

+
m∑
j=1

λjFj(y) + 〈z∗, E(y)〉,
(3.8)

L : Yq,p × U ×W 1,σ(Ω) × R
m × Z∗ → R. The regularity of y and ϕ fits together,

as ϕ ∈ W 1,σ(Ω) ∀ σ < n/(n − 1) ensures ϕ ∈ Ls(Ω) ∀ s < n/(n − 2) (Nečas [17,
Thm. 3.4, p. 69]), and ϕ|Γ ∈ Lr(Γ) holds ∀ r < 1 + 1/(n − 2) [17, Thm. 4.2, p.
84]). Therefore, this definition makes sense. In (3.8), 〈·, ·〉 denotes the duality pairing
between Z and its dual space Z∗. The Lagrange function L is of class C2 with respect
to (y, u) for fixed ϕ, λ, and z∗.

Thanks to (3.7), the optimality system can be rewritten in terms of L. Then it
is expressed by (2.6), the constraints on the state (2.3), (2.4), the constraints on the
control u ∈ Uad, and

Ly(y, u, ϕ, λ, z
∗)y = 0 ∀y ∈ Y,(3.9)

Lu(y, u, ϕ, λ, z
∗)(u− u) ≥ 0 ∀u ∈ Uad,(3.10)

〈z∗, κ− E(y)〉 ≤ 0 ∀κ ∈ K.(3.11)

This form is more convenient for our later evaluations.
Example. In (P), adjoint equation and variational inequality are given by

−�ϕ+ ϕ = y − yd + z∗ ◦ δ(0), ∂νϕ+ 3 y2ϕ = 0,∫
Γ

(αu+ ϕ)(u− u)dS ≥ 0 ∀|u| ≤ 1,

where δ(0) is the Dirac measure.
To shorten our notation, derivatives taken at (y, u, ϕ, λ, z∗) will be indicated by

a bar. For instance, Lyy, Lu(u − u) stand for the derivatives in (3.9) and (3.10),
respectively. Lyy[y1, y2] denotes the second order derivative of L in the directions
y1, y2 taken at (y, u, ϕ, λ, z∗). Moreover, Lww[w1, w2] is the second order derivative of
L in the directions w1 = (y1, u1), w2 = (y2, u2). If w1 = w2 = w, then we write for
short Lww[w,w] = Lww[w]2.
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Next we provide some useful results on linearized versions of the state equation.
Regard first the linear system

{−∆y + y = f in Ω,
∂νy + βy = g on Γ,

(3.12)

where β ∈ L∞(Γ) is nonnegative. For each pair (f, g) ∈ L1(Ω) × L1(Γ), this system
admits a unique solution y ∈ W 1,σ(Ω), where σ < n/(n − 1); see Casas [7]. (Notice
that a function of L1 can be considered as a Borel measure.) On the other hand,
the solution y of (3.12) belongs to H1(Ω) ∩ C(Ω) if (f, g) ∈ Lq(Ω) × Lp(Γ). This
regularity result is well known for domains with C1-boundary. Moreover, it remains
true for domains with Lipschitz boundary in the sense of Nečas [17] (see Stampacchia
[19] and Murthy and Stampacchia [16]). On account of this, the mapping D : (f, g) �→
(y, y|Γ) is continuous from L1(Ω) × L1(Γ) into Ls(Ω) × Lt(Γ) for s < n/(n − 2) and
t < (n− 1)/(n− 2). D is continuous also from Lq(Ω) × Lp(Γ) into L∞(Ω) × L∞(Γ).
We obtain these spaces by embedding results for W 1,σ(Ω) [1], [17], [20]. In both
cases, this mapping is linear and continuous. Interpolation theory applies to show the
following results for D considered as a mapping defined on L2(Ω)× L2(Γ):

y ∈



C(Ω), n = 2,
Lr(Ω) ∀r <∞, n = 3,

Lr(Ω) ∀r < 2n

n− 3
, n ≥ 4,

y|Γ ∈



C(Γ), n = 2,
Ls(Γ) ∀s <∞, n = 3,

Ls(Γ) ∀s < 2(n− 1)

n− 3
, n ≥ 4.

(3.13)

4. Regularity condition and linearization theorem. Let us recall that we
consider a fixed reference pair (y, u) satisfying, together with (ϕ, λ, z∗), the first order
necessary conditions (3.9)–(3.11).

The linearized cone of Uad at u is the set C(u) = {v ∈ L∞(Γ) | v = 1(u− u), 1 ≥
0, u ∈ Uad}. Let F = F (y) denote the mapping y �→ (F1(y), . . . , Fm(y))T from Y to
R
m. For convenience, we introduce the set of all feasible pairs

M = {w = (y, u) ∈ Y × Uad | y = G(u) and y satisfies the state-constraints}
(notice that G is the nonlinear control-state-mapping). Following Maurer and Zowe
[15], the linearized cone L(M, w) at w = (y, u) is defined by

L(M, w) = {w |w = (y, u), u ∈ C(u) and (y, u) satisfies (4.1)–(4.3)},
where {−∆y + y

∂νy
=
=

0 in Ω,
by(·, y, u)y + bu(·, y, u)u on Γ,

(4.1)

F ′(y)y = 0,(4.2)

E′(y)y ∈ K(E(y)).(4.3)

Here, K(E(y)) = {z ∈ Z | z = 1(κ − E(y)), 1 ≥ 0, κ ∈ K} is the conical hull of
K − E(y).

Remark 4.1. The choice Z = R
k, E(y) = (E1(y), . . . , Ek(y))

T , K = (Rk)− for
E : Y → Z is of particular interest. Then (4.3) reduces to

E′
i(y)y ≤ 0

for all active i ∈ {1, . . . , k}, that is for all i, where Ei(y) = 0 holds.
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Example. The linearized cone for (P) is the set of the following pairs (y, u): They
satisfy u ∈ C(u) and

−�y + y = 0, ∂νy + 3y2y = u,(4.4)

y(0) ≤ 0,(4.5)

if y(0) = y0 (active state constraint). If the state constraint is not active, then (4.5)
disappears.

The following regularity assumption (R) is basic for our further analysis: To
formulate (R) we combine the two state constraints to one general constraint. We
therefore take Z = R

m×Z, K = {0}×K, define T : Y → Z by T (y) = (F (y), E(y)),
and putK(T (y)) = {0}×K(E(y)). The regularity condition was introduced by Zowe
and Kurcyusz [23] and requires

(R) T ′(y)G′(u)C(u)−K(T (y)) = Z.

This condition is sufficient for the existence of a (nondegenerate) Lagrange mul-
tiplier associated to the state-constraint E(y) ∈ K; see [23]. We should emphasize
that (R) does not rely on the condition intK �= ∅. In Appendix 7.1 we shall present
some sufficient conditions for (R) which, however, require intK �= ∅. (R) is discussed
for the canonical example (P) there. For Z = R

k, K = (Rk)−, the condition (R) is
equivalent to the well-known Mangasarian–Fromowitz condition.

Theorem 4.2. Suppose that (R) is satisfied. Then for all pairs (ŷ, û) ∈ M there
is a pair (y, u) ∈ L(M, w) such that the difference r = (ry, ru) = (ŷ, û)−(y, u)−(y, u)
can be estimated by

‖r‖Y×L∞(Γ) ≤ CL,p‖û− u‖L∞(Γ)‖û− u‖Lp(Γ) ∀p > n− 1,(4.6)

‖r‖ ≤ CL,2‖û− u‖L∞(Γ)‖û− u‖L2(Γ),(4.7)

where ‖r‖ = ‖ry‖2 + ‖ru‖L2(Γ). In the particular case b(x, y, u) = b1(x, y) + b2(x)u
we have

‖r‖Y×L∞(Γ) ≤ CL,p‖û− u‖2
Lp(Γ) ∀p > n− 1.(4.8)

This theorem is proved in Appendix 7.2. Let us conclude this section by con-
sidering some useful estimates for L′′ and for certain remainder terms. First, we
evaluate

L′′
[(y1, u1), (y2, u2)] = L′′(y, u, ϕ, λ, z∗)[(y1, u1), (y2, u2)],

where L′′ denotes the second order derivative of L with respect to (y, u). We have

L′′
[(y1, u1), (y2, u2)] =

∫
Ω

fyy(·, y)y1y2 dx+

∫
Γ

(y1, u1)g
′′(·, y, u)(y2, u2)

T dS

+

∫
Γ

ϕ · (y1, u1)b
′′(·, y, u)(y2, u2)

T dS

+

m∑
i=1

λiF
′′
i (y)[y1, y2] + 〈z∗, E′′(y)[y1, y2]〉.

(4.9)
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Example. In the case of (P), L′′
admits the form

L′′
[(y1, u1), (y2, u2)] =

∫
Ω

y1y2dx+

∫
Γ

(6ϕy y1y2 + αu1u2)dS.

The term connected with ϕ causes trouble, more precisely,

I =

∫
Γ

ϕ (byy(·, y, u)y1y2 + byu(·, y, u)(y1u2 + y2u1) + buu(·, y, u)u1u2) dS.(4.10)

An estimate of I is needed with respect to the norm ‖y‖2 + ‖u‖L2(Γ) (cf. (4.19)).
We therefore have to require at least ϕ ∈ L2(Γ) in the second item and ϕ ∈ L∞(Γ)
in the third one. On the other hand, only ϕ ∈ Lr(Γ) follows from ϕ ∈ W 1,σ(Ω) for
r < (n − 1)/(n − 2); see Nečas [17, p. 84]. For n = 2 we obtain ϕ ∈ Lr(Γ) for all
r <∞, while n = 3 yields the regularity ϕ ∈ Lr(Γ) for all r < 2. On account of this,
the following additional assumption is crucial for our analysis.

(A4) Let one of the following statements be true:
(i) ϕ ∈ L∞(Γ).
(ii) buu(x, y, u) = 0 on Γ × R

2 and, if n ≥ 3, then ϕ ∈ Lr(Γ) for some
r > n− 1.

(iii) buu(x, y, u) = byu(x, y, u) = 0 on Γ × R
2 and, if n ≥ 4, then ϕ ∈ Lr(Γ)

for some r > (n− 1)/2.
(iv) b′′(·, y, u) = 0.

We briefly comment on the consequences of these assumptions: (i) is true if
fy ∈ Lq(Ω), gy ∈ Lp(Γ) and if the restrictions of F ′

i , i = 1, . . . ,m, and E′(y)∗z∗

to Ω and Γ, respectively, belong to Lq(Ω), Lp(Γ), as well. Moreover, (i) holds for
functionals F ′

i , i = 1, . . . ,m, and E′(y)∗z∗ of C(Ω)∗, where the associated real Borel
measures are concentrated on the set A ⊂ Ω.

In addition to some assumptions on the regularity of ϕ for n ≥ 3, 4, (ii) requires
linearity of b with respect to u, that is b(x, y, u) = b0(x, y) + b1(x, y)u, (iii) means
that b(x, y, u) = b1(x, y)+ b2(x)u, while (iv) is true only for an affine-linear boundary
condition (but yet also true for a nonlinear functional F0).

(A4) is obviously satisfied in the example (P).
As a consequence of (A3) and (A4), pointwise state-constraints on the whole set

Ω can only be handled by the standard part of our theory if u appears linearly in
the boundary condition and n = 2. In the considerations below, we denote by rTi
the remainder terms associated with the ith order Taylor expansion of a mapping T .
For instance, the following first and second order expansions of b(x, y, u) are used at
triplets (x, y, u) and (x, y, u) ∈ R

n+2:

b(x, y, u)− b(x, y, u) = b′(x, y, u)(y − y, u− u) + rb1,(4.11)

where

rb1 = (bϑy − by)(y − y) + (bϑu − bu)(u− u)(4.12)

and bϑy , b
ϑ
u, by, bu denote by, bu taken at (x, y + ϑ(y − y), u + ϑ(u − u)) and (x, y, u),

respectively, with some ϑ ∈ (0, 1). Expanding the same expression up to the order
two, we have

b(x, y, u)− b(x, y, u) = b′(x, y, u)(y − y, u− u)
+

1

2
(y − y, u− u)b′′(x, y, u)

(
y − y
u− u

)
+ rb2,

(4.13)
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with the second order remainder term

rb2 =
1

2
(y − y, u− u)[b′′,ϑ − b′′](y − y, u− u)T .(4.14)

Here, b′′,ϑ, b
′′

denote the Hessian matrix of b with respect to (y, u) taken at the same
triplets as above. Due to our assumptions on b′ and b′′, the estimates

|rb1| ≤ CM (|y − y|2 + |u− u|2),(4.15)

|rb2| ≤ CM η(|y − y|+ |u− u|)(|y − y|2 + |u− u|2)(4.16)

are valid ∀ |y|, |y|, |u|, |u| ≤M . We continue with the discussion of the remainders rL1
and rL2 . A Taylor expansion of L gives

L(y, u, ϕ, λ, z∗)− L(y, u, ϕ, λ, z∗)
= Ly(y − y) + Lu(u− u) + rL1

= Ly(y − y) + Lu(u− u) +
1

2

(Lyy[y − y]2 + 2Lyu[y − y, u− u] + Luu[u− u]2
)
+ rL2 ,

where L indicates that L and its derivatives are taken at (y, u, ϕ, λ, z∗). We have

rL1 = (Lϑ
y − Ly)(y − y) + (Lϑ

u − Lu)(u− u)
rL2 =

1

2

(
(Lϑ

yy − Lyy)[y − y]2+ 2(Lϑ
yu − Lyu)[y − y, u− u] + (Lϑ

uu − Luu)[u− u]2
)
.

Lϑ indicates that (y+ ϑ(y− y), u+ ϑ(u− u), ϕ, λ, z∗) is substituted for (y, u, ϕ, λ, z∗)
in L′ and L′′ with some ϑ ∈ (0, 1). On account of the assumptions (A1)–(A4), we are
able to verify

|rL1 | ≤ CL(‖y − y‖2
2 + ‖u− u‖2

L2(Γ)),(4.17)

|rL2 | ≤ CL η(‖y − y‖C(Ω) + ‖u− u‖L∞(Γ))·(‖y − y‖2
2 + ‖u− u‖2

L2(Γ)),(4.18)

and

|L′′
[(y1, u1), (y2, u2)]| ≤ CL(‖y1‖2 + ‖u1‖L2(Γ))(‖y2‖2 + ‖u2‖L2(Γ)).(4.19)

The constant CL > 0 depends in particular on ϕ. For the definition of η we refer to
the assumption (A2). The analysis of (4.17)–(4.19) is performed in Appendix 7.3.

5. Standard second order sufficient optimality condition. Our main aim
is to establish sufficient optimality conditions close to the necessary ones derived
in Casas and Tröltzsch [8]. Therefore, we include also certain first order sufficient
optimality conditions. We shall combine an approach going back to Zowe and Maurer
[15] with a splitting technique introduced by Dontchev et al. [10]. The method of [10]
was focused on the optimal control of ordinary differential equations. It was extended
later by the authors in [9] to the case of elliptic equations without state-constraints.

In [15], Maurer and Zowe introduced first order sufficient optimality conditions
for differentiable optimization problems subject to a general constraint g(w) ≤ 0. For
our problem, the application of their approach in its full generality is rather techni-
cal. Therefore, in an initial step we incorporate the first order sufficient optimality
condition only for the constraints on the control. Later, we shall deal in the same way
with additional state-constraints.
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The role of first order sufficient conditions can be explained most easily by the
minimization problem {min f(x) |xa ≤ x ≤ xb}, where f : R

n → R is of class C2.
Let x̄ satisfy the first order necessary conditions (variational inequality). If n = 1,
then f ′(x̄) �= 0 implies that x̄ is a local minimizer (even for concave f). Therefore,
the second order sufficient optimality condition f ′′(x̄) > 0 is needed only in the case
f ′(x̄) = 0, where the first order necessary condition is not sufficient. The situation is
similar for n > 1: The positive definiteness of f ′′(x̄) has to be required only on the
subspace {x ∈ R

n |xi = 0 if Dif(x̄) �= 0}.
Define for fixed τ > 0 (arbitrarily small) the set

Γτ = {x ∈ Γ | |gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x))| ≥ τ}.

Γτ is a subset of “strongly active” control constraints (cf. (3.5)). In other words, Γτ =
{x ∈ Γ| |Lu(ȳ, ū, ϕ̄, λ̄, z̄

∗)(x)| ≥ τ} is the set, where the gradient of the objective
(expressed as a function of the control) is sufficiently steep. In the example above, τ
can be chosen as the minimal value of all nonvanishing |Dif(x̄)|.

We mention at this point the relation

〈z∗, E′(y)y〉 ≤ 0(5.1)

∀ (y, u) ∈ L(M, w), which follows from 〈z∗, E′(y)y〉 = 1〈z∗, κ− E(y)〉 ≤ 0 in view of
(3.4).

Let Pτ : L∞(Γ) → L∞(Γ) denote the projection operator u �→ χΓ\Γτ
u = Pτu. In

other words, (Pτu)(x) = u(x) holds on Γ \ Γτ , while (Pτu)(x) = 0 holds on Γτ . We
begin with our first and at the same time simplest second order sufficient optimality
condition.
(SSC) There exist positive numbers τ and δ such that

L′′(y, u, ϕ, λ, z∗)[w2, w2] ≥ δ‖u2‖2
L2(Γ)(5.2)

holds for all pairs w2 = (y2, u2) constructed in the following way: For every
w = (y, u) ∈ L(M, w), we split up the control part u in u1 = (u− Pτu) and
u2 = Pτu. The solutions of the linearized state equation

{−∆yi + yi = 0 in Ω,
∂νyi = by(·, y, u)yi + bu(·, y, u)ui on Γ

(5.3)

associated with ui are denoted by yi, i = 1, 2. By this construction, we get
the representation w = w1 + w2 = (y1, u1) + (y2, u2).

Remark 5.1. The coercitivity condition (5.2) of (SSC) is required on the whole
set L(M, w) if Γτ is empty. This rather strong second order condition is obtained by
the formal setting τ = ∞.

Theorem 5.2. Let the feasible pair w = (y, u) satisfy the regularity condition
(R), the first order necessary optimality conditions (3.9)–(3.11), and the second order
sufficient optimality condition (SSC). Suppose further that the general assumptions
(A1)–(A4) are satisfied. Then there are constants 1 > 0 and δ′ > 0 such that

F0(ŷ, û) ≥ F0(y, u) + δ′‖û− u‖2
L2(Γ)(5.4)

holds for all feasible pairs ŵ = (ŷ, û) such that

‖û− u‖L∞(Γ) < 1.(5.5)
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Proof. We denote by l̄ = (ϕ, λ, z∗) the triplet of Lagrange multipliers appearing
in the first order necessary optimality conditions. Let an arbitrary feasible pair ŵ =
(ŷ, û) be given. Then

F0(ŵ)− F0(w) = L(ŵ, l̄)− L(w, l̄)− 〈z∗, E(ŷ)− E(ȳ)〉(5.6)

follows from F (ŵ) = F (w) = 0. The complementary slackness condition implies

−〈z∗, E(ŷ)− E(ȳ))〉 ≥ 0.

Hence we can neglect this term, and a second order Taylor expansion yields

F0(ŵ)− F0(w) ≥ L(ŵ, l̄)− L(w, l̄)

≥
∫

Γ

lu (û− u) dS +
1

2
L′′(w, l̄)[ŵ − w]2 + rL2 (w, ŵ − w),

where lu(x) = gu(x, y(x), u(x))+ϕ(x)bu(x, y(x), u(x)). Using the variational inequal-
ity, we find

F0(ŵ)− F (w) ≥ τ
∫

Γτ

|û− u| dS +
1

2
L′′(w, l̄)[ŵ − w]2 + rL2 (w, ŵ − w).(5.7)

Let us introduce for convenience the bilinear form B = L′′(w, l̄). Next we ap-
proximate ŵ − w by w = (y, u) ∈ L(M, w), according to Theorem 4.2. In this way
we get a remainder r = (ry, ru) = ŵ − w − w satisfying the estimate

‖r‖ ≤ CL‖û− u‖L∞(Γ)‖û− u‖L2(Γ).(5.8)

It follows that B[ŵ − w]2 = B[w]2 + 2B[r, w] + B[r]2. We have w ∈ L(M, w); hence
(SSC) applies to B[w]2. Now we substitute in B[w]2 the representation w = w1 +w2

described in (SSC) and deduce

B[w]2 = B[w2]
2 + 2B[w1, w2] +B[w1]

2

≥ δ‖u2‖2
L2(Γ) − 2CL(‖y1‖2 + ‖u1‖L2(Γ))(‖y2‖2 + ‖u2‖L2(Γ))

−CL(‖y1‖2 + ‖u1‖L2(Γ))
2

from (SSC) and (4.19). In the following, c will denote a generic constant. Suppose
that 1 < 1 is given and assume ‖û − u‖L∞(Γ) < 1. Then ‖yi‖2 ≤ c‖ui‖L2(Γ) and
Young’s inequality together yield

B[w]2 ≥ δ‖u2‖2
L2(Γ) −

δ

2
‖u2‖2

L2(Γ) − c‖u1‖2
L2(Γ)

≥ δ

2

∫
Γ\Γτ

u2 dS − c
∫

Γτ

u2 dS

≥ δ

2

∫
Γ\Γτ

|û− u|2 dS − c
∫

Γ\Γτ

|û− u| |ru| dS − c
∫

Γτ

|û− u|2 dS

−c
∫

Γτ

|û− u| |ru| dS − c
∫

Γτ

|ru|2 dS.

(5.9)

The expression under the third integral is estimated by ‖û − u‖L∞(Γ)|û − u|. In the
other integrals (except the first) we insert (5.8) and derive

B[w]2 ≥ δ

2

∫
Γ\Γτ

|û− u|2 dS − c1
∫

Γτ

|û− u| dS − c1‖û− u‖2
L2(Γ).(5.10)
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The treatment of B[r, w] and B[r]2 is simpler. We find

|B[r, w]| ≤ c‖r‖‖u‖L2(Γ) = c‖r‖‖û− u+ ru‖L2(Γ)

≤ c1‖û− u‖2
L2(Γ).

The same type of estimate applies to B[r]2. Altogether,

B[ŵ − w]2 ≥ δ

2

∫
Γ\Γτ

|û− u|2 dS − c1
∫

Γτ

|û− u| dS − c1‖û− u‖2
L2(Γ)(5.11)

is obtained. By substituting (5.11) in (5.7), we get

F0(ŵ)− F0(w) ≥ (τ − c1)
∫

Γτ

|û− u| dS +
δ

2

∫
Γ\Γτ

|û− u|2 dS − c1‖û− u‖2
L2(Γ)

−|rL2 (w, ŵ − w)|
≥ τ

2

∫
Γτ

|û− u| dS +
δ

2

∫
Γ\Γτ

|û− u|2 dS − c1‖û− u‖2
L2(Γ)

−|rL2 (w, ŵ − w)|.

Since ‖û − u‖L∞(Γ) ≤ 1 was assumed, |û − u| ≥ |û − u|2 holds a.e. Using this in the
first integral, setting δ′ = min{τ/2, δ/2}, and substituting the estimate (4.18) for rL2 ,
we complete our estimation by

F0(ŵ)− F0(w) ≥ ‖û− u‖2
L2(Γ)(δ

′ − c1− η(c‖û− u‖L∞(Γ)))

≥ δ′

2
‖û− u‖2

L2(Γ)

for sufficiently small 1 > 0.
Our condition (SSC) does not have the form expected from a comparison with

second order conditions in finite dimensional spaces. In particular, the pair (y2, u2)
constructed in (SSC) does not in general belong to L(M, w). To overcome this diffi-
culty, we introduce another regularity condition (R)τ that is stronger than (R). This
new constraint qualification is similar to that one used in Casas and Tröltzsch [8] to
derive second order necessary conditions.

Let Cτ (u) denote the set of controls u ∈ C(u) having the property u(x) = 0 if
x ∈ Γτ . We strengthen (R) to

(R)τ T ′(y)G′(u)Cτ (u)−K(T (y)) = Z.

On using (R)τ , we are able to show that the following second order sufficient
optimality condition implies (5.4) as well.
(SSC)τ There exist positive numbers τ and δ such that

L′′(y, u, ϕ, λ, z∗)[w,w] ≥ δ‖u‖2
L2(Γ)(5.12)

holds for all pairs w = (y, u) of L(M, w) with the property u(x) = 0 for
almost every x ∈ Γτ .

Theorem 5.3. Let the assumptions of Theorem 5.2 be fulfilled, where (R) and
(SSC) are replaced by (R)τ and (SSC)τ . Then the assertion of Theorem 5.2 remains
true.
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Proof. The proof is almost identical to that of Theorem 5.2. The only difference
consists in a more detailed splitting. In the first part of the proof we repeat the steps
up to the splitting w = w1 + w2 after (5.8). Define Φ = T ◦G. Then we have

Φ′(u)(u1 + u2) ∈ K(Φ(u)),

as w1 + w2 ∈ L(M, w). Therefore,

Φ′(u)u2 ∈ K(Φ(u))− Φ′(u)u1

holds so that w2 = (y2, u2) does not in general belong to the linearized cone. Thanks
to the regularity condition (R)τ , the linear version of the Robinson–Ursescu theorem
(see Robinson [18]) implies the existence of uH in Cτ (u) with the following properties:
The inclusion

Φ′(u)uH ∈ K(Φ(u))

holds, and

‖u2 − uH‖L2(Γ) ≤ c‖u1‖L2(Γ)(5.13)

is satisfied (see the proof of Theorem 4.2 in the appendix). In other words, we find a
pair wH = (yH , uH) in L(M, w) with uH = 0 on Γτ . Hence, (SSC) applies to B[wH ]2.
Moreover, the control uH is sufficiently close to u2.

Now we define ũ2 = uH and ũ1 = u1 + (u2 − uH). Further, let ỹi = G′(u)ũi
denote the corresponding solution of the linearized state equation. Then w̃i = (ỹi, ũi)
is substituted for wi = (yi, ui), i = 1, 2. The only difference between the proofs of
Theorem 5.2 and 5.3 appears between the formulas and (5.8) and (5.9): We use the
splitting w = w̃1 + w̃2 instead of w = w1 +w2. Moreover, the first line of the estimate
(5.9) is changed as follows:

B[w]2 ≥ δ ‖ũ2‖2
L2(Γ) −

δ

4
‖ũ2‖2

L2(Γ) − c ‖ũ1‖2
L2(Γ)

≥ 3δ

4
‖u2 + (uH − u2)‖2

L2(Γ) − c ‖u1 + (u2 − uH)‖2
L2(Γ)

≥ δ

2
‖u2‖2

L2(Γ) − c ‖u1‖2
L2(Γ),

where we have used the estimate (5.13). Then we proceed word for word as in the
proof of Theorem 5.2.

Example. Let us briefly comment on (SSC) in the case of (P) for an active state
constraint y(0) = y0. Then L(M, w) is expressed through (4.4), (4.5), and a quite
strong second order condition is formulated by

L′′
(y, u, ϕ, z∗)[w,w] ≥ δ‖u‖2

L2(Γ)(5.14)

for all w = (y, u) ∈ L(M, w). In this way, we would not take advantage of strongly
active control constraints. These constraints appear on Γτ = {x ∈ Γ | |αu(x)+ϕ(x)| ≥
τ |}. We split (y, u) = (y1, u1) + (y2, u2), where u2 = 0 on Γτ and u1 = 0 on Γ \ Γτ .
(SSC) requires the coercitivity condition (5.14) only for (y2, u2), while (y1, u1) is
handled by first order sufficient optimality conditions. Notice that y2 might violate
the state-constraint y(x0) ≤ 0. We avoid this by (SSC)τ : It requires the coercitivity
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condition for the following u ∈ C(u): They vanish on Γτ and satisfy together with the
associated solution y of the linearized partial differential equation the state-constraint
y(x0) ≤ 0.

The paper [15] shows that “strongly active” state-constraints may also contribute
terms to the first order sufficient optimality conditions. However, this leads to a
rather technical construction and more restrictive assumptions. We have to suppose
that the function b is linear with respect to the control u and n = 2. The corresponding
theorem is stated below. Define for fixed β > 0 and τ > 0 the following subset of
L(M, w):

Lβ,τ (M, w) = {w |w = (y, u) ∈ L(M, w) and w satisfies (5.15) below}.

The decisive inequality characterizing Lβ,τ is

〈z∗, E′(y)y〉 ≥ −β
∫

Γ\Γτ

|u(x)| dS(x).(5.15)

Lβ,τ (M, w) is the subset of L(M, w), where the term 〈z∗, E(y)〉 does not much con-
tribute to the first order sufficient optimality condition. It is only this set Lβ,τ (M, w̄)
where we have to require second order conditions, namely, the following condition.
(SSC′) There exist positive numbers β, τ , and δ such that

L′′(y, u, ϕ, λ, z∗)[w2, w2] ≥ δ‖u2‖2
L2(Γ)(5.16)

holds for all w2 = (y2, u2) obtained in the same way introduced in (SSC) by
elements w taken from the smaller set Lβ,τ (M, w).

Using this condition, we formulate the following.
Theorem 5.4. Let the feasible pair w = (y, u) satisfy the regularity condition

(R), the first order necessary optimality conditions (3.9)–(3.11), and the second order
sufficient optimality condition (SSC′). Suppose further that the general assumptions
(A1)–(A4) are satisfied. Moreover, assume that n = 2 and b(x, y, u) = b1(x, y) +
b2(x)u. Then there are constants 1 > 0 and δ′ > 0 such that

F0(ŷ, û) ≥ F0(y, u) + δ′‖û− u‖2
L2(Γ)(5.17)

holds for all feasible pairs ŵ = (ŷ, û) satisfying

‖û− u‖L∞(Γ) < 1.(5.18)

Proof. We begin in the way we have shown Theorem 5.2 by

F0(ŵ)− F0(w) = L(ŵ, l̄)− L(w, l̄)− 〈z∗, E(ŷ)− E(ȳ)〉.(5.19)

Once again, the representation ŵ−w = w+r is obtained. Now we distinguish between
two cases.

Case I: w = (y, u) ∈ L(M, w)\Lβ,τ (M, w). This is the case where we deduce
(5.17) from first order sufficiency. Here, the inequality

−〈z∗, E′(y)y〉 > β
∫

Γ\Γτ

|u(x)| dS(x)(5.20)
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is fulfilled. We transform (5.19) as follows:

F0(ŵ)− F0(w) = L′(w, l̄)(ŵ − w) + rL1 (w, ŵ − w)− 〈z∗, E(ŷ)− E(y)〉
= Ly(w, l̄)(ŷ − y) + Lu(w, l̄)(û− u)− 〈z∗, E′(y)(ŷ − y)〉

+rL1 (w, ŵ − w)− 〈z∗, rE1 (y, ŷ − y)〉
= 0 +

∫
Γ

lu(x)(û(x)− u(x)) dS(x)− 〈z∗, E′(y)y〉

+rL1 (w, ŵ − w)− 〈z∗, E′(y)ry + rE1 (y, ŷ − y)〉,(5.21)

where lu(x) stands for gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x)).
Owing to n = 2 and b(x, y, u) = b1(x, y)+ b2(x)u, we are able to apply the strong

estimate (4.8) with p = 2. This yields

‖r‖Y×L∞(Γ) ≤ CL,2‖û− u‖2
L2(Γ).(5.22)

By Theorem 4.2, (5.22), (4.17), and (A3 (ii)) we have

max{‖ry‖2, |rL1 |, ‖rE1 ‖Z} ≤ c(‖ŷ − y‖2
2 + ‖û− u‖2

L2(Γ)).

Now the Lipschitz property of the mapping u �→ y(u) = G(u) from L2(Γ) into C(Ω)
(note that n = 2) permits us to estimate the last three items of (5.21) by c ‖û−u‖2

L2(Γ).

(5.20) is applied to the second one, while the first one is treated by Γτ : We know that

lu(x)(û(x)− u(x)) ≥ 0 a.e. on Γ;

hence∫
Γ

lu (û− u) dS ≥
∫

Γτ

lu(û− u) dS =

∫
Γτ

|lu| |û− u| dS ≥ τ
∫

Γτ

|û− u| dS.

Inserting this in (5.21) we continue with

F0(ŵ)− F0(w) ≥ τ
∫

Γτ

|û− u| dS + β

∫
Γ\Γτ

|u| dS − c‖û− u‖2
L2(Γ)

≥ τ
∫

Γτ

|û− u| dS + β

∫
Γ\Γτ

|û− u| dS − c‖û− u‖2
L2(Γ)

in view of ‖ru‖L∞(Γ) ≤ c‖û− u‖2
L2(Γ). Proceeding with the estimation, we deduce

F0(ŵ)− F0(w) ≥ min{β, τ}‖û− u‖L1(Γ) − c1‖û− u‖L1(Γ)

≥ β′‖û− u‖L1(Γ)

with some β′ > 0, provided that ‖û−u‖L∞(Γ) ≤ 1 ≤ 11 is fulfilled and 11 is sufficiently
small. Assume additionally that 11 ≤ 1. Then |û− u|2 ≤ |û− u| holds a.e.; hence

F0(ŵ)− F0(w) ≥ β′‖û− u‖2
L2(Γ)(5.23)

follows for ‖û− u‖L∞(Γ) ≤ 11.
Case II: w ∈ Lβ,τ (M, w) (partial use of first order sufficient optimality condi-

tions). Here, we neglect the term 〈z∗, E(ŷ) − E(y)〉 and proceed word for word as in
the proof of Theorem 5.2, using Lβ,τ instead of L.
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Remark 5.5. Unfortunately, the definition of Lβ,τ (M, w) is not constructive. It
is difficult to describe in an explicit way which (y, u) ∈ L(M, w) belong to the different
cases I or II. Therefore, this type of first order sufficient condition is only of limited
value (see, for instance, the next example).

Example. To illustrate (SSC′) for (P) in comparison with (SSC), let us assume for
simplicity u ∈ intUad, hence Γτ = ∅. Then (SSC) requires the coercitivity condition
(5.14) on the whole set L(M, w). If y(0) = y0 and z∗ > 0 (strong complementarity),
then (SSC′) is weaker than (SSC): (5.14) is not needed for all (y, u) ∈ L(M, w)
satisfying

−z∗y(0) ≥ β
∫

Γ

|u(x)|dS.(5.24)

Assume that y can be represented by a positive Green’s function G = G(x, ξ),

y(0) =

∫
Γ

G(0, ξ)u(ξ)dS(ξ),

such that G(0, ξ) ≥ γ > 0 on Γ. Then (5.24) is fulfilled with β = z∗γ ∀ u ≤ 0.
Moreover, all u ≥ 0, u �= 0 do not contribute to L(M, w). Therefore, the coercitivity
condition (5.14) is needed only for all u having positive and negative parts U+ and
U−, where U+ dominates U−. However, this information does not essentially improve
(SSC).

Remark 5.6. Theorem 5.2 follows from Theorem 5.4 by setting β = 0, where we
can avoid the restrictions n = 2 and b(x, y, u) = b1(x, y) + b2(x)u.

The cone C(u) is defined by C(u) = {ρ(u − u) |u ∈ Uad, ρ ≥ 0}. Its closure in
L2(Γ) is

cl C(u) = {v ∈ L2(Γ) | v(x) ≤ 0 if u(x) = ub(x), v(x) ≥ 0, if u(x) = ua(x)}.
Let us redefine L(M, w) by substituting cl C(u) for C(u) and require (SSC) in this
form. Then (SSC) appears to be stronger, and Theorem 5.2 holds as well, since
cl C(u) ⊃ C(u). However, it can be proved by (R) and the generalized open mapping
theorem that (SSC) based on cl C(u) is in fact equivalent to (SSC) established with
C(u). This follows by continuity arguments.

6. Extended second order conditions. A study of the preceding sections
reveals that (SSC) is sufficient for local optimality in any dimension of Ω without
restrictions on the form of the nonlinear function b, whenever (A3) is satisfied and
ϕ ∈ L∞(Γ). ϕ is bounded and measurable if pointwise state-constraints are given only
in compact subsets of Ω with the other quantities being sufficiently smooth. In two-
dimensional domains, pointwise state-constraints can be imposed on Ω̄, if b(x, y, u) is
linear with respect to u. An extension to ϕ ∈ Lr(Γ) requires stronger assumptions on
b. However, we shall briefly sketch in this section that some extended form of (SSC)
may partially improve the results for n ≤ 3.

Let us assume ϕ /∈ L∞(Γ). Then it seems to be natural to introduce in L∞(Γ)
another norm

‖u‖ϕ =

(∫
Γ

(1 + |ϕ(x)|)u2(x) dS(x)

)1/2

.

This definition is justified, as u ∈ L∞(Γ) and y ∈ C(Ω) holds in all parts of our paper.
For ϕ ∈ L∞(Γ), the new norm is equivalent to ‖u‖L2(Γ). To get rid of the restrictions
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imposed on b in (A4) we redefine the set of strongly active control constraints Γτ by

Γτ,ϕ = {x ∈ Γ | |gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x))| ≥ τ(1 + |ϕ(x)|)}.(6.1)

Moreover, we substitute the condition

L′′(y, u, ϕ, λ, z∗)[w2, w2] ≥ δ‖u2‖2
ϕ(6.2)

for (5.2). If ϕ /∈ L∞(Γ), then (6.2) is stronger than (5.2). On the other hand, the
term

∫
Γ
ϕbuuu

2
2dS contributes to L′′. (SSC) implies (at least) the nonnegativity of

ϕbuu; hence

∫
Γ

ϕbuuu
2
2dS =

∫
Γ

|ϕ| |buu|u2
2dS ≥ κ

∫
Γ

|ϕ|u2
2dS

holds, provided that |buu| ≥ κ. In view of this, (6.2) appears quite natural.
Now Theorem 5.2 remains true for n ≤ 3 without assumption (A4).
This statement is easy to verify. Apart from the estimates (4.17)–(4.19), our

theory is not influenced by introducing ‖u‖ϕ. The discussion of (4.17)–(4.19) is the
decisive point. We are able to replace ‖·‖L2(Γ) by ‖·‖ϕ there, as the basic inequalities
(7.14)–(7.16) (Appendix 7.3) can be slightly reformulated: (7.14) is nothing more
than ∫

Γ

|ϕ|u2dS ≤ ‖u‖2
ϕ,(6.3)

while (7.16) remains unchanged (n = 2, 3). Only (7.15) has to be substituted by

∫
Γ

|ϕ| |y| |u| dS =

∫
Γ

|ϕ|1/2|y| |ϕ|1/2|u| dS ≤ ‖u‖ϕ
(∫

Γ

|ϕ|y2dS

)1/2

≤ ‖ϕ‖1/2

Ls/(s−2)(Γ)
‖y‖Ls(Γ)‖u‖ϕ.(6.4)

Here we have invoked (7.15) for sufficiently large s (n = 2, 3). Now a careful study of
the proof of Theorem 5.2 shows that (A4) can be removed on using (6.3) and (6.4).
Assuming (6.2), we arrive at the estimate (5.4) with ‖û−u‖2

ϕ instead of ‖û−u‖2
L2(Γ).

Then (5.4) follows from ‖u‖ϕ ≥ ‖u‖L2(Γ). The same arguments apply to the first
order sufficient conditions in Theorem 5.4 for n = 2 if we redefine Lβ,τ (M, w) by
substituting for (5.15) the inequality

〈z∗, E′(y)y〉 ≥ −β
∫

Γ\Γτ

(1 + |ϕ|)|u| dS.(6.5)

7. Appendix.

7.1. On the regularity condition. Regard the state equation (4.1) linearized
at (y, u). Let Ŷ ⊂ H1(Ω) be the set of all solutions of this equation associated to
u ∈ L∞(Γ). In other words, we have Ŷ = G′(u)L∞(Γ). (R) is satisfied in the following
particular cases.

(a) K = Z (no inequality constraints). Then (R) means F ′(y)G′(u)C(u) = R
m.

This condition is satisfied if, in addition to the surjectivity property F ′(y)Ŷ = R
m,

the following holds: There is a ũ ∈ intL∞(Γ) Uad with F ′(y)ỹ = 0. Here, ỹ denotes
the solution of the linearized state equation (4.1) associated with ũ − u, that is,
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ỹ = G′(u)(ũ− u). The proof follows from [22, Lemma 1.2.2].
(b) F = 0 (no equality constraints). In this case, (R) is read as E′(y)G′(u)C(u)−

K(E(u)) = Z. Once again, (R) is implied by two separate conditions: We assume
E′(y)Ŷ − K(E(y)) = Z and require the existence of an ũ ∈ intL∞(Γ) Uad with the
property that E′(y)ỹ ∈ K(E(y)) holds at ỹ = G′(u)(ũ − u) [22, Lemma 1.2.2]. It
should be mentioned that case (a) follows from (b).

Example. (P) is worth discussing in this context. If the state constraint y(0) ≤ y0
is not active at y, then (R) is obviously satisfied. Therefore, we assume y(0) = y0 and
get K(E(y)) = {z ∈ R | z ≤ 0} = R

−. Then E′(y)Ŷ −K(E(y)) = Z reduces to the
following requirement: For every z ∈ R

− there exists a function u ∈ L∞(Γ) such that
the equation y(0) = z is satisfied by the corresponding solution y of the linearized
equation (4.4). This property is fulfilled, since we may find at least one u ∈ L∞(Γ)
such that y(0) �= 0. Hence, (R) is implied by the following conditions: There are
ũ ∈ L∞(Γ) and ε > 0 such that |ũ| ≤ 1 − ε holds and that the solution ỹ of (4.4)
corresponding to ũ− u satisfies ỹ(0) ≤ 0.

(c) General case. Let us assume intZ K �= ∅ and intL∞(Γ) Uad �= ∅. We require
the surjectivity property

F ′(y)Ŷ = R
m.(7.1)

Moreover, assume the existence of a ũ ∈ intL∞(Γ) Uad such that

E(y) + E′(y)ỹ ∈ intZ K,(7.2)

F ′(y)ỹ = 0(7.3)

holds for ỹ = G′(u)(ũ− u). Then (R) is fulfilled. To show this, we first mention the
simple fact that z̃ ∈ intZ K implies z̃+ z/1 ∈ K for arbitrary z ∈ Z if 1 is sufficiently
large. We have to verify that the system

F ′(y)y = z1,(7.4)

E′(y)y − 1(k − E(y)) = z2(7.5)

is solvable ∀ z1 ∈ R
m, z2 ∈ Z by some y ∈ G′(u)C(u), k ∈ K, and 1 ≥ 0: From (7.1)

we find u1 ∈ L∞(Γ) such that y1 = G′(u)u1 solves the equation

F ′(y)y1 = z1.

Now we add to y1 a multiple of ỹ. Then

F ′(y)(y1 + 1ỹ) = F ′(y)y1 = z1

is obtained from (7.3). Consequently, (7.4) holds for y = y1 + 1ỹ. Moreover, we
deduce from (7.2) for sufficiently large 1 that

E(y) + E′(y)ỹ − 1

1
(z2 − E′(y)y1) = k ∈ K.

This relation is equivalent to

E′(y)(y1 + 1ỹ)− 1(k − E(y)) = z2.

Therefore, (7.5) is satisfied by y = y1+1ỹ. Furthermore, u1+1(ũ−u) = 1(ũ+(1/1)u1−
u) ∈ C(u) holds for sufficiently large 1. This is true, since ũ + (1/1)u1 ∈ Uad for 1
large enough (notice that ũ ∈ intL∞(Γ) Uad). Thus we have also shown y ∈ G′(u)C(u).
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7.2. Proof of the linearization theorem. To prove Theorem 4.2 we need the
following auxiliary result.

Lemma 7.1. Let u, û ∈ Uad be given with associated states y, ŷ defined by (2.2).
Introduce y ∈ Y as the solution of the linearized state equation{−∆y + y = 0 in Ω,

∂νy = by(·, y, u)y + bu(·, y, u)(û− u) on Γ.
(7.6)

Then the estimates

‖ŷ − y − y‖Y ≤ Cp‖û− u‖L∞(Γ)‖û− u‖Lp(Γ) ∀p > n− 1,(7.7)

‖ŷ − y − y‖2 ≤ C2‖û− u‖L∞(Γ)‖û− u‖L2(Γ)(7.8)

are satisfied with certain constants Cp, C2. If bu(x, y, u) does not depend on y and u,
then we have

‖ŷ − y − y‖Y ≤ Cp‖û− u‖2
Lp(Γ) ∀p > n− 1.(7.9)

Proof. We use the first order expansion of b at (x, y, u) and obtain from (2.2),
(7.6), and (4.11) the system

−∆(ŷ − y − y) + (ŷ − y − y) = 0 in Ω,

∂ν(ŷ − y − y)− by(·, y, u)(ŷ − y − y) = rb1 on Γ,

where

|rb1(x)| ≤ CM (|ŷ(x)− y(x)|2 + |û(x)− u(x)|2)
and M depends on Uad (notice that the boundedness of Uad implies a uniform bound
on all admissible states). Therefore, the discussion of (3.12) yields for p > n− 1

‖ŷ − y − y‖Y ≤ c‖rb1‖Lp(Γ)

≤ c
((∫

Γ

|ŷ − y|2pdS
) 1

p

+

(∫
Γ

|û− u|2pdS
) 1

p

)
.

The mapping u �→ y = G(u) is Lipschitz from Lp(Γ) to C(Ω) for p > n − 1. If
p = 2, then the Lipschitz property holds in the norm ‖y‖2 for y. For p > n − 1, we
continue by

‖ŷ − y − y‖Y ≤ c
(
‖û− u‖2

Lp(Γ) + ‖û− u‖L∞(Γ)‖û− u‖Lp(Γ)

)
,

while p = 2 yields only

‖ŷ − y − y‖2 ≤ c‖û− u‖L∞(Γ)‖û− u‖L2(Γ).

We have shown (7.7) and (7.8). If bu does not depend on (y, u), then bu(·, y + ϑ(ŷ −
y), u+ ϑ(û− u)) = bu(·, y, u); hence

|rb1| = |(bϑy − by)(ŷ − y)| ≤ c|ŷ − y|2.
This yields

‖rb1‖Lp(Γ) ≤ c
(‖ŷ − y‖C(Γ)‖ŷ − y‖Lp(Γ)

) ≤ c‖û− u‖2
Lp(Γ),
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that is, (7.9).
Proof of Theorem 4.2. Define v = û−u and let ỹ denote the solution of the linear

system (4.1) associated to u := v. We have ỹ = G′(u)v, where G : L∞(Γ) → Y is the
control-state mapping u �→ y = G(u) for the nonlinear system (2.2). By Lemma 7.1,

‖ŷ − y − ỹ‖Y ≤ e(v),(7.10)

where e(v) denotes the right-hand side of the estimates (7.7) and (7.9), respectively,
depending on the assumptions on b. Let us introduce the mapping Φ(u) = T (G(u)).
Its derivative is Φ′(u)v = T ′(y)G′(u)v, and the regularity condition (R) can be rewrit-
ten as

Φ′(u)C(u)−K(Φ(u)) = Z.

We know that Φ(û) ∈ K, hence a Taylor expansion yields

Φ(û) = Φ(u) + Φ′(u)(û− u) + rΦ1 ,(7.11)

where the norm of rΦ1 can be estimated by

‖rΦ1 ‖Z ≤ c e(v).(7.12)

Since Φ(û) and k = Φ(u) belong to K, (7.11) implies Φ′(u)(û−u)+ k+ rΦ1 ∈ K; thus
also

Φ′(u)(û− u) ∈ −rΦ1 +K(Φ(u)).(7.13)

In other words, we have û−u ∈ C(u) and Φ′(u)(û−u) ≤K(Φ(u)) −rΦ1 , where z ≥K(Φ(u))

0 is defined by z ∈ K(Φ(u)). Owing to (R), this inequality is regular in the sense of
Robinson [18]. Therefore, we are able to apply the linear version of the Robinson–
Ursescu theorem (see [18]): It implies the existence of a constant CR > 0 and a
u ∈ C(u) satisfying ‖u− (û− u)‖L∞(Γ) ≤ CR‖rΦ1 ‖Z together with

Φ′(u)u ∈ K(Φ(u)).

Consequently, for y = G′(u)u, we have (y, u) ∈ L(M, w) and

‖u− (û− u)‖L∞(Γ) ≤ c̃e(v).

The estimates stated in (4.6) and (4.8) follow immediately.
(4.7) is proved completely analogous. Here, e(v) is defined by (7.8), ‖ · ‖Y is to

be replaced by ‖ · ‖2, and ‖ · ‖L2(Γ) is to be substituted for ‖ · ‖L∞(Γ). We rely on the
continuity of Φ′(y) in the L2-norm.

7.3. Estimates of the Lagrange function. In this subsection we derive the
estimates (4.17)–(4.19) for rL1 , rL2 , and L′′. They depend mainly on the estimation of
I defined in (4.10), which is performed by the discussion of the following integrals:

∫
Γ

|ϕ|u2 dS ≤ c‖u‖2
L2(Γ),(7.14)

provided that assumption (A4 (i)) is fulfilled, and
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∫
Γ

|ϕ| |y| |u| dS ≤ c‖ϕy‖L2(Γ)‖u‖L2(Γ) ≤ c‖ϕ2‖1/2

L(s/2)′ (Γ)
‖y2‖1/2

Ls/2(Γ)
‖u‖L2(Γ)

≤ c‖ϕ‖L2s/(s−2)(Γ)‖y‖Ls(Γ)‖u‖L2(Γ).(7.15)

These estimates are justified by (A4 (ii)): For n = 2 we know y ∈ C(Γ) and ϕ ∈ Lr(Γ)
∀r <∞. If n ≥ 3, then y ∈ Ls(Γ) holds ∀ s < 2(n− 1)/(n− 3) (including s <∞ for
n = 3). The function 2s/(s − 2) = 2/(1 − 1/s) is monotone decreasing. Therefore,
s ↑ 2(n− 1)/(n− 3) implies 2s/(s− 2) ↓ n− 1, so that ϕ ∈ Lr(Γ) for some r > n− 1
justifies (7.15) with a sufficiently large s. Finally,

∫
Γ

|ϕ|y2 dS ≤ ‖ϕ‖L(s/2)′ (Γ)‖y2‖Ls/2(Γ) = ‖ϕ‖Ls/(s−2)(Γ)‖y‖2
Ls(Γ)(7.16)

is estimated by (A4 (iii)): In the case n = 2 we can take s = ∞, as y ∈ C(Γ)
and ϕ ∈ L1(Γ) is true without any additional assumption. For n = 3 we know
y ∈ Ls(Γ) ∀ s < ∞. If s ↑ ∞, then s/(s − 2) ↓ 1 < n/(n − 1). Since ϕ ∈ Lr(Γ)
holds ∀ r < n/(n − 1), (7.16) is true for sufficiently large s. In the case n ≥ 4
we repeat the analysis of the case n ≥ 3. This leads to the additional assumption
ϕ ∈ Lr(Γ) for some r > n−1

2 . Now it is easy to derive the estimates (4.17)–(4.19) for
L′′, rL1 , and rL2 : For instance, I in (4.10) is handled by (7.14)–(7.16), and

|I| ≤
∫

Γ

|ϕ|(|byy| |y1y2|+ |byu|(|y1u2|+ |y2u1|) + |buu| |u1u2| dS
≤ c(‖y1‖2 + ‖u1‖L2(Γ))(‖y2‖2 + ‖u2‖L2(Γ)),

as byy, byu, and buu belong to L∞(Γ). The other parts of L′′ are discussed by means of
(A1)–(A3). This yields (4.19) after easy evaluations. In the same way, the remainder
terms are investigated. Here, the quantities in I are the most difficult ones again. For
instance, (7.14)–(7.16) applies to discussing

|rI2 | =
∫

Γ

|ϕ| {|bϑyy − byy| |y − y|2 + 2|bϑyu − byu| |y − y| |u− u|

+ |bϑuu − buu| |u− u|2
}
dS

≤ cη(‖y − y‖C(Γ) + ‖u− u‖L∞(Γ))(‖y − y‖2
2 + ‖u− u‖2

L2(Γ)),

which contributes to rL2 . The other terms of rL2 are handled by the estimates for
second order derivatives in (A1)–(A3) in a direct way. Simple evaluations of this type
verify (4.17)–(4.18). We leave the details to the reader.
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RELATIONSHIP BETWEEN BACKWARD STOCHASTIC
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Abstract. It is well known that backward stochastic differential equations (BSDEs) stem from
the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a
BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale
term and an indefinite initial state. This paper attempts to explore the relationship between BSDEs
and stochastic controls by interpreting BSDEs as some stochastic optimal control problems. More
specifically, associated with a BSDE, a new stochastic control problem is introduced with the same
dynamics but a definite given initial state. The martingale term in the original BSDE is regarded
as the control, and the objective is to minimize the second moment of the difference between the
terminal state and the terminal value given in the BSDE. This problem is solved in a closed form by
the stochastic linear-quadratic (LQ) theory developed recently. The general result is then applied
to the Black–Scholes model, where an optimal mean-variance hedging portfolio is obtained explicitly
in terms of the option price. Finally, a modified model is investigated, where the difference between
the state and the expectation of the given terminal value at any time is taken into account.

Key words. BSDE, stochastic control, LQ control, stochastic Riccati equation (SRE), Black–
Scholes model
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1. Introduction. Backward stochastic differential equation (BSDE) theory and
applications have remained very active in recent years. Consider the linear BSDE

{
dp(t) = [A(t)p(t) +B(t)q(t) + f(t)]dt+ q(t)dW (t),

p(T ) = ξ,
(1.1)

where ξ is a random variable that will become certain only at the terminal time T .
As is well known the equation was initially introduced by Bismut [2, 3] when he was
studying the adjoint (dual) equations associated with a stochastic maximum principle
for stochastic optimal controls. Basically, (1.1) tells how to price the marginal value
of the resource represented by the state variable in a random environment. The
solution of (1.1) has two components, p(·) and q(·), the former being the price while
the latter signifies the uncertainty between the present and terminal times. The linear
BSDEs were later extended to nonlinear ones by Pardoux and Peng [21], motivated
by stochastic control problems, and independently by Duffie and Epstein [6] in their
study of recursive utility in finance. The BSDE theory has found wide applications
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in partial differential equations, stochastic controls, and, especially, mathematical
finance. For the most updated accounts of the BSDE theory and applications see the
books by Yong and Zhou [24, Chapter 7] and Ma and Yong [19].

While BSDEs originally arise from stochastic control problems, the purpose of this
paper is to further investigate the relationship between BSDEs and stochastic controls
from a different angle by interpreting a BSDE as a stochastic linear-quadratic (LQ)
control problem (so it is a reverse of the original “birth process” of BSDEs!) which
can be solved explicitly. To be precise, note that in (1.1) the terminal value is specified
while the initial value is left open. But if the equation has a solution, then the initial
value cannot be chosen arbitrarily; rather it is uniquely determined by the solution
and is hence part of the solution. Therefore, solving (1.1) amounts to the following
statement: start with a proper initial condition and choose an appropriate diffusion
term to hit the given value ξ at the terminal.

Then it will be very natural to modify the above statement and consider the
following stochastic optimal control problem. For the same dynamics of (1.1), starting
with a given initial state x, choose a control q(·) so that the terminal state p(T ) stays
as close to the given terminal value ξ as possible. Note that since now the initial
value x is given a priori, one in general cannot expect that p(T ) will hit ξ exactly by
choosing certain q(·). Hence it is reasonable to require that the difference between the
two is minimized. Here, the “difference” may be measured by, say, the second moment
of the algebraic difference between the two random variables. More interestingly, if
we regard the initial state also as a decision variable, then the optimal state-control
pair of the problem (p(·), q(·)) is exactly the solution of the original BSDE!

It turns out that the control problem formulated above is a stochastic optimal
LQ problem that can be solved analytically via a stochastic Riccati equation (SRE),
employing the similar technique as developed recently in [4, 5].

We then apply the general results obtained to the Black–Scholes model. Taking
advantage of the fact that in this particular case the state (wealth) is a scalar, one can
solve the SRE explicitly and hence the corresponding optimal mean-variance hedging
problem. It turns out that an optimal portfolio consists of the replicating strategy for
the claim and the Merton portfolio for a quadratic terminal utility.

Finally we consider a modified model where the difference between the state and
the expected terminal value must be kept small at any time. Again explicit optimal
control is derived via an SRE which is shown to be always solvable. The result is
then applied to the Black–Scholes model which gives rise to an auxiliary process that
dynamically corrects any large deviation of the price from the expected value of the
claim.

It should be noted that the idea of regarding the martingale term q(t) as a control
variable was first employed by Ma and Yong [17, 18] to prove the solvability of cer-
tain class of nonlinear forward-backward stochastic differential equations (FBSDEs).
Moreover, Yong [23], using the so-called four-step-scheme developed by Ma, Protter,
and Yong [16], discussed the solvability of a linear FBSDE from a stochastic con-
trollability point of view. This paper, however, concentrates on the relation between
the BSDEs and stochastic controls instead of the solvability of BSDEs, as we believe
that this relation is a fundamental issue in BSDE and control theory. To elaborate,
a linear BSDE can be interpreted as a dual of the stochastic control problem, where
the martingale term q(t) is exactly the dual variable corresponding to the controlled
diffusion term. Now, it turns out that this dual variable can also be regarded as a
control variable by which the BSDE naturally leads to a stochastic control problem.
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This reveals a certain “symmetric” duality relation between BSDEs and stochastic
control problems.

The rest of the paper is organized as follows. In section 2 we formulate the model.
Section 3 presents the optimal solution to the problem. Section 4 is concerned with
the solvability of the SRE necessary for the optimal control derived in section 3. In
section 5 we have a special case, namely, the Black–Scholes model is considered and
an optimal hedging portfolio is derived explicitly based on the results of the previous
sections. Section 6 is devoted to a modified model. Finally, section 7 concludes the
paper.

2. Problem formulation. Throughout this paper (Ω,F , P, {Ft}t≥0) is a
fixed filtered complete probability space on which is defined a standard Ft-adapted
m-dimensional Brownian motion W (t) ≡ (W 1(t), . . . ,Wm(t))′ with W (0) = 0. It is
assumed that Ft = σ{W (s) : s ≤ t}. We denote by L2

F (0, T ;R
d) the set of all Rd-

valued, measurable stochastic processes ψ(t) adapted to Ft, such that E
∫ T
0
|ψ(t)|2dt <

+∞.
Notation. We make the following additional notation.

M ′ : the transpose of any vector or matrix M ;

|M | : =
√∑

i,j m
2
ij for any matrix or vector M = (mij);

Sn : the space of all n× n symmetric matrices;

Sn+ : the subspace of all nonnegative definite matrices of S
n;

Ŝn+ : the subspace of all positive definite matrices of S
n;

C([0, T ];X) : the Banach space of X-valued continuous functions on [0, T ]

endowed with the maximum norm ‖ · ‖ for a given Hilbert space
X;

L2(0, T ;X) : the Hilbert space of X-valued integrable functions on [0, T ]

endowed with the norm
( ∫ T

0
‖ f(t) ‖2X dt

) 1
2

for a given Hilbert

space X;

L∞(0, T ;X) : the Banach space of X-valued essentially bounded functions on
[0, T ] endowed with the norm sup0≤t≤T ‖ f(t) ‖X for a given Hilbert
space X.

Consider the controlled system




dx(t) =
[
A(t)x(t) +

∑m
j=1 Bj(t)uj(t) + f(t)

]
dt

+
∑m
j=1 uj(t)dW

j(t), t ∈ [0, T ],
x(0) = x,

(2.1)

where x(t), x, uj(t), f(t) ∈ Rn, and A(t), Bj(t) ∈ Rn×n. Throughout this paper we
assume that A(t), Bj(t) are bounded deterministic functions and f ∈ L2

F (0, T ;R
n).

For a given FT -measurable square integrable random variable ξ (i.e., E|ξ|2 < +∞),
the problem is to select an (Ft-adapted) control process u(·) ≡ (u1(·), . . . , um(·)) ∈
L2
F (0, T ;R

mn) so as to minimize the cost functional

J(x, u(·)) = E
1

2
|x(T )− ξ|2.(2.2)
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To simplify the cost functional, it is natural to define

y(t) = x(t)− E(ξ|Ft).(2.3)

Since E(ξ|Ft) is an Ft-martingale and Ft is generated by the standard Brown-
ian motion W (t), by the martingale representation theorem ([14]) there is
z(·) ≡ (z1(·), . . . , zm(·)) ∈ L2

F (0, T ;R
mn) so that

E(ξ|Ft) = Eξ +

m∑
j=1

∫ t

0

zj(s)dW
j(s).(2.4)

By (2.1), (2.3), and (2.4), with the new state variable y(·) the controlled system
becomes 


dy(t) =

[
A(t)y(t) +

∑m
j=1 Bj(t)uj(t) + g(t)

]
dt

+
∑m
j=1[uj(t)− zj(t)]dW

j(t), t ∈ [0, T ],
y(0) = x− Eξ ≡ y,

(2.5)

where

g(t) = f(t) +A(t)E(ξ|Ft),(2.6)

and the cost functional reduces to

J(y, u(·)) = E
1

2
|y(T )|2.(2.7)

Notice that the above problem is a stochastic LQ control problem with random non-
homogeneous terms in both drift and diffusion coefficients.

3. Solutions. In this section we solve the problem (2.1)–(2.2) or (2.5)–(2.7) by
LQ techniques. The main idea is simply the completion of squares. It should be
noted that the problem under consideration is a singular LQ problem in that the
running cost is identically zero and therefore it cannot be solved by the conventional
approach as developed by Wonham [22] and others. Indeed, study on the general (pos-
sibly singular) stochastic LQ problem is interesting in its own right and has recently
been developed extensively (see [4, 5]). For a systematic treatment of stochastic LQ
problems, see also [24, Chapter 6].

In the rest of this paper, we may writeX for a (deterministic or stochastic) process
X(t), omitting the variable t, whenever no confusion arises. Under this convention,
when X ∈ C([0, T ];Sn), X ≥ (>)0 means X(t) ≥ (>)0, ∀t ∈ [0, T ].

We introduce the following SRE


Ṗ + PA+A′P −∑m
j=1 PBjP

−1B′
jP = 0,

P (T ) = I,

P (t) > 0 ∀ t ∈ [0, T ],
(3.1)

along with a BSDE




dφ(t) = −
[
(A′ −∑m

j=1 PBjP
−1B′

j)φ−
∑m
j=1 PBjP

−1βj

+P (g +
∑m
j=1 Bjzj)

]
(t)dt+

∑m
j=1 βj(t)dW

j(t),

φ(T ) = 0.

(3.2)
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Note that the SRE (3.1) is fundamentally different from the conventional Riccati
equation1 in that (3.1) involves the inverse of the unknown. In addition, the third
constraint of (3.1) must also be satisfied by any solution. In general, such an equation
does not automatically admit a solution. (The solvability of this equation is inter-
esting on its own; see section 4 below.) On the other hand, if (3.1) has a solution
P (·) ∈ C([0, T ];Rn×n), then (3.2) must admit an Ft-adapted solution (φ(·), βj(·), j =
1, . . . ,m) as (3.2) is a linear BSDE with bounded coefficients and square integrable
nonhomogeneous terms; see [2, 3, 7, 21, 19] or [24, Chapter 7] for more details about
BSDEs.

Theorem 3.1. If (3.1) and (3.2) admit solutions P ∈ C([0, T ]; Ŝn+) and (φ(·), βj(·),
j = 1, . . . ,m) ∈ L2

F (0, T ;R
n) × L2

F (0, T ;R
nm), respectively, then the problem (2.5)–

(2.7) has an optimal feedback control u∗(·) ≡ (u∗
1(·), . . . , u∗

m(·)), where
u∗
j (t) = −P (t)−1Bj(t)

′[P (t)y∗(t) + φ(t)
]− P (t)−1βj(t) + zj(t), j = 1, . . . ,m.(3.3)

Moreover, the optimal cost value under the above control is

J∗(y) = 1
2y

′P (0)y + y′φ(0) + 1
2E
∫ T
0

[
2φ′g − 2∑m

j=1 βjzj +
∑m
j=1 z

′
jPzj

−∑m
j=1(P

−1B′
jφ+ P−1βj − zj)

′P (P−1B′
jφ+ P−1βj − zj)

]
(t)dt.

(3.4)

Proof. For any control u(·) and the corresponding state trajectory y(·), applying
Ito’s formula, we get

1
2d[y(t)

′P (t)y(t)] = 1
2

[∑m
j=1(uj − zj)

′P (uj − zj) + 2y
′Pg

+
∑m
j=1(y

′PBjP
−1B′

jPy + 2u′
jB

′
jPy)

]
(t)dt+ 1

2{· · ·}dW (t),
(3.5)

and

d[φ(t)′y(t)] =
[
− φ′(A−∑m

j=1 BjP
−1B′

jP )y +
∑m
j=1 β

′
jP

−1B′
jPy

−
(
g′ +

∑m
j=1 z

′
jB

′
j

)
Py + φ′

(
Ay +

∑m
j=1 Bjuj + g

)
+
∑m
j=1 β

′
j(uj − zj)

]
(t)dt+ {· · ·}dW (t).

(3.6)

Then we integrate both (3.5) and (3.6) from 0 to T , take expectations, and add them
together. Trying to complete a square and going through a fairly tedious manipula-
tion, we end up with

J(y, u(·))
= 1

2E
∫ T
0

[
2φ′g − 2∑m

j=1 βjzj +
∑m
j=1 z

′
jPzj

+
∑m
j=1(uj + P−1B′

jPy + P−1B′
jφ+ P−1βj − zj)

′P (uj + P−1B′
jPy

+ P−1B′
jφ+ P−1βj − zj)

−∑m
j=1(P

−1B′
jφ+ P−1βj − zj)

′P (P−1B′
jφ+ P−1βj − zj)

]
(t)dt

+ 1
2y

′P (0)y + y′φ(0).

(3.7)

It follows immediately that the optimal feedback control is given by (3.3) and the
optimal value is given by (3.4) provided that the corresponding equation (2.5) un-
der (3.3) has a solution. But under the linear feedback (3.3), the system (2.5) is a

1By a conventional Riccati equation we mean one associated with the deterministic LQ problem
(see [1]) as opposed to that associated with the stochastic LQ problem (see [22, 4]).
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nonhomogeneous linear SDE with bounded coefficients and square integrable nonho-
mogeneous terms. Hence it must admit one and only one solution by standard SDE
theory. This completes the proof.

Now we would like to derive the optimal feedback control in terms of the original
variable x(t). Interestingly, the optimal control can be obtained via the original BSDE
that motivated the optimal control problem (2.1)–(2.2).

Theorem 3.2. Under the same assumptions of Theorem 3.1, the control problem
(2.1)–(2.2) has an optimal feedback control u∗(·) ≡ (u∗

1(·), . . . , u∗
m(·)), where

u∗
j (t) = −P (t)−1Bj(t)

′P (t)
[
x∗(t)− p(t)

]
+ qj(t), j = 1, . . . ,m,(3.8)

where (p(·), qj(·), j = 1, . . . ,m) ∈ L2
F (0, T ;R

n) × L2
F (0, T ;R

nm) is the unique Ft-
adapted solution of the following BSDE:




dp(t) =
[
A(t)p(t) +

∑m
j=1 Bj(t)qj(t) + f(t)

]
dt

+
∑m
j=1 qj(t)dW

j(t), t ∈ [0, T ],
p(T ) = ξ.

(3.9)

Proof. First of all, consider the matrix-valued ODE

{
Q̇−AQ−QA′ +

∑m
j=1 BjQB′

j = 0,

Q(T ) = I,
(3.10)

which must admit a unique solution Q(·) since it is linear with bounded coefficients.
Denote S = PQ, and then by the differential chain rule it is easy to verify that S
satisfies {

Ṡ = SA′ −A′S +
∑m
j=1 PBjP

−1B′
jS −

∑m
j=1 PBjP

−1SB′
j ,

S(T ) = I.
(3.11)

This is a linear equation, and hence it has a unique solution S ≡ I. It leads to
Q(t) = P (t)−1.

Now, noting (2.3), the feedback control (3.3) can be written as

u∗
j (t) = −P (t)−1Bj(t)

′[P (t)x∗(t)− P (t)E(ξ|Ft) + φ(t)
]

−P (t)−1βj(t) + zj(t), j = 1, . . . ,m.
(3.12)

Denote

p(t) = E(ξ|Ft)− P (t)−1φ(t) ≡ E(ξ|Ft)−Q(t)φ(t),

qj(t) = zj(t)− P (t)−1βj(t) ≡ zj(t)−Q(t)βj(t), j = 1, . . . ,m.
(3.13)

Since Q(t) is bounded and (p(·), qj(·), j = 1, . . . ,m) ∈ L2
F (0, T ;R

n)× L2
F (0, T ;R

nm),
applying Ito’s formula to (2.4), (3.10), and (3.2), we can verify that (p(·), qj(·), j =
1, . . . ,m) satisfies the BSDE (3.9). Therefore the desired result follows by virtue of
the uniqueness of solutions to (3.9).

Remark 3.1. Equation (3.4) also gives the optimal cost functional value as a
function of the initial value y ≡ x − Eξ, which turns out to be quadratic. If the
controller has the choice of selecting the initial value y so as to minimize J∗(y), then
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the “best” initial value would be obtained by setting d
dyJ

∗(y)|y=y∗ = 0. This yields
y∗ = −P (0)−1φ(0). Returning to the original variable x, we get that the best initial
value for x(·) will be

x∗ = y∗ + Eξ = −P (0)−1φ(0) + Eξ = p(0),(3.14)

where the last equality is due to (3.13). This certainly makes perfect sense, as it
implies that one should choose the initial value p(0) so as to minimize the difference
between the terminal state value and the given value ξ. (Of course, in this case the
minimum difference is zero since starting with p(0) one can hit ξ exactly at the end,
by the BSDE theory.) Therefore, the solution pair (p(·), q(·)) of the BSDE (3.9) may
be regarded as the optimal state-control pair of minimizing J(x, u(·)) (as given by
(2.2)) over (x, u(·)) subject to the dynamics of (2.1). This gives an interpretation
of (p(·), q(·)) via a stochastic control problem. In this perspective, if a BSDE does
not have an adapted solution (e.g., when the underlying filtration is not generated
by the Brownian motion involved), we may still define a “pseudosolution” via the
corresponding stochastic control problem.

Remark 3.2. Under the optimal feedback (3.8), the optimal trajectory x∗(·)
evolves as




dx∗(t) =
{[

A−∑m
j=1 BjP

−1B′
jP
]
x∗ +

∑m
j=1 BjP

−1B′
jPp+ f

+
∑m
j=1 Bjqj

}
(t)dt

+
∑m
j=1[−P−1B′

jPx∗ + P−1B′
jPp+ qj ](t)dW

j(t),

x∗(0) = x.

(3.15)

Moreover, the difference ∆(t) = x∗(t)− p(t) satisfies




d∆(t) =
[
A−∑m

j=1 BjP
−1B′

jP
]
(t)∆(t)dt

−∑m
j=1[P

−1B′
jP ](t)∆(t)dW

j(t),

∆(0) = x− p(0).

(3.16)

Notice that ∆(·) satisfies a homogeneous linear SDE, and hence must be identically
zero if the initial is zero, namely, if x = p(0). In this case, by (3.8), the optimal
control is u∗

j (t) = qj(t). This is exactly in line with the observation in Remark 3.1.
Remark 3.3. Applying Ito’s formula, we can show that Λ(t) ≡ ∆(t)∆(t)′ satisfies



dΛ(t) =

[(
A−∑m

j=1 BjP
−1B′

jP
)
Λ + Λ

(
A−∑m

j=1 BjP
−1B′

jP
)′]

(t)dt

+
∑m
j=1[P

−1B′
jPΛPBjP

−1](t)dt+
∑m
j=1{· · ·}dW j(t),

Λ(0) = (x− p(0))(x− p(0))′.

Taking expectations, we conclude that Γ(t) ≡ E[∆(t)∆(t)′] follows
{
Γ̇− ĀΓ− ΓĀ′ −∑m

j=1 P
−1B′

jPΓPBjP
−1 = 0,

Γ(0) = (x− p(0))(x− p(0))′,
(3.17)

where Ā = A−∑m
j=1 BjP

−1B′
jP . This is a linear ODE. Solving it gives the optimal

cost functional value to be 1
2 tr Γ(T ).
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Remark 3.4. The results obtained above are based on the LQ approach. LQ
models constitute an extremely important class of optimal control problems and their
optimal solutions can be obtained explicitly via the Riccati equations, due to the nice
underlying structures (see [1, 4, 5, 10, 12, 22, 24]). The general SRE is introduced in
[4] as a BSDE of the Pardoux–Peng type ([21]) for the case where all the coefficients
are random. It reduces to (3.1) for the present case. Consequently, the results in this
section can be extended to the case where the coefficients A,Bj are adapted random
processes.

4. Solvability of SRE. In the previous section we derived explicitly an optimal
control (in a feedback form) of the problem. However, there is one gap remaining,
namely the results depend on the SRE (3.1) being solvable. The solvability of the
SRE is by no means trivial and is interesting in its own right. In [4], a necessary
and sufficient condition for the solvability of SREs more general than (3.1) is derived.
However the condition there is rather implicit. This section gives an explicit condition
which ensures that (3.1) admits a unique solution.

To this end, we first consider a conventional Riccati equation

{
Ṗ + PA+A′P −∑m

j=1 PBjK
−1B′

jP = 0,

P (T ) = I,
(4.1)

where K > 0 is given a priori (compare (4.1) and (3.1)). Note that the above equation
is a bit different from the standard one arising from deterministic control problems
(see [1]) where m = 1. But the case m > 1 can be treated in the same way without
any difficulty. In particular, (4.1) is associated with the deterministic LQ problem

Minimize J(s, y;u(·)) =
∫ T

s

1

2

m∑
j=1

uj(t)
′K(t)uj(t)dt+

1

2
|x(T )|2,

Subject to

{
ẋ(t) = A(t)x(t) +

∑m
j=1 Bj(t)uj(t),

x(s) = y,

where (s, y) ∈ [0, T ] × Rn. Namely, the value function of the above LQ problem is
1
2y

′P (s)y, where P is the solution to (4.1). Denote K = {K ∈ L∞(0, T ; Ŝm+ ) | K−1 ∈
L∞(0, T ; Ŝm+ )}. It can be checked that C([0, T ]; Ŝm+ ) ⊂ K. For each K ∈ K, we
know from the classical Riccati theory (as well as the remark above) that (4.1) ad-
mits a unique solution P ∈ C([0, T ];Sn+). Thus we can define a mapping Ψ : K →
C([0, T ];Sn) as Ψ(K) = P .

Theorem 4.1. The SRE (3.1) admits a unique solution if and only if there exists
K ∈ C([0, T ]; Ŝm+ ) such that

Ψ(K) ≥ K.(4.2)

Proof. This is a special case of [4, Theorem 4.2].
Theorem 4.2. If

A(t) +A(t)′ ≥
m∑
j=1

Bj(t)Bj(t)
′,(4.3)

then the SRE (3.1) admits a unique solution.
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Proof. We will show that (4.2) holds for K = εI with some ε > 0. To this end,
for ε > 0 set Pε = Ψ(εI)− εI. Then Pε satisfies




Ṗε + Pε

(
A−∑m

j=1 BjB
′
j

)
+
(
A−∑m

j=1 BjB
′
j

)′
Pε − ε−1

∑m
j=1 PεBjB

′
jPε

+ε
(
A+A′ −∑m

j=1 BjB
′
j

)
= 0,

Pε(T ) = I − εI.

(4.4)

Therefore, under the assumption (4.3) and when 0 < ε < 1, the above is a standard
conventional Riccati equation which admits a unique solution Pε ≥ 0. This implies
that (4.2) holds with K = εI. The result follows then from Theorem 4.1.

Remark 4.1. In [4], an algorithm of computing the solution to the SREs is given.
Boiling down to the special SRE (3.1), the algorithm stipulates that one starts with
K = εI (with 0 < ε < 1) and solves the conventional Riccati equation (4.1) recursively.
The resulting sequence of solutions will monotonically converge to the solution of SRE
(3.1).

It should be noted that (4.3) only gives an (easily verifiable) sufficient condition
for the solvability of SRE (3.1). In other special cases (see section 5 below), solvability
of the SRE can also be shown without (4.3).

5. Black–Scholes model. We now apply the general results obtained in the
previous sections to a contingent claim problem with the Black–Scholes setup. Sup-
pose there is a market in which m + 1 assets (or securities) are traded continuously.
One of the assets is the bond whose price process P0(t) is subject to the following
(deterministic) ODE:

{
dP0(t) = r(t)P0(t)dt, t ∈ [0, T ],
P0(0) = p0 > 0.

(5.1)

The other m assets are stocks whose price processes P1(t), . . . , Pm(t) satisfy the fol-
lowing SDE:

{
dPi(t) = Pi(t)

[
bi(t)dt+

∑m
j=1 σij(t)dW

j(t)
]
, t ∈ [0, T ],

Pi(0) = pi > 0.
(5.2)

Define the covariance matrix

σ(t) =




σ1(t)
...

σm(t)


 ≡ (σij(t))m×m.(5.3)

The basic assumption throughout this section is

∑
(t) ≡ σ(t)σ(t)′ ≥ δI ∀ t ∈ [0, T ](5.4)

for some δ > 0. We also assume that all the given functions are measurable and
uniformly bounded in t.

Consider an agent whose total wealth at time t ≥ 0 is denoted by x(t). Assume
that the trading of shares takes place continuously and transaction cost and consump-
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tions are not considered. Then x(·) satisfies (see, e.g., Karatzas and Shreve [13] and
Elliott and Kopp [9])


dx(t) =

{
r(t)x(t) +

∑m
i=1

[
bi(t)− r(t)

]
πi(t)

}
dt

+
∑m
j=1

∑m
i=1 σij(t)πi(t)dW

j(t),

x(0) = x > 0,

(5.5)

where πi(t), i = 0, 1, 2 . . . ,m, denotes the total market value of the agent’s wealth in
the ith bond/stock. We call π(t) ≡ (π1(t), . . . , πm(t))

′ a portfolio of the agent. Set

u(t) ≡ (u1(t), . . . , um(t))
′ = σ(t)′π(t), or π(t) =

∑
(t)−1σ(t)u(t).(5.6)

On the other hand, due to (5.4), the model is arbitrage free, namely, there exists a
risk premium process θ(·) satisfying

θ(t)σ(t)′ = (b1(t)− r(t), . . . , bm(t)− r(t)).(5.7)

With the above notation (5.5) becomes{
dx(t) =

[
r(t)x(t) +

∑m
j=1 θj(t)uj(t)

]
dt+

∑m
j=1 uj(t)dW

j(t),

x(0) = x.
(5.8)

The objective is, for each given initial wealth x and a contingent claim ξ (which
is an FT -measurable square integrable random variable), to choose a (mean-variance)
hedging portfolio π(·) (or, equivalently, a control u(·)) so as to minimize

J(x, u(·)) = 1

2
E|x(T )− ξ|2.(5.9)

Remark 5.1. Although the classical hedging problem is to make the difference
on the right-hand side of (5.9) to be zero, it has become familiar to also call problem
(5.9) a (mean-variance) hedging problem. The reason is at least two-fold. On the one
hand, one may decompose the classical hedging problem into several problems of the
type (5.9) with different initial conditions in order to characterize the price as well as
the hedging portfolio for the original problem. This decomposition can be carried out
based on an “extended asset method” recently introduced by Gourerioux, Laurent,
and Pham [11] and extended by Laurent and Pham [15]. On the other hand, there
is a growing interest in measuring risk when it is a priori known that with the initial
capital x the contingent claim cannot be reached. In this case, the criterion (5.9)
seems to be a viable alternative.

The problem (5.8)–(5.9) is a special case of the general model studied in section 4,
so we can apply the results there. Interestingly, in this case the corresponding SRE is
explicitly solvable due to the specific structure that the state variable is a scalar (and
hence so is the solution to the SRE).

Theorem 5.1. The optimal portfolio of the hedging problem consisting of (5.8)
and (5.9) is

π∗(t) = −∑(t)−1(b1(t)−r(t), . . . , bm(t)−r(t))′[x∗(t)−p(t)]+
∑
(t)−1σ(t)q(t),(5.10)

where (p(·), q(·)) ≡ (p(·), qj(·), j = 1, . . . ,m) ∈ L2
F (0, T ;R

n) × L2
F (0, T ;R

nm) is the
unique Ft-adapted solution of the BSDE{

dp(t) =
[
r(t)p(t) +

∑m
j=1 θj(t)qj(t)

]
dt+

∑m
j=1 qj(t)dW

j(t),

p(T ) = ξ.
(5.11)
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Proof. The SRE (3.1) in the present case reduces to (noting that the unknown
P (t) of the equation is a scalar)




Ṗ (t) + 2r(t)P (t)−∑m
j=1 θj(t)

2P (t) = 0,

P (T ) = 1,

P (t) > 0, t ∈ [0, T ].
(5.12)

Denote ρ(t) =
∑m
j=1 θj(t)

2. Then the above equation has a unique solution P (t) =

e
−
∫ T

t
(ρ(s)−2r(s))ds

. Note that the third inequality constraint in (5.12) is automatically
satisfied by this solution. On the other hand, the associated equation (3.2) reads




dφ(t) = −
{
[r(t)− ρ(t)]φ(t)−∑m

j=1 θj(t)βj(t)

+P (t)
[
g(t) +

∑m
j=1 θj(t)zj(t)

]}
dt

+
∑m
j=1 βj(t)dW

j(t),

φ(T ) = 0.

(5.13)

Applying Theorem 3.2 and noticing that P (t) is now a scalar, we obtain

u∗
j (t) = −θj(t)[x∗(t)− p(t)] + qj(t).(5.14)

Appealing to (5.6) and writing in a vector form, we obtain the desired result
(5.10).

Remark 5.2. The formula (5.10) has a straightforward interpretation in financial
terms. Indeed, it is well known that the second term on the right-hand side of (5.10)
is the replicating portfolio for the claim ξ when the initial wealth is the initial option
price p(0). The other term is exactly the Merton portfolio for a terminal utility
function c(x) = x2 (Merton [20]). Therefore, our optimal hedging policy (5.10) for
our problem is the sum of the replicator for the claim and the Merton portfolio.
Consequently, if the initial endowment x is different from the fair initial price p(0)
necessary to replicate the contingent claim ξ, then the difference x − p(0) should be
invested according to the Merton strategy.

Remark 5.3. In the Black–Scholes model, (3.17) reduces to

{
Γ̇(t)− 2r(t)Γ(t) +∑m

j=1 θj(t)
2Γ(t) = 0,

Γ(0) = (x− p(0))2.
(5.15)

This gives Γ(t) = (x − p(0))2e
−
∫ t

0
(ρ(s)−2r(s))ds

. Hence the optimal value of (5.12) is
1
2Γ(T ) =

1
2P (0)(x− p(0))2.

Remark 5.4. By the explicit form of P (·), the solution to the SRE, as obtained in
the proof of Theorem 5.1, we may understand P (t) to be a sort of normalizing factor
with respect to the “least-square” criterion in (5.9) as well as the discounting process
in time. Moreover, by the first equality of (3.13), φ(t) is nothing but the normalized
difference between the present expected value of the claim ξ and its present fair price.

6. A modified model. In the previous sections we investigated a model where
only the terminal variance is to be minimized. It is more in line with the European
option in the context of option theory where only the terminal situation is of interest.
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To motivate the modified model we are going to formulate in this section let us consider
the pricing problem of an American contingent claim ξ where the holder has the right
to exercise the option at any time τ ∈ [0, T ]. This claim cannot be hedged by a self-
financing portfolio, and it is necessary to introduce a (nondecreasing) consumption
process C(·) in the price process

{
dp(t) =

[
r(t)p(t) +

∑m
j=1 θj(t)qj(t)

]
dt+

∑m
j=1 qj(t)dW

j(t)− dC(t),

p(T ) = ξ
(6.1)

in order to push upwards the process p(t) to keep it above the expected value of the
claim E(ξ|Ft) at any time, while the amount of pushing should be minimal in the
sense that

∫ T

0

[p(t)− E(ξ|Ft)]dC(t) = 0.(6.2)

Pricing an American claim as a stopping time problem is extensively described
in the literature (see, e.g., Karatzas and Shreve [13] and Elliott and Kopp [9]). Its
equivalence to the existence problem of a solution C(·) to (6.1) can be found in El
Karoui and Quenez [8].

In the modified mean-variance hedging problem below, the wealth x(t) is to be
kept near the expected value of the claim E(ξ|Ft) at any time t ≥ 0 (rather than just
at the terminal time). Whereas the solution to this modified problem does not really
provide a solution to the original American contingent claim problem, in view of the
formal analogies of the results below to those in pricing problems, we shall discuss in
Remark 6.2 a possible interpretation of the modified model.

Motivated by the above, let us consider a modification of the model (2.1)–(2.2).
Instead of cost functional (2.2), we consider

J̃(x, u(·)) = 1

2
E

[∫ T

0

|x(t)− E(ξ|Ft)|2dt+ |x(T )− ξ|2
]

(6.3)

while keeping the same dynamics as in (2.1). (One can also put different weights on
the running cost and the terminal cost, but we will not bother to do it here.)

Employing the same change of variable (2.3), we get the state equation (2.5) with
the new cost functional

J̃(y, u(·)) = 1

2
E

[∫ T

0

|y(t)|2dt+ |y(T )|2
]
.(6.4)

To solve this problem, we only need to slightly modify the argument in section 3.
Specifically, the SRE (3.1), for the present case, is changed to




Ṗ + PA+A′P −∑m
j=1 PBjP

−1B′
jP + I = 0,

P (T ) = I,

P (t) > 0 ∀ t ∈ [0, T ].
(6.5)

The form of the associated equation (3.2) remains unchanged (but with the new P (·)
in it as determined by (6.5)).



1404 MICHAEL KOHLMANN AND XUN YU ZHOU

Theorem 6.1. If (6.5) and (3.2) admit solutions P ∈ C([0, T ]; Ŝn+) and (φ(·), βj(·),
j = 1, . . . ,m) ∈ L2

F (0, T ;R
n) × L2

F (0, T ;R
nm), respectively, then the optimal con-

trol problem consisting of (2.1) and (6.3) has an optimal feedback control u∗(·) ≡
(u∗

1(·), . . . , u∗
m(·)), where

u∗
j (t) = −P (t)−1Bj(t)

′P (t)
[
x∗(t)− p(t)

]
+ qj(t), j = 1, . . . ,m,(6.6)

where (p(·), qj(·), j = 1, . . . ,m) ∈ L2
F (0, T ;R

n) × L2
F (0, T ;R

nm) is the unique Ft-
adapted solution of the BSDE




dp(t) =
[
A(t)p(t) +

∑m
j=1 Bj(t)qj(t) + f(t)− P (t)−2φ(t)

]
dt

+
∑m
j=1 qj(t)dW

j(t), t ∈ [0, T ],
p(T ) = ξ,

(6.7)

or, equivalently,




dp(t) =
{
[A(t) + P (t)−1]p(t) +

∑m
j=1 Bj(t)qj(t) + f(t)

−P (t)−1E(ξ|Ft)
}
dt

+
∑m
j=1 qj(t)dW

j(t), t ∈ [0, T ],
p(T ) = ξ.

(6.8)

Proof. Consider the matrix-valued ODE

{
Q̇−AQ−QA′ +

∑m
j=1 BjQB′

j −Q2 = 0,

Q(T ) = I,
(6.9)

which is a conventional Riccati equation. Hence it admits a unique solution Q(·).
Denote S = PQ, and then S satisfies

{
Ṡ = SA′ −A′S + SQ−Q+

∑m
j=1 PBjP

−1B′
jS −

∑m
j=1 PBjP

−1SB′
j ,

S(T ) = I.
(6.10)

This equation has the only solution S ≡ I, implying Q(t) = P (t)−1. Now, performing
the same change of variables in (3.13), we get that (p(·), qj(·), j = 1, . . . ,m) satis-
fies (6.7). Equation (6.8) is equivalent to (6.7) due to the fact that P (t)−2φ(t) =
P (t)−1[E(ξ|Ft)− p(t)] (see (3.13)).

Remark 6.1. We note that in this case (p(·), qj(·), j = 1, . . . ,m) no longer sat-
isfies the original BSDE (5.11) which is the starting point of the control problem
under consideration in this paper. The reason is that the BSDE (5.11) only concerns
the terminal situation but not any time between the present and the terminal times.
Therefore a large deviation of p(t) from the expected terminal value E(ξ|Ft) is allowed
in the setup of (5.11). However, in our modified model, it is required that this devi-
ation cannot be too large (which will be realized by the optimal control); therefore,
in the optimal feedback control, one no longer compares against the original BSDE
(5.11).

It is interesting that in this case the SRE (6.5) automatically admits a solution.
Theorem 6.2. The SRE (6.5) admits a unique solution.
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Proof. Employing the same argument as that in the proof of Theorem 4.2, set
Pε = Ψ(εI)− εI. Then Pε satisfies




Ṗε + Pε

(
A−∑m

j=1 BjB
′
j

)
+
(
A−∑m

j=1 BjB
′
j

)′
Pε

−ε−1
∑m
j=1 PεBjB

′
jPε

+ε
(
A+A′ −∑m

j=1 BjB
′
j

)
+ I = 0,

Pε(T ) = I − εI.

(6.11)

When ε > 0 is small enough, ε(A + A′ −∑m
j=1 BjB

′
j) + I > 0, hence the solution of

the above equation (which is a conventional Riccati equation), Pε ≥ 0. This implies
that (4.2) holds with K = εI for a sufficiently small ε > 0. The result follows then
from Theorem 4.1.

Now let us consider the corresponding Black–Scholes model. The SRE (5.12) is
modified to 


Ṗ (t) + 2r(t)P (t)−∑m

j=1 θj(t)
2P (t) + 1 = 0,

P (T ) = 1,

P (t) > 0, t ∈ [0, T ].
(6.12)

This equation has an explicit solution

P (t) = e
−
∫ T

t
(ρ(s)−2r(s))ds

+

∫ T

t

e
−
∫ s

t
(ρ(τ)−2r(τ))dτ

ds > 0.

(The existence of solutions can also be concluded from Theorem 6.2.)
Theorem 6.3. The optimal (feedback) hedging portfolio for the modified Black–

Scholes model is

π∗(t) = −∑(t)−1(b1(t)−r(t), . . . , bm(t)−r(t))′[x∗(t)−p(t)]+
∑
(t)−1σ(t)q(t),(6.13)

where (p(·), q(·)) ≡ (p(·), qj(·), j = 1, . . . ,m) ∈ L2
F (0, T ;R

n) × L2
F (0, T ;R

nm) is the
unique Ft-adapted solution of the following BSDE:

{
dp(t) =

[
r(t)p(t) +

∑m
j=1 θj(t)qj(t) +

p(t)−E(ξ|Ft)
P (t)

]
dt+

∑m
j=1 qj(t)dW

j(t),

p(T ) = ξ.

(6.14)

Proof. This follows immediately from Theorem 6.1 along with (5.6).
Remark 6.2. Equation (6.14) is exactly in the same form as (6.1) with

C(t) = −
∫ t

0

p(s)− E(ξ|Fs)
P (s)

ds.(6.15)

This process, C(·), plays a similar role to the cumulative consumption process in the
original American contingent claim problem. It is no longer a nondecreasing process
due to the underlying mean-variance criterion; however, the function of it is to correct
any large deviation of the price p(t) from the expected value of the claim E(ξ|Ft) at
any time t. On the other hand, since in our model the price p(t) is allowed to go
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either above or under E(ξ|Ft), we do not have (6.2). Nevertheless, we do have the
analogous relations

∫ T

0

[p(t)− E(ξ|Ft)]+[dC(t)]− = 0, and

∫ T

0

[p(t)− E(ξ|Ft)]−[dC(t)]+ = 0,(6.16)

where a+ = max{a, 0} and a− = max{−a, 0}. Therefore, the interpretation of the
portfolio (6.13) is that one should hedge (in the mean-variance sense) the claim using
the auxiliary process C(·) and invest the rest of the wealth according to the Merton
portfolio.

7. Concluding remarks. In this paper we studied the relationship between
BSDEs and stochastic control problems. We introduced a stochastic LQ model as-
sociated with a BSDE and solved the problem in a closed form by virtue of the
stochastic LQ theory developed recently. The results were then applied to solve an
optimal mean-variance hedging problem associated with a Black–Scholes contingent
claim model. Our study suggested that the solution pair of a BSDE can be interpreted
as the state-control pair of a stochastic control problem. This finding is expected to
lead insights into the nature of the BSDEs as well as their applications in finance
problems.

Acknowledgment. The authors would like to thank the two referees for their
constructive comments that led to an improved version of the paper.
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SIMULTANEOUS EXACT CONTROLLABILITY AND SOME
APPLICATIONS∗
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Abstract. We study the exact controllability of two systems by means of a common finite-
dimensional input function, a property called simultaneous exact controllability. Most of the time
we consider one system to be infinite-dimensional and the other finite-dimensional. In this case we
show that if both systems are exactly controllable in time T0 and the generators have no common
eigenvalues, then they are simultaneously exactly controllable in any time T > T0. Moreover, we
show that similar results hold for approximate controllability. For exactly controllable systems we
characterize the reachable subspaces corresponding to input functions of class H1 and H2. We apply
our results to prove the exact controllability of a coupled system composed of a string with a mass
at one end. Finally, we consider an example of two infinite-dimensional systems: we characterize
the simultaneously reachable subspace for two strings controlled from a common end. The result is
obtained using a recent generalization of a classical inequality of Ingham.

Key words. linear system, operator semigroup, admissible control operator, Gramian, exact
controllability, exact observability, simultaneous controllability, wave equation, boundary control,
coupled system

AMS subject classifications. 93B28, 93C25, 93B03, 93C20

PII. S0363012999352716

1. Introduction. We consider two control systems (possibly infinite-dimensional),
with the states denoted by z1, z2, described by the equations{

ż1(t) = A1z1(t) +B1u(t), z1(0) = 0,

ż2(t) = A2z2(t) +B2u(t), z2(0) = 0.
(1.1)

Here, a dot denotes differentiation with respect to the time t, A1, A2 are generators
of strongly continuous operator semigroups on the corresponding state spaces, and
B1, B2 are admissible control operators for these semigroups. Note that the two
systems receive the same input function u. These systems are called simultaneously
exactly controllable in time T (where T > 0), if for any states f1 and f2, an L

2-function
u can be found such that z1(T ) = f1 and z2(T ) = f2.

Simultaneous exact controllability was first considered by Russell in [22] and it is
the subject of Chapter 5 in Lions [20]. The simultaneous controllability of two Riesz
spectral systems (one hyperbolic and one parabolic) was studied in section 4 of Hansen
[10] (see also Hansen and Zhang [12]). We were led to investigate simultaneous exact
controllability in our study of coupled systems (sometimes called hybrid systems),
such as a string with a mass at one end, or the SCOLE model of a beam clamped at
one end and with a rigid body at the other end.

Our main result (proved in section 3) concerns the situation where one system is
finite-dimensional. We show that, in this case, if A1 and A2 have no common eigen-
values and if both are exactly controllable in time T0, then they are simultaneously
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exactly controllable in any time T > T0. For T = T0 this is not always true, as we
show in an example (see section 4).

The concept of simultaneous approximate controllability of two systems in time
T is similar to the controllability concept defined earlier, but now the reachable pairs
of states (f1, f2) must be dense in the product of the respective state spaces. Consid-
ering again one system to be finite-dimensional, we have a result that resembles our
main result, but now we have no information on the time T needed for simultaneous
approximate controllability: we only know that some T > 0 will work. Other results
in section 3 concern the characterization of the reachable subspace of an exactly con-
trollable system, when the input function u is constrained to be in the Sobolev space
H1 (or H2) with u(0) = 0 (or with u(0) = u̇(0) = 0).

In section 4 we give two applications to systems governed by partial differential
equations (PDEs), both based on the (nonhomogeneous) one-dimensional wave equa-
tion. These two interdependent examples illustrate how simultaneous controllability
results can be applied in the analysis of coupled systems. In section 5 we characterize
the simultaneously reachable subspace of two systems describing vibrating strings.
The results here are based on recent generalizations of an inequality of Ingham.

2. Some background on infinite-dimensional systems. In this section we
gather, for easy reference, some basic facts about admissible control and observation
operators, controllability, and observability. Some results here are new, but most
are well known. For the latter, we do not give proofs; we only refer to the relevant
literature.

We assume that X is a Hilbert space and A : D(A)→X is the generator of a
strongly continuous semigroup T on X. We define the Hilbert space X1 as D(A) with
the norm ‖z‖1 = ‖(βI − A)z‖, where β ∈ ρ(A) is fixed (this norm is equivalent to
the graph norm). The Hilbert space X−1 is the completion of X with respect to the
norm ‖z‖−1 = ‖(βI −A)−1z‖. This space is isomorphic to D(A∗)∗, and we have

X1 ⊂ X ⊂ X−1,(2.1)

densely and with continuous embeddings. T extends to a semigroup on X−1, denoted
by the same symbol. The generator of this extended semigroup is an extension of A,
whose domain is X, so that A : X→X−1.

We assume that U is a Hilbert space and B ∈ L(U,X−1) is an admissible control
operator for T, defined as in Weiss [24]. This means that if z is the solution of

ż(t) = Az(t) +Bu(t)(2.2)

(an equation in X−1), with z(0) = z0 ∈ X and u ∈ L2([0,∞), U), then z(t) ∈ X
∀t ≥ 0. In this case, z is a continuous X-valued function of t. We have

z(t) = Ttz0 +Φtu,(2.3)

where Φt ∈ L(L2([0,∞), U), X) is defined by

Φtu =

∫ t

0

Tt−σBu(σ)dσ.(2.4)

The above integration is done in X−1, but the result is in X. The Laplace transform
of z is

ẑ(s) = (sI −A)−1 [z0 +Bû(s)] .
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B is called bounded if B ∈ L(U,X) (and unbounded otherwise).
We assume that Y is another Hilbert space and C ∈ L(X1, Y ) is an admissible

observation operator for T, defined as in Weiss [25]. This means that for every T > 0
there exists a KT ≥ 0 such that

∫ T

0

‖CTtz0‖2dt ≤ K2
T ‖z0‖2 ∀z0 ∈ D(A).(2.5)

C is called bounded if it can be extended such that C ∈ L(X,Y ).
We regard L2

loc([0,∞), Y ) as a Fréchet space with the seminorms being the L2

norms on the intervals [0, n], n ∈ N. Then the admissibility of C means that there is
a continuous operator Ψ : X→L2

loc([0,∞), Y ) such that
(Ψz0)(t) = CTtz0 ∀z0 ∈ D(A).(2.6)

The operator Ψ is completely determined by (2.6), because D(A) is dense in X. We
introduce the Λ-extension of C, denoted CΛ, by

CΛz0 = lim
λ→+∞

Cλ(λI −A)−1z0,(2.7)

whose domain D(CΛ) consists of all z0 ∈ X for which the limit exists. If we replace
C by CΛ, formula (2.6) becomes true ∀z0 ∈ X and for almost every t ≥ 0. For
z0 ∈ D(A), Ψz0 is almost everywhere (a.e.) differentiable and

d

dt
(CTtz0) = CΛTtAz0 for almost every t ≥ 0.(2.8)

If y = Ψz0, then its Laplace transform is

ŷ(s) = C(sI −A)−1z0.(2.9)

If T is exponentially stable, then Ψ ∈ L(X,L2([0,∞), Y )).
The following duality result holds: if T is a semigroup onX with generator A, then

B ∈ L(U,X−1) is an admissible control operator for T if and only if B∗ : D(A∗)→U is
an admissible observation operator for the dual semigroup T

∗. Moreover, the adjoint
of ΦT from (2.4) is given by

(Φ∗
T z0)(t) = B∗

ΛT
∗
T−tz0(2.10)

for almost every t ∈ [0, T ], where B∗
Λz = limλ→+∞ λB∗(λI−A∗)−1z, as in (2.7). For

all the facts listed so far in this section, we refer to [24], [25], and [26].
For C,T as in (2.5) and for every T > 0, we introduce the bounded operator

ΨT : X→L2([0, T ], Y ) by truncating Ψ to [0, T ], i.e., ∀t ∈ [0, T ],
(ΨT z0) (t) = CTtz0 ∀z0 ∈ D(A).(2.11)

The observability Gramians of (A,C) are the operators

PT = Ψ
∗
TΨT ∀T ≥ 0.

Thus, for z0 ∈ D(A),

PT z0 =

∫ T

0

T
∗
tC

∗CTtz0dt,
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and, to get an expression valid ∀zo ∈ X, we may replace C by CΛ in the above
formula. If T is exponentially stable, then we may also take T = ∞, defining the
Gramian P = Ψ∗Ψ, which satisfies A∗P + PA = −C∗C. For more on Gramians we
refer to Hansen and Weiss [11] or Russell and Weiss [23].

Definition 2.1. With the notation as in (2.11) the pair (A,C) is exactly observ-
able in time T if ΨT is bounded from below, i.e., there exists kT > 0 such that

∫ T

0

‖CTtz0‖2Y dt ≥ k2
T ‖z0‖2X ∀z0 ∈ D(A).(2.12)

The pair (A,C) is approximately observable in time T if Ker ΨT = {0}.
As is well known, for finite-dimensional systems the properties in Definition 2.1

are equivalent and independent of T, and if they hold, then we say that (A,C) is

observable. We remark that
∫ T
0
‖CTtz0‖2Y > 0 ∀z0 ∈ D(A) is not sufficient for ap-

proximate observability in time T .
Clearly, the following assertions hold true.
Proposition 2.2. The pair (A,C) is exactly observable in time T if and only if

PT is invertible. Similarly, (A,C) is approximately observable in time T if and only
if PT is one-to-one. If T > τ, then PT ≥ Pτ .

With the notation from (2.11) it is easy to see that if z0 ∈ D(A), then
ΨT z0 ∈ H1(0, T ;Y ). The following partial converse will be needed in section 3.

Proposition 2.3. With the notation as in (2.11), suppose that (A,C) is exactly
observable in time T0. If z0 ∈ X and T > T0 are such that ΨT z0 ∈ H1(0, T ;Y ), then
z0 ∈ D(A). For T = T0, the implication is not true in general.

Proof. Denote y = ΨT z0, so that y ∈ H1(0, T ;Y ). Using, for example, Proposi-
tion VIII.3 (p. 124) in Brezis [6], we obtain

sup
ε∈(0,T−T0)

∫ T0

0

∥∥∥∥y(t+ ε)− y(t)

ε

∥∥∥∥
2

Y

dt <∞.

Since, for almost every t ∈ [0, T0], y(t+ ε)− y(t) = CΛTt(Tε − I)z0, it follows that

sup
ε∈(0,T−T0)

∥∥∥∥ΨT0

Tε − I

ε
z0

∥∥∥∥
L2([0,T0],Y )

<∞.

Because of the exact observability estimate (2.12), this implies

sup
ε∈(0,T−T0)

∥∥∥∥Tε − I

ε
z0

∥∥∥∥
X

<∞.

By a simple result on operator semigroups, see for instance Theorem 2.12 (p. 88)
in Butzer and Berens [7], it follows that z0 ∈ D(A). To see that for T = T0 the
implication is false, consider the left-shift semigroup T on X = L2[0, 1] with point
observation at the left end. Thus A = d

dξ , D(A) =
{
x ∈ H1(0, 1)|x(1) = 0}, and

Cx = x(0). This system is exactly observable in time T0 = 1. However, if z0(ξ) =
1 ∀ξ ∈ (0, 1), then Ψ1z0 ∈ H1(0, 1), but z0 �∈ D(A).

Definition 2.4. Let A be the generator of a strongly continuous semigroup T on
X and let B ∈ L(U,X−1) be an admissible control operator for T. The pair (A,B) is
exactly controllable in time T > 0, if for every f0 ∈ X there exists a u ∈ L2([0, T ], U)
such that ∫ T

0

TT−σBu(σ)dσ = f0.



1412 MARIUS TUCSNAK AND GEORGE WEISS

(A,B) is approximately controllable in time T if the set of those f0 for which the above
property holds is dense.

In other words, we say that (A,B) is exactly controllable in time T if ΦT is onto,
i.e., Ran ΦT = X, and (A,B) is approximately controllable in time T if Ran ΦT is
dense in X. For finite-dimensional systems the above properties are equivalent and
independent of T, and if they hold we say that (A,B) is controllable.

Proposition 2.5. We assume that A is the generator of a semigroup T on X
and B ∈ L(U,X−1) is an admissible control operator for T. Then (A,B) is exactly
controllable in time T if and only if (A∗, B∗) is exactly observable in time T . Similarly,
(A,B) is approximately controllable in time T if and only if (A∗, B∗) is approximately
observable in time T .

This proposition is an easy consequence of (2.10). It is used frequently in the
literature on control of systems governed by PDEs (see, e.g., the HUM method of
Lions [20]). For more details on exact controllability (observability) in a functional-
analytic setting we refer to Avdonin and Ivanov [2] or [23] and the references therein.
In the PDE’s-setting, the relevant literature is overwhelming, and we mention the
books of Lions [20], Lagnese and Lions [16], and Komornik [21] and the paper of
Bardos, Lebeau, and Rauch [5].

3. Main results. First we give the definition of the simultaneous controllability
concepts used.

Definition 3.1. For j ∈ {1, 2}, let Aj be the generators of the strongly continu-
ous semigroups T

j acting on the Hilbert spaces Xj. Let U be a Hilbert space and let
Bj ∈ L(U,Xj

−1) be admissible control operators for T
j.

The pairs (Aj , Bj) are called simultaneously exactly controllable in time T > 0 if
for every state fj ∈ Xj there exists a function u ∈ L2([0, T ], U) such that

∫ T

0

T
j
T−σBju(σ)dσ = fj .

The same pairs are called simultaneously approximately controllable in time T > 0 if
the property described above holds for (f1, f2) in a dense subspace of X

1 ×X2.
It is clear that the concepts introduced in the last definition are equivalent to the

exact (approximate) controllability in time T of the pair

A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
.

Using Proposition 2.5, the above concepts can be characterized by duality.
Proposition 3.2. With the notation of Definition 3.1, we have:
1. The pairs (A1, B1) and (A2, B2) are simulteanously exactly controllable in
time T if and only if there exists kT > 0 such that ∀(z1

0 , z
2
0) ∈ D(A∗

1)×D(A∗
2)

we have
∫ T

0

‖B∗
1T

1∗
t z1

0 +B∗
2T

2∗
t z2

0‖2U ≥ k2
T

(‖z1
0‖2X1 + ‖z2

0‖2X2

)
.(3.1)

2. The pairs (A1, B1) and (A2, B2) are simultaneously approximately controllable
in time T if and only if the following statement holds.
If (z1

0 , z
2
0) ∈ X1 ×X2 are such that

B∗
1ΛT

1∗
t z1

0 +B∗
2ΛT

2∗
t z2

0 = 0 for almost every t ∈ [0, T ],(3.2)
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then (z1
0 , z

2
0) = (0, 0).

We mention that in (3.2) we must use the Λ-extensions as in (2.10). The reason
is that it is not possible to use only (z1

0 , z
2
0) ∈ D(A∗

1) × D(A∗
2) (this follows from the

comments after Definition 2.1).
The main result of this section is the following theorem.
Theorem 3.3. Let A be the generator of the strongly continuous semigroup T

acting on the Hilbert space X. Let B ∈ L(Cm, X) be an admissible control operator
for T and assume that (A,B) is exactly controllable in time T0. Let a ∈ C

n×n and
b ∈ C

n×m be matrices such that (a, b) is controllable. Assume that A and a have
no common eigenvalues. Then the pairs (A,B) and (a, b) are simultaneously exactly
controllable in any time T > T0.

First we prove the following approximate controllability result.
Lemma 3.4. Suppose that T > T0 and that (A,B), (a, b) satisfy the assumptions

of Theorem 3.3. Then these two pairs are simultaneously approximately controllable
in time T for every T > T0.

Proof. Let T > T0 be fixed. Denote by V the set of all v0 ∈ C
n such that there

exists a z0 ∈ X with

B∗
ΛT

∗
t z0 + b∗ea

∗tv0 = 0 for almost every t ∈ [0, T ].(3.3)

Using the approximate controllability of (A,B) in time T0 and Proposition 2.5, we
see that the function t→B∗

ΛT
∗
t z0, t ∈ [0, T ], determines z0. By (3.3), this function

is determined by v0. Thus, if v0 ∈ V, then z0 satisfying (3.3) is unique and depends
linearly on v0: z0 = Qv0. Since the function t→ b∗ea

∗tv0 is smooth, by Proposition
2.3 we have that

Qv0 ∈ D(A∗) ∀v0 ∈ V.

Now we show that ∀v0 ∈ V, we have

Qa∗v0 = A∗Qv0.(3.4)

Indeed, by differentiating (3.3) with respect to time and using (2.8), we obtain that

B∗
ΛT

∗
tA

∗Qv0 + b∗ea
∗ta∗v0 = 0(3.5)

for almost every t ∈ [0, T ], which shows that a∗v0 ∈ V and (3.4) holds.
Let ã denote the restriction of a∗ to its invariant subspace V . If V �= {0}, then ã

must have an eigenvalue λ ∈ σ(a∗) and a corresponding eigenvector ṽ. Formula (3.4)
implies that A∗Qṽ = λQṽ. Since Q is one-to-one, we have that Qṽ �= 0, so that λ is
an eigenvalue of A∗. This is in contradiction to the assumption in Theorem 3.3, and
hence we must have V = {0}. Thus, (3.3) implies that (z0, v0) = (0, 0) and we can
apply the second part of Proposition 3.2.

Proof of Theorem 3.3. Let T > T0 be fixed. According to Proposition 2.5 it
suffices to show that the pair

A∗ =
[
A∗ 0
0 a∗

]
, B∗ = [B∗ b∗

]
(3.6)

is exactly observable in time T . We already know from Lemma 3.4 and Proposition 2.5
that (A∗,B∗) is approximately observable in time T . Let PT denote the observability
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Gramian of (A∗,B∗), so that PT > 0. We partition PT in a natural way, according
to the product space X × C

n:

PT =
[
PT L
L∗ pT

]
.

We want to show that PT is invertible (i.e., bounded from below). It is not difficult
to see that PT is the observability Gramian of (A

∗, B∗) and pT is the observability
Gramian of (a∗, b∗). As (A∗, B∗) and (a∗, b∗) are exactly observable in time T, by
Proposition 2.2, both PT and pT are positive and boundedly invertible. We bring in
the Schur-type factorization

[
PT L
L∗ pT

]
=

[
PT 0
L∗ I

] [
P−1
T 0
0 ∆

] [
PT L
0 I

]
,

where ∆ = pT − L∗P−1
T L (this is checked by multiplying out). Notice that the first

factor is the adjoint of the last, and they are invertible. Therefore, PT is invertible
if and only if the middle factor is invertible. Since P−1

T is obviously bounded from
below, we see that PT is bounded from below if and only if ∆ is bounded from below.
Since PT > 0, from the factorization we see that ∆ > 0. But ∆ is a matrix, so that
∆ > 0 implies that ∆ is invertible. Thus we have proved that PT is invertible. By
Proposition 2.2, (A∗,B∗) is exactly observable in time T .

Remark 3.5. Under the assumptions of Theorem 3.3, in general, the two systems
will not be simultaneously exactly controllable in time T0. An example to illustrate
this will be given in section 4.

In the rest of this section we shall investigate simultaneous approximate con-
trollability. With the assumptions of Theorem 3.3 we obviously obtain simultaneous
approximate controllability, but the result is not sharp as it asks for exact controlla-
bility of each component. We give below a simultaneous approximate controllability
result by supposing only approximate controllability of each component.

At this point we introduce some notation. Let A be the generator of a strongly
continuous semigroup. Then the resolvent set ρ(A) contains a right half-plane. The
resolvent set is not necessarily connected, and we denote by ρ∞(A) the connected
component of ρ(A) which contains some right half-plane. (Obviously, there is only
one such component.) In particular, if σ(A) is countable, as is often the case in
applications, then ρ∞(A) = ρ(A).

Proposition 3.6. Let A be the generator of the strongly continuous semigroup T

acting on the Hilbert space X. Let B ∈ L(Cm, X−1) be an admissible control operator
for T and assume that (A,B) is approximately controllable in time T0. Let a ∈ C

n×n

and b ∈ C
n×m be matrices such that (a, b) is controllable. Further, assume that

σ(a) ⊂ ρ∞(A).(3.7)

Then there exists T > 0 such that the pairs (A,B) and (a, b) are simultaneously
approximately controllable in time T .

Proof. To arrive at a contradiction, we assume that the opposite holds: (A,B)
from (3.6) is not approximately controllable in any time. Then it follows from Propo-
sition 3.2 that for every k ∈ N there exists a zk ∈ X and a vk ∈ C

n such that
(zk, vk) �= (0, 0) and

B∗
ΛT

∗
t zk + b∗ea

∗tvk = 0 ∀ t ∈ [0, k].(3.8)
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It follows from the approximate observability in time T0 of (A
∗, B∗) that ∀k > T0 we

must have vk �= 0. Hence we may assume without loss of generality that ‖vk‖Cn = 1.
By the compactness of the unit ball in C

n, we may assume further that the sequence
(vk) is convergent: lim vk = v0. Then it follows that if we define the functions
yk ∈ L2

loc([0,∞),Cm) by

yk(t) = b∗ea
∗tvk for k ∈ {0, 1, 2, . . . },

then lim yk = y0 (in L
2
loc). Let ΨT0

be the operator defined by

ΨT0z0 = B∗
ΛT

∗
t z0 ∀t ∈ [0, T0],

and let ΠT0 denote the truncation of a function defined on [0,∞) to [0, T0]. Then
(3.8) implies that

ΨT0
zk +ΠT0yk = 0 ∀k ≥ T0.

Since Ker ΨT0
= {0}, the above equation shows that zk is uniquely determined

by yk, which in turn is obtained from vk. All these dependencies are linear, so that
there is an operator R : C

n→X (possibly nonunique, depending on the span of all
vk) such that zk = Rvk ∀k ∈ N. Hence, the sequence (zk) is convergent, and we put
z0 = lim zk = Rv0. Now it is easy to conclude from (3.8) that

(Ψz0)(t) + b∗ea
∗tv0 = 0 for almost every t ≥ 0.

Taking Laplace transforms, we obtain from the last formula that for some α ∈ R

and every s ∈ C with Re s > α,

B∗(sI −A∗)−1z0 + b∗(sI − a∗)−1v0 = 0.(3.9)

By analytic continuation, this formula remains valid on ρ∞(A∗)\σ(a∗). (On the other
connected components of ρ(A∗) we have no such information.) Since v0 �= 0 (actually,
its norm is 1) and (a∗, b∗) is observable, the rational function b∗(sI − a∗)−1v0 is not
zero. Therefore it has poles at a nonempty subset of σ(a∗), which by (3.7) is contained
in ρ∞(A∗). The first term in (3.9) being analytic around σ(a∗), it follows that the
left-hand side of (3.9) has poles, which is absurd. Thus we have proved that (A,B)
must be approximately controllable in some time T .

Note that the lemma says nothing about the time T in which (A,B) is approxi-
mately controllable. If T0 is minimal for (A,B), then of course T ≥ T0.

In the last part of this section we characterize the reachable subspaces of an
exactly controllable system, when the input function is restricted to Sobolev type
spaces strictly included in L2.

Let A be the generator of a strongly continuous semigroup T on X and let B ∈
L(U,X−1) be an admissible control operator for T. Suppose that the pair (A,B) is
exactly controllable in time T, in the sense of Definition 2.4. This means that the
range of the operator ΦT defined by (2.4) is equal to X. A natural question is the
characterization of the states which can be reached by more regular inputs. Define

H1
L(0, T ;U) = {ψ ∈ H1(0, T ;U) | ψ(0) = 0}.

The existence and uniqueness result below shows that the space reachable by means
of controls in H1

L(0, T ;U) cannot be larger than the space Z defined by

Z = X1 + (βI −A)−1BU = (βI −A)−1(X +BU),(3.10)
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where β ∈ ρ(A) (Z does not depend on the choice of β). The norm on Z is defined by

‖z‖2Z = inf
{‖x‖2 + ‖u‖2 | x ∈ X, u ∈ U, z = (βI −A)−1(x+Bu)

}
.

Lemma 3.7. For any u ∈ H1
L(0, T ;U), the solution z of (2.2) with z(0) = 0 is

such that

z ∈ C(0, T ;Z) ∩ C1(0, T,X).

Proof. Let u ∈ H1
L(0, T ;U) and denote by w the solution of

ẇ = Aw +Bu̇, w(0) = 0.

As B is an admissible control operator we have that w ∈ C([0, T ];X). Moreover it

is easily checked that the function t→ ∫ T
0
w(s)ds satisfies (2.2). Since the solution of

(2.2) with z(0) = 0 is unique, we obtain

z(t) =

∫ T

0

w(s)ds,

which obviously yields that

z ∈ C1([0, T ], X).(3.11)

On the other hand (2.2) gives

(βI −A)z(t) = βz(t)− ż(t) +Bu(t) ∀t ∈ [0, T ].(3.12)

Since βz − ż +Bu ∈ C([0, T ], X +BU), relation (3.12) with β ∈ ρ(A) implies
z ∈ C([0, T ], Z).(3.13)

From (3.11) and (3.13) we clearly obtain the conclusion of the lemma.
We can now characterize the states which are reachable by means of input func-

tions in H1
L(0, T ;U) as follows.

Proposition 3.8. Suppose that the pair (A,B) is exactly controllable in time
T0. Then ∀T > T0, the reachable space by means of input functions u ∈ H1

L(0, T ;U)
is the space Z from (3.10).

Proof. We know from Lemma 3.7 that the reachable space is included in Z. To
show that Z is contained in the reachable space, take β ∈ ρ(A) and consider two
systems with states w and v and input u1, described by

ẇ = (A− βI)w +Bu1,(3.14)

v̇ = u1.(3.15)

For an arbitrary z0 ∈ Z choose w0 ∈ X, v0 ∈ U such that

z0 = (βI −A)−1[w0 −Bv0].(3.16)

Since 0 is not an eigenvalue of A− βI, by Theorem 3.3 the systems (3.14) and (3.15)
are simultaneously exactly controllable in any time T > T0. Hence we can find
u1 ∈ L2([0, T ];U) such that the solutions w, v of (3.14) and (3.15) satisfy

w(0) = 0, w(T ) = e−βTw0, v(0) = 0, v(T ) = e−βT v0.(3.17)
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We define the function z1 by

z1(t) = (βI −A)−1(w(t)−Bv(t)) ∀t ∈ [0, T ].

Then it is easy to see that

z1(0) = 0, z1(T ) = e−βT z0.(3.18)

Moreover, after a simple calculation, (3.14) and (3.15) imply that

ż1(T ) = −w(t) = (A− βI)z1(t)−Bv(t) ∀t ∈ (0, T ).(3.19)

If we define now

z(t) = eβtz1(t), u(t) = eβtv(t),

relations (3.18) and (3.19) imply that z and u satisfy (2.2) together with z(0) = 0 and
z(T ) = z0. This means that Z is included in the space reachable by means of input
functions u ∈ H1

L(0, T ;U), as claimed.

4. Applications.

4.1. Applications to the equation of a vibrating string. In this subsection
we apply the results obtained in previous sections to the equation of a nonhomoge-
neous vibrating string. First we show that, with suitably chosen spaces, the system
corresponding to the string equation and an integrator are simultaneously exactly
controllable. In the case of a homogeneous string we show that the simultaneous
exact controllability time is strictly larger than the exact controllability time for the
string alone, i.e., we give the counterexample announced in Remark 3.5. In the second
part of this subsection we characterize the space of the states which are reachable by
means of an H1 or H2 input function u with u(0) = 0 and, in the case u ∈ H2, also
u̇(0) = 0.

Let us consider the initial and boundary value problem



ẅ(x, t) = [m(x)wx(x, t)]x, 0 < x < 1,

w(0, t) = 0, w(1, t) = u(t),

w(x, 0) = 0, ẇ(x, 0) = 0

(4.1)

with

m ∈W 1,∞(0, 1), m(x) ≥ m0 > 0 ∀x ∈ (0, 1).(4.2)

The equations above represent the simplest model of a nonhomogeneous elastic string.
Following well-known ideas (see for instance Lasiecka and Triggiani [18], [19]) the
system (4.1) can be written in the abstract form (2.2), provided we use the notation

z =

[
w
ẇ

]
, X = L2[0, 1]×H−1(0, 1), U = C,

A =

[
0 I
A0 0

]
, B =

[
0

−A0D

]
,(4.3)
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where

D(A0) = H1
0 (0, 1), A0 : D(A0)→H−1(0, 1), A0h = (m(x)hx)x,

so that A0 < 0, and the Dirichlet map D : C→L2[0, 1] is defined by

Dα = y ⇐⇒ {(m(x)yx)x = 0 in (0, 1), y(0) = 0, y(1) = α}

(see also [1]). From the above it clearly follows that A : D(A)→X, with

D(A) = H1
0 (0, 1)× L2[0, 1],

and that A is skew-adjoint: A∗ = −A. Note that B∗ = [ 0 D∗ ] and, for every
h ∈ H2(0, 1) ∩ H1

0 (0, 1), D∗A0h = m(1)hx(1). We denote by T the semigroup
generated by A. Well-known computations, using the above expressions for A∗ and
B∗ (see again [18], [19]) give that

B∗
T
∗
t

[
z0

z1

]
= m(1)φx(1, t) ∀

[
z0

z1

]
∈ D(A),(4.4)

where φ solves the corresponding homogeneous problem

φ̈(x, t) = (m(x)φx(x, t))x, 0 < x < 1, t ∈ (0, T ),(4.5)

φ(0, t) = φ(1, t) = 0, t ∈ [0, T ],(4.6)

φ(·, 0) = φ0 = A−1
0 z1 ∈ H2(0, 1) ∩H1

0 (0, 1),(4.7)

φ̇(·, 0) = φ1 = z0 ∈ H1
0 (0, 1).(4.8)

It is by now well known that B is an admissible control operator and the couple
(A,B) is exactly controllable in any time T > T0, where T0 =

2√
m0

(see for instance

Zuazua [27]). Moreover, if m = 1, then the system (A,B) is exactly controllable in
time 2 (see for instance Haraux [15]).

Consider now the following system of two scalar differential equations with the
same input u:

{
v̇ = u,

ẇ = w + u.
(4.9)

The result below, concerning the simultaneous exact controllability of (4.1) and
(4.9), gives, in particular, the counterexample announced in Remark 3.5.

Proposition 4.1. The systems (4.1) and (4.9) are simultaneously exactly con-
trollable in any time T > T0, where T0 =

2√
m0
. However, if m = 1, then the systems

(4.1) and (4.9) are not simultaneously approximately controllable in time T0 = 2.
Proof. We can write the system (4.9) in the form q̇ = aq + bu, where

q =

[
v
w

]
, a =

[
0 0
0 1

]
, b =

[
1
1

]
,(4.10)
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and it is clear that (a, b) is controllable. The eigenvalues of A from (4.3) are on
the imaginary axis and nonzero. The simultaneous exact controllability in any time
T > T0 follows from the exact controllability of the system in (4.1) in any time T > T0,
by applying Theorem 3.3.

We still have to prove the lack of simultaneous approximate controllability in time
2, in the case of a homogeneous string with m = 1. Choose w0 ∈ R, w0 �= 0. As
the family formed by (sin (nπt)n≥1, cos (nπt)n≥1) together with the constant function

1/
√
2 is an orthonormal basis in L2(0, 2), we can find sequences (an)n≥1 and (bn)n≥1

in l2 and v0 ∈ R such that

∞∑
n=1

(−1)n[an cos (nπt) + bn sin (nπt)] + v0 + etw0 = 0 for a.e. t ∈ [0, 2].(4.11)

Note that the functions sin(nπx) (x ∈ (0, 1)) are eigenvectors of A0. If we denote

z0(x) = π

∞∑
n=1

bn sin(nπx), z1(x) = π2
∞∑
n=1

nan sin(nπx),

then z0 ∈ L2[0, 1] and z1 ∈ H−1(0, 1). Now using (4.4) and (4.10), relation (4.11) can
be written as

B∗
ΛT

∗
t

[
z0

z1

]
+ b∗ea

∗t
[
v0

w0

]
= 0 for almost every t ∈ [0, 2].

Since w0 �= 0, this relation with Proposition 3.2 implies that the systems (4.1) and
(4.9) are not simultaneously approximately controllable in time T0 = 2.

For l > 0 we define the space

H2
L(0, l) = {u ∈ H2(0, l) | u(0) = u̇(0) = 0}.

The states of the system (4.1) which can be reached by means of H1
L and H2

L input
functions can be characterized as follows.

Proposition 4.2. Suppose that m(x) satisfies (4.2) and T > T0 =
2√
m0
. Then

the space of all states (w(T ), ẇ(T )) which can be reached in time T by means of input
functions u ∈ H1

L(0, T ) is Z = H1
L(0, 1)× L2[0, 1].

Moreover, the space of all states (w(T ), ẇ(T )) which can be reached in time T by
means of input functions u ∈ H2

L(0, T ) is Z1 = [H
1
L(0, 1) ∩H2(0, 1)]×H1

L(0, 1).
Proof. For u ∈ H1

L(0, T ) it suffices to apply Proposition 3.8 and to notice that,
with the notation (4.3), the space Z defined by (3.10) is H1

L(0, 1) × L2[0, 1]. For
u ∈ H2

L(0, T ) we consider the new input ũ = u̇, a new state space equal to H1
L(0, 1)×

L2[0, 1], and we apply again Proposition 3.8.

4.2. Controllability of a coupled system. Consider a vertical string whose
horizontal displacement in a given plane is described by the wave equation on the
spatial domain (0, 1). The upper end (corresponding to x = 0) is kept fixed and an
object of massM is attached at the lower end (corresponding to x = 1). The external
input is a horizontal force v acting on the object, and it is contained in the plane
mentioned earlier. We neglect the moment of inertia of the object (i.e., we imagine
the object to be very small). From simple physical considerations, and taking a certain
constant to be one, we obtain that this system is described by the following equations,
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valid ∀x ∈ (0, 1) and ∀t ∈ (0,∞):



ẅ(x, t) = [m(x)wx]x(x, t), w(0, t) = 0,

Mẅ(1, t)− wx(1, t) = v(t),

w(x, 0) = ẇ(x, 0) = 0, x ∈ (0, 1).

(4.12)

Here, w is the controlled wave (horizontal displacement) and ẇ is the horizontal
velocity. The appropriate spaces for all these functions will be specified later. The
point x = 0 is just reflecting waves, while the active end x = 1 is where both the
observation and the control take place. We shall often write w(t) to denote a function
of x, meaning that w(t)(x) = w(x, t), and similarly for other functions.

A direct analysis of the well-posedness, controllability, and observability of this
system is not trivial, in spite of the simplicity of the system. We will show below
that we can obtain a sharp result by simply applying Proposition 4.2. We begin by
identifying the natural state space of (4.12).

Proposition 4.3. Suppose that m(·) satisfies (4.2) and that v ∈ L2[0, T ]. Then
the initial and boundary value problem (4.12) admits a unique solution

w ∈ C(0, T ;H1
L(0, 1) ∩H2(0, 1)) ∩ C1(0, T ;H1

L(0, 1)).(4.13)

Proof. Using semigroups or a standard Galerkin method, it is easy to prove that
∀v ∈ L2[0, T ], the problem (4.12) admits a unique solution

w ∈ C(0, T ;H1
L(0, 1)) ∩ C1(0, T ;L2[0, 1]),(4.14)

which satisfies the first equation from (4.12) in D′((0, 1) × (0, T )) and the second in
D′(0, T ) (notice that wx(1, ·) makes sense in H−2(0, T )). Consider a sequence (vn) in
D(0, T ) such that vn→ v in L2[0, T ]. If we denote by (wn) the corresponding sequence
of smooth solutions of (4.12), it is clear that

wn→w in L∞(0, T ;H1
L(0, 1)) ∩W 1,∞(0, T ;L2[0, 1]),(4.15)

wn(1, t) = ẇn(1, t) = 0 ∀n ≥ 1.(4.16)

Moreover, by multiplying the equation

(ẅm − ẅn)(x, t) = [m(x)(wm − wn)x]x(x, t)

by x ∂
∂x (wm − wn)(x, t) and by integrating over [0, 1] × [0, T ], we obtain, after well-

known calculations, the existence of a constant C > 0 such that

∫ T

0

|(wm − wn)x(1, t)|2 dt

≤ C
(‖wn − wm‖L∞(0,T ;H1(0,1)) + ‖ẇn − ẇm‖L∞(0,T ;L2[0,1])

)
.(4.17)

Since

Mẅn(1, t)− (wn)x(1, t) = vn(t),
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relation (4.17) implies that ẅn(1, ·) is a Cauchy sequence in L2[0, T ]. By using (4.15)
and (4.16), we obtain that w(1, ·) ∈ H2

L(0, T ). The regularity (4.13) follows now from
Proposition 4.2.

Proposition 4.4. Suppose that m satisfies (4.2) and T > T0 =
2√
m0
. Then

the system (4.12) is well posed and exactly controllable in time T in the space X =
[H1

L(0, 1) ∩ H2(0, 1)] × H1
L(0, 1). In other words, (w

0, w1) ∈ [H1
L(0, 1) ∩ H2(0, 1)] ×

H1
L(0, 1) if and only if there exists v ∈ L2[0, T ] such that the solution of (4.12) satisfies

w(T ) = w0, ẇ(T ) = w1.(4.18)

Proof. By Proposition 4.2, for any (w0, w1) ∈ [H1
L(0, 1) ∩ H2(0, 1)] × H1

L(0, 1)
there exist

w ∈ C(0, T ;H2(0, 1)), u ∈ H2
L(0, T )(4.19)

satisfying (4.1) and (4.18). From (4.19) it obviously follows that if we define

v(t) = mü(t)− wx(1, t),

then v ∈ L2[0, T ] and w, v satisfy (4.12) and (4.18).

5. The simultaneously reachable subspace of two infinite-dimensional
systems. In this section we study an example showing that for certain pairs of
infinite-dimensional systems it is still possible to derive results similar to those ob-
tained in the previous section. However, the reachable space and the reachability
time are more difficult to characterize. The problem we tackle is the one-dimensional
version of an open question raised in Lions [20]. We give here only the results which
are simple consequences of recent work on nonharmonic Fourier series. A detailed
study of this problem requires new techniques and is the subject of the forthcoming
paper by Avdonin and Tucsnak [3].

For ξ ∈ (0, 1) we consider the problems


ẅ1(x, t)− (w1(x, t))xx = 0 ∀x ∈ (0, ξ), ∀t ∈ (0,∞),
w1(0, t) = 0, w1(ξ, t) = u(t) ∀t ∈ (0,∞),
w1(x, 0) = 0, ẇ1(x, 0) = 0 ∀x ∈ (0, ξ)

(5.1)

and 

ẅ2(x, t)− (w2(x, t))xx = 0 ∀x ∈ (ξ, 1), ∀t ∈ (0,∞),
w2(1, t) = 0, w2(ξ, t) = u(t) ∀t ∈ (0,∞),
w2(x, 0) = 0, ẇ2(x, 0) = 0 ∀x ∈ (ξ, 1).

(5.2)

The systems above model the vibrations of two strings joined at a common end at
x = ξ, the input being the displacement of this common point.

By using notation similar to the one used in (4.3), we can easily define the oper-
ators (Ai, Bi), i = 1, 2 such that the equations (5.1), (5.2) can be written as in (1.1),
with state spaces X1 = L2[0, ξ]×H−1(0, ξ) and X2 = L2[ξ, 1]×H−1(ξ, 1). According
to classical results, B1 (resp., B2) is an admissible control operator and the system
(A1, B1) (resp., (A2, B2)) is exactly controllable in time 2ξ (resp., 2(1− ξ)). The aim
of this section is to describe, to some extent, the space of the states in X1×X2 which
are reachable by means of an input function u ∈ L2[0, T ], with sufficiently large T .
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We cannot give a precise characterization of this reachable space but we give sharp
embedding results in appropriate Sobolev spaces.

For s > − 1
2 , we introduce the space Ws ⊂ X1 × X2 of quadruples of functions

(w0
1, w

1
1, w

0
2, w

1
2) satisfying

(w0
1, w

1
1, w

0
2, w

1
2) ∈ Hs+1(0, ξ)×Hs(0, ξ)×Hs+1(ξ, 1)×Hs(ξ, 1),

w0
1(0) = 0, w0

2(1) = 0, w0
1(ξ) = w0

2(ξ).

Denote by Q the set of rational numbers. We denote by S the set of all numbers
ρ ∈ (0, 1) such that ρ �∈ Q and if [0, a1, . . . , an, . . . ] is the expansion of ρ as a con-
tinuous fraction, then (an) is bounded. Note that S is uncountable and, by classical
results on diophantine approximation (cf. [8, p. 120]), its Lebesgue measure is zero.
Roughly speaking, the set S contains the irrationals which are “badly” approximable
by rational numbers. In particular, by the Euler–Lagrange theorem (cf. [17, p. 57])
S contains all ξ ∈ (0, 1) such that ξ is an irrational quadratic number (i.e., satisfying
a second degree equation with rational coefficients). According to a classical result
(see, for instance, [17]), if ξ ∈ S, then there exists a constant Cξ > 0 such that

∣∣∣∣ξ − p

q

∣∣∣∣ ≥ Cξ
q2

∀p, q ∈ N.(5.3)

We can now state our main result concerning the lack of simultaneous exact con-
trollability of the two strings, which also gives some information on the simultaneously
reachable space as a function of ξ.

Theorem 5.1. Suppose that T > max {4ξ, 4(1− ξ)}. Then the following holds.
(a) For any ξ ∈ S, all the elements of W0 can be reached in time T by means of

an input u ∈ L2[0, T ].
(b) For almost all ξ ∈ [0, 1] and ∀s > 0, all the states in Ws can be reached in

time T by means of an input u ∈ L2[0, T ].
(c) The results above are sharp in the sense that, for any ξ ∈ (0, 1) and s ∈ (− 1

2 , 0),
we can find a state in Ws which is not reachable by means of an input u ∈ L2[0, T ].
In particular, for any T > 0, the systems (5.1), (5.2) are not simultaneously exactly
controllable in time T (in the natural energy space X1 ×X2).

As a tool in our proof, ∀s > − 1
2 we introduce the space

Vs = Hs+1
0 (0, ξ)×Hs(0, ξ)×Hs+1

0 (ξ, 1)×Hs(ξ, 1).

It is clear that Vs is a subspace of Ws (with finite codimension). In order to prove
Theorem 5.1, we notice first that for s < 1

2 , the reachability of Ws is equivalent to
the reachability of its subspace Vs. More precisely, we have the following lemma.

Lemma 5.2. Let s ∈ (− 1
2 ,

1
2 ). Then all the elements of Ws can be reached in

time T by means of an input u ∈ L2[0, T ] if and only if the same property holds for
Vs.

Proof. One of the implications is trivial. Take (w0
1, w

1
1, w

0
2, w

1
2) ∈ Ws for some

fixed s ∈ (− 1
2 ,

1
2 ) and denote α = w0

1(ξ) = w0
2(ξ). Let ψ1(x, t), ψ2(x, t) be the solutions

of (5.1), (5.2) with u = uψ, where

uψ(t) =
α

T 2
t2.
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It can be checked, arguing similarly as in the proof of Lemma 3.7, but differentiating
twice, that

(ψ1, ψ̇1, ψ2, ψ̇2) ∈ C([0, T ];W1).

In particular, this implies that the above statement is true with Ws in place of W1.
Moreover, we have

ψ1(0, T ) = ψ2(1, T ) = 0, ψ1(ξ, T ) = ψ2(ξ, T ) = α.

The above equalities (together with s < 1
2 ) imply that

(w0
1 − ψ1(·, T ), w1

1 − ψ̇1(·, T ), w0
2 − ψ2(·, T ), w1

2 − ψ̇2(·, T )) ∈ Vs.

Suppose now that all the elements of Vs can be reached in time T by means of
an input in L2[0, T ]. It follows that there exists an input uϕ ∈ L2[0, T ] such that the
solutions ϕ1, ϕ2 of (5.1) and (5.2) with u = uϕ satisfy the conditions

ϕ1(x, T ) = w0
1(x)− ψ1(x, T ), ϕ̇1(x, T ) = w1

1(x)− ψ̇1(x, T ), in L2[0, ξ],(5.4)

ϕ2(x, T ) = w0
2(x)− ψ2(x, T ), ϕ̇2(x, T ) = w1

2(x)− ψ̇2(x, T ), in L2[ξ, 1].(5.5)

If we define the input u ∈ L2[0, T ] by u = uψ + uϕ, then the corresponding solutions
w1 and w2 of (5.1), (5.2) satisfy

w1(x, T ) = w0
1(x), ẇ1(x, T ) = w1

1(x), w2(x, T ) = w0
2(x), ẇ2(x, T ) = w1

2(x).

Thus, the elements of Ws can be reached in time T by an input u ∈ L2[0, T ].
The main tool used in the proof of Theorem 5.1 is a recent generalization of a

classical inequality of Ingham. This result was first proved in Jaffard, Tucsnak, and

Zuazua [14] for T > 12
√

6
δ and then improved in Baiochi, Komornik, and Loreti [4]

for T > 4π
δ . Its statement (following [4]) is the following theorem.

Theorem 5.3. Let M > 0 and let (λn) be a strictly increasing real sequence over
Z satisfying

λn+2 − λn ≥ δ > 0 ∀n ∈ Z with |n| ≥M.(5.6)

Then ∀T >
4π

δ
there exist constants C1, C2 > 0 such that

C1

∑[(|an|2 + |an+1|2
) |λn+1 − λn|2 + |an + an+1|2

] ≤
∫ T

0

∣∣∣∑ ane
iλnt

∣∣∣2 dt

≤ C2

∑[(|an|2 + |an+1|2
) |λn+1 − λn|2 + |an + an+1|2

] ∀(an) ∈ l2.

Let us now consider the initial and boundary value problems

φ̈1(x, t)− ∂2φ1

∂x2
(x, t) = 0 ∀x ∈ (0, ξ) ∀t ∈ (0,∞),(5.7)
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φ1(0, t) = φ1(ξ, t) = 0 ∀t ∈ (0,∞),(5.8)

φ1(x, 0) = φ0
1(x), φ̇1(x, 0) = φ1

1(x) ∀x ∈ (0, ξ),(5.9)

and

φ̈2(x, t)− ∂2φ2

∂x2
(x, t) = 0 ∀x ∈ (ξ, 1) ∀t ∈ (0,∞),(5.10)

φ2(1, t) = φ2(ξ, t) = 0 ∀t ∈ (0,∞),(5.11)

φ2(x, 0) = φ0
2(x), φ̇2(x, 0) = φ1

2(x) ∀x ∈ (ξ, 1).(5.12)

We will use the following duality result, which is related to Proposition 3.2. This
result follows from Theorem 2.1 in Dolecki and Russell [9] or from the HUM method
of Lions (see [20]).

Lemma 5.4. The space of the states of (5.1), (5.2) which can be reached by means
of the same input u ∈ L2[0, T ] contains the space Vs, s ∈ (− 1

2 ,
1
2 ) if and only if there

exist C, T > 0 such that the solutions φ1, φ2 of (5.7)–(5.12) satisfy

∫ T

0

∣∣∣∣∂φ2

∂x
(ξ, t)− ∂φ1

∂x
(ξ, t)

∣∣∣∣
2

dt

≥
(
‖φ0

1‖2H−s(0,ξ) + ‖φ1
1‖2H−1−s(0,ξ) + ‖φ0

2‖2H−s(ξ,1) + ‖φ1
2‖2H−1−s(0,ξ)

)

∀(φ0
1, φ

1
1, φ

0
2, φ

1
2) ∈

(
H2(0, ξ) ∩H1

0 (0, ξ)
)×H1

0 (0, ξ)×
(
H2(ξ, 1) ∩H1

0 (ξ, 1)
)×H1

0 (ξ, 1).

Proof of Theorem 5.1. If φ0
1 ∈ H2(0, ξ)∩H1

0 (0, ξ), φ
1
1 ∈ H1

0 (0, ξ), φ
0
2 ∈ H2(ξ, 1)∩

H1
0 (ξ, 1), φ

1
2 ∈ H1

0 (ξ, 1), it is known that we have the expansions

φ0
1(x) =

∑
n≥1 cn sin (

nπx
ξ )

φ1
1(x) =

π
ξ

∑
n≥1 ndn sin (

nπx
ξ )

}
x ∈ (0, ξ),

φ0
2(x) =

∑
n≥1 en sin (

nπ(1−x)
1−ξ )

φ1
2(x) =

π
1−ξ

∑
n≥1 nfn sin (

nπ(1−x)
1−ξ )

}
x ∈ (ξ, 1),

where the sequences (n2cn), (n
2dn), (n

2en), and (n
2fn) are in l

2. A standard calcu-
lation shows that the solutions φ1, φ2 of (5.7)–(5.12) are given by

φ1(x, t) =
∑
n∈Z

ane
inπ

ξ t sin

(
nπx

ξ

)
, x ∈ (0, ξ),(5.13)

φ2(x, t) =
∑
n∈Z

bne
i nπ
1−ξ t sin

(
nπ(1− x)

1− ξ

)
, x ∈ (ξ, 1),(5.14)
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where

an =




cn−idn
2 for n ≥ 1,

c−n+id−n

2 for n ≤ −1,
0 for n = 0,

(5.15)

bn =




en−ifn
2 for n ≥ 1,

e−n+if−n

2 for n ≤ −1,
0 for n = 0.

(5.16)

If we denote by (λn)n∈Z the strictly increasing sequence formed by the elements of
the set

Λ =

[
∪n∈Z

{
nπ

ξ

}]⋃[
∪n∈Z

{
nπ

1− ξ

}]
,

we can easily check that

λn+2 − λn ≥ in

{
π

ξ
,

π

1− ξ

}
∀n ∈ Z.(5.17)

On the other hand, from (5.3) it easily follows (see [13] for details) that, ∀ξ ∈ S, there
exists a constant Cξ > 0 with

λn+1 − λn ≥ Cξ
|λn| ∀n ∈ Z

∗,(5.18)

where Z
∗ = Z \ {0}. Moreover (5.13), (5.14) imply

∂φ2

∂x
(ξ, t)− ∂φ1

∂x
(ξ, t) =

∑
n∈Z∗

(−1)n+1nπ

(
an
ξ
ei

nπt
ξ +

bn
1− ξ

ei
nπt
1−ξ

)
,(5.19)

which yields

∂φ2

∂x
(ξ, t)− ∂φ1

∂x
(ξ, t) =

∑
n∈Z∗

knλne
iλnt,(5.20)

with the sequence (kn) satisfying

∑
n∈Z∗

|kn|2 =
∑
n∈Z∗

(|an|2 + |bn|2).(5.21)

Relations (5.18), (5.20), (5.21), and Theorem 5.3 imply that there exists a constant
Kξ > 0 such that

∫ T

0

∣∣∣∣∂φ2

∂x
(ξ, t)− ∂φ1

∂x
(ξ, t)

∣∣∣∣
2

dt ≥ Kξ

∑
n∈Z

(|an|2 + |bn|2)(5.22)

∀ξ ∈ S and ∀T > max {4ξ, 4(1− ξ)}. Inequality (5.22) combined with Lemma 5.4
implies that the elements in V0 are reachable by means of an input in L2[0, T ]. By
using Lemma 5.2 we obtain assertion (a) of Theorem 5.1.
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According to Lemma 7.3 in [13], ∀ε > 0 there exists a set Bε ⊂ (0, 1), of Lebesgue
measure 1, such that ∀ξ ∈ Bε, there exists a constant Cξ > 0 with

λn+1 − λn ≥ Cξ
|λn|1+ε ∀n ∈ Z

∗.(5.23)

Relations (5.20), (5.21), (5.23), and Theorem 5.3 imply that there exists a constant
Kξ > 0 such that

∫ T

0

∣∣∣∣∂φ2

∂x
(ξ, t)− ∂φ1

∂x
(ξ, t)

∣∣∣∣
2

dt ≥ Kξ

∑
n∈Z

( |an|2 + |bn|2
|λn|2ε

)
(5.24)

∀ξ ∈ Bε and ∀T > max {4ξ, 4(1− ξ)}. Lemma 5.4 combined with (5.24) implies that
∀s ∈ (0, 1

2 ), the elements in Vs are reachable by an input in L2[0, T ]. By applying
again Lemma 5.2 we get assertion (b) of Theorem 5.1 for s < 1

2 . For s ≥ 1
2 the

assertion remains true because Ws ⊂ Wr for s > r.

In order to prove assertion (c) we notice that, ∀ξ ∈ (0, 1), we can use the contin-
uous fractions expansion of 1−ξ

ξ to construct a sequence (p(n)) with values in N, with

limn→∞ p(n) =∞, such that

λp(n)+1 − λp(n) ≤ C

p(n)
∀n ∈ N.(5.25)

If we denote by (φ1n) (resp., by (φ2n)) the sequence of solutions of (5.7)–(5.9) (resp.,

of (5.10)–(5.12)) having initial data (sin (p(n)π
ξ ), 0) (resp., (sin ( (p(n)+1)π

1−ξ ), 0), relations

(5.13), (5.14), and (5.25) imply that

lim
n→∞

∫ T

0

∣∣∣∣∂φ2n

∂x
(ξ, t)− ∂φ1n

∂x
(ξ, t)

∣∣∣∣
2

dt

‖φ1n(0)‖2Hs(0,ξ) + ‖φ2n(0)‖2Hs(ξ,1)

= 0

∀s < 0. Using again Lemma 5.4 we conclude that (c) also holds.
Remark 5.5. The fact that (5.24) holds for any T > max {4ξ, 4(1− ξ)} was

proved in [4]. Earlier versions of this inequality (corresponding to larger values of T )
were given in [13] and [14]. Notice that (5.24) and the standard duality argument
imply only reachability of elements in Vs. In order to get the reachability of elements
in Ws we need a different argument, namely Lemma 5.2.

Remark 5.6. Intuitively it does not seem reasonable to have a minimal simul-
taneous reachability time depending on ξ. This question and other related issues
(simultaneous approximate controllability, simultaneous spectral controllability) are
tackled in [3]. In this work it is shown that the minimal time for these various types
of controllability is T = 2.

Acknowledgments. The authors wish to thank Enrique Zuazua for suggesting
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BIFURCATION CONTROL VIA STATE FEEDBACK FOR SYSTEMS
WITH A SINGLE UNCONTROLLABLE MODE∗
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SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1428–1452

Abstract. The state feedback control of bifurcations with quadratic or cubic degeneracy is
addressed for systems with a single uncontrollable mode. Based on normal forms and invariants,
the classification of bifurcations for systems with a single uncontrollable mode is obtained (Table 1).
Using invariants, stability characterizations are derived for a family of bifurcations, including saddle-
node bifurcations, transcritical bifurcations, pitchfork bifurcations, and bifurcations with a cusp or
hysteresis phenomenon. Bifurcations in systems under perturbed feedbacks are also addressed. In
the case of a saddle-node bifurcation, continuous but not differentiable feedbacks are introduced to
locally remove the bifurcation and to achieve the stability.

Key words. bifurcation, invariants, normal form, feedback control

AMS subject classifications. 93C10, 93C15

PII. S0363012997325927

1. Introduction. Nonlinear dynamical systems exhibit complicated performance
around bifurcation points. As the parameter of a system is varied, changes may occur
in the qualitative structure of its solutions around a point of bifurcation. Using a
feedback to stabilize a system with bifurcations has been studied by many authors
(see, for instance, [1], [5], [8], [11], [20], and [25]). Many engineering applications of
bifurcation control can be found in the literature (e.g., control of surge and rotating
stall in engine compressors, flight control under high angle-of-attack). Quadratic and
cubic feedbacks were introduced in [1] for the stabilization of bifurcated equilibria. It
was proved in [1] that the periodic solution of a Hopf bifurcation can be stabilized by
using state feedbacks. For the period doubling bifurcation, the method of harmonic
balance was introduced in [8]. A feedback design method for delaying and stabilizing
period doubling bifurcations was obtained. In [25], control laws were designed for the
suppression of chaos in a thermal convection system model. A review of bifurcation
and chaos in control systems can be found in [5]. More references on related topics
can be found in [4], a bibliography of publications on bifurcation and chaos in control
systems.

The main goal of this paper is to develop a framework for the analysis and control
of bifurcations. Stability characterizations are obtained for control systems around
bifurcations with quadratic or cubic degeneracy. Several well-known static bifurcations
are addressed in this paper in a unified approach. This is made possible by using
normal forms. The main results in sections 4 and 5 are summarized in Table 1, which is
a complete classification of bifurcations with quadratic or cubic degeneracy for systems
having a single uncontrollable mode. Because the system has only one uncontrollable
mode, it does not have the Hopf bifurcation if the feedback stabilizes the controllable
part. The Hopf bifurcation occurs for normal forms with two uncontrollable modes
(see [7]).

What makes this paper unique is the approach based on the normal form and the

∗Received by the editors August 11, 1997; accepted for publication (in revised form) June 29,
1999; published electronically May 11, 2000.
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†Mathematics Department, Naval Postgraduate School, Monterey, CA 93943 (wkang@math.nps.

navy.mil).
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Table 1
The bifurcations under state feedbacks. In the table, Q1 is defined by (3.5), Q̄ is defined by

(4.1), D is defined by (4.23), and Q̃ is a function defined by Q̃(a, b, c) = [a1 − az 0] Q [a b c]T .

invariants of nonlinear control systems. The two successful methods in the classical
bifurcation theory are the normal form method and the projection method. They
have been applied to control systems [1], [2], [21], [22]. The control system normal
form adopted in the present paper is different from those used in the literature of
nonlinear dynamical systems without control inputs. Why is it necessary to introduce
the control system normal form instead of adopting the Poincaré normal form of
vector fields? In fact, even for a linear control system ẋ = Ax + Bu, the controller
normal form is more useful than the diagonal form of A in the feedback design.
The normal form of nonlinear control systems generalizes the linear controller form.
An affine control system ẋ = f(x) + g(x)u has two vector fields f(x) and g(x).
Therefore, the normal form of a control system requires the simplification of both f
and g simultaneously. The simplification of f does not necessarily result in a simple
form for g. Furthermore, the transformation group of control systems consists of
changes of coordinates and feedbacks. This is different from the normal form theory
of dynamical systems where feedbacks are not considered. The resonant terms defined
for the control system normal form characterize the nature of a control system because
they are invariant under both changes of coordinates and state feedbacks. The results
obtained in this paper are intrinsic. They link the qualitative properties such as the
bifurcation of control systems and its stability with their invariants.

An advantage of using the control system normal form is that the stability around
bifurcations for a family of control systems is equivalent to the stability of their normal
forms. This equivalence relation significantly simplifies the problem. It enables us to
study a family of control systems with various bifurcations in a unified approach.
The results proved in this paper provide a complete classification of bifurcations
with quadratic or cubic degeneracy for systems having a single uncontrollable mode
(Table 1).

Another advantage of the normal form approach is that the set of all equilibria
of a control system (without feedback) in normal form can be found, and it is ap-
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proximately a quadratic surface. Based on the geometric interpretation of equilibrium
sets, we can describe how feedbacks change the distribution of the equilibrium points
in the closed-loop system. This is important because the graph of the equilibrium
points determines the type of the bifurcation. For certain systems, the position of
an equilibrium point determines its stability as well. Furthermore, understanding the
geometry of equilibrium sets enables us to characterize bifurcations under feedbacks
which are not zero at the critical point.

The paper is organized as follows. Two bifurcation problems are formulated in sec-
tion 2. Normal forms and invariants, the foundation of the framework, are introduced
in section 3. The bifurcation control for systems with a single zero uncontrollable
mode are studied in section 4 and section 5. In section 6, general feedbacks which
are not zero at the critical point are studied. The classification of bifurcations are
summarized in Table 1.

2. The problem formulation. Consider the following control system with a
parameter

ẋ = f(x, µ) + g(x, µ)u, f(0, 0) = 0,(2.1)

where x ∈ R
n is the state variable, u ∈ R

m is the control input, and µ is the parameter.
We assume that the rank of g(x) is m at the point of interest. Unless it is otherwise
specified, all vector fields and state feedbacks in this paper are Ck for some k > 0
sufficiently large. System (2.1) is said to be linearly controllable at (x, µ) = (0, 0) if
its linearization (A,B),

A =
∂f

∂x
(0, 0), B = g(0, 0)

is controllable. The origin (x, µ) = (0, 0) is called an equilibrium or equilibrium point
of (2.1) because x(t) = 0 is a constant solution if µ = 0 and u = 0. Constant solutions
may exist for other values of (x, µ, u). The equilibrium set is defined by

E = {(x, µ)| there exists u0 ∈ R such that f(x, µ) + g(x, µ)u0 = 0}.

A point in E is called an equilibrium or equilibrium point. Feedbacks are not involved
in this definition. If the control input u is substituted by a feedback u = u(x), a
closed-loop equilibrium, (x0, µ0), is defined by f(x0, µ0) + g(x0, µ0)u(x0) = 0. The set
of all closed-loop equilibria is

Ec = {(x, µ)|f(x, µ) + g(x, µ)u(x) = 0}.

The concept of an equilibrium set plays an important role in this paper. It is known
that the closed-loop equilibrium set Ec, in general, is changed if the feedback is varied.
However, the set Ec under any state feedback must be a subset of E. So, E consists
of all possible closed-loop equilibria. The topology of Ec is induced from E.

The classical bifurcation theory studies the change of qualitative properties of
dynamical systems as the parameters are varied. Qualitative properties include the
topology of the equilibrium set, the stability, the existence of periodic solutions, etc.
Control systems have two types of qualitative properties, which are those invariant
under regular feedbacks (for example, the controllability, the stabilizability, and the
topology of E) and those determined by the closed-loop system (for example, the
closed-loop equilibria and the stability under a state feedback). Studying how these
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properties are changed with parameters leads to the following two bifurcation prob-
lems for control systems.

Problem 2.1. Bifurcation of control systems. The problem focuses on the change
of qualitative properties of control systems (such as controllability and stabilizability).

Problem 2.2. Bifurcation control by using feedbacks. The problem focuses on
the feedback design to achieve the stability around a critical point, or to achieve the
desired performance by qualitatively changing a bifurcation.

Problem 2.1 was addressed in [14] and [15] for systems with a single uncontrollable
mode. In the present paper, we focus on Problem 2.2. It is proved that the same control
system may exhibit several different kinds of bifurcations under different feedbacks.
Instead of focusing on a single bifurcation, we ask the following questions. What kinds
of bifurcations can occur in a control system, and what is the relationship between
bifurcations and control laws? It is a different viewpoint from the existing bifurcation
control approaches. It is known that local bifurcations at a linearly controllable point
can be either removed or delayed by pole placement. In this paper, we study systems
which are not linearly controllable. The work is motivated by engineering problems
such as engine compressors and submersible vehicles [23], [20], [17]. In addition to the
engineering applications, our research on uncontrollable systems is also motivated by
the fact that qualitative properties such as controllability and stabilizability of control
systems are generic (they are not changed by a small variation of parameters) at a
linearly controllable point. If a system is not linearly controllable at a point, nonlinear
phenomena such as bifurcations are expected around the critical point.

It is assumed throughout this paper that there exists a single uncontrollable mode
(denoted by λ) in the linearization. The dimension of the state space is at least two
(n ≥ 2). If λ �= 0, the sign of λ determines the stabilizability of the uncontrollable
dynamics. Therefore, the variation of µ does not change the stability, i.e., there is
no stationary bifurcation at µ = 0. If λ = 0, the stability of the system depends on
the value of the parameter. Different kinds of bifurcations occur in the performance.
So, we focus on systems with λ = 0 in the following sections. Under a suitable linear
change of coordinates and linear feedback, a system with a single uncontrollable mode
λ = 0 can be transformed into one of the following forms (see [15] or [16]).

ż = f1(z, x, µ) + g1(z, x, µ)u,

ẋ = A2x + B2u + f2(z, x, µ) + g2(z, x, µ)u
(2.2)

or

ż = µ + f1(z, x, µ) + g1(z, x, µ)u,

ẋ = A2x + B2u + f2(z, x, µ) + g2(z, x, µ)u,
(2.3)

where f1, f2, and their first derivatives equal zero at the origin (z, x, µ) = (0, 0, 0), g1

and g2 equal zero at the origin. The pair (A2, B2) is in the following Brunovsky form:

A2 =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · ·
0 0 0 · · · 1
0 0 0 · · · 0




(n−1)×(n−1)

, B2 =




0
0
...
1


 .(2.4)

A feedback

u = α(z, x, µ)(2.5)
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for bifurcation control is a smooth function of (z, x, µ) such that α(0, 0, 0) = 0. The
linearization of a feedback is in the following form:

α(z, x, µ) = azz +

n−1∑
i=1

aixi + aµµ + O(z, x, µ)2.(2.6)

Notice that the value of µ is not always available. The function α(z, x, µ) involves the
parameter µ for two reasons. (1) Introducing µ in α(z, x, µ) makes the theory more
general. Feedbacks independent of µ form a subset of the feedbacks defined by (2.5).
(2) By transforming the original system into it normal form, the linearization of the
last equations in (2.2) and (2.3) has only one term which is the input u. However,
the original system may have the terms with µ in the last equation. In this case, the
term µ is absorbed in (2.5). So, aµ in (2.6) comes from the original model. It is not
necessarily zero.

In this paper, a system is said to be stable at a given equilibrium point if it is
locally asymptotically stable at this point. To achieve stability, feedbacks in this paper
are assumed to satisfy the following assumption.

Assumption 2.3. The state feedback (2.6) places the controllable poles in the left
half plane, i.e., the eigenvalues of the matrix A2 + B2

[
a1 a2 · · · an−1

]
are all

in the left half plane.
It is known that (−1)na1 equals the multiplication of all eigenvalues of the matrix

A2 + B2

[
a1 a2 · · · an−1

]
.

From Assumption 2.3, these eigenvalues are on the left half plane. So we have the
following lemma.

Lemma 2.4. If a feedback (2.6) satisfies Assumption 2.3, then a1 < 0.

3. Normal forms and invariants. In this section, nonlinear invariants are
defined by the coefficients of resonant terms. Then quadratic normal forms in [14] and
[15] are introduced without proof.

3.1. Resonant terms and invariants. In the classical theory of dynamical
systems, a set of resonant terms was found for the homogeneous parts of nonlinear
systems. The coefficients of resonant terms are invariant under homogeneous transfor-
mations. For systems with the Hopf bifurcation, the values of invariants determine the
stability of the periodic solutions. For control systems, the invariants were introduced
in [12] for linearly controllable systems. In this section, a set of invariants is found for
systems which are not linearly controllable. It plays a key role in the stability analysis
for control systems with bifurcations.

The quadratic and cubic terms in the Taylor expansion of vector fields are used in
the proofs of many results. The homogeneous parts of degree d for fi and gi in (2.2)

and (2.3) are denoted by f
[d]
i and g

[d]
i . For instance, the quadratic terms in the Taylor

expansion of f1 + g1u have the form f
[2]
1 (z, x, µ) + g

[1]
1 (z, x, µ)u. The components of

f
[d]
i and g

[d−1]
1 are homogeneous polynomials of degree d and d − 1, respectively. A

homogeneous transformation of degree d for control systems consists of the change of
coordinates and state feedbacks in the form

z = z̄ + φ
[d]
1 (z̄, x̄, µ), x = x̄ + φ

[d]
2 (z̄, x̄, µ),

u = ū + α[d](z̄, x̄, µ) + β[d−1](z̄, x̄, µ)ū,
(3.1)
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where z̄ and x̄ are the new coordinates and ū is the new control input introduced by
the regular feedback. A transformation of degree d does not change the terms of degree
less than d in a control system. If d = 2, (3.1) is called a quadratic transformation. If
d = 3, it is called a cubic transformation.

Definition 3.1. Consider (2.2) or (2.3). A homogeneous term in f
[d]
i (z, x, µ)

or g
[d−1]
i (z, x, µ)u, is called a resonant term if transformations of the form (3.1) leave

the coefficient of the term invariant. The coefficient of a resonant term is called an
invariant.

For instance, if (3.1) is applied to (2.2), it can be proved that the term z̄2 in f̄
[2]
1

of the resulting system has the same coefficient as the term z2 in f
[2]
1 of (2.2). So

z2 in f
[2]
1 is resonant. Notice that the resonant terms of control systems are different

from the resonant terms in the classical theory of dynamical systems. A resonant term
in Definition 3.1 is invariant under both changes of coordinates and state feedbacks.
However, the classical dynamic systems theory does not deal with any feedback. In
the next theorem, resonant terms are found for (2.2) and (2.3). Define

R[d](z, x1, µ) = f
[d]
1 (z, x, µ)|x2=x3=···=xn−1=0,

R
[d]
1 (z, x1) = R(z, x1, 0),

(3.2)

where f
[d]
1 (z, x, µ) is the homogeneous vector field of degree d from the Taylor expan-

sion of f1(z, x, µ) in (2.2) and (2.3).
Theorem 3.2. In (2.2), all terms of R[d](z, x1, µ) are resonant. In (2.3), all

terms of R
[d]
1 (z, x1) are resonant.

Proof. Consider the system (2.2). Suppose that (2.2) is transformed into the
following system by (3.1):

˙̄z = f̄1(z̄, x̄, µ) + ḡ1(z̄, x̄, µ)ū,
˙̄x = A2x̄ + B2ū + f̄2(z̄, x̄, µ) + ḡ2(z̄, x̄, µ)ū.

It was proved in [13] that the homogeneous parts of f1 and f̄1 satisfy the homological
equation

∂φ
[d]
1 (z, x, µ)

∂x
A2x = f

[d]
1 (z, x, µ)− f̄

[d]
1 (z, x, µ).

However,

∂φ
[d]
1

∂x
A2x =

∂φ
[d]
1

∂x1
x2 + · · ·+ ∂φ

[d]
1

∂xn−2
xn−1.(3.3)

Therefore, every term of f
[d]
1 − f̄

[d]
1 has at least one of the variables x2, . . . , xn−1.

The terms in R(z, x1, µ) do not appear in f
[d]
1 − f̄

[d]
1 . This implies that the function

R[d](z, x1, µ) in f
[d]
1 is invariant under (3.1).

Now consider the system (2.3). The homological equation for f
[d]
1 is

∂φ
[d]
1 (z, x, µ)

∂z
µ +

∂φ
[d]
1 (z, x, µ)

∂x
A2x = f

[d]
1 (z, x, µ)− f̄

[d]
1 (z, x, µ).

From (3.3), every nonzero term in f
[d]
1 − f̄

[d]
1 has at least one of the variables µ,

x2,. . . ,xn−1. This implies that the coefficients in R
[2]
1 (z, x1) are not changed by

(3.1).
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In the following, the coefficients of resonant terms are denoted by γ with corre-

sponding subindices. For example, the coefficient of z2 in R
[2]
1 (z, x1) or R[2](z, x1, µ)

is γzz, the coefficient of zx1µ is γzx1µ, etc. Based on this theorem, the coefficients
γzz, γzx1

, γzµ, γx1x1
, γx1µ, γµµ in (2.2) and the coefficients γzz, γzx1

, γx1x1
in (2.3)

are called (quadratic) invariants. They are part of the quadratic invariants intro-
duced in [12] and [15] using Lie brackets. The quadratic functions of resonant terms

R[2](z, x1, µ) and R
[2]
1 (z, x1) determine two symmetric matrices,

Q =




γzz
γzx1

2

γzµ
2γzx1

2
γx1x1

γx1µ

2γzµ
2

γx1µ

2
γµµ


 , Q1 =


 γzz

γzx1

2γzx1

2
γx1x1


 .(3.4)

In this paper, the quadratic function defined by Q (or Q1) is also denoted by Q(x, y, z)
(or Q1(x, y)), i.e.,

Q(x, y, z) =
[
x y z

]
Q
[
x y z

]T
, Q1(x, y) =

[
x y

]
Q1

[
x y

]T
.(3.5)

Equivalently,

Q(z, x1, µ) = R[2](z, x1, µ), Q1(z, x1) = R
[2]
1 (z, x1).

3.2. Quadratic normal forms. Since systems with the same normal form have
equivalent bifurcations, most proofs in this paper are given for quadratic normal forms.
From [15] and [16], (2.2) and (2.3) can be transformed into a unique system in normal
form by a suitable quadratic transformation of the form (3.1) with d = 2.

For (2.2), the normal form is

ż =
n−1∑
i=2

γxixi
x2
i + Q(z, x1, µ) + O(z, x, µ, u)3,

ẋ = A2x + B2u + f̃
[2]
2 (x) + O(z, x, µ, u)3.

(3.6)

For (2.3), the normal form is

ż = µ +

n−1∑
i=2

γxixix
2
i + γx1µx1µ + Q1(z, x1) + O(z, x, µ, u)3,

ẋ = A2x + B2u + f̃
[2]
2 (x) + O(z, x, µ, u)3,

(3.7)

where f̃
[2]
2 (x) is in the extended controller form of [12]. Details are omitted since it

is not used in this paper. Before the end of this section, we introduce the following
well-known result on stationary bifurcations (see [9]).

Theorem 3.3. Consider the following one-dimensional dynamical system with a
parameter µ.

ẋ = f(x, µ), f(0, 0) = 0, x ∈ R.(3.8)

(i) It has a saddle-node bifurcation at the origin if

fx(0, 0) = 0, fµ(0, 0) �= 0, fxx(0, 0) �= 0.(3.9)
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(ii) It has a transcritical bifurcation at the origin if

fx(0, 0) = 0, fµ(0, 0) = 0,

fxx(0, 0) �= 0, f2
xµ(0, 0)− fxx(0, 0)fµµ(0, 0) > 0.

(3.10)

(iii) It has a pitchfork bifurcation at the origin if

fx(0, 0) = 0, fµ(0, 0) = 0, fxx(0, 0) = 0, fxµ(0, 0) �= 0, fxxx(0, 0) �= 0.(3.11)

If fxxx(0, 0) < 0, the pitchfork bifurcation is supercritical. If fxxx(0, 0) > 0, it is
subcritical.

4. Bifurcations of system (2.2). In this section, all bifurcations of (2.2) with
both quadratic and cubic degeneracies are addressed. An example is given to illustrate
the feedback design technique of this section. In the example, the model of engine
compressors with the transcritical bifurcation is studied. Feedbacks are designed to
stabilize the equilibria on the positive side of the uncontrollable variable R.

Define a matrix Q̄ from the linearization of a feedback and the quadratic invariants
of (2.2)

Q̄ =

[
a1 −az 0
0 −aµ a1

]
Q


 a1 0
−az −aµ

0 a1


 ,(4.1)

where Q is defined by (3.4). The matrix Q̄ is used in the next theorem to characterize
the bifurcation. Following the notation introduced in section 2, Ec represents the set
of closed-loop equilibrium points, i.e.,

Ec = {(x, µ)|f(x, µ) + g(x, µ)α(x, µ) = 0}.(4.2)

Theorem 4.1. Consider a closed-loop system (2.2)–(2.6) satisfying Assumption
2.3. Suppose

Q1(a1,−az) �= 0.(4.3)

(i) If Q̄ is sign definite, then (z, x, µ) = (0, 0, 0) is an isolated equilibrium point
of the closed-loop system. It is unstable.

(ii) If Q̄ is indefinite with full rank, then the closed-loop system has a transcritical
bifurcation around the origin.

(iii) Assume that the feedback satisfies the condition in (ii). Given any (z, x, µ) ∈
Ec in a neighborhood of the origin, it is locally asymptotically stable if

[
a1 −az 0

]
Q
[
z x1 µ

]T
> 0.(4.4)

The system is unstable if

[
a1 −az 0

]
Q
[
z x1 µ

]T
< 0.(4.5)

Remark. In zx1µ-space, the open loop equilibrium set E of (3.6) is approximately
a cone

Q(z, x1, µ) = 0,
xi = 0 for i = 2, 3, . . . , n− 1,

(4.6)
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provided that Q is indefinite with full rank (see [15]). The third and higher degree
terms are omitted in the approximation. Under the feedback

α(z, x, µ) =
∑

aixi + azz + aµµ + O(z, x, µ)2,

the closed-loop equilibrium set Ec is the intersection between E and the surface
α(z, x, µ) = 0. Therefore, Ec is approximated by the intersection between the plane
azz + a1x1 + aµµ = 0 and the cone (4.6). The geometry of Ec has two generic cases,
which are (1) it has a unique point, and (2) the intersection consists of two lines. The
first case is characterized by (i) of Theorem 4.1. The graph of Ec in the second case
indicates a transcritical bifurcation, which is proved by (ii) of Theorem 4.1.

Since (2.2) is equivalent to its normal form (3.6), it is important to find a center
manifold and the reduced system on it for the normal form (3.6). This is obtained in
the following lemma.

Lemma 4.2. Consider the quadratic normal form (3.6). Under the state feedback
(2.6), the center manifold of the closed-loop system satisfies

x1 = −az
a1

z − aµ
a1

µ + O(z, µ)2, xi = O(z, µ)2 for i = 2, . . . , n− 1.(4.7)

The reduced system on the center manifold satisfies

ż =
1

a2
1

[
z µ

]
Q̄
[
z µ

]T
+ O(z, µ)2.(4.8)

Proof. From [3], the center manifold is determined by a function x = π(z, µ),
where π(z, µ) can be approximated by polynomials. The function π(z, µ) satisfies an
equation of the following form:

Aπ(z, µ) + Bu(z, π, µ) + O(z, π, µ)2 =
∂π

∂z
O(z, π, µ)2.

Denote the linear part of π(z, µ) by π[1](z, µ). The linearization of this equation is

π
[1]
2 = 0, π

[2]
3 = 0, . . . , azz + a1π

[1]
1 (z, µ) + aµµ = 0.(4.9)

It is easy to check that the linear part of (4.7) satisfies (4.9). The functions in (4.7)
are equivalent to
 z

x1

µ


 =

1

a1


 a1 0
−az −aµ

0 a1



[

z
µ

]
+ O(z, µ)2, xi = O(z, µ)2 for 2 ≤ i ≤ n− 1.

Substituting this relation into the z dynamical equation in (3.6), we obtain (4.8) as
the reduced system on the center manifold.

The proof of Theorem 4.1. Since (2.2) can be transformed into its normal form
(3.6) by a quadratic transformation, and since the conditions in the theorem are
invariant under quadratic transformations, it is enough to prove the result for the
quadratic normal form (3.6).

(i) The closed-loop system is equivalent to its reduced system (4.8) on the center
manifold. Denote the right side of (4.8) by fc(z, µ). If Q̄ is sign definite, then (z, µ) =
(0, 0) is the unique local solution of fc(z, µ) = 0. Therefore, the origin is an isolated
equilibrium point. In this case, the reduced system (4.8) at µ = 0 is

ż =
1

a2
1

Q1(a1,−az)z2 + O(z)3.
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Since det(Q̄) > 0 and since Q1(a1,−az) is the first diagonal entry in Q̄, we know that
Q1(a1,−az) �= 0. The system is unstable. Part (i) is proved.

(ii) Now, assume that det(Q̄) < 0. It is obvious that

∂fc
∂z

(0, 0) = 0,
∂fc
∂µ

(0, 0) = 0.(4.10)

It is easy to check that

∂2fc
∂z2

(0, 0) =
1

a2
1

Q1(a1,−az) �= 0.(4.11)

∂2fc
∂z2

(0, 0)
∂2fc
∂µ2

(0, 0)−
(
∂2fc
∂zµ

(0, 0)

)2

= 4 det(Q̄) < 0.(4.12)

Therefore, the conditions in (ii) of Theorem 3.3 are satisfied. This implies that the
closed-loop system has a transcritical bifurcation.

(iii) The stability of the closed-loop system agrees with the reduced system on
the center manifold. It is easy to check that

∂fc
∂z

=
2

a2
1

[
1 0

]
Q̄
[
z µ

]T
+ O(z, µ)2.(4.13)

If (z, x, µ) is in Ec, then (z, µ) is an equilibrium point on the center manifold,

[
z µ

]
Q̄
[
z µ

]T
+ O(z, µ)3 = 0, x1 = −az

a1
z − aµ

a1
µ + O(z, µ)2.(4.14)

Therefore,

[
z µ

]
=
[
z0 µ0

]
t + O(t)2, x1 =

(
−az
a1

z0 − aµ
a1

µ0

)
t + O(t)2,(4.15)

where t ∈ R and (z0, µ0) �= (0, 0) satisfies

[
z0 µ0

]
Q̄
[
z0 µ0

]T
= 0.(4.16)

From (4.1) and (4.15), we have

1

a1

[
a1 −az 0

]
Q
[
z x1 µ

]T
=

1

a2
1

[
1 0

]
Q̄
[
z0 µ0

]T
t + O(t)2.(4.17)

If we can prove that

[
1 0

]
Q̄
[
z0 µ0

]T �= 0,(4.18)

then the sign of
1

a2
1

[
1 0

]
Q̄
[
z0 µ0

]T
t, which agrees with that of

∂fc
∂z

, is oppo-

site to the sign of the number given by

[
a1 −az 0

]
Q
[
z x1 µ

]T
,

because a1 < 0. Therefore, (4.4) implies that
∂fc
∂z

< 0 at the point in Ec around zero.

The closed-loop system is locally asymptotically stable. Similarly, (4.5) implies that
the system is unstable.
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Now we prove (4.18) by contradiction. Suppose

[
1 0

]
Q̄
[
z0 µ0

]T
= 0.(4.19)

Because det(Q̄) �= 0, and because (z0, µ0) �= (0, 0), we have that Q̄
[
z0 µ0

]T �= 0.

Equation (4.16) implies that
[
z0 µ0

]
Q̄
[
z0 µ0

]T
= 0. Comparing this equation

with (4.19), we have that µ0 = 0 and z0 �= 0. Therefore, (4.19) implies q1 1 = 0,
where q1 1 is the entry in Q̄ at the upper-left corner. However, q1 1 = Q(a1,−az). It
contradicts (4.3). Therefore, (4.18) is true.

Remark. From (4.13), it is obvious that the system is locally asymptotically
stable at (z, x, µ) ∈ Ec if

[
1 0

]
Q̄
[
z µ

]
< 0. This is another method of stability

testing.
Theorem 4.1 deals with bifurcation control under the assumption Q1(a1,−az) �=

0. In the following, we study the case where Q1(a1,−az) = 0. For this purpose, we
need cubic invariants. The function of cubic resonant terms, R[3](z, x1), of the normal
form (3.6) is denoted by C(z, x1), which is

C(z, x1) = R
[3]
1 (z, x1) = f

[3]
1 (z, x, µ)|x2=x3=···=xn−1=µ=0,(4.20)

where f
[3]
1 represents the cubic part in the first equation of (3.6). The state feedback

for bifurcation control is

u = α(z, x, µ),
α(z, x, µ) = azz + a1x1 + · · ·+ an−1xn−1 + aµxµ + α[2](z, x, µ) + O(z, x, µ)3,

(4.21)

where α[2] is a quadratic homogeneous polynomial. The coefficients in α[2] are denoted
by azz, azµ, ax1x1 , ax1µ, etc. The following quadratic function from α[2] is useful:

α
[2]
zx1(z, x1) = azzz

2 + azx1
zx1 + ax1x1

x2
1,(4.22)

i.e., α
[2]
zx1 is the restriction of α[2] to the zx1-plane. To simplify the notation, we define

D = a1C(a1,−az) + (2azγx1x1
− a1γzx1

)α
[2]
zx1(a1,−az),(4.23)

where γx1x1 and γzx1 are quadratic invariants in (3.4).
Theorem 4.3. Consider a closed-loop system (3.6)–(4.21) satisfying Assumption

2.3.
(i) Suppose

Q1(a1,−az) = 0.(4.24)

Then the closed-loop system has a pitchfork bifurcation at the origin provided

D �= 0,[
a1 −az 0

]
Q
[

0 −aµ a1

]T �= 0.
(4.25)

(ii) The pitchfork bifurcation is supercritical if D < 0. It is subcritical if D > 0.
Proof. The center manifold of (3.6)–(4.21) is the graph of x = π(z, µ), which

satisfies

∂π

∂z

(
n−1∑
i=2

γxixi
π2
i + Q(z, π1, µ)

)
= A2π + B2α(z, π, µ) + f̃

[2]
2 (π) + O(z, π, µ)3.(4.26)
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The Taylor expansion of π(z, µ) is π(z, µ) = π[1](z, µ) +π[2](z, µ) + · · · . Solving (4.26)
to the second degree, we have

π
[1]
1 (z, x) = −az

a1
z − aµ

a1
µ, π

[1]
i (z, µ) = 0 for i = 2, . . . , n− 1,

π
[2]
1 (z, µ) = − 1

a1

[
z π

[1]
1 µ

] (
− aza2

a1
Q + Qfb

) [
z π

[1]
1 µ

]T
,

π
[2]
2 (z, µ) = −az

a1
Q(z, π

[1]
1 , µ),

(4.27)

where Qfb represents the matrix of the quadratic function of z, x1, and µ in the
feedback (4.21). More specifically,

Qfb =




azz
azx1

2

azµ
2azx1

2
ax1x1

ax1µ

2azµ
2

ax1µ

2
aµµ


 .

The closed-loop system has the same bifurcation as its reduced system on the center
manifold. The reduced system is ż = fc(z, µ), where fc(z, µ) is obtained by substi-
tuting x = π(z, µ) into the z dynamical equation in (3.6)–(4.21). It has the following
approximation:

fc(z, π, µ) =
[
z π1 µ

]
Q
[
z π1 µ

]T
+ f

[3]
1 (z, π[1], µ) + O(z, µ)4.(4.28)

From (4.27), we have

[
z π

[1]
1 µ

]
Q
[

z π
[1]
1 µ

]T
=

1

a2
1

[
z µ

]
Q̄
[
z µ

]T
.(4.29)

Therefore,

∂fc
∂z

(0, 0) = 0,
∂fc
∂µ

(0, 0) = 0,

∂2fc
∂z2

(0, 0) =
2

a2
1

Q1(a1,−az),
∂2fc
∂zµ

(0, 0) =
1

a2
1

[
a1 −az 0

]
Q
[

0 −aµ a1

]T
.

(4.30)

From (4.27) and (4.24), we have

[
z π

[1]
1 (z, 0) 0

]
Qfb

[
z π

[1]
1 (z, 0) 0

]T
= α

[2]
zx1

(
z,−az

a1
z
)

=
1

a2
1

α[2]
zx1

(a1,−az)z2,

[
z π

[1]
1 (z, 0) 0

]
Q
[

z π
[1]
1 (z, 0) 0

]T
= Q1

(
z,−az

a1
z
)

=
1

a2
1

Q1(a1,−az)z2 = 0,

f
[3]
1 (z, π[1](z, 0), 0) = C

(
z,−az

a1
z
)

=
1

a3
1

C(a1,−az)z3.

(4.31)
Equations (4.31) and (4.27) imply

π1(z, 0) = −az
a1

z − 1

a3
1

α[2]
zx1

(a1,−az)z2.(4.32)
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In order to find the coefficient of z3 in fc(z, π(z, 0), 0), we substitute the formulae of

f
[3]
1 (z, π[1](z, 0), 0) and π1(z, 0) in (4.31) and (4.32) into (4.28). The substitution yields

∂3fc
∂z3

(0, 0) =
6

a4
1

(
a1C(a1,−az) + (2azγx1x1 − a1γzx1)α[2]

zx1
(a1,−az)

)
=

6

a4
1

D.(4.33)

From (4.30), (4.33), (4.24), and (4.25), we have

∂2fc
∂z2

(0, 0) = 0,
∂2fc
∂zµ

(0, 0) �= 0,
∂3fc
∂z3

(0, 0) �= 0.(4.34)

Equations (4.34) and (4.30) imply that the reduced dynamical system on the center
manifold satisfies (3.11). Therefore, the system has a pitchfork bifurcation. Further-
more, the bifurcation is supercritical if D < 0, and it is subcritical if D > 0.

Since α
[2]
zx1 is in the feedback, its coefficients are adjustable. There always exist

suitable quadratic functions α
[2]
zx1 which render the pitchfork bifurcation supercritical,

provided

2azγx1x1
− a1γzx1

�= 0.(4.35)

This condition is related to the rank of Q1. From Q1(a1,−az) = 0, we have

[
a1,−az

] [
γzza1 − γzx1

2
az

γzx1

2
a1 − γx1x1az

]T
= 0.(4.36)

Therefore, if 2azγx1x1
− a1γzx1

= 0, (4.36) implies a1(γzza1 − γzx1

2
az) = 0. Since

a1 �= 0, we have Q1

[
a1 −az

]T
=
[

0 0
]T

. So, rank(Q1) < 2. This is equivalent
to saying that rank(Q1) = 2 implies (4.35). Therefore, we have the following.

Corollary 4.4. Suppose that (3.6)–(4.21) satisfies (4.24) and (4.25). If Q1 has

full rank, then there exists a quadratic function α
[2]
zx1(z, x1) for the nonlinear feedback

such that the closed-loop system has a supercritical pitchfork bifurcation.

Remark. If C(a1,−az) > 0, then α
[2]
zx1(z, x1) = 0 implies D < 0. In this case, a

linear feedback renders the pitchfork bifurcation supercritical.
Now we introduce the following model of engine compressors as an example of

Theorem 4.1. The system exhibits various bifurcation phenomena (see, for instance,
[23], [20], [18], and [6]). The compressor control has been studied by many authors
([19], [20], and [18]). The example introduced here is not for the purpose of proving new
results for compressor control. We use the model to illustrate some ideas of feedback
design based on the results of this section. In the following, the results obtained in
[18] are proved using Theorem 4.1. The simplest model that describes the system is
a three-state ODE in Moore and Greitzer [24],

Ṙ = σR(−2φ− φ2 −R),

φ̇ = −ψ − 3

2
φ2 − 1

2
φ3 − 3Rφ− 3R,

ψ̇ = φ−√ψ + ψ0

( 2√
ψ0

+ µ + u
)

+ 2,

(4.37)

where R ≥ 0 is the normalized stall cell squared amplitude, φ is the mass flow, ψ is the
pressure rise, and ψ0 and σ are constant positive numbers. The control input u can
be changed by varying the throttle opening. The system has an uncertain parameter
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Fig. 4.1. The equilibrium set of (4.38).

µ. The values of φ, ψ, and u are shifted by a constant [19] so that the origin is the
focal bifurcation point. A simple linear change of coordinates z = R, x1 = φ, and
x2 = −ψ−3R transforms the dynamics into the following system in the form of (2.3).

ż = −2σzx1 − σz2 − σzx2
1,

ẋ1 = x2−3

2
x2

1 −
1

2
x3

1 − 3zx1,

ẋ2 = − 3

ψ0
z − x1 − 1

ψ0
x2 +

√
ψ0(µ + u) + O(z, x1, x2, µ, u)2.

(4.38)

Although the quadratic part of the system is not in normal form, the invariant matrices
Q and Q1 are found from the resonant terms

Q =

[
Q1 0
0 0

]
, Q1 =

[ −σ −σ
−σ 0

]
.

So Q1 is indefinite. In zx1-plane (or equivalently Rφ-plane), the graph of the equilib-
rium set E is shown in Figure 4.1a. The state of the real system always stays in the
region R ≥ 0. Therefore, it is desired to find state feedbacks which render the system
asymptotically stable at equilibrium points with R > 0. The equilibrium points with
R < 0 are meaningless. Consider a state feedback

u = k1R + k2φ + k3ψ + O(R,φ, ψ)2.(4.39)

In the coordinates (z, x1, x2), (4.39) is

u = (k1 − 3k3)z + k2x1 − k3x2 + O(z, x1, x2)2.(4.40)

Substituting (4.40) into (4.38), the closed-loop system satisfies

az = − 3

ψ0
+
√

ψ0(k1 − 3k3), a1 = −1 +
√
ψ0k2, a2 = − 1

ψ0
−
√

ψ0k3, aµ =
√
ψ0.

(4.41)
It is easy to check that

Q1(a1,−az) = −σa1(a1 − 2az), Q̄ = σ

[
a1(a1 − 2az) −a1aµ
−a1aµ 0

]
.(4.42)
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Equations in (4.42) imply that the conditions in (ii) of Theorem 4.1 are satisfied
if a1 �= 2az. Therefore, the bifurcation is transcritical. In the following, we use the
result (iii) of Theorem 4.1 to find all feedbacks which stabilize the system at the
equilibrium points with R > 0. From (4.38), the equilibrium points with z > 0 satisfy
z = −(2x1 + x2

1), and

[
a1 −az

]
Q1

[
z x1

]T
= σ

(
(a1 − 2az)x1 + (a1 − az)x

2
1

)
, x1 < 0.(4.43)

So (4.43) and Theorem 4.1 imply that, to guarantee the stability of the system at

the equilibrium points with z > 0, we need az >
a1

2
. Substituting (4.40) into this

inequality, we have

2k1 − k2 − 6k3 > (6− ψ0)/ψ
3
2
0 .(4.44)

Another branch of equilibrium points satisfies z = 0, so
[
a1 −az

]
Q1

[
z x1

]T
=

−σa1x1. On this curve, the closed-loop system is locally asymptotically stable if x1 >
0. In summary, if the feedback (4.39) satisfies Assumption 2.3 and (4.44), then the
closed-loop system has a transcritical bifurcation. It is locally asymptotically stable at
the equilibrium points where R > 0 or R = 0 and φ > 0. The closed-loop equilibrium
points are shown in Figure 4.1b. The system is locally stable on the solid curve, and
unstable on the dotted curve.

If the scaled amplitude of the rotating stall cell is adopted as a state to replace R,
the system model has a pitchfork bifurcation at the critical point. Its normal form and
invariants satisfy the conditions in Corollary 4.4. Stabilization feedbacks obtained in
[20] and [18] for the pitchfork bifurcation can be derived based on the invariants and
Corollary 4.4. Details are omitted for the reason of space.

5. Bifurcations of system (2.3). In this section, bifurcations of (2.3) with
both quadratic and cubic degeneracy are addressed. The results are summarized in
Table 1. The bifurcations are classified based on the number Q1(a1,−az). It was
proved in [15] that the equilibrium set E of (2.3) is approximately a paraboloid or a
saddle defined by

µ + Q1(z, x1) = 0.(5.1)

The set of closed-loop equilibrium points, Ec, is approximately the intersection be-
tween (5.1) and the plane

azz + a1x1 + aµµ = 0,(5.2)

where az, a1, and aµ are the coefficients in (2.6). Therefore, Ec is a quadratic curve.
The following theorem proves that the closed-loop system has a saddle-node bifurca-
tion. The stability of the system is characterized by the location of the closed-loop
equilibrium points. Define two subsets, E− and E+, of the open loop equilibrium set
E by

E− = {(z, x, µ) ∈ E|Q1(z, x1)z < 0}, E+ = {(z, x, µ) ∈ E|Q1(z, x1)z > 0}.(5.3)

The following theorem proves that Ec ∩E− consists of stable equilibrium points and
Ec ∩E+ consists of unstable equilibrium points. The origin is the border between the
two parts.
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Theorem 5.1. Consider a closed-loop system (2.3)–(2.6) satisfying Assumption
2.3. Suppose

Q1(a1,−az) �= 0.(5.4)

(i) The system has a saddle-node bifurcation at the origin. The set Ec satisfies

x1 = −az
a1

z + O(z)2, µ = − 1

a2
1

Q(a1,−az)z2 + O(z)3,

xi = O(z)2, i = 2, . . . , n− 1.
(5.5)

(ii) The closed-loop system is locally asymptotically stable at the points in Ec∩E−
and the system is unstable at the points in Ec ∩E+. In a neighborhood of the origin,

Ec = (Ec ∩ E−) ∪ (Ec ∩ E+) ∪ {(z, x, µ) = (0, 0, 0)}.(5.6)

Condition (5.4) is always true if Q1 is sign definite. If Q1 is indefinite, E is
approximately a saddle. Condition (5.4) implies that the plane (5.2) does not meet
(5.1) on a line in the zx1-plane. If (5.4) is false, Ec is not a quadratic curve of µ. This
case is addressed later in this section.

Remark. Geometrically, the sets E− and E+ are simple. In [15] and [16], it was
proved that the open loop equilibrium set E is approximately either a paraboloid or
a saddle given by (5.1). In the case of a paraboloid, Q1 is sign definite. So E− and
E+ are simply the half paraboloid given by z > 0 and z < 0 (Figure 5.1a). In the
case of a saddle, the set Q1(z, x)z = 0 consists of three planes in zx1µ-space given by
Q1(z, x) = 0 and z = 0. They divide E into six parts. Three of them form E− and
the others form E+. A point is in Ec ∩ E− (or Ec ∩ E+) if and only if µz > 0 (or
µz < 0) (Figure 5.1b).

Lemma 5.2. If n ≥ 3, the center manifold of a system (3.7)–(2.6) has the form

x1 = −az
a1

z − 1

a1

(
aµ − a2az

a1

)
µ + O(z, µ)2, x2 = −az

a1
µ + O(z, µ)2,(5.7)

and xi = O(z, µ)2 for i ≥ 3. The reduced system on center manifold is defined by

fc(z, µ) = µ + Q1

(
z,−az

a1
z − 1

a1

(
aµ − a2az

a1

)
µ

)

+γx2x2

a2
z

a2
1

µ2 + γx1µ

(
−az
a1

z − 1

a1

(
aµ − a2az

a1

)
µ

)
µ + O(z, µ)3.

(5.8)
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Proof. The center manifold x = π(z, µ) satisfies the equation

Aπ(z, µ) + Bu(z, π, µ) + O(z, π, µ)2 =
∂π

∂z
(µ + O(z, π, µ)2).

Formula (5.7) is obtained by solving the linearization of this equation. The reduced
dynamical system on the center manifold is derived by substituting (5.7) into the z
dynamical equation in (3.7).

Proof. The proof of Theorem 5.1. (i) Since (5.4) and (5.5) are invariant under
(3.1), we prove Theorem 5.1 for systems in the normal form (3.7). To find Ec, we set
the dynamics in the closed-loop system to be zero. Solving the linear and quadratic
parts of the equations yields

x1 = −az
a1

z − aµ
a1

µ + O(z, µ)2, xi = O(z, µ)2, i = 2, . . . , n− 1,(5.9)

where a1 is not zero (Lemma 2.4). Substitute this into the following equation:

µ +

n−1∑
i=2

γxixi
x2
i + γx1µx1µ + Q1(z, x1) + O(z, x, µ, u)3 = 0.

Therefore, µ = − 1

a2
1

Q1(a1,−az)z2+O(z)3. This relation and (5.9) imply the condition

(5.5).
To study the bifurcation, we focus on the center manifold. From (5.8), the fol-

lowing relation can be derived.

∂fc
∂z

(0, 0) = 0,
∂fc
∂µ

(0, 0) = 1 �= 0,
∂2fc
∂z2

(0, 0) =
2

a2
1

Q(a1,−az) �= 0.(5.10)

From (ii) of Theorem 3.3, the closed-loop system has a saddle-node bifurcation.
(ii) We prove (5.6) first. It is known that the points in Ec satisfy (5.5). Substituting

(5.5) into Q1(z, x1)z, we have

Q1(z, x1)z =
1

a2
1

Q1(a1,−az)z3 + O(z)4.(5.11)

Notice that Q1(a1,−az) �= 0. This implies that locally the points in Ec satisfy
Q1(z, x1)z �= 0 if z �= 0. Therefore, (5.6) holds. To prove the stability properties
claimed in Theorem 5.1, it is enough to show that (5.8) is locally stable at points in
Ec ∩ E− and unstable in Ec ∩ E+. From (5.5) and (5.8), it can be proved that at a
point in Ec,

∂fc
∂z

=
2

a2
1

Q1(a1,−az)z + O(z)2.(5.12)

Therefore, (5.8) is locally asymptotically stable when Q1(a1,−az)z < 0. From (5.11),
the sign of Q1(a1,−az)z is the same as the sign of Q1(z, x1)z for points in Ec. There-
fore, (5.8) is locally stable at any point in Ec ∩E−. Similarly, (5.8) is unstable at any
point in Ec ∩ E+.

Remark. From (5.12), it is obvious that the closed-loop system is asymptotically
stable at (z, x, µ) ∈ Ec if Q1(a1,−az) and z have opposite sign. This is another way
to test the stability.
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The feedback in Theorem 5.1 is smooth. A saddle-node bifurcation occurs. The
system has unstable equilibrium points around the origin. Furthermore, there is no
closed-loop equilibrium point for either µ > 0 or µ < 0. In the following, C0 feedbacks
are employed under which the closed-loop system has a unique equilibrium point for
any value of µ, no matter if µ is positive or negative. And the C0 feedback renders
the system locally stable at all the equilibrium points. In fact, a continuous (but
not differentiable at z = 0) feedback can place all the closed-loop equilibrium points
around the origin inside E−. The C0 feedback is

α(z, x, µ) = az|z|+ a1x1 + · · ·+ an−1xn−1 + aµxµ + O(z, x, µ)2,(5.13)

where |z| is not differentiable, and the rest of the function is Ck for some k ≥ 1.
Theorem 5.3. Consider (2.3)–(5.13) satisfying Assumption 2.3. Suppose az sat-

isfies

Q1(a1,−az) < 0, Q1(a1, az) > 0.(5.14)

Then, in a neighborhood of (z, x, µ) = (0, 0, 0), (2.3)–(5.13) has a unique equilibrium
point for every value of µ. The equilibrium point is stable if µ �= 0.

The quadratic form Q1(x, y) has both positive and negative values if it is indef-
inite. The region in the xy-plane defined by Q1(x, y) > 0 has two connected pieces.
If the region is not symmetric with respect to the x-axis, there always exists an az
satisfying (5.14). If Q1(x, y) is positive or negative definite, E is a paraboloid (Figure
5.1a). It is impossible to obtain equilibrium points in Ec for both µ < 0 and µ > 0,
no matter what kind of feedback is used.

Remark. The theorem does not claim the stability at µ = 0. In fact, the unique
equilibrium at µ = 0 is (z, x) = (0, 0). However, the system is not smooth at z = 0.
Therefore, the theory of center manifold is not applicable. The justification of the
stability at µ = 0 requires tools of nonsmooth vector fields. For some special cases,
the stability at µ = 0 is obvious. For example, if f1(z, x, µ) = 0 and g1(z, x, µ) = 0 at
all the points (z, x, µ) = (0, x, 0), then the subspace z = 0 is an invariant submanifold.
It follows a standard argument that, on each side of z = 0, the performance of the
system is equivalent to a smooth vector field. The stability is guaranteed by the center
manifold theory.

Proof. The feedback is equivalent to

α(z, x, µ) =

{
azz + a1x1 + · · ·+ an−1xn−1 + aµxµ + O(z, x, µ)2 if z ≥ 0,
−azz + a1x1 + · · ·+ an−1xn−1 + aµxµ + O(z, x, µ)2 if z < 0.

From (5.5), the closed-loop equilibrium points are

µ =



− 1

a2
1

Q(a1,−az)z2 + O(z)3 if z ≥ 0,

− 1

a2
1

Q(a1, az)z
2 + O(z)3 if z < 0,

x1 = −az
a1
|z|+ O(z)2, xi = O(z)2, i = 2, . . . , n− 1.

(5.15)

The condition (5.14) and the first equation of (5.15) imply that the sign of µ at
any equilibrium point is the same as the sign of z. Therefore, there exist equilibrium
points on both sides of µ = 0. Since the first equation of (5.15) is locally a one-to-one
correspondence, (2.3)–(5.13) has a unique equilibrium point for every value of µ.
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Fig. 5.2. A cusp and some phase portraits of f(z, ν1, ν2). D3(0) < 0 in (a); D3(0) > 0 in (b).

To study the stability, the reduced system on the center manifold ż = fc(z, µ) is
used, where fc(z, µ) is defined by (5.8). From (5.12), we have

∂fc
∂z

(z, µ) =




2

a2
1

Q1(a1,−az)z + O(z)2, z > 0,

2

a2
1

Q1(a1, az)z + O(z)2, z < 0.

This relation and the condition (5.14) imply that
∂fc
∂z

(z, µ) < 0 at every closed-loop

equilibrium point with µ �= 0. So the system is stable at equilibrium points with
µ �= 0.

The feedback in Theorems 5.1 and 5.3 satisfies Q1(a1,−az) �= 0. If it does not
hold, the quadratic part of a vector field is degenerate. We focus on this case in the
rest of this section. Before the next theorem is introduced, it is necessary to review
the bifurcation with a cusp equilibrium set. Consider a one-dimensional system with
two parameters ν1 and ν2:

ż = f(z, ν1, ν2) = ν1 + ν2z + D2(ν1, ν2)z2 + D3(ν1, ν2)z3 + O(z)4,

D2(0, 0) = 0, D3(0, 0) �= 0.
(5.16)

The system has cubic degeneracy. Following [10], the set of degenerate equilibrium

points is defined by f(z, ν1, ν2) = 0 and
∂f

∂z
(z, ν1, ν2) = 0. It is a cusp approximated

by

ν3
2 = −27D3(0, 0)ν2

1/4.(5.17)

Following [10], the stability around the cusp is illustrated in Figure 5.2. The solid
cusp represents (5.17). The cubic curves in Figure 5.2 represent the graphs of y =
f(z, ν1, ν2) for a pair of fixed values (ν1, ν2) in different regions. In Figure 5.2a, D3(0, 0)
is less than zero. In Figure 5.2b, D3(0, 0) is positive. A system with D3(0, 0) < 0
performs more stably than otherwise.

Now let’s consider (3.7) with the feedback (4.21). It is proved that the system has
a saddle-node bifurcation if Q1(a1,−az) �= 0. If Q1(a1,−az) = 0, the center manifold
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of the closed-loop system is xi = πi(z, µ) for i = 1, . . . , n− 1. Its linear and quadratic
parts are

π
[1]
1 (z, µ) = −az

a1
z − 1

a1

(
aµ − a2az

a1

)
µ,π

[1]
2 (z, µ) = −az

a1
µ, π

[1]
i (z, µ) = 0 for i ≥ 3,

π
[2]
1 (z, 0) = − 1

a3
1

α[2]
zx1

(a1,−az)z2, π
[2]
2 (z, 0) = 0, . . . , π

[2]
n−1(z, 0) = 0,(5.18)

in which α
[2]
zx1 is defined by (4.21) and (4.22). We only consider the case n ≥ 3, which

is slightly different from n = 2. The argument for n = 2 is similar. Substituting
x = π(z, µ) into the uncontrollable part in (3.7)–(4.21), the reduced system on the
center manifold is

ż = fc(z, µ),

fc(z, µ) = µ +

n−1∑
i=2

γxixi
π2
i + γx1µπ1µ + Q1(z, π1)

+f
[3]
1 (z, π, µ) + g

[2]
1 (z, π, µ)α(z, π, µ) + O(z, π, µ)3.

(5.19)

Substitute (5.18) into fc. The expansion of fc in z is

fc(z, µ) = D0(µ) + D1(µ)z + D2(µ)z2 + D3(µ)z3 + · · · ,(5.20)

D0(µ) = µ + O(µ)2, D1(µ) = O(µ), D2(µ) =
1

a2
1

Q1(a1,−az) + O(µ) = O(µ),(5.21)

D3(0) =
1

a3
1

C(a1,−az) +
1

a4
1

(2azγx1x1
− a1γzx1)α[2]

zx1
(a1,−az) = D,(5.22)

where C(a1,−az) is defined by (4.20). The notation D is introduced in (4.23). In the
following, we introduce the unfolding of (5.20). Let ν1 and ν2 be the parameters which
replace the coefficients of lower degree terms in (5.20). The unfolding system is

ż = f̃c(z, ν1, ν2) = ν1 + ν2z + D̃2(ν1)z2 + D̃3(ν1)z3 + · · · ,(5.23)

ν1 = D0(µ), ν2 = D1(µ).(5.24)

where D̃2(ν1) = D2(D−1
0 (ν1)) and D̃3(ν1) = D3(D−1

0 (ν1)). This system is in the
form of (5.16). Its bifurcation diagram is illustrated in Figure 5.2. From (5.21), we
have ν2 = O(ν1). Therefore, the curve (5.24) and the cusp intersect at the origin. The
curve (5.24) is transversal to the ν2-axis. Therefore, the curve does not get inside the
cusp area because both curves of the cusp are tangent to the ν2-axis (see Figure 5.3).
Around the origin, (5.19) has a unique equilibrium point for every value of µ. From
(5.22), the system is always stable if D < 0.

Theorem 5.4. Consider (3.7)–(4.21) satisfying Assumption 2.3. Suppose

Q1(a1,−az) = 0,
D �= 0.

(5.25)

(i) The system has no bifurcation. There exists a neighborhood of (z, x, µ) =
(0, 0, 0) in which (3.7)–(4.21) has a unique closed-loop equilibrium point for any value
of µ.

(ii) The system (3.7)–(4.21) is stable if D < 0. It is unstable if D > 0.
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ν1

ν2

 (a)

ν1

ν2

 (b)

Fig. 5.3. The picture of the cusp (5.17) and the curve (5.25).

Remark. Notice that the inequality D < 0 is also a condition in Theorem 4.3.
From the proof of Corollary 4.4, stabilizing feedbacks can be found for the system
(3.7)–(4.21) around the cusp, provided that Q1 has full rank.

The result in Theorem 5.4 can be proved without embedding it into the cusp
bifurcation. However, the embedding becomes critical when more complicated cases
are considered. For example, if the control α(z, x, µ) is not zero at the origin, a two-
dimensional diagram is required for the analysis as shown in the next section.

6. Closed-loop system with a perturbed feedback. In the previous sec-
tions, all feedbacks are assumed to be zero at the origin. However, bifurcations can be
qualitatively changed if the feedback does not vanish at the origin. A feedback which
is not zero at the origin is treated as a perturbed feedback,

u = α(z, x, µ) + ν,(6.1)

where α(z, x, µ) satisfies α(0, 0, 0) = 0 and Assumption 2.3. The parameter ν is a
perturbation.

6.1. System (2.3). It is proved in section 4 that (2.2)–(6.1) has a transcritical
bifurcation at ν = 0 if det(Q̄) < 0. From the imperfection theory, two saddle-node
bifurcations are generated at the critical point if the symmetry in the system is broken.

Theorem 6.1. Consider a control system (2.2) with det(Q) �= 0. Suppose that
α(z, x, µ) satisfies (ii) of Theorem 4.1. For any fixed value of ν around ν = 0, (2.2)–
(6.1) is a system with a single parameter µ. It has two saddle-node bifurcations around
the origin if ν �= 0. The bifurcation diagram of (2.2)–(6.1) in zµ-plane is shown in
Figure 6.1.

Proof. Given the normal form (3.6) with the feedback (6.1), its center manifold
satisfies

x1 = −az
a1

z − aµ
a1

µ− 1

a1
ν + O(z, µ, ν)2, xi = O(z, µ, ν)2 for i ≥ 2.(6.2)

Denote

P =


 1 0 0
−az/a1 −aµ/a1 1/a1

0 1 0


 , PTQP =

[
Q̄ Q12

Q21 Q22

]
,
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Fig. 6.1. The bifurcation diagram of the closed-loop system for a fixed value of ν. At ν = 0, it
is a transcritical bifurcation. At ν �= 0, it consists of two saddle-node bifurcations.

where Q̄ is defined by (4.1), QT
12 = Q21, and the reduced system on the center manifold

is

ż =
[
z µ ν

]
PTQP

[
z µ ν

]T
+ O(z, µ, ν)3.(6.3)

Define
[
z̄ µ̄

]
=
[
z µ

]
+ Q21Q̄

−1ν; then

˙̄z = (Q22 −Q21Q̄
−1Q12)ν2 +

[
z̄ µ̄

]
Q̄
[
z̄ µ̄

]T
+ O(z̄, µ̄, ν̄)3.(6.4)

Since Q has full rank, it is easy to check that Q22−Q21Q̄
−1Q12 �= 0. The bifurcation of

(6.4) at ν �= 0 is the ν perturbation of a transcritical bifurcation. In the imperfection
theory (see, for instance, [26] or [9]), it was proved that two saddle-node bifurcations
are generated around the critical point (Figure 6.1).

6.2. System (3.7). Consider (3.7). If the invariant quadratic form Q1(z, x1) is
positive or negative definite, the equilibrium set of (3.7) is a paraboloid. Its intersection
with the surface ν + α(z, x, µ) = 0 is the set of closed-loop equilibrium points. It is
approximately a quadratic curve for any value of ν around zero. Furthermore, the
closed-loop system has a saddle-node bifurcation for small values of µ. Therefore,
the perturbation does not qualitatively change the bifurcation. Another case is more
interesting in which Q1(z, x1) is not sign definite and Q1(a1,−az) = 0. In this case, it
is proved in the following that the system’s performance can be dramatically changed
by the perturbation. On one side of ν = 0, the system has no bifurcation. And on the
other side, the system exhibits the hysteresis phenomenon. Since the case for n = 2
is similar to the case n ≥ 3, we only prove the result for n ≥ 3. The center manifold
of (3.7)–(6.1) and the reduced system satisfy

x1 = −az
a1

z − a1aµ − a2az
a2
1

µ− 1

a1
ν + O(z, µ)2,

x2 = −az
a1

µ + O(z, µ)2, xi = O(z, µ)2 for i ≥ 3,

ż = fc(z, µ, ν) = ν1 + ν2z + D2(µ, ν)z2 + Dz3 + · · · ,
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ν1

ν2

ν1

ν2

(a) (b)

Fig. 6.2. The figure of (ν1, ν2) = (D1(µ, ν), D2(µ, ν)) for a fixed value of ν.

ν1

ν2

ν1

ν2

(b)(a)

Fig. 6.3. The figure of (ν1, ν2) = (D1(µ, ν), D2(µ, ν)) for a fixed value of ν.

where D is defined by (4.23), and

ν1 = µ + O(µ, ν)2,

ν2 =

(
2γx1x1

az − γzx1
a1

a2
1

(
aµ − a2az

a1

)
− γx1µaz

a1

)
µ

+
2azγx1x1 − a1γzx1

a2
1

ν + · · · .
(6.5)

For any fixed value of ν, (6.5) represents a curve in the ν1ν2-plane. The bifurcation
of (3.7)–(6.1) is determined by this curve and the cusp (5.17). If (2azγx1x1 − a1γzx1)ν
and D have the same signs, then (6.5) and (5.17) have no intersection around the
origin (see Figure 6.2). From the cusp bifurcation diagram (Figure 5.2), we know that
no bifurcation occurs around the origin. If (2azγx1x1

− a1γzx1)ν and D have opposite
sign, then the curve (6.5) meets with (5.17) at two different points (see Figure 6.3).
Suppose that (6.5) intersects (5.17) at µ1 < 0 and µ2 > 0. Then the system has
one equilibrium point for µ < µ1 or µ > µ2. There exist three equilibrium points
if µ1 < µ < µ2. The bifurcation diagram is shown in Figure 6.4, which is called a
hysteresis [26]. We summarize the results in the following theorem.

Theorem 6.2. Consider (3.7)–(6.1) in which α(z, x, µ) satisfies Assumption 2.3
and (5.25). Fix any value for ν around ν = 0, and (3.7)–(6.1) has the following
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µ µ

(b)(a)

Fig. 6.4. The hysteresis. In (a), D < 0. In (b), D > 0.

properties.
(i) If (2azγx1x1−a1γzx1)Dν > 0, (3.7)–(4.21) has no bifurcation around the origin

and µ = 0. There exists a neighborhood of (z, x, µ) = (0, 0, 0) in which the system has
a unique closed-loop equilibrium point for every value of µ. Furthermore, the system
is stable if D < 0, and the system is unstable if D > 0.

(ii) If (2azγx1x1 − a1γzx1
)Dν < 0, the system exhibits hysteresis. Its stability is

determined by the value of D as shown in Figure 6.4.

7. Conclusion. In this paper, the problem of bifurcation control by nonlin-
ear state feedbacks is studied thoroughly. Based on normal forms and invariants, all
bifurcations exhibited in the performance of nonlinear control systems with a zero
uncontrollable mode are studied. Feedbacks can be designed based on the results to
achieve the stability or to achieve the desired bifurcation pattern. It is proved in sec-
tion 4 that systems having the normal form (3.6) exhibit a transcritical bifurcation or
a pitchfork bifurcation. The transcritical bifurcation can be converted into a super-
critical pitchfork bifurcation by using state feedbacks. In section 5, it is proved that
systems with the normal form (3.7) have a saddle-node bifurcation. It can be locally
removed by a C0 state feedback, provided that the equilibrium set is a saddle. If the
closed-loop system satisfies the cubic degeneracy condition (Q1(a1,−az) = 0, D �= 0),
the saddle-node bifurcation is also locally removable by feedbacks. Its closed-loop equi-
librium set can be embedded into the diagram of a cusp. Under feedbacks which are
not zero at the critical point, it is shown in section 6 that a transcritical bifurcation of
(3.6) is bifurcated into two saddle-node bifurcations. For the system (3.7) with cubic
degeneracy, it has either a hysteresis or no bifurcation, depending on the value of the
feedback at the critical point. All the conditions on bifurcations and their stability are
characterized by invariants and the coefficients in the feedback. The results obtained
in sections 4 and 5 draw a complete picture of bifurcations under smooth feedbacks
which are zero at the critical point. This is summarized in Table 1.

The approach based on control system normal forms can certainly be used for the
study of other bifurcations which are not addressed here. For instance, the normal
form of control systems with a pair of imaginary uncontrollable modes or with a
double zero uncontrollable mode are available [7]. The control of the Hopf bifurcation
and the double zero bifurcation based normal form is part of our future research.
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Abstract. We study spectral properties of certain families of linear second-order differential
operators arising from linear stochastic differential equations. We construct a basis in the Hilbert
space of square-integrable functions using modified Hermite polynomials, and obtain a representation
for these operators from which their eigenvalues and eigenfunctions can be computed. In particular,
we completely describe the spectrum of the Fokker–Planck operator on an appropriate invariant
subspace of rapidly decaying functions. The eigenvalues of the Fokker–Planck operator provide
information about the speed of convergence of the corresponding probability distribution to steady
state, which is important for stochastic estimation and control applications. We show that the
operator families under consideration can be realized as solutions of differential equations in the
double bracket form on an operator Lie algebra, which leads to a simple expression for the flow of
their eigenfunctions.
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1. Introduction. Given a system of stochastic differential equations, one can
associate with it a (deterministic) partial differential equation which describes the
evolution of the probability density with time. This so-called Fokker–Planck equation
takes the form

∂ρ

∂t
= Lρ,(1)

where L is a second-order linear differential operator known as the Fokker–Planck
operator. If g0, g1, g2, . . . are the eigenfunctions of L corresponding to distinct eigen-
values λ0, λ1, λ2, . . . , then the solution of (1) with initial condition

ρ(0, x) =
∞∑
i=0

αigi(x), αi ∈ R,

is given by

ρ(t, x) =

∞∑
i=0

αie
λitgi(x).
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Thus the eigenvalues of the Fokker–Planck operator L, particularly the one with the
smallest magnitude, provide information about the speed of convergence of the prob-
ability distribution to steady state (when one exists), which is important in stochastic
filtering and control applications. For a discussion along these lines and examples, see
[3].

In the paper by Holley, Kusuoka, and Stroock [14], and more recently in [7], [8],
[9], spectral properties of Fokker–Planck operators associated with certain types of
nonlinear stochastic systems were investigated with the view towards applications to
function minimization procedures. In this paper we confine our attention to Fokker–
Planck operators that correspond to linear stochastic differential equations. An under-
standing of their spectral properties, besides being of interest in its own right, under
certain circumstances helps shed some light on the nonlinear case (see [16, p. 88]). As
in [14], we consider these operators as acting on a dense subspace of L2(Rn) (rather
than L1(Rn) which might seem more natural from the probabilistic point of view).
We apply a standard gauge transformation technique to convert them to self-adjoint
operators, which greatly facilitates the analysis.

The paper starts with the one-dimensional case. Motivated by the explicit form of
the steady-state probability density, we modify the classical Hermite polynomials by
introducing one additional parameter σ (in our context, σ corresponds to the steady-
state variance). This construction leads to an orthonormal basis for L2(R) with respect
to which the operators under consideration take a particularly transparent form. The
representation thus obtained allows us to compute their eigenvalues and eigenfunctions
directly. As a result, we are able to provide a complete description of the spectrum of
the Fokker–Planck operator on an appropriate invariant subspace of rapidly decaying
functions. We then show that the essential features of this analysis carry over to
the multidimensional case and enable us to obtain information about eigenvalues of
Fokker–Planck operators in a more general setting.

Moreover, we observe that the operator families parameterized by σ can be de-
scribed by differential equations on an operator Lie algebra which take the so-called
double bracket form dL

dσ = [L, [L,M ]]. This leads to a simple expression for the flow
of the corresponding eigenfunctions. The study of differential equations in the double
bracket form on finite-dimensional Lie algebras was initiated in [2] and [6] in con-
nection with integrable gradient flows and numerical algorithms. It was shown, in
particular, that such equations give rise to isospectral flows. In this paper we present
what seems to be a new framework in which double bracket equations appear. The
corresponding flows on an operator Lie algebra preserve the eigenvalues (actually, the
entire spectrum in the self-adjoint case). This property is supported by probabilistic
intuition.

The paper is organized as follows. In section 2 we construct an orthonormal basis
in L2(R) using modified Hermite polynomials. In section 3 we study second-order
differential operators arising from scalar linear stochastic differential equations. In
section 4 we treat the multidimensional case, giving generalizations of the previous
results. In section 5 we discuss double bracket differential equations on an operator Lie
algebra and indicate connections with some known results on completely integrable
gradient flows.

2. Orthonormal bases in L2(R). It is well known (see, e.g., [15, p. 121]) that
the Hermite functions

uk(x) = hk(x)e
−x2/2, k = 0, 1, . . . ,(2)
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where hk(x) =
1

π1/4
√

2kk!
ex

2 dke−x2

dxk are the Hermite polynomials, form an orthonormal

basis for L2(R). We consider here the modified Hermite polynomials

hk(x, σ) :=

√
σk

(σπ)1/4
√
2kk!

ex
2/σ d

ke−x
2/σ

dxk
, k = 0, 1, . . . ,

where σ > 0 is a real parameter, and introduce the modified Hermite functions

uk(x, σ) := hk(x, σ)e
−x2/2σ = ck(σ)e

x2/2σ d
ke−x

2/σ

dxk
(3)

with constants ck(σ) given by the relations

ck(σ) =

√
σk

(σπ)1/4
√
2kk!

.(4)

The functions (3) reduce to those given by (2) for σ = 1. Various modifications
of the classical Hermite polynomials, analogous to (and more general than) the one
considered here, can be found in the literature [10], [13].

Lemma 1. For any σ > 0, the functions (3) form an orthonormal basis for
L2(R).

Proof. We have

〈uk(x, σ), ul(x, σ)〉 = ck(σ)cl(σ)

∫ ∞

−∞
ex

2/σ d
ke−x

2/σ

dxk
dle−x

2/σ

dxl
dx

= ck(1)cl(1)

∫ ∞

−∞
ey

2 dke−y
2

dyk
dle−y

2

dyl
dy,

where we have made the change of variable x =
√
σ y. The statement of the lemma

follows from the fact that the Hermite functions (2) form an orthonormal basis for
L2(R).

3. Fokker–Planck operators in L2(R). Let us consider the linear stochastic
differential equation in the Itô sense

dx = −ax dt+ b dw, a > 0,(5)

where x ∈ R and w is a standard Wiener process. The reader may consult [11] for
basic concepts of the theory of stochastic differential equations. The equation for the
steady-state probability density that corresponds to (5) is L(a, b)ρ(x) = 0, where

L(a, b)ρ :=
b2

2
ρxx + axρx + aρ(6)

and ρx and ρxx denote the first and the second derivatives of ρ, respectively. The
operator L(a, b) is the Fokker–Planck operator associated with (5). Define

σ =
b2

2a
.(7)

The steady-state probability density is then given by ρ̄(x) = Ne−x
2/2σ, where N > 0

is a normalization constant. Dividing the Fokker–Planck operator L(a, b) by a, we are
led to studying a one-parameter family of differential operators, Lσ, defined by

Lσρ :=
1

a
L(a,

√
2aσ)ρ = σρxx + xρx + ρ , σ > 0.(8)
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Before proceeding, we need to specify the domain of the above operators. It is easy
to see that Lσuk(x, σ) ∈ L2(R) for each k, and Lσ is well defined by the formula (8) on
the dense subspace U of L2(R) consisting of finite linear combinations of the functions
uk(x, σ). We then define Lσ to be the minimal closed linear operator in L2(R) such
that Lσρ is given by (8) whenever ρ ∈ C2(R)∩L2(R) and σρxx+xρx+ρ ∈ L2(R). We
thus obtain an operator Lσ : DLσ

→ L2(R), where DLσ
is a dense subspace of L2(R)

that contains U . Throughout the paper, unless specified otherwise, all differential
operators are to be interpreted in the above sense.1 For details on defining differential
operators in this way, see [12].

The analysis of the operators Lσ is complicated by the fact that they are not
self-adjoint. There is a standard technique which allows one to convert these oper-
ators to self-adjoint ones (this is sometimes referred to as gauge, or ground state,
transformation). In our case, write ρ = vf, where the function v is to be fixed. We
have

Lσ(vf) = σvxxf + 2σvxfx + σvfxx + xvxf + xvfx + vf.

We see that in order for the first-order derivatives to disappear, v must satisfy the

equation vx = − x

2σ
v. Letting

v = e−x
2/4σ(9)

we obtain v−1Lσ(vf) = σfxx + ( 1
2 − x2

4σ )f .

Motivated by the above discussion, we define a new operator family, Tσ, by the
formula

Tσρ := σρxx +
(1
2
− x2

4σ

)
ρ, σ > 0.(10)

For any positive σ, the operator Tσ is closed and self-adjoint, its domain being a dense
subspace DTσ of L2(R) (defined as explained before).

We know that Lσu0(x, σ) = Lσc0e
−x2/2σ = 0, i.e., e−x

2/2σ is an eigenfunction
with the eigenvalue zero. To investigate the spectral properties of the operators Lσ
and Tσ, it seems natural to use the basis given by the modified Hermite functions (3)
(with the same value of σ). We first carry out direct calculations for the family Lσ,
setting the stage for the multidimensional case. We will then see that the analysis
of the self-adjoint operators Tσ is more straightforward and allows one to obtain
precise information about the spectrum of the original Fokker–Planck operator on an
appropriate space of rapidly decaying functions.

Proposition 2. The spectrum of the operator Lσ : DLσ → L2(R) is independent
of σ. For any σ > 0, the eigenvalues of Lσ are all numbers in the half-plane {λ ∈ C :
Reλ < 1/2}.

1Alternatively, C2(R) here could be replaced by the space of functions ρ : R → R such that ρx
exists and is absolutely continuous, i.e., the space of twice weakly differentiable functions for which
the differential expression (8) is defined almost everywhere.
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Proof.2 Straightforward computations give

Lσuk(x, σ) = ck(σ)

[(
2 +

2x2

σ

)
ex

2/2σ d
ke−x

2/σ

dxk

+3xex
2/2σ d

k+1e−x
2/σ

dxk+1
+ σex

2/2σ d
k+2e−x

2/σ

dxk+2

]
.

(11)

We introduce the notation dk(x, σ) = ex
2/2σ d

ke−x
2/σ

dxk
, so that (11) becomes

Lσuk = ck

((
2 +

2x2

σ

)
dk + 3xdk+1 + σdk+2

)
.(12)

To obtain recurrence relations on dk, notice that by Newton’s binomial formula we
have

dk+1 = ex
2/2σ

(
−2x

σ

dke−x
2/σ

dxk
− 2k

σ

dk−1e−x
2/σ

dxk−1

)

which in the new notation becomes

dk+1 = −2x

σ
dk − 2k

σ
dk−1 .(13)

From (13) we obtain

xdk = −σ

2
dk+1 − kdk−1, k = 1, 2, . . . ,(14)

and also (multiplying both sides of (13) by x and then using (14))

2x2

σ
dk = (2k + 1)dk +

σ

2
dk+2 +

2k(k − 1)

σ
dk−2.(15)

Combining (12)–(15) gives

Lσuk = ck

(
−kdk + 2k(k − 1)

σ
dk−2

)
(16)

and we see that the terms containing dk+2 disappear. Moreover, notice that we have

2k(k − 1)

σ
ck =

√
k(k − 1) ck−2.(17)

The formulas (16) and (17) imply that with respect to the basis (3) the operator Lσ
takes the upper triangular form as given by

Lσuk(x, σ) = −kuk(x, σ) +
√
k(k − 1)uk−2(x, σ).(18)

From (18) it immediately follows that the spectrum of Lσ is independent of σ.
Moreover, it is easy to see that the nonpositive integers are eigenvalues of Lσ. The

2The proofs in this section are given in sketched form; full details can be found in [16].
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corresponding eigenfunctions are finite linear combinations of the basis elements uk
and thus belong to C∞(R) ∩ L2(R). They do not, however, form a complete set of
eigenfunctions. The formula (18) implies that the existence of an eigenfunction of Lσ
with an eigenvalue λ is equivalent to the convergence of at least one of the series

∞∑
n=1

λ2(λ+ 2)2 · · · (λ+ 2n− 2)2

(2n)!

and

∞∑
n=1

(λ+ 1)2(λ+ 3)2 · · · (λ+ 2n− 1)2

(2n+ 1)!
.

Using Gauss’ test for convergence (see, e.g., [18]), one can show in a straightforward
manner that each series converges if Reλ < 1/2 and diverges if Reλ ≥ 1/2.

We can gain more insight into the spectral properties of the operator Lσ from its
probabilistic interpretation. Recall that Lσ was defined in terms of the Fokker–Planck
operator L(a, b) via the formula (8). It follows from Proposition 2 that the eigenvalues
of L(a, b) are all numbers in the half-plane {λ ∈ C : Reλ < a/2}. (However, it can be
deduced from (1) that any eigenfunction of L(a, b) that is nonnegative and belongs to
L1(R) must be proportional to the steady-state probability density, which corresponds
to the eigenvalue zero.) The fact that the spectrum of L(a, b) does not depend on the
noise coefficient b should not be surprising if we notice that we can change b by simply
rescaling x; i.e., substituting y = px in (5) for an arbitrary p ∈ R gives ẏ = −ay+pbẇ.
It is easy to check that the spectrum of the Fokker–Planck operator associated with
(5) is not affected by such changes of variable.

We now turn our attention to the family of self-adjoint operators Tσ defined
by (10). It is well known that Hermite polynomials appear frequently in expressions
for eigenfunctions of self-adjoint linear second-order differential operators. The next
proposition shows that the eigenfunctions of Tσ are given by the modified Hermite
functions (3) and is to be considered as a preparation for a more general result to be
presented in the next section. For σ = 1/2, the statement reduces to a standard result
involving the classical Hermite functions (see, e.g., [1, p. 256]).

Proposition 3. For any σ > 0, the spectrum of the operator Tσ : DTσ
→ L2(R)

consists of the nonpositive integers, all of which are eigenvalues. The corresponding
eigenfunctions are the functions uk(x, 2σ), i.e., Tσuk(x, 2σ) = −k uk(x, 2σ).

Proof. For ρ = ex
2/4σ dke−x2/2σ

dxk one can verify that

Tσρ = ex
2/4σ d

ke−x
2/2σ

dxk
+ xex

2/4σ d
k+1e−x

2/2σ

dxk+1
+ σex

2/4σ d
k+2e−x

2/2σ

dxk+2

which in our previous notation becomes

Tσdk(x, 2σ) = dk(x, 2σ) + xdk+1(x, 2σ) + σdk+2(x, 2σ).(19)

Replacing σ by 2σ in (14) and substituting into (19), we arrive at

Tσdk(x, 2σ) = −k dk(x, 2σ).
This immediately implies the second part of the statement. The first part of the state-
ment follows from this, since we have found an orthonormal basis in L2(R) consisting
of eigenfunctions of Tσ.
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As a consequence, the eigenvalues of the original operator Lσ restricted to the
space of functions of the form ρ = vf, where v is given by (9) and f ∈ DTσ , are the
nonpositive integers. The eigenfunction that corresponds to the eigenvalue −k is given

by e−x
2/4σuk(x, 2σ) = ck(2σ)

dke−x2/2σ

dxk . This leads us to a complete characterization of
the spectrum of the Fokker–Planck operator L(a, b) restricted to an appropriate space
of rapidly decaying functions. Namely, let us denote by Lσ the space of functions that

can be represented by finite linear combinations of the form
∑m
k=1 αk

dke−x2/2σ

dxk , αk ∈
R. From the definitions of Lσ and Tσ and from Proposition 3 we immediately obtain
the following result.

Corollary 4. The space Lσ is invariant with respect to the Fokker–Planck
operator L(a, b) associated with (5). The spectrum of the restriction of L(a, b) to Lσ
consists of the numbers 0, −a, −2a, −3a, . . . , all of which are eigenvalues.

Remark 1. The eigenfunctions of Lσ on Lσ found above form an orthonormal
basis for the space L2(R, ex

2/2σdx), on which the operator Lσ can be shown to be

self-adjoint. If instead of Lσ we consider a dense subspace of L2(R, ex
2/2σdx) contain-

ing Lσ, which can be constructed as explained at the beginning of the section, the
statement about the spectrum still applies. Clearly, this larger subspace is no longer
invariant under the action of L(a, b). The operator Tσ is convenient because it is
self-adjoint with respect to the standard inner product on L2(R).

We see in view of (7) that as the value of a increases while the noise coefficient b
stays constant, the rate of decay of functions in Lσ becomes more rapid and so does
the convergence to steady state. If we fix one member of the family {Tσ : σ > 0}, say,
T1/2, then for any value of σ the operator Tσ can be expressed as Tσ = Θ−1

σ T1/2Θσ,
where Θσ is the unitary operator defined by Θσuk(x, 2σ) = uk(x, 1) = uk(x). We will
use this observation in section 5.

4. Fokker–Planck operators in L2(Rn). Consider the system of linear stochas-
tic differential equations

dx = Axdt+B dw , x ∈ R
n,(20)

where w is a standard m-dimensional Wiener process and A and B are matrices of
suitable dimensions. Recall that separable functions, i.e., functions that can be ex-
pressed as products ρ1(x1) · · · ρn(xn), span a dense subspace of L2(Rn). Thus we
can construct an orthonormal basis for L2(Rn) by taking products of the modified
Hermite functions (3) for each variable. The analysis of the previous section now
directly generalizes to those linear stochastic systems in R

n whose equations are com-
pletely decoupled. In this case, the Fokker–Planck operator decomposes into a sum
of Fokker–Planck operators of the kind considered above for each variable. Our ear-
lier results then imply, in particular, that the sums of the eigenvalues of the matrix
A are eigenvalues of the corresponding Fokker–Planck operator, and that the corre-
sponding eigenfunctions belong to the space C∞(Rn) ∩ L2(Rn) and can be explicitly
constructed.

Although the analysis for the general multidimensional system (20) is more com-
plicated than in the scalar case, results that parallel most of our earlier developments
can be obtained. Let us denote the Fokker–Planck operator associated with (20) by
Ln and consider it as being a closed operator defined on a dense subspace DLn

of
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L2(Rn) (cf. section 3). We have the following expression for Ln:

Lnρ =
1

2

n∑
i,j=1

(BBT )ij ρxixj −
n∑

i,j=1

Aijxjρxi − trA · ρ.(21)

From this point on, let us make the following two assumptions with regard to the
system (20):

(a) The eigenvalues of A have negative real parts.

(b) (A,B) is a controllable pair (i.e., rank(B,AB, . . . , An−1B) = n).

Under these assumptions, the steady-state variance equation

AQ+QAT +BBT = 0(22)

associated with (20) has a positive definite symmetric solutionQ. After an appropriate
change of coordinates in R

n we can have Q = 1
2I, so that A = Ω−BBT with Ω skew-

symmetric. Such a coordinate transformation does not change the eigenvalues of the
Fokker–Planck operator Ln. The steady-state probability density then becomes ρ̄(x) =

Ne−x
T x, N > 0, and this is an eigenfunction that corresponds to the eigenvalue zero

of the Fokker–Planck operator.

Next let us determine all eigenfunctions of Ln that take the form

ρ(x) = (h1x1 + · · ·+ hnxn)ρ̄(x) = hTxρ̄(x), h ∈ R
n.(23)

Lemma 5. Suppose that A = Ω − BBT , where Ω = −ΩT . Then the function
(23) is an eigenfunction of the operator Ln with eigenvalue λ if and only if h is an
eigenvector of the matrix A with the same eigenvalue λ.

Proof. Let ρ be of the form (23). Taking into account that Lnρ̄ = 0, we have

Lnρ =

n∑
i,j=1

(BBT )ij(h)i(−2xj)ρ̄−
∑
i,j

Aijxj(h)iρ̄

= −ρ̄
n∑

i,j=1

(Aji + 2(BBT )ji)(h)jxi

= ρ̄

n∑
i,j=1

(Ωij − (BBT )ij)(h)jxi =

n∑
i=1

(Ah)ixiρ̄

and this obviously equals λρ = λ
∑
i hixiρ̄ if and only if Ah = λh.

Denote by h1, . . . , hk the eigenvectors of A and by λ1, . . . , λk the corresponding
eigenvalues (k ≤ n). Now let us see how Ln acts on functions of the form

ρ(x) = ρ̄(x)
∏
m∈J

hTmx,(24)

where the product is taken over some index set J whose elements are (not necessar-
ily distinct) positive integers no greater than n. Using Lemma 5 and the fact that
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Lnρ̄ = 0, we have

Ln(ρ̄
∏
m∈J h

T
mx) =

n∑
i,j=1

∑
m,l∈J

(BBT )ij(hm)i(hl)j ρ̄
∏

p∈J\{m,l}
hTp x

+

n∑
i,j=1

∑
m∈J

(BBT )ij(hm)iρ̄xj

∏
p∈J\{m}

hTp x

−
n∑

i,j=1

∑
m∈J

Aijxj(hm)iρ̄
∏

p∈J\{m}
hTp x

=

n∑
i,j=1

∑
m,l∈J

(BBT )ij(hm)i(hl)j ρ̄
∏

p∈J\{m,l}
hTp x+

( ∑
m∈J

λm

)
ρ̄
∏
m∈J

hTmx.

Thus functions of the form (24) for various index sets J form an invariant subspace
under the action of Ln. It is not hard to see that

∑
m∈J λm are eigenvalues of Ln. The

corresponding eigenfunctions are finite linear combinations of functions of the form
(24). Summarizing, we have the following theorem.

Theorem 6. The sums of the eigenvalues of the matrix A are eigenvalues of the
Fokker–Planck operator Ln : DLn → L2(Rn).

Theorem 6 can probably be best appreciated in the following context. It is well
known and easy to show that there are Np

n =
(
n+p−1

p

)
linearly independent monomials

of degree p in n variables of the form xp11 . . . xpnn , where
∑n
i=1 pi = p and pi ≥ 0. The

linear differential equation

ẋ = Ax, x ∈ R
n,

gives rise to the equation

d

dt
x[p] = A[p]x

[p], x[p] ∈ R
Np

n .

One of the basic properties of the matrix A[p] defined in this way is that its eigenvalues
are the p-term sums of the eigenvalues of A. As is shown in [4], the matrices A[p] are
directly related to the pth moment equations for the system (20).

Theorem 6 shows that the situation in the infinite-dimensional case is consistent
with the one described in the previous paragraph in the following sense. Associated
with the system (20) we have the Fokker–Planck equation for the probability density

∂ρ(t, x)

∂t
= Lnρ(t, x).

The operator Ln is well defined on a dense subspace of L2(Rn). We know that the basis
elements in L2(Rn) can be taken to be polynomials of an arbitrary degree multiplied
by Gaussians, and we have shown that the sums (with an arbitrary number of terms)
of the eigenvalues of A are eigenvalues of the operator Ln.

In view of the results of section 3, it would be interesting to obtain conditions
under which it is possible to convert the Fokker–Planck operator Ln to a self-adjoint
operator by means of an appropriate gauge transformation. The following result pro-
vides such conditions, as well as an explicit formula for the function v to be used.

Proposition 7. Suppose that the matrix B is nondegenerate and that we have

ABBT = BBTAT .(25)
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If the function v is defined by the formula

v = ex
T (BBT )−1Ax/2,(26)

then the operator Tn given by

Tnρ = v−1Ln(vρ)

is self-adjoint.
Proof. The first-order terms in the expression for Tn are

1

2

n∑
j,k=1

(BBT )jk

(
vxj

∂

∂xk
+ vxk

∂

∂xj

)
−

n∑
i,j=1

Aijxjv
∂

∂xi
.

We see that the coefficient of
∂

∂xi
is

n∑
j=1

(BBT )ijvxj
−

n∑
j=1

Aijxjv

and we need this to be zero for each i. This is equivalent to having

(BBT )grad v = Axv

or

grad v = (BBT )−1Axv.(27)

Therefore, we must have

vxixj =
∂

∂xi

[
n∑
k=1

((BBT )−1A)jkxk v

]

= ((BBT )−1A)ji v +

n∑
k=1

((BBT )−1A)jkxk vxi

= ((BBT )−1A)ji v +

n∑
k=1

((BBT )−1A)jkxk

n∑
l=1

((BBT )−1A)ilxl v.

The compatibility conditions vxixj = vxjxi now imply that the matrix (BBT )−1A has
to be symmetric:

(BBT )−1A = AT (BBT )−1.

Multiplying both sides of this formula by BBT , we arrive at (25). It is straightforward
to show that the function given by (26) satisfies (27).

Let us switch to coordinates in which Q = σI for some σ > 0 (in the language
of statistical thermodynamics, these are coordinates in which the equipartition of
energy property holds, and σ is the steady-state temperature of the system). Then
(A + AT )σ = −BBT , and (25) can be rewritten as A2 = (AT )2. This last condition
is satisfied, for example, if A is symmetric. In this case (26) becomes

v = e−x
T x/4σ(28)
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which is a constant multiple of the square root of the steady-state probability density.
This is in accordance with our earlier results for the one-dimensional case.

Denote by ∇ the gradient with respect to the metric on R
n given by G =

(BBT )−1. In other words, given a function φ : R
n → R, we define the vector ∇φ

by (∇φ)i =
∑n
j=1(BBT )ijφxj . Assume that A = AT and that the positive definite

solution of (22) is Q = σI. Let φ(x) = 1
4σx

Tx. Then we have

(∇φ)i = 2σ

n∑
j=1

Aijφxj
=

n∑
j=1

Aijxj

so that the system (20) can be rewritten as

dx = −∇φ(x) dt+B dw.(29)

Systems of the general form (29) and the corresponding steady-state probability den-
sities were studied in [8].

Under the present assumptions, the Fokker–Planck operator takes the form

Ln,σρ = −σ
n∑

i,j=1

Aijρxixj
−

n∑
i,j=1

Aijxjρxi
− trA · ρ.

Using Proposition 7, we can also construct a self-adjoint operator which in this case
is given by

Tn,σρ = −σ
n∑

i,j=1

Aijρxixj
−

1

2
trA− 1

4σ

n∑
i,j=1

Aijxixj


 ρ.

As we have done throughout the paper, we consider the above expression as defining
a closed operator acting on a dense subspace of L2(Rn) which we denote by DTn,σ .
The following result is to be viewed as a generalization of Proposition 3 to the case
of the multidimensional system (20) written in equipartition coordinates as explained
earlier (Q = σI), under the assumption that in these coordinates the nonrandom part
of the system is symmetric (A = AT ). As shown above, this system is of the gradient
form (29) for an appropriate quadratic function φ and a suitable constant metric.

Theorem 8. For any σ > 0, the spectrum of the operator Tn,σ : DTn,σ → L2(Rn)
consists of eigenvalues which are the sums of the eigenvalues of the matrix A.

Proof. The matrix A has n real negative eigenvalues λ1, . . . , λn. There exists an
orthogonal matrix R such that RART = D, where D = diag(λ1, . . . , λn). Making the
change of variables y = Rx, we obtain an operator Tn,σ given by

Tn,σρ = −σ
n∑
i=1

λiρyiyi −
(
1

2

n∑
i=1

λi − 1

4σ

n∑
i=1

λiy
2
i

)
ρ.

The spectrum of Tn,σ is the same as that of Tn,σ. We have Tn,σ = −∑n
i=1 λiTσ,yi ,

where Tσ,yi are the operators considered in section 3 for each variable (cf. remarks
made at the beginning of this section). To complete the proof, recall that by Propo-
sition 3 the eigenvalues of Tσ,yi are the nonpositive integers. The eigenfunctions of
Tn,σ are given by the products of the functions uk(yi, 2σ) for each variable; they form
an orthonormal basis for L2(Rn).
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As before, we conclude that the eigenvalues of the original operator Ln,σ restricted
to the space of functions of the form ρ = vf, where v is given by (28) and f ∈
DTn,σ , are the sums of the eigenvalues of A. The corresponding eigenfunctions take the
form vgk(x, σ), where gk(x, σ), k = 0, 1, . . . are the eigenfunctions of Tn,σ described
in the proof of Theorem 8. Let Ln,σ denote the space of functions {ρ : v−1ρ =∑m
k=1 αkgk(x, σ)}, αk ∈ R. As a generalization of Corollary 4 we have the following

statement.
Corollary 9. The space Ln,σ is invariant with respect to the Fokker–Planck

operator Ln,σ associated with (29). The spectrum of the restriction of Ln,σ to Ln,σ
consists of eigenvalues which are the sums of the eigenvalues of the matrix A.

Remark 2. Under the change of variables described in the proof of Theorem 8
the operator Ln,σ becomes a Fokker–Planck operator associated with a decoupled
system. This makes the statement of Corollary 9 obvious in view of Corollary 4 and
the discussion at the beginning of this section. In the case when A is a scalar multiple
of the identity matrix, the spectrum (but not the eigenfunctions) of the operator Ln,σ
on Ln,σ can be obtained from the analysis of its adjoint presented in [19, section
7.5]. The eigenfunctions of Ln,σ on Ln,σ found above form an orthonormal basis for

the space L2(Rn, ex
T x/4σdx). We could also consider Ln,σ as acting on a larger dense

subspace of L2(Rn, ex
T x/4σdx), which would not change the spectrum—cf. Remark 1

in section 3.
It is interesting to notice that, given the original system (20), we can always

find a basis in which Q = σI satisfies (22) and A = AT if A is allowed to depend
on time. First, switch to an equipartition basis in which we have Q = σI. Note
that the last equality is preserved under orthogonal coordinate transformations. Let
Ω = 1

2 (A−AT ). Making the change of variable y = e−Ωtx in (20), we obtain

dy =
1

2
e−Ωt(A+AT )eΩty dt+ e−ΩtB dw(30)

and the first term features a symmetric matrix as needed.

5. Double bracket equations. Consider the operators P1, P2, P3, and P4 act-
ing on the space

D = {ρ ∈ C2(R) ∩ L2(R) : ρxx, xρx, x
2ρ ∈ L2(R)}

that are defined as follows:

P1ρ = ρxx, P2ρ = xρx, P3ρ = x2ρ, P4ρ = ρ.

It is easy to verify that the linear span of the above operators is closed under com-
mutation with respect to the usual Lie bracket [Pi, Pj ] = PiPj − PjPi. We will let g
denote the operator Lie algebra spanned by Pi, i = 1, 2, 3, 4. Such Lie algebras and
their representations have been studied in the context of quantum mechanics and,
more recently, estimation theory [5].

Observe that Lσ and Tσ can be realized as operators in g because D ⊂ DLσ for
each σ > 0. More precisely, let us denote by L(σ) and T (σ) the restrictions of Lσ
and Tσ to D. Proposition 3 implies that T (σ), 0 < σ <∞, is an isospectral family of
operators in g. In fact, for any σ > 0 the spectrum of T (σ) consists of eigenvalues which
are the nonpositive integers. As we know from Proposition 2, the nonpositive integers
are also eigenvalues of L(σ) for each σ > 0 (because the corresponding eigenfunctions
of Lσ belong to D).
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In this section we show that the families of operators L(σ) and T (σ) correspond
to integral curves of differential equations in the double bracket form on g. We also
obtain the corresponding dynamical representation for the family of modified Hermite
functions defined by (3). The proofs are completely straightforward calculations and
will not be given.

Proposition 10. Let M be an operator in g defined by Mρ = 1
4ρxx. Then L(σ),

0 < σ <∞, is a solution of the differential equation

dL

dσ
= [L, [L,M ]].(31)

The Fokker–Planck operator associated with (5) is uniquely determined by two
parameters: σ, which corresponds to the steady-state variance, and a, which describes
the speed of convergence to steady state. In making the transition to the operators
Lσ we factored out the dependence on a. Thus the flow (31) can be thought of as
evolving on the “slice” of Fokker–Planck operators with the same spectral properties
but different steady states. As we will see, in the multidimensional case σ corresponds
to the steady-state temperature of the system (defined in section 4).

To each of the operators L(σ) there corresponds the steady-state probability den-
sity ρσ which satisfies the equation L(σ)ρσ(x) = 0. The flow (31) on the operator
Lie algebra g thus induces a flow on the manifold of Gaussian probability densities.
For example, making the change of variable σ = et, we obtain a particular case of the
gradient flow of Gaussians described by Nakamura in [17].

Proposition 11. Let N be an operator in g defined by Nρ = 1
2ρxx. Then T (σ),

0 < σ <∞, is a solution of the differential equation

dT

dσ
= [T, [T,N ]].(32)

In view of the remarks made at the end of section 3, we can write T (σ) =
Θ−1(σ)T (1/2)Θ(σ), with the domain of Θ(σ) properly defined. Using the fact that
for all σ > 0 the operator Θ(σ) is unitary and the operators T (σ) and N(σ) are
self-adjoint, we arrive at the equation

dΘ

dσ
= T (1/2)ΘN −ΘNΘ−1T (1/2)Θ = Θ[T,N ](33)

which describes the evolution of the eigenbasis for T (σ) induced by the flow (32). This
is the same equation as the one obtained in [6] for the finite-dimensional case.

We point out an interesting analogy between the results of Propositions 10 and
11 and the sorting algorithms described in [6]. If N is a real diagonal matrix with
unrepeated eigenvalues, and if H(0) is a suitably chosen symmetric matrix, then the
solution of the double bracket equation Ḣ = [H, [H,N ]] approaches a diagonal matrix
H(∞) such that the diagonal elements of H(∞) and N are similarly ordered; since
H(∞) is diagonal, it commutes with N . For large positive values of σ, the “principal

term” of the operators L(σ) and T (σ) is σ d2

dx2 , which is proportional to both M and
N and thus commutes with them. Thus the double bracket equations (31) and (32)
can be thought of as performing a task of “operator sorting.”

We would like to generalize the above results to the multidimensional case. Con-
sider the operators P1,i,j , P2,i,j , P3,i,j , and P4 acting on the space

Dn = {ρ ∈ C2(Rn) ∩ L2(Rn) : ρxixj
, xiρxj

, xixjρ ∈ L2(Rn) ∀i, j = 1, 2, . . . , n}
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that are defined as follows:

P1,i,jρ = ρxixj , P2,i,jρ = xiρxj , P3,i,jρ = xixjρ, P4ρ = ρ.

These operators span a Lie algebra which we denote by gn. For each σ > 0, let Ln(σ)
and Tn(σ) denote the restrictions of Ln,σ and Tn,σ to Dn. Theorem 8 implies that
Tn(σ), 0 < σ <∞, is an isospectral family of operators in gn.

Proposition 12. Let M be an operator in gn defined by

Mρ = −1

4

n∑
i,j=1

(A−1)ijρxixj
.

Then Ln(σ), 0 < σ <∞, is a solution of the differential equation

dL

dσ
= [L, [L,M ]].

Proposition 13. Let N be an operator in gn defined by

Nρ = −1

2

n∑
i,j=1

(A−1)ijρxixj
.

Then Tn(σ), 0 < σ <∞, is a solution of the differential equation

dT

dσ
= [T, [T,N ]].

As in the scalar case, we can define a unitary operator Θσ by Θσgk(x, σ) =
gk(x, 1), where gk(x, σ) are the eigenfunctions of Tn(σ). This operator will then satisfy
(33), which describes the flow of these eigenfunctions. Finally, note that Propositions
12 and 13 apply to the system (30) without any changes (except that now Tn(σ) will
also depend on t).

Acknowledgments. The first author would like to thank Mark Adler for helpful
discussions and Daniel Stroock for calling his attention to the book [19].
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STABILIZATION OF LINEAR DIFFERENTIAL SYSTEMS
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Abstract. We study so-called “hybrid feedback stabilizers” for an arbitrarily general system of
linear differential equations. We prove that under assumptions of controllability and observability
there exists a hybrid feedback output control which makes the system asymptotically stable. The
control is designed by making use of a discrete automaton implanted into the system’s dynamics.
In general, the automaton has infinitely many locations, but it gives rise to a “uniform” (in some
sense) feedback control. The approach we propose goes back to classical feedback control techniques
combined with some ideas used in stability theory for equations with time-delay.

Key words. stabilization, hybrid feedback control, functional differential equations
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1. Introduction. Hybrid systems are those that combine both discrete and con-
tinuous dynamics. Many examples of hybrid systems can be found in manufacturing
systems, intelligent vehicle highway systems, and various chemical plants. Hybrid
systems also arise when there is a necessity to combine logical decision with the gen-
eration of continuous control laws. See also the “biological” Example 1.2 below.

We are interested in the question of how to stabilize a continuous control plant
through its interaction with a discrete time controller (an automaton). Such a feed-
back complements the output feedback within the plant when the latter fails to sta-
bilize the system or fails to give smooth stabilization. This, for example, may be the
case if no complete information on the plant’s dynamics is available.

The framework we use follows developments in hybrid systems, as described in
Nerode and Kohn [12]. The stability and stabilization notions we use are classical (see,
for example, [11], [14], [16], [17], where some relevant results can be found). Some
results on stabilization of hybrid systems are available in the literature [1], [5], [9],
[13]. In this paper we exploit ideas proposed by Artstein [2], who studied a possibility
of stabilization by hybrid feedback controls via examples. The point of view given in
[2] is that one has an underlying continuous plant, and the challenge is to stabilize it
efficiently with a hybrid device.

Let us now consider some examples that give a partial motivation for our study.
More examples can be found in [15].

Example 1.1 (the harmonic oscillator). A rather simple example of a linear system
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which cannot be stabilized by an ordinary output feedback is two-dimensional:

dξ

dt
= η,

dη

dt
= −ξ + u, y = ξ.(1.1)

This is the harmonic oscillator where the control is an external force and the only
measured quantity (output) is the position variable ξ.

Although this system is both controllable and observable, it cannot be stabilized
by (even discontinuous and nonlinear) output feedback (see, e.g., [2]) since any control

u = f(ξ) makes curves of the form ξ2 + η2 +2
∫ ξ
0
f(ρ)dρ = c invariant under the flow.

However, it was shown in [2] that there exists a hybrid feedback control under
which system (1.1) becomes asymptotically stable.

Example 1.2 (predator–prey interactions). Our second example gives a “bio-
logical” motivation for studying hybrid feedback controls. Consider the well-known
predator–prey model

x′

x
= −b1 + a1y,

y′

y
= b2 − a2x,(1.2)

where ai, bi are positive; x(t) describes a population at time t of a species called the
predator (fish, animals, insects, etc.); and y(t) describes a population at time t of
another species called the prey.

The predator lives on the prey; x
′
x and y

′

y mean the growth rates of the populations.

The linearization about the equilibrium state (e1, e2) gives the following linear
system:

Ẋ = e1a1Y, Ẏ = −e2a2X,(1.3)

that is, the harmonic oscillator which is asymptotically unstable. Any attempt to
stabilize (1.3) (i.e., (1.2) locally) by inserting a certain control into the right-hand
side of (1.3) fails. Such a control, usually called a “harvesting strategy,” would give

x′

x
= −b1 − u+ a1y,

y′

y
= b2 − v − a2x.(1.4)

The linearization of (1.4) about the new equilibrium (ev1, e
u
2 ) state will again give an

asymptotically unstable system

Ẋ = ev1a1Y ≡ e1a1Y − va1

a2
Y, Ẏ = −eu2a2X ≡ −e2a2X − ua2

a1
X.

The problem becomes more complicated if it is not allowed to harvest the prey.
Then v = 0, and we obtain nothing but the controlled oscillator (1.1) up to a change
of variables.

We also remark that (1.2) describes one of the simplest models of biological in-
teractions. If we take more species and more complicated interactions, then we shall
arrive at more general control problems.

The goal of the paper. We look at a general linear system of differential equa-
tions which is asymptotically unstable. We also assume that no complete information
about solutions is available and that we cannot continuously influence the solutions.
Nevertheless, we ask whether it is still possible to stabilize the system.
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In Artstein [2] two conjectures have been mentioned: (1) whether there exists a
kind of elementary hybrid stabilizer u(·) driven by an automaton with finitely many
locations and (2) whether there is a possibility for expediency by using more general
hybrid stabilizers.

In the present paper, we give a partial affirmative answer to Artstein’s questions.
Namely, we describe here how one can explicitly design a hybrid feedback stabilizer
for a general linear system. To do so, we introduce a new class of hybrid feedback
control strategies and automata with infinitely many locations, this being a natural
generalization of the elementary hybrids used in [2]. Our approach is based on the
classical stabilization technique as well as on some recent results in the theory of
functional differential equations [3], [4], [7].

2. Formulation of the main result. The following system of linear differential
equations

ẋ = Ax+Bu,
y = Cx

(2.1)

is under consideration. Here x ∈ Rn is a physical state of the system, y ∈ Rm is the
output, and the control u is an element of R	. A,B,C are given real matrices of the
sizes n× n, n× �, m× n, respectively. The control u(·) is assumed to depend on the
output y(·) only. The nature of this dependence is specified below.

The following problem is being studied: find (if there is a possibility) a (hybrid
feedback) control u under which system (2.1) becomes asymptotically stable.

To specify our setup, we need some definitions and auxiliary results (see also [6],
[8], [14], [16]).

Definition 2.1. Denoting by Z the set of all admissible controls, we say that
the system (2.1) is Z-stabilizable if there exists a control u ∈ Z under which (2.1) is
u-stabilizable.

The following technical theorem will be used.
Theorem 2.2. The pair (A,B) is controllable if and only if for any set Λ of n

complex numbers which is symmetric with respect to the real axis, there exists a real
�× n-matrix G such that σ(A+BG) = Λ.

In that which follows, for the sake of simplicity we will write [A]B instead of the
n× �n-matrix [B AB . . . An−1B] and C [A] instead of the mn×n-matrix ([A�]C�)�.

The next statement is well known.
Theorem 2.3 (Kalman’s criterion). 1. The pair (A,B) is controllable if and only

if rank ([A]B) = n. 2. The pair (A,C) is observable if and only if rank (C [A]) = n.
We will always assume in this paper that the pair (A,B) is controllable, and the

pair (A,C) is observable.
Denote by L0 the class of controls u = Gy, where G is a constant �×m-matrix.

The following statement is of wide use in control theory.
Lemma 2.4. If rankC = n then the system (2.1) is L0-stabilizable.
Proof. According to Theorem 2.2 there exists a real � × n-matrix G0 such that

the matrix A + BG0 is stable. Since rankC = n ≤ m, there exists the left inverse
matrix C−1

l . The matrix G = G0C
−1
l then provides a control which stabilizes the

system (2.1).
If rankC < n, then this may imply an absence of a stabilizer in the class L0.

If in addition one assumes that it may be desirable in applications to have discrete
stabilizers, one immediately arrives at the concept of a hybrid system consisting of a
discrete automaton coupled with a system to be stabilized (a plant).
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Below we describe the concept of an automaton, basically following the approach
presented in [2]. Our setup is a bit more general, however, since we also admit
automata with infinitely many locations, so that our definitions differ from those in
[2]. We have in mind a typical automaton, described by a triple A = (Q, I,M), where

(i) Q is a set of all possible automaton states (locations);
(ii) the set I contains the input alphabet;
(iii) the transition map M : Q × I → Q indicates the location after a transition

time, based on the previous location q and input i at the time of transition.
We also let our automaton follow solutions of the system (2.1). This can be done

by assuming there is one more triplet B = (T, i, q0). Here
(iv) T : Q → (0,∞) is a mapping which sets a period T (q) between transition

times;
(v) i : Rm → I is a function providing the element i(y) of the alphabet I for any

output y of the system (2.1);
(vi) and q0 = q(τ0) is a state of the automaton at the initial time τ0.
We will later assume, without loss of generality, that τ0 = 0.
Definition 2.5. By an automaton we mean a 6-tuple ∆ = (Q, I,M, T, i, q0).
For arbitrary sets X, Y (topological spaces X, Y ) we denote by P(X,Y ) (resp.,

C(X,Y )) the set of all functions (resp., continuous functions) from X to Y .
Now, for any automaton ∆ satisfying (i)–(vi) we define by induction a Volterra

operator F∆ : C([0,∞), Rm) → P([0,∞), Q). For each y ∈ C([0,∞), Rn), F∆ is
given by the following:

1. (F∆y)(0) = q(0); τ1 = T (q(0)); (F∆y)(t) ≡ q(0), t ∈ [0, τ1).

2. (F∆y)(τ1) = M(q(0), i(y(τ1))) := q(τ1); τ2 = τ1 + T (q(τ1));

(F∆y)(t) = q(τ1), t ∈ [τ1, τ2).

3. If τ0, τ1, . . . , τk and the values (F∆y)(t) for t ∈ [0, τk) are already known, then
τk+1 and (F∆y)(t) for t ∈ [τk, τk+1) are defined by the equalities

(F∆y)(τk) = M(q(τk−1), i(y(τk))) := q(τk); τk+1 = τk + T (q(τk));

(F∆y)(t) ≡ q(τk), t ∈ [τk, τk+1).

Definition 2.6. A control u(·) of the type

u(t) = ϕ(y(t), (F∆y)(t)),(2.2)

where ϕ : Rm ×Q→ R	 is a certain function, will be addressed as a hybrid feedback
control (HFC).

Denote by H̃ a class of all HFC in the sense of Definition 2.6.
Let ω be finite or infinite cardinal. A class of HFC (2.2) generated by an au-

tomaton ∆ = (Q, I,M, T, i, q0), where cardQ ≤ w, card I ≤ w (cardD stands for the
cardinality of a set D), will be denoted by Hω.

Definition 2.7. A hybrid feedback control u(·) belonging to the class Hω will be
called ω-HFC.

Some examples. 1. The class H0 consists of ordinary (nonlinear) feedback
controls which are of the type u = f(y) for some function f : Rm → R	. Clearly,
L0 ⊂ H0 (L0 was introduced before Lemma 2.4, above).

2. It is also evident that H1 = H0, i.e., in case Q degenerates into a singleton, any
HFC is given by a feedback control of the type u = f(y) for a function f : Rm → R	.

3. An elementary hybrid system is that with a finite number of locations Q =
{q1, . . . , qn} (see [2]). An elementary hybrid system gives rise to an elementary HFC.
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In our notation, an elementary HFC is nothing but an n-HFC (or HFC of the classHn)
for some natural number n. A typical elementary (or, more generally, discrete) hybrid
system’s dynamic is continuous, and the solution satisfies (2.1) with u = ϕ(y, qi) on
the time intervals (τi, τi+1] which cover R+. More specific examples of 2- and 3-HFCs
are presented in [2].

The class ∪∞n=1Hn of all elementary hybrids will hereafter be denoted by He.
Let σ and ω1 be the cardinalities of a countable set and a continuum set, respec-

tively. Then

H0 = H1 ⊂ H2 ⊂ · · · ⊂
∞⋃
n=1

Hn = He ⊂ Hσ ⊂ Hω1 ⊂ · · · ⊂ H̃.

For systems in finite-dimensional spaces (when y ∈ Rm) we always have Hω1
= H̃.

The classes Hω for ω > ω1 can be useful for more general dynamical systems, for
example, those in abstract metric spaces or other topological spaces (some examples
can be found in [12]).

Now we are able to define the class of HFCs which we will use to find a stabilizer
to a system (2.1).

Definition 2.8. An HFC u(·) given by (2.2) is called uniform if
(1) T is a constant function;
(2) the function ϕ does not depend on the first argument, i.e., u(t) = ϕ((F∆y)(t)).
The set of all uniform HFCs will hereafter be denoted by H. Clearly, H ⊂ Hσ.
The main result of our paper follows.
Theorem 2.9. The system (2.1) is H-stabilizable under assumptions of control-

lability of (A,B) and observability of (A,C).

3. The proof of the main result. We find it convenient to use the following
notation:

–Mj,k is the set of all real j × k-matrices;
–Mk =Mk,k is the set of all real k × k-matrices;
– L(Rj ,Rk) is the set of all linear operators from Rj to Rk;
– L(Rk) = L(Rk,Rk) is the set of all linear operators in the space Rk;
– | · | is the Euclidean norm in the spaces Rk (for any k);
– ‖ · ‖ is the corresponding operator-norm in the spaces L(Rj ,Rk);
– Ik is the identity k × k-matrix;
– χE is the characteristic function of a set E;
– C is the space of all continuous functions from [0,∞) to Rn;
– L0 is the space of all Lebesgue measurable functions from [0,∞) to Rn.
We need two lemmas to prove Theorem 2.9.
Lemma 3.1. There exists an (� × n)-matrix G such that the matrix A + BG is

stable and the matrix pair (A+BG,C) is observable.
Proof. According to Theorem 2.2 we choose a matrix G0 ∈ M	,n, for which

A + BG0 is stable. Clearly, there exists ε > 0 such that for any t ∈ (1 − ε, 1 + ε) a
matrix A+ tBG0 is stable. Consider a function ψ : R→ R, which to each t associates
the sum of squares of all nth order minors of the matrix C [A+ tBG0].

Due to Kalman’s criterion P := { t ∈ R | (A + tBG,C) is observable } =
ψ−1(R \ {0}). Evidently, ψ is a polynomial, and moreover, ψ �≡ 0. The last inequality
follows immediately from the observability of the pair (A,C), which implies ψ(0) �= 0.
Thus ψ has a finite number of zeros and, therefore there exists t∗ ∈ P⋂ (1− ε, 1+ ε).
Hence, the matrix G = t∗G0 satisfies the required conditions.
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Our next lemma is a version of the Lyapunov stability theorem for a class of
functional differential equations. Some similar, but not exactly similar, results are
available in the literature (see, e.g., [3], [7], and references therein).

The Cauchy formula we will use is classical (see, e.g., [3] or [4]):

x(t) = X (t)x(0) +
∫ t

0

C(t, s)f(s)ds, t ≥ 0.(3.1)

Here C(t, s) is the Cauchy matrix of the equation

Lx ≡ ẋ(t)−
n∑
k=1

ãk(t)x[hk(t)] = f(t), t > 0,(3.2)

and X (t) is the fundamental matrix of the corresponding homogeneous equation.
Lemma 3.2. Let ãk : [0,∞) → L(Rn) be locally Lebesgue-integrable and hk :

[0,∞)→ R Lebesgue measurable functions. Assume that there exist N, β, τ > 0 such
that ζ(t) ≤ hk(t) ≤ t, t ∈ [0,∞), k = 1, . . . , n, where ζ(t) = max{0, t− τ} and

‖C(t, s)‖ ≤ Ne−β(t−s).(3.3)

Then there exists ε > 0 such that for any operator V : C→ L0 satisfying

|(V x)(t)| ≤ ε max
ζ(t)≤s≤t

|x(s)|, t ∈ [0,∞), x ∈ C,(3.4)

the zero solution of the perturbed equation

Lx = V x(3.5)

is globally exponentially stable:

|x(t)| ≤ N0e
−β0t|x(0)|, t ≥ 0,(3.6)

for any solution x(t) of (3.6) and for some positive constants N0, β0 independent of
x(t).

Proof. From the Cauchy formula (3.1) as well as from (3.3) and (3.4) it immedi-
ately follows that

|x(t)| ≤ Ne−βt|x(0)|+Nε

∫ t
0

e−β(t−s) max
ζ(s)≤ξ≤s

|x(ξ)|ds, t ≥ 0.

Putting z(t) := maxζ(t)≤s≤t|x(t)|eβt we obtain the estimate

z(t) ≤ N0|x(0)|+N0ε

∫ t
0

z(s)ds, t ≥ 0,

with N0 = Neβτ .
By the Gronwall–Bellman inequality, z(t) ≤ N0|x(0)|eN0ε, t ≥ 0, so that |x(t)| ≤

N0e
(N0ε−β)t|x(0)|, t ≥ 0. Then for any ε < β/N0 we obtain the estimate (3.6).
Now we are ready to start proving our central result.
I. By Lemma 3.1, we find a matrix G ∈ Mm,n such that the matrix A + BG is

stable and the pair (A+BG,C) is observable.
Let us fix an arbitrary τ > 0 and put

A(t) = χ[0,τ ]A0 + χ[τ,∞)A1, τ ∈ [0,∞),

where A0 = A, A1 = A+BG.
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Denote by X(t, s) the Cauchy matrix of the ordinary differential equation ẋ =
A(t)x. We do not assume in that which follows that t ≥ s (definingX(s, t) = X−1(t, s)
if necessary). Evidently,

X(t, s) = eA1(t−s), t ≥ τ, s ≥ τ,
X(t, s) = X(t, τ − 0)X(τ, s) = eA0(t−τ)eA1(τ−s), 0 ≤ t ≤ τ ≤ s.

(3.7)

We do not describe all possible cases here, restricting ourselves to those formulae
which we are going to use in the course of the proof.

II. Consider the following equation for the unknown matrix-valued function
X(t) := [X1(t), . . . , Xn(t)] ∈Mn,mn with Xk : [τ,∞)→Mn,m:

n∑
k=1

Xk(t)CX(pτ + kh, t) = In, t ∈ [(p+ 1)τ, (p+ 2)τ) := Ep.(3.8)

Here h = τ/n and p = 0, 1, 2, . . . . Our next aim is to prove existence of a solution
X(t) to this equation.

(a) Let us first assume that t ∈ E0. Then 0 ≤ kh ≤ τ ≤ t, k = 1, . . . , n, and
due to (3.7)

X(kh, t) = eA0(kh−τ)eA1(τ−t) = T k−1
0 U0, k = 1, . . . , n,(3.9)

where T0 = eA0h, U0 = eA0(h−τ)eA1(τ−t).
(b) Let t belong to Ep, p = 1, 2, . . . . Then 0 < τ ≤ pτ + kh ≤ t, k = 1, . . . , n,

and according to (3.7)

X(pτ + kh, t) = T k−1
1 Up, k = 1, . . . , n,(3.10)

where T1 = eA1h, Up = eA1(pτ+h−t). Notice that from the observability of the pairs
(Ai, C) and Kalman’s criterion it follows that rank (C [Ai]) = n, i = 0, 1. Hence, for
generic h (see, e.g., [10]),

rank (C [Ti]) = n(3.11)

as well. In what follows we shall always assume, without loss of generality, that our
h satisfies conditions (3.11).

For an arbitrary ordered n-tuple K = {k1, . . . kn} ⊂ {1, 2, . . . ,mn} (kj < kj+1,
j = 1, . . . , n − 1) we now define two operators RK : Mmn,n → Mn, SK : Mn →
Mmn,n in the following manner:

– jth row in the matrix RKZ coincides with kjth row of the matrix Z;
– kjth column of the matrix SKZ coincides with jth column of the matrix Z;
– the columns with numbers k �∈ K of the matrix SKZ are all null-columns.
From (3.11) it follows that for some ordered n-tuples Ki ⊂ {1, 2, . . . ,mn} the ma-

trices RKi(C [Ti]) (i = 1, 2) are nonsingular. Due to (3.9), (3.10), it is straightforward
that the matrix X(t), defined by

X(t) = SKi

(
U−1
p

(
RKi (C [Ti])

−1
))

,(3.12)

satisfies (3.9), where it is assumed that i = p = 0 for t ∈ E0 and i = 1 for t ∈ Ep,
p = 1, 2, . . . .



STABILIZATION VIA HYBRID CONTROLS 1475

III. Put

u1(t) =




0, 0 ≤ t < τ,

G

(
n∑
k=1

Xk(t)y(pτ + kh)

)
, t ∈ Ep, p = 0, 1, 2, . . . ,

(3.13)

where y = Cx and X(t) := [X1(t), . . . , Xn(t)] is defined by (3.12). Due to (3.8),

u1(t) = G

(
n∑
k=1

Xk(t)Cx(pτ + kh)

)

= G

(
n∑
k=1

Xk(t)CX(pτ + kh, t)x(t)

)
= Gx(t),

t ∈ Ep, p = 0, 1, 2, . . . .

Hence, (2.1) coincides with the exponentially stable linear equation ẋ = A1x in the
interval t ∈ [τ,∞). Therefore, the system (2.1) is u1-stabilizable.

But u1 is not yet a hybrid feedback control in the sense of Definition 2.8.
According to the formula (2.2) we now need to find suitable discrete approx-

imations for Ai(t) and Cx(τh + kh). To do so, we will use a technique based on
the preservation of the asymptotic stability for functional differential equations with
respect to small perturbations both in coefficients and time-delays [4].

IV. Let us first rewrite the system (2.1) involving the control u1 in the form of
the following delay-equation:

ẋ(t)−
n∑
k=0

ak(t)x[hk(t)] = 0, t ∈ [0,∞).(3.14)

Here

a0(t) = χ[0,τ)(t)A, ak(t) = χ[τ,∞)(t)BGXk(t)C, k = 1, . . . , n,

h0(t) = t, hk(t) =
∞∑
p=0

χEp(t)(pτ + kh), k = 1, . . . , n.

As shown in III, (3.14) is exponentially stable. From (3.12), it also follows that

ak(t) = BG SKi

(
U−1
p

(
RKi (C [Ti])

−1
))

ΛkC,

k = 1, . . . , n, t ∈ Ep, p = 0, 1, 2, . . . ,
(3.15)

where the block matrices Λk ∈Mmn,n are defined by

Λk = (θ . . . θ︸ ︷︷ ︸
m(k−1)

Im θ . . . θ︸ ︷︷ ︸
m(n−k)

)�, k = 1, . . . , n

(θ is an m-dimensional zero vector-column), and i = 0 for p = 0, i = 1 for p > 0.
The representation (3.15) implies that each of the functions ak : [0,∞)→ L(Rn)

is piecewise continuous with possible jumps at the points pτ , p = 1, 2, . . . , only.
Since

‖ak(t)‖ ≤ max

{
‖A‖, ‖BG‖ · ‖C‖ · max

i=1,2

∥∥∥(SKi(C [Ti]))
−1
∥∥∥

×max(1, ‖e−A0τ‖) · ‖eA1τ‖
}

<∞, t ∈ [τ,∞),
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the functions ak are bounded. Then, according to Corollary 2 in [4, p. 173], there
exists σ > 0 such that for all locally Lebesgue-integrable functions ãk : [0,∞) →
L(Rn), satisfying

max
k

lim sup
t→∞

‖ak(t)− ãk(t)‖ < σ,(3.16)

the Cauchy matrix C(t, s) of (3.2) has the exponential estimate (3.3).
Equalities (3.15) and (3.10) imply a periodicity of ak with the period τ for t ≥

2τ . Now let us approximate X(t) by a step function on [2τ, 3τ ]. For the sake of
convenience, we may assume that the points 2τ+kh are included in the set of possible
jump-points of the step function. Then we extend this function τ -periodically to the
interval [3τ,∞). Finally, we approximate X(t) on [τ, 2τ ] by a suitable step function.
Let us notice that such approximations can be found with a prescribed accuracy. Our
output will be a function X̃(t) = [X̃1(t), . . . , X̃n(t)] of the form

X̃k(t) =

J−1∑
j=0

χE1j (t)c̃kj +

∞∑
p=1

J−1∑
j=0

χEpj (t)ckj , t ∈ Epj ,(3.17)

where J is a natural constant, δ = τ/J , Epj = [(p+1)τ + jδ, (p+1)τ +(j+1)δ), and
c̃kj , ckj ∈ Mn,m are some matrices as well. Here k = 1, . . . , n, j = 0, 1, . . . , J − 1,

and p = 0, 1, . . . . By construction, ‖X̃k(t)−Xk(t)‖ < σ · (‖BG‖ · ‖C‖)−1.
We now set a0(t) ≡ A, ãk(t) = BGX̃k(t)C, k = 1, . . . , n. Then

max
k

sup
t∈[0,∞)

‖ãk(t)− ak(t)‖ < σ,

so that (3.16) holds.
Consequently, we obtain that the Cauchy matrix of (3.2) admits the exponential

estimate (3.3).
V. According to Lemma 3.2 one can choose a positive ε such that for any (as

general as necessary) nonlinear operator V : C → L0 satisfying the condition (3.4)
every solution x of the perturbed equation (3.5) has the exponential estimate (3.6)
with certain positive constants N0, β0 (independent of x).

By (3.17), ε1 := ε[ ‖BG‖ · ‖C‖ · supt∈[0,∞)

∑n
k=1 ‖X̃k(t)‖ ]−1 > 0. A multivalued

function Φ : Rm → 2Q
m

(Q is the set of rational numbers) defined by

Φ(v) = {r ∈ Qm | |v − r| ≤ ε1|v|}
then has nonempty images: Φ(v) �= ∅, v ∈ Rm. We take an arbitrary selector @ of
the multivalued function Φ and define V as follows:

(V x)(t) =

n∑
k=1

BGX̃k(t) (@(Cx[hk(t)])− Cx[hk(t)]) .(3.18)

It is easy to check that V acts from C to L0 and satisfies the inequality (3.4). Hence
(3.5) with the operator V just defined becomes asymptotically stable, and the stability
is uniform with respect to compact subsets.

By construction, (3.5) has the form

ẋ(t) = Ax(t) +

n∑
k=1

BGX̃k(t)@(Cx[hk(t)]).
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This equation is, in turn, equivalent to the original system (2.1), where the corre-
sponding control u is defined by

u(t) =




0, t ∈ [0, τ),

G

(
n∑
k=1

c̃kj@(y(kh))

)
, t ∈ E0j , j = 0, 1, . . . , J − 1,

G

(
n∑
k=1

ckj@(y(pτ + kh))

)
, t ∈ Epj , j = 0, 1, . . . , J − 1,

p = 1, 2, . . . .

(3.19)

Recall that y = Cx is the output.
The system (2.1) controlled by u from (3.19) is therefore asymptotically stable,

and the stability is uniform with respect to any compact subset of Rn.
VI. We have not yet shown that u ∈ H.
Put NJ = {0, 1, . . . , J − 1} and denote by Ω a subset ofM	,mn consisting of the

block matrices

c̃j = (Gc̃1j , . . . , Gc̃nj), cj = (Gc1j , . . . , Gcnj), z̄ = (z, . . . , z), j = 1, . . . , J−1,

where z ∈ M	,mn \ {Gc̃kj , Gckj | k = 1, . . . , n, j = 1, . . . , J − 1} is arbitrary.
Put Y ⊂ Ω × NJ . The elements of Y are (z̄, j), (c̃j , j), and (cj , j). Let us define a
mapping M0 : Y → Y by

M0(z̄, j) = (z̄, j + 1), j = 1, . . . , J − 2, M0(z, J − 1) = (c̃0, 0),

M0(c̃j , j) = (c̃j+1, j + 1), j = 0, 1, . . . , J − 2, M0(c̃J−1, J − 1) = (c0, 0),

M0(cj , j) = (cj+1, j + 1), j = 0, 1, . . . , J − 2, M0(cJ−1, J − 1) = (c0, 0).

Let P be the set of all row-vectors of the form q = (q1, . . . , qn), where qk ∈ Qm. We
extend now M0 to the set Ω ×NJ and define two mappings M− : P ×NJ × P → P
and M+ : P × P ×NJ → P as follows:

M−(q, j, i) =




q if j �= J − 1, j �= kJ
n , k = 1, . . . , n− 1,

(q1, . . . , qk−1, i, qk+1, . . . , qn) if j = kJ
n , k = 1, . . . , n− 1,

(q1, . . . , qn−1, i) if j = J − 1,

where q = (q1, . . . , qn),

M+(q
+, q−, j) =

{
q+ if j �= 0,
q− if j = 0.

We first describe an automaton ∆ = (Q, I,M, T, i, q0). Let the (countable) set
Q = P × P × (Ω×NJ) contain 4-tuples (q+, q−, (c, j)) and the (countable) alphabet
I be equal to Qm. The mapping M : Q× I → Q is then defined by

M(q+, q−, (c, j), i) = (M+(q
+,M−(q−, j, i), j),M−(q−, j, i),M0(c, j)).

Assume that T ≡ δ and define i : Rm → I and q0 by

i(s) = @(s), q0 = (Θ,Θ, (z̄, 0)),

where Θ is zero in P .
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Finally, we choose a function ϕ : Q→ R	 as follows:

ϕ((q1, . . . , qn), q
−, ((d1, . . . , dn), j)) =




0 if (d1, . . . , dn) = z̄,
n∑
k=1

dkqk if (d1, . . . , dn) �= z̄.

By construction, the control u given by (3.19) is of the form u(·) = ϕ((F∆y)(·))
and belongs to the class H. The control u is therefore a uniform HFC in the sense of
Definition 2.8. Moreover according to part V of the proof, the control u stabilizes the
system (2.1). The proof of Theorem 2.9 is completed.

4. An example. Here we show how the proposed algorithm can be used to
design an explicit hybrid strategy to stabilize particular systems.

Example 4.1. Consider the linear control system

ξ̇ = η + u, η̇ = ξ, u(t) = ϕ(ξ(t), (F∆ξ)(t)).(4.1)

This system has the following two properties:
1. There is no linear HFC stabilizing the system (4.1).
2. The pair (A,B) is controllable, the pair (A,C) is observable, so that according

to Theorem 2.9 the system (4.1) is H-stabilizable. The corresponding hybrid control
strategy can be written explicitly.

To prove 1, one may observe that for an arbitrary η0 > 0 the set (ξ(t), η(t)) ∈
[0,∞) × [η0,∞) := D is flow-invariant for any linear control strategy. This excludes
asymptotic stability.

Now, in order to design an explicit HFC u ∈ H stabilizing the system (4.1) one
should follow the algorithm from Theorem 2.9. For instance, if we take G = [−2, −3 ],
then the eigenvalues of the matrix A+BG will be −1± i, so that A+BG is stable,
and G can be used to construct an HFC. We put also h = π

2 . Evidently,

eA0t =

[
cosh t sinh t
sinh t cosh t

]
, eA1t = e−t ·

[
cos t− sin t −2 sin t

sin t cos t+ sin t

]
.(4.2)

The fundamental matrix defined in (3.7) satisfies

‖X(t, s)‖ ≤
√
7 e2π−t+s, t ≥ s ≥ 0.

Now, from this and from simple estimates on ‖BG‖, ‖C‖ we can deduce that any
piecewise approximation X̃(t) of the matrix function X(t) satisfying

‖X̃k(t)−Xk(t)‖ < e−4π

8
√
7
, k = 1, 2, t ∈ [π,∞),(4.3)

will stabilize the system (4.1).
To obtain this estimate one can, e.g., define X̃k(t), k = 1, 2, by putting

X̃k(t) =

∞∑
p=0

J−1∑
j=0

χEpj (t)Xk(2π(p+ 1) + π(2j + 1)/(2J)), t ∈ Epj ,(4.4)

where J = 5×107, Epj = [2π(p+1)+πj/J, 2π(p+1)+π(j+1)/J), j = 0, 1, . . . , J−1,
and p = 0, 1, . . . .
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Finally, for some ε1 ∈ (0, e
−4π

40
√

7
) we define a function @ : R → Q by @(v) =[

10Kv
] · 10−K , where K = max{1, 1+ [lg 2

ε|v| ]}, [w] being the integral part of w ∈ R.

The resulting hybrid strategy will be as follows.
We set u(t) = 0 when t ∈ [0, 2π) and define

u(t) = −2X11(2π(p+ 1) + π(2j + 1)/(2J)) · @(ξ(πp+ π/2))
−3X21(2π(p+ 1) + π(2j + 1)/(2J)) · @(ξ(πp+ π/2))
−2X12(2π(p+ 1) + π(2j + 1)/(2J)) · @(ξ(πp+ π))
−3X22(2π(p+ 1) + π(2j + 1)/(2J)) · @(ξ(πp+ π))

when t ∈ Epj , j = 0, 1, . . . , J − 1, p = 0, 1, . . . .
Remark. All the estimates in this example are rather rough. Using mathematical

software will give more suitable constants if required.

5. Conclusion. We do not have answers to the following questions.
(1) Is an arbitrary system (2.1) He-stabilizable under assumptions of (A,B)-

controllability and (A,C)-observability? In other words, it is not clear to what extent
one may use HFCs with finitely many locations in order to stabilize (2.1).

(2) Examples show that the assumptions of (A,B)-controllability and (A,C)-
observability are not necessary for the hybrid feedback stabilization (just take a trivial
example of an exponentially stable linear system with B = C = 0). The second open
problem is to find better conditions for the hybrid feedback stabilization in terms of
matrices A,B,C.
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Abstract. We consider systems governed by a nonlinear parabolic equation with a distributed
control and a disturbance in the initial condition. We prove the existence of solutions to a corre-
sponding minimax problem, and we obtain necessary optimality conditions in the form of Pontryagin’s
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1. Introduction. In this paper we consider an uncertain system described by
the parabolic equation

∂y

∂t
+ Ay + Φ(x, t, y) = u in Q, y = ψ on Σ,(1.1)

y(x, 0) = yo(x) + g(x) in Ω,

where Q = Ω×]0, T [, Ω is a bounded domain in R
N , Σ = Γ×]0, T [, Γ is the boundary

of Ω, and A is a second-order elliptic operator, ψ ∈ L∞(Σ). The function u is a control
variable; the initial condition is not completely known. We only suppose that g belongs
to Gad, where Gad is a closed convex subset of L∞(Ω) (not necessarily reduced to a
unique element). For this reason, system (1.1) is called an “uncertain system.” Many
physical systems may be described by equations involving disturbances, noises, or
uncertainties. Here we suppose that the disturbance only appears through the initial
condition, but the results of this paper may be extended to other classical situations.
We can, for example, consider systems with a disturbance or a control in the boundary
condition (see [2, 3]). Let us denote by y(u, g) the solution of (1.1) corresponding to
(u, g), and for a given g ∈ Gad, consider the problem

(Pg) inf { I(y(u, g), u, g) | u ∈ Uad } ,

where Uad is a given control set, and I is a cost functional that we make explicit
hereafter. We denote by Argmin(Pg) the set of solutions to (Pg), and we set J(u, g) =
I(y(u, g), u, g). The control problem that we consider is the following.

(P)

{
Find ū ∈ Uad such that ū ∈ Argmin (Pḡ) for some ḡ ∈ Gad , and

J(ug, g) ≤ J(ū, ḡ) for all g ∈ Gad and all ug ∈ Argmin (Pg) .
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This problem may be expressed in an equivalent form as

{
Find ḡ ∈ Gad and uḡ ∈ Argmin (Pḡ) such that

J(ug, g) ≤ J(uḡ, ḡ) for all g ∈ Gad and all ug ∈ Argmin (Pg),

or

max
g∈Gad

min
u∈Uad

J(u, g) .

The cost functional that we consider is defined as follows:

I(y, u, g) =

∫
Q

(F (x, t, y) + H(x, t, u)) dx dt +

∫
Ω

(�(x, y(T )) + L(x, g)) dx,

where H is convex with respect to u, and L is concave with respect to g. We prove
the existence of optimal solutions to (P) (Theorem 4.3), and we establish optimality
conditions in the form of Pontryagin’s principles (Theorems 2.1 and 2.2). The proof of
Pontryagin’s principle for an optimal solution ḡ is derived via Taylor’s expansions of
the state variable and the cost functional for diffuse perturbations of ḡ (see Theorem
5.2). This is the main part of the paper. When the state equation is linear and when
F and � are convex, the proof is much simpler (see Theorem 2.3 and its proof in
section 6.3).

We may relate this kind of problem to the concept of robustness, since considering
a min-max problem is equivalent to finding the best control which takes into account
the “worst” disturbance in the initial value. For linear equations, such problems have
been studied by Lions [11]. The notion of “least regret controls” in [11] corresponds
to our definition of robust controls.

Problem (P ) is also connected to H∞-control problems. Indeed for a quadratic
functional of the form

I(y, u, g) =

∫
Q

|y − yd|2 dx dt +

∫
Q

u2 dx dt− γ

∫
Ω

g2 dx (γ > 0),

for linear equations (Φ ≡ 0), and for the control sets Uad = L2(Q), Gad = L2(Ω),
robust controls that we consider are suboptimal solutions to some H∞-control prob-
lems (see [5, p. 218]). However the terminology of “robust control” is not adapted
here since we always deal with open-loop systems.

A series of papers has been widely devoted to uncertain systems [14], [1]. To
analyze the different original contributions and to compare our results with the pre-
vious ones, we must distinguish the nature of the system under consideration (i.e.,
the state equation) and the definition of optimal solutions. First examine the second
point. Ahmed and Xiang [1] and Mordukhovitch and Zhang [12] establish optimality
conditions for saddle points, that is optimal strategies (ū, ḡ) satisfying

sup
g∈Gad

inf
u∈Uad

J(u, g) = inf
g∈Gad

sup
u∈Uad

J(u, g) = J(ū, ḡ).

The inequality

sup
g∈Gad

inf
u∈Uad

J(u, g) ≤ inf
g∈Gad

sup
u∈Uad

J(u, g)

is always satisfied, and it is well known that for linear equations and convex cost
functionals, the equality holds [6]. For nonlinear equations, the results presented here
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are new to our knowledge. Thus our optimal solutions are different from the ones of
Ahmed and Xiang. Indeed, for a saddle point strategy, that is for (ū, ḡ) ∈ Uad ×Gad

satisfying

J(ū, g) ≤ J(ū, ḡ) ≤ J(u, ḡ) for all u ∈ Uad, all g ∈ Gad,

optimality conditions for ū and ḡ can be obtained by separately considering two
optimization problems [1]. Such an approach is not applicable for the problem that
we consider. Mordukhovitch and Zhang [12] study minimax problems in the presence
of pointwise state constraints. Optimality conditions are established for saddle point
solutions satisfying the state constraints. Taking advantage of the linear structure of
the state equation, the saddle point problem is split into two optimization problems.
Still in this case, optimality conditions for ū and ḡ can be obtained separately. To
our knowledge, the optimality conditions established in Theorem 2.2 for a minimax
problem of the form

sup
g∈Gad

inf
u∈Uad

J(u, g)

are a completely new result. Papageorgiou [14] and Ahmed and Xiang [1] consider
uncertain systems where the noise is modeled by parametrized measures. These au-
thors consider a control problem where the uncertain term appears as a distributed
measure. Our purpose is to consider an initial perturbation because in many situa-
tions, for example, in data assimilation, the initial condition is not well known. In this
case, the disturbance can be considered as an impulsive disturbance, and the analysis
is more complicated (see the Taylor’s expansions stated in Theorem 5.2 and the role
played by the parameter τρ).

The systems considered in [1] are more general than the one considered here, but
the results in [1] cannot be applied to problems with uncertain initial conditions. Since
the case of convection-diffusion equations considered in section 5 in [1] is interesting
from the point of view of applications, we explain in section 7 how to extend our
results to these kinds of equations.

Finally, we mention that the existence of solutions for minimax control problems
governed by variational inequalities is proven in [14].

The paper is organized as follows. After setting the problem, we present the main
assumptions and results in section 2. Section 3 is devoted to the study of solutions for
the state and adjoint equations. We prove existence results for the control problems
in section 4. In section 5, we establish some Taylor expansions that are used to
perform the proofs of the main results in section 6. Extensions to convection-diffusion
equations are stated in section 7.

2. Assumptions and main results.

2.1. Assumptions. Throughout the paper, Ω is a bounded open and connected
subset in R

N (N ≥ 2) of class C2+γ̄ for some 0 < γ̄ ≤ 1, and q is a positive constant sat-

isfying q > N
2 +1. The operator A is of the form Ay(x) = −∑N

i,j=1 Di(aij(x)Djy(x)) ,
where Di denotes the partial derivative with respect to xi. The coefficients aij of A
belong to C1+γ̄(Ω) and satisfy the condition

aij(x) = aji(x) for all i, j ∈ {1, . . . , N}, mo|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj
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for every ξ ∈ R
N and every x ∈ Ω, with mo > 0.

Let us define the notation.

• The conormal derivative of y with respect to A is denoted by
∂y

∂nA
; that is

∂y

∂nA
(s, t) =

∑
i,j

aij(s)Djy(s, t)ni(s),

where n = (n1, . . . , nN ) is the unit normal to Γ outward Ω.

• Ωo = Ω × {0}, ΩT = Ω × {T}. For any τ > 0, we set QτT = Ω×]τ, T [,
Ωτ = { x ∈ Ω | d(x,Γ) > τ }, Qτ = Ωτ×]τ, T [ (d is the Euclidean distance).

• For every 1 ≤ d ≤ ∞, the usual norms in the spaces Ld(Ω), Ld(Q), Ld(Σ)
will be denoted by ‖ · ‖d,Ω, ‖ · ‖d,Q, ‖ · ‖d,Σ.

• If O is a locally compact subset of R
N+1, Cb(O) denotes the space of bounded

continuous functions on O, and Co(O) the space of all continuous functions
from O into R vanishing at infinity. The dual space of Co(O) is denoted by
Mb(O) (it is the space of bounded Radon measures on O).

Now let us set the assumptions.
(A1) The control set is defined as

Uad = { u ∈ Lq(Q) | u(x, t) ∈ KU (x, t) for almost all (x, t) ∈ Q },
where KU (·) is a measurable multivalued mapping with nonempty, convex, and closed
values in P(R). The set of constraints on g is defined by

Gad = { g ∈ L∞(Ω) | g(x) ∈ KG(x) ⊂ G for almost all x ∈ Ω },
where KG(·) is a measurable multivalued mapping with nonempty, convex, and closed
values in P(R), and G is a compact subset of R. We suppose that Uad and Gad are
nonempty.

Remark 2.1. Observe that Uad is a closed, convex subset of Lq(Q). Similarly,
Gad is convex and bounded in L∞(Ω) and closed in Ls(Ω) for all 1 ≤ s ≤ +∞.

(A2) Φ is a Carathéodory function from Q×R into R. For almost every (x, t) ∈ Q,
Φ(x, t, ·) is of class C1. Moreover, the following estimates hold.

|Φ(x, t, 0)| ≤ Φ1(x, t), 0 ≤ Φ′
y(x, t, y) ≤ Φ1(x, t) η(|y|),

where Φ1 ∈ Lq(Q), and η is a nondecreasing function from R
+ to R

+.
(A3) F and H are Carathéodory functions from Q × R to R. For almost all

(x, t) ∈ Q, F (x, t, ·) is of class C1 and H(x, t, ·) is convex. Moreover, the following
estimates hold.

−C1|y|σ ≤ F (x, t, y) ≤ F1(x, t) η(|y|), |F ′
y(x, t, y)| ≤ F2(x, t) η(|y|),

C1|u|q ≤ H(x, t, u) ≤ H1(x, t) + C2 |u|q,
where C1 > 0, C2 > 0, 1 ≤ σ < q, F1 ∈ L1(Q), H1 ∈ L1(Q), F2 ∈ Lm(Q) with
m > 1, and η is defined as in (A2) .

(A4) � and L are Carathéodory functions from Ω×R into R. For almost all x ∈ Ω,
�(x, ·) is C1, L(x, ·) is concave, and the following estimates hold.

−C1|y|σ ≤ �(x, y) ≤ �1(x) η(|y|), |�′y(x, y)| ≤ �2(x) η(|y|), |L(x, g)| ≤ L1(x) η(|g|),
where �1 ∈ L1(Ω), L1 ∈ L1(Ω), �2 ∈ Lm(Ω); m > 1 and σ are the same exponents as
in (A3), and η is as in (A2).
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2.2. Statement of the main results. Let us define the Hamiltonian functions:

HQ(x, t, u, p) = H(x, t, u)− pu for all (x, t, u, p) ∈ Q× R
2,

HΩ(x, y, w, p) = L(x,w)− pw for all (x,w, p) ∈ Ω× R
2.

The following result provides necessary optimality conditions (as a Pontryagin’s prin-
ciple) for solutions to (Pg), where g ∈ Gad is fixed.

Theorem 2.1. Suppose that (A1)–(A4) are fulfilled. For any g ∈ Gad, let ug be
a solution of (Pg). Then there exists pg ∈ L1(0, T ;W 1,1

o (Ω)), such that

−∂pg

∂t
+ Apg+Φ′

y(x, t, y(ug, g)) pg + F ′
y(x, t, y(ug, g)) = 0 in Q,

pg(x, T ) + �′y(x, y(ug, g)(T )) = 0 in Ω,

(2.1)

and

HQ(x, t, ug(x, t), pg(x, t)) = min
u∈KU (x,t)

HQ(x, t, u, pg(x, t))(2.2)

for almost every (x, t) ∈ Q.

Next we are concerned with necessary optimality conditions for solutions to problem
(P).

Theorem 2.2. Assume (A1)–(A4). Then (P) admits at least a solution ḡ. In
addition, there exists a solution ū to (Pḡ), and p̄ ∈ L1(0, T ;W 1,1

o (Ω)), such that

−∂p̄

∂t
+ Ap̄+Φ′

y(x, t, y(ū, ḡ)) p̄ + F ′
y(x, t, y(ū, ḡ)) = 0 in Q,

p̄(x, T ) + �′y(x, y(ū, ḡ)(T )) = 0 in Ω,

(2.3)

and

HQ(x, t, ū(x, t), p̄(x, t)) = min
u∈KU (x,t)

HQ(x, t, u, p̄(x, t)) for a.e. (x, t) ∈ Q,(2.4)

HΩ(x, ḡ(x), p̄(x, 0)) = max
g∈KG(x)

HΩ(x, g, p̄(x, 0)) for a.e. x ∈ Ω.(2.5)

In the case of linear equations, and when the cost functional is convex with respect
to the state variable, a more accurate statement is given below.

Theorem 2.3. Suppose that (A1)–(A4) are fulfilled. Suppose in addition that Φ
is of the form Φ(·, y) = a(·)y + b(·) (with a ∈ Lq(Q), a ≥ 0, b ∈ Lq(Q)), and that
F (x, t, ·) and �(x, ·) are convex. Let ḡ be a solution of (P ) and let uḡ be in Arg inf(Pḡ).

Then there exists p̄ ∈ L1(0, T ;W 1,1
0 (Ω)) satisfying the equation


−∂p̄

∂t
+ Ap̄ + Φ′

y(x, t, y(uḡ, ḡ)) p̄ + F ′
y(x, t, y(uḡ, ḡ)) = 0 in Q,

p̄(x, T ) + �′y(x, y(uḡ, ḡ)(T )) = 0 in Ω,

(2.6)

and such that

HQ(x, t, uḡ(x, t), p̄(x, t)) = min
u∈KU (x,t)

HQ(x, t, u, p̄(x, t)) for a.e. (x, t) ∈ Q,(2.7)

HΩ(x, ḡ(x), p̄(x, 0)) = max
g∈KG(x)

HΩ(x, g, p̄(x, 0)) for a.e. x ∈ Ω.(2.8)
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3. State equation. Adjoint equation.

3.1. Existence and regularity for the solution of state equation. Let a
be a nonnegative function in Lq(Q), let φ be in Lq(Q), let f be in L∞(Σ), and let w
be in L∞(Ω). Consider the following equation.

∂y

∂t
+ Ay + ay = φ in Q, y = f on Σ, y(0) = w in Ω.(3.1)

Definition 3.1. A function y ∈ L1(Q) is a weak solution of (3.1) if and only if
a y ∈ L1(Q) and

∫
Q

y

(
−∂z

∂t
+ Az + a z

)
dx dt =

∫
Q

φ z dx dt +

∫
Ω

w z(0) dx−
∫

Σ

f
∂z

∂nA
ds dt

for all z ∈ C2(Q) such that z(T ) = 0 and z|Σ = 0.

Proposition 3.1 (see [2, Proposition 3.6]). Equation (3.1) admits a unique weak
solution y ∈ L1(Q). This solution belongs to Cb(Q ∪ ΩT ) and satisfies

‖y‖∞,Q ≤ C(‖φ‖q,Q + ‖f‖∞,Σ + ‖w‖∞,Ω),

where C ≡ C(T,Ω, N, q) does not depend on a.

Proposition 3.2 (see [2, Proposition 3.7]). Let a be a nonnegative function in
Lq(Q) such that ‖a‖q,Q ≤M . For every τ > 0, the weak solution y of (3.1) is Hölder
continuous on Qτ and satisfies

‖y‖Cν,ν/2(Qτ ) ≤ C(τ)(‖φ‖q,Q + ‖f‖∞,Σ + ‖w‖∞,Ω) for some 0 < ν < 1,

where C(τ) ≡ C(T,Ω, N,M, q, τ).
Now we recall some results for the (nonlinear) state equation.

Definition 3.2. A function y ∈ L1(Q) is a weak solution of (1.1) if and only if
Φ(·, y(·)) ∈ L1(Q) and

∫
Q

y

(
−∂z

∂t
+ Az

)
dx dt +

∫
Q

(Φ(x, t, y)− u) z dx dt = −
∫

Σ

ψ
∂z

∂nA
ds dt

+

∫
Ω

(yo + g) z(0) dx

for all z ∈ C2(Q) satisfying z(T ) = 0 and z|Σ = 0.
Theorem 3.1 (see [2, Theorem 3.9]). Let u be in Lq(Q), let g be in L∞(Ω), and

let yo be in L∞(Ω). Equation (1.1) admits a unique weak solution y(u, g). This
solution belongs to Cb(Q ∪ ΩT ) and satisfies

‖y(u, g)‖∞,Q ≤ C(‖u‖q,Q + ‖ψ‖∞,Σ + ‖g‖∞,Ω + ‖yo‖∞,Ω + 1),(3.2)

where C = C(T,Ω, N, q).
Theorem 3.2 (see [2, Theorem 3.10]). For every M > 0 and every τ > 0, there

exists a positive constant C(τ) ≡ C(T,Ω, N, q, τ,M) and ν > 0 such that, for every
(u, g) ∈ Lq(Q)×L∞(Ω) satisfying ‖u‖q,Q + ‖g‖∞,Ω ≤M , the weak solution y(u, g) of
(1.1) corresponding to (u, g) is Hölder continuous on Qτ and satisfies

‖y(u, g)‖Cν,ν/2(Qτ ) ≤ C(τ).
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3.2. Adjoint equation. Consider the following terminal boundary value prob-
lem.

−∂p

∂t
+ Ap + a p = φ in Q, p = 0 on Σ, p(T ) = w in ΩT ,(3.3)

where a is a nonnegative function in Lq(Q), φ ∈ L1(Q), and w ∈ L1(Ω).
Definition 3.3. A function p ∈ L1(0, T ;W 1,1

o (Ω)) is a weak solution of (3.3) if
and only if a p ∈ L1(Q) and

∫
Q


p

∂z

∂t
+

N∑
i,j=1

aijDjpDiz + a z p


 dx dt =

∫
Q

φz dx dt +

∫
Ω

wz(T ) dx

for all z ∈ C1(Q) ∩ Co(Q ∪ ΩT ).

Theorem 3.3. (see [2, Theorem 4.2]) Let φ ∈ L1(Q), w ∈ L1(Ω), and let a be
a nonnegative function in Lq(Q) satisfying ‖a‖q,Q ≤M . Then (3.3) admits a unique
weak solution p in L1(0, T ;W 1,1

o (Ω)). This solution belongs to Lδ(0, T ;W 1,d
o (Ω)) for

all (δ, d) satisfying δ > 1, d > 1, N
2d + 1

δ > N+1
2 . Moreover, there exists a function in

L1(Σ), denoted by ∂p
∂nA

, and a function in L1(Ω), denoted by p(0), such that

∫
Q

(
∂z

∂t
+Az+a z

)
p dx dt−

∫
Σ

z
∂p

∂nA
ds dt+

∫
Ω

z(0) p(0) dx =

∫
Q

φz dx dt+

∫
Ω

wz(T ) dx

for all z ∈
{

y ∈ Cb(Q ∪ ΩT )|∂y
∂t

+ Ay ∈ Lq(Q), y|Σ ∈ L∞(Σ), y(0) ∈ L∞(Ω)

}
.

4. Existence results for min and max problems. Before dealing with exis-
tence results for the different problems, we have to establish some lower semicontinuity
properties for the cost functional. As the state variable is implicitly involved in the
cost functional, the following result is crucial for what follows.

Theorem 4.1. For every τ ∈]0, T [, the mapping (u, g) �→ y(u, g) is sequentially
continuous from Uad×Gad, endowed with its weak-L

q(Q)× weak-star-L∞(Ω) topology,
into C(Qτ ).

Proof. Let (un, gn)n be a sequence converging to (ũ, g̃) for the weak-Lq(Q)× weak-
star-L∞(Ω) topology. Let yn be the solution of (1.1), corresponding to (un, gn). Due
to (3.2), the sequence (yn)n is bounded in L∞(Q). Then there exists a subsequence,
still indexed by n, and ỹ ∈ L∞(Q) such that (yn)n converges to ỹ for the weak-star
topology of L∞(Q). Moreover, from Theorem 3.2, the sequence (yn)n is bounded in
Cν,ν/2(Qτ ) for some ν > 0 and for all τ ∈]0, T [. Since the imbedding from Cν,ν/2(Qτ )
into C(Qτ ) is compact, (yn)n converges to ỹ uniformly on Qτ for all τ > 0. On the
other hand, observe that yn satisfies∫

Q

yn

(
−∂z

∂t
+ Az

)
dx dt +

∫
Q

(Φ(x, t, yn)− un) z dx dt

=−
∫

Σ

ψ
∂z

∂nA
ds dt +

∫
Ω

(yo + gn) z(0) dx

for all z ∈ C2(Q) satisfying z(T ) = 0 and z|Σ = 0. With (A2) on Φ and Lebesgue’s
theorem, we can pass to the limit when n tends to infinity, and we obtain∫

Q

ỹ

(
−∂z

∂t
+ Az

)
dx dt +

∫
Q

(Φ(x, t, ỹ)− ũ) z dx dt
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=−
∫

Σ

ψ
∂z

∂nA
ds dt +

∫
Ω

(yo + g̃) z(0) dx

for all z ∈ C2(Q) satisfying z(T ) = 0 and z|Σ = 0. Therefore, ỹ is the solution of (1.1)
corresponding to (ũ, g̃).

Corollary 4.1. For all g ∈ Gad, the mapping u �→ J(u, g) is sequentially lower
semicontinuous on Uad, endowed with the weak-topology of L

q(Q).
Proof. Let g be in Gad, and let (un)n be a sequence converging to some ũ for the

weak topology of Lq(Q). Let yn = y(un, g) and ỹ = y(ũ, g) be the associated solutions
of (1.1). We observe that

J(ũ, g)− J(un, g)

=

∫
Q

Fn(x, t )(ỹ − yn) dx dt +

∫
Ω

�n (ỹ − yn) (T ) dx +

∫
Q

(H(x, t, ũ)−H(x, t, un)) dx dt,

where

Fn(x, t) =

∫ 1

0

F ′
y (x, t, (1− θ) yn + θỹ) dθ

and �n(x) =

∫ 1

0

�′y (x, (1− θ)yn(T ) + θ ỹ(T )) dθ.

Due to Theorem 4.1, the sequence (yn)n converges to ỹ uniformly on Qτ for all τ > 0.
With assumptions on F and � and Lebesgue’s theorem, we obtain

lim
n→+∞

∫
Q

Fn(x, t) (ỹ − yn) dx dt = lim
n→+∞

∫
Ω

�n(x) (ỹ − yn)(T ) dx = 0 .(4.1)

On the other hand, from [9, Theorem 2.1, Chapter 8], we deduce that

∫
Q

H(x, t, ũ) dx dt ≤ lim inf
n→+∞

∫
Q

H(x, t, un) dx dt .(4.2)

The sequential lower semicontinuity of J(·, g) follows from (4.1) and (4.2).
Now we are able to give an existence result of solutions to problem (Pg).
Theorem 4.2. Let g be in Gad. If (A1)–(A4) are fulfilled, then problem (Pg)

admits at least one solution.
Proof. Let g be in Gad, and let u be in Uad. From (A3)–(A4) and Theorem 3.1,

it follows that

J(u, g) ≥ C1||u||qq,Q − C(||u||σq,Q + ||Ψ||σ∞,Σ + ||y0||σ∞,Ω + ||g||σ∞,Ω + 1)

− ||L1||1,Ω ||η(g + y0)||∞,Ω.(4.3)

With Young’s inequality we can prove that the infimum of (Pg) belongs to R. Let
(un)n be a minimizing sequence for (Pg). Due to (4.3), the sequence (un)n is bounded
in Lq(Q). Then there exist a subsequence, still indexed by n, and u ∈ Uad, such that
(un)n converges to u for the weak topology of Lq(Q). Due to Corollary 4.1, we have

J(u, g) ≤ lim inf
n

J(un, g) ≤ inf(Pg),

and the proof is complete.
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To study the existence of solutions to problem (P), we have to set some continuity
results.

Proposition 4.1. Let (gn)n ⊂ Gad be a sequence converging to some g ∈ Gad

for the weak-star topology of L∞(Ω). Let ugn be an element in Argmin(Pgn). Then
there exists ug ∈ Argmin(Pg) such that the following conditions hold.

• (ugn)n converges (up to a subsequence) to ug for the weak topology of L
q(Q).

• (y(ugn , gn))n converges (up to a subsequence) to y(ug, g) in C(Qτ ) for all
τ > 0.

Proof. Due to (4.3), since (gn)n is bounded in L∞(Ω), and since J(ugn , gn)
≤ J(uo, gn) ≤ M (for some uo fixed in Uad), the sequence (ugn)n is bounded in
Uad. Then there exists a subsequence, still indexed by n, and ũ, such that (ugn)n con-
verges to ũ for the weak topology of Lq(Q). Since Uad is closed and convex in Lq(Q),
it is also weakly closed and ũ ∈ Uad. Due to Theorem 4.1, the sequence (y(ugn , gn))n
converges to y(ũ, g) in C(Qτ ) for all τ > 0. Let us prove that ũ belongs to Argmin
(Pg). By definition, ugn satisfies

J(ugn , gn) ≤ J(u, gn) for all u ∈ Uad.(4.4)

With arguments similar to those used in Corollary 4.1, we can prove that

lim
n→+∞

∫
Q

F (x, t, y(ugn , gn)) dx dt =

∫
Q

F (x, t, y(ũ, g)) dx dt,(4.5)

lim
n→+∞

∫
Q

F (x, t, y(u, gn)) dx dt =

∫
Q

F (x, t, y(u, g)) dx dt ,(4.6)

lim
n→+∞

∫
Ω

�(x, y(ugn , gn)(T )) dx =

∫
Ω

�(x, y(ũ, g)(T )) dx ,(4.7)

lim
n→+∞

∫
Ω

�(x, t, y(u, gn)(T )) dx =

∫
Ω

�(x, y(u, g)(T )) dx ,(4.8)

∫
Q

H(x, t, ũ) dx dt ≤ lim inf
n→+∞

∫
Q

H(x, t, ugn) dx dt .(4.9)

From (4.5)–(4.9) and passing to the limit when n tends to infinity in (4.4), we obtain

J(ũ, g) ≤ J(u, g) for all u ∈ Uad.

Therefore, ũ belongs to Argmin (Pg), and we set ũ ≡ ug. The second assertion follows
from Corollary 4.1.

Theorem 4.3. Assume (A1)–(A4) are fulfilled; then the minimax problem (P)
admits at least one solution ḡ.

Proof. First we observe that problem (P) is equivalent to

max {J(ug, g) | ug ∈ Argmin (Pg) g ∈ Gad}.
Let (gn)n be a maximizing sequence for (P). Since Gad is bounded in L∞(Ω), there
exist a subsequence, still indexed by n, and g̃, such that (gn)n converges to g̃ for the
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weak-star topology of L∞(Ω). In addition, g̃ is also the weak limit of gn in Ls(Ω)
for all s ≥ 1. Since Gad is convex and closed in Ls(Ω), it is also weakly closed and
g̃ ∈ Gad. From assumption (A4) on L, we deduce that

lim sup
n→+∞

∫
Ω

(L(x, gn)− L(x, g̃)) dx ≤ 0.(4.10)

On the other hand, with Proposition 4.1, we know that (ugn)n (where ugn ∈ Argmin
(Pgn)) converges (up to a subsequence) to some ug̃ ∈ Argmin (Pg̃) for the weak
topology of Lq(Q), and (y(ugn , gn))n converges (up to a subsequence) to y(ug̃, g̃) in

C(Qτ ) for all τ > 0. Therefore,

J(ugn , gn)− J(ug̃, g̃) = (J(ugn , gn)− J(ug̃, gn)) + (J(ug̃, gn)− J(ug̃, g̃))

≤ J(ug̃, gn)− J(ug̃, g̃)

=

∫
Q

(F (x, t, y(ug̃, gn))− F (x, t, y(ug̃, g̃))) dx dt

+

∫
Ω

(�(x, y(ug̃, gn)(T ))− �(x, y(ug̃, g̃)(T ))) dx

+

∫
Ω

(L(x, gn)− L(x, g̃)) dx .

(4.11)

As in the proof of Proposition 4.1, we have

lim
n→+∞

∫
Q

(F (x, t, y(ug̃, gn))− F (x, t, y(ug̃, g̃))) dx dt = 0,(4.12)

lim
n→+∞

∫
Ω

(�(x, y(ug̃, gn)(T ))− �(x, y(ug̃, g̃)(T ))) dx = 0.(4.13)

Consequently, with (4.11), (4.10), (4.12), and (4.13), it follows that

sup
g∈Gad

{J(ug, g) | ug ∈ Arg inf(Pg)} = lim
n→+∞J(ugn , gn)

= lim sup
n→+∞

J(ugn , gn) ≤ J(ug̃, g̃).

Since g̃ belongs to Gad and ug̃ belongs to Arg inf(Pg̃), g̃ is a solution to (P).

5. Taylor expansions. In order to give optimality conditions we need some
Taylor expansions. In what follows, LN+1 denotes the (N + 1)-dimensional Lebesgue
measure.

Theorem 5.1 (Taylor expansion of y with respect to u). Let ρ be in ]0, 1[. For
every u1, u2 ∈ Uad, and every g ∈ Gad, there exist measurable subsets Qρ ⊂ Q such
that

LN+1(Qρ) = ρLN+1(Q),

∫
Qρ

(H(x, t, u2)−H(x, t, u1)) dx dt = ρ

∫
Q

(H(x, t, u2)−H(x, t, u1)) dx dt,

yρ = y1 + ρz + rρ, with lim
ρ→0

1

ρ
||rρ||C(Q) = 0,
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J(uρ, g) = J(u1, g) + ρ

(
J ′
y(u1, g1)z +

∫
Q

(H(x, t, u2)−H(x, t, u1)) dx dt

)
+ o(ρ),

where

uρ(x, t) =




u1(x, t) in Q \Qρ,

u2(x, t) in Qρ,

yρ and y1 are the solutions of (1.1) corresponding to (uρ, g) and (u1, g), and z is the
solution of

∂z

∂t
+ Az + Φ′

y(·, y1)z = u2 − u1 in Q, z = 0 on Σ, z(0) = 0 in Ω.

Proof. See [16, Theorem 4.1] or [15].
Theorem 5.2 (Taylor expansion of y with respect to g). Let ρ be in ]0, 1[, and

set τρ = ρm
′+ qq̄

q−q̄ , where q > q̄ > N
2 + 1 (m > 1 is the exponent in (A4), and m′ is

the conjugate exponent to m). For every g1, g2 ∈ Gad, there exist measurable subsets
Ωρ ⊂ Ω, and there exists ug1 ∈ Arg inf (Pg1), such that the following hold.

LN (Ωρ) = ρLN (Ω),

∫
Ωρ

(L(x, g2)− L(x, g1)) dx = ρ

∫
Ω

(L(x, g2)− L(x, g1)) dx,(5.1)

y(ugρ , gρ) = y(ugρ , g1) + ρz1 + rρ, with lim
ρ→0

1

ρ
||rρ||C(QτρT ) = 0,(5.2)

J(ugρ , gρ) = J(ugρ , g1) + ρ

(
J ′
y(ug1 , g1)z1 +

∫
Ω

(L(x, g2)− L(x, g1)) dx

)

+ o(ρ),(5.3)

where

gρ(x) =




g1(x) on Ω \ Ωρ,

g2(x) on Ωρ,

ugρ ∈ Arg inf (Pgρ),

y(ugρ , gρ) and y(ugρ , g1) are the solutions of (1.1) corresponding to (uρ, gρ) and (uρ, g1),
and z1 is the solution of

∂z

∂t
+ Az + Φ′

y (x, t, y(ug1 , g1)) z = 0 in Q, z = 0 on Σ, z(0) = g2 − g1 in Ω.

The proof is based on the following lemmas.
Lemma 5.1. (see [16, Lemma 4.1]) Let g1, g2 be in L∞(Ω). For every ρ ∈]0, 1[,

there exists a sequence of measurable subsets (Ωn
ρ )n in Ω, such that

LN (Ωn
ρ ) = ρLN (Ω),
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∫
Ωn

ρ

(L(x, g2)− L(x, g1))dx = ρ

∫
Ω

(L(x, g2)− L(x, g1))dx,

(
χΩn

ρ

ρ

)
n

converges to 1 for the weak-star topology of L∞(Ω),

where χΩn
ρ
denotes the characteristic function of Ωn

ρ .
Lemma 5.2. Let be ρ ∈]0, 1[, and let (Ωn

ρ )n be the sequence of measurable subsets
defined in Lemma 5.1. Set

gnρ (x) =

{
g1(x) on Ω \ Ωn

ρ ,

g2(x) on Ωn
ρ .

Then the sequence (gnρ )n converges to ρg2 + (1 − ρ)g1 for the weak-star topology of
L∞(Ω).

Proof. Let be ϕ ∈ L1(Ω). We have

∣∣∣∣
∫

Ω

gnρ ϕdx−
∫

Ω

(ρg2 + (1− ρ)g1)ϕdx

∣∣∣∣ =

∣∣∣∣
∫

Ω

(gnρ − ρg2 − (1− ρ)g1)ϕdx

∣∣∣∣

= ρ

∣∣∣∣
∫

Ω

(
χΩn

ρ

ρ
− 1

)
(g2 − g1)ϕdx

∣∣∣∣→ 0 as n→∞.

Proof of Theorem 5.2. Let ugn
ρ

be in Argmin (Pgn
ρ

). With Lemma 5.2 and
Proposition 4.1, we can prove that (ugn

ρ
)n (or at least a subsequence) weakly converges

to some uρ ∈ Lq(Q), uρ ∈ Argmin
(P(ρg2+(1−ρ)g1)

)
, and

lim
n→∞

∥∥∥y(ugn
ρ
, gnρ )− y (uρ, ρg2 + (1− ρ)g1)

∥∥∥
C(Q̄τ )

= 0 for all τ > 0.(5.4)

With similar arguments we prove that (uρ)ρ weakly converges to some ug1 ∈Argmin(Pg1),
and

lim
ρ→0
‖y(ug1 , g1)− y (uρ, ρg2 + (1− ρ)g1)‖C(Q̄τ ) = 0 for all τ > 0.(5.5)

Step 1. We first establish (5.2). The function ζnρ = 1
ρ

(
y(ugn

ρ
, gnρ )−y(ugn

ρ
, g1)

)−z1

belongs toCb(Q ∪ ΩT ), and it is the solution of

∂ζ

∂t
+ Aζ + βn

ρ ζ = hnρ in Q, ζ = 0 on Σ, ζ(0) = fnρ in Ω,

where

βn
ρ =

∫ 1

0

Φ′
y

(
·, θ y(ugn

ρ
, gnρ ) + (1− θ) y(ugn

ρ
, g1)

)
d θ,

hnρ =
(
Φ′
y(·, y(ug1 , g1))− βn

ρ

)
z1, fnρ =

(
1− 1

ρ
χΩn

ρ

)
(g1 − g2).
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We look for n ∈ N
∗ as a function of ρ, say n(ρ), such that

lim
ρ↘0

∥∥∥ζn(ρ)
ρ

∥∥∥
C(QτρT )

= 0.(5.6)

Set ζnρ = ζn,1ρ + ζn,2ρ , where ζn,1ρ ∈ C(Q) is the solution of

∂ζ

∂t
+ Aζ + βn

ρ ζ = hnρ in Q, ζ = 0 on Σ, ζ(0) = 0 in Ω,

and ζn,2ρ ∈ Cb(Q ∪ ΩT ) is the solution of

∂ζ

∂t
+ Aζ + βn

ρ ζ = 0 in Q, ζ = 0 on Σ, ζ(0) = fnρ in Ω.

Let ηnρ ∈ Cb(Q ∪ ΩT ) be the solution of

∂η

∂t
+ Aη + βη = 0 in Q, η = 0 on Σ, η(0) = fnρ in Ω,

where β(·) = Φ′
y(·, y(ug1 , g1)). The operator T which associates ζ, the solution of

∂ζ

∂t
+ Aζ + βζ = 0 in Q, ζ = 0 on Σ, ζ(0) = w in Ω,

with w ∈ L∞(Ω), is continuous from L∞(Ω) into Cν,ν/2(QτρT ) for some 0 < ν < 1 (see

Proposition 3.2). Since the imbedding from Cν,ν/2(QτρT ) into C(QτρT ) is compact,

T can be considered as a compact operator from L∞(Ω) into C(QτρT ). Since the
sequence (fnρ )n converges to 0 for the weak-star topology of L∞(Ω), we obtain

lim
n→∞ ||η

n
ρ ||C(QτρT ) = 0.(5.7)

From (5.4) and (5.7), we deduce the existence of some integer n(ρ) such that

∥∥∥y (ugn(ρ)
ρ

, gn(ρ)
ρ

)
− y (uρ, ρg2 + (1− ρ)g1)

∥∥∥
C(Q̄τρ )

+ ‖ηn(ρ)
ρ ‖C(QτρT ) ≤ ρ.(5.8)

On the other hand, the function ζ
n(ρ),2
ρ − η

n(ρ)
ρ belongs to C(Q) and satisfies

∂ζ

∂t
+ Aζ + βn(ρ)

ρ ζ = (β − βn(ρ)
ρ )ηn(ρ)

ρ in Q, ζ = 0 on Σ, ζ(0) = 0 in Ω.

There exists C ≡ C(T,Ω, q,N) > 0, independent of ρ, such that

‖ζn(ρ),1
ρ ‖C(Q) ≤ C‖hn(ρ)

ρ ‖q,Q,

‖ζn(ρ),2
ρ − ηn(ρ)

ρ ‖C(Q) ≤ C‖(β − βn(ρ)
ρ )ηn(ρ)

ρ ‖q̄,Q ≤ C‖β − βn(ρ)
ρ ‖q,Q ‖ηn(ρ)

ρ ‖r,Q,

where 1
r = 1

q̄ − 1
q (q̄ obeys q > q̄ > N

2 + 1; see assumptions). It follows that

‖ζn(ρ),2
ρ − η n(ρ)

ρ ‖C(Q)

≤ C‖β − βn(ρ)
ρ ‖q,Q

(
‖ηn(ρ)

ρ ‖C(QτρT ) + (LN+1(Q \QτρT ))
1
r ‖ηn(ρ)

ρ ‖∞,Q

)
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≤ C‖β − βn(ρ)
ρ ‖q,Q

(
‖ηn(ρ)

ρ ‖C(QτρT ) + τ
1
r
ρ ‖fn(ρ)

ρ ‖∞,Ω

)

≤ C‖β − βn(ρ)
ρ ‖q,Q

(
‖ηn(ρ)

ρ ‖C(QτρT ) + τ
1
r
ρ ρ−1‖g1 − g2‖∞,Ω

)

≤ C‖β − βn(ρ)
ρ ‖q,Q

(
‖ηn(ρ)

ρ ‖C(QτρT ) + ρm
′ q−q̄

qq̄

)

≤ C‖β − βn(ρ)
ρ ‖q,Q

(
ρ + ρm

′ q−q̄
qq̄

)
.

Therefore,

‖ζn(ρ)
ρ ‖C(QτρT ) ≤ ‖ζn(ρ),1

ρ ‖C(Q) + ‖ζn(ρ),2
ρ − η

n(ρ,τ)
ρ ‖C(Q) + ‖ηn(ρ)

ρ ‖C(QτρT )

≤ C
(
‖hn(ρ)

ρ ‖q,Q + ‖β − β
n(ρ)
ρ ‖q,Q(ρ + ρm

′ q−q̄
qq̄ ) + ρ

)
.

With assumption (A2) and with Lebesgue’s theorem of dominated convergence, we

can prove that
(
h
n(ρ)
ρ

)
ρ

converges to 0 in Lq(Q). Thus (5.6) follows from the last in-

equality. Let us set Ωρ = Ω
n(ρ)
ρ and gρ = g

n(ρ)
ρ . We have y(ugρ , gρ) = y

(
u
g
n(ρ)
ρ

, g
n(ρ)
ρ

)
,

y(ugρ , g1) = y
(
u
g
n(ρ)
ρ

, g1

)
,
rρ
ρ = ζ

n(ρ)
ρ , and (5.2) is proved.

Step 2. Now we establish (5.3). First observe that, with (5.8), we have

c‖y(ugρ,gρ)− y (ug1 , g1)‖C(Qτ ) ≤ ‖y(ugρ , gρ)− y (uρ, ρg2 + (1− ρ)g1) ‖C(Qτ )

+ ‖y(ug1 , g1)− y (uρ, ρg2 + (1− ρ)g1) ‖C(Qτ )

≤ ρ + ‖y(ug1 , g1)− y (uρ, ρg2 + (1− ρ)g1) ‖C(Qτ ) for all τ > 0.

Therefore, from (5.5) it follows that

lim
ρ→0
‖y(ugρ , gρ)− y(ug1 , g1)‖C(Qτ ) = 0 for all τ > 0.(5.9)

On the other hand,
∣∣∣∣J(ugρ , gρ)− J(ugρ , g1)

ρ
−∆J

∣∣∣∣

≤
∣∣∣∣
∫
Q

(
F (x, t, y(ugρ , gρ))− F (x, t, y(ug1 , g1))

ρ
− F ′

y(x, t, y(ug1 , g1))z1(x, t)

)
dx dt

∣∣∣∣

+

∣∣∣∣
∫

Ω

(
�(x, y(ugρ , gρ)(T ))− �(x, y(ug1 , g1)(T ))

ρ
− �′y(x, y(ug1 , g1)(T )) z1(x, T )

)
dx

∣∣∣∣

= I1
ρ + I2

ρ .

(Due to (5.1), the integrand L does not appear in the above estimate.) From the

equation satisfied by
rρ
ρ

=ζ
n(ρ)
ρ , we deduce that

∥∥∥∥rρρ
∥∥∥∥
∞,Q

≤ C
(
‖hn(ρ)

ρ ‖q,Q + ‖fn(ρ)
ρ ‖∞,Ω

)
≤ C

(
‖hn(ρ)

ρ ‖q,Q +
1

ρ

)
.
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With (A3), we obtain

I1
ρ ≤

∥∥∥∥Fρ
rρ
ρ

∥∥∥∥
1,Q

+ ‖ (Fρ − F ′
y(·, y(ug1 , g1))

)
z1‖1,Q

≤ C

(
‖Fρ‖m,Q

∥∥∥∥rρρ
∥∥∥∥
m′,Q

+ ‖Fρ − F ′
y(·, y(ug1 , g1))‖1,Q

)

≤ C

(∥∥∥∥rρρ
∥∥∥∥
C(QτρT )

+
[LN+1(Q \QτρT )

] 1
m′
∥∥∥∥rρρ

∥∥∥∥
∞,Q

+ ‖Fρ − F ′
y(·, y(ug1 , g1))‖1,Q

)

≤ C

(∥∥∥∥rρρ
∥∥∥∥
C(QτρT )

+ (τρ)
1

m′

[
‖hn(ρ)

ρ ‖q,Q +
1

ρ

]
+ ‖Fρ − F ′

y(·, y(ug1 , g1))‖1,Q
)

≤ C
(
ρ + (τρ)

1
m′ ‖hn(ρ)

ρ ‖q,Q + ρ
qq̄

m′(q−q̄) + ‖Fρ − F ′
y(·, y(ug1 , g1))‖1,Q

)
,

where

Fρ =

∫ 1

0

F ′
y(·, (1− θ)y(ug1 , g1) + θy(ugρ , gρ)) dθ,

and C is a positive constant independent of ρ. Similarly to the calculus of I1
ρ , and

due to (A4), we prove that

I2
ρ ≤ C

(
ρ + (τρ)

1
m′ ‖hn(ρ)

ρ ‖q,Q + ρ
qq̄

m′(q−q̄) + ‖�ρ(·)− �′y(·, y(ug1 , g1)(T ))‖1,Ω
)
,

where

�ρ(·) =

∫ 1

0

�′y(·, (1− θ)y(ug1 , g1)(T ) + θy(ugρ , gρ)(T )) dθ,

and where C is a positive constant independent of ρ. Due to (5.9), by assumptions
on F and �, and Lebesgue’s theorem of dominated convergence, we have

lim
ρ→0
‖Fρ − F ′

y(·, y(ug1 , g1))‖1,Q = 0 and lim
ρ→0
‖Lρ(T )− L′

y(·, y(ug1 , g1)(T ))‖1,Ω = 0.

Thus lim
ρ→0

I1
ρ = lim

ρ→0
I2
ρ = 0, and the proof is complete.

6. Proof of the optimality conditions.

6.1. Proof of Theorem 2.1: Optimality conditions for (Pg). The proof is
similar to the one given in [2, Theorem 2.1]. We rewrite it for the convenience of the
reader. Let ρ be in ]0, 1[. Let g be in Gad, ug in Argmin (Pg), and u in Uad. Due to
Theorem 5.1, there exists a measurable subset Qρ such that LN+1(Qρ) = ρLN+1(Q),
and

y(uρ(g), g) = y(ug, g) + ρzg + rρ, with lim
ρ→0

1

ρ
‖rρ‖C(Q) = 0,

J(uρ(g), g) = J(ug, g) + ρ∆J + o(ρ),
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where uρ(g) is defined by

uρ(g)(x, t) =




ug(x, t) in Q \Qρ,

u(x, t) in Qρ,

y(uρ(g), g) is the solution to (1.1) corresponding to (uρ(g), g), zg is the weak solution
of

∂z

∂t
+ Az + Φ′

y(x, t, y(ug, g)) z = u− ug in Q, z = 0 on Σ, z(0) = 0 in Ω,

and

∆J =

∫
Q

(
F ′
y(x, t, y(ug, g))zg + (H(x, t, u)−H(x, t, ug))

)
dx dt

+

∫
Ω

�′y(x, y(ug, g)) zg(T ) dx.

Since (uρ(g), g) is admissible for (Pg), it follows that J(ug, g) ≤ J(uρ(g), g) and

−∆J ≤ lim
ρ→0

J(ug, g)− J(uρ(g), g)

ρ
≤ 0 .(6.1)

Let pg be the weak solution of (2.1). Using the Green formula of Theorem 3.3, we
obtain

−
∫
Q

F ′
y(x, t, y(ug, g))zg dx dt−

∫
Ω

�′y(x, y(ug, g)(T )) zg(T ) dx

=

∫
Q

pg

(
∂zg
∂t

+ Azg + Φ′
y(x, t, y(ug, g)) zg

)
dx dt =

∫
Q

pg (u− ug) dx dt.

Taking the definition of ∆J into account, we have

∆J =

∫
Q

H(x, t, u)−H(x, t, ug) dx dt(6.2)

−
∫
Q

pg(x, t)(u(x, t)− ug(x, t) dx dt.

From (6.1) and (6.2), we finally obtain
∫
Q

HQ(x, t, ūg, pg) dx dt ≤
∫
Q

HQ(x, t, u, pg) dx dt for all u ∈ Uad.

The pointwise Pontryagin’s principle (2.2) is next obtained by the method developed
in [16, section 5.2].

6.2. Proof of Theorem 2.2: Optimality conditions for (P). Let ρ be
in ]0, 1[, let τρ be as in Theorem 5.2, and let g ∈ Gad. We recall that ḡ is the
optimal solution to (P) that we want to characterize. Due to Theorem 5.2, there
exist ū ∈ Argmin (Pḡ) and measurable subsets Ωρ such that

LN (Ωρ) = ρLN (Ω),
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y(ugρ , gρ) = y(ugρ , ḡ) + ρz̄ + r̃ρ, with lim
ρ→0

1

ρ
‖r̃ρ‖C(QτρT ) = 0,

J(ugρ , gρ) = J(ugρ , ḡ) + ρ

(
J ′
y(ū, ḡ)z̄ +

∫
Ω

(L(x, g)− L(x, ḡ))dx

)
+ o(ρ),(6.3)

where

gρ(x) =




ḡ(x) in Ω \ Ωρ,

g(x) in Ωρ,
ugρ ∈ Argmin (Pgρ),

and z̄ is the solution of the equation

∂z

∂t
+ Az + Φ′

y(·, y(ū, ḡ)) z = 0 in Q, z = 0 on Σ, z(0) = g − ḡ in Ω .

Since ḡ is a solution to (P) and ū ∈ Argmin(Pḡ), we see that

0 ≤ J(ū, ḡ)− J(ugρ , gρ)

ρ
≤ J(ugρ , ḡ)− J(ugρ , gρ)

ρ
.

With (6.3), we obtain

0 ≤ lim
ρ→0

J(ugρ , ḡ)− J(ugρ , gρ)

ρ

= −
∫
Q

F ′
y(x, t, y(ū, ḡ)) z̄ dx dt−

∫
Ω

�′y(x, y(ū, ḡ)(T )) z̄(T ) dx−
∫

Ω

(L(x, g)−L(x, ḡ)) dx .

Using the Green formula of Theorem 3.3, we have

−
∫
Q

F ′
y(x, t, y(ū, ḡ)) z̄ dx dt−

∫
Ω

�′y(x, y(ū, ḡ)(T )) z̄(T ) dx =

∫
Ω

p̄(x, 0) (g − ḡ)(x) dx .

Therefore, ∫
Ω

HΩ(x, g, p̄(x, 0)) dx ≤
∫

Ω

HΩ(x, ḡ, p̄(x, 0)) dx for all g ∈ Gad.

The pointwise Pontryagin’s principle (2.5) is obtained by the method developed in
[16, section 5.2]. Finally, since ū belongs to Argmin (Pḡ), (2.4) follows from Theorem
2.1.

6.3. Proof of Theorem 2.3. The optimality condition for uḡ is a direct conse-
quence of Theorem 2.1. Let us prove optimality conditions for ḡ. Let g be in Gad and
ug be an element of Arg inf(Pg). For ρ in ]0, 1[, set yρ = (1− ρ) y(uḡ, ḡ) + ρ y(ug, g).
Since Φ is affine with respect to y, yρ is the solution of (1.1) corresponding to
((1− ρ) uḡ + ρ ug, (1− ρ) ḡ + ρ g). Due to the convexity of F and �, we have∫

Q

F (x, t, yρ) dx dt +

∫
Ω

�(x, yρ(T )) dx

≤ (1− ρ)

(∫
Q

F (x, t, y(uḡ, ḡ)) dx dt +

∫
Ω

�(x, y(uḡ, ḡ)(T )) dx

)

+ ρ

(∫
Q

F (x, t, y(ug, g)) dx dt +

∫
Ω

�(x, y(ug, g)(T )) dx

)
.
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Set

Jρ =

∫
Q

F (x, t, yρ) dx dt +

∫
Ω

�(x, yρ(T )) dx

+ (1− ρ)

(∫
Q

H(x, t, uḡ) dx dt +

∫
Ω

L(x, ḡ)dx

)

+ ρ

(∫
Q

H(x, t, ug) dx dt +

∫
Ω

L(x, g) dx

)
.

With the previous inequality, we obtain

Jρ ≤ (1− ρ)J(uḡ, ḡ) + ρJ(ug, g).

From the optimality of ḡ, we have J(ug, g) ≤ J(uḡ, ḡ), and thus

Jρ ≤ (1− ρ)J(uḡ, ḡ) + ρJ(ug, g) ≤ J(uḡ, ḡ).

It follows that

0 ≤ lim
ρ→0

J(uḡ, ḡ)− Jρ
ρ

=

∫
Q

F ′
y(x, t, y(uḡ, ḡ)) (y(uḡ, ḡ)− y(ug, g)) dx dt

+

∫
Ω

�′y(x, y(uḡ, ḡ)(T )), (y(uḡ, ḡ)− y(ug, g)(T )) dx

+

∫
Q

(H(x, t, uḡ)−H(x, t, ug)) dx dt

+
∫
Ω

(L(x, ḡ)− L(x, g)) dx.

(6.4)

From (6.4), by using the Green formula of Theorem 3.3 (with z = y(uḡ, ḡ)−y(ug, g)),
we obtain ∫

Q

p̄(uḡ − ug) dx dt +

∫
Ω

p̄(0)(ḡ − g) dx

≤
∫
Q

(H(x, t, uḡ)−H(x, t, ug)) dx dt +

∫
Ω

(L(x, ḡ)− L(x, g)) dx.

Recalling (2.7), we deduce that∫
Ω

(L(x, g)− p̄(0)g) dx−
∫

Ω

(L(x, ḡ)− p̄(0)ḡ) dx

≤
∫
Q

(H(x, t, uḡ)− p̄uḡ)dx dt−
∫
Q

(H(x, t, ug)− p̄ug) dx dt ≤ 0.

The proof is complete.

7. Some extensions. We can also consider models which take into account the
first order derivatives of the state variable both in the equation and the cost functional.
For example, consider the parabolic equation

∂y

∂t
+ Ay +

−→
V · ∇y + Φ(x, t, y) = u in Q, y = 0 on Σ,(7.1)

y(x, 0) = yo(x) + g(x) in Ω,
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where A, Φ, and u satisfy the assumptions of section 2,
−→
V belongs to L∞(0, T ; (L∞(Ω))N ),

and the cost functional is defined by

I(y, u, g) =

∫
Q

(F (·, y) + G(·,∇y) + H(·, u)) dx dt(7.2)

+

∫
Ω

(�(·, y(T )) + L(·, g)) dx.

The regularity results used in the proof of Theorem 5.2 are still true for the above
equation [10], [8]. The adjoint equation corresponding to a solution ȳ of (7.1) is



−∂p

∂t
+ Ap−−→V · ∇p + Φ′

y(·, ȳ) p + F ′
y(·, ȳ)− div (G′

z(·,∇ȳ)) = 0 in Q,

p(·, T ) + �′y(·, ȳ(T )) = 0 in Ω,

(7.3)

where G′
z denotes the derivative of G with respect to ∇y. If G′

z(·,∇ȳ) belongs to
Lr(Q) with r > 1, then (7.3) admits a unique solution in L1(0, T ;W 1,1

0 (Ω)). The
condition G′

z(·,∇ȳ) ∈ Lr(Q) can be easily checked if G′
z satisfies a suitable growth

condition. For
−→
V ≡ 0 and Φ′

y ≡ 0, the existence to (7.3) can be deduced from [17].

For the general case, that is if
−→
V �≡ 0 and Φ′

y �≡ 0, the existence can be shown
by using a fixed point technique as in [13]. Therefore, Theorem 2.2 may be extended
(with obvious modifications) to problem (P ) corresponding to (7.1) and the functional
(7.2). Notice that we have considered homogeneous boundary conditions, as in the
example of convection-diffusion systems studied in [1]. The analysis corresponding to
nonhomogeneous boundary conditions of the form y = ψ ∈ L∞(Σ) is more delicate
since we only know that ∇y belongs to L1

loc(Q).
For a state equation with a nonlinear term depending on the gradient ∇y, the

analysis is more complicated and some additional material is needed (see for example
[7, Chapter 4]). The results presented in our paper do not recover this case, and the
extension to such models requires another lengthy study of the state equation which
cannot be included here.
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Université Paul Sabatier, Touluse, France, 1998.

[3] N. Arada and J. P. Raymond, Dirichlet Boundary Control of Semilinear Parabolic Equations.
Part 2: Problems with Pointwise State Constraints, UMR CNRS 5640, Report no 98-06,
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Abstract. We characterize invariance of time-varying domains with respect to differential games
with time-measurable dynamics. We deduce from this result a new definition of viscosity solutions
to some first order Hamilton–Jacobi equations with time-measurable Hamiltonians.
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1. Introduction. We study, on one hand, invariance of time-varying domains
with respect to differential games with time-measurable dynamics (sections 2 and 3)
and, on the other hand, first order Hamilton–Jacobi equations with time-measurable
Hamiltonians (section 4).

We consider a differential game
{
x′(t) = f(t, x(t), y(t), z(t)),
x(0) = x0,

where f is only measurable with respect to the time. A time-varying domain t ❀

P (t) ⊂ RN (a tube) is a set-valued map with nonempty closed values. The paper
is mainly concerned with the following problem: Under which condition can one of
the players prevent the state x(t) of the system from leaving P (t) under any action
of the other player? The problem was considered by Cardaliaguet in [7] and by
Cardaliaguet–Plaskacz in [8] for differential games with a more regular right-hand
side. The time-measurable case was studied by Frankowska–Plaskacz–Rzeżuchowski
in [15] and by Frankowska–Plaskacz in [14] for differential inclusions (see also [1], [2]).

In the second part we consider Hamilton–Jacobi–Isaacs equations

∂V

∂t
+H

(
t, x,

∂V

∂x

)
= 0

with a time-measurable Hamiltonian H given by

H(t, x, p) = inf
z
sup
y
〈f(t, x, y, z), p〉.

We generalize a definition of viscosity solutions and obtain the uniqueness and the
existence of such solutions. Our approach to the definition of a solution and our
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methods of the proof are similar to the ones used by Frankowska for the first time in
[12], and later by Frankowska–Plaskacz–Rzezuchowski in [15].

Hamilton–Jacobi equations with time-measurable Hamiltonians were considered
also by Ishii in [17], by Lions–Perthame in [18] and by Barron–Jensen in [5]. Our
definition of a generalized viscosity solution seems to be more elementary than others
collected in [18]. It is difficult to compare them directly. The equivalence of different
definitions follows from the uniqueness results which hold true in all cases.

Let us consider a tube P : [0, T ] ❀ RN and a dynamic f as previously. As usual
in two players differential games, we are interested in the following problems:

The first problem. For any initial position x0 ∈ P (t0), does there exist a nonan-
ticipative strategy1 α of the first player such that, for any time-measurable control
z(·) chosen by the second player, the solution to

{
x′(t) = f(t, x(t), α(z(·))(t), z(t)),
x(t0) = x0

(1.1)

satisfies

x(t) ∈ P (t) ∀t ∈ [t0, T ]?

In Theorem 2.2 we show that a left absolutely continuous tube P enjoys the above
stated property if and only if it is a discriminating tube, i.e., there exists a set C ⊂
[0, T ] of full measure such that, for any t ∈ C and any x ∈ P (t),

∀(nt, nx) ∈ N0
Graph(P )(t, x), supz infy〈(nt, nx), (1, f(t, x, y, z))〉 ≤ 0.

The second problem. For any initial position x0 ∈ P (t0), for any ε > 0 and
any nonanticipative strategy α of the first player, does there exist a time-measurable
control z(·) of the second player, such that the solution x(·) to (1.1) satisfies

x(t) ∈ P (t) +B(0, ε) ∀t ∈ [t0, T ]?

In Theorem 3.2 we show that a left absolutely continuous tube P enjoys this property
if and only if it is a leadership tube, i.e., there exists a set C ⊂ [0, T ] of full measure
such that, for any t ∈ C and for any x ∈ P (x),

∀(nt, nx) ∈ N0
Graph(P )(t, x), infz supy〈(nt, nx), (1, f(t, x, y, z))〉 ≤ 0.

In the second part of the paper we use the above results to prove that the value
function of the differential game is the unique solution of the appropriate Hamilton–
Jacobi–Isaacs equations. We use and generalize some results of Evans–Souganidis [11].
In [11] it was proved that the value function is a viscosity solution of a Hamilton–
Jacobi–Isaacs equation. We prove that the value function is a generalized viscosity
solution and also we give an elementary proof (using Theorems 2.2 and 3.2) that
a generalized solution of a Hamilton–Jacobi–Isaacs equation is equal to the value
function. In this way we prove uniqueness of solution for some Hamilton–Jacobi
equations with time-measurable Hamiltonians.

1These strategies are also often called Elliot–Kalton’s strategies. The definition is recalled below.
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2. Discriminating domains. We consider a differential game with dynamics
given by x′(t) = f(t, x(t), y, z). By x(·; t0, x0, y(·), z(·)) we denote the solution of the
Cauchy problem

{
x′(t) = f(t, x(t), y(t), z(t)) for a.e. t ∈ [0, T ],

x(t0) = x0,

where y : [0, T ] → Y , z : [0, T ] → Z are measurable controls (open loops) of player I
and II, respectively, and Y , Z are compact metric spaces. We further introduce a set-
valued map P : [0, T ] ❀ Rn, i.e., P (t) ⊂ Rn and P (t) 	= ∅ for every t ∈ [0, T ], regarded
as a time-dependent constraints set or a tube of constraints. A tube P is called left
absolutely continuous if there exists an integrable function µ : [0, T ] → [0,+∞) such
that for every t1 < t2 we have

P (t1) ⊂ P (t2) +B
(
0,

∫ t2

t1

µ(s) ds

)
,

where B(x0, r) denotes the ball in Rn centered at x0 with radius r and A + D =
{a+ d : a ∈ A&d ∈ D} for A, D ⊂ Rn. Given a closed subset K of Euclidean space
E, the Bouligand contingent cone TK(x) to K at x ∈ K is defined by

TK(x) =

{
e ∈ E : lim inf

h→0+

dist (x+ he,K)

h
= 0

}
.

For T ⊂ E we let T⊥ for the polar cone to T ,

T⊥ = {w ∈ E 〈w, v〉 ≤ 0, for every v ∈ T}.

We set

N0
K(x) = T⊥

K (x)

and say that N0
K(x) is the normal cone to K at x ∈ K.

Let Mt = {y : [t, T ] → Y : y is measurable} and Nt = {z : [t, T ] → Z :
z is measurable}. We say that a map α : Nt →Mt is a nonanticipative strategy if for
every controls z1, z2 ∈ Nt such that

z1(s) = z2(s) for almost all s ∈ [t, τ ]

we have

α(z1)(s) = α(z2)(s) for almost all s ∈ [t, τ ].

Let Γt denote the set of all nonanticipative strategies α : Nt →Mt.
Definition 2.1 (discriminating tube). A tube P : [0, T ] ❀ Rn is a discriminat-

ing tube for f : [0, T ]×Rn × Y ×Z → Rn if there exists a full measure set C ⊂ [0, T ]
such that for every t ∈ C and every x ∈ P (t) we have

∀(nt, nx) ∈ N0
Graph(P )(t, x), ∀z ∈ Z, ∃y ∈ Y,

〈(nt, nx), (1, f(t, x, y, z))〉 ≤ 0.
(2.1)
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Theorem 2.2. We assume that a tube P : [0, T ] ❀ Rn is left absolutely contin-
uous and that a right-hand side f : [0, T ]× Rn × Y × Z → Rn satisfies the following
conditions:

f( · , x, y, z) is measurable for every x, y, z;(2.2)

∃l ∈ L1(0, T ), ∀x1, x2, ∀y ∈ Y, ∀z ∈ Z,
‖f(t, x1, y, z)− f(t, x2, y, z)‖ ≤ l(t)‖x1 − x2‖ for a.a. t ∈ [0, T ];

(2.3)

f(t, x, · , · ) is continuous for every t, x;(2.4)

∃ µ ∈ L1(0, T ), ∀t, x, y, z, ‖f(t, x, y, z)‖ ≤ µ(t);(2.5)

∀(t, x, z) ∈ [0, T ]×Rn × Z, {f(t, x, y, z) : y ∈ Y } is convex .(2.6)

If P is a discriminating tube for f , then for each t0 ∈ [0, T ] and x0 ∈ P (t0)

∃α ∈ Γt0 , ∀z(·) ∈ Nt0 , ∀t ∈ [t0, T ], x(t; t0, x0, α(z), z) ∈ P (t).(2.7)

Conversely, if for each t0 ∈ [0, T ] and x0 ∈ P (t0)

∀ε > 0, ∃α ∈ Γt0 , ∀z(·) ∈ Nt0 , ∀t ∈ [t0, T ],
x(t; t0, x0, α(z), z) ∈ P (t) +B(0, ε),(2.8)

then P is a discriminating tube for f .
The proof of Theorem 2.2 makes use of a viability result for differential inclusions

and a nonexpansive selection theorem in ultrametric spaces. First, we recall a viability
result in an appropriate version.

Definition 2.3 (viability tube). A tube P : [0, T ] ❀ Rn is a viability tube for
F : [0, T ]× Rn ❀ Rn if there exists a full measure set C ⊂ [0, T ] such that for every
t ∈ C and every x ∈ P (t) we have

({1} × F (t, x)) ∩ co (TGraph(P )(t, x)
) 	= ∅.(2.9)

Theorem 2.4. Assume that a nonempty closed valued tube P : [0, T ] ❀ Rn is
left absolutely continuous and that a set valued-map F : [0, T ] × Rn ❀ Rn satisfies
the following conditions:

F (t, x) is nonempty closed convex;(2.10)

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2| a.e. in [0, T ], l(·) ∈ L1[0, T ];(2.11)

F (·, x) is measurable;(2.12)

‖F (t, x)‖ ≤ µ(t) a.e. in [0, T ], µ ∈ L1(0, T ).(2.13)
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Then the tube P is a viability tube for F if and only if ∀ t0 ∈ [0, T ), x0 ∈ P (t0) there
exists an absolutely continuous solution x : [t0, T ]→ Rn of



x′(t) ∈ F (t, x(t)) a.e. in [t0, T ],

x(t0) = x0,

x(t) ∈ P (t) ∀t ∈ [t0, T ].

(2.14)

Proof. Fix t0 ∈ [0, T ), x0 ∈ P (t0). Define

g(t) = inf{dist(x(t), P (t)) : x ∈ SolF (t0, x0)},
where SolF (t0, x0) denotes the set of solutions of Cauchy problem

{
x′ ∈ F (t, x),
x(t0) = x0.

By Lemma 4.8 in [16], if the tube P is absolutely continuous, then the function g is
absolutely continuous. Assuming that P is only left absolutely continuous, we obtain
that g has bounded variation and Gronwall inequality holds true for g. Namely, we
have the following lemma.

Lemma 2.5. If P is left absolutely continuous, then
(a) g(t2) ≤ g(t1) + 2

∫ t2
t1
µ(s) ds, for t0 ≤ t1 < t2 ≤ T ;

(b) g has bounded variation, in particular g is differentiable a.e. in [t0, T ];
(c) if there exists c ∈ L1(t0, T ) such that g′(t) ≤ c(t)g(t), a.e. in [t0, T ], then

g ≡ 0.
Proof. Fix t1 < t2. Since SolF (t0, x0) is compact, there exists x ∈ SolF (t0, x0)

such that g(t1) = dist(x(t1), P (t1)). We have

g(t2) ≤ dist(x(t2), P (t2))
≤ ‖x(t2)− x(t1)‖+ dist(x(t1), P (t1)) + sup{dist(y, P (t2) : y ∈ P (t1)}

≤ ∫ t2
t1
µ(s) ds+ g(t1) +

∫ t2
t1
µ(s),

which is our assertion (a).
To estimate the variation of g on [t0, T ], we take a partition t0 < t1 < · · · < tk = T .

Let S = {i ∈ {1, 2, . . . , k} : g(ti)− g(ti−1) ≥ 0} and S′ = {1, 2, . . . , k} \ S. We have

g(tk)− g(t0) =
k∑

i=1

g(ti)− g(ti−1) =
∑
i∈S

|g(ti)− g(ti−1)| −
∑
i∈S′
|g(ti)− g(ti−1)|.

Thus

k∑
i=1

|g(ti)− g(ti−1)| = 2
∑
i∈S

|g(ti)− g(ti−1)|+ g(tk)− g(t0) ≤ 6

∫ T

t0

µ(s) ds,

which gives us (b).
We set h(t) = sup{g(s) : s ∈ [t0, t]}. The function h is nonnegative, nondecreas-

ing, g(t) ≤ h(t) for t ∈ [t0, T ], and

h(t2)− h(t1) ≤ 2

∫ t2

t1

µ(s) ds
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for t1 < t2. Hence h is absolutely continuous. Moreover, we have

lim sup
τ→0+

h(t+ τ)− h(t)
τ

≤ max

(
lim sup
τ→0+

g(t+ τ)− g(t)
τ

, 0

)
.

Thus, for almost all t ∈ [t0, T ], we have h′(t) ≤ c(t)h(t). Gronwall inequality now
yields h ≡ 0, which completes the proof of Lemma 2.5.

The proof of Theorem 2.4 runs as the proof of Theorem 4.7 in [16] with the
difference that we use our Lemma 2.5 instead of Lemma 4.8 in [16].

A metric ρ in a space M is an ultrametric if it satisfies strong triangle inequality

ρ(x, z) ≤ max(ρ(x, y), ρ(y, z)).

We say that a subset K of an ultrametric space M is (*)-closed if for every sequence
{yn} ⊂ K and every sequence {cn} (cn ≥ cn+1 ≥ 0) such that ρ(yn, yn+1) ≤ cn, there
is ȳ ∈ K such that ρ(ȳ, yn) ≤ cn, for every n.

Remark 2.6. If D1, D2 are nonempty (∗)-closed subsets of an ultrametric space
M , then the Hausdorff distance dH(D1, D2) ≤ r if and only if for every d1 ∈ D1 there
is d2 ∈ D2 such that ρ(d1, d2) ≤ r and for every d2 ∈ D2 there is d1 ∈ D1 such that
ρ(d1, d2) ≤ r.

We say that a set-valued map A : N ❀ M is nonexpansive set-valued map from
an ultrametric space (N, ρN ) into another ultrametric space (M,ρM ) if A satisfies

∀(n1, n2) ∈ N ×N,
(a) ∀m1 ∈ A(n1), ∃m2 ∈ A(n2), ρM (m1,m2) ≤ ρN (n1, n2),
(b) ∀m2 ∈ A(n2), ∃m1 ∈ A(n1), ρM (m1,m2) ≤ ρN (n1, n2).

Lemma 2.7 (nonexpansive selection). If A : N ❀ M is a nonexpansive set-
valued map from an ultrametric space (N, ρN ) into an ultrametric space (M,ρM ) with
nonempty (∗)-closed values, then there exists a nonexpansive selection α : N �→ M
of A.

The proof of Lemma 2.7 is given in the appendix.
Remark 2.8. Given y1, y2 ∈Mt0 we define

ρ(y1, y2) = T − sup{t ∈ [t0, T ] : y1(s) = y2(s) for a.a. t ∈ [t0, t]}.

It is easy to see that (Mt0 , ρ) is an ultrametric space. Moreover, a strategy α : Nt0 →
Mt0 is nothing but a nonexpansive map in the meaning of the ultrametric ρ.

Proof of Theorem 2.2. Fix t0 ∈ [0, T ], x0 ∈ P (t0), and z̃(·) ∈ Nt0 .
We define a set-valued map Fz̃( · )(t, x) = {f(t, x, y, z̃(t) : y ∈ Y }. By the regular-

ity of f : (2.2), (2.3), (2.4), (2.5), and (2.6), the set-valued map Fz̃( · ) satisfies (2.10),
(2.11), (2.12), (2.13). By the separation theorem and (2.2), we have for every t ∈ C
and x ∈ P (t)

∀z ∈ Z, ∃y ∈ Y, (1, f(t, x, y, z)) ∈ co (TGraph(P )(t, x)
)
.(2.15)

Thus Fz̃( · ) satisfies condition (2.9). Therefore there exists an absolutely continu-
ous solution x̃ : [t0, T ] → Rn of the differential inclusion x̃′(t) ∈ Fz̃( · )(t, x̃(t)) such
that x̃(t0) = x0 and x̃(t) ∈ P (t) for every t ∈ [t0, T ]. By measurable selection
Theorem 8.2.10 in [3], there exists a measurable map ỹ : [t0, T ] → Y such that
x(t; t0, x0, ỹ( · ), z̃( · )) = x̃(t) for t ∈ [t0, T ].
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We define a set-valued map A : Nt0 ❀Mt0 by

A(z( · )) = {y( · ) ∈Mt0 : x(t; t0, x0, y( · ), z( · )) ∈ P (t) for t ∈ [t0, T ]}.

We have shown that the values of the map A are nonempty. Now we verify that the
map A satisfies the remaining assumptions of Lemma 2.7.

Let z1, z2 ∈ Nt0 and y1 ∈ A(z1). We set t1 = T − ρ(z1, z2) and x1 = x(t1 ; , t0, x0,
y1, z1). We have x1 ∈ P (t1). By (2.15) and Theorem 2.4, there exists a solution
x̂ : [t1, T ] → Rn of a differential inclusion x̂′(t) ∈ Fz2(t, x̂(t)) such that x̂(t1) = x1

and x̂(t) ∈ P (t) for t ∈ [t1, T ], where Fz2(t, x) = {f(t, x, y, z2(t)) : y ∈ Y }. By
Theorem 8.2.10 in [3], there exists a measurable map y3 : [t1, T ] → Y such that
x(t; t1, x1, y3, z2) = x̂(t) for t ∈ [t1, T ]. Setting

y2(t) =

{
y1(t) for t ∈ [t0, t1),

y3(t) for t ∈ [t1, T ],

we get y2 ∈ A(z2) such that ρ(y1, y2) ≤ ρ(z1, z2), which means that the map A is
nonexpansive.

Now, we show that the set A(z) is (∗)-closed for every z ∈ Nt0 . Let 0 ≤ · · · ≤
ck+1 ≤ ck ≤ · · · ≤ c1 ≤ T − t0, c = limk→∞ ck and yk ∈ A(z) satisfy ρ(yk, yk+1) ≤ ck.
We set tk = T − ck. Obviously, we have x(t; t0, x0, yk, z) = x(t; t0, x0, yk+1, z) for
t ∈ [t0, tk]. We define a map y∞ : [t0, T − c[→ Y by

y∞(t) =

{
y1(t) for t ∈ [t0, t1),

yk(t) for t ∈ [tk−1, tk) and k = 2, 3, . . . .

We set x∞ = limt→(T−c)− x(t, t0, x0, y∞, z). It is easy to check that x∞ ∈ P (T − c).
By (2.15) and Theorem 2.4, there exists a solution x̄ : [T −c, T ]→ Rn of a differential
inclusion x̄′(t) ∈ Fz(t, x̄(t)) such that x̄(T −c) = x∞ and x̄(t) ∈ P (t) for t ∈ [T −c, T ].
By Theorem 8.2.10 in [3], there exists a measurable map ȳ : [T − c, T ]→ Y such that
x(t;T − c, x∞, ȳ, z) = x̄(t) for t ∈ [T − c, T ]. Setting

y(t) =

{
y∞(t) for t ∈ [t0, T − c),
ȳ(t) for t ∈ [T − c, T ],

we get y ∈ A(z) such that ρ(yk, y) ≤ ck, which means that the set A(z) is (∗)-closed.
Finally, by Lemma 2.7, there exists a nonexpansive selection α : Nt0 →Mt0 of A,

which is the desired strategy.
For the converse, we set Fz(t, x) = {f(t, x, y, z) : y ∈ Y }. By Lemma 2.6 in [16],

there is a full measure set C ∈ [0, T ] such that

∀ (t0, x0, z) ∈ C ×Rd × Z, ∀ ε > 0, ∃ δ > 0, ∀ x(·) ∈ SolFz (t0, x0),

∀ 0 < |h| < δ, 1

h
(x(t0 + h)− x0) ∈ Fz(t0, x0) +B(0, ε).

Fix t0 ∈ C, x0 ∈ P (t0), z0 ∈ Z. Applying (2.7) we obtain an αn ∈ Γt0 such that
xn(t) := x(t, t0, x0, αn(z), z) ∈ P (t)+B(0, 1/n), for t ∈ [t0, T ], where z(·) is a constant
control on [t0, T ] equal to z0. For fixed h > 0 let x(t0+h) be a condensing point of the
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sequence (xn(t0 + h)). Obviously, we have x(t0 + h) ∈ P (t0 + h) and for sufficiently
small h

x(t0 + h)− x(t0)
h

∈ Fz0(t0, x0) +B(0, ε).

There is a sequence hn > 0 tending to zero such that v := limn→∞
x(t0+hn)−x(t0)

hn
∈

Fz0
(t0, x0). We find y0 ∈ Y such that v = f(t0, x0, y0, z0). We have (1, v) ∈

TGraph(P )(t0, x0), which yields

〈(nt, nx), (1, f(t0, x0, y0, z0))〉 ≤ 0

for every (nt, nx) ∈ N0
Graph(P )(t0, x0).

3. Leadership domains.
Definition 3.1 (leadership tube). The tube P (·) is a leadership tube for f if

there exists a set C of full measure in [0, T ] such that for every t ∈ C and x ∈ P (t)
∀(nt, nx) ∈ N0

Graph(P )(t, x), ∃z ∈ Z, ∀y ∈ Y,
〈(nt, nx), (1, f(t, x, y, z))〉 ≤ 0.

(3.1)

Theorem 3.2. We assume that a tube P : [0, T ] ❀ Rn is left absolutely contin-
uous and that the right-hand side f : [0, T ]×Rn × Y × Z → Rn satisfies (2.2), (2.3),
(2.4), and (2.5). Then P (·) is a leadership tube for f if and only if for any t0 ∈ [0, T ]
and x0 ∈ P (t0)

∀ε > 0, ∀α ∈ Γt0 , ∃z(·) ∈ Nt0 , ∀t ∈ [t0, T ],

x(t; t0, x0, α(z), z) ∈ P (t) +B(0, ε).
(3.2)

The proof is based on the following lemma.
Lemma 3.3. Let f and P (·) be as in Theorem 3.2. The following assertions are

equivalent:
(i) P (·) is a leadership tube for f .
(ii) From any initial condition (t0, z0) belonging to Graph(P ), and for any mea-

surable map a : [0, T ] × Z → Y , there is at least one solution to the differential
inclusion: {

v′(t) ∈ co⋃z f(t, v(t), a(t, z), z) a.e. in [t0, T ],

v(t0) = v0
(3.3)

with v(t) ∈ P (t) for every t ∈ [t0, T ].
Proof. Assume that P (·) is a leadership tube. There exists a set C of full measure

in [t0, T ] such that ∀t ∈ C, x ∈ P (t), (nt, nx) ∈ N0
Graph(P )(t, x),

inf
z
sup
y
〈f(t, x, y, z), nx〉+ nt ≤ 0.

For any measurable map a : [t0, T ]× Z → Y , the set-valued map Fa, defined by

Fa(t, x) := co
⋃
z

f(t, x, a(t, z), z),

is measurable, bounded by µ(·), has convex compact values, and, for almost every
t ∈ [t0, T ], x❀ Fa(t, x), is l(t)−Lipschitz.
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Let us now prove that the tube P (·) is viable for Fa. Let t ∈ C, x ∈ P (t),
(nt, nx) ∈ N0

Graph(P )(t, x). Then

infw∈Fa(t,x)〈w, nx〉+ nt = infz〈f(t, x, a(t, z), z), nx〉+ nt
≤ infz supy〈f(t, x, y, z), nx〉+ nt ≤ 0.

So P (·) is a viability tube for Fa and Theorem 2.4 states that (ii) holds true.
Conversely, assume that the tube P (·) enjoys property (ii). Fix nx ∈ Rn, x0 ∈ Rn

and define

Ynx,x0
(t, z) :=

{
ȳ ∈ Y | 〈f(t, x0, ȳ, z), nx〉 = sup

y
〈f(t, x0, y, z), nx〉

}

and

Gnx,x0(t, x) := co {f(t, x, y, z) | y ∈ Ynx,x0(t, z) & z ∈ Z} .
First we prove that the tube P (·) is viable for the set-valued map Gnx,x0

for any
nx and x0. The set-valued map Ynx,x0(·, ·) is measurable, so it enjoys a measurable
selection anx,x0(·, ·). Note that

Fanx,x0
(t, x) = co

⋃
z

f(t, x, anx,x0
(t, z), z) ⊂ Gnx,x0

(t, x)

for almost all t ∈ [t0, T ] and for all x. Thus, from (ii), there is a solution to the
differential inclusion for Gnx,x0

which remains in the tube P (·).
Let us point out that Gnx,x0 is measurable and bounded. Moreover, Gnx,x0 is

upper semicontinuous with respect to (nx, x0, x) and has convex compact values for
almost every t ∈ [t0, T ]. Thus Lemma 2.6 of [16] yields the existence of a set C of
full measure in [t0, T ] such that ∀(τ, xτ , nx, x0) ∈ C ×Rn ×Rn ×Rn, ∀ε > 0, ∃δ > 0
such that, for any solution x(·) to the differential inclusion for Gnx,x0 starting at xτ
at time τ , one has

∀0 < |h| < δ, 1

h
(x(τ + h)− xτ ) ∈ Gnx,x0

(τ, xτ ) + εB.(3.4)

Let τ ∈ C, xτ ∈ P (τ), and (nt, nx) ∈ N0
Graph(P (·))(τ, xτ ). We have already proved

that there is a solution x(·) of the differential inclusion for Gnx,xτ starting from xτ at
time τ which remains in the tube P (·) on [τ, T ]. From (3.4), for any h ∈]0, δ[, there
is some wh ∈ Gnx,xτ (τ, xτ ) such that

1

h
(x(τ + h)− xτ ) ∈ wh + εB.

Since Gnx,xτ (τ, xτ ) is compact, wh converges, up to a subsequence, to some w ∈
Gnx,xτ (τ, xτ ). Thus, (1, w) belongs to TGraph(P (·))(τ, xτ ), and 〈nx, w〉+nt ≤ 0. From
the very definition of Gnx,xτ

(τ, xτ ), one has

0 ≥ 〈nx, w〉+ nt ≥ infv∈Gnx,xτ (τ,xτ )〈v, nx〉+ nt
= infz infy∈Ynx,xτ (τ,z)〈f(τ, xτ , y, z), nx〉+ nt
= infz supy〈f(τ, xτ , y, z), nx〉+ nt.

So we have finally proved that, for any τ ∈ C, for any xτ ∈ P (τ), and for any
(nt, nx) ∈ N0

Graph(P (·))(τ, xτ ),

inf
y
sup
z
〈f(τ, xτ , y, z), nx〉+ nt ≤ 0,
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i.e., P (·) is a leadership tube.
Proof of Theorem 3.2. Assume that P (·) enjoys the property described in Theo-

rem 3.2, and let us prove that P (·) is a leadership tube. Let a(·, ·) : [0, T ] × Z → Y ,
and define the nonanticipative strategy α in the following way:

∀z(·) ∈ N, α(z(·))(t) := a(t, z(t)).
For any initial position (t0, z0) belonging to the graph of P (·), for any ε > 0, there is
a control zε(·) such that the solution xε(·) := x(t0, x0, α(zε(·)), zε(·)) satisfies

∀t ∈ [t0, T ], dP (t)(xε(t)) ≤ ε.
Note that the xε(·) are solutions of the differential inclusion (3.3). Since the set of
solutions of this differential inclusion is compact, there exists a subsequence of the
xε(·) convergent to a solution x(·) of (3.3) satisfying x(t) ∈ P (t) for any t ∈ [t0, T ].
Then Lemma 3.3 states that the tube P (·) is a leadership tube.

Conversely, assume now that P (·) is a leadership tube and fix any ε > 0. The idea
of the proof consists in constructing the desired control z(·) step by step, on intervals
[nτ, (n+ 1)τ), where τ > 0 is fixed and shall be chosen later in function of ε.

For that purpose, we need the following estimation.
Lemma 3.4. Let f and P (·) be as in Theorem 3.2, t0 ∈ [0, T ), and x0 /∈ P (t0).

Assume that P (·) is a leadership tube. For any nonanticipative strategy α, there is a
control z(·) such that, if we set x(·) := x(t0, x0, α(z(·)), z(·)), then for every t ∈ [t0, T ],

d2P (t)(x(t)) ≤
(
1 + 2

∫ t
t0
l(s)ds

)
d2P (t0)

(x0) + 4
(∫ t

t0
µ(s)ds

)2
+2dP (t0)(x0)

∫ t
t0
l(s)
∫ s
t0
µ(σ) dσds.

Proof of Lemma 3.4. The proof is based on Lemma 3.3. Let v0 belong to the
proximal projection of x0 onto P (t0). Set ν := x0 − v0. Consider the following
set-valued map:

(s, z) ❀

{
ȳ ∈ Y | 〈f(s, v0, ȳ, z), ν〉 = max

y
〈f(s, v0, y, z), ν〉

}
.

This set-valued map is measurable and, so, enjoys a measurable selection a(·, ·). In
the same way, the set-valued map

s❀

{
z̄ ∈ Z | max

y
〈f(s, v0, y, z̄), ν〉 = min

z
max

y
〈f(s, v0, y, z), ν〉

}

is measurable and enjoys a measurable selection z(·) ∈ Nt0 .
Let us denote now x(·) := x(t0, x0, α(z(·)), z(·)) and let v(·) be a solution to

{
v′(t) ∈ co⋃z f(t, v(t), a(t, z), z) f.a.e. t ∈ [t0, T ],

v(t0) = v0,

which remains in the tube on [t0, T ] (Lemma 3.3). Then

d2P (t)(x(t)) ≤ ‖x(t)− v(t)‖2
= ‖(x(t)− x0) + (ν) + (v0 − v(t))‖2
= ‖x(t)− x0‖2 + ‖ν‖2 + ‖v0 − v(t)‖2 + 2〈x(t)− x0, ν〉
+ 2〈x(t)− x0, v0 − v(t)〉+ 2〈ν, v0 − v(t)〉.
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Note that ‖x(t) − x0‖2, ‖v0 − v(t)‖2, and 〈x(t) − x0, v0 − v(t)〉 are bounded by

(
∫ t
t0
µ(s)ds)2. Note also that ‖ν‖2 = d2P (t0)

(x(t0)).

Let us now estimate 〈x(t)− x0, ν〉:
〈x(t)− x0, ν〉 =

∫ t
t0
〈f(s, x(s), α(z(·))(s), z(s)), ν〉ds

≤ ∫ t
t0
〈f(s, v0, α(z(·))(s), z(s)), ν〉ds

+ ‖ν‖ ∫ t
t0
l(s)‖x(s)− v0‖ds.

For almost every s,

〈f(s, v0, α(z(·))(s), z(s)), ν〉
≤ 〈f(s, v0, a(s, z(s)), z(s)), ν〉
= minz〈f(s, v0, a(s, z), z), ν〉
= minw∈co

⋃
z f(s,v0,a(s,z),z)〈w, ν〉

≤ 〈v′(s), ν〉+ l(s)‖ν‖‖v(s)− v0‖
from the very definition of a(·, ·) and of z(·) and because x ❀ co

⋃
z f(s, v, a(s, z), z)

is l(s)−Lipschitz for almost all s. So, we have finally

〈x(t)− x0, ν〉 ≤ 〈v(t)− v(0), ν〉
+ ‖ν‖ ∫ t

t0
l(s)(‖x(s)− v0‖+ ‖v(s)− v0‖)ds.

Since f is bounded by µ(·),

‖x(s)− v0‖ ≤
∫ s

t0

µ(σ) dσ + ‖ν‖ and ‖v(s)− v0‖ ≤
∫ s

t0

µ(σ) dσ,

so that

〈x(t)− x0, ν〉+ 〈ν, v0 − v(t)〉 ≤ ‖ν‖
∫ t

t0

l(s)

(
‖ν‖+ 2

∫ s

t0

µ(σ) dσ

)
ds.

In conclusion,

d2P (t)(x(t)) ≤ ‖ν‖2 + 4

(∫ t

t0

µ(s)ds

)2

+ 2‖ν‖
∫ t

t0

l(s)

(
‖ν‖+ 2

∫ s

t0

µ(σ) dσ

)
ds.

Construction of z(·). We construct z(·) step by step, on intervals of the form
[nτ, (n+1)τ), where τ > 0 is fixed and shall be chosen below (τ depends mainly on ε).

Assume that we have already defined z(·) on [0, nτ ]. Then set xn := x(nτ ; t0, x0,
α(z(·)), z(·)) (Note that xn is well defined because α is nonanticipative.)
• If xn belongs to P (nτ), then choose any z ∈ Z and set z(·) := z on [nτ, (n+1)τ).
• Otherwise, let z1(·) be the control defined in Lemma 3.4 for (t0, x0) := (nτ, xn).

Then we set z(·) := z1(·) on [nτ, (n+ 1)τ).
Note that the distance between x(t) := x(t; t0, x0, α(z(·)), z(·)) and P (t) (t ∈

[t0, T ]) is maximal if xn /∈ P (nτ) for any n > 0. In that case, this distance satisfies
∀t ∈ [nτ, (n+ 1)τ),

d2P (t)(x(t)) ≤
(
1 + 2

∫ t
nτ
l(s)ds

)
d2P (nτ)(xn) + 4

(∫ t
nτ
µ(s)ds

)2
+2dP (nτ)(xn)

∫ t
nτ
l(s)
∫ s
nτ
µ(σ) dσ ds
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from Lemma 3.4. In particular,

∀t ∈ [nτ, (n+ 1)τ), d2P (t)(x(t)) ≤ dn+1(τ),

where dn(τ) is the sequence defined by d0(τ) = 0 and

dn+1(τ) = (1 + αn(τ)) dn(τ) + βn(τ),

where αn(τ) := 2
∫ (n+1)τ

nτ
l(s)ds,

β := max

{
4; 2 sup

z(·)∈Nt0

sup
t∈[t0,T ]

dP (t)(x(t; t0, x0, α(z(·)), z(·)))
}

(note that β < +∞ because f is bounded and P (·) is absolutely continuous), and

βn(τ) := β



(∫ (n+1)τ

nτ

µ(s)ds

)2

+

∫ (n+1)τ

nτ

l(s)

∫ s

nτ

µ(σ) dσds


 .

To prove that the sequence constructed step by step satisfies the conclusion of
Theorem 3.2, it is sufficient to apply the following lemma.

Lemma 3.5. Let dn be the sequence defined previously. For any ε > 0, there is
τ0 > 0 such that, if 0 < τ < τ0, then

∀n ≤ T + τ

τ
, dn(τ) ≤ ε.

Proof. Fix ε > 0. To simplify the notations, we shall write di instead of di(τ),
αi instead of αi(τ), and so on.

It is easy to prove by induction that

dn+1 =

n∑
i=0


n−1∏

j=i

(1 + αj)


βi

(where, by convention,
∏n−1

j=n(1 + αj) = 1). Note that


 n∏

j=0

(1 + αj)


 = exp


 n∑

j=0

ln(1 + αj)


 ≤ exp


 n∑

j=0

αj


 ≤ exp [2‖l(·)‖1]

from the very definition of αi. So,

dn+1 ≤ exp [2‖l(·)‖1]
n∑

i=0

βi.

Set ε0 := ε/(βe2‖l‖1‖l+ µ‖1). Now choose τ small enough (say, τ < τ0) in such a way

that
∫ (i+1)τ

iτ
l(s)ds ≤ ε0 and

∫ (i+1)τ

iτ
µ(s)ds ≤ ε0 for any i such that iτ ≤ T .

Then, for any n ≤ T
τ ,

n∑
i=0

βi ≤ βε0
n∑

i=0

∫ (i+1)τ

iτ

(µ(s) + l(s))ds ≤ βε0‖µ+ l‖1
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so that

dn+1 ≤ βε0‖µ+ l‖1e2‖l‖1 ≤ ε.
Remark 3.6. If Z = {z0}, then the differential game reduces to the control

system with dynamics given by f̂(t, x, y) = f(t, x, y, z0). Assume, moreover, that
{f(t, x, y, z0) : y ∈ Y } is convex for every t and x. Then leadership tube condition
(3.1) implies that

∀y ∈ Y, (1, f(t, x, y, z0)) ∈ co
(
TGraph(P )(t, x)

)
and discriminating tube condition (2.1) implies that

∃y ∈ Y, (1, f(t, x, y, z0)) ∈ co
(
TGraph(P )(t, x)

)
.

4. Value function and Hamilton–Jacobi–Isaacs equations. We mostly
adopt here the notation of Evans–Souganidis [11].

Dynamic of a differential game is given by f : [0, T ] × Rn × Y × Z → Rn. We
assume that f satisfies (2.2), (2.3), (2.4), and (2.5). We shall consider a terminal time
payoff functional

Q(y, z) = Qt0x0(y, z) = g(x(T, t0, x0, y, z)),

where g : Rn → R is a continuous function, y ∈Mt0 , z ∈ Nt0 .
We define

U(t0, x0) = sup
α∈Γt0

inf
z∈Nt0

Qt0x0(α(z), z),

H(t, x, p) = min
z∈Z

max
y∈Y

〈f(t, x, y, z), p〉.

We call U : [0, T ] × Rn → R the value function of the differential game and H :
[0, T ]×Rn ×Rn → R the Hamiltonian. In [11], U and H are called the upper value
function and the upper Hamiltonian. Besides these, a lower value function and a
lower Hamiltonian are considered there. We formulate all results only for the upper
value function. Following [11], we can reformulate them for the lower value function.
If the value function U is differentiable in its domain, then it satisfies the Isaacs
(Hamilton–Jacobi–Isaacs) equation:

Ut +H(t, x, Ux) = 0.

Evans and Souganidis in [11] proved that if g is Lipschitz continuous and f is con-
tinuous and Lipschitz continuous with respect to x, then U is a viscosity solution of
Isaacs equation, i.e., for every t ∈ (0, T ) and x ∈ Rn

(h1) ∀(−pt,−px, 1) ∈ N0
Hyp(U)(t, x, U(t, x)), pt +H(t, x, px) ≥ 0

and

(h2) ∀(pt, px,−1) ∈ N0
Epi(U)(t, x, U(t, x)), pt +H(t, x, px) ≤ 0,

where Hyp(U) = {(t, x, u) ∈ [0, T ]×Rn ×R : u ≤ U(t, x)} and Epi(U) = {(t, x, u) ∈
[0, T ]×Rn ×R : u ≥ U(t, x)}.

We start with some properties of value function.



1514 PIERRE CARDALIAGUET AND SLAWOMIR PLASKACZ

Theorem 4.1 (Theorem 3.1 in [11]). For each 0 ≤ t < t+ h ≤ T and x ∈ Rn,

U(t, x) = sup
α∈Γt

inf
z∈Nt

U(t+ h, x(t+ h, t, x, α(z), z)).

This is the dynamic programming optimality condition.
Next we examine regularity of the value function. We recall that the modulus of

continuity mf,A(δ) of a function f : X → Y (X, Y are metric spaces) on a subset
A ⊂ X is given by

mf,A(δ) = sup{d(f(x1), f(x2)) : x1, x2 ∈ A, d(x1, x2) ≤ δ}

for δ > 0. It is easy to check that f is uniformly continuous on A if and only if
limδ→0+ mf,A(δ) = 0. Moreover, mf,A(·) is nondecreasing and if A ⊂ B ⊂ X, then
mf,A(δ) ≤ mf,B(δ).

Proposition 4.2. If f satisfies (2.2), (2.3), (2.4), (2.5) and g : Rn → R is
continuous, then we have

mU(t0, · ), B(0,R)(δ) ≤ mg, B(0,R+
∫ T
t0

µ(s) ds)

(
δ exp

(∫ T

t0

l(s) ds

))
.

Proof. Fix t0 ∈ [0, T ], α and z. By (2.3) and the Gronwall inequality, we have

‖x(T, t0, x1, α(z), z)− x(T, t0, x2, α(z), z)‖ ≤ exp

(∫ T

t0

l(s) ds

)
‖x1 − x2‖.

By (2.5), we obtain

‖x(T, t0, x0, α(z), z)− x0‖ ≤
∫ T

t0

µ(s) ds.

If we use the above estimations, the proof is straightforward.
Corollary 4.3. The function U(t0, · ) is continuous for every t0 ∈ [0, T ].
We define the tubes E, H : [0, T ] ❀ Rn by E(t) = {(x, u) : u ≥ U(t, x)},

H(t) = {(x, u) : u ≤ U(t, x)}. We call E the epitube and H the hypotube generated
by value function U . Obviously Graph(H) = Hyp(U) and Graph(E) = Epi(U).

Proposition 4.4. If f satisfies (2.5), then the epitube E and the hypotube H
generated by the value function U are left absolutely continuous, namely,

E(t1) ⊂ E(t2) +
(∫ t2

t1

µ(s)

)
B ds,

H(t1) ⊂ H(t2) +

(∫ t2

t1

µ(s)

)
B ds

for t1 < t2.

Proof. Fix x ∈ Rn, 0 ≤ t1 < t2 ≤ T . By Theorem 4.1,

U(t1, x) = sup
α∈Γt1

inf
z∈Nt1

U(t2, x(t2, t1, x, α(z), z)).
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Take ε > 0. There is α0 ∈ Γt1 such that

U(t1, x)− ε < inf
z∈Nt1

U(t2, x(t2, t1, x, α0(z), z)) ≤ U(t1, x).

Next, there is z0 ∈ Nt1 such that

U(t1, x)− ε < U(t2, x(t2, t1, x, α0(z0), z0)) < U(t1, x) + ε.(4.1)

We set x(·) = x(· , t1, x, α0(z0), z0). If u ≥ U(t1, x), then U(t2, x(t2)) < u + ε. Thus
(x(t2), u+ ε) ∈ E(t2). Therefore,

dist((x, u), E(t2)) ≤ (‖x(t2)− x‖2 + ε2)1/2.
Hence,

E(t1) ⊂ E(t2) +B
(∫ t2

t1

µ(s) ds

)
.

Now, let (x, u) ∈ H(t1). By (4.1), u − ε < U(t2, x(t2)). Thus (x(t2), u − ε) ∈ H(t2).
Therefore,

dist((x, u), H(t2)) ≤ (‖x(t2)− x‖2 + ε2)1/2,
which completes the proof.

Proposition 4.5. If U : [0, T ] × Rn → R is a value function, then for each
t0 ∈ [0, T ] and x0 ∈ Rn

∀ε > 0, ∃α ∈ Γt0 , ∀z ∈ Nt0 , ∀t ∈ [t0, T ],
U(t0, x0) ≤ U(t, x(t; t0, x0, α(z), z)) + ε,

(4.2)

∀ε > 0, ∀α ∈ Γt0 , ∃z ∈ Nt0 , ∀t ∈ [t0, T ],
U(t0, x0) ≥ U(t, x(t; t0, x0, α(z), z))− ε.(4.3)

Proof. Fix t0 ∈ [0, T ], x0 ∈ Rn, and ε > 0.
First we prove that if U is the value function, then (4.2) holds true. By the

definition of the value function, there exists an αε ∈ Γt0 such that

U(t0, x0) ≤ inf
z∈Nt0

g(x(T ; t0, x0, α(z), z)) + ε/2.

We show that (4.2) holds true for αε. To the contrary, assume that there are z0 ∈ Nt0

and t1 ∈ [0, T ] such that

U(t0, x0) > U(t1, x1) + ε,

where x1 = x(t1; t0, x0, αε(z0), z0). Given z1 ∈ Nt1 , we set

(z0, z1)(s) =

{
z0(s) for s ∈ [t0, t1),

z1(s) for s ∈ [t1, T ].

Let α1 ∈ Γt1 be given by

α1(z1)(s) = αε(z0, z1)(s)(4.4)
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for s ∈ [t1, T ]. Obviously, U(t1, x1) ≥ infz1∈Nt1
g(x(T ; t1, x1, α1(z1), z1) and hence

there is z1 ∈ Nt1 such that

inf
z∈Nt1

g(x(T ; t1, x1, α1(z), z)) > g(x(T ; t1, x1, α1(z1), z1))− ε/2.

Setting z̃ = (z0, z1) we have

x(T ; t0, x0, αε(z̃), z̃) = x(T ; t1, x1, α1(z1), z1).

Thus

U(t0, x0) > U(t1, x1) + ε > g(x(T ; t0, x0, αε(z̃), z̃))− ε
2
+ ε,

which is the desired contradiction.
Fix α ∈ Γt0 . We divide the proof of (4.3) into two steps.
Step 1. We fix a division t0 < t1 < · · · < tk = T of the interval [t0, T ]. By the

dynamic programming optimality condition (Theorem 4.1), there is z0 ∈ Nt0 such that

U(t0, x0) > U(t1, x1)− ε

2k
,

where x1 = x(t1; t0, x0, α(z0), z0). Taking α0 = α in (4.4) we obtain an α1 ∈ Γt1 . By
the dynamic programming optimality condition again, we obtain z1 ∈ Nt1 such that

U(t1, x1) > U(t2, x2)− ε

2k
,

where x1 = x(t2; t1, x1, α1(z1), z1).
We proceed by induction getting a sequence z2 ∈ Nt2 , . . . , zk−1 ∈ Ntk−1

. Setting
z̃(s) = zi(s), for s ∈ [ti−1, ti), we obtain

U(t0, x0) ≥ U(ti, x(ti; t0, x0, α(z̃), z̃))− iε
2k
.

Step 2. We set R = ‖x0‖+ 1 and find δ > 0 such that

mg,B(R+
∫ T
t0

µ(s)ds)

(
δ

∫ T

t0

l(s)ds

)
<
ε

2
.

Next we choose a division t0 < t1 < · · · < tk = T of the interval [t0, T ] such

that
∫ ti
ti−1

µ(s)ds < δ
2 , for i = 1, 2, . . . , k. By Step 1, we find z̃ ∈ Nt0 such that

U(t0, x0) > U(ti, x̃(ti))− ε
2 , where x̃(t) = x(t; t0, x0, α(z̃), z̃). Fix t ∈ [ti−1, ti]. By the

dynamic programming optimality condition U(t, x̃(t)) ∈ [inf{U(ti, y) : ‖y − x̃(t)‖ ≤∫ ti
t
µ(s)ds}, sup{U(ti, y) : ‖y − x̃(t)‖ ≤ ∫ ti

t
µ(s)ds}](:= J). Since ‖x̃(ti − x̃(t)‖ ≤∫ ti

t
µ(s)ds then also U(ti, x̃(ti)) ∈ J . Thus ‖U(t, x̃(t))−U(ti, x̃(ti)‖ ≤ sup{‖U(t1, y1)−

U(t1, y2)‖ : y1, y2 ∈ B(x̃(t0),
∫ ti
t
µ(s)ds)} ≤ ε/2, which completes the proof.

Theorem 4.6. Suppose that g : Rn → R is continuous and f : [0, T ] × Rn ×
Y × Z → Rn satisfies (2.2), (2.3), (2.4), (2.5), and (2.6). Let the Hamiltonian H :
[0, T ]×Rn ×Rn → R and the value function U : [0, T ]×Rn → R be generated by f ,
g. Then a function W : [0, T ] × Rn → R is the value function, i.e., W = U , if and
only if W satisfies the following conditions:

(a) W (T, ·) = g(·);
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(b) W (t, ·) is continuous function, for every t ∈ [0, T ];
(c) the epitube EW and the hypotube HW are left absolutely continuous, where

EW (t) = {(x,w) ∈ Rn × R : w ≥ W (t, x)} and HW (t) = {(x,w) ∈ Rn × R : w ≤
W (t, x)};

(d) there exists a full measure set C ⊂ [0, T ] such that for every t ∈ C and x ∈ Rn

∀(nt, nx, nu) ∈ N0
Graph(HW )(t, x,W (t, x)), −nt +H(t, x,−nx) ≥ 0(4.5)

∀(nt, nx, nu) ∈ N0
Graph(EW )(t, x,W (t, x)), nt +H(t, x, nx) ≤ 0.(4.6)

Remark 4.7. Note that, if W = U is smooth, then (4.5) and (4.6) mean nothing
but that W satisfies the Hamilton–Jacobi–Isaacs equation:

∂W

∂t
(t, x) +H

(
t, x,

∂W

∂x
(t, x)

)
= 0.

Proof. Suppose that W = U . Corollary 4.3 and Proposition 4.4 yield (b) and (c).
Let f̃(t, x, u, y, z) = (f(t, x, y, z), 0), u ∈ R. The function (x(t), u(t)) = (x(t; t0, x0,
α(z), z), U(t0, x0)) is the solution of the Cauchy problem

{
(x′(t), u′(t)) = f̃(t, x(t), u(t), α(z), z),
(x(t0), u(t0)) = (x0, U(t0, x0)).

From (4.2) it follows that (2.8) holds true for P = HW and f = f̃ . By Theorem 2.2,
the hypotube HW is a discriminating tube for f̃ . From this we conclude (4.5). From
(4.3) it follows that (3.2) holds true for P = EW and f = f̃ . By Theorem 3.2, the
epitube EW is a leadership tube for f̃ . From this we conclude (4.6).

Now, suppose that a function W satisfies (a), (b), (c), and (d). From (4.5) it
follows that the hypotube HW is a discriminating tube for f̃ . Fix t0 and x0. By
Theorem 2.2, there is α ∈ Γt0 such that for every z ∈ Nt0

(x(T ; t0, x0, α(z), z),W (t0, x0)) ∈ HW (T ).

Hence

∀α, ∃z, W (t0, x0) ≤W (T, x(T ; t0, x0, α(z), z)).

Thus

W (t0, x0) ≤ sup
α

inf
z
g(x(T ; t0, x0, α(z), z)).

From (4.6) it follows that the epitube EW is a leadership tube for f̃ . Fix t0, x0. By
Theorem 3.2, for every ε > 0 and every α ∈ Γt0 , there is z ∈ Nt0

(x(T ; t0, x0, α(z), z),W (t0, x0)) ∈ EW (T ) +B(0, ε).

Since g is uniformly continuous on B(x0,
∫ T
t0
µ(s)ds), we have

W (t0, x0) ≥ sup
α

inf
z
g(x(T ; t0, x0, α(z), z)),

which completes the proof.
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5. Appendix. The aim of the appendix is to prove Lemma 2.7. Lemma 2.7
has been announced in [8]. We proceed the proof with some elementary properties of
ultrametric spaces.

Proposition 5.1. If y1, y2, y3 ∈ M and ρ(y1, y2) < ρ(y2, y3), then ρ(y1, y3) =
ρ(y2, y3).

Proof. We have ρ(y2, y3) ≤ max(ρ(y1, y2), ρ(y1, y3)). Thus ρ(y2, y3) ≤ ρ(y1, y3).
Moreover, ρ(y1, y3) ≤ max(ρ(y1, y3), ρ(y2, y3)) = ρ(y2, y3).

Let K be a nonempty subset of M . We denote by QK the family of nonempty
subsets of K of the form

{y ∈ K : ρ(y, y0) ≤ c},

where y0 ∈ K and c ≥ 0.
Proposition 5.2. If D ∈ QK and ȳ ∈ D, then D = {y ∈ K : ρ(y, ȳ) ≤

diamD}.
Proof. Fix y0 ∈ K, c ≥ 0 and define D = {y ∈ K : ρ(y, y0) ≤ c}. Let ȳ ∈ D.

Obviously, we have D ⊂ {y ∈ K : ρ(y, ȳ) ≤ diamD}. If y ∈ K and ρ(y, ȳ) ≤ diamD,
then ρ(y, y0) ≤ max(ρ(y, ȳ), ρ(ȳ, y0)) ≤ max(diamD, c) = c.

Proposition 5.3. If D ∈ QK , y1 ∈ M , c ≥ 0 are such that D1 = {y ∈ D :
ρ(y, y1) ≤ c} is a nonempty set, then D1 ∈ QK .

Proof. Fix ȳ ∈ D1. By Proposition 5.2, we haveD = {y ∈ K : ρ(y, ȳ) ≤ diamD}.
Case 1. If diamD ≤ c, then D1 = D.
Indeed, for any y ∈ D, we have ρ(y, y1) ≤ max(ρ(y, ȳ), ρ(ȳ, y1))≤ max(diamD, c)

= c.
Case 2. If diamD > c, then D1 = {y ∈ K : ρ(y, ȳ) ≤ c}.
If y ∈ D1, then ρ(y, ȳ) ≤ max(ρ(y, y1), ρ(y1, ȳ)) ≤ c. Thus D1 ⊂ {y ∈ K :

ρ(y, ȳ) ≤ c}. If y ∈ K and ρ(y, ȳ) ≤ c, then y ∈ D and ρ(y, y1) ≤ max(ρ(y, ȳ), ρ(ȳ, y1))
≤ c.

Proposition 5.4. If D1, D2 ∈ QK , D1 ⊂ D2, and D1 	= D2, then diamD1 <
diamD2.

Proof. Suppose that diamD1 = diamD2 = d and D1 ⊂ D2. If y1 ∈ D1 and
y2 ∈ D2, then D1 = {y ∈ K : ρ(y, y1) ≤ d} and D2 = {y ∈ K : ρ(y, y2) ≤ d}.
We have ρ(y1, y2) ≤ d. If y ∈ D2, then ρ(y, y1) ≤ max (ρ(y, y2), ρ(y2, y1)) ≤ d, which
involves that y ∈ D1.

Proposition 5.5. Suppose that K is a nonempty (∗)-closed subset of M , and a
family {Dω ∈ QK : ω ∈ Ω} satisfies the following condition:

∀ω1, ω2 ∈ Ω, Dω1 ⊂ Dω2 or Dω2 ⊂ Dω1.

Then
(1) ∀ω1, ω2 ∈ Ω, (diamDω1 ≤ diamDω2 =⇒ Dω1 ⊂ Dω2).
(2) If a sequence {ωn} ⊂ Ω satisfies the conditions

• diamDωn+1 ≤ diamDωn (:= dn),
• limn→∞ dn = infω∈Ω diamDω (:= d),

then for every sequence yn ∈ Dωn there is ȳ ∈ K such that ρ(ȳ, yn) ≤ dn and

⋂
ω∈Ω

Dω = {y ∈ K : ρ(y, ȳ) ≤ d}.(5.1)

(3) The set D =
⋂

ω∈ΩDω belongs to QK .
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Proof. Assertion (1) is an immediate consequence of Proposition 5.4.
By Proposition 5.2,

Dωn = {y ∈ K : ρ(y, yn) ≤ dn}.
According to assertion (1), Dωn+1 ⊂ Dωn for every n. Therefore, ρ(yn+1, yn) ≤ dn.
Since K is (*)-closed, there is ȳ ∈ K such that ρ(ȳ, yn) ≤ dn.

If y ∈ Dωn
, then ρ(y, ȳ) ≤ max (ρ(y, yn), ρ(yn, ȳ)) ≤ dn.

Let us choose y ∈ K such that ρ(y, ȳ) ≤ d and pick some ω ∈ Ω. There is
ωn such that dn ≤ diamDω. By the assertion (a), we have Dωn ⊂ Dω. Moreover,
ρ(y, yn) ≤ max (ρ(y, ȳ), ρ(ȳ, yn)) ≤ max (d, dn) = dn. Hence y ∈ Dωn

.
By (5.1), we obtain statement (3).
Proof of Lemma 2.7. First we define a partial order (P,≤). The family P consists

of all nonempty valued nonexpansive maps C : N ❀ M such that C(z) ∈ QA(z) for
every z ∈ N . Since A ∈ P, then the family P is nonempty. We say that C1 ≤ C2 if
C1(z) ⊂ C2(z) for every z ∈ N .

Step 1. Let {Cω}ω∈Ω ⊂ P be a chain. Define a set-valued map C : N ❀ M by
C(z) =

⋂
ω∈Ω Cω(z). By Proposition 5.5(3), we have C(z) ∈ QA(z) for every z ∈ N .

Now, we show that C is a nonexpansive map. Let us take z1, z2 ∈ N and ȳ1 ∈ C(z1).
Case 1. ρ(z1, z2) ≥ infω∈Ω diamCω(z2). We choose a sequence {ωn} ⊂ Ω such

that dn+1 ≤ dn (:= diamCωn(z2)) and limn→∞ dn = infω∈Ω diamCω(z2). Since Cωn

is a nonexpansive map, then there is yn ∈ Cωn(z2) such that ρ(ȳ1, yn) ≤ ρ(z1, z2). By
Proposition 5.5(2), there is ȳ ∈ C(z2) such that ρ(yn, ȳ) ≤ dn. Therefore ρ(ȳ1, ȳ) ≤
max (ρ(ȳ1, yn), ρ(yn, ȳ)) ≤ max (ρ(z1, z2), dn).

Case 2. ρ(z1, z2) < infω∈Ω diamCω(z2). Let us fix ω0 ∈ Ω and choose y0 ∈
Cω0

(z2) such that ρ(ȳ1, y0) ≤ ρ(z1, z2). We claim that y0 ∈ C(z2). We pick some
ω ∈ Ω and choose yω ∈ Cω(z2) such that ρ(ȳ1, yω) ≤ ρ(z1, z2). Thus ρ(y0, yω) ≤
max(ρ(y0, y1), ρ(y1, yω)) ≤ ρ(z1, z2). By Proposition 5.2, we have Cω(z2) = {y ∈
A(z2) : ρ(y, yω) ≤ diamCω(z2)}. Therefore y0 ∈ Cω(z2).

Step 2. Suppose that C ∈ P and there is z0 ∈ N such that diamC(z0) > 0, i.e.,
C is not a single-valued map. We define a map C̃ : N ❀M by

C̃(z) =

{
C(z) if ρ(z, z0) ≥ d,
{y ∈ C(z) : ρ(y, y0) ≤ ρ(z, z0)} if ρ(z, z0) < d,

where d = diamC(z0) and y0 is a fixed element of C(z0). Obviously, C̃(z0) = {y0} 	=
C(z0). Since C is a nonexpansive map, then C̃(z) 	= ∅ for every z ∈ N . By Proposition
5.3, we have C̃(z) ∈ QA(z) for every z ∈ N . Now, we show that C̃ is a nonexpansive

map. Let us take z1, z2 ∈ N and y1 ∈ C̃(z1).
Case 1. ρ(z1, z0) ≥ d and ρ(z2, z0) < d. Let us take an arbitrary y2 ∈ C̃(z2).

By Proposition 5.1, we have ρ(z1, z2) = ρ(z1, z0). Since C is a nonexpansive map,
then there is ȳ0 ∈ C(z0) such that ρ(y1, ȳ0) ≤ ρ(z1, z0). Therefore ρ(y1, y2) ≤
max (ρ(y1, ȳ0), ρ(ȳ0, y0), ρ(y0, y2)) ≤ max (ρ(z0, z2), d) ≤ ρ(z1, z2).

Case 2. ρ(z1, z0) < d and ρ(z2, z0) < d.
• ρ(z1, z0) < ρ(z2, z0). By Proposition 5.1, we have ρ(z1, z2) = ρ(z2, z0). For
any y2 ∈ C̃(z2) we have ρ(y1, y2) ≤ max (ρ(y1, y0), ρ(y0, y2)) ≤ max (ρ(z1, z0),
ρ(z0, z2)) = ρ(z1, z2).

• ρ(z1, z0) > ρ(z2, z0). By Proposition 5.1, we have ρ(z1, z2) = ρ(z1, z0). Let
y2 be an arbitrary element of C̃(z2). Therefore, ρ(y1, y2) ≤ max (ρ(y1, y0),
ρ(y0, y2)) ≤ max (ρ(z1, z0), ρ(z0, z2)) = ρ(z1, z2).
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• ρ(z1, z0) = ρ(z2, z0). Since C is a nonexpansive map, then there is y2 ∈
C(z2) such that ρ(y1, y2) ≤ ρ(z1, z2). Observe that ρ(z1, z2) ≤ max (ρ(z1, z0),
ρ(z0, z2)) = ρ(z1, z0). So ρ(y2, y0) ≤ max(ρ(y2, y1), ρ(y1, y0)) ≤ max (ρ(z2, z1,
ρ(z1, z0)) = ρ(z1, z0) = ρ(z2, z0). Therefore, y2 ∈ C̃(z2).

By Step 1 and Step 2 together and Kuratowski–Zorn’s lemma, we obtain the existence
of a nonexpansive (single-valued) selection α : N �→M of the set-valued map A : N ❀

M .
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Abstract. The aim of this work is to deduce optimality conditions for a nonlocal variational
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1. Introduction. This paper is devoted to the obtainment of generalized equi-
librium conditions for the one-dimensional scalar variational principle

inf {J(u) : u ∈ A} ,(1.1)

where

J(u) =

∫
I×I

W (u′(x1), u
′(x2)) dx1dx2,(1.2)

A =
{
u ∈W 1,p (I) : u− u0 ∈W 1,p

0 (I)
}
,(1.3)

I is an open interval in R, and u0 ∈W 1,p(I) such that J(u0) <∞.
It is well known that the existence of solutions is strongly related to the weak

lower semicontinuity of the functional (1.2). For the problem above this property
is equivalent to a sort of inequality of nonlocal nature: the energy density W must
satisfy

2n∑
i,j=1

W (λi, λj) ≥ 4

n∑
i,j=1

W

(
λ2i−1 + λ2i

2
,
λ2j−1 + λ2j

2

)
(1.4)

for any n ∈ N and any choice λ1, λ2, . . . , λ2n ∈ R (see [22]).
Unfortunately inequalities like (1.4) are complicated to check and that makes

the analysis of existence too difficult. Moreover, this kind of problem is different if
we compare it to the relaxation of nonconvex classical variational problems where
we can substitute the original problem with its convexified version. The nonlocal
nature of problems like (1.1)–(1.3) seems to block this approach because an equivalent
convexification does not make sense, or at least it is not so clear in this situation. We
shall deal with this question later.
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Notice we restrict our attention to the homogenous problem,W = W (u′ (x1) , u
′ (x2)).

The general case W = W (x1, x2, u
′ (x1) , u

′ (x2)) is briefly discussed in section 6.
Our approach to the problem is not new (cf. Young [31], [32], McShane [18],

Warga [28]). In order to study the original problem (1.1)–(1.3) we shall consider its
relaxation in terms of the Young measures, generated by sequences of gradients of
admissible functions. We shall call it the generalized problem (see (2.6)–(2.8)). Its
analysis on problems without the weak lower semicontinuity property can be used to
anticipate the oscillatory behavior of minimizing sequences. Also, the existence of
solutions to the original problem (1.1)–(1.3) can be dealt with once the generalized
problem is solved.

The contribution of this work is to provide a tool to study the generalized problem.
We mainly concentrate on the obtainment of necessary conditions of optimality for
this principle. We get generalized equilibrium conditions (Theorems 3.1 and 3.2).
They are established by making variations on the Young measures and are only useful
when we are dealing with the homogeneous problem (i.e., when W depends only on
the gradients). In that case they enable us to solve and describe the optimal structure
in some examples. It also helps us to understand the appearance of microstructure
and its dependence on the imposed boundary conditions.

Some basic references on optimization and relaxation are [2], [7], [8], [10], [13],
[15], [17], [23], [26], [28], and [33]. About variational calculus using Young measures,
[9], [16], [19], [20], [21], [22], [23], [24], [29], and [33] can be looked at. The analysis of
principles similar to (1.1)–(1.3) can be found in [1], [11], [12], [22], and [25].

The paper is organized as follows. In section 2 we revise some preliminaries and
tools. Section 3 is devoted to the variational analysis and the equilibrium conditions.
In section 4 we apply those conditions exploring one example, already proposed in
[22]. In section 5 we propose a relaxation through what we shall call the nonlocal
convex envelope. In the final section we talk about the limitations of our method for
the nonhomogeneous problem.

2. Some preliminaries and tools. Consider the optimization problem (1.1)–
(1.3). We assume the density energy

W : R×R→ R(2.1)

is smooth and satisfies the bounds

c (|A1|p + |A2|p − 1) ≤W (A1, A2) ≤ C (|A1|p + |A2|p + 1) ,(2.2) ∣∣∣∣∂W∂Ai (A1, A2)

∣∣∣∣ ≤ C
(
|A1|p−1

+ |A2|p−1
+ 1
)
,(2.3)

∣∣∣∣∂
2W

∂A2
i

(A1, A2)

∣∣∣∣ ≤ C
(
|A1|p−2

+ |A2|p−2
+ 1
)
,(2.4)

i = 1, 2, 2 < p <∞, 0 < c < C. For simplicity we assume I = (0, 1) and u0(x) = γx,
γ ∈ R, so that (1.1)–(1.3) can be written in a simpler way:

inf

{∫ 1

0

∫ 1

0

W (u′(x1), u
′(x2)) dx1dx2 : u ∈W 1,p(I),

with u(0) = 0 and u(1) = γ

}
.

(2.5)
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As we have mentioned, the lack of the weak lower semicontinuity property or the
difficulties to check it induces us to consider the following problem:

inf
{
J(ν) : ν ∈ A} ,(2.6)

where

J(ν) =

∫
I×I

∫
R×R

W (λ1, λ2) dνx1 (λ1) dνx2 (λ2) dx1dx2(2.7)

and A is the set of Young measures ν = {νx}x∈I such that

∫
I

∫
R

|λ|p dνx (λ) dx <∞,

∫
I

∫
R

λdνx (λ) dx = γ.(2.8)

Here, we follow [22] from which we stress the following results. First, Theorem 2.1
characterizes the Young measures generated by weakly convergent sequences of the
form {(u′ (x1) , u

′ (x2))}. (This result can also be directly deduced using denseness
results of Dirac Young measures (cf. [29], [3]).) By using Theorem 2.1 we can easily
prove the second result, Theorem 2.2, which guarantees that under the preceding
hypotheses, (2.6)–(2.8) is a generalized version of (2.5).

Theorem 2.1. Λ(x1,x2) is the Young measure generated by
{(
u′j(x1), u

′
j(x2)

)}
,

{uj (x)} a bounded sequence in W 1,p (I) , if and only if

Λ(x1,x2) = νx1
⊗ νx2

and ∫
I

∫
R

|λ|p dνx (λ) dx <∞,

where ν = {νx}x∈I is the Young measure generated by
{
u′j(x)

}
.

Theorem 2.2. Under (2.2) there exists υ ∈ A such that

m = J (υ) = inf
{
J (ν) : ν ∈ A} ,(2.9)

where m is the infimum given in (1.1).
Regarding Theorem 2.1 and the fundamental theorem of Young measures [5], [23],

[26], we have the representation

limj→∞
∫
I×I

ψ
(
u′j(x1), u

′
j(x2)

)
dx1dx2

=

∫
I×I

∫
R×R

ψ (λ1, λ2) dνx1 (λ1) dνx2 (λ2) dx1dx2,

where ν =
{
ν(x1,x2)

}
(x1,x2)∈I×I is the Young measure generated by the sequence of

pairs
{(
u′j(x1), u

′
j(x2)

)}
, provided ψ is continuous and

{
ψ
(
u′j(x1), u

′
j(x2)

)}
converges

weakly in L1 (I × I). Besides, Theorem 2.2 guarantees at least the existence of a
minimizer υ ∈ A for the generalized functional J. Thus, for any minimizing sequence
{wj} ⊂ A there is a Young measure υ ∈ A such that m = J (υ) = limi→∞ J(wj).

Let us now consider the following: ν, a homogeneous Young measure in A;
{uj (x)} , a sequence in A such that

{
u′j (x)

}
generates ν; and {ψj (x)} , a bounded
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sequence in W 1,p
0 (I) generating a homogeneous Young measure. Let µ = {µx}x∈I be

the Young measure generated by the sequence of pairs
{(
u′j (x) , ψ

′
j (x)

)}
. Notice that{(

u′j (x) , ψ
′
j (x)

)}
does not necessarily generate a homogeneous Young measure even

if each one of its components does.
Theorem 2.3 (see [14], [27]). Under the above circumstances, for any x ∈ I and

any (λ1, λ2) ∈ supp µx,

µx (λ1, λ2) = µx (λ2|λ1)⊗ ν (λ1) ,(2.10)

where µx ( ·|λ1) is a probability measure for any λ1 ∈ supp ν and the map

λ1 →
∫
R

f (λ1, λ2) dµx (λ2|λ1)

is ν-measurable, provided f is integrable with respect to µx.
The decomposition (2.10)1 implies
∫
R×R

f (λ1, λ2) dµx (λ1, λ2) =

∫
R

(∫
R

f (λ1, λ2) dµx (λ2|λ1)

)
dν (λ1) .

We also need the following result.
Proposition 2.4 (see [24]).

(i) If H is continuous and is assumed to verify |H(λ)| ≤ C
(
|λ|p−1

+ 1
)
, p > 1,

C > 0, and ∫
R

H (λ)Υ (λ) dν (λ1) = 0

for any ν-measurable function Υ such that∫
R

Υ(λ) dν (λ) = 0 and

∫
R

|Υ(λ)|p dν (λ) <∞,(2.11)

then

H (λ) =

∫
R

H (λ) dν (λ)

for any λ ∈ supp ν.

(ii) If G is continuous and verifies |G(λ)| ≤ C
(
|λ|p−2

+ 1
)
, p > 2, C > 0, and

∫
R

G (λ) Γ (λ) dν (λ) ≥ 0

for any ν-measurable and positive function Γ such that∫
R

(Γ (λ))
p/2

dν (λ) <∞,(2.12)

then

G (λ) ≥ 0

for any λ ∈ supp ν.

1In Young measure theory this is usually written as µx (dλ1, dλ2) = µx (dλ2|λ1)⊗ν (dλ1), which
distinguishes parameters from the integration variable.
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3. Generalized equilibrium conditions. We study the generalized version of
the optimization principle (2.5) under the hypotheses (2.2)–(2.4). The generalized
version of (2.5) is the minimization of the functional

J(ν) =

∫
I×I

∫
R×R

W (λ1, λ2) dνx1 (λ1) dνx2 (λ2) dx1dx2,(3.1)

with A as the set of admissibility. The independence on the xi permits us to simplify
the problem. We can restrict A to the subset composed by its homogeneous members.
To be more precise, given ν = {νx}x∈I ∈ A, we can consider its homogenization ν,

also a probability measure in A, such that J(ν) = J(ν). The proof of this statement
is easy: recall that ν is defined via the formula

〈ν, χ〉 = −
∫
I

∫
R

χ (λ) dνx (λ) dx

for any continuous function χ,2 and consequently

∫
R

λdν (λ) = γ.(3.2)

Then

J (ν) =

∫ 1

0

∫
R

L (λ2) dνx2
(λ2) dx2,

where

L (λ2) =

∫ 1

0

[∫
R

W (λ1, λ2) dνx1 (λ1)

]
dx1

=

∫ 1

0

(ν,W (·, λ2)) dx1

=

∫ 1

0

∫
R

W (λ1, λ2) dν (λ1) dx1.

In the same way we have

J (ν) =

∫ 1

0

∫
R

L (λ2) dνx2 (λ2) dx2

=

∫ 1

0

∫
R

L (λ2) dν (λ2) dx2

=

∫ 1

0

∫ 1

0

[∫
R

∫
R

W (λ1, λ2) dν (λ1) dν (λ2)

]
dx1dx2

= J (ν) .

We analyze (3.1) assuming that the elements competing in the principle are only the
homogeneous Young measures ν of A such that

∫
R
λdν (λ) = γ. We denote this set

2That is the definition for the homogenization of a Young measure; however, the average does
not affect the integral because |I| = 1.
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of admissibility by Aγh. Let the framework be the one introduced before Theorem 2.3.
We consider the gradients w′

j (x) = u′j (x) + tψ′
j (x) , where

{
u′j (x)

}
generates the

homogeneous Young measure ν, a minimizer of the general principle (3.1). If we take{
w′
j

}
and consider µt, its homogeneous Young measure in Aγh, we set the function

h (t)
.
= J

(
µt
)
=

∫
R

∫
R

W (α1, α2) dµ
t (α1) dµ

t (α2) , t ∈ R.

Consequently,

h (t) =

∫ 1

0

∫ 1

0

∫
R2

∫
R2

W (λ1 + tδ1, λ2 + tδ2) d (γx1
(λ1, δ1)⊗ γx2

(λ2, δ2)) dx1dx2,

where γ = {γxi
(λi, δi)}xi∈I is the Young measure generated by the sequences of pairs{(

u′j (xi) , ψ
′
j (xi)

)}
, i = 1, 2.

The function h has a minimum for t = 0. By the smoothness assumptions on W
we have the classical equilibrium conditions h′ (0) = 0 and h′′(0) ≥ 0. Henceforth the
point is to express these conditions in a more transparent way.

By Theorem 2.3 we have the decomposition

γxi (λi, δi) = γxi (δi|λi)⊗ ν (λi) .(3.3)

We define the homogenized Young measure of γ by

〈γ, χ (λi, δi)〉 = −
∫ 1

0

∫
R2

χ (λi, δi) dγxi
(λi, δi) dxi.

Then

〈γ, χ (·)〉 =
∫
R

χ (λi) dν (λi) = 〈ν, χ (·)〉 ,

which implies that ν is the canonical projection onto R of γ (ν (E) = γ (E ×R)).
Now, defining γ (δi|λi) via the formula

〈γ (δi|λi) , χ (·)〉 = −
∫ 1

0

∫
R

χ (δi) γxi (δi|λi) dxi

(χ continuous) and using (3.3) we see

〈γ, χ (λi, δi)〉 =
∫
R

[
−
∫ 1

0

∫
R

χ (λi, δi) dγxi (δi|λi) dxi
]
dν (λi)

=

∫
R2

χ (λi, δi) d (γ (δi|λi)⊗ ν (λi)) .

Therefore,

γ (λi, δi) = γ (δi|λi)⊗ ν (λi) ,(3.4)

and consequently h can be read as

h(t) =

∫
R2

∫
R2

W (λ1 + tδ1, λ2 + tδ2) d (γ (λ1, δ1)⊗ γ (λ2, δ2)) .
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We should only take into account that h′(t) = 0 ((2.3) and (2.4) permit us the
interchange of derivation and integration; see [6, p. 215]) to arrive at

0 =

∫
R2

∫
R2

{
d

dt
W (λ1 + tδ1, λ2 + tδ2)

∣∣∣∣
t=0

}
d (γ (λ1, δ1)⊗ γ (λ2, δ2)) ,

which means

0 =

∫
R2

∫
R2

{
∂W (λ1, λ2)

∂A1
δ1 +

∂W (λ1, λ2)

∂A2
δ2

}
d (γ (λ1, δ1)⊗ γ (λ2, δ2)) ,

so that by (3.4) we can write

0 =

∫
R2×R2

{
∂W (λ1, λ2)

∂A1
δ1 +

∂W (λ1, λ2)

∂A2
δ2

}
d (γ (δ1|λ1)⊗ ν (λ1)) d (γ (δ2|λ2)⊗ ν (λ2))

=

∫
R2

{
∂W (λ1, λ2)

∂A1

∫
R

δ1dγ (δ1|λ1) +
∂W (λ1, λ2)

∂A2

∫
R

δ2dγ (δ2|λ2)

}
dν (λ1) dν (λ2) .

If we denote Υ (λj)
.
=
∫
R
δjdγ (δj |λj) , j = 1, 2, the above equilibrium conditions

read as

0 =

∫
R2

{
∂W (λ1, λ2)

∂A1
Υ(λ1) +

∂W (λ1, λ2)

∂A2
Υ(λ2)

}
dν (λ1) dν (λ2) ,

and by change of variables we have

0 =

∫
R2

{
∂W (λ1, λ2)

∂A1
+
∂W (λ2, λ1)

∂A2

}
Υ(λ1) dν (λ1) dν (λ2)

=

∫
R

{∫
R

{
∂W (λ1, λ2)

∂A1
+
∂W (λ2, λ1)

∂A2

}
dν (λ2)

}
Υ(λ1) dν (λ1)

=

∫
R

H (λ1)Υ (λ1) dν (λ1) ,

where

H (λ1)
.
=

∫
R

{
∂W

∂A1
(λ1, λ2) +

∂W

∂A2
(λ2, λ1)

}
dν (λ2) .

We observe ∫
R

Υ(λj) dν (λj) =

∫
R2

−
∫ 1

0

δjdγx (δj |λj) dxdν (λj)

= −
∫ 1

0

∫
R2

δjdγx (δj |λj) dν (λj)

=

∫ 1

0

∫
R2

δjdγx (λj , δj) dx = 0,

and by Jensen’s inequality∫
R

|Υ(λj)|p dν (λj) =
∫
R

∣∣∣∣
∫
R

δjdγ (δj |λj)
∣∣∣∣
p

dν (λj)

≤
∫
R

∫
R

|δj |p dγ (δj |λj) dν (λj)

=

∫ 1

0

∫
R2

|δj |p dγx (λj , δj) dx <∞.
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Reciprocally, for any field Υ fulfilling (2.11), we can find a sequence
{(
u′j (xi) , ψ

′
j (xi)

)}
,

where
{
u′j (x)

}
generates ν and {ψj (x)} is a bounded sequence in W 1,p

0 (I) such that
its Young measure can be written as

µ (λ, δ) = µ (δ|λ)⊗ ν (λ)

and
∫
R
δdµ (δ|λ) = Υ (see [22] and [23] for a complete discussion). Therefore, we can

now use Proposition 2.4(i) to state the following result.
Theorem 3.1. Under the above circumstances

supp ν ⊂
{
λ ∈ R : H (λ) =

∫
R

H (λ1) dν (λ1)

}
.

Now, our investigation is concerned with the condition h′′(0) ≥ 0. According to
this inequality and by some simple computations we have

0 ≤
∫
R2

{
∂2W

∂A2
1

(λ1, λ2)

∫
R

δ2
1dγ (δ1|λ1) +

∂2W

∂A2
2

(λ1, λ2)

∫
R

δ2
2dγ (δ2|λ2)

+ 2
∂2W

∂A1∂A2
(λ1, λ2)

∫
R

δ1dγ (δ1|λ1)

∫
R

δ2dγ (δ2|λ2)

}
dν (λ1) dν (λ2)

=

∫
R2

{
∂2W

∂A2
1

(λ1, λ2) Γ (λ1) +
∂2W

∂A2
2

(λ1, λ2) Γ (λ2)

+ 2
∂2W

∂A1∂A2
(λ1, λ2)Υ (λ1)Υ (λ2)

}
dν (λ1) dν (λ2) ,

where

Γ (λi) =

∫
R

δ2
i dγ (δi|λi) .

By Jensen’s inequality, if

2Υ (λ1)Υ (λ2) ≤ Υ(λ1)
2
+Υ(λ2)

2 ≤ Γ (λ1) + Γ (λ2) ,

then

0 ≤
∫
R2

{
∂2W

∂A2
1

(λ1, λ2) Γ (λ1) +
∂2W

∂A2
2

(λ1, λ2) Γ (λ2)

+
∂2W

∂A1∂A2
(λ1, λ2) Γ (λ1) +

∂2W

∂A1∂A2
(λ1, λ2) Γ (λ2)

}
dν (λ1) dν (λ2) ,

and by changing the variables we have

0 ≤
∫
R

{∫
R

{
∂2W

∂A2
1

(λ1, λ2) +
∂2W

∂A2
2

(λ2, λ1)

+
∂2W

∂A1∂A2
(λ1, λ2) +

∂2W

∂A1∂A2
(λ2, λ1)

}
dν (λ2)

}
Γ (λ1) dν (λ1) .

Obviously Γ (λi) ≥ 0, and again by Jensen’s inequality (p ≥ 2),

∫
R

|Γ (λi)|p/2 dν (λi) =
∫
R

∣∣∣∣
∫
R

δ2
i dγ (δi|λi)

∣∣∣∣
p/2

dν (λi)

≤
∫
R

∫
R

|δi|p dγ (δi|λi) dν (λi)

=

∫ 1

0

∫
R2

|δi|p dγx (λi, δi) <∞.
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As before, given any positive Γ verifying (2.12), we can build a sequence of pairs
whose Young measure is written in the form µ (λ, δ) = µ (δ|λ)⊗ ν (λ) and such that
the second moment

∫
R
δ2dµ (δ|λ) coincides with Γ. So, by Proposition 2.4(ii)

G (λ1) ≥ 0

for any λ1 ∈ supp ν, where

G (λ1)
.
=

∫
R

{
∂2W

∂A2
1

(λ1, λ2) +
∂2W

∂A2
2

(λ2, λ1)

+
∂2W

∂A1∂A2
(λ1, λ2) +

∂2W

∂A1∂A2
(λ2, λ1)

}
dν (λ2) .

Theorem 3.2.

supp ν ⊂ {λ ∈ R : G (λ) ≥ 0} .

4. One example. We show how Theorems 3.1 and 3.2 may be applied to solve
the generalized problem and to decide about the existence of solutions to the original
problem (2.5), in some simple situations.

Let us take

W (λ1, λ2) =
(
λ2

1 + λ2
2 − 1

)2
and suppose ν is a minimizer for (3.1). The equilibrium condition of Theorem 3.1
gives in this case the identity

∫
R

∫
R

{
8λ1

(
λ2

1 + λ2
2 − 1

)}
dν (λ2) dν (λ1) =

∫
R

{
8λ1

(
λ2

1 + λ2
2 − 1

)}
dν (λ2)

for any λ1 ∈ supp ν. That is,
∫
R

λ3
1dν (λ1) +

∫
R

λ1dν (λ1)

∫
R

λ2
2dν (λ2)−

∫
R

λ1dν (λ1)

= λ3
1 + λ1

∫
R

λ2
2dν (λ2)− λ1.

(4.1)

This fact shows that at most there exist three different mass points for ν; let us denote
them by γ1, γ2, and γ3, and suppose ν = α1δγ1 + α2δγ2 + α3δγ3 , where αi ∈ [0, 1] ,∑3
i=1 αi = 1. If we write (4.1) in terms of the moments for ν, we obtain

γ3
j + (m2 − 1)γj = m3 +m1 (m2 − 1) ,

where mk =
∑3
j=1 αjγ

k
j , k = 1, 2, 3. We supply the above identity with the constraint

u (x) = γ · x on ∂(0, 1) (see (3.2)), thus m1 = γ; and finally, we arrive at the system
of equations

γ3
j +


 3∑
j=1

αjγ
2
j − 1


 γj =


 3∑
j=1

αjγ
3
j


+


 3∑
j=1

αjγ
2
j − 1


 γ,(4.2)

3∑
j=1

αjγj = γ,(4.3)
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whose unknowns are γ1, γ2, γ3, α1, and α2. Moreover, by Theorem 3.2 we have for
any γj , j = 1, 2, 3, the constraints

Υ (γj) = 3γ2
j + 2m1γj +m2 − 1 ≥ 0.(4.4)

Notice that the information about minimizing measures has been reduced to the study
of the nonlinear system (4.2)–(4.3) with the constraints (4.4). In general the resulting
system has a family of solutions. Once these solutions are found and substituted in
(3.1), we would have reduced the difficulties in the task of finding minimizers.

In the present example we get the following solutions to (4.2)–(4.3).

R-1. If γ ∈ [−
√

2
2 ,

√
2

2 ], we obtain

(i) ν = δc, with c ∈ [−
√

2
2 ,

√
2

2 ],
(ii) ν = dδ√

2
2

+ (1− d)δ−
√

2
2

, and

(iii) ν = dδ−1
2

+ (1− d)δ 1
2
.

R-2. If γ >
√

2
2 or γ < −

√
2

2 , we have ν = δc, where c >
√

2
2 or c < −

√
2

2 ,
respectively.

In the range R-1 the unique solution is ν = 1+γ
√

2
2 δ√

2
2

+ 1−γ√2
2 δ−

√
2

2

. We discard

ν = dδ− 1
2
+ (1 − d)δ 1

2
because by using (4.4) we necessarily get that d = 1

2 and

J( 1
2δ− 1

2
+ 1

2δ 1
2
) > 0 . In R-2 there exists only one solution, ν = δγ . Consequently we

can write the infimum of the problem as a function of γ:

JW (γ) =

{
0 if −

√
2

2 ≤ γ ≤
√

2
2 ,(

2γ2 − 1
)2

otherwise.

There are some other examples for which the optimality conditions can be applied.
For instance, we can take

W (λ1, λ2) = ((λ1 + λ2)
2 − 1)2 + (λ1 − λ2) arctan(λ1 + λ2)

2

or

W (λ1, λ2) = (λ2
1 + λ2

2 − 1)2 + arctanλ2
1 + arctanλ2

2.

5. Relaxation. The purpose of this section is to suggest a new relaxation of the
homogeneous problem

inf

{∫
I×I

W (u′(x), u′(y)) dxdy : u ∈W 1,p
0 (I) + γ.x

}
.(5.1)

The idea is to maintain the density energy in all regions where the infimum of the
principle (3.1) is attained by a Dirac delta. In those regions where the solutions give
rise to oscillations we consider a new density energy whose definition is similar to the
traditional convexification. Specifically, for every functionW satisfying the conditions
(2.2) we define its nonlocal convexification as

C̃W = sup
{
S : S ≤W, JS (γ) = S (γ, γ) = JW (γ) for any γ ∈ R} ,

where

JG (γ)
.
= inf

{∫
R×R

G (λ1, λ2) dµ (λ1) dµ (λ2) : µ ∈ Aγh
}
.
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The leading idea is to find a new variational principle whose infimum is attained
and coincides with mγ , the infimum of the original problem (5.1). To achieve this we
use the variational principle associated with the nonlocal convexification (see (5.2)
below).

Unfortunately we cannot ensure that

S .
=
{
S : S ≤W, JS (γ) = S (γ, γ) = JW (γ) for any γ ∈ R}

is a nonempty set. Even though we can consider separately the convex functions S
such that S ≤W and JS (γ) = S (γ, γ) , 3 we will not be able to state S (γ, γ) = JW (γ)
for any γ ∈ R. If we suppose this obstacle has been overcome and we can get the
corresponding generalized formulation for the principle

inf

{∫
I×I

C̃W (u′(x), u′(y)) dxdy : u ∈W 1,p
0 (I) + γ.x

}
,(5.2)

then we would have that for any γ ∈ R, mγ = m̃γ and there would exist v ∈
W 1,p

0 (I) + γ.x such that
∫
I×I C̃W (v′(x), v′(y)) dxdy = m̃γ , where m̃γ is the infimum

of (5.2). The proof is straightforward.
Notice that for the obtainment of the nonlocal convexification we have to find

JW (γ) for any γ and after getting that, we must investigate the kind of Young
measures which are solutions to this principle, making the emphasis on when they are
Dirac deltas. In spite of the fact that this process could be carried out, we shall not
be able to define C̃W in all R2. That reduces the significance of the nonlocal convex
envelope. We illustrate this by examining the example dealt in section 4: we know that

ν = 1+γ
√

2
2 δ√

2
2

+ 1−γ√2
2 δ−√

2
2

is the minimizer if γ ∈ [−1√
2
, 1√

2
] such that JW (γ) = 0. If

the Young measure is a delta, JW (γ) = W (γ, γ) =
(
2γ2 − 1

)2
, γ /∈ [−1√

2
, 1√

2
]. Those

facts induce us to define C̃W , only in a subset of R2, as

C̃W (λ1, λ2) =

{
W (λ1, λ2) if |λ1| , |λ2| ≥

√
2

2 ,

0 if |λ1| , |λ2| <
√

2
2 .

(5.3)

To find a complete definition of C̃W in R2 remains an open question. The difficul-
ties are obvious. We observe that basically the obstacle is the nonemptiness of S.
Somehow, this task involves a nonlocal problem which clearly turns up when we try
to define the convexification out of the diagonal {λ1 = λ2}. In any case, further work
must be done in order to establish rigorously any kind of relaxation, perhaps like
(5.2), which could be used successfully in some examples.

6. Final remarks. The analysis exhibited in sections 2 and 3 can be carried out
ifW depends on (u′ (x1) , . . . , u

′ (xn)). Nevertheless, whenW = W (x1, . . . , xn, u (x1) ,
. . . , u (x2) , u

′ (x1) , . . . , u
′ (xn)) this sort of analysis is not useful to derive neces-

sary conditions. In this case a possible variational analysis can be performed tak-
ing Young measures generated by sequences of the type

{
u′j (x1) + tψ′ (x1)

}
, where

ψ ∈ W 1,p
0 (0, 1) and

{
u′j (x1)

}
is any sequence generating a minimizer (see [20]). If

ν = {νx}x∈(0,1) is any minimizer of (2.6)–(2.8) with W = W (x1, x2, λ1, λ2) , then

∂

∂x1

{∫ 1

0

[A (x1, x2) +B (x2, x1)] dx2

}
= 0(6.1)

3Recall that separated convexity is a sufficient condition for the weak lower semicontinuity (cf.
[22]).
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in a weak sense, and

∫ 1

0

C (x1, x2) dx2 ≥ 0 almost everywhere x1 ∈ (0, 1),(6.2)

where

A (x1, x2) =

∫
R2

∂W

∂A1
(x1, x2, λ1, λ2) dνx1 (λ1) dνx2 (λ2) ,

B (x1, x2) =

∫
R2

∂W

∂A2
(x1, x2, λ1, λ2) dνx1

(λ1) dνx2
(λ2) ,

and

C (x1, x2) =

∫
R2

{
∂2W

∂A2
1

(x1, x2, λ1, λ2) +
∂2W

∂A1∂A2
(x1, x2, λ1, λ2)

+
∂2W

∂A1∂A2
(x2, x1, λ2, λ1) +

∂2W

∂A2
2

(x2, x1, λ2, λ1)

}
dνx1 (λ1) dνx2 (λ2) .

Clearly, the equilibrium conditions (6.1) and (6.2) do not seem to be the appropriate
way to detect generalized minimizers. Even for the homogeneous case, the equilibrium
conditions (Theorems 3.1 and 3.2) could be imprecise or not explicit enough to obtain
solutions. In either case, it seems to be necessary to implement some additional infor-
mation: for instance, we might, in some problems, complete the obtained necessary
conditions with some sort of result limiting the number of Dirac deltas appearing (as
a convex combination) in the representation of the solution. This approach has been
used in Balder [4] within the frame of nonconvex optimal control problems, Win-
kler [30] for the minimization of affine functionals defined on moments sets, and also
Bonnetier and Conca [7], [8] for a problem in optimal design.

Finally, we want to point out that the analysis of section 3 in higher dimensions
becomes tremendously difficult. The crucial point is that we have to consider Young
measures µ (λ1, λ2) coming from sequences of gradients of {(uj (x) , ψj (x))} , x ∈ Ω,
which are vector valued functions. This fact implies profound restrictions on the
measure µ, and therefore on the fields Γ and Υ. The difficulties we have to face
require a deeper analysis than the one performed here.

Acknowledgments. The author would like to thank Pablo Pedregal for several
useful discussions on various issues related to this paper and would also like to ac-
knowledge the referees for their careful reading of the original manuscript and their
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[27] T. Valadier, Desintégration d’une mesure sur un produit, C. R. Acad. Sci. Paris Sér. A, 276

(1973), pp. 33–35.
[28] J. Warga, Relaxed variational problems, J. Math. Appl., 4 (1962), pp. 111–128.
[29] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New

York, 1972.
[30] G. Winkler, Extreme points of moment sets, Math. Oper. Res., 13, (1988), pp. 581–587.
[31] L. C. Young, Generalized curves and the existence of an attained absolute minimum in the

calculus of variations, C. R. Soc. Sci. Lett. Varsovie, Classe II, 30 (1937), pp. 212–234.
[32] L. C. Young, Generalized surfaces in the calculus of variations I and II, Ann. of Math. II, 43

(1937), pp. 84–103 and 530–544.
[33] L. C. Young, Lectures on Calculus of Variations and Optimal Control Theory, W. B. Saunders,

Philadelphia, 1969.
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Abstract. In this work we deal with the design and management of wastewater treatment
systems, mainly the disposal of sea outfalls discharging polluting effluent from a sewerage system.
This problem is formulated as a pointwise optimal control problem with state and control constraints.
The main difficulties arise from the lack of regularity of the second member in the state system and
from the pointwise constraints on the state variables. We develop the theoretical analysis of the
problem, we propose an algorithm for its numerical resolution, and finally, we give results for a
realistic problem posed in the ŕıa of Vigo, Spain.

Key words. pointwise control, pointwise state constraints, wastewater treatment, constrained
optimization

AMS subject classifications. 49J20, 49K20, 49M37

PII. S0363012998345640

1. Introduction: The physical problem. We consider a domain Ω with
boundary Γ occupied by shallow water (as can be the case of a ŕıa, an estuary,
or a lake), where polluting wastewater is discharged through NE outfalls, each one
corresponding to a depuration plant. We also assume that inside the domain Ω there
exist several zones (Ai ⊂ Ω, i = 1, . . . , NZ) of bath, marine cultures, and so on, where
it is necessary to ensure the water quality with pollution concentrations lower than
an allowed maximum level.

In order to control the marine pollution some parameters are used that indicate
the quality level of liquid media and its capacity to hold the aquatic life. Among these
indicators we mention dissolved oxygen, temperature, and pH.

Oxygen is used by bacteria to decompose the organic matter. This process can
be measured in terms of the need of oxygen, the so-called biological oxygen demand
(BOD). If the pollution level is not too high this need can be satisfied by the dissolved
oxygen (DO). If the quantity of organic matter increases beyond a maximum value
the DO is not enough to decompose it, leading to important modifications (anaerobic
processes) in the ecosystem. This fact means that in each protected area Ai, i =
1, . . . , NZ , a threshold value σi of BOD must not be exceeded and a minimum level of
DO ζi must be guaranteed. To ensure this, one has to depure wastewater by chemical
or biological treatments before discharging it into the sea.
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Cost

D.B.O. discharged

f j

Fig. 1.1. Standard function fj(m).

The cost of the depuration in the jth plant, j = 1, . . . , NE , can be assumed
to depend on the BOD in such a way that a lower level of BOD leads to a more
intensive depuration and, consequently, to a higher cost. Taking in mind that absolute
depuration is not feasible and that there exists a minimum cost, even in the case where
no treatment is developed, the cost function fj takes a form similar to the one shown
in Figure 1.1.

The problem is then to determine the level of discharges in order to minimize
the global depuration cost and to guarantee the above-mentioned constraints on the
water quality in protected areas. Mathematically, this is a parabolic optimal control
problem with pointwise state constraints and with pointwise control.

In recent years, several authors have studied parabolic optimal control problems
with pointwise state constraints (see, for instance, Casas [4], Fattorini and Sritharan
[8], Hu and Yong [12], Raymond and Zidani [18]). Lions [13], Saguez [19], Simon [20],
and others have dealt with optimal control problems of parabolic type with point-
wise control, but they did not include state constraints. Bermúdez, Mart́ınez, and
Rodŕıguez [2] studied a related stationary problem with pointwise state constraints
and considered a control on the location. However, the dynamic problem with point-
wise control and pointwise state constraints has not yet been, as far as we know,
reported in the open literature.

From the theoretical point of view the main difficulties of the problem are due to
the fact that the second member of the state system includes radon measures and to
the presence of pointwise state constraints, which lead us to work in regular functional
spaces in order to obtain the adjoint state.

Numerically, difficulties arise from the high number of constraints related to the
time and space discretizations and to the demands imposed on the levels of BOD and
DO.

2. Mathematical modeling. Let us suppose that the outfalls are located in
the points Pj ∈ Ω, j = 1, . . . , NE , and denote by mj(t), j = 1, . . . , NE , the discharge
of BOD in the point Pj at the time t. The evolution of the BOD and the DO in
the domain Ω ⊂ R2 is governed, according to the distributed version of the model of
Streter–Phelps, by the following partial differential equations system (cf. [1] and [16]),
whose numerical resolution has been carried out in [21]. In this way, the concentrations
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of BOD and DO in a point x ∈ Ω and a time t ∈ (0, T ), denoted ρ1(x, t) and ρ2(x, t),
respectively, can be obtained as the solution of the boundary value problem

∂ρ1
∂t

+ �u∇ρ1 − β1∆ρ1 = −κ1ρ1 +
1

h

NE∑
j=1

mjδ(x− Pj) in Ω× (0, T ),
∂ρ1
∂n

= 0 on Γ× (0, T ),

ρ1(x, 0) = 0 in Ω,

∂ρ2
∂t

+ �u∇ρ2 − β2∆ρ2 = −κ1ρ1 +
1

h
κ2(ds − ρ2) in Ω× (0, T ),
∂ρ2
∂n

= 0 on Γ× (0, T ),
ρ2(x, 0) = ρ20(x) in Ω,

(2.1)

where h(x, t) and �u(x, t) denote, respectively, the height and the mean horizontal
velocity of the fluid layer, obtained as a solution of the Saint-Venant equations
(see [3]), δ(x − Pj) represents the Dirac measure in the point Pj , and parameters
β1 > 0, β2 > 0 (horizontal viscosity coefficients involving dispersion and turbulence
effects), κ1 > 0, κ2 > 0 (kinetic coefficients related to temperature and transference
of oxygen through the surface), and ds (oxygen saturation density) can be obtained
from experimental measurements.

If we assume now that inside the domain Ω there are NZ protected zones Ai,
where a maximum level of BOD and a minimum level of DO must be ensured, that
is,

ρ1|Ai×(0,T ) ≤ σi, i = 1, . . . , NZ ,(2.2)

ρ2|Ai×(0,T ) ≥ ζi, i = 1, . . . , NZ ,(2.3)

and we know the convex functions fj ∈ C2(0,∞) (the treatment cost of the discharge
in the point Pj , j = 1, . . . , NE) and, consequently, the global cost of the depuration
system in a time interval [0, T ], which is given by

J(m) =

NE∑
j=1

∫ T

0

fj (mj(t)) dt,(2.4)

then the problem (P) of the optimal management of the depuration systems consists
of finding the values of BOD mj(t) > 0, j = 1, . . . , NE , throughout the time interval
in such a way that they satisfy the state system (2.1) and the constraints (2.2) and
(2.3) and they minimize the cost function (2.4).

3. Analysis of the state system. Let Ω ⊂ R2 be a bounded domain with
boundary Γ smooth enough. We make the following assumptions on the problem
data:

h ∈ C(Ω̄× [0, T ]) h(x, t) ≥ α > 0 ∀(x, t) ∈ Ω̄× [0, T ],

�u ∈ [L∞(Ω× (0, T ))]2, ρ20 ∈ C2(Ω̄), m = (mj)
NE
j=1 ∈ Uad,
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where

Uad = {m ∈ (L∞(0, T ))NE : 0 < mj ≤ mj(t) ≤ mj almost everywhere (a.e.) in (0, T ),

j = 1, . . . , NE}.
The weak solution of the system (2.1) can be defined by transposition techniques

(see Lions and Magenes [14], Casas [4]) in the following way.
Definition 3.1. Given r, s ∈ [1, 2), 2

r +
2
s > 3, we say that ρ = (ρ1, ρ2) ∈

[Lr(0, T ;W 1,s(Ω))]2 is a solution of the system (2.1) if ∀ Φ = (Φ1,Φ2) ∈ [L2(0, T ;H2(Ω))∩
H1(0, T ;L2(Ω))]2 ∩ [C1(Ω̄× [0, T ])]2 such that Φ(., T ) = 0, it is verified that∫ T

0

∫
Ω

{
− ∂Φ1

∂t
ρ1 − ∂Φ2

∂t
ρ2 + β1∇Φ1∇ρ1 + β2∇Φ2∇ρ2 + �uΦ1∇ρ1

+ �uΦ2∇ρ2 + κ1Φ1ρ1 + κ1Φ2ρ1 +
1

h(x, t)
κ2Φ2ρ2)

}
dx dt

=

NE∑
j=1

∫ T

0

1

h(Pj , t)
Φ1(Pj , t)mj(t) dt

+

∫ T

0

∫
Ω

1

h(x, t)
κ2dsΦ2(x, t) dx dt+

∫
Ω

Φ2(x, 0)ρ20(x) dx.(3.1)

Let A be the operator defined by

〈A(w1, w2), (z1, z2)〉 =
∫

Ω

(
− β1∆w1z1 − β2∆w2z2

+ �u ∇w1z1 + �u ∇w2z2 + κ1w1z1 + κ1w1z2 +
1

h
κ2w2z2

)
dx

for (w1, w2), (z1, z2) such that the previous expression makes sense. Then we have the
following result.
Theorem 3.2. There exists a unique pair

ρ = (ρ1, ρ2) ∈ [Lr(0, T ;W 1,s(Ω))]2 ∩ [L2(0, T ;L2(Ω))]2

with

∂ρ

∂t
=

(
∂ρ1
∂t
,
∂ρ2
∂t

)
∈ [Lr(0, T ; (W 1,s′(Ω))′)]2

∀ r, s ∈ [1, 2), 2
r +

2
s > 3, such that ρ is the solution of (2.1) and satisfies∫ T

0

〈
−∂Φ
∂t
+A∗(Φ), ρ

〉
dt =

NE∑
j=1

∫ T

0

1

h(Pj , t)
Φ1(Pj , t)mj(t) dt

+

∫ T

0

∫
Ω

1

h(x, t)
κ2dsΦ2(x, t) dx dt+

∫
Ω

Φ2(x, 0)ρ20(x) dx(3.2)

∀ Φ = (Φ1,Φ2) ∈ B, where

B =
{
Φ = (Φ1,Φ2) ∈ [L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))]2 :

−∂Φ
∂t
+A∗(Φ) ∈ [L2(0, T ;L2(Ω))]2,

∂Φ

∂nA∗ |Γ×(0,T )

= 0, Φ(., T ) = 0

}
.
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Besides, there exist constants Ck, k = 1, . . . , 6, only depending on data, such that

‖ρ‖[Lr(0,T ;W 1,s(Ω))]2 ≤ C1

NE∑
i=1

‖mi‖L∞(0,T ) + C2‖ρ20‖C(Ω̄) + C3 ds(3.3)

and

‖ρ‖[L2(0,T ;L2(Ω))]2 ≤ C4

NE∑
i=1

‖mi‖L∞(0,T ) + C5‖ρ20‖C(Ω̄) + C6 ds.(3.4)

Proof. In the proof of this result we will adapt the one of Casas [4, Theorem 6.3]
in order to obtain the new L2-estimate (3.4) which is possible in this case due to the

fact that the second member takes the form
∑NE

j=1mj(t)δ(x− Pj).

Thus, let {fk
j }k∈N ⊂ C(Ω̄), j = 1, . . . , NE , be weak* convergent sequences to

δ(x− Pj) in the measures space M(Ω̄) = C(Ω̄)
′, verifying ‖fk

j ‖L1(Ω) ≤ 1.
Let us consider ρk = (ρk1 , ρ

k
2) the solution of system

∂ρk1
∂t

+ �u∇ρk1 − β1∆ρ
k
1 + κ1ρ

k
1 =

1

h

NE∑
j=1

mjf
k
j in Ω× (0, T ),

∂ρk1
∂n

= 0 on Γ× (0, T ),
ρk1(x, 0) = 0 in Ω,

∂ρk2
∂t

+ �u∇ρk2 − β2∆ρ
k
2 + κ1ρ

k
1 +

1

h
κ2ρ

k
2 =

1

h
κ2ds in Ω× (0, T ),

∂ρk2
∂n

= 0 on Γ× (0, T ),
ρk2(x, 0) = ρ20(x) in Ω.

(3.5)

For all Ψ = (Ψ0,Ψ1,Ψ2) ∈ [{D(Ω × (0, T ))}2]3 we denote by yΨ the solution of
the system

−∂y1
∂t
−∇.(�uy1)− β1∆y1 + κ1(y1 + y2) = Ψ

0
1 −

∂Ψ1
1

∂x1
− ∂Ψ

2
1

∂x2
in Ω× (0, T ),

β1
∂y1
∂n

+ �u.�n y1 = 0 on Γ× (0, T ),
y1(x, T ) = 0 in Ω,

−∂y2
∂t
−∇.(�uy2)− β2∆y2 +

1

h
κ2y2 = Ψ

0
2 −

∂Ψ1
2

∂x1
− ∂Ψ

2
2

∂x2
in Ω× (0, T ),

β2
∂y2
∂n

+ �u.�n y2 = 0 on Γ× (0, T ),
y2(x, T ) = 0 in Ω.

Then we have

∫ T

0

∫
Ω




2∑
i=1

Ψ0
i ρ

k
i +

2∑
i,j=1

Ψj
i

∂ρki
∂xj


 dx dt

∫ T

0

〈
−∂y

Ψ

∂t
+A∗(yΨ), ρk

〉
dt

=

∫ T

0

〈
∂ρk

∂t
+A(ρk), yΨ

〉
dt+

∫
Ω

yΨ2 (x, 0)ρ20(x) dx
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=

NE∑
j=1

∫ T

0

∫
Ω

1

h(x, t)
fk
j (x)mj(t)y

Ψ
1 (x, t) dx dt

+

∫ T

0

∫
Ω

1

h(x, t)
κ2dsy

Ψ
2 (x, t) dx dt+

∫
Ω

yΨ2 (x, 0)ρ20(x) dx.

From this we deduce

∫ T

0

∫
Ω




2∑
i=1

Ψ0
i ρ

k
i +

2∑
i,j=1

Ψj
i

∂ρki
∂xj


 dx dt

≤ 1

α

NE∑
i=1

‖mi‖L∞(0,T )

NE∑
j=1

∫ T

0

∫
Ω

|fk
j (x)y

Ψ
1 (x, t)| dx dt

+
1

α
κ2ds

∫ T

0

∫
Ω

|yΨ2 (x, t)| dx dt+
∫

Ω

|yΨ2 (x, 0)ρ20(x)| dx

≤
{
C̃1

NE∑
i=1

‖mi‖L∞(0,T ) + C̃2‖ρ20‖C(Ω̄) + C̃3 ds

}
‖yΨ‖[C(Ω̄×[0,T ])]2 .

On the other hand, from Ladyzhenskaja, Solonnikov, and Uraltseva [15] and Di
Benedetto [6] we get

∫ T

0

∫
Ω




2∑
i=1

Ψ0
i ρ

k
i +

2∑
i,j=1

Ψj
i

∂ρki
∂xj


 dx dt

≤
{
C̃4

NE∑
i=1

‖mi‖L∞(0,T ) + C̃5‖ρ20‖C(Ω̄) + C̃6 ds

}
2∑

j=0

‖Ψj‖[Lr′ (0,T ;Ls′ (Ω))]2 .

Due to the density of the space {Ψ0 − ∂Ψ1

∂x1
− ∂Ψ2

∂x2
: Ψ ∈ [{D(Ω × (0, T ))}2]3} in

[Lr′
(0, T ; (W 1,s(Ω))′)]2 we deduce the boundedness of {ρk} in [Lr(0, T ;W 1,s(Ω))]2.
Thus, taking a subsequence if necessary, we obtain that {ρk} weakly converges to

ρ in [Lr(0, T ;W 1,s(Ω))]2 and that the limit satisfies the estimate (3.3). Moreover, ρ is
independent on r and s (cf. Casas [4]). Finally, since W 1,s(Ω) ⊂M(Ω̄) ⊂ (W 1,s′(Ω))′,
we have that

∂ρ

∂t
∈ [Lr(0, T ; (W 1,s′(Ω))′)]2.

On the other hand, if we choose Ψ = (Ψ0, 0, 0) and argue as before, we obtain

∫ T

0

∫
Ω

2∑
i=1

Ψ0
i ρ

k
i dx dt ≤

{
C̃7

NE∑
i=1

‖mi‖L∞(0,T )

+ C̃8‖ρ20‖C(Ω̄) + C̃9 ds

}
‖yΨ‖[L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))]2 .

By the estimates of Ladyzhenskaja, Solonnikov, and Uraltseva [15] we know that

‖yΨ‖[L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))]2 ≤ C̃10‖Ψ0‖[L2(0,T ;L2(Ω))]2
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and we obtain the boundedness of {ρk} in [L2(0, T ;L2(Ω))]2, from which we can
deduce that the solution ρ belongs to the space [L2(0, T ;L2(Ω))]2 and satisfies the
estimate (3.4).

Given Φ = (Φ1,Φ2) ∈ [L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω))]2∩ [C1(Ω̄× [0, T ])]2 with
Φ(., T ) = 0, multiplying (3.5) by Φ, and integrating by parts we have

∫ T

0

∫
Ω

{
−∂Φ1

∂t
ρk1 −

∂Φ2

∂t
ρk2 + β1∇Φ1∇ρk1 + β2∇Φ2∇ρk2 + �uΦ1∇ρk1

+ �uΦ2∇ρk2 + κ1Φ1ρ
k
1 + κ1Φ2ρ

k
1 +

1

h(x, t)
κ2Φ2ρ

k
2)

}
dx dt

=

NE∑
j=1

∫ T

0

∫
Ω

1

h(x, t)
Φ1(x, t)mj(t)f

k
j (x) dx dt

+

∫ T

0

∫
Ω

1

h(x, t)
κ2dsΦ2(x, t) dx dt+

∫
Ω

Φ2(x, 0)ρ20(x) dx.

Passing to the limit we deduce (3.1) and, consequently, ρ is a solution of (2.1).

In order to prove (3.2), given Φ = (Φ1,Φ2) ∈ B, by multiplying (3.5) by Φ and
integrating by parts we deduce

∫ T

0

〈
−∂Φ
∂t
+A∗(Φ), ρk

〉
dt =

NE∑
j=1

∫ T

0

∫
Ω

1

h(x, t)
Φ1(x, t)mj(t)f

k
j (x) dx dt

+

∫ T

0

∫
Ω

1

h(x, t)
κ2dsΦ2(x, t) dx dt+

∫
Ω

Φ2(x, 0)ρ20(x) dx,

and (3.2) is obtained by passing to the limit. The uniqueness of solution can be ensured
from (3.2) (see Casas [4]).

Lemma 3.3. Functions ρ1 and ρ2 are continuous in Āi× [0, T ] ∀ i = 1, . . . , NZ .

Proof. Let E ⊂ Ω be a closed subset smooth enough such that

Pj ∈ E ∀j = 1, . . . , NE ,

∪NZ
i=1Āi ⊂⊂ Ω\E.

From the weak formulation (3.2) we deduce that

∫ T

0

∫
Ω\E

(
−∂Φ
∂t
+A∗(Φ)

)
ρ dx dt

=

∫ T

0

∫
Ω

(
−∂Φ
∂t
+A∗(Φ)

)
ρ dx dt =

NE∑
j=1

∫ T

0

1

h(Pj , t)
Φ1(Pj , t)mj(t) dt

+

∫ T

0

∫
Ω

1

h(x, t)
κ2dsΦ2(x, t) dx dt+

∫
Ω

Φ2(x, 0)ρ20(x) dx

=

∫ T

0

∫
Ω\E

1

h(x, t)
κ2dsΦ2(x, t) dx dt ∀Φ ∈ [D((Ω\E)× (0, T ))]2;

that is, ρ satisfies
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∫ T

0

∫
Ω\E

(
−∂Φ
∂t
+A∗(Φ)

)
ρ dx dt

=

∫ T

0

∫
Ω\E

1

h(x, t)
κ2dsΦ2(x, t) dx dt ∀Φ ∈ [D((Ω\E)× (0, T ))]2

with initial data ρ1(x, 0) = 0 and ρ2(x, 0) = ρ20.
Thus, ρ = (ρ1, ρ2) ∈ [L2(0, T ;H1

loc(Ω\E))]2 ∩ [C(0, T ;L2
loc(Ω\E))]2 is a local

solution of the problem

∂ρ1
∂t

+ �u∇ρ1 − β1∆ρ1 = −κ1ρ1 in (Ω\E)× (0, T ),

∂ρ2
∂t

+ �u∇ρ2 − β2∆ρ2 = −κ1ρ1 +
1

h
κ2(ds − ρ2) in (Ω\E)× (0, T ),

ρ1(x, 0) = 0 in Ω\E,

ρ2(x, 0) = ρ20 in Ω\E.

(3.6)

From this we can obtain (see Ladyzhenskaja, Solonnikov, and Uraltseva [15, Chapter
III, Theorem 10.1]) that ρ is continuous in the compact subsets of (Ω\E)× [0, T ].

Particularly,

ρ ∈ [C(∪NZ
i=1Āi × [0, T ])]2.

In order to obtain optimality conditions for the control problem it will be necessary
to obtain the Gateaux derivative of the mappings:

F1 : m ∈ (L∞(0, T ))NE −→ F1(m) = ρ1|∪NZ
i=1

Āi×[0,T ]
∈ C(∪NZ

i=1Āi × [0, T ]),
F2 : m ∈ (L∞(0, T ))NE −→ F2(m) = ρ2|∪NZ

i=1
Āi×[0,T ]

∈ C(∪NZ
i=1Āi × [0, T ]).

First, we obtain the following continuity result.
Lemma 3.4. There exist constants Ĉ1, Ĉ2, Ĉ3 such that

‖ρ‖
[C(∪NZ

i=1
Āi×[0,T ])]2

≤ Ĉ1

NE∑
i=1

‖mi‖L∞(0,T ) + Ĉ2 ‖ρ20‖C(Ω̄) + Ĉ3 ds.

Proof. As a consequence of Lemma 3.3 and the estimates for max |ρ(x, t)| in
(Ω\E)× [0, T ] (see Ladyzhenskaja, Solonnikov, and Uraltseva [15, Chapter III, The-
orem 8.1 and Chapter II, Theorem 6.2]) we have

‖ρ‖
[C(∪NZ

i=1
Āi×[0,T ])]2

= ‖ρ̂‖
[C(∪NZ

i=1
Āi×[0,T ])]2

≤ C̄1 ‖ρ̂‖[L2(0,T̂ ;L2(Ω\E))]2 + C̄2 ‖ρ20‖C(Ω\E)
+ C̄3 ds,

where ρ̂ is the solution of the following boundary value problem:
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∂ρ̂1
∂t

+ �u∇ρ̂1 − β1∆ρ1 = −κ1ρ̂1 +
1

h
χ[0,T ]

NE∑
j=1

mjδ(x− Pj) in Ω× (0, T̂ ),
∂ρ̂1
∂n

= 0 on Γ× (0, T̂ ),
ρ̂1(x, 0) = 0 in Ω,

∂ρ̂2
∂t

+ �u∇ρ̂2 − β2∆ρ̂2 = −κ1ρ̂1 +
1

h
κ2(ds − ρ̂2) in Ω× (0, T̂ ),
∂ρ̂2
∂n

= 0 on Γ× (0, T̂ ),
ρ̂2(x, 0) = ρ20(x) in Ω

(3.7)

for T̂ > T and χ[0,T ] the characteristic function of [0, T ]. Thus, by estimate (3.4) of
Theorem 3.2 we deduce

‖ρ‖
[C(∪NZ

i=1
Āi×[0,T ])]2

≤ Ĉ1

NE∑
i=1

‖mi‖L∞(0,T ) + Ĉ2 ‖ρ20‖C(Ω̄) + Ĉ3 ds.

Now, we can deduce the Gateaux differentiability.
Lemma 3.5. The mappings F1 and F2 are Gateaux differentiable. Moreover,

DF1(m)(n) = ω1|∪NZ
i=1

Āi×[0,T ]
,

DF2(m)(n) = ω2|∪NZ
i=1

Āi×[0,T ]
,

where ω1 and ω2 are the solutions of the linearized system:

∂ω1

∂t
+ �u∇ω1 − β1∆ω1 = −κ1ω1 +

1

h

NE∑
j=1

njδ(x− Pj) in Ω× (0, T ),
∂ω1

∂n
= 0 on Γ× (0, T ),

ω1(x, 0) = 0 in Ω,

∂ω2

∂t
+ �u∇ω2 − β2∆ω2 = −κ1ω1 − 1

h
κ2ω2 in Ω× (0, T ),

∂ω2

∂n
= 0 on Γ× (0, T ),

ω2(x, 0) = 0 in Ω.

(3.8)

Proof. Let (ω1, ω2) be the solution of system (3.8). Arguing as in Lemma 3.3 we
can prove that

ω1|∪NZ
i=1

Āi×[0,T ]
∈ C(∪NZ

i=1Āi × [0, T ]),
ω2|∪NZ

i=1
Āi×[0,T ]

∈ C(∪NZ
i=1Āi × [0, T ]).

Let us denote by ρ(m) the solution of the state system (2.1) corresponding to a
second member m. Thus, for m,n ∈ L∞(0, T ) and α ∈ (0, 1) given, since ρ1 is affine,
it satisfies

ρ1(m+ αn)(x, t)− ρ1(m)(x, t) = αω1(x, t) ∀(x, t) ∈ ∪NZ
i=1Āi × [0, T ].
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Then,

lim
α→0

ρ1(m+ αn)− ρ1(m)
α

= ω1

in C(∪NZ
i=1Āi × [0, T ]). As a consequence of Lemma 3.4, the mapping taking n into

ω1 is linear and continuous. Thus,

DF1(m)(n) = ω1|∪NZ
i=1

Āi×[0,T ]
.

Arguing in the same way with ρ2 we also obtain that

DF2(m)(n) = ω2|∪NZ
i=1

Āi×[0,T ]
.

4. Existence of a solution of the optimal control problem. We have the
following theorem.
Theorem 4.1. If there exists a feasible control m̃ ∈ Uad such that

ρ̃1|Ai×(0,T ) ≤ σi, i = 1, . . . , NZ ,

ρ̃2|Ai×(0,T ) ≥ ζi, i = 1, . . . , NZ ,

then the optimal control problem has, at least, a solution.
Proof. Let {mk}n∈N ∈ Uad be a minimizing sequence. From the boundedness of

the sequence we can deduce the existence of a subsequence (still denoted in the same
way) that converges weakly in (L2(0, T ))NE to an element m ∈ Uad. From Theorem
3.2 we deduce that the sequence ρk = (ρk1 , ρ

k
2) = (ρ1(m

k), ρ2(m
k)) is bounded in

[Lr(0, T ;W 1,s(Ω))]2. Thus, for r, s > 1, we have

ρk −→ ρ weakly in [Lr(0, T ;W 1,s(Ω))]2.

So, passing to the limit, we obtain that ρ satisfies (3.1) and, consequently, ρ = ρ(m).
Arguing as in Lemma 3.4 and taking into account the boundedness of mk in

L∞(0, T ), we obtain that the sequences ρkj , j = 1, 2, are bounded, for some α ∈ (0, 1),
in Cα,α/2(∪NZ

i=1Āi × [0, T ]) (cf. [15, Chapter III, Theorem 10.1]). Then, using the

compact imbedding of Cα,α/2(∪NZ
i=1Āi × [0, T ]) in C(∪NZ

i=1Āi × [0, T ]), we obtain the
existence of subsequences, still denoted ρkj , uniformly converging to ρj . Thus, from
the direct pointwise convergence, we deduce

ρ1|Ai×(0,T ) ≤ σi ∀i = 1, . . . , NZ ,(4.1)

ρ2|Ai×(0,T ) ≥ ζi ∀i = 1, . . . , NZ .(4.2)

Finally, since J is weakly lower semicontinuous (because of continuity and con-
vexity of J), we have

J(m) ≤ lim inf J(mk)

from which we deduce that m is a solution of the optimal control problem.

5. Optimality conditions. In this section we will obtain a first order optimality
system satisfied by every solution of the optimal control problem. In order to express
the optimality conditions in a simpler way we introduce functions p1, p2 as the solution
(in the sense of Definition 5.1 below) of the following boundary value problem:
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−∂p1
∂t
−∇.(�up1)− β1∆p1 + κ1(p1 + p2) = µ1|Ω×(0,T ) in Ω× (0, T ),

β1
∂p1
∂n

+ �u.�n p1 = 0 on Γ× (0, T ),
p1(x, T ) = µ1|Ω×{T} in Ω,

−∂p2
∂t
−∇.(�up2)− β2∆p2 +

1

h
κ2p2 = µ2|Ω×(0,T ) in Ω× (0, T ),

β2
∂p2
∂n

+ �u.�n p2 = 0 on Γ× (0, T ),
p2(x, T ) = µ2|Ω×{T} in Ω,

(5.1)

where µ1, µ2 are regular Borel measures in Ω̄× [0, T ]. The weak solution of the system
(5.1) can be defined by transposition techniques (Casas [4]) in the following way.
Definition 5.1. Given r, s ∈ [1, 2), 2

r +
2
s > 3, we say that p = (p1, p2) ∈

[Lr(0, T ;W 1,s(Ω))]2 is a solution of the system (5.1) if ∀ z = (z1, z2) ∈ [L2(0, T ;H1

(Ω)) ∩ C1(Ω̄× [0, T ])]2 such that z(., 0) = 0, it is verified that
∫ T

0

∫
Ω

{
∂z1
∂t
p1 +

∂z2
∂t
p2 + ρ1∇z1∇p1 + ρ2∇z2∇p2 + �u∇z1p1 + �u∇z2p2

+κ1z1p1 + κ1z1p2 +
1

h(x, t)
κ2z2p2

}
dx dt =

∫ T

0

∫
Ω

z1dµ1(x, t)

+

∫ T

0

∫
Ω

z1dµ1(x, t) +

∫
Ω

z1(x, T )dµ1T (x) +

∫
Ω

z2(x, T )dµ2T (x).

We denote by IC the indicator function of a set C and by ∂f the subdifferential
of a convex function f (see Ekeland and Temam [7]). If we define the sets S1 and S2

by

S1 = {y ∈ C(∪NZ
i=1Āi × [0, T ]) : y(x, t) ≤ σj ∀(x, t) ∈ Aj × [0, T ], j = 1, . . . , NZ},

S2 = {ω ∈ C(∪NZ
i=1Āi × [0, T ]) : ω(x, t) ≥ ζj ∀(x, t) ∈ Aj × [0, T ], j = 1, . . . , NZ},

we have the following result.
Theorem 5.2. Letm ∈ Uad be an optimal control. Then, there exist two functions

ρ1, ρ2 ∈ Lr(0, T ;W 1,s(Ω)) ∩ L2(0, T ;L2(Ω)) ∀ r, s ∈ [1, 2), 2
r +

2
s > 3, solving (2.1)

and two functions p1, p2 ∈ Lr(0, T ;W 1,s(Ω)) solving (5.1), where µ1, µ2 are two
Borel measures, with support in ∪NZ

i=1Āi × [0, T ], such that

µi|∪NZ
i=1

Āi×[0,T ]
∈ ∂ISi(Fi(m)), i = 1, 2,(5.2)

and the following relation is satisfied:

NE∑
j=1

{∫ T

0

fj
′(mj(t))(nj(t)−mj(t)) dt

+

∫ T

0

1

h(Pj , t)
p1(Pj , t)(nj(t)−mj(t)) dt

}
≥ 0 ∀n ∈ Uad.(5.3)
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Proof. Let m be a solution of the minimization problem:

min
n∈Uad

J(n) + IS1
(F1(n)) + IS2

(F2(n)).

Since Uad ⊂ L∞(0, T ) is a convex set and the functions F1 and F2 are affine and dif-
ferentiable in m we obtain (see Ekeland and Temam [7]) the existence of two measures
µ̃1, µ̃2, satisfying (5.2), such that

DJ(m)(n−m) + 〈(DF1(m))
∗(µ̃1), n−m〉

+〈(DF2(m))
∗(µ̃2), n−m〉 ≥ 0 ∀n ∈ Uad,

where

DJ(m)(n−m) =
NE∑
j=1

∫ T

0

fj
′(mj(t))(nj(t)−mj(t)) dt,

〈(DF1(m))
∗(µ̃1), n−m〉 = 〈µ̃1, DF1(m)(n−m)〉,

〈(DF2(m))
∗(µ̃2), n−m〉 = 〈µ̃2, DF2(m)(n−m)〉.

Then, we define µj = µ̃j χ∪NZ
i=1

Āi×[0,T ]
, j = 1, 2. We also introduce p = (p1, p2) ∈

[Lr(0, T ;W 1,s(Ω))]2 for r, s ∈ [1, 2) with 2
r +

2
s > 3 such that it is solution of (5.1)

and satisfies (cf. Casas [4])

∫ T

0

〈
p,
∂z

∂t
+A(z)

〉
dt

=

∫
∪NZ

i=1
Āi×[0,T ]

z1 dµ1(x, t) +

∫
∪NZ

i=1
Āi×[0,T ]

z2 dµ2(x, t) ∀z ∈ R,

where

R =
{
z = (z1, z2) ∈ [L2(0, T ;H1(Ω)) ∩ C(Ω̄× [0, T ])]2 :

∂z

∂t
+A(z) ∈ L∞(Ω× (0, T )), ∂z

∂nA |Γ×(0,T )

= 0, z(., 0) = 0

}
.

Finally, it can be shown that

〈µ1, DF1(m)(n−m)〉+ 〈µ2, DF2(m)(n−m)〉

=

NE∑
j=1

∫ T

0

1

h(Pj , t)
p1(Pj , t)(nj(t)−mj(t)) dt.

In effect, let ω = (ω1, ω2) be the solution of the linearized problem (3.8). Then, as
was shown in Lemma 3.5,

DF1(m)(n−m) = ω1|∪NZ
i=1

Āi×[0,T ]
,

DF2(m)(n−m) = ω2|∪NZ
i=1

Āi×[0,T ]
.
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Let {θk} be a mollifier sequence for the Dirac measure δ(x−0) with support in B(0, 1
k )

and let ωk = (ωk
1 , ω

k
2 ) be the solution of the system

∂ωk
1

∂t
+ �u∇ωk

1 − β1∆ω
k
1 = −κ1ω

k
1 +

1

h

NE∑
j=1

(nj −mj)θ
k(x− Pj) in Ω× (0, T ),

∂ωk
1

∂n
= 0 on Γ× (0, T ),

ωk
1 (x, 0) = 0 in Ω,

∂ωk
2

∂t
+ �u∇ωk

2 − β2∆ω
k
2 = −κ1ω

k
1 −

1

h
κ2ω

k
2 in Ω× (0, T ),

∂ωk
2

∂n
= 0 on Γ× (0, T ),

ωk
2 (x, 0) = 0 in Ω.

From ‖θk‖L1(Ω) = 1 we obtain (see Theorem 3.2) that ωk
1 and ω

k
2 are bounded in

Lr(0, T ;W 1,s(Ω)) and L2(0, T ;L2(Ω)). Consequently,

ωk
1 −→ η1 weakly in Lr(0, T ;W 1,s(Ω)),

ωk
2 −→ η2 weakly in Lr(0, T ;W 1,s(Ω)),

and, since θk is weak* convergent to δ(x− 0), we deduce
η1 = ω1, η2 = ω2.

Due to the boundedness of ωk
j , j = 1, 2, in L2(0, T ;L2(Ω)), we deduce that the

sequences ωk
j |∪NZ

i=1
Āi×[0,T ]

, are bounded in Cα,α/2(∪NZ
i=1Āi× [0, T ]), for some α ∈ (0, 1).

Then, by the compact imbedding in C(∪NZ
i=1Āi × [0, T ]), we obtain the existence of

subsequences uniformly converging to ωj .
By the definition of p we have that∫ T

0

〈
p,
∂ωk

∂t
+A(ωk)

〉
dt

=

∫
∪NZ

i=1
Āi×[0,T ]

ωk
1 dµ1(x, t) +

∫
∪NZ

i=1
Āi×[0,T ]

ωk
2 dµ2(x, t)

= 〈µ1, ω
k
1 〉+ 〈µ2, ω

k
2 〉.

Thus, by the characterization of ωk:

〈µ1, ω
k
1 〉+ 〈µ2, ω

k
2 〉

=

NE∑
j=1

∫ T

0

∫
Ω

1

h(x, t)
p1(x, t)(nj(t)−mj(t))θ

k(x− Pj) dx dt

=

NE∑
j=1

∫ T

0

∫
B(Pj ,

1
k )

1

h(x, t)
p1(x, t)(nj(t)−mj(t))θ

k(x− Pj) dx dt.

So, if we pass to the limit, taking into account that ωk is smooth inside ∪NZ
i=1Āi× [0, T ]

and that p1 is smooth outside ∪NZ
i=1Āi × [0, T ], we obtain that

〈µ1, ω1〉+ 〈µ2, ω2〉 =
NE∑
j=1

∫ T

0

1

h(Pj , t)
p1(Pj , t)(nj(t)−mj(t)) dt,
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which concludes the proof.

6. The discretized problem. The first step in the numerical resolution of
the problem is solving the state system. In order to do it, we carry out a time dis-
cretization, treating the convective term with a method of characteristics. For the
time interval [0, T ] we choose an integer number N and we define ∆t = T

N > 0 and
tn = n∆t ∀n = 0, . . . , N. Then, for the semidiscretized problem, we consider a varia-
tional formulation and approximate it by a space discretization with finite elements.
We approximate Ω by the polygonal set Ωh and choose an admissible triangulation
τh of it (see [5]) with triangles of diameter ≤ h and such that the vertices on the
boundary of Ωh also lie on the boundary of Ω. We define Vh as the following finite
element space:

Vh =
{
vh ∈ C0(Ω̄), vh|K ∈ P1, K ∈ τh

}
.

The velocity and height fields, necessary for the discretized problem, are obtained
by solving the Saint-Venant equations [3]. So, the resultant discretized problem is
equivalent to the linear system


M1hρ

n+1
1h = bn1h

∀ n = 0, . . . , N − 1,
M2hρ

n+1
2h = bn2h

(6.1)

for ρ01h and ρ
0
2h given, and with

• ρn+1
1h =

(
ρn+1
1h (x1), . . . , ρ

n+1
1h (xNv )

)t
,

• (M1h)ij = β1

∫
Ω
∇ṽi∇ṽjdx+

(
1

∆t + κ1

) ∫
Ω
ṽiṽjdx,

• (bn1h)l = 1
∆t

∫
Ω
(ρn1h X

n
h )ṽldx+

∫
Ω

1
hn

∑NE

j=1mj(tn)δ(x− Pj)ṽldx,

• ρn+1
2h =

(
ρn+1
2h (x1), . . . , ρ

n+1
2h (xNv )

)t
,

• (M2h)ij = β2

∫
Ω
∇ṽi∇ṽjdx+ 1

∆t

∫
Ω
ṽiṽjdx,

• (bn2h)l=−κ2

∫
Ω

1
hn ρ

n
2hṽldx+

1
∆t

∫
Ω
(ρn2h X

n
h )ṽldx−κ1

∫
Ω
ρn+1
1h ṽldx+κ2

∫
Ω

1
hn dsṽldx,

where {ṽ1, ṽ2, . . . , ṽNv} is a basis of Vh such that ṽi(xj) = δij , h
n(x) = h(x, tn), and

Xn(x) is the position at instant tn of the particle that will be at point x in the instant
tn+1 (see [21] for further details).

The discretized cost Ĵ and the discretized constraints g are given by

Ĵ : RN×NE −→ R,

m −→ Ĵ(m) = ∆t

NE∑
j=1

N−1∑
n=0

Cjnfj(mjn),

g : RN×NE −→ RN×NV Z ×RN×NV Z ×RN×NE ,
m −→ g(m) = (ρ̃1h − σ, ζ − ρ̃2h,︸ ︷︷ ︸

= g1(m)

m−m︸ ︷︷ ︸
= g2(m)

)t,

where
• m is the vector consisting of all of the discharges at all times,
• mjn is the amount of BOD discharged in Pj at time tn,
• Cjn are the weights of the quadrature formula,
• NV Z is the number of vertices in the protected areas,
• ρ̃ih is a vector of values of ρih at each vertex included in the protected areas
and for all times.
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We remark that the function g can be decomposed into g1, which is putting
together the constraints about the water quality, and g2, which collects the control
constraints.

Then, the optimal control problem is approached by the following discretized
problem:

(PF )




min
m∈RN×NE

Ĵ(m)

such that g(m) ≤ 0.
If the constraints set is nonempty, then this problem has a solution because this

set is compact and the cost function is convex.

7. Numerical resolution by a feasible points algorithm. We solve the
discretized control problem (PF ) by using a feasible points method which is based
on a globally convergent algorithm introduced by Herskovits [9, 10] and Panier, Tits,
and Herskovits [17].

We use the following notation:
• p is the dimension of the control and q is the number of the constraints on
the state,
• (λ, θ) is the vector of the dual variables,
• L(m,λ, θ) is the Lagrangian,
• H(m,λ, θ) is the Hessian.

So, the first order Karush–Kuhn–Tucker optimality conditions for the discretized
problem can be written as follows:

∇Ĵ(m) +∇g1λ− Iθ = 0,(7.1)

G1(m)λ = 0, G2(m)θ = 0,(7.2)

λ ≥ 0, θ ≥ 0,(7.3)

g1(m) ≤ 0, g2(m) ≤ 0,(7.4)

where G1(m) and G2(m) are diagonal matrices, of order q and p, respectively, and
with diagonal elements being the values of the corresponding functions gi(m).

The basic idea of the feasible points algorithm consists of solving the system of
(7.1)–(7.2) in (m,λ, θ) by using a fixed point method, in such a way that the conditions
(7.3)–(7.4) hold at each iteration.

Thus, for a given point (mk, λk, θk)t, the Newton’s method applied to the previous
system computes the next iteration (mk+1

0 , λk+1
0 , θk+1

0 )t by solving


mk+1
0

λk+1
0

θk+1
0


 =




mk

λk

θk




−




H(mk, λk, θk) ∇g1 −I

Λk(∇g1)t Gk
1 0

−Θk 0 Gk
2




−1


∇Ĵ(mk) +∇g1λk − Iθk

Gk
1λ

k

Gk
2θ

k


 ,
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where Λk and Θk are diagonal matrices whose elements are the coordinates of λk and
θk, respectively.

Obviously, conditions (7.3) and (7.4) do not usually hold at this new point
(mk+1

0 , λk+1
0 , θk+1

0 )t. Then, we define dk as a search direction in m and rewrite the
previous equality by computing (dk, λk+1

0 , θk+1
0 )t as the solution of the following linear

system:




H(mk, λk, θk) ∇g1 −I

Λk(∇g1)t Gk
1 0

−Θk 0 Gk
2







dk

λk+1
0

θk+1
0


 =




−∇Ĵ(mk)

0

0


 .(7.5)

Now, in order to determine the new primal point mk+1, we perform a line search
along dk (by using an extension of Armijo’s rule [11]) for obtaining a step tk which
leads us to a new point where the cost reduction is satisfactory.

Finally, the new value of the dual variable (λk+1, θk+1)t can be computed by sev-
eral updating methods. We use the following one, based upon an idea from Herskovits
[9]:

(1) We choose positive numbers ξ1, ξ2, µ1, µ2, λ
I , θI .

(2) For i = 1, . . . , q, and for j = 1, . . . , p, we define

(λk+1)i = sup{(λk+1
0 )i, ξ1‖dk‖2},

(θk+1)j = sup{(θk+1
0 )j , ξ2‖dk‖2}.

(3) If
(
g1(m

k+1)
)
i
≥ −µ1 and (λk+1)i < λ

I , then (λk+1)i = λ
I .

(4) If
(
g2(m

k+1)
)
j
≥ −µ2 and (θk+1)j < θ

I , then (θk+1)j = θ
I .

In this algorithm the role played by the resolution of the linear system (7.5) must
be noted. Since all the constraints are linear we haveHk = H(mk, λk, θk) = ∇2Ĵ(mk),
which, due to the particular form of Ĵ , is diagonal and easy to compute. On the
other hand, the convexity of fj , j = 1, . . . , NE , ensures that H

k is positive definite
and, consequently (see [17]), the matrix of the linear system is nonsingular if the
components of λk and θk related to active constraints are strictly positive.

Thus, the nonsingular matrix, of order (2p + q), has diagonal blocks, except
∇g1 ∈ Mp×q and Λ

k(∇g1)t ∈ Mq×p. If the values of p and q are not too large,
the system (7.5) can be easily solved, for instance, by a preconditioned biconjugate
method.

However, in a realistic problem where p and q are very large, the need of pre-
conditioning each iteration causes this method to become very slow. In this case the
followed strategy consists of solving the linear system by blocks, locating previously
the active constraints in order to avoid ill-conditioning. The resultant system is full
and nonsymmetric, but only of order (p+number of active constraints), and can be
then solved, for instance, by the QR method.

8. Numerical results. Multiple tests have been developed, solving the pre-
vious problem for several ŕıas in Galicia, Spain, with different initial values in the
optimization algorithm, and the achieved results have always been satisfactory.

In this section we present the numerical results obtained when solving the problem
on a realistic situation: We have taken a two-dimensional mesh of the ŕıa of Vigo as
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Fig. 8.1. BOD concentration at high tide.

Fig. 8.2. DO concentration at high tide.

domain Ω, where we have considered two protected areas and two points of discharge
(see Figures 8.1 and 8.2). We have also supposed that it is necessary to guarantee
lower levels of pollution in zone 1 than in zone 2. (The values of the parameters can
be seen in Table 8.1.)

The cost function is given in Figure 8.3: If we assume pollutant concentration of
the sewage arriving to the sewage farm is 150 Kg/m3, then the depuration cost above
this value is constant. The velocity and the height of the water have been obtained
to solve the Saint-Venant equations on this domain. The numerical resolution of the
Saint-Venant equations has been carried out in [3].

Figures 8.1 and 8.4 show the BOD concentration at high tide and at low tide,
respectively. The constraints occur everywhere in the protected areas; at high tide,
they saturate at one of the vertices in zone 1, but at low tide, after a tidal cycle, the
saturation takes place at one of the vertices in zone 2.

The values of the optimal discharges, which produce this situation, can be seen in
Figure 8.5. The discharge rate is greater during rising tide at point 2 than at point 1.
However, during ebb tide (after t = 60) the flow rate decreases at P2 and increases
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Table 8.1
Parameters for solving the problem (PF ) on the ŕıa of Vigo.

Saint-Venant parameters Empiric coefficients Adimensional constants

Tidal cycle: T=12.4 h β1 = β2 = 2000 m2/s N = 120
Tidal run: 2.8 m κ1 = 1.15 10−5 s−1 ξ1 = 10−8

Water density: 1000 Kg/m3 κ2 = 9 10−12 s−1 ξ2 = 10−8
Air density: 1.28 Kg/m3 ds = 8.98 10−3 Kg/m3 µ1 = 10−5

North latitude: 0.7326 rad ρ20 = 8.082 10−3 Kg/m3 µ2 = 10−5
Wind direction: 3.9269 rad σ1 = 3.48398 10−4 Kg/m3 λI = 1
Wind velocity: 10 Km/h σ2 = 5 10−4 Kg/m3 θI = 1

Angular velocity of Earth: ζ1 = 8.05255 10−3 Kg/m3

7.92 10−5 rad/s ζ2 = 8.03218 10−3 Kg/m3

m = 0 Kg/m3

m = 150 Kg/m3

at P1. This is an obvious consequence of the outfalls position. In fact, during rising
tide, P2 is better than P1, but during ebb tide P1 is the best of them.

This work is being developed in the framework of a project sponsored by the
government of Galicia, Spain, the final aim of which is the salubrity of the ecosystem
formed by Galician ŕıas. This is a very important purpose, from both an ecological
and an economical point of view, because of its influence on shellfish production and
touristic resources, and the local administration will provide data for validation of the
models and optimization methods presented here.

Acknowledgments. The authors are grateful to Profs. L.J. Alvarez-Vázquez,
A. Bermúdez and R. Muñoz-Sola for helpful discussions. The authors also thank the
referees for their suggestions.
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[2] A. Bermúdez, A. Mart́ınez, and C. Rodŕıguez, Un probleme de controle ponctuel lie a
l’emplacement optimal d’emissaires d’evacuation sous-marine, C. R. Acad. Sci. Paris Ser.
I Math., 313 (1991), pp. 515–518.
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Abstract. The notions of basic controllability and basic control are defined. A quadratic optimal
control of the linearized viscous Moore–Greitzer equation is presented, and it is confirmed that stall is
uncontrollable in this model. A basic control is constructed for the nonlinear viscous Moore–Greitzer
equation which can control both surge and stall. Some extensions of this construction are discussed.
Numerical simulations of the basic control are presented, and its performance is compared to the
performance of a backstepping control constructed by Banaszuk, Hauksson, and Mezić [SIAM J.
Control Optim., 37 (1999), pp. 1503–1537]. It is shown that the viscous Moore–Greizer equation
with throttle control is not basically controllable, but under certain conditions, adding air injection
control will make the equation basically controllable.

Key words. optimal control of PDE, Moore–Greitzer equation, basic control, basic attractor,
global attractor
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1. Introduction. In recent years a lot of attention has been devoted to the
study of air flow through turbomachines. The main reason for this interest is that
when a turbomachine, such as a jet engine, operates close to its optimal operating
parameter values, the flow can become unstable. These instabilities put a large stress
on the engine, and in some cases the engine needs to be turned off in order to recover
original operation. For this reason jet engines are currently operated away from their
optimal operating parameter values.

A jet engine can be thought of as a compressor, where the incoming air is com-
pressed by alternating rings of rotating blades and stationary blades. The mixture
of fuel and compressed air is then ignited, and the resulting combustion generates
thrust that propels the aircraft. There are primarily two types of instabilities that
occur in the flow through the compressor. They are called surge and stall. Surge is
characterized by large oscillations of the mean mass flow through the engine. During
part of the cycle, the mean mass flow may become reversed, thrusting air out the
front end of the engine. This puts a large stress on the components of the engine and
seriously impairs its performance. When stall occurs, there are regions of relatively
low air flow that form at isolated locations around the rim of the compressor. Here
too, the phenomenon can be so pronounced that the flow in these isolated regions
is reversed. Again, this causes a large stress on the components of the engine and
reduces its performance.

Moore and Greitzer published in 1986 a PDE model for turbomachines which
has been very successful [26]. A substantial amount of work has been done on fi-
nite Galerkin approximations of that model since (see, e.g., [23], [20], and references
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therein). Banaszuk, Hauksson, and Mezić [2] considered the full PDE model of Moore
and Greitzer.

Currently Mezić [24] has derived a model of the three dimensional flow in jet
engine compressors. His model reduces to that presented in [6] when one assumes
that the dependence of the flow on the radial direction is negligible. The viscous term
in that equation, first introduced by Adomaitis and Abed [1], has, however, a new and
better interpretation in Mezić’s treatment. The term is not due to the viscosity of the
air, but rather, it is a diffusion term due to the inviscid process of turbulent momentum
transport via Reynolds stresses. The difference is several orders of magnitude of the
constant ν, which now represents the eddy viscosity. It is this model with the additional
assumption that the flow is independent of the radial coordinate that we use here. In
this form the model is known as the viscous Moore–Greitzer equation (vMG equation).

Birnir and Hauksson [6] proved that the vMG equation is well posed in the Hilbert
space X = H̄1×R2, where H̄1 denotes the Sobolev space with index one of functions
on the unit circle with square integrable first derivative and zero mean. This solution is
smooth in space and time variables, and this dynamical system has a global attractor
with finite Hausdorff and fractal dimensions. In [7] the authors analyzed the basic
attractor and found explicit solutions for stall for certain parameter values and showed
that they are stable and persist under small perturbations of the parameters. Stall is
a solitary wave that rotates around the annulus at half the rotor speed of the engine.
They conclude that the basic attractor consists of design flow, surge, and one or more
stall solutions. The analysis of the basic attractor (see subsection 1.1) was extended
for all parameter values in [8], and there and in Hauksson [16] they derived a reduced
order model that captures the dynamics of the vMG equation quantitatively as well
as qualitatively. These results are in good agreement with experimental [12] and
numerical results [14].

There have been numerous control related results reported for Galerkin trunca-
tions of the Moore–Greitzer equation. The first control result for the full system, and
to our knowledge the only one until now, was presented by Banaszuk, Hauksson, and
Mezić [2]. They constructed a feedback throttle control which made design flow at-
tract all of the state space for the inviscid Moore–Greitzer equation. This equation
is a hyperbolic equation and the nature of its solutions are quite different than that
for the vMG equation. Current results by Mezić [24] indicate that the latter is a
better physical model for the flow through the jet engine compression system. The
controller obtained by Banaszuk, Hauksson, and Mezić is not very cost effective. In
particular, it over-reacts to small-amplitude high-frequency disturbances which are
naturally damped in the viscous model.

The backstepping control given by Banaszuk, Hauksson, and Mezić shows that
one can eliminate stall and surge by using throttle control. The question we want
to answer in this paper is how simple can we make the control design, and how
efficient can the control be? The control philosophy we want to adopt is to construct
a control strategy that can recover design flow operation after large disturbances, but
this strategy is not necessarily good for regulating the design flow. For that a different
strategy would be used.

This paper is arranged as follows. In the immediate subsection we present the
equations of motion and assumptions. This section also explains the dynamics of
the model briefly. Section 3 defines basic controllability and attractor controllability.
Section 4 considers the simplest possibility, which is to linearize the system about
the design flow and then apply the standard optimal control theory to obtain an
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optimal control subject to quadratic cost. Here we confirm that stall is uncontrollable
in the linearized model. Section 5 considers first the case when the throttle is moved
adiabatically. We then use our knowledge of the basic attractor of the system to
construct a basic control which recovers design flow operation from stall or surge.
Numerical simulations are presented in section 6. Here we compare the basic control
with the backstepping control. In section 7 we prove that the vMG equation with
throttle control is not basically controllable. Moreover, if one in addition has air
injection at one’s disposal, the vMG equation is basically controllable.

1.1. The equation of motion and assumptions. Currently Mezić [24] has
derived a model of the three dimensional flow through the compression system in jet
engines. When one assumes that the flow does not depend on the radial direction, the
equations reduce to the following:

∂

∂t
ϕ = ν

∂2ϕ

∂θ2
− 1

2

∂ϕ

∂θ
+ ψc(Φ + ϕ)− ψc, θ ∈ [0, 2π],(1.1)

Φ̇ =
1

lc
(ψc −Ψ),(1.2)

Ψ̇ =
1

4lcB2
(Φ− γF−1

T (Ψ)),(1.3)

where

ψc :=
1

2π

∫ 2π

0

ψc(Φ(t) + ϕ(t, θ))dθ.(1.4)

In this guise the equations are a special case of the original equations presented by
Moore and Greitzer [26], except for an additional term due to the eddy viscosity. This
term was first suggested by Adomaitis and Abed [1], but without the justification
later provided by Mezić. The equation is known as the vMG equation. Here the dot
represents the total derivative with respect to time.

The characteristic ψc is a cubic polynomial with a negative leading coefficient,
and F−1

T is a smooth function which is equal to F−1
T (Ψ) = Ψ|Ψ|−1/2 outside a small

neighborhood of the origin.
In what follows, we will allow γ to depend on the state, but we will assume that

it does so in a smooth way and that there exists a constant γ̃ such that

γ(Φ,Ψ, ϕ) ≥ γ̃ > 0.

With these restrictions on γ, the results on existence of unique solutions and their
regularity [6] still hold. In addition, the system will again have a global attractor
whose fractal and Hausdorff dimensions can be bounded by the same bounds as in [6]
with γ replaced by γ̃.

2. The basic attractor. Once the existence of a global attractor has been
established, the natural question arises: How can one construct the global attractor,
and can one obtain a system of ODEs that describe the evolution on the attractor?
There are, for the most part, two main approaches that researchers have taken here.

The first one, and the more popular one, is to think of the attractor as a set
embedded in a larger manifold, often called an inertial manifold (see, e.g., [11] and
[13]). The problem of finding ODEs that describe the flow on this manifold or an
approximate manifold is then solved by using a Galerkin projection onto a basis (see,
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e.g., [27] and [21]). The number of basis vectors needed is often quite large. This can
be due to either the fact that the bounds on the dimension of the attractors found
by current methods tend to be rather conservative, or that the asymptotic dynamics
of the system in question are in fact high dimensional. Hence the system of ODEs is
not tractable for analytical analysis but lends itself better to numerical work.

The second approach is to consider only the core of the attractor called the basic
attractor (see below). Here one constructs the particular solutions in the attractor
which attract “almost all” of the phase space. For some systems, the asymptotic
dynamics in this “almost every” sense are low dimensional, and one can completely
determine the flow on the basic attractor analytically.

Here we adopt the second approach, but before we go further, let us clarify what
we mean by the basic attractor and by “almost every.”

2.1. Prevalence and basic attractors. We need to extend the measure the-
oretic terms measure zero and almost every to infinite dimensional Banach spaces.
Furthermore, we want to do it in such a way that these definitions behave well under
the operations of the vector space. It turns out that it suffices that they behave well
under translations of the set. The problem here lies in that there do not exist any
nontrivial translation invariant measures in infinite dimensional spaces. If a subset
U ⊂ X in an infinite dimensional Banach space is nonempty and µ is a translation
invariant measure on X, then either µ(U) = 0 or µ(U) = ∞. Following Hunt, Sauer,
and Yorke [17], the ideas of measure zero and almost every can be replaced by shy
and prevalent.

Definition 2.1. Let X denote a separable Banach space. We denote by S + v
the translate of the set S ⊂ X by a vector v. A measure µ is said to be transverse to
a Borel set S ⊂ X if the following two conditions hold.

• There exists a compact set U ⊂ X for which 0 < µ(U) <∞.
• µ(S + v) = 0 for every v ∈ X.

A Borel set S ⊂ X is called shy if there exists a compactly supported measure trans-
verse to S. More generally, a subset of X is called shy if it is contained in a shy Borel
set. The complement of a shy set is said to be a prevalent set.

The basic attractor should be the smallest part of the global attractor A which
attracts a prevalent set. Let us make this more precise.

Definition 2.2. An attractor B is a basic attractor if it satisfies the following
two conditions.

1. The basin of attraction of B is prevalent.
2. B is minimal with respect to property (1), i.e., there exists no strictly smaller
B′ ⊂ B with basin(B) ⊂ basin(B′), up to shy sets.

This means that every point of B is essential; no point can be removed without
removing a portion of the basin that is not shy. In numerical simulations or in physical
experiments one would therefore only expect to observe the basic attractor after a
long-enough settling period.

In general, the basic attractor will be disconnected although the global attractor
is connected. We can therefore speak of components of the basic attractor.

The following theorem, which is an extension of a finite dimensional version by
Milnor [25], was proven in Birnir [4].

Theorem 2.3. Let A be the compact attractor of a continuous map T (t) on a
separable Banach space X. Then A can be decomposed into a basic attractor B and a
remainder C,

A = B ∪ C,
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Fig. 2.1. Two characteristics: the cubic compressor characteristic and the parabolic throttle
characteristic. The intersection of these curves is a stationary solution for ϕ = 0. They are stable
to the right of the peak.

such that basin(B) is prevalent and basin(C)\basin(B) is shy.
The basic attractor B for the vMG equation depends on the parameters in the

equation; in particular, it depends on the throttle parameter B = B(γ). It will prove
useful later to have the following definition. Let γ̃ > 0. The basic union attractor is
the union of basic attractors

∪γ≥γ̃B(γ).

A complete description of the basic union attractor for the vMG equation has been
given in [7] and [8]. It turns out that in the cases where an explicit description of B has
been given (see also [5] and [9]), the dimension of B is small, whereas the dimension
of C can be quite large.

2.2. The geometry of the basic attractor. Experimental and numerical evi-
dence indicate that the basic attractor in axial compression systems is low dimensional
[12], [14], [15], [30]. It can consist of a combination of axisymmetric design flow, surge,
and stall. The design flow is a stationary solution, and surge is a periodic cycle which
has been well studied (see [26] and [23]). It only involves the two ODEs in the system
(1.1)–(1.3). Stall has been studied in low-order Galerkin truncations of the Moore–
Greitzer equations [23], [20].

2.2.1. Design flow. Under normal conditions the engine operates in design flow.
There the flow through the compressor is uniform in space and time and the pressure
rise is relatively high. In particular, ϕ = 0, and Φ and Ψ are constant.

Figure 2.1 shows the (Φ,Ψ) plane. The parabola starting at the origin represents
all stationary solutions for (1.3) and is called the throttle characteristic. The cubic
curve represents all stationary solutions for (1.2), given that ϕ = 0, and is called
the compressor characteristic. Since ϕ = 0 is a stationary solution for (1.1), we can
conclude that the intersection of the two curves in Figure 2.1 is a stationary solution
for the full system (1.1)–(1.3). This stationary solution is called design flow.

To analyze the stability of design flow (0,Φ0,Ψ0), we linearize the system about
the design flow solution. Let us define the variable y = (y1, y2, y3) = (ϕ,Φ− Φ0,Ψ−
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Fig. 2.2. The design flow undergoes a series of subcritical Hopf bifurcation to surge and stall.
The amplitude of the periodic orbits is plotted as a function of the bifurcation parameter.

Ψ0). The linearized system is

ẏ = Ay,

where

A =



ν∂2

θ + ψ′
c(Φ0) 0 0

0 1
lc
ψ′(Φ0) − 1

lc

0 1
4lcB2

−γ
4lcB2 (F

−1
T )′(Ψ0)


 .

This is a block diagonal system, and its stability and bifurcations have been analyzed
completely (see [23] and [10]). When the throttle parameter γ is decreased, the average
flow Φ decreases as well and the design flow undergoes a series of subcritical Hopf
bifurcations. If the parameter B is large enough, there will be one Hopf bifurcation
originating from the two dimensional block related to the two ODEs (1.2)–(1.3). This
bifurcation gives rise to surge. Furthermore, when ψ′

c(Φ) = νn2, then the nth Fourier
harmonic will become unstable and another subcritical Hopf bifurcation occurs. The
number of these Hopf bifurcations, which give rise to stall, is bounded by

nmax ≤
√

1

ν
max

Φ
ψ′
c(Φ).(2.1)

Figure 2.2 shows how the amplitude of the periodic orbits originating from the
subcritical Hopf bifurcations varies with the bifurcation parameter.

Design flow is stable to the right of the peak of the compressor characteristic. It
is desirable to operate the engine on the right side of the peak with as high a pressure
rise as possible without risking the system being thrown over to the unstable side by
disturbances.

2.2.2. Surge. Surge is a limit cycle in the two ODEs (1.2)–(1.3), where the
nonaxisymmetric disturbance is zero, ϕ = 0. It has been studied by many authors,
among them Greitzer [15] and McCaughan [22], [23]. It arises as a subcritical Hopf
bifurcation in the system

Φ̇ =
1

lc
(ψc(Φ)−Ψ),

Ψ̇ =
1

4B2lc
(Φ− γF−1

T (Ψ)),
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Fig. 2.3. The surge limit cycle in the (Φ,Ψ) plane where ϕ = 0.

Fig. 2.4. The phase portrait for Duffing’s equation in the general case when γ �= γ∗.

which occurs for a large enough B when the throttle parameter γ is decreased. Since
the bifurcation is subcritical, we have a one-parameter family of unstable surge cycles
that originates from the bifurcation point. This branch bends on itself, and the cycles
become stable [23], [10]. These stable cycles are fairly large, and a simulation of one
is shown in Figure 2.3.

The solution spends most of its time on the two vertical sides of the cycle. There
the slope of the compressor characteristic is negative, so all nonaxisymmetric distur-
bances are damped.

2.2.3. Stall. Stall is a solitary wave solution. The wave rotates around the unit
circle, and the average flow Φ and pressure rise Ψ are constant. When one looks for
traveling wave solutions of the vMG equation, the problem can be reduced to finding
periodic solutions of Duffing’s equation with the correct periods [7], [8]. These periodic
solutions lie inside a homoclinic (or heteroclinic) orbit (see Figure 2.4), and since the
compressor characteristic is a cubic polynomial, these solutions can be found explicitly
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Fig. 2.5. The one-parameter family of stall cells. As the parameter β varies from zero to one,
the stall cell grows from a constant zero solution to a narrow stall cell that slowly widens until it
fills out the annulus and the stall disturbance becomes zero again.

with quadratures. They can be expressed as rational functions of the Jacobi elliptic
function ns [29].

ϕ(η) =
p− q

√
−B2

A2
ns
(
η(p− q)√−B1A2 + iω̂2,

√
B2A1

B1A2

)

1−
√

−B2

A2
ns
(
η(p− q)√−B1A2 + iω̂2,

√
B2A1

B1A2

) .

Here ω̂2 is half the imaginary period of ns and p, q, A1, A2, B1, B2 are constants.
The shape of the solitary wave depends on the parameters in the equation; in

particular, the shape depends on γ. By varying the parameters we can in fact construct
a one-parameter family of stall solutions. The one-parameter family for the one-pulse
solitary waves is shown in Figure 2.5.

It can be shown that for a large parameter range (see [7]), the stall solutions
in the one-parameter family are asymptotically stable and hence belong to the basic
union attractor.

3. Basic controllability. Let us consider now the issue of controllability. In
finite dimensional control theory, a system is said to be controllable if for every two
points x0, x1 ∈ X and every two real numbers t0 < t1, there exists a control function
u such that the unique solution of the equation

ẋ = F (x, u), x(t0) = x0(3.1)

satisfies x(t1) = x1.
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In infinite dimensional spaces this notion of controllability is too restrictive. For
practical control applications one can never have more than finitely many control pa-
rameters, if for no other reason than the fundamentals of computing require computer
outputs to be finite. There is therefore no hope that nonlinear evolution equations in
infinite dimensional spaces will be controllable in this strict sense in practical appli-
cations.

If an evolution equation has an attractor and a basic attractor, its solutions will
converge asymptotically to the attractor for all initial conditions and to the basic
attractor for almost all initial conditions. The simplest thing one could ask of the
control is that it make all or almost all initial conditions give rise to solutions that
converge to a given component in the basic attractor. A more stringent requirement
on the control would be that it make all or a prevalent set of (almost all) initial
conditions give rise to solutions that converge to a given component in the global
attractor. This requires one to have enough control authority over the local unstable
manifolds of the hyperbolic trajectories in the attractor to make them attractive.
Consider the following definitions.

Definition 3.1. (3.1) is basically controllable if for all bounded sets M, all
xo ∈ M, every minimal component of the basic attractor Bj, and all ε > 0, there
exists a finite time T (M) and a control function u(t), such that the solution x(t) with
initial data xo ∈M satisfies

‖x(t)− Bj‖ < ε

for all t > T (M).
This definition says that given an initial point one can steer to any component

of the basic attractor in finite time. It is hopeless to get a finite T for xo lying in a
prevalent (full measure) set in the infinite dimensional space, for the reason discussed
above. It is not wise to attempt to control every solution in the A-attractor, because
in general it (C) contains many hyperbolic solutions and their heteroclinic connections.

Definition 3.2. (3.1) is attractively controllable if for all bounded sets M, all
xo ∈M, every trajectory z in the attractor A, and all ε > 0, there exists a finite time
T (M) and a control function u(t), such that the solution x(t) with initial data xo ∈M
satisfies

‖x(t)− ω(z)‖ < ε

for all t > T (M).
This definition says that given an initial point one can steer to the ω limit set of

any trajectory in the A-attractor in finite time.
We will in what follows, for the sake of brevity, also speak of basic controlla-

bility as b-controllability and attractive controllability as a-controllability. Clearly
a-controllability implies b-controllability. Not surprisingly, the control construction
relies heavily on the geometry of the basic attractor. Consequently it is referred to
as basic control. The remainder C = A\B from section 2.1 plays a large role in basic
control. In general one would like to use its heteroclinic connections to move efficiently
from one minimal basic attractor to another.

To get stronger results than a-controllability or b-controllability of the form that
one could get from an arbitrary initial condition to a point in the attractor in a short
time is, in general, hopeless. Since one’s control only actuates finitely many dimen-
sions, one would need to wait an arbitrarily long time (determined by the dissipation
rate) for the part of the solution which, in some sense, is perpendicular to the control
action to settle onto the desired point.
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4. Basic control for design flow of the linearized equation. The most
important component of the basic attractor of the vMG equation is the design flow
component. The goal is to construct a basic control that makes all solutions converge
to the design flow. The simplest approach one could take would be to linearize the
system about design flow, (Φ0,Ψ0, 0), corresponding to a throttle parameter γ0, and
apply the classical optimal control theory. We define the control parameter u = γ−γ0,
and we make a change of coordinates (t, η) = (t, θ − 1

2 t) to simplify the equations.
Furthermore, we define the variable y = (y1, y2, y3) = (ϕ,Φ − Φ0,Ψ − Ψ0). The
linearized equations can now be written as

ẏ = Ay +Bu,(4.1)

where

A =



ν∂2

θ + ψ′
c(Φ0) 0 0

0 1
lc
ψ′(Φ0) − 1

lc

0 1
4lcB2

−γ0
4lcB2 (F

−1
T )′(Ψ0)


(4.2)

and

B =


 0

0
1

4lcB2 (F
−1
T )′(Ψ0)


 .(4.3)

Since the operator A is sectorial, it generates an analytic semigroup in X. We denote
by T (t) the semigroup operator on X, and the norm and inner product will be denoted
by ‖ · ‖ and 〈·, ·〉, respectively. In this form the equations can be tackled using the
standard optimal control theory in Hilbert spaces (see Lions [19] and Banks [3]).

Observe first that this system is block diagonal. It can be split into two parts: a
two dimensional part that describes the evolution of the average flow and the pressure
rise, and a part of codimension 2 which describes the evolution of stall. This second
part does not depend on the control parameter γ and can therefore be integrated
separately. In other words, stall does not depend on the control parameter and is
therefore uncontrollable. The problem is now reduced to a two dimensional problem.

We seek a feedback control that will minimize the cost functional

J(y) =
1

2
(y2

1(tf ) + y2
2(tf )) +

1

2

∫ tf

0

S(y2
1(t) + y2

2(t)) +Ru2dt.

It is a well-known result [3] that the optimal feedback control is given by

u = − 1

R
BTQ(t)y(t),

where the symmetric matrix Q(t) satisfies the matrix Riccati equation

Q̇(t) = −Q(t)A−AQ(t) + 1

R
Q(t)BBTQ(t)− SI, Q(tf ) = I.

Here I is the identity matrix and S and R are positive constants. Solving the Riccati
equation is equivalent to solving the three ODEs

q̇11 = ( 1
4lcB2 (F

−1
T )′(Ψ0))

2q212 − S − 2(a11q11 + a21q12),

q̇12 = ( 1
4lcB2 (F

−1
T )′(Ψ0))

2q12q22 − a12q11 − (a11 + a22)q12 − a21q22,

q̇22 = ( 1
4lcB2 (F

−1
T )′(Ψ0))

2q222 − S − 2(a12q12 + a22q22),

qij(tf ) = δij ,

(4.4)
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where δij is the Kronecker delta. This system can be solved backwards in time nu-
merically. The optimal feedback control is now given by

u =
1

4lcB2
(F−1
T )′(Ψ0)((Φ− Φ0)q12(t) + (Ψ−Ψ0)q22(t)).

Design flow solutions that sit to the right of the peak on the compressor charac-
teristic (see Figure 2.1) have the property that all the uncontrollable modes are stable,
so in this case the design flow is b-controllable and, in fact, a-controllable. However,
the fact that stall is uncontrollable in the linear system renders this control of limited
use. It is well known that in the nonlinear system for design flow solutions close to the
peak of the characteristic, small nonaxisymmetric disturbances can cause the system
to go into stall. On the other hand, the result by Banaszuk, Hauksson, and Mezić
[2] proves that design flow can be globally stabilized by using only throttle control.
Their control is, however, not optimal in any sense of the word, and it reacts very
violently to high frequency disturbances which are damped in the viscous model. The
question that now arises is whether there is something in between these two control
constructions, i.e., does there exist a control which globally stabilizes the design flow
but does not require as much control effort as the control constructed by Banaszuk,
Hauksson, and Mezić? We tackle this problem in the next section.

5. Basic control of design flow for the nonlinear equation. The basic
attractor for constant throttle functions has been analyzed completely [7], [8], and
one would like to use this knowledge of the asymptotic dynamics when constructing
a control law. However, when γ is no longer constant but a function of the state
variables, the components of the basic attractor may change, altering the asymptotic
dynamics.

Let us assume for now that we only consider control strategies that move the
throttle in an adiabatic fashion. Restricting the control to this class guarantees that
the basic attractor is unchanged. The best one can hope to do here is to slide the
solution along the basic attractor until it reaches the desired operation point. If stall
occurs, then one slides the system along the branch of stable stall cells by increasing
γ until the saddle-node bifurcation point is reached, stall ceases to exist, and the flow
converges to design flow. This design flow is achieved at a very low pressure rise. In
order to increase the pressure rise we decrease γ again until the desired operation
point is reached. Figure 5.1 shows the bifurcation diagram for the first stall solution.

Within the class of adiabatic controls, this is the optimal control. When one
considers the larger class of controls that are not necessarily adiabatic, this control
strategy is no longer optimal. It has, however, been shown that a reduced order model,
which reduces the flow to the basic attractor, captures the dynamics of the full model
not only qualitatively but also quantitatively [8]. Transient behavior, while the flow
is going from one component of the basic attractor to another, is also well captured.
With this in mind it makes sense to modify the adiabatic control construction by
tracking trajectories on the basic attractor. If the tracking is done in an optimal
fashion, one would hope that the resulting control strategy is close to an optimal
strategy with respect to some cost function. We claim that our basic control strategy
is in this sense near optimal.

Let ξ(t) be a parameterization of a family of stationary solutions in the basic
union attractor ∪γB. Note that since we are working in a rotating frame of reference,
(η, t), stall solutions will be stationary solutions. Then, corresponding to ξ(t), we
can find γ̄(t) such that for γ = γ̄(t), ξ(t) is a stationary solution of (1.1)–(1.3). We
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Fig. 5.1. This figure shows the bifurcation diagram for the first stall solution in the (Φ,Ψ)-
plane. The flat solid curve represents the stable branch, and the dotted curves represent the unstable
branches of stall cells.

denote the solution of the system (1.1)–(1.3) as x(t) = (Φ,Ψ, ϕ)(t) = ξ(t) + y(t) and
the control parameter γ = γ̄(t) + u(t). Let us now linearize this system about the
trajectory ξ(t) and write it as

ẏ = A(t)y +B(t)u− ξ̇(t).(5.1)

Here A(t) and B(t) depend on time through the trajectory ξ(t). Our goal is to make
y as small as possible with very little control effort. In other words, we want to find
a regulator for (5.1) which is optimal with respect to the cost function

J(u) =
1

2
‖Sfy(tf )‖2 + 1

2

∫ tf

0

‖Sy(t)‖2 +Ru2(t)dt,

where R is a constant and Sf and S are symmetric positive definite linear operators.
This is a well-known problem, and it can be solved exactly (see Sage and White

[28] or Banks [3]). The optimal feedback control is given by

u(t) = − 1

R
BT (t)(Q(t)y(t)− ζ(t)),

where the symmetric operator Q(t) satisfies the equation

Q̇(t) = −Q(t)A(t)−A(t)Q(t) + 1

R
Q(t)B(t)BT (t)Q(t)− S, Q(tf ) = Sf ,(5.2)

and the function ζ(t) satisfies

ζ̇(t) = −
(
A(t)− 1

R
B(t)BT (t)Q(t)

)T
ζ(t)−Q(t)ξ̇(t), ζ(tf ) = 0.(5.3)
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Fig. 5.2. This figure shows the throttle setting γ = γ1 that defines the start of the trajectory
ξ1, which is shown as a dashed line.

These equations can be solved backwards in time to yield the optimal control u.
It turns out that when one linearizes the system about a trajectory on the basic

attractor, then all but finitely many directions in state space will be uncontrollable.
The uncontrolled dynamics are stable, and, as a result, (5.2) and (5.3) will reduce to
finitely many ODEs.

5.1. Construction of the controller. To make the construction of the con-
troller as simple and intuitive as possible, we proceed in the following way. When
a disturbance occurs in the system that is large enough so that the system cannot
recover without intervention, we change the control parameter to a setting where the
only component in the basic attractor is the design flow. This consists of increasing γ
to a level γ1 so that the throttle characteristic no longer intersects the branch of stall
cells. We then wait until the flow is in a small-enough neighborhood U of the design
flow. This design flow setting is, however, at a low pressure rise level, so to increase
the pressure rise we now track a trajectory ξ1 to the desired design flow setting (see
Figure 5.2). As we will prove later, if the state is close enough to the starting point
of ξ1 and the cost on the control small enough, this strategy will work for all initial
disturbances.

This control construction will still be very close to the original one as the system
will settle into stall or surge very fast and then traverse near the basic attractor
towards the design flow corresponding to the throttle setting γ1.

The linearization of the system about the trajectory ξ1 is exactly that given by
(4.2) and (4.3), except for that now these operators are time-dependent, i.e., instead
of (Φ0,Ψ0) we have (Φ,Ψ)γ̄(t). Just like before, there is an uncontrollable subspace
of codimension 2, but since we are on the right side of the peak of the characteristic,
this space is stable and small disturbances will decay in time. We therefore only need
to consider the first two modes which describe the flow in the (Φ,Ψ)-plane, and it
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suffices to know q11, q12, q22, ζ1, and ζ2. The equations for these coefficients are

q̇11 = ( 1
4lcB2 (F

−1
T )′(Ψγ̄(t)))2

q212
R − s11 − 2(a11(t)q11 + a21(t)q12),

q̇12 = ( 1
4lcB2 (F

−1
T )′(Ψγ̄(t)))2

q12q22
R − s12 − a12(t)q11

−(a11(t) + a22(t))q12 − a21(t)q22,

q̇22 = ( 1
4lcB2 (F

−1
T )′(Ψγ̄(t)))2

q222
R − s22 − 2(a12(t)q12 + a22(t)q22),

q(tf )ij = sfij

(5.4)

and

ζ̇1 = −a11(t)ζ1 − (a21(t)− ( 1
4lcB2 (F

−1
T )′(Ψγ̄(t)))2

q21
R )ζ2 − q11ξ̇1 − q12ξ̇1,

ζ̇2 = −a12(t)ζ1 − (a22(t)− ( 1
4lcB2 (F

−1
T )′(Ψγ̄(t)))2

q22
R )ζ2 − q12ξ̇1 − q22ξ̇1,

ζ(tf ) = 0.
(5.5)
The basic feedback control is now given by

u(t) = γ1(5.6)

if x(t) has not reached the neighborhood U and

u(t) =
1

4lcB2R
(F−1
T )′(Ψγ̄(t))[(Φ− Φγ̄(t))q12(t) + (Ψ−Ψγ̄(t))q22(t) + ζ2](5.7)

otherwise.
Theorem 5.1. There exists an open set U around ξ1(0) = (ϕ1,Φ1,Ψ1), a con-

stant R, and a prevalent set Y ⊂ X such that the control strategy given by (5.6) and
(5.7) make all solutions of the vMG equation, with initial conditions in Y, converge
to the desired stable design flow.

Proof. For u = γ1, the only component in the basic attractor is the design flow at
the starting point of ξ1 = ξ1(0). Hence there exists a prevalent set Y ⊂ X such that
for all initial conditions in Y the solution will converge to ξ1(0). Let U ⊂ X be an
open neighborhood of ξ1(0). By making U smaller, we can make sure that the stall
disturbance is as small as we please and that (ϕ,Φ,Ψ) is as close to the starting point
of the trajectory ξ1 as we please before we start tracking the trajectory.

On the other hand, if there is no stall disturbance, i.e., if ϕ = 0, then by decreasing
R we can track the trajectory ξ1 as closely as we want. The feedback control is robust
with respect to small disturbances, so as long as the stall disturbance stays small we
can guarantee that we stay within a small neighborhood of the trajectory. It therefore
remains only to show that small stall disturbances will remain small.

The energy method for (1.1) gives us that

1
2
d
dt‖ϕ‖21 ≤ −ν‖ϕη‖21 + 1

2π

∫ 2π

0

ψ′
c(Φ + ϕ)ϕ2

ηdθ

≤ (−ν + 1
2π maxθ ψ

′
c(Φ + ϕ))‖ϕ‖21.

Here ‖ · ‖1 is the Sobolev norm in H̄1. The trajectory ξ1 lies to the right of the peak
of the compressor characteristic, and on that side the derivative of the characteristic
is negative. By making Φ stay close enough to the trajectory and the L∞ norm of ϕ
small enough, we can guarantee that the second term will be less than or equal to
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zero. The L∞ norm is bounded by the H̄1 norm, and as a result if (ϕ,Φ,Ψ) stays
close to the trajectory, then small stall disturbances will decay.

One can clearly construct the trajectory so that the point being tracked by the
control will be moving in a smooth fashion. Furthermore, parameterizing the trajec-
tory in a very slow manner approaches the adiabatic control construction which will
guarantee that γ will be positive and bounded away from zero. This then guarantees
that the control given will be a smooth function, and the existence and regularity
results mentioned in the introduction still hold.

5.2. Modifications of control construction. The control construction given
here above is but one of many possible constructions. It could be beneficial to construct
a regulator for the starting point of ξ1 instead of just setting u = γ1, or one could
track a trajectory along the stall branch. The first extension is very simple, but the
other one is not as trivial and we outline an approach to it here. The hard part lies
in linearizing the system in the correct basis so that the problem reduces to a finite
dimensional problem.

In [7] we proved that for specific parameter values when one linearizes the system
about a stall solution there is a subspace of codimension 3 which is uncontrollable
but stable for a large parameter range. The three dimensional subspace which can be
influenced by the throttle parameter is spanned by the average flow, the pressure rise,
and one more vector. This vector corresponds to the internal degree of freedom that
widens and shrinks the stall cell, and is given by (ϕ2 − ϕ2, 0, 0), where ϕ is the stall
solution and ϕ2 represents the average of ϕ2. One of the key elements of that proof
was that a part of the linearized operator, the Lamé operator, given by

L = ν∂ηη + ψ′
c(Φ + ϕ),

had two eigenvectors given by ϕ2 + a1 and ϕ2 + a2, and those two combined to give
the vector that interacted with pressure rise and average flow.

Now let (ϕ,Φ,Ψ) be a general stall solution. Then the corresponding operator L
will have one zero eigenvalue corresponding to translations of the solution.

Theorem 5.2. Assume that the self-adjoint operator L has two eigenvectors of
the form χ+ = ϕ2 + k+

1 ϕ + k+
2 and χ− = ϕ2 + k−1 ϕ + k−2 corresponding to distinct

eigenvalues, each with one dimensional eigenspace. Assume also that the spectrum has
a simple zero eigenvalue and the rest of the spectrum is negative.

Then the vMG equation linearized about the stall solution has an uncontrol-
lable subspace Q of codimension 3 which is stable, and Q⊥ is the span of {(χ+ −
χ+, 0, 0), (0, 1, 0), (0, 0, 1)}.

Here the overline represents the angular average as before.
Proof. We know from [7] that the spectrum of the Lamé potential consists of five

single eigenvalues and the rest of the spectrum is negative and double and converges
to infinity. Varying the Fréchet derivative ψ′

c by a small amount will be a relatively
compact perturbation which will perturb the spectrum only slightly [18]. In particular,
we can assume that the spectrum of L converges to −∞.

Because (ϕ,Φ,Ψ) is a traveling wave solution of (1.1)–(1.3) and since the charac-
teristic is a cubic polynomial, we know that

ϕηη = aϕ3 + bϕ2 + cϕ+ d

for some constants a, b, c, d which depend on Φ. By completing the quadratures, one
can also show that ϕ satisfies the equation
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1

2
(ϕη)

2 =
1

4
aϕ4 +

1

3
bϕ3 +

1

2
cϕ2 + dϕ+ e

for some constant e. Using these two equations, one can show that the two eigenvalues
λ+ and λ− corresponding to the two eigenvectors χ+ and χ− are the real roots of

(c− νλ)
(
νλ

3a
+
c

a
− 2b2

9a2

)
− 2bd

3a
− 4e = 0,

and we have

k+
1 = 2b

3a = k−1
k+
2 = 1

c−νλ+

(
2bd
3a + 4e

)
k−2 = 1

c−νλ−
(

2bd
3a + 4e

)
.

Notice that

ψ′
c(Φ + ϕ) = χ+ + C = χ− + C ′

for some constants C and C ′.
Let φ ∈ H1\span{χ+, χ−}, and define χ = χ+−χ+ = χ−−χ−. Since eigenspaces

corresponding to different eigenvalues are orthogonal and span{χ+, χ−} = span{χ, 1},
we know that 〈φ, 1〉 = 0 and thus φ ∈ H̄1. Furthermore, since ψ′

c ∈ span{χ+, χ−},
we have ψ′

cφ = 〈ψ′
c, φ〉 = 0. We can now conclude that if φ lies in an eigenspace of L

corresponding to the eigenvalue λ, then (φ, 0, 0) lies in an eigenspace of A correspond-
ing to the same eigenvalue. Let Q be the subspace spanned by all such functions, and
notice that we have AQ ⊂ Q.

For any φ ∈ H1\span{χ+, χ−} ⊂ H̄1, we have (φ, 0, 0) ∈ Q, and we can conclude
that codim(Q) in H1 × R2 is 4. Since Q ⊂ H̄1 × R2, we can also conclude that
codim(Q) in H̄1 × R2 is 3. The orthogonal complement of Q is Q⊥ = span{(χ+ −
χ+, 0, 0), (0, 1, 0), (0, 0, 1)} and one quickly verifies that AQ⊥ ⊂ Q⊥. From all of the
above we conclude that the spectrum of A is

σ(A) = σ(A|Q) ∪ σ(A|Q⊥)

and that A is block diagonal with two blocks. The block corresponding to Q is orthog-
onal to the control action and is therefore uncontrollable. We know that Q contains
a one dimensional center subspace corresponding to direction of propagation of the
stall solution, and the rest of Q belongs to the stable subspace of A.

As a result of the above theorem, when one wants to track a trajectory along stall
solutions, one only has to consider the projection of the linearized system onto the
three dimensional space Q⊥. One therefore only needs to consider a 3× 3 projection
of Q(t).

Remark 5.3. Theorem 5.2 has some implications for nonaxisymmetric control ac-
tuation. If we assume control actuation that does not destroy this spectral structure of
the equation, then the theorem would indicate that the nonaxisymmetric component
of the control action should be shaped like the vector χ = χ+−χ+. This would move
the state along the one-parameter family of stall cells as opposed to trying to push
off this strongly attracting surface.

Figure 5.3 shows the stall cell and the vector χ for two different parameter settings:
on the left for the specific parameter values chosen in [7] and on the right for a general
parameter setting. This figure shows that the general characteristics of the vector χ
are the same.
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Fig. 5.3. This figure shows stall cells and the vector χ for the specific parameter settings given
in [7] on the left and a general parameter setting on the right. The stall cell is given by a solid line
and χ by a dashed line.

6. Numerical simulations. Here we present some numerical simultions that
display how our control (5.6)–(5.7) performs, and its performance is compared with
that of the backstepping control given by Banaszuk, Hauksson, and Mezić [2]. For
all of the simulations the initial condition is a small disturbance in the average flow
and pressure rise but a large disturbance in the stall direction. The two ODEs (1.2)
and (1.3) are solved by a Runge–Kutta routine, which is coupled together with a
Lax–Wendroff scheme, which solves (1.1).

The backstepping control is a much more forceful control that uses more control
effort, as can be seen in Figure 6.1. It does, however, kill the disturbance faster,
as seen in Figures 6.2, 6.3, and 6.4. The state has a much smaller excursion in the
(Φ,Ψ)-plane with the basic control, and in particular the pressure rise never drops
completely (see Figures 6.5, 6.6, and 6.4).

It should be clear from these simulations that the backstepping control reacts
too strongly to stall disturbances. One could argue that the gain chosen for the stall
component in the control construction should be decreased, but here we have set it
at its smallest allowed level, or equal to

√
π/6 [2].

Surge is in general harder to control than stall. It requires more control effort
and is a more violent instability. We present here some simulations which show how
the two controls handle a surging compressor. As can be seen in Figure 6.7, both
controls are saturated. The control strategy with the least effort that could recover
design flow from surge would probably just involve increasing γ slightly and then
waiting for the system to complete a single surge oscillation. Figures 6.8 and 6.9 show
the (Φ,Ψ) phase planes during the transient, and Figures 6.10 and 6.11 show how
the stall transient behaves. The backstepping control does a better job at recovering
design flow quickly, but at a greater cost, as can be seen in Figure 6.7. The pressure
rise in the compressor is shown as a function of time in Figure 6.12.
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Fig. 6.1. Here we compare on a logarithmic scale the control effort by the two strategies. The
backstepping control result is shown in a dashed line and the basic control in a solid line. The
backstepping control kills the disturbance in half the time it takes our control to do so, but at the
cost of using extreme control effort.
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Fig. 6.2. The evolution of the stall disturbance under the basic control. The system goes into
a fully blown stall which then slowly narrows until it vanishes.
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Fig. 6.3. The evolution of the stall disturbance under the backstepping control. Here the system
never reaches a fully blown stall because the control reacts very strongly to stall disturbances.
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Fig. 6.4. Here we compare the pressure rise delivered by the compressor under the two strategies.
The backstepping control result is shown in a dashed line and the basic control in a solid line. The
backstepping control kills the disturbance in half the time it takes our control to do so. However, the
pressure rise drops considerably more for the backstepping control.
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Fig. 6.5. The (Φ,Ψ)-phase plane for the basic control. The large disturbance grows into stall,
but design flow is then recovered.
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Fig. 6.6. The (Φ,Ψ)-phase plane for the backstepping control. The large disturbance grows into
stall, and here the excursion in this phase plane is much larger than before. There is a complete
loss of pressure rise over a certain time interval. Design flow, however, is recovered.
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Fig. 6.7. Here we compare on a logarithmic scale the control effort by the two strategies. The
backstepping control result is shown in a dashed line and our control in a solid line. The backstepping
control recovers design flow considerably faster than the basic control. Both control strategies saturate
which indicates how hard it is to control surge.
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Fig. 6.8. The (Φ,Ψ)-plane when controlling a surging compressor with the basic control.
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Fig. 6.9. The (Φ,Ψ)-plane when controlling a surging compressor with the backstepping control.
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Fig. 6.10. The transient behavior in ϕ as the basic controller recovers design flow.
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Fig. 6.11. The transient behavior in ϕ as the backstepping controller recovers design flow.
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Fig. 6.12. Here we compare the pressure rise delivered by the compressor under the two strate-
gies during surge instability. The backstepping control result is shown in a dashed line and the basic
control in a solid line. The backstepping control kills the disturbance in a shorter time than it takes
the basic control to do so.
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7. Basic controllability of the vMG equation. We consider here the prob-
lem of when the vMG equation is b-controllable. Although this problem is not of great
practical importance, it is more important theoretically to show that there exists at
least one example of a system which is b-controllable.

Here above we have constructed a basic feedback control for design flow. In order
to have b-controllability, it suffices to show that we can get from any trajectory of
the attractor A to any component in the basic attractor. However, the next theorem
says that this is impossible with only throttle control.

Theorem 7.1. If the global attractor of the vMG equation contains more than
one stall component, then the vMG equation with throttle control only is not b-
controllable.

Proof. The only way we can influence the stall part of the equation, with only
throttle control at our disposal, is through Φ (see (1.1)). Consider now a solution
of the vMG equation such that ϕ(0, θ) = k sin θ for some nonzero constant k. If we
consider only (1.1), then this is a time dependent parabolic equation for which it is
well known that the number of local maxima and local minima is nonincreasing in
time. It is therefore not possible to start with this initial condition and use throttle
control to get to a stall component which has more than one local maximum and
one local minimum. In fact, one can show that this is true for all initial conditions
close enough to the one chosen here, so the vMG equation is not b-controllable with
throttle control.

Assume now that the parameter B is small enough that there is no surge compo-
nent in the basic attractor [7], and further assume that we can influence the flow in a
nonaxisymmetric way by air injection or bleeding in addition to throttle control. We
will avoid the difficult issue of exactly how to model the air injection but will instead
make the following simple hypothesis.

Hypothesis 1. If the flow at time t is axisymmetric, i.e., ϕ(t, ·) = 0, then by use
of air injectors or bleeding we can modify the flow so that for j = 1, . . . , n and some
small ε > 0, ϕ(t+ ε, ·) will be small but nonzero, 2π/j periodic, and will have exactly
j local maxima and minima.

We have already proven in Theorem 5.1 that there exists a basic feedback control,
which uses only throttle, that makes all initial conditions converge asymptotically to
the stable design flow component B0. To prove b-controllability, it therefore suffices
to construct a set of controls that take us from the design flow to any one of the stall
components B1, . . . ,Bn. Recall that if the basic attractor has n stall components,
then as one decreases the throttle γ the design flow undergoes n supercritical Hopf
bifurcations which give rise to the stall solutions [7], [8], [23].

Theorem 7.2. Let the basic attractor of the Moore–Greitzer equation consist of
design flow and n stall solutions B1, . . . ,Bn. Assume Hypothesis 1 and that we have
throttle control. Then the vMG equation is b-controllable.

Proof. We start with the stable design flow B0. By Theorem 5.1 there exists a
throttle control strategy that makes all solutions in a bounded setM ⊂ X converge to
B0. Now we slowly decrease the throttle setting to γ = γ∗. By decreasing the throttle
γ beyond the point where the design flow undergoes the jth Hopf bifurcation, the
jth harmonic becomes unstable. For this throttle setting, design flow is unstable and
hence not in the basic attractor, and the system must go into stall. In other words,
the component B0 of the basic attractor has bifurcated to the unstable component C0
of the reminder (see Theorem 2.3). The basic attractor itself now consists of the stable
stall cells Bi (see [8]). The same theorem says that all the minimal basic attractors
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Fig. 7.1. The global attractor for small B and γ = γ∗. ν decreases from left to right.

Bi are connected to the unstable manifolds Wu
i of the unstable design flow C0 (see

Figure 7.1). Now start with design flow C0, and consider the initial conditions for
the deviation ϕ(0, x) from design flow. By using the air injectors or bleeding we can,
by Hypothesis 1, make the solution at time ε be 2π/j periodic with exactly j local
maxima and j local minima. The rest of the argument concludes that this initial data
lie in the jth unstable manifold Wu

j of design flow C0 and must follow it to the jth
stable stall component Bj . Namely, the unstable manifold to the ith stall solution
is 2π/i periodic. Our solution, which is 2π/j periodic, must settle onto the global
attractor, and it can only settle onto the design flow or a stall solution which is 2π/k
periodic, where k = jm for some integer m. However, the number of maxima and
minima of ϕ(t, ·) is nonincreasing in time (see the proof of Theorem 7.1) and thus m
cannot be greater than one. Furthermore, the design flow is unstable with respect to
2π/j periodic disturbances so the solution cannot settle onto design flow. The only
possibility remaining is that the solution settle onto the jth stall solution Bj .

We have now constructed a control which takes the stable design flow B0 to Bj ; in
particular, it takes the stable design flow to an open set U in the basin of attraction
of Bj . By continuity this control will take a small neighborhood V of the stable design
flow into U . We have already constructed in Theorem 5.1 a throttle control which
guarantees that for any initial condition we can get from any bounded set M ⊂ X
into V in finite time. We can thus get into U in finite time, and the proof is
complete.

8. Conclusion. We defined b-controllability and a-controllability and presented
arguments why these would be meaningful definitions of controllability for infinite
dimensional nonlinear dynamical systems. We proved that the vMG equation with
throttle control is not b-controllable, and we showed how the control can be modified,
by including air injection or bleeding, to make the vMG equation b-controllable.

The backstepping control presented by Banaszuk, Hauksson, and Mezić was the
first attempt at constructing a control strategy for the Moore–Greitzer PDE. The
vMG equation, which is a better physical model for the airflow through the compres-
sion system, has different asymptotic dynamics than the Moore–Greitzer equation,
and these asymptotic dynamics have been analyzed by the authors in [7], [6], and [8].
Here we go one step further and use the knowledge of the asymptotic dynamics to
construct a control strategy that utilizes the dynamics and hence needs considerably
less control effort.

Given a good knowledge of the asymptotic dynamics, one could create a host of
different control strategies that would recover design flow operation from stall and
surge. By using the dynamics one can considerably reduce the control effort, and it
is in this sense that we say that our control construction is near optimal. In fact,
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one could use this knowledge to modify the backstepping controller by Banaszuk,
Hauksson, and Mezić in that it does not need to react to stall in such a forceful
manner.

We have shown here that the basic control does a good job of recovering design
flow from stall disturbances. It does not do it as quickly as the backstepping control
but with a much smaller control effort, and in this sense the basic control is a much
more realistic strategy. Neither of the controls does a good job of recovering design
flow from surge disturbances. This is due to the fact that surge disturbances are of a
more violent nature and are harder to control. Both controls saturate in this case.

Recall that the control constructed here is mainly intended for recovering design
flow operation after large disturbances have occurred. Ideally it would be coupled
together with a regulator that would keep the state near design flow during normal
operation, and then when large disturbances occur the near optimal control would take
over. It is also important to mention that we do not consider the control constructed
here as the best possible control. We would however argue that a good knowledge of
the basic attractor of the equation is essential to construct a good control strategy.
Furthermore, we believe that this approach of analyzing the basic attractor and using
the knowledge of the asymptotic dynamics to construct basic control strategies for
b-controllable systems can offer a viable alternative to linearizing high dimensional
systems and applying linear optimal control theory to the linearized system.
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1. Introduction. A basic linear model for the evolution of sound in a compress-
ible fluid is the system of partial differential equations

ρvt(t, x) + grad p(x, t) = 0,(1.1)

αpt(t, x) + div v(t, x) = 0, t > 0, x ∈ Rn,(1.2)

where p denotes acoustic pressure and v the velocity field; cf., e.g., Leis [9]. In what
follows the equilibrium density ρ and the compressibility α will be assumed to be
constant and then without loss of generality to be equal to 1. Eliminating v from this
system one obtains a wave equation for the pressure p:

ptt(t, x) = ∆p(t, x), t > 0, x ∈ Rn.(1.3)

When the fluid is enclosed in a region Ω ⊂ Rn, (1.3) has to be supplemented by con-
ditions at ∂Ω, the boundary of Ω. The following three dissipative boundary conditions
are discussed in the mathematical literature on time domain models for acoustics.

First, equating the acoustic impedance ξ(x) ∈ C of the boundary surface at x
with the ratio between the fluid’s pressure and its velocity normal to the surface
results in

∂p

∂ν
(t, x) + ξ(x)pt(t, x) = 0, t > 0, x ∈ ∂Ω,(1.4)

where ∂
∂ν denotes the derivative in the direction of the outer normal of ∂Ω. The

well-posedness of the equation with boundary conditions (1.4) and the asymptotic
behavior of its solutions has been investigated in [3], [4], [15].

Second, adding a friction term β(x)pt(t, x), β > 0, to the classic Robin condition
yields

∂p

∂ν
(t, x) + β(x)pt(t, x) + α(x)p(x, t) = 0, t > 0, x ∈ ∂Ω.(1.5)
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This condition has been studied, e.g., in [8].
Third, modeling the boundary surface as independent oscillations and equating

the velocity δt of the impenetrable surface with the normal velocity of the fluid at
boundary points leads to

n(x)δtt(t, x) + d(x)δt(t, x) + k(x)δ(t, x) = −p(t, x),

∂p

∂ν
(t, x) + δtt(t, x) = 0, t > 0, x ∈ ∂Ω.(1.6)

In [2], where this boundary model is formulated for the velocity potential, spectral
properties of the generator of the solution semigroup are given.

Looking for more general results, we find in [11, Equation (6.3.11)] that the
pressure of the combination of a wave F (Ti), Ti = t − (x1 sin θ − x2 cos θ), that is
incident at angle θ onto the surface x2 = 0, with the reflected wave in direction
Tr − t = −(x1 cos θ + x2 cos θ), is of the form

p(t, x) = F (Ti) + F (Tr) +

∫ +∞

−∞
F (τ)W (Tr − τ) dτ.(1.7)

Here W represents the modification of the reflected wave that is caused by the
motion of the surface. This means that a general linear reflection process is to be
modeled by convolution of the acoustic wave with a function that characterizes the
boundary material. In order to cast (1.4)–(1.6) into a common form, we write

∂p

∂ν
(t, x) + dk ∗ pt(t, x) = 0, t > 0, x ∈ ∂Ω,(1.8)

where dk ∗ pt(t, x) =
∫ t
0
dk(τ, x)pt(t− τ, x).

Another approach that also leads to convolution boundary conditions of the form
(1.8) is the modeling of the boundary as the surface of a viscoelastic material.

In this paper, we are concerned more precisely with the asymptotic behavior of
solutions to the following problem:

u′′ −∆u = 0 in Ω×R+,(1.9)

u = 0 on Γ0 ×R+,(1.10)

∂u

∂ν
+

∫ t

0

k(t− s, x)u′(s) ds + a(x)g(u′) = 0 on Γ1 ×R+,(1.11)

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω,(1.12)

where Ω ⊂ Rn is an open bounded domain with boundary Γ = Γ0 ∪ Γ1 of class
C2, a : Γ1 → R+ ∈ L∞(Γ1) is such that a(x) ≥ a0 > 0, k : R+ × Γ1 → R+ ∈
C2(R+, L∞(Γ1)), and g : R → R is a continuous nondecreasing function such that
g(0) = 0 and |g(x)| ≤ 1 + C|x|, C > 0.

Problems related to (1.9)–(1.12) were studied by many authors, e.g., Muñoz
Rivera [12], Tadayuki and Rinko [17], Prüss [14], Dix and Torrejon [5], Guesmia [6],
Propst and Prüss [13], Renardy, Hrusa, and Nohel [16], and the references therein.

Our paper is organized as follows. In section 2, we state our main results. In
section 3 we give the proofs, and in section 4 we study the strong asymptotic stability
under weak assumptions on Ω and g.
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2. Main results. The following hypotheses are made on Ω and on the functions
k and g:

Γ0 �= ∅ or inf
Γ1×R+

k �= 0,(2.1)

m · ν ≥ δ > 0 on Γ1, m · ν ≤ 0 on Γ0, m(x) = x− x0(x0 ∈ Rn),(2.2)

k ≥ 0 on Γ1 ×R+,(2.3)

k′ ≤ 0 on Γ1 ×R+,(2.4)

∃α > 0, k′′ ≥ −αk′ on Γ1 ×R+,(2.5)

C1|x|p ≤ |g(x)| ≤ C2|x|1/p if |x| ≤ 1,(2.6)

C3|x| ≤ |g(x)| ≤ C4|x| if |x| ≥ 1,(2.7)

where p ≥ 1 and Ci (1 ≤ i ≤ 4) are four positive constants.
Remark 2.1. (1) An example of function k satisfying (2.3)–(2.5) is

k(t, x) = f(x) e−αt + g(x) on Γ1 ×R+,

where f, g ∈ L∞(Γ1,R+).

(2) The condition (2.1) implies that the formula
∫
Ω
|∇u|2 dx+

∫
Γ1

k |u|2 dΓ defines

a norm on H1(Ω) equivalent to the usual one.
(3) The condition (2.2) implies that Γ0∩Γ1 = ∅, and Ω is star-shaped with respect

to x0. It could be weakened, as was done in [8].
For the sake of completeness, we give a brief outline of the well-posedness of

problem (1.9)–(1.12). This problem could be rewritten in the following form:

〈u′′, v〉+

∫ t

0

dβ (t− τ, u′(τ), v) + α(u, v) +

∫
Γ1

a(x)g(u′)v dΓ = 0,(2.8)

u(0) = u0, u′(0) = u1,(2.9)

where

β(t, u, v) =

∫
Γ

k(t, x)u(x)v(x) dΓ, β(0, u, v) = 0, t > 0, u, v ∈ H1
Γ0

(Ω),

H1
Γ0

(Ω) =
{
u ∈ H1(Ω); u = 0 on Γ0

}
,

α(u, v) =

∫
Ω

∇u · ∇v dx, u, v ∈ H1
Γ0

(Ω).
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The problem (2.8)–(2.9) could be reformulated as an evolutionary integral equa-
tion of variational type, and thanks to the monotonicity and to the growth condition
|g(x)| ≤ 1 + C|x| assumed on the function g, we can have access to the results and
methods developed in section 6 of Prüss [14] to obtain the following theorem.

Theorem 2.1. For all given initial data (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω), problem
(1.9)–(1.12) admits a unique global weak solution

u ∈ C
(
R+, H1

Γ0
(Ω)
) ∩ C1

(
R+, L2(Ω)

)
.(2.10)

Furthermore, if (u0, u1) ∈ (H2(Ω) ∩H1
Γ0

(Ω)
)×H1

Γ0
(Ω) and g is globally Lipschitz

continuous, then the solution has the following regularity:

u ∈ C
(
R+, H2(Ω)

) ∩ C1
(
R+, H1

Γ0
(Ω)
) ∩ C2

(
R+, L2(Ω)

)
.(2.11)

We define the energy of the solution given by (2.10) by the following formula:

E(t) :=
1

2

∫
Ω

(
|u′(t, x)|2 + |∇u(t, x)|2

)
dx+

1

2

∫
Γ1

k(t, x) |u(t, x)− u0(x)|2 dΓ(2.12)

−1

2

∫
Γ1

∫ t

0

k′(t− s, x) |u(t, x)− u(s, x)|2 ds dΓ.

Our main results are the following.
Theorem 2.2. Assume that hypotheses (2.1)–(2.7) hold and that

α inf
Γ1

k(0) > −2 inf
Γ1

k′(0).(2.13)

Then we have

E(t) ≤ CE(0)e−ωt if p = 1, C > 0, ω > 0, t ≥ 0,(2.14)

E(t) ≤ CE(0)

(1 + t)2/(p−1)
if p > 1, C > 0, t ≥ 0(2.15)

for every weak solution to (1.9)–(1.12) and initial data (u0, u1) ∈ H1
0 (Ω)× L2(Ω).

Remark 2.2. Theorem 2.2 has a serious drawback: it never can be applied for
bounded functions g (because of C3 > 0 in (2.7)). The purpose of the following
theorem is to obtain a variant of Theorem 2.2 for bounded feedback functions.

Theorem 2.3. Assume (2.1)–(2.5) and assume that the function g is bounded
and globally Lipschitz continuous and that the inequalities (2.6) are satisfied with some
positive constants C1, C2 and with a number p satisfying

p ≥ n− 1.(2.16)

Then for every strong solution u to (1.9)–(1.12) we have

E(t) ≤ CE(0)

(1 + t)2/(p−1)
, C > 0, t ≥ 0.(2.17)

To end this section, we recall the following useful lemma.
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Lemma 2.4 (see [7, Lemma 9.1]). Let E : R+ → R+ be a nonincreasing function
and assume that there exist two constants α > 0 and T > 0 such that

∫ +∞

t

Eα+1(s) ds ≤ TE(0)αE(t) for all t ∈ R+.(2.18)

Then we have

E(t) ≤ E(0)

(
T + αt

T + αT

)−1/α

for all t ≥ T.(2.19)

3. Proofs. To justify all the computations that follow, we will assume that u is
a strong solution and that by a classical density argument the results of Theorem 2.2
still hold for the weak solution.

To simplify the computations and without lost of generality, we will transform
the boundary condition (1.11) in another more practical one considering u0 = 0 on
Γ1.

A simple integration by parts yields

∫ t

0

k(t− s, x)u′(s, x) ds

= [k(t− s, x)u(s, x)]
t
0 +

∫ t

0

k′(t− s, x)u(s, x) ds

=

∫ t

0

k′(t− s, x)u(s, x) ds + k(0, x)u(t, x).

Hence, the problem (1.9)–(1.12) is now transformed into

u′′ −∆u = 0 in Ω×R+,(3.1)

u = 0 on Γ0 ×R+,(3.2)

∂u

∂ν
+

∫ t

0

k′(t− s, x)u(s, x) ds + k(0)u + a(x)g(u′) = 0 on Γ1 ×R+,(3.3)

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.(3.4)

Lemma 3.1. The energy defined by (2.12) is nonincreasing and it holds that

1

2

∫ T

S

∫
Γ1

∫ t

0

k′′(t− s) (u(t)− u(s))
2
ds dΓ dt +

∫ T

S

∫
Γ1

a(x)g(u′)u′ dΓ dt

−1

2

∫ T

S

∫
Γ1

k′ |u|2 dΓ dt = E(S)− E(T ) ≤ E(S)

for every 0 ≤ S < T < +∞. In particular,
∫
g(u′)u′ ≤ c|E′(0)| for a suitable constant

c.
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Proof.

E(T )− E(S) =

∫ T

S

E′(t) dt

=

∫ T

S

∫
Ω

(u′u′′ +∇u · ∇u′) dx dt +

∫ T

S

∫
Γ1

kuu′ dΓ dt +
1

2

∫ T

S

∫
Γ1

k′ |u|2 dΓ dt

−
∫ T

S

∫
Γ1

∫ t

0

k′(t− s) (u(t)− u(s))u′(t) ds dΓ dt

−1

2

∫ T

S

∫
Γ1

∫ t

0

k′′(t− s) (u(t)− u(s))
2
ds dΓ dt.

Using (3.1)–(3.3) and the Green formula, we obtain

E(T )− E(S) = −
∫ T

S

∫
Γ1

a(x)g(u′)u′ dΓ dt +
1

2

∫ T

S

∫
Γ1

k′ |u|2 dΓ dt

−1

2

∫ T

S

∫
Γ1

∫ t

0

k′′(t− s) (u(t)− u(s))
2
ds dΓ dt

+

∫ T

S

∫
Γ1

uu′
(
k − k(0)−

∫ t

0

k′(t− s)ds

)
dΓ dt.

Hence

E(S)− E(T )

=

∫ T

S

∫
Γ1

a(x)g(u′)u′ dΓ dt +
1

2

∫ T

S

∫
Γ1

∫ t

0

k′′(t− s) (u(t)− u(s))
2
ds dΓ dt

−1

2

∫ T

S

∫
Γ1

k′ |u|2 dΓ dt.

Lemma 3.2. Setting

Mu := 2(m · ∇u) + (n− 1)u,

it holds that
∫ T

S

E
p−1
2

∫
Ω

(
|u′|2 + |∇u|2

)
dx dt

= −
[
E

p−1
2

∫
Ω

u′(Mu) dx

]T
S

+
p− 1

2

∫ T

S

E
p−3
2 E′

∫
Ω

u′(Mu) dx dt

+

∫ T

S

E
p−1
2

∫
Γ0

(m · ν) |∇u|2 dΓ dt +

∫ T

S

E
p−1
2

∫
Γ1

(m · ν)
(
|u′|2 − |∇u|2

)
dΓ dt

+

∫ T

S

E
p−1
2

∫
Γ1

(Mu)
∂u

∂ν
dΓ dt.
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Proof. We have

0 =

∫ T

S

E
p−1
2

∫
Ω

(Mu) (u′′ −∆u) dx dt

=

[
E

p−1
2

∫
Ω

u′(Mu) dx

]T
S

− p− 1

2

∫ T

S

E
p−3
2 E′

∫
Ω

u′(Mu)dx dt

−
∫ T

S

E
p−1
2

∫
Ω

(u′(Mu′) + (Mu)∆u) dx dt,

and ∫
Ω

(u′(Mu′) + (Mu)∆u) dx

=

∫
Ω

(
m · ∇(u′)2 + (n− 1) |u′|2 −∇u · ∇(Mu)

)
dx +

∫
Γ

(Mu)
∂u

∂ν
dΓ

=

∫
Ω

(
m · ∇(u′)2 + (n− 1) |u′|2 − 2 |∇u|2 −m · ∇ |∇u|2 − (n− 1) |∇u|2

)
dx

+

∫
Γ

(Mu)
∂u

∂ν
dΓ

= −
∫

Ω

(
|u′|2 + |∇u|2

)
dx +

∫
Γ

(
(m · ν)

(
|u′|2 − |∇u|2

)
+ (Mu)

∂u

∂ν

)
dΓ

= −
∫

Ω

(
|u′|2 + |∇u|2

)
dx +

∫
Γ0

(
−(m · ν) |∇u|2 + (2m · ∇u)

∂u

∂ν

)
dΓ

+

∫
Γ1

(m · ν)

(
(|u′|2 − |∇u|2) + (Mu)

∂u

∂ν

)
dΓ .

Since (3.2) implies that ∇u = ∂u
∂ν ν on Γ0, we obtain the desired result.

Lemma 3.3. It holds that

∫ T

S

E
p−1
2

∫
Ω

(
|u′|2 + |∇u|2

)
dx dt ≤ C(ε)E(S) + ε

∫ T

S

E
p+1
2 (t) dt + C(ε)E(S)

+(n− 1)

∫ T

S

E
p−1
2

∫
Γ1

u
∂u

∂ν
dΓ dt +

R2

δ

∫ T

S

E
p−1
2

∫
Γ1

(
∂u

∂ν

)2

dΓ dt,

where 0 ≤ S < T < +∞, R = ||m||L∞(Ω), C is a positive constant, ε is an arbitrary

small real number, and δ comes from (2.2).
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Proof. Here and in what follows C will denote various positive constants which
may be different at different occurences.

From the nonincreasingness of the energy, we deduce that∣∣∣∣E p−1
2

∫
Ω

u′M(u) dx

∣∣∣∣ ≤ CE,

∣∣∣∣E p−3
2 E′

∫
Ω

u′(Mu) dx

∣∣∣∣ ≤ −CE
p−1
2 E′ ≤ −C

(
E

p+1
2

)′
,

and ∫ T

S

E
p−3
2 E′

∫
Ω

u′(Mu)dx dt ≤ CE(S).

Thanks to the Young inequality, we have

2

∫ T

S

E
p−1
2

∫
Γ1

∂u

∂ν
(m · ∇u) dΓ dt

≤ δ

∫ T

S

E
p−1
2

∫
Γ1

|∇u|2 dΓ dt +
R2

δ

∫ T

S

E
p−1
2

∫
Γ1

(
∂u

∂ν

)2

dΓ dt,

and by the relations (2.6)–(2.7), we obtain∫
|u′|≤1

(m · ν) |u′|2 dΓ ≤ C

∫
|u′|≤1

(m · ν) (u′g(u′))
2

p+1 dΓ

≤ C

(∫
Γ1

(m · ν)u′g(u′) dΓ

) 2
p+1

≤ C (−E′)
2

p+1

and ∫
|u′|≥1

(m · ν) |u′|2 dΓ ≤
∫
|u′|≥1

(m · ν)u′g(u′)dΓ ≤ −CE′.

Hence ∫ T

S

E
p−1
2

∫
|u′|≤1

(m · ν) |u′|2 dΓ dt ≤ C

∫ T

S

E
p−1
2 (−E′)

2
p+1 dt

≤
∫ T

S

(
εE

p+1
2 − C(ε)E′

)
dt

≤ ε

∫ T

S

E
p+1
2 (t) dt + C(ε)E(S),(3.5)

and ∫ T

S

E
p−1
2

∫
|u′|≥1

(m · ν) |u′|2 dΓdt ≤ CE(S).(3.6)
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From this, it follows that

∫ T

S

E
p−1
2

∫
Ω

(
|u′|2 + |∇u|2

)
dx dt ≤ CE(S) + ε

∫ T

S

E
p+1
2 (t) dt

+C(ε)E(S) + (n− 1)

∫ T

S

E
p−1
2

∫
Γ1

u
∂u

∂ν
dΓ dt

+δ

∫ T

S

E
p−1
2

∫
Γ1

|∇u|2 dΓ dt +
R2

δ

∫ T

S

E
p−1
2

∫
Γ1

(
∂u

∂ν

)2

dΓ dt

−
∫ T

S

E
p−1
2

∫
Γ1

(m · ν) |∇u|2 dΓ dt,

and then we deduce the result by m · ν ≥ δ > 0 on Γ1.
Lemma 3.4. It holds that

−
∫ T

S

E
p−1
2

∫
Γ1

u
∂u

∂ν
dΓ dt

≤ CE(S) + ε

∫ T

S

E
p−1
2

∫
Ω

|u′|2 dx dt + ε

∫ T

S

E
p+1
2 (t)dt + C(ε)E(S)

for every ε > 0, 0 ≤ S < T <∞.
Proof. We will use the idea introduced by Conrad and Rao [4]. Let ϕ be a solution

of

−∆ϕ = 0 in Ω, ϕ = u on Γ.

By the classical results of elliptic partial differential equations theory we have
∫

Ω

∇ϕ · ∇u dx =

∫
Ω

|∇ϕ|2 dx,

∫
Ω

|ϕ|2 dx ≤ C

∫
Γ

|u|2 dΓ,

∫
Ω

|ϕ′|2 dx ≤ C

∫
Γ

|u′|2 dΓ.

Multiplying (3.1) with E
p−1
2 ϕ we obtain

−
∫ T

S

E
p−1
2

∫
Γ

ϕ
∂u

∂ν
dΓ dt = −

[
E

p−1
2

∫
Ω

u′ϕdx

]T
S

+
p− 1

2

∫ T

S

E
p−3
2 E′

∫
Ω

u′ϕdx dt

+

∫ T

S

E
p−1
2

∫
Ω

u′ϕ′dx dt−
∫ T

S

E
p−1
2

∫
Ω

∇u · ∇ϕdx dt.
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It follows that

[
E

p−1
2

∫
Ω

u′ϕdx

]T
S

≤ CE(S),

∫ T

S

E
p−3
2 E′

∫
Ω

u′ϕdx dt ≤ CE(S),

∫ T

S

E
p−1
2

∫
Ω

u′ϕ′dx dt

≤ ε

∫ T

S

E
p−1
2

∫
Ω

|u′|2 dx dt + C(ε)

∫ T

S

E
p−1
2

∫
Ω

|ϕ′|2 dx dt

≤ ε

∫ T

S

E
p−1
2

∫
Ω

|u′|2 dx dt + C(ε)

∫ T

S

E
p−1
2

∫
Γ1

|u′|2 dΓ dt

≤ ε

∫ T

S

E
p−1
2

∫
Ω

|u′|2 dx dt + C(ε)E(S) + ε

∫ T

S

E
p+1
2 (t)dt.

Lemma 3.5. Define

γ := γ(x) =
λ

k(0)
with λ > max

{
n− 1

2
,
R2

δ
||k(0)||L∞(Γ1)

}
.

Then it holds that
∫ T

S

E
p+1
2 (t) dt ≤ CE(S) + (1− λ)

∫ T

S

E
p−1
2

∫
Γ1

k(0) |u|2 dΓ dt

+2

∫ T

S

E
p−1
2

∫
Γ1

γ

(∫ t

0

k′(t− s)u(s) ds

)2

dΓ dt.

Proof. Thanks to (3.3) and to the Young inequality we have

R2

δ

(
∂u

∂ν

)2

+ (n− 1)u
∂u

∂ν

≤ γ

((
∂u

∂ν
+ k(0)u

)2

− k2(0) |u|2
)

+ (n− 1− 2γk(0))u
∂u

∂ν

≤ γ

(
a(x)g(u′) +

∫ t

0

k′(t− s)u(s) ds

)2

− λk(0) |u|2

+(n− 1− 2λ)u
∂u

∂ν

≤ 2γa2(x)g(u′)2 + 2γ

(∫ t

0

k′(t− s)u(s) ds

)2

− λk(0) |u|2

+(n− 1− 2λ)u
∂u

∂ν
.
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By (2.1)–(2.7) we obtain

2

∫
|u′|≤1

γa2(x)g(u′)2dΓ ≤ C

∫
|u′|≤1

(u′g(u′))
2

p+1 dΓ

≤ C

(∫
Γ1

u′g(u′)dΓ

) 2
p+1

≤ C (−E′)
2

p+1

and

2

∫
|u′|≥1

γa2(x)g(u′)2dΓ ≤ C

∫
|u′|≥1

u′g(u′) dΓ ≤ CE′.(3.7)

Hence

2

∫ T

S

E
p−1
2

∫
|u′|≤1

γa2(x)g(u′)2dΓ dt ≤ ε

∫ T

S

E
p+1
2 (t)dt + C(ε)E(S)

and

2

∫ T

S

E
p−1
2

∫
|u′|≥1

γa2(x)g(u′)2dΓ dt ≤ CE(S).

Consequently

∫ T

S

E
p−1
2

∫
Ω

(
|u′|2 + |∇u|2

)
dx dt

≤ CE(S) + ε

∫ T

S

E
p+1
2 (t) dt + C(ε)E(S)− λ

∫ T

S

E
p−1
2

∫
Γ1

k(0) |u|2 dΓ dt

+2

∫ T

S

E
p−1
2

∫
Γ1

γ

(∫ t

0

k′(t− s)u(s) ds

)2

dΓ dt

+(n− 1− 2λ)

∫ T

S

E
p−1
2

∫
Γ1

u
∂u

∂ν
dΓ dt.

On the other hand, from (2.5) it holds that

−1

2

∫ T

S

E
p−1
2

∫
Γ1

∫ t

0

k′(t− s) (u(t)− u(s))
2
ds dΓ dt

≤ 1

2α

∫ T

S

E
p−1
2

∫
Γ1

∫ t

0

k′′(t− s) (u(t)− u(s))
2
ds dΓ dt

≤ C

∫ T

S

E
p−1
2 E′dt ≤ CE(S)
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and

1

2

∫ T

S

E
p−1
2

∫
Γ1

k |u|2 dΓ dt ≤ 1

2

∫ T

S

E
p−1
2

∫
Γ1

k(0) |u|2 dΓ dt.

Thus from (2.12) and taking the inequalities above into account we deduce

2

∫ T

S

E
p+1
2 (t) dt ≤ (1− λ)

∫ T

S

E
p−1
2

∫
Γ1

k(0) |u|2 dΓ dt

+CE(S) + C(ε)E(S) + ε

∫ T

S

E
p+1
2 (t) dt

+2

∫ T

S

E
p−1
2

∫
Γ1

γ

(∫ t

0

k′(t− s)u(s) ds

)2

dΓ dt

−(2λ + 1− n)

∫ T

S

E
p−1
2

∫
Γ1

u
∂u

∂ν
dΓ dt.

From Lemma 3.4 , the last inequality yields

∫ T

S

E
p+1
2 (t) dt ≤ C(ε)E(S) +

(1− λ)

1− ε(2λ + 2− n)

∫ T

S

E
p−1
2

∫
Γ1

k(0) |u|2 dΓ dt

+
2

1− ε(2λ + 2− n)

∫ T

S

E
p−1
2

∫
Γ1

γ

(∫ t

0

k′(t− s)u(s) ds

)2

dΓ dt.

Lemma 3.6. Let ε > 0 be such that

ε inf
Γ1

k′(0) + 1 > 0.(3.8)

Then, for any 0 ≤ S < T <∞ we have

∫ T

S

E
p−1
2

∫
Γ1

γ

(∫ t

0

k′(t− s, x)u(s) ds

)2

dΓdt

≤ CE(S) +
λ

εα

∫ T

S

E
p−1
2

∫
Γ1

|u|2 dΓdt.

Proof. Let ε > 0 be such that (3.8) holds and we define

h := h(x) =
k(0)

α (1 + εk′(0))
on Γ1,(3.9)

I :=

(∫ t

0

k′(t− s, x)u(s) ds

)2

− h

∫ t

0

k′′(s) (u(t)− u(s))
2
ds + hk′u2.



DECAY RATES OF THE WAVE EQUATION WITH MEMORY 1593

By (3.8) it holds that h ≥ 0 and h ∈ L∞(Γ1). On the other hand we have

I ≤
(∫ t

0

−k′(t− s, x) ds

)(∫ t

0

−k′(t− s, x)u2(s) ds

)
− h

∫ t

0

k′′(t− s, x)u2(s) ds

+2hu

∫ t

0

k′′(t− s, x)u(s) ds + hk′(0)u2 − hk′u2 + hk′u2

≤ (k − k(0))

∫ t

0

k′(t− s, x)u2(s) ds− h

∫ t

0

k′′(t− s, x)u2(s) ds

+h

(
k′(0) +

1

ε

)
u2 + εh

(∫ t

0

k′′(t− s, x)u(s) ds

)2

.

Applying the Hölder inequality to the last integral in the above inequality and
using the fact that

∫ t

0

k′(t− s, x)u2(s) ds ≤ 0 and εhk′
∫ t

0

k′′(t− s, x)u2(s) ds ≤ 0,

we obtain

I ≤
[

1

α
k(0)− h (1 + εk′(0))

] ∫ t

0

k′′(t− s, x)u2(s) ds + h

(
k′(0) +

1

ε

)
|u|2 ,

and hence by (3.9) we have

I ≤ 1

εα
k(0) |u|2 .

As h ∈ L∞(Γ1), it holds that

∫ T

S

E
p−1
2

∫
Γ1

γI dΓdt ≤
∫ T

S

E
p−1
2

∫
Γ1

λ

εα
k(0) |u|2 dΓ dt,

∫ T

S

E
p−1
2

∫
Γ1

{
γ

(∫ t

0

k′(t− s, x)u(s) ds

)2

−h
∫ t

0

k′′(s) (u(t)− u(s))
2
ds + hk′ |u|2

}
dΓdt

≤
∫ T

S

E
p−1
2

∫
Γ1

1

εα
k(0) |u|2 dΓ dt,

and by Lemma 3.1 it follows that

∫ T

S

E
p−1
2

∫
Γ1

γ

(∫ t

0

k′(t− s, x)u(s) ds

)2

dΓdt

≤ CE(S) +
λ

εα

∫ T

S

E
p−1
2

∫
Γ1

|u|2 dΓdt.
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Hence we deduce from Lemma 3.5 that

∫ T

S

E
p+1
2 (t)dt ≤ CE(S) +

∫ T

S

E
p−1
2

∫
Γ1

(
(1− λ) k(0) +

2λ

εα

)
|u|2 dΓdt.

We would like to make a choice of λ such that

(1− λ) k(0) +
2λ

εα
≤ 0,

and then by Lemma 2.4 we deduce the desired decay rates.
The condition

α inf
Γ1

k(0) > −2 inf
Γ1

k′(0)

implies that

∃ε′ > 0 such that α inf
Γ1

k(0) > −(2 + ε′) inf
Γ1

k′(0).

We choose ε > 0 such that

−ε inf
Γ1

k′(0) =
ε′ + 4

2(ε′ + 2)
(we always have ε inf

Γ1

k′(0) + 1 > 0).

Then, we have

(1− λ)k(0) +
2λ

εα
=

λ

εα
(2− εαk(0)) + k(0)

≤ λ

εα

(
2 + ε(2 + ε′) inf

Γ1

k′(0)
)

+ k(0)

=
−ε′
2εα

λ + k(0).

Hence, if we choose

λ = max

{
n− 1,

(
R2

δ
+

2εα

ε′

)
||k(0)||L∞(Γ1)

}

(note that λ > max{n−1
2 , R

2

δ ||k(0)||L∞(Γ1)
} still holds), we obtain

(1− λ)k(0) +
2λ

ε
≤ 0.

Proof of Theorem 2.3. Repeating the same arguments as in Theorem 2.2, except
the part where the first inequality of (2.7) involving C3 is applied (cf. (3.5)–(3.7)), it
remains to establish the estimate

E
p−1
2

∫
Γ1

|u′|2 dΓ ≤ εE
p+1
2 − C(ε)E′(3.10)

for every ε > 0. Then the theorem will follow by applying Lemma 2.4.
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For brevity we shall denote the norm of Lβ(Γ) by ||·||β . Set

s :=
2

p + 1
and α :=

2− s

1− s
.

We have 0 < s < 1 and α := 2p
p−1 > 2. We establish for every ε > 0 the inequality

E
p−1
2

∫
Γ1,|u′|≥1

|u′|2 dΓ ≤ εE
p+1
2 ||u′||αα − C(ε)E′.(3.11)

Indeed, we deduce

E
p−1
2

∫
Γ1,|u′|≥1

|u′|2 dΓ ≤ CE
p−1
2

∫
Γ1,|u′|≥1

|u′|2−s (u′g(u′))s dΓ

≤ CE
p−1
2

∣∣∣
∣∣∣|u′|2−s

∣∣∣
∣∣∣

1
1−s

∣∣∣∣(u′g(u′))s
∣∣∣∣

1
s

≤ CE
p−1
2 ||u′||(1−s)αα ||u′g(u′)||s1

≤ CE
p−1
2 ||u′||(1−s)αα (−E′)s

≤ εE
p−1

2(1−s) ||u′||αα − C(ε)E′

= εE
p+1
2 ||u′||αα − C(ε)E′.

Using the trace theorem

H1(Ω) ↪→ L
2p

p−1 (Γ) = Lα(Γ),

which follows from (2.16), we have from (3.8) that

E
p−1
2

∫
Γ1

|u′|2 dΓ ≤ CεE
p+1
2 − C(ε)E′.

Hence, (3.10) follows with another ε.

4. Strong asymptotic stability. In this section we are interested in the fol-
lowing nonlinear damped wave equation with a memory term:

u′′ −∆u + g(u′) +

∫ t

0

h(t− τ)∆u(τ) dτ = 0 in Ω×R+,(4.1)

u = 0 on Γ×R+,(4.2)

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.(4.3)
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It is easy to verify that all the results of section 2 still hold for (4.1)–(4.3). However,
Theorems 2.2 and 2.3 are marked by the following features:

(a) the domain Ω is bounded;
(b) the dissipative term g is of a preassigned polynomial growth at the origin.
These assumptions are critically invoked in the proofs in the following ways:
(a) the boundedness of Ω allows the use of some compact imbedding theorems

(and LaSalle’s invariance principle can then be used to prove the strong asymptotic
stability);

(b) the polynomial growth at the origin of the dissipative term g allows the
construction of a standard Lyapunov function or the use of some specific integral
inequalities, which are then used to yield the desired decay rates.

Our goal in this section is to weaken considerably the above assumptions (a)–(b).
Indeed, in our formulation Ω is not necessarily bounded, and no growth assumption
at the origin is imposed on g. This results in major difficulties, which require the de-
velopment of a new approach in successfully solving the problem of strong asymptotic
stability. This approach was introduced by the first author in [1]. More precisely the
following assumptions are made on Ω, g and h:

(A1) Assumptions on Ω:

Ω is of finite measure.

(A2) Assumptions on g:

g : R→ R is locally Lipschitz continuous;

g(x)x > 0 for all x �= 0, g(0) = 0;

there exists q ≥ 2 satisfying (n− 2)q ≤ 2n and c1, c2 > such that

c1|x| ≤ |g(x)| ≤ c2|x|q for all |x| ≥ 1.

(A3) Assumptions on the kernel h:

h : R+ → R+ is a bounded C2 function;

there exists l > 0 such that

1−
∫ ∞

0

h(x) dx = l > 0,

and there exists a positive constant η such that

h′(t) ≤ −ηh(t) for all t ≥ 0.

We define the energy of a solution

u ∈ C(R+, H1
0 (Ω)) ∩ C1(R+, L2(Ω))(4.4)

by the following formula:

E(t) :=
1

2
|u′(t)|2 +

1

2
|∇u(t)|2.
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Our main result in this section is the following theorem.
Theorem 4.1. It holds that

E(t)→ 0 as t→ +∞
for every weak solution to (4.1)–(4.3) given by (4.4).

In a first step we will assume that we have a strong solution to justify all the
computations that follow, and by a classical density argument, the result of Theorem
4.1 still holds for weak solutions. The well-posedness can be derived from the same
arguments as in [14].

A simple computation shows that

E′(t) = −(g(u′), u′) +

∫ t

0

h(t− τ)(∇u(τ),∇u′(t)) dτ.

Let

(h ∇u)(t) :=

∫ t

0

h(t− τ)|∇u(t)−∇u(τ)|2 dτ ;(4.5)

hence it is not difficult to see, after integrating by parts, that

∫ t

0

h(t− τ)(∇u(τ),∇u′(t)) dτ = −1

2
(h ∇u)′(t) +

1

2
(h′ ∇u)(t)

+
1

2

d

dt

{(∫ t

0

h(s) ds

)
|∇u(t)|2

}
− 1

2
h(t)|∇u(t)|2.(4.6)

From (4.6) and the value of E′(t) we deduce that

d

dt

{
1

2
|u′(t)|2 +

1

2
|∇u(t)|2 +

1

2
(h ∇u)(t)− 1

2

(∫ t

0

h(s) ds

)
|∇u(t)|2

}

= −(g(u′), u′) +
1

2
(h′ ∇u)(t)− 1

2
h(t)|∇u(t)|2.(4.7)

Then, defining the modified energy e(t) by

e(t) :=
1

2
|u′(t)|2 +

1

2

(
1−

∫ t

0

h(s) ds

)
|∇u(t)|2 +

1

2
(h ∇u)(t)(4.8)

from (4.7) one has

e′(t) = −(g(u′), u′) +
1

2
(h′ ∇u)(t)− 1

2
h(t)|∇u(t)|2.(4.9)

Taking (4.8) into account we infer that

E(t) ≤Me(t) for all t ≥ 0,(4.10)

where M = max{l−1, 1}.
Our aim is to show that

E(t)→ 0 as t→ +∞,
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but in view of (4.10) it is enough to prove that

e(t)→ 0 as t→ +∞.(4.11)

Let us note that by the assumptions assumed on h we have

e′(t) ≤ 0 for all t ≥ 0.(4.12)

In order to prove (4.11), we need the three following lemmas.
Lemma 4.2. It holds that∫ t

0

∫
Ω

|ug(u′)| dxds = o(t), t→ +∞.

Lemma 4.3. It holds that∫ t

0

∫
Ω

|u′|2 dxds = o(t), t→ +∞.

Lemma 4.4. It holds that∫ t

0

J(s) ds = o(t), t→ +∞,

where

J(t) = −
(∫ t

0

h(s) ds

)
|∇u(t)|2 + (h ∇u)(t)

+

∫ t

0

h(t− τ)(∇u(τ),∇u(t)) dτ.(4.13)

Proof of Lemma 4.2. As g is locally Lipschitz continuous we have

∫
|u′|≤1

|ug(u′)| dx ≤ c

∫
Ω

(|u′| |g(u′)|) 1
2 |u| dx ≤ c

(∫
Ω

u′g(u′) dx
) 1

2

‖u‖L2(Ω).

Similarly, by (A2) we have

∫
|u′|>1

|ug(u′)| dx ≤ c

(∫
Ω

u′g(u′) dx
) q

q+1

‖u‖Lq+1(Ω).

Then from Hölder’s inequality we obtain

∫ t

0

∫
Ω

|ug(u′)| dxds ≤ c

(∫ t

0

∫
Ω

u′g(u′) dxds
) 1

2 √
t sup

[0,t]

‖u(s)‖L2(Ω)

+ct
1

q+1

(∫ t

0

∫
Ω

u′g(u′) dxds
) q

q+1

sup
[0,t]

‖u(s)‖Lq+1(Ω).

Using the Hölder, Sobolev, and Poincaré inequalities we have

‖u(s)‖L2(Ω) ≤ c ‖u(s)‖Lq+1(Ω) ≤ cE(s)
1
2 ≤ c e(0)

1
2 for all s ≥ 0.
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From these estimates it follows that

∫ t

0

∫
Ω

|ug(u′)| dxds ≤ c
√
t + ct

1
q+1 = o(t), t→ +∞.

Proof of Lemma 4.3. Let ε > 0 be an arbitrarily small real and set

M(ε) = sup

{
x

g(x)
; |x| ≥

√
ε

|Ω|
}

;

by hypotheses (A2), we have M(ε) < +∞. Clearly,

∫
|u′|<√ ε

|Ω|

|u′|2 dx ≤ ε.

On the other hand

∫
|u′|≥√ ε

|Ω|

|u′|2 dx =

∫
|u′|≥√ ε

|Ω|

|u′|
g(u′)

u′g(u′) dx ≤M(ε)

∫
Ω

u′g(u′) dx.

As

∫
|u′|≥√ ε

|Ω|

|u′|2 dx ≤ c
√

2e(0)

(∫
|u′|≥√ ε

|Ω|

|u′|2 dx
) 1

2

,

we deduce that

∫
Ω

|u′|2 dx ≤ ε + c
√

2e(0)M(ε)

(∫
Ω

u′g(u′) dx
) 1

2

,

and then by the Hölder inequality

∫ t

0

∫
Ω

|u′|2 dxds ≤ εt + c
√

2e(0)M(ε)
√
t

(∫ t

0

∫
Ω

u′g(u′) dxds
) 1

2

≤ εt + ce(0)
√

2M(ε)
√
t = o(t), t→ +∞,

by Lemma 4.2.

Proof of Lemma 4.4. Define

I1 :=

∫ t

0

h(t− τ)(∇u(τ),∇u(t)) dτ.
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We have

|I1| =
∣∣∣∣
∫ t

0

h(t− τ)(∇u(τ)−∇u(t),∇u(t)) dτ +

∫ t

0

h(t− τ)|∇u(t)|2 dτ
∣∣∣∣

≤ |∇u(t)|
∫ t

0

h(t− τ)|∇u(τ)−∇u(t)| dτ +

(∫ t

0

h(s) ds

)
|∇u(t)|2

≤ (esssupt≥0|∇u(t)|)
(∫ t

0

h(s) ds

)1/2(∫ t

0

h(t− τ)|∇u(t)−∇u(τ)|2 dτ
)1/2

+

(∫ t

0

h(s) ds

)
|∇u(t)|2;

that is,

|I1| ≤
(
esssupt≥0|∇u(t)|) ‖h‖1/2L1(0,∞) [(h ∇u)(t)]

1/2
+

(∫ t

0

h(s) ds

)
|∇u(t)|2.(4.14)

Define

I2 := (h ∇u)(t);

then we have

|I2| =
∫ t

0

h(t− τ)|∇u(t)−∇u(τ)|2 dτ

≤
∫ t

0

h(t− τ)
(|∇u(t)|+ |∇u(τ)|)|∇u(t)−∇u(τ)| dτ

≤ (2esssupζ≥0|∇u(ζ)|)
∫ t

0

h(t− τ)|∇u(t)−∇u(τ)| dτ

≤ (2esssupζ≥0|∇u(ζ)|)
(∫ t

0

h(s) ds

)1/2(∫ t

0

h(t− τ)|∇u(t)−∇u(τ)|2 dτ
)1/2

;

that is,

|I2| ≤
(
2esssupζ≥0|∇u(ζ)|) ‖h‖1/2L1(0,∞)(h ∇u)1/2(t).(4.15)

Combining (4.13), (4.14), and (4.15) we deduce that

J(t) ≤ (3esssupζ≥0|∇u(ζ)|) ‖h‖1/2L1(0,∞) [(h ∇u)(t)]
1/2

.(4.16)
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Thanks to the above inequality and to the hypotheses on h one has

J(t) ≤ (3esssupζ≥0|∇u(ζ)|) ‖h‖1/2L1(0,∞)

(
−1

η
(h′ ∇u)(t)

)1/2

≤ 3
√

2
(
E(0)

)1/2‖h‖1/2L1(0,∞)

(
−1

η
(h′ ∇u)(t)

)1/2

(4.17)

= c

(
−1

η
(h′ ∇u)(t)

)1/2

.

Integrating (4.17) over (0, t), we obtain from (4.9) that

∫ t

0

J(s) ds ≤ c

∫ t

0

1 ·
(
−1

η
(h′ ∇u)(s)

)1/2

ds

≤ c

(∫ t

0

1 ds

)1/2(∫ t

0

−1

η
(h′ ∇u)(s) ds

)1/2

= c
√
t

∫ t

0

(
−1

η
(h′ ∇u)(s)

)
ds ≤ 2c

η
e(0)
√
t = o(t), t→ +∞.

Proof of Theorem 4.1. Put

φ(t) := (u(t), u′(t));

then we have

φ′(t) = −|∇u(t)|2 − (g(u′), u) +

∫ t

0

h(t− τ)(∇u(τ),∇u(t)) dτ + |u′(t)|2.(4.18)

Adding and subtracting appropriate terms in (4.18) it follows that

φ′(t) = −2e(t) + 2|u′(t)|2 − (g(u′), u)

−
(∫ t

0

h(s) ds

)
|∇u(t)|2 + (h ∇u)(t) +

∫ t

0

h(t− τ)(∇u(τ),∇u(t)) dτ.(4.19)

That is,

φ′(t) = −2e(t) + 2|u′(t)|2 − (g(u′), u) + J(t).

Then, it follows that

φ(t)− φ(0) =

∫ t

0

{
2|u′(t)|2 − 2e(t)− (g(u′), u) + J(s)

}
ds.

Assume that, contrary to our claim, l := limt→∞ e(t) > 0. Then by Lemmas 4.2–4.4,
we have

φ(t)− φ(0) ≤ −2lt + o(t), t→ +∞.
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It follows that φ(t)→ −∞ as t→ +∞. But this is impossible because

∣∣∣∣
∫

Ω

uu′ dx
∣∣∣∣ ≤ c

∫
Ω

(|∇u|2 + u′2) dx ≤ ce(0).

We conclude that limt→+∞ E(t) = 0.
Remark 4.1. If g was linear or superlinear near zero, then it is sufficient to assume

that Ω is an open set in which the Poincaré inequality holds. If we, furthermore, add
the term u to (4.1), then we can assume that Ω = Rn.
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OPTIMAL POLICIES FOR n-DIMENSIONAL SINGULAR
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PART I: THE SKOROKHOD PROBLEM∗
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Abstract. An n-dimensional Brownian motion is controlled by adding a process of locally
bounded variation to it so as to minimize an expected infinite-horizon discounted cost. We show, by
direct probabilistic techniques, that the optimal control is a solution of a (generalized) Skorokhod
problem.

Key words. singular stochastic control, optimal policy, the Skorokhod problem

AMS subject classification. 93E20

PII. S0363012998347535

1. Introduction. Singular stochastic control of Markov processes is a class of
problems in which we are allowed to alter the drift of a process (usually the Brownian
motion) at a price proportional to the variation of the control used. Admissible
controls may not be absolutely continuous and may have jumps. The corresponding
Bellman equation for such a problem is a pair of differential inequalities, one of second,
the other of first order. The latter one determines the nonaction region C. It was
shown that in many cases the optimal control makes the underlying Markov process
a diffusion reflected at the boundary of C with an initial jump to its boundary if it
starts outside C. The first papers in which a problem of this type was considered are,
to our knowledge, [1, 2].

One of the problems that attracted the attention of researchers in this field was
to minimize

uM (x) = Ex

∫ ∞

0

e−t[h(Xt)dt+ dξt],(1)

where x ∈ Rn is fixed, h is a nonnegative, convex function (usually smooth),

Xt = x+
√
2Wt +Mt(2)

with Wt an n-dimensional Brownian motion, Mt any adapted process of bounded
variation over finite time-intervals, and ξt the variation of M up to time t. Variations
of this problem in one dimension were considered in [3, 4, 11, 12, 13, 16, 17, 19, 20, 24]
and other papers (see, e.g., [25] or [9] for more complete references). It was shown
that the corresponding value function u is twice continuously differentiable (smooth
fit), and the optimal policy is the Brownian motion reflected at the endpoints of the
interval in which the absolute value of the derivative of u is less than 1. Simplified
treatment of the one-dimensional case was later given in [6, 7].
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Generalization of these results to higher dimensions, however, is not straightfor-
ward. Some regularity of both the domain and the vector field determining the reflec-
tion direction is necessary to define the Brownian motion reflected at the boundary of
such a domain (see, e.g., [14, 23, 30, 33]). In the two-dimensional case, C2,α regularity
was obtained for both the value function and the boundary of the nonaction region
by PDE methods: elliptic regularity and regularity for free-boundary problems [29].
In dimensions greater than two only partial results are known: the value function is
W 2,∞
loc ; the optimal policy exists and is unique [26, 31], keeps the controlled process

in some compact set D̃ containing C, and does not act in C [25]. Regularity of the
free boundary away from some corner points for a similar n-dimensional problem was
shown in [34].

Let us also mention that this class of stochastic control problems is closely related
to the target zone models of the foreign exchange rates (see, e.g., [21]). In fact, our
initial motivation for considering it was to use it in multilateral target zone modeling.

In this article we prove, by a direct probabilistic argument, that in any dimension
the optimal policy minimizing (1) is a solution to the Skorokhod problem (in a slightly
generalized sense, to be defined later). This approach, however, leaves the question of
smooth fit in higher dimensions unanswered. The second part examines the case of a
radially symmetric running cost h and considers a similar problem with ergodic (in-
stead of exponential) discounting in which we limit the admissible controlled processes
to Brownian motions reflected normally at the boundary of some domain.

2. The optimal policy as a solution to the Skorokhod problem.

2.1. Definitions and assumptions. Let (Wt,Ft, t ≥ 0) be a standard n-
dimensional Brownian motion defined on a complete probability space (Ω,F , P ). Let
{Ft} be the augmentation of the filtration generated by W (see [18, p. 89]). Let, for
a given x ∈ Rn, a process Xt be defined by (2), where Mt is a left-continuous process
adapted to Ft such that (s.t.), for all T > 0, P almost surely (a.s.), the variation of
M.(ω) on the interval [0, T ] is finite. As is customary in singular stochastic control
theory, we write

Mt =

∫ t

0

Nsdξs,(3)

where |Nt| = 1 for every t ≥ 0 a.s. and ξ is nondecreasing and left-continuous. In
other words, ξt(ω) is the total variation of M.(ω) on the interval [0, t], Nt(ω) is the
Radon–Nikodym derivative of the measure induced on [0,∞) by M.(ω) with respect
to its total variation ξ.(ω). In what follows, we shall always describe Mt as (Nt, ξt).

Let h : Rn → R be a strictly convex function satisfying, for appropriate positive
constants C0, c0, and q > 1, the following conditions:

h ∈ C2,1(Rn),(4)

0 ≤ h(x) ≤ C0(1 + |x|q),(5)

|h(x)− h(x+ x′)| ≤ C0(1 + h(x) + h(x+ x′))1−1/q|x′|,(6)

h(x+ λx′) + h(x− λx′)− 2h(x) ≤ C0λ
2(1 + h(x))r, r =

(
1− 2

q

)+

,(7)

c0|y|2 ≤ D2h(x)y · y(8)



OPTIMAL POLICIES—SKOROKHOD PROBLEM 1605

for all x, x′ ∈ Rn, |x′| ≤ 1, 0 ≤ λ ≤ 1. These conditions are similar to those in [26].
(As the authors of that paper expressed it, (5), (6), (7) say that “h is roughly speaking
of polynomial growth.”) In particular, (6) yields

|∇h(x)| ≤ C̃0(1 + h(x))(9)

and (7) yields

D2h(x)y · y ≤ C0(1 + h(x))|y|2,(10)

so the assumptions of [29] are also satisfied. We need them because we want to use
the results from both these papers. It may be a good idea to see how (5)–(8) work
for a quadratic function (Ax, x) with a symmetric positive definite matrix A in order
to get used to them.

For convenience, we assume that infx∈Rn h(x) = h(0) = 0.
For a given control process (N, ξ), we define the corresponding cost by

V(N,ξ)(x) = Ex

∫ ∞

0

e−t[h(Xt)dt+ dξt].(11)

The task is to minimize V(N,ξ)(x) in the class of all admissible controls, i.e., to find

u(x) = inf
N,ξ

V(N,ξ)(x),(12)

where (Nt, ξt) are as described above. If this minimum is attained for some (Ñ , ξ̃),
we say that

νt =

∫ t

0

Ñsdξ̃s(13)

is an optimal policy (for x).
Definition 2.1. If, for a sequence (Nn, ξn) of controls,

u(x) = lim
n→∞V(Nn,ξn)(x),(14)

we say that (Nn, ξn) is a sequence of ε-optimal policies (for x).
To avoid unnecessary complications in the exposition of the proofs, we will use

this definition rather than (as is done usually) check that for a given control (N, ξ)
u(x) ≥ V(N,ξ)(x)− ε.

Lemma 2.2. The optimal policy (if it exists) is unique.
Lemma 2.3. For every x ∈ Rn there exists a unique optimal policy ν∗. Moreover,

if (Nn, ξn) is a sequence of ε-optimal policies for x, then we can extract from it a
subsequence nk →∞ s.t.

νnk
t =

∫ t

0

Nnk
s dξnk

s → ν∗t(15)

for Leb × P almost all (t, ω), where Leb is the Lebesgue measure on [0,∞).
These lemmas are essentially proved in [26]. It can be shown, by a direct control-

theoretic approach given in [26], that the value function u ∈W 2,∞
loc and, moreover, it

satisfies the Bellman equation

max(u−�u− h, |∇u|2 − 1) = 0(16)

in Rn (see the appendix at the end of this paper (section 3) for further discussion).
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It can also be proven by PDE methods that (16) admits a unique nonnegative,
convex W 2,∞

loc solution (see [8, 15, 29]). Nonnegativity and convexity of the value
function are easy consequences of its definition (see [9, Lemma VIII.3.2]), so the value
function u is a unique nonnegative, convex W 2,∞

loc solution of the Bellman equation
(16).

In what follows, let us denote the total variation of a function f(s) on an interval
[0, t] by

∨
[0,t] f .

As we have mentioned before, for n = 1 or 2 it is known that u ∈ C2,α for every
α ∈ (0, 1). In both cases, the optimal policy makes Xt a Brownian motion reflected
at ∂C at the direction of −∇u, where

C = {x ∈ Rn : |∇u(x)| < 1}.(17)

More precisely, the optimally controlled process Xt solves the following problem (with
G := C, v := −∇u).

Definition 2.4. Let G be an open domain in Rn, S = ∂G. Let x0 ∈ G and let
v be an unit vector field defined on S, i.e., for each x ∈ S, |v(x)| = 1, pointing inside
G (in particular, nontangential to S). We say that a continuous process

νt =

∫ t

0

Nsdξs,(18)

where ξt =
∨

[0,t] ν, is a solution to a Skorokhod problem for reflected Brownian motion

in G starting at x0 with reflection direction v along S if
(a) |Nt| ≡ 1, ξt is continuous and nondecreasing;
(b) the process Xt defined by

Xt = x0 +
√
2Wt +

∫ t

0

Nsdξs(19)

satisfies

Xt ∈ G, 0 ≤ t <∞, a.s.;(20)

(c) for every 0 ≤ t <∞

ξt =

∫ t

0

I[Xs∈∂G,Ns=v(Xs)]dξs.(21)

This is what is customarily called a solution to the Skorokhod problem for Wt,
G, v (see, e.g., [23]).

Now we shall give a slightly modified definition of a solution to the Skorokhod
problem.

Definition 2.5. Let G be an open domain in Rn, S = ∂G. Let x0 ∈ G and let
v be a continuous unit vector field defined on S, i.e., for each x ∈ S |v(x)| = 1. We
say that a left-continuous process

νt =

∫ t

0

Nsdξs,(22)

where |Nt| = 1, ξt =
∨

[0,t] ν, is a solution to the modified Skorokhod problem for

reflected Brownian motion in G starting at x0 with reflection direction v along S if
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(a) with probability 1, every possible jump of the process

Xt = x0 +
√
2Wt + νt(23)

occurs on some interval I contained in S and parallel to the vector field v on I, i.e.,
such that for all x̃ ∈ I, v(x̃) is parallel to I. If Xt encounters such an interval I, it
instantaneously jumps to its endpoint in the direction of v on I.

Stating this condition more formally, (a.s. ω ∈ Ω for all t ≥ 0), the following
statement is true: ξt+(ω) > ξt(ω) (i.e., the trajectory X.(ω) has a jump at t) iff there
exists a closed interval

I = {z0 + tv(x) : t ∈ [0, c]} ⊆ S,(24)

where z0 ∈ Rn, c > 0, x = Xt(ω), s.t. x ∈ I and v(x̃) is parallel to I for every
x̃ ∈ I. Also, if we assume that I is a maximal interval with such properties (i.e.,
there is no Ĩ enjoying the same properties and s.t. I is properly contained in Ĩ), then
Xt+(ω) = z0 + cv(x), and (b), (c) are as in the previous definition.

In particular, if intervals of the type described in (a) do not exist (e.g., v is never
tangential to S or G is strictly convex), then ξt is continuous in [0,∞) a.s. ω, and this
definition reduces to the previous one.

The goal of this paper is to prove the following theorem in any dimension n.
Theorem 2.6. For every x ∈ C the optimal policy νt =

∫ t
0
Nsdξs is a solution to

the modified Skorokhod problem for Wt, C, −∇u.
Intuitively, such a theorem should be true because for the optimally controlled

process Xt all the inequalities in the corresponding verification theorem (see, e.g.,
Theorem VIII.4.1 in [9]) must, in fact, be equalities. We actually use this idea in one
of the stages of our proof.

The rest of this paper is entirely devoted to the proof of Theorem 2.6. The proof
is long and proceeds in several steps. In subsection 2.2 we construct a sequence of
ε-optimal policies which are used in subsection 2.3 to prove the condition (b) from
Definition 2.5. Subsection 2.4 contains the proof of (c). To prove (a), we need one
of the consequences of the Bellman principle and the strong Markov property of the
optimally controlled process. We show them in subsection 2.5; the following subsection
provides the proof of (a). The concluding subsection 2.7 contains further discussion
of some details of the proof.

2.2. Some ε-optimal policies. Let, for every ε > 0,

Cε = {|∇u|2 < 1− ε}, Sε = ∂Cε.(25)

In the set C (defined by (17)), u ∈ C4,α for every α ∈ (0, 1).
Indeed, let B be any open ball such that B ⊆ C. By Theorem 6.13 of [10], the

Dirichlet problem

ũ−�ũ = h

in B,

ũ = u(26)

on ∂B, has a solution ũ ∈ C0(B) ∩ C2,α(B). In particular, ũ− u ∈ W 2,∞(B), so, by
(26), ũ − u ∈ W 1,2

0 (B) (see [10, p. 154]). By Theorem 8.9 of [10], u ≡ ũ in B, so
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u ∈ C2,α(B). By Theorem 6.17 of [10], u ∈ C4,α(B) (and thus u ∈ C4,α(C)) for all
α ∈ (0, 1).

Also, u is strictly convex in C (see (4.10) of [29]). Thus in C ε
2
, by compactness,

inf
x∈C ε

2

inf
ν∈Rn,|ν|=1

(D2u)ν · ν ≥ cε > 0.(27)

In particular, if w = |∇u|2,
∇w(x) �= 0 for all x ∈ Sε,(28)

because for ν = ∇u
|∇u| , x ∈ Sε,

w(x) = 1− ε, w(x) =

∣∣∣∣∂u∂ν
∣∣∣∣
2

,(29)

∂2u

∂ν2
≥ cε near Sε,(30)

so

√
w(x+ λν) ≥ ∂u

∂ν
(x+ λν)(31)

≥ ∂u

∂ν
(x) +

cε
2
λ(32)

=
√
w(x) +

cε
2
λ(33)

for λ small enough, so

∂
√
w(x)

∂ν
≥ cε

2
(34)

on Sε, which clearly implies ∂w(x)
∂ν �= 0 on Sε. Thus, by the implicit function theorem,

Sε is a C
3,α hypersurface for every α ∈ (0, 1). Of course, the vector field

v(x) = − ∇u(x)|∇u(x)|(35)

is also C3,α in the neighborhood of Sε.
Lemma 2.7. v(x) is not tangential to Sε.
Proof. Suppose that, at x ∈ Sε, ∇u(x) is tangential to Sε. Then, by (33) and

v(x) = −ν(x),
√
w(x− λv(x)) ≥

√
w(x) +

cε
2
λ =
√
1− ε+ cε

2
λ(36)

for small λ > 0. But, on the other hand, v(x) is tangential to Sε = {w(x) = 1− ε}, so
w(x− λv(x)) = w(x) +O(λ2) = 1− ε+O(λ2),(37)

a contradiction.
One can also see that ∇u points outside (not inside) Cε (actually, it is proven

in [29] that |∇u| increases in the direction of ∇u), so it is possible to define an
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instantaneous reflection at Sε in the direction v(x), i.e., the solution to the Skorokhod
problem for Wt, Cε, v(x) (see [23]). We shall denote it by

νεt =

∫ t

0

N ε
sdξ

ε
s.(38)

Lemma 2.8. νεt are ε-optimal policies for our control problem.

Proof. The value function u satisfies

�u− u+ h = 0 in Cε(39)

and

∂u

∂v
= −

√
w(x) = −√1− ε on ∂Cε.(40)

(Recall that v is the direction of −∇u, so √w(x) = |∂u∂v | = −∂u
∂v .)

Thus, by Itô’s rule for continuous semimartingales (see, e.g., [18, Theorem 3.3.6])
applied to e−tu(Xε

t ), where

Xε
t = x+

√
2Wt + νεt ,(41)

taking into account the fact that C is bounded [29, Lemma 4.4], we get

u(x) = Ex

∫ ∞

0

e−t[h(Xε
t )dt+

√
w(Xε

t )dξ
ε
t ]

= Ex

∫ ∞

0

e−t[h(Xε
t )dt+

√
1− εdξεt ]

≥ √1− ε Ex

∫ ∞

0

e−t[h(Xε
t )dt+ dξεt ](42)

=
√
1− ε Jx(νε),

where Jx(ν̃) denotes the cost associated with choosing the policy

ν̃t =

∫ t

0

Ñsdξ̃s,(43)

i.e.,

Jx(ν̃) = Ex

∫ ∞

0

e−t[h(X̃t)dt+ dξ̃t],(44)

and

X̃t = x+
√
2Wt + ν̃t.(45)

(The inequality in (42) is true because h ≥ 0.)

This proves ε-optimality of νε.
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2.3. The optimal policy keeps the process in C. By Lemmas 2.3 and 2.8
we see that, for any fixed x ∈ C, there exists a sequence εk ↓ 0 s.t.

νεk → ν almost everywhere (a.e.) Leb × P on [0,∞)× Ω,(46)

where νεk are defined by (38) and

νt =

∫ t

0

Nsdξs(47)

is the unique optimal policy. Let

Xt = x+
√
2Wt + νt(48)

be the optimally controlled process.
Lemma 2.9. Xt ∈ C for all 0 ≤ t <∞ a.s. if x ∈ C.
Proof. Let

A = {ω : (Xεk
t )(ω) ∈ Cεk for all 0 ≤ t <∞ and all k ≥ 0}.(49)

From the definition of νεt (see the paragraph preceding (38)) and (41) we know that
P (A) = 1. Cεk ⊆ C for all ε > 0, so for ω ∈ A and every t ≥ 0, Xεk

t (ω) ∈ C. Also let

B = {ω : Xεk(ω)→ X(ω) a.e. Leb on [0,∞)}.(50)

By (46) P (B) = 1. For all ω ∈ A ∩ B, Xt(ω) ∈ C Leb a.e. on [0,∞), because C is
closed. But ν is left-continuous, so νt(ω) ∈ C for all 0 ≤ t < ∞ and ω ∈ A ∩ B (for
t = 0 it is true because X(0) = x ∈ C). The proof is complete.

Remark. The statement of the last lemma is also true for x ∈ ∂C. Indeed, in this
case let xn ∈ C be s.t. xn → x and suppose we want to control the process starting
at x. Policies

ν̃x
n

= νx
n

+ xn − x(51)

jump at time 0 from the starting point x to xn and then follow νxn , the optimal policy
for the process starting at xn. Because xn → x and u is continuous, it is easy to see
that ν̃x

n

is a sequence of ε-optimal policies for x and, by the last lemma,

Xn
t = x+

√
2Wt + ν̃x

n

= xn +
√
2Wt + νx

n ∈ C(52)

for all 0 ≤ t < ∞ a.s. Repeating the proof of the last lemma we see that also the
optimally controlled process

Xt = x+
√
2Wt + νxt ∈ C for all 0 ≤ t <∞ a.s.(53)

2.4. The optimal policy acts only on ∂C, and its push direction is −∇u.
To prove (c) from Definition 2.5 (with G = C, v = −∇u), we would like to use Meyer’s
version of Itô’s rule for semimartingales to e−tu(Xt) and proceed similarly as in the
proof of Theorem 3.1 in [29]. The problem is that we cannot assume u ∈ C2, only
u ∈ W 2,∞

loc . A standard way to overcome this difficulty is to use a regularization of
u by convolutions (see, e.g., [9, proof of Theorem VII.4.1]). Another regularization,
perhaps more natural in this context, will be discussed in remark (2) in section 2.7.
(Alternatively, we can apply Itô’s formula directly to our case, without going through
the regularization, if we use the results from [32].)
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Let φ ∈ C∞, φ ≥ 0, supp φ ⊆ B1 = {x : |x| ≤ 1}, ∫
Rn φ = 1. Let φε =

φ( x
ε )

εn and
let

ũε(x) = (u ∗ φε)(x) =
∫
Rn

u(y)φ(x− y)dy,(54)

ũε ∈ C∞. Let hε = h ∗ φε.
From (16)

u−�u ≤ h, |∇u| ≤ 1,(55)

so

ũε −�ũε ≤ hε, |∇ũε| ≤ 1 in Rn.(56)

Let T > 0. Using Meyer’s version of Itô’s rule for semimartingales [27, pp. 278, 301],
we get

Ex(e−T ũε(XT )) = ũε(x)

+ Ex

∫ T

0

e−t(�ũε − ũε)(Xt)dt

+ Ex

∫ T

0

e−t∇ũε(Xt)Ntdξt

+ Ex



∑

0≤t<T
e−t(ũε(Xt+)− ũε(Xt)−∇ũε(Xt)Nt(ξt+ − ξt))


 .

(The last term keeps account of jumps of Xt.)
By (56), we get

Ex(e−T ũε(XT )) + Ex

∫ T

0

e−thε(Xt)dt− Ex

∫ T

0

e−t∇ũε(Xt)Ntdξt

+Ex



∑

0≤t<T
e−t(ũε(Xt)− ũε(Xt+) +∇ũε(Xt)Nt(ξt+ − ξt))




≥ ũε(x).(57)

Now, Xt ∈ C for all t ≥ 0 a.s. and, by Lemma 4.4 from [29], C is bounded. Because
u, ∇u, D2u are bounded on BR = {x : |x| ≤ R}, where C ⊆ BR−1, we infer that hε,
ũε, ε < 1 are bounded uniformly on C and

ũε → u, ∇ũε → ∇u, hε → h uniformly in C.(58)

On the other hand,

u(x) = Ex

∫ ∞

0

e−t[h(Xt)dt+ dξt](59)

because ν is the optimal policy. In particular,

Ex

∫ ∞

0

e−tdξt <∞,(60)
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so

Ex

∫ T

0

e−tdξt <∞.(61)

Thus, using the bounded convergence theorem, we get from (57)

Ex(e−Tu(XT )) + Ex

∫ T

0

e−th(Xt)dt− Ex

∫ T

0

e−t∇u(Xt)Ntdξt

+Ex



∑

0≤t<T
e−t(u(Xt)− u(Xt+) +∇u(Xt)Nt(ξt+ − ξt))




≥ u(x).(62)

The last term on the left-hand side is nonpositive because of convexity of u (recall
that, by (48) and (47), Nt(ξt+ − ξt) = Xt+ −Xt), so we arrive at

Ex(e−Tu(XT )) + Ex

∫ T

0

e−th(Xt)dt− Ex

∫ T

0

e−t∇u(Xt)Ntdξt ≥ u(x).(63)

Letting T go to infinity we get, because of boundedness of Xt, |∇u| ≤ 1, |Nt| = 1,
and (60),

Ex

∫ ∞

0

e−th(Xt)dt− Ex

∫ ∞

0

e−t∇u(Xt)Ntdξt ≥ u(x).(64)

Using this inequality and (59) we arrive at

Ex

∫ ∞

0

e−t(−∇u(Xt))Ntdξt ≥ Ex

∫ ∞

0

e−tdξt,(65)

i.e.,

Ex

∫ ∞

0

e−t(1 +∇u(Xt)Nt)dξt ≤ 0.(66)

But |∇u(Xt)Nt| ≤ 1 by |Nt| = 1, |∇u| ≤ 1, so (66) gives

−∇u(Xt)Nt = 1, dξ a.e. on [0,∞), P a.s.(67)

In particular, because |∇u| < 1 in C,

Xt ∈ Rn − C, dξ a.e. on [0,∞), P a.s.,(68)

so

Xt ∈ ∂C, dξ a.e. on [0,∞), P a.s.(69)

But if Xt ∈ ∂C, |∇u(Xt)| = 1, so (67) can hold only if

Nt = −∇u(Xt), dξ a.e. on [0,∞), P a.s.(70)

Statements (69) and (70) prove the condition (c) from Definition 2.5.
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2.5. The optimally controlled Brownian motion is a Markov process.
Let V be the set of admissible policies (described in subsection 2.1). It is known that
for singular stochastic control problems the Bellman principle holds; i.e., for every
stopping time T of the filtration (Ft) and every x ∈ Rn

u(x) = inf
ν̃

{
Ex

∫ T

0

e−t[h(X̃t)dt+ dξ̃t] + Ex(e−Tu(X̃T ))

}
,(71)

where X̃t, ν̃t, ξ̃t are as in (45), (43) (see [9, section VIII.5]). We want to prove that
this infimum is actually attained for the optimal policy.

Lemma 2.10. Let νt =
∫ t
0
Nsdξs be the optimal policy for x and let the process

Xt defined by (48) be the optimally controlled Brownian motion starting at x. Then

u(x) = Ex

∫ T

0

e−t[h(Xt)dt+ dξt] + Exe−Tu(XT ).(72)

Proof. Let

Vε =

{
νt ∈ V : νt =

∫ t

0

ν̇sds : |ν̇s| ≤ 1

ε
for all s ≥ 0

}
(73)

be a subclass of controls allowed in our problem. The value function

uε(x) = inf
ν̃∈Vε

{
Ex

∫ ∞

0

e−t[h(X̃t)dt+ dξ̃t]

}
(74)

converges to u uniformly on compact sets as ε→ 0 [26] (see also the appendix). By the

classical control theory for diffusion processes, a unique optimal policy ν̃εt =
∫ t
0
Ñ ε
sdξ̃

ε
s

for the problem (74) exists and

uε(x) = Ex

∫ T

0

e−t[h(X̃ε
t )dt+ dξ̃εt ] + Exe−Tu(X̃ε

T ),(75)

where

X̃ε
t = x+

√
2Wt + ν̃εt .(76)

The proof of (75) can be obtained, for example, by a suitable modification of the
argument proving Lemma IV.3.1 in [9].

uε(x)→ u(x), so ν̃εt are ε-optimal policies for the problem (11)–(12) and the point
x. By Lemma 2.3, there exists a sequence εk ↓ 0 s.t.

νεkt → νt(77)

for Leb × P almost all (t, ω).

Assume, for simplicity, that

Xεk
T → XT(78)
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a.s. and that the stopping time T is finite a.s. (We shall remove these assumptions
later.) Then, by (77) and (78), letting k → ∞ in (75) for ε = εk, we get, by Fatou’s
lemma,

u(x) = lim inf
k→∞

uεk(x)

= lim inf
k→∞

(
Ex

∫ T

0

e−t[h(X̃ε
t )dt+ dξ̃εt ] + Exe−Tu(X̃ε

T )

)

≥ Ex lim inf
k→∞

(∫ T

0

e−t[h(X̃ε
t )dt+ dξ̃εt ] + e−Tu(X̃ε

T )

)

= Ex

∫ T

0

e−t[h(Xt)dt+ dξt] + Exe−Tu(XT ).(79)

(A similar argument was used in the proof of Theorem 8 in [26].)
This, together with (71), yields (72) for a finite T under the assumption (78).

Now suppose that (78) does not hold. However, by (77), there exists εk ↓ 0 s.t. (78)
holds for T + εk instead of T . Using (72) for T + εk and letting k →∞ we get, again
by Fatou,

u(x) ≥ Ex

∫ T+

0

e−t[h(Xt)dt+ dξt] + Exe−Tu(XT+)

= Ex

∫ T

0

e−t[h(Xt)dt+ dξt]

+ Exe−T (|XT+ −XT |+ (u(XT+)− u(XT )) + u(XT ))

≥ Ex

∫ T

0

e−t[h(Xt)dt+ dξt] + Ex(e−Tu(XT ))(80)

because |∇u| ≤ 1; so, by (71) and (80), (72) holds for a finite T . The latter assumption
may now be removed by considering (72) for T ∧ n and another limiting procedure.
Let us remark that if P [T =∞] > 0, we do not have a problem with the interpretation
of (72), because u is bounded in C, in which Xt takes its values a.s. In this case we
can either regard e−Tu(XT ) on [T = ∞] as 0 or replace the last term in (72) by
Ex[I[t<∞]e

−Tu(XT )]. The proof of Lemma 2.10 is complete.
In fact, (63) (the argument used to prove it goes through for a stopping time

T also) and the above considerations yield another proof of (71) (for the problem
considered here).

To proceed further, we need the following lemma.
Lemma 2.11. Let T > 0 be a constant. For PX−1

T a.e. x̃ ∈ C the following
statement is true:

ϑx̃t := νt−T − νT(81)

is the optimal policy controlling x̃ +
√
2W̃t, where W̃t = Wt−T −WT is a Brownian

motion starting from x̃ under the measure P̃ x̃ = P (·|XT = x̃) (by this we mean the
value of the regular conditional probability distribution of (Wt, νt, t ≥ 0) given the
σ-field σ(XT ) on the event XT = x̃).

Proof. We have

u(x) = Ex

∫ T

0

e−t[h(Xt)dt+dξt]+E
x

(
e−TEXT

∫ ∞

T

e−(t−T )[h(Xt)dt+ dξt]

)
,(82)



OPTIMAL POLICIES—SKOROKHOD PROBLEM 1615

where EXT = E(.|XT ) is the conditional expectation operator. For simplicity, assume
that νt (ξt) is left-continuous for all ω ∈ Ω. This can be achieved by modifying ν on
a set of measure zero, which clearly does not lead to any difficulty. Let

Y =

∫ ∞

0

e−t[h(Xt+T )dt+ dξt+T ].(83)

Y is a σ(Wt, νt, t ≥ 0)-measurable random variable. As is well known (see, e.g., [28,
Theorem 3, p. 174], which is stated in the one-dimensional case, but whose proof goes
through also in n dimensions), for some Borel function f : Rn → R

EXT Y = f(XT )(84)

(PX−1
T a.e.), i.e. for PX−1

T a.e. x̃ ∈ C,

f(x̃) = Ẽx̃

∫ ∞

0

e−t[h(Xt+T )dt+ dξt+T ],(85)

where the last expectation is the value of EXT Y on [XT = x̃]. Equation (82) combined
with (83) and (84) yields

u(x) = Ex

∫ T

0

e−t[h(Xt)dt+ dξt] + Ex(e−T f(XT )).(86)

We want to prove that f(x̃) = u(x̃), PX−1
T a.e., on C. W̃t is a Brownian motion

independent on Ft (in particular on XT ), so it may be seen that f(x̃) is a payoff of
the form (11) for the Brownian motion W̃t on (Ω,Ft, P̃ x̃) (starting at x̃). Indeed,
Ẽx̃
∫∞
0
e−t[h(Xt+T )dt + dξt+T ] defined as above is (PX−1

T a.e.) the expectation of

Y under P̃ x̃. This can be seen by approximating Y by suitable finite sums, as in
the definition of an integral, evaluating their expectations under P̃ x̃, and then going
to the limit, using the bounded and monotone convergence theorems. Also, ξ.(ω) is
left-continuous for all ω ∈ Ω by assumption. Moreover, the value function for the
latter control problem is again u. (The same argument as that for Wt shows that
it is a nonnegative, convex W 2,∞

loc solution to (16), which is unique by Theorem 4.5
of [29].)

The above considerations lead to

u ≤ f(87)

(PX−1
T a.e.) on C.
We want to show that, in fact, equality holds in (87). Suppose it is not true, i.e.,

PX−1
T (A) > 0,(88)

where

A = {x̃ ∈ C : u(x̃) < f(x̃)}.(89)

Of course, (87), (88), and (89) yield

Exe−Tu(XT ) < Exe−T f(XT ).(90)

Then, by (72), (90), and (86),

u(x) < Ex

∫ T

0

e−t[h(Xt)dt+ dξt] + Ex(e−T f(XT )) = u(x),(91)

a contradiction.
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Thus, u(x̃) = f(x̃) for PX−1
T a.e. x̃ ∈ C. But, by the definitions of u and f , this

means exactly that, for PX−1
T a.e. x̃ ∈ C, ϑx̃t defined by (81) is indeed the optimal

policy for W̃t under P̃
x̃. The proof is complete.

One can see that in Lemma 2.11, T can be any stopping time of the filtration
{Ft}. We must modify the above argument (and the statement of Lemma 2.11)
suitably, replacing σ(XT ) by σ(T,XT ), PX

−1
T by P [T,XT ]

−1, P̃ x̃ by P̃ x̃,t (the value
of the regular conditional probability distribution of (T,Wt, νt, t ≥ 0) given σ(T,XT )
on [XT = x̃, T = t]), and using the strong Markov property of a Brownian motion.

As a by-product of the above reasoning, in particular of Lemma 2.11 for a stopping
time T , we get that the optimally controlled process Xt is a strong Markov process
with respect to the filtration {Ft, t ≥ 0}. Indeed, for any t > 0

XT+t −XT = (WT+t −WT ) + (νT+t − νT ),

the Brownian increment is independent on FT , and all the relevant information about
the increment of ν that can be found in FT is, as we have just seen, the value of XT .
Thus, all the information about

XT+t = (XT+t −XT ) +XT

that can be found in FT is actually the value of XT .

2.6. Possible jumps of the optimal policy. Suppose that x ∈ ∂C has the
following property.

There exists an interval I ⊆ ∂C such that

I = {a+ tη : t ∈ [0, c]}(92)

for some η ∈ Rn, |η| = 1, a ∈ Rn, c > 0, ∇u ≡ η on I, and x ∈ I − {a}.
We shall denote the set of all such x by D. We assume that I in the above

definition is maximal, i.e., is the sum of all the intervals with such property. Then

u(a+ ηt) = u(a) + t, t ∈ [0, c],(93)

because

∂u

∂η
= ∇u · η = |∇u|2 = 1 on I.(94)

Analytically, D can be defined by

D =
∞⋃
i=1

{
x ∈ ∂C : u(x)− u

(
x− 1

i
∇u(x)

)
=

1

i

}
,(95)

so D is a countable sum of closed sets, in particular a Borel measurable set.
Let νx be the optimal policy for the process starting from x ∈ D and let x = a+tη,

a, t, and η as above. Then

νxt =

{
0 if t = 0,
a− x+ νat if t > 0;

(96)

i.e., the optimal policy first jumps from x to a and proceeds optimally thereafter.
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Indeed, if we define νx by (96), then, by (93),

Jx(ν
x) = |a− x|+ u(a) = t+ u(a) = u(x).(97)

Now we shall analyze the jumps of the optimal policy νx for an arbitrary x ∈ C.
Lemma 2.12. For every starting state x ∈ C a.s. ω ∈ Ω the only discontinuities

of X. (ν
x
. ) are possibly jumps of the type described in Definition 2.5(a) (for G = C,

v = −∇u) at Xt ∈ D.
Proof. First we want to prove that, a.s., Xt jumps only when Xt ∈ D. Suppose it

is not true. Because νx is left-continuous, the only possible discontinuities of νx are
jumps. Suppose νx does have jumps and let

T ε(ω) = inf{t ≥ 0 : Xt(ω) /∈ D, |Xt(ω)−Xt+(ω)| ≥ ε};(98)

i.e., T ε is the first time the process Xt undergoes a jump of magnitude at least ε
starting outside D. Suppose ε is so small that P [T ε < ∞] > 0. By a theorem in [5,
p. 84] (see also [18, p. 10]), there is a sequence T1, T2, . . . of stopping times exhausting
the jumps of Xt (νt), i.e.,

{(t, ω) ∈ [0,∞)× Ω : Xt(ω) �= Xt+(ω)} ∈
∞∑
i=1

{(t, ω) ∈ [0,∞)× Ω : Ti(ω) = t}.(99)

(This is slightly different than the original theorem in [5], which dealt with right-
continuous, instead of left-continuous, processes, but it is easy to see that if the filtra-
tion itself is right-continuous, our version follows from the original one in a straight-
forward way.) Thus,

T ε(ω) = inf{Ti(ω) : XTi(ω) /∈ D, |XTi(ω)(ω)−XTi(ω)+(ω)| ≥ ε}.(100)

νxt is a process of bounded variation on each finite interval (a.s.), so, a.s., on each
interval [0, T ] there can be only finitely many jumps of magnitude at least ε, so in
(100) we can use min instead of inf. Thus, T ε is a stopping time. (It was not entirely
obvious from the very beginning, because D does not have to be open or closed.)

On [T ε <∞] XT ε ∈ C −D, XT ε+ ∈ C, so, by |∇u| ≤ 1,

u(XT ε(ω)+(ω)) + |XT ε(ω)+(ω)−XT ε(ω)(ω)| > u(XT ε(ω)(ω))(101)

because∇u is not identically equal to−1 on the interval joiningXT ε(ω)(ω) toXT ε(ω)+(ω).

Using (72) for T ε + 1
n , then letting n → ∞ and using the bounded convergence

theorem as in (80), we get

u(x) = Ex

∫ T ε(ω)

0

e−t[h(Xt)dt+ dξt]

+ Ex(e−T
ε(ω)|XT ε(ω)+(ω)−XT ε(ω)(ω)|I[T ε<∞))

+ Ex(I[T ε<∞)e
−T ε(ω)u(XT ε(ω)+))

> Ex

∫ T ε(ω)

0

e−t[h(Xt)dt+ dξt]

+ Ex(I[T ε<∞)e
−T ε(ω)u(XT ε(ω)))

= u(x);(102)
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the inequality follows from (101), and the last equality follows from (72). But (102)
is a clear contradiction. Thus, a.s., Xt jumps only when Xt ∈ D.

The fact that for Xt ∈ D the optimally controlled process Xt a.s. jumps to the
endpoint of the interval I from the Definition 2.5(a), where Xt ∈ I, follows from (96)
and Lemma 2.11 combined with the fact that there are at most countably many jumps
of Xt (see (99)). The lemma is proved.

This ends the proof of Theorem 2.6.
Corollary 2.13. If D = ∅, then Xt, ξt, νt are continuous.
Corollary 2.14. Let x ∈ D. Then there exists an interval I as in (92) such

that x = a+ tη, t > 0. Then νa is continuous at 0, because a /∈ D. Thus, by (96), the
optimal policy νx starting from x jumps immediately to a and limt↓0 νxt = a.

2.7. Remarks and supplements. (1) Using Lemma 2.9, the remark following
it, the boundedness of C, (70), and letting T →∞ in (62) we get

Ex

∫ ∞

0

e−t[h(Xt)dt+ dξt]

+ Ex



∑

0≤t<∞
e−t(u(Xt)− u(Xt+) +∇u(Xt)Nt(ξt+ − ξt))




≥ u(x).
But, by (59), it means that the second expectation is 0, so all the terms

u(Xt)− u(Xt+) +∇u(Xt)Nt(ξt+ − ξt) = 0,(103)

P a.s. (because, as we have explained in the justification of (63), these terms are all
nonpositive). But Nt = −∇u(Xt) and |∇u| ≤ 1, so, by ξt+ − ξt = |Xt+ − Xt|, we
have

∂u

∂v
≡ 1 if v =

Xt+ −Xt

|Xt+ −Xt|(104)

on the whole interval joining Xt to Xt+. Thus, because Xt ∈ C for every t ≥ 0 a.s.,
we conclude that, for a.e. ω ∈ Ω and all t ≥ 0 s.t. Xt �= Xt+, [Xt, Xt+] is contained in
some interval I of the form given in (a) of the Definition 2.5. However, this method
does not ensure that Xt+ is actually the endpoint of such I, and neither does it ensure
that Xt must jump at points of D. This is the reason why we need an argument like
that given in sections 2.5–2.6.

(2) Another way of regularizing the value function u in the proof given in sub-
section 2.4 is to use, instead of ũε, the function u

ε defined by (74), which is the value
function for an approximating control problem (see the appendix; compare also [35,
proof of Theorem 4.3]). uε satisfies

uε −�uε + 1

ε
max(|∇uε| − 1, 0) = h in Rn.(105)

Now we cannot claim that |∇uε| ≤ 1, but from the estimates in [26] we know that
uε, ∇uε, D2uε are bounded uniformly on BR (C ⊆ BR−1) for ε > 0. Moreover, for
a subsequence (still denoted by uε) uε → u, ∇uε → ∇u uniformly in BR and, from
(105), uε −�uε ≤ h, so we can repeat the proof of subsection 2.4 with uε instead of
ũε and h instead of hε.
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(3) Let the starting point x ∈ Rn − C. By a modification of the argument given
in [29] we can show that in this case the optimal policy jumps immediately to some
point x̂ ∈ ∂C and then follows the optimal policy νx̂. We provide the details for the
sake of completeness.

Let us introduce, following [29], the following change of coordinates. Let y0 be
a point at which the minimum of u in Rn is attained. By Lemma 4.4 in [29], it is
unique and belongs to C. Choose δ > 0, µ > 0 s.t.

B2δ(y0) ⊆ C,(106)

D2u(x̃)y · y ≥ µ|y|2(107)

for all x̃ ∈ B2δ(y0) (recall that u is strictly convex in C by (4.10) of [29]),

µ ≤ |∇u(x̃)|2 ≤ 1

2
(108)

for all x̃ ∈ ∂Bδ(y0), and
∇u(y0 + δθ) · θ ≥ µ(109)

for all θ ∈ S1, where S1 is the unit sphere. For θ ∈ S1, we define the gradient flow
ψ(t, θ) by

d

dt
ψ(t, θ) = ∇u(ψ(t, θ))(110)

for all t ≥ 0 and

ψ(0, θ) = y0 + δθ.(111)

Let x ∈ Rn−Bδ(y0), x = ψ(t, θ). We assign to x the coordinates (t, θ). It was shown
in [29] that this change of variables is a homeomorphism between Rn − Bδ(y0) and
[0,∞) × S1. (This part of the argument given there goes through in n dimensions;
compare remarks on p. 332 of [9].) Now suppose that x, the starting point of the
process (2), belongs to Rn − C. Let θ0 be s.t. x = ψ(t0, θ0) for some t0 > 0 and let

t1 = inf{t ≤ t0 : ψ(t, θ0) ∈ ∂C}.
(This set is nonempty because of (106), (111), and the fact that, by assumption, x
does not belong to C.) Let x̂ = ψ(t1, θ0). Then x̂ ∈ ∂C, so the vector v := ∇u(x̂) has
the norm 1. Let

L = {x̂+ tv : t ≥ 0}.
Then, by |v| = 1, convexity of u, and the fact that |∇u| ≤ 1, we have u(x̂ + tv) =
u(x̂) + t for t ≥ 0, in particular, ∇u(x̂+ tv) = v, t ≥ 0. But this means that, by the
definition of the gradient flow ψ, for t ≥ t1,

ψ(t, θ0) = x̂+ (t− t1)v;(112)

so, in particular, x = x̂+ (t0 − t1)v (put t = t0 in (112)) and ∇u ≡ v on L. Thus,

u(x) = u(x̂) + (t0 − t1)
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and

|x− x̂| = t0 − t1;
so, by an argument analogous to that given at the beginning of subsection 2.6,

νxt = x̂− x+ νx̂t

for every t > 0 P -a.s.
(4) It is clear that any process that solves the Skorokhod problem forWt, C, −∇u

in the sense of Definition 2.5 is an optimal policy for our problem (compare, e.g.,
the verification Theorem VIII.4.1 from [9]). Thus, uniqueness of the optimal policy
implies uniqueness of a solution to the modified Skorokhod problem for Wt, C, −∇u.

Usually, some assumptions about regularity of the boundary of a region are nec-
essary to prove existence and uniqueness of a solution to the Skorokhod problem.
Here, all such assumptions are hidden in the very nature of the stochastic control
problem and, if n ≥ 3 we do not know what they are, i.e., how regular ∂C really is.
The conjecture is that for higher dimensions “smooth fit” holds also, ∂C is smooth,
say C2,α, and ∇u is nontangential to ∂C, so the optimal policy is a solution to the
Skorokhod problem in the usual sense, as in the two-dimensional case.

3. Appendix. In this paper, we have used some results from [26], where a prob-
lem slightly different from minimizing (11) was considered. However, it is easy to
establish analogous results in our case by essentially the same techniques. The aim
of this appendix is to provide a concise discussion of some minor adjustments which
make the proofs from [26] work in the case of (11) and (12) and to sketch the main
idea of the W 2,∞

loc regularity result contained in [26]. Compare also [31], where the
results from [26] are used for the problem (11)–(12) with no additional comments.

We make all the assumptions of section 2.1. For the proof of Lemma 2.2 in section
2 of this paper, first let us remark that, by strict convexity of h,

�2h(x, y) =
h(x) + h(y)

2
− h

(
x+ y

2

)
> 0(113)

for all x, y ∈ Rn, x �= y, so the proof of Theorem 7 in [26] also goes through in our
case. Indeed, if we have two optimal policies

ν1
t =

∫ t

0

Nsdζs,(114)

ν2
t =

∫ t

0

Msdηs,(115)

take

νt =
ν1
t + ν2

t

2
=

∫ t

0

Ñsdξ̃s.(116)

We have

ξt =
∨
[0,t]

[
ν1
s + ν2

s

2

]
≤ 1

2


∨

[0,t]

ν1
s +

∨
[0,t]

ν2
s


 =

ζt + ηt
2

,(117)
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which allows us to use the proof in [26]. Also, we can mimic the proof of Theorem 8
from that paper and the corollary following it to get the proof of our Lemma 2.3.

The argument proving that the value function u defined by (12) is in W 2,∞
loc and

(16) holds is essentially like that given in [26]. Its main idea is easy to understand:
we begin with an approximating problem of controlling (11) in the class Vε defined
by (73), which is a subclass of controls allowed in our problem. Then a standard
argument (see, e.g., [22, Theorem 5, p. 289]) shows that the value function uε defined
by (74) belongs to W 2,∞

loc and satisfies the Bellman equation (105), so in fact, by
elliptic regularity, uε ∈ C2,α for every α ∈ (0, 1). One gets, by a direct probabilistic
approach, a priori estimates for uε, ∇uε, and D2uε independent of ε by estimating
appropriate difference quotients. Then, using uε → u, we have the same estimates
for u, and an easy additional argument using (105) convinces us that (16) holds. In
fact, convergence of uε to u, although intuitively obvious (every function of bounded
variation on finite intervals can be easily approximated by elements of Vε as ε → 0),
is surprisingly technical to prove (see [26]).

For another, PDE-based proof of existence of a W 2,∞
loc solution to the Bellman

equation (16) see [8, 15, 29].
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Abstract. The paper concerns an optimization problem with a generalized equation among
the constraints. This model includes standard mathematical programs with parameter-dependent
variational inequalities or complementarity problems as side constraints. Using Mordukhovich’s gen-
eralized differential calculus, we derive necessary optimality conditions and apply them to problems,
where the equilibria are governed by implicit complementarity problems and by hemivariational
inequalities.
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1. Introduction. According to [10], by mathematical program with equilibrium
constraints (MPEC) one understands an optimization problem where, among the
constraints, the following variational inequality (VI) arises:

for a given x ∈ R
n, find y ∈ Γ(x) such that

〈F (x, y), v − y〉 ≥ 0 for all v ∈ Γ(x),
(1.1)

where F maps R
n × R

m into R
m and Γ is a closed- and convex-valued multifunction

mapping R
n into subsets of R

m. If Γ(x) = R
m
+ for all x ∈ R

n, (1.1) reduces to a
nonlinear complementarity problem (NCP). In what follows x is called the control or
decision parameter and y the state variable. Both these variables arise generally in
the objective and are possibly subject to other constraints.

Not all equilibria, however, can be modeled in the form (1.1). In continuum
mechanics [3], for instance, we find the so-called VIs of second kind, which, after an
appropriate discretization, attain the following form:

for a given x ∈ R
n, find y ∈ Ξ such that

〈F (x, y), v − y〉+ J(v)− J(y) ≥ 0 for all v ∈ Ξ,
(1.2)

where F is the same function as in (1.1), J [Rm → R] is a convex continuous function,
and Ξ is a nonempty closed convex subset of R

m. Since J is not differentiable at all
points of Ξ, the VI (1.2) cannot be converted to the form (1.1).

Remark. (1.2) describes, e.g., a discretized contact problem with given friction;
cf. [5]. The state variable corresponds then to the (vector-valued) displacement at the
nodes of discretization and x to the body forces and surface tractions.

Further, when modeling the behavior of bodies made from composites (fiberglass
or sandwich constructions), one arrives at so-called hemivariational inequalities; cf.
[17]. After a discretization, they lead to models which cannot be converted to the
form (1.1) either.
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Both the VI (1.2) as well as a discretized hemivariational inequality can be, how-
ever, rewritten into the form of the generalized equation (GE):

0 ∈ F1(x, y) +Q(F2(x, y)),(1.3)

where F1, F2 map R
n×R

m into R
m, R

�, respectively, and Q[R� ❀ R
m] is a multifunc-

tion with the closed graph. In the case of the VI (1.2) we put F1 := F, F2(x, y) := y,
and

Q(y) := ∂J(y) +NΞ(y),(1.4)

where ∂J(y) is the standard subdifferential of J at y (in the sense of convex analysis),
and

NΞ(y) :=

{
the standard normal cone to Ξ at y provided y ∈ Ξ,
∅ otherwise.

In the case of an NCP one has F1 := F, F2(x, y) := y,

Q(y) := NR
m
+
(y),

and also the VI (1.1) can mostly be converted to the form (1.3), e.g., when Γ is given
by means of (control-dependent) equalities and inequalities; cf. [16].

On the basis of these considerations we define the (generalized) MPEC as the
optimization problem:

minimize f(x, y)
subject to

0 ∈ F1(x, y) +Q(F2(x, y)),
(x, y) ∈ ω,

(1.5)

where f [Rn × R
m → R] is an objective and ω ⊂ R

n × R
m is the set of admissible

control (decision)-state pairs. The GE (1.3) models the equilibrium constraint.
The aim of this paper is
(i) to derive first-order necessary optimality conditions for (1.5);
(ii) to apply these conditions to two distinguished classes of (1.5) with equilib-

ria governed by implicit complementarity problems and by hemivariational
inequalities.

In these investigations our basic tool is the “nonconvex” generalized differential cal-
culus of Mordukhovich [11], [12], [13]. The applied approach utilizes the idea of exact
penalization of the equilibrium constraint used already in [22] (in case of equilibria
given by (lower-level) optimization problems). Instead of penalizing ‖v‖ for

v ∈ F1(x, y) +Q(F2(x, y)),

which would correspond to the approach in [21], our “equilibrium constraint violation”
is given by

v ∈
[ −F2(x, y)
F1(x, y)

]
+GphQ,(1.6)

where GphQ denotes the graph of multifunction Q. This enables one to respect
easily joint constraints in both variables x and y. Furthermore, it is advantageous
when applying a penalty approach to the numerical solution of (1.5).
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The paper is organized as follows. The next section is devoted to a general
mathematical program, to which form problem (1.5) can be converted. In section 3
the optimality conditions for (1.5) are established. Attention is paid also to the
polyhedral case, where the constraint qualification can be omitted. Section 4 deals
with the application of the obtained conditions to MPECs with equilibria described
by implicit complementarity problems and by hemivariational inequalities.

The following notation is employed: xi is the ith component of a vector x ∈ R
n,

R is the extended real line, and R
n
+ denotes the nonnegative orthant of R

n. E is
the unit matrix. For an [m × n] matrix A and an index set I ⊂ {1, 2, . . . ,m}, AI
is the submatrix of A with rows specified by I. Similarly, for a vector d ∈ R

n, dI
is the subvector composed from the components di, i ∈ I. Furthermore, epi f is the
epigraph of a function f and ∂cf(x) is the Clarke’s subdifferential of f at x. For
a multifunction Q[Rn ❀ R

m], KerQ := {x ∈ R
n | 0 ∈ Q(x)}. If D is a cone with

vertex at the origin, then D0 is its negative polar cone. For x, y ∈ R
n the inequalities

x ≥ y, x > y mean xi ≥ yi and xi > yi for all i, respectively. B is the unit ball, clΩ
denotes the closure of a set Ω, and distΩ(x) is the distance of x to Ω.

For the reader’s convenience, we close this section with three fundamental def-
initions from Mordukhovich’s generalized differential calculus used throughout the
paper.

Consider a set Π ⊂ R
p.

Definition 1.1. Let a ∈ cl Π. The nonempty cone

TΠ(a) := lim sup
t↓0

Π− a
t

is called the contingent cone to Π at a.1 The generalized normal cone to Π at a,
denoted NΠ(a), is defined by

NΠ(a) = lim sup

a′
cl Π−→a

T 0
Π(a

′).

If Π is convex, NΠ(a) amounts to the standard normal cone to Π at a in the sense of
convex analysis. The cone NΠ(a) is generally nonconvex, but the multifunction NΠ(·)
is upper semicontinuous at each point of clΠ (with respect to clΠ), which is essential
in the calculus of Mordukhovich’s subdifferentials and coderivatives introduced below.

Definition 1.2. Let ϕ[Rp → R] be an arbitrary extended real-valued function
and a ∈ domϕ. The set

∂−ϕ(a) := {a∗ ∈ R
p|(a∗,−1) ∈ Nepi ϕ(a, ϕ(a))}

is called Mordukhovich’s subdifferential of ϕ at a.
Definition 1.3. Let Φ[Rp ❀ R

q] be an arbitrary multifunction and (a, b) ∈
clGphΦ. The multifunction D∗Φ(a, b) [Rq → R

p] defined by

D∗Φ(a, b) (b∗) := {a∗ ∈ R
p|(a∗,−b∗) ∈ NGph Φ(a, b)}, b∗ ∈ R

q,

is called the coderivative of Φ at (a, b).
Besides these notions we also will need several results of Mordukhovich from [11],

[12], and [13]; for the reader’s convenience three of them are stated in the appendix.
For a thorough study of Mordukhovich’s theory the reader is referred to [11].

1The “lim sup” in the definitions of TΠ(a) and NΠ(a) is the upper limit of multifunctions in the
sense of Kuratowski–Painlevé; cf. [1].
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2. Auxiliary results. Consider first a general mathematical program

minimize ϕ(u)
subject to

u ∈ Π,
(2.1)

where ϕ[Rp → R] is locally Lipschitz and Π is a nonempty and closed subset of R
p.

For such programs, first-order necessary optimality conditions attain the following
form; cf. [11, Theorem 7.1].

Proposition 2.1. Let û be a (local) solution of (2.1). Then one has

0 ∈ ∂−ϕ(û) +NΠ(û).(2.2)

Assume now that

Π = {u ∈ Θ | − F (u) ∈ Λ},(2.3)

where F [Rp → R
q] is continuously differentiable and Θ, Λ are closed subsets of R

p

and R
q, respectively. By Φ we denote the multifunction defined by

Φ(u) := F (u) + Λ.

Our next aim is to derive optimality conditions for problem (2.1) with Π given by
(2.3). In this case, unfortunately, the direct computation of NΠ(û) can be quite
complicated and so we apply the mentioned penalization approach of [22], [21] and
employ the following important concept.

Definition 2.1. A multifunction Ψ[Rq ❀ R
p] is said to be pseudo–upper-

Lipschitz continuous at (v, u) ∈ GphΨ with modulus L ≥ 0, provided there exists
a neighborhood V of v and a neighborhood U of u such that

Ψ(v) ∩ U ⊂ Ψ(v) + L‖v − v‖B for all v ∈ V.
This concept has been introduced in [7] and entitled pseudo–upper-Lipschitz con-

tinuity in [21]. If in the above definition one can put U = R
p, then Ψ is in fact (locally)

upper-Lipschitz at v with modulus L; cf. [19].
In the further development we make use of the two lemmas given below. The first

one comes from [21] and is actually valid without any structural assumptions on Φ.
Lemma 2.2. Assume that û is a (local) solution of (2.1) with Π given by (2.3).

Further suppose that the multifunction Φ−1(·) ∩ Θ is pseudo–upper-Lipschitz contin-
uous at (0, û) with modulus L. Then there exist a neighborhood V of 0 ∈ R

q and a
neighborhood U of û such that (v, u) = (0, û) solves the penalized program

minimize ϕ(u) + r‖v‖
subject to

v ∈ Φ(u) ∩ V,
u ∈ Θ ∩ U ,

(2.4)

provided r ≥ Lλ, where λ ≥ 0 is the Lipschitz modulus of ϕ near û.
The next result is an easy consequence of Theorem A.2 from the appendix.
Lemma 2.3. Under the imposed assumptions for each (u, v) ∈ GphΦ one has

D∗Φ(u, v) (v∗) =

{
(∇F (u))Tv∗ provided v∗ ∈ −NΛ(v − F (u)),
∅ otherwise.
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Proof. The set Λ can be viewed as the value of a constant multifunction defined
on R

p with the graph R
p × Λ so that for ξ ∈ Λ

NGph Λ(u, ξ) = 0×NΛ(ξ);

cf. [11, Proposition 1.6]. Hence, for ξ ∈ Λ one has

D∗Λ(u, ξ) (v∗) =

{
0 provided − v∗ ∈ NΛ(ξ),

∅ otherwise,

and the result follows directly from Theorem A.2.
On the basis of the preceding two lemmas we can now state the next result, which

is a specialization of [21, Theorem 3.1] to our structure of multifunction Φ.
Theorem 2.4. Assume that û is a (local) solution of (2.1) with Π given by

(2.3). Further suppose that the multifunction Φ−1(·) ∩ Θ is pseudo–upper-Lipschitz
continuous at (0, û). Then there exists a Karush–Kuhn–Tucker (KKT) vector v̂∗ ∈
NΛ(−F (û)) such that

0 ∈ ∂−ϕ(û)− (∇F (û))Tv̂∗ +NΘ(û).(2.5)

Proof. By Lemma 2.2 we can apply Proposition 2.1 to program (2.4), provided r
is sufficiently large. This yields[

0
0

]
∈
[
∂−ϕ(û)
rB

]
+NGph Φ∩(U×V)∩(Θ×Rq)(û, 0).(2.6)

By Definition 1.3 one has

NGph Φ∩(U×V)(û, 0) = {(u∗, w∗) ∈ R
p × R

q |u∗ ∈ D∗Φ(û, 0) (−w∗)}
and thus, in virtue of Lemma 2.3,

NGph Φ∩(U×V)(û, 0) =
{
(u∗, w∗) ∈ R

p × R
q |u∗ = −(∇F (û))Tw∗, w∗∈ NΛ(−F (û))

}
.

By [11, Proposition 1.6],

NΘ×R�(û, 0) = NΘ(û)× {0}.
Hence one has

NGph Φ∩(U×V)(û, 0) ∩ (−NΘ×Rq (û, 0)) = {0}.(2.7)

By invoking Theorem A.3, relation (2.6) thus implies that[
0
0

]
∈
[
∂−ϕ(û)
rB

]
+

[ −(∇F (û))Tv̂∗
v̂∗

]
+

[
NΘ(û)

0

]

for some v̂∗ ∈ NΛ(−F (û)). In this way relation (2.5) has been established.
Remark. Statements of the above type can be found in many works on math-

ematical programming with various subdifferentials and normal cones and even for
nonsmooth maps F [20], [6]. In [21] conditions of this type have been derived for the
program

minimize ϕ(u)
subject to

0 ∈ Φ(u),
u ∈ Θ

under no structural assumptions on Φ. Then, however, one needs an additional re-
quirement to ensure the validity of the appropriate counterpart to (2.5).
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3. Optimality conditions. We return now to problem

minimize f(x, y)
subject to

0 ∈ F1(x, y) +Q(F2(x, y)),
(x, y) ∈ ω,

(3.1)

and pose the following additional assumptions:
(A1) f is locally Lipschitz on R

n × R
m;

(A2) F1, F2 are continuously differentiable;
(A3) ω ⊂ R

n × R
m is nonempty and closed.

To convert (3.1) to the form (2.1) with Π given by (2.3) it suffices to put u := (x, y) ∈
R
n × R

m, F (u) :=
[−F2(x,y)
F1(x,y)

]
, Θ := ω, and Λ := GphQ. Indeed, the equilibrium

constraint can equivalently be written in the form[
F2(x, y)
−F1(x, y)

]
∈ GphQ,

and so, consequently, the respective multifunction Φ[Rn ×R
m ❀ R

� ×R
m] is defined

by

Φ(x, y) :=

[ −F2(x, y)
F1(x, y)

]
+GphQ.(3.2)

The pseudo–upper-Lipschitz continuity of a multifunction is implied by both the
pseudo-Lipschitz as well as the upper-Lipschitz continuity [1], [19]. Let us consider
first the case where the multifunction Φ−1(·)∩ ω is pseudo-Lipschitz around (0, x̂, ŷ).
On the basis of Theorem 2.4 and Theorem A.1 from the appendix we obtain directly
the following optimality conditions.

Theorem 3.1. Let assumptions (A1)–(A3) be fulfilled and let (x̂, ŷ) be a (local)
solution of (3.1). Assume further that the constraint qualification

(CQ)[
(∇xF2(x̂, ŷ))

T −(∇xF1(x̂, ŷ))
T

(∇yF2(x̂, ŷ))
T −(∇yF1(x̂, ŷ))

T

] [
w
z

]
∈ −Nω(x̂, ŷ)

(w, z) ∈ NGphQ(F2(x̂, ŷ),−F1(x̂, ŷ))


 implies

{
w = 0,
z = 0

holds true. Then there exist a pair (ξ, η) ∈ ∂−f(x̂, ŷ), a pair (γ, δ) ∈ Nω(x̂, ŷ), and a
KKT pair (ŵ, ẑ) ∈ NGphQ(F2(x̂, ŷ),−F1(x̂, ŷ)) such that

0 = ξ + (∇xF2(x̂, ŷ))
Tŵ − (∇xF1(x̂, ŷ))

Tẑ + γ,

0 = η + (∇yF2(x̂, ŷ))
Tŵ − (∇yF1(x̂, ŷ))

Tẑ + δ.(3.3)

Proof. Let us denote by Ψ the map Φ−1(·) ∩ ω, i. e., for v = (v1, v2) ∈ R
� × R

m,

Ψ(v) :=

{
(x, y) ∈ ω

∣∣∣∣
[
v1 + F2(x, y)
v2 − F1(x, y)

]
∈ GphQ

}
.

By [13, Theorem 3.2] we know that Ψ is pseudo-Lipschitz around (0, x̂, ŷ) if and only if
D∗Ψ(0, x̂, ŷ) (0) = {0}. Map Ψ has exactly the structure of multifunction

∑
analyzed

in Theorem A.1 with

H(v1, v2, x, y) =

[
v1 + F2(x, y)
v2 − F1(x, y)

]
, Ω = R

� × R
m × ω and Λ = GphQ.
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Due to the specific structure of the Jacobian ∇H(0, 0, x̂, ŷ) one easily verifies that
both qualification conditions of Theorem A.1 are fulfilled. Hence,

D∗Ψ(0, 0, x̂, ŷ) (x∗, y∗) ⊂



(
v∗1 , v

∗
2) ∈ R

� × R
m
∣∣




v∗1
v∗2
−x∗
−y∗


 =



E 0
0 E
(∇xF2(x̂, ŷ))

T −(∇xF1(x̂, ŷ))
T

(∇yF2(x̂, ŷ))
T −(∇yF1(x̂, ŷ))

T



[
w
z

]
+ {0} × {0} ×Nω(x̂, ŷ),

(w, z) ∈ NGphQ(F2(x̂, ŷ),−F1(x̂, ŷ))




and

D∗Ψ(0, 0, x̂, ŷ) (0, 0) =
{

(w, z) ∈ NGphQ(F2(x̂, ŷ),−F1(x̂, ŷ))|

[
(∇xF2(x̂, ŷ))

T −(∇xF1(x̂, ŷ))
T

(∇yF2(x̂, ŷ))
T −(∇yF1(x̂, ŷ))

T

] [
w
z

]
∈ −Nω(x̂, ŷ)

}
.

We observe that (CQ) ensures the pseudo-Lipschitz continuity of Φ−1(·)∩ω at (0, x̂, ŷ).
The rest follows readily from Theorem 2.4.

Observe that, expectantly, x and y enter (3.3) in a fully symmetric way. Only a
specific structure of F1, F2 causes possibly different roles of the control and the state
variable known from standard MPECs.

Condition (CQ) amounts to the standard Mangasarian–Fromowitz constraint
qualification for the constraint set{

(x, y) ∈ ω
∣∣∣∣
[
F2(x, y)
−F1(x, y)

]
∈ GphQ

}

at (x̂, ŷ) in the so-called dual form. It prevents the existence of (abnormal) nonzero
multipliers (w, z) ∈ NGphQ(F2(x̂, ŷ),−F1(x̂, ŷ)) such that

0 ∈
[
(∇xF2(x̂, ŷ))

T −(∇xF1(x̂, ŷ))
T

(∇yF2(x̂, ŷ))
T −(∇yF1(x̂, ŷ))

T

] [
w
z

]
+Nω(x̂, ŷ).

Using a particular structure of Q and ω it is sometimes possible to derive also a primal
version of (CQ); cf. [15].

The statement of Theorem 3.1 reduces to [21, Theorem 3.2 (c,d)] provided F2(x, y)
= y, Q(·) = NΞ(·) with a closed convex set Ξ ⊂ R

m, and the state variable is not
subject to any constraints. To verify (CQ) and to be able to apply the derived
optimality conditions, we need, however, some structural assumptions on Q (and
ω). In [15] the constraint qualification as well as the optimality conditions have
been converted to a workable form in the case of equilibria governed by nonlinear
complementarity problems and for ω given by smooth inequalities. We return to this
subject in the next section, where we analyze two special classes of (3.1).
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Let ω̃ be a closed subset of R
n. For a problem of the type

minimize f(x, y)
subject to

0 ∈ F1(x, y) +Q(y),
x ∈ ω̃,

(3.4)

there is a possibility to ensure the validity of (CQ) via the strong regularity (cf. [18])
of the GE

0 ∈ F1(x̂, y) +Q(y)(3.5)

at ŷ.
Proposition 3.2. Let (A1)–(A3) (with ω = ω̃×R

m) be fulfilled and let (x̂, ŷ) be
a (local) solution of (3.4). Further assume that the GE (3.5) is strongly regular at ŷ,
i.e., that the map

∆ : η �→ {y ∈ R
m | η ∈ F1(x̂, ŷ) +∇yF1(x̂, ŷ) (y − ŷ) +Q(y)}(3.6)

is locally single-valued and Lipschitz around (0, ŷ). Then (CQ) is fulfilled.
Proof. By the assumptions, ∆ is pseudo-Lipschitz around (0, ŷ). Hence, again by

invoking [13, Theorem 3.2], we have

D∗∆(0, ŷ) (0) = {0}.(3.7)

Since (cf. [13])

y∗ ∈ D∗∆−1(ŷ, 0) (η∗)⇔ −η∗ ∈ D∗∆(0, ŷ) (−y∗),

relation (3.7) amounts to

KerD∗∆−1(ŷ, 0) = {0}.(3.8)

By Theorem A.3

D∗∆−1(ŷ, 0) (η∗) = (∇yF1(x̂, ŷ))
Tη∗ +D∗Q(ŷ,−F1(x̂, ŷ)) (η

∗).

Putting z := −η∗, condition (3.8) can thus be written in the form

w − (∇yF1(x̂, ŷ))
Tz = 0

(w, z) ∈ NGphQ(ŷ,−F1(x̂, ŷ))

}
implies z = 0.(3.9)

Since z = 0 implies w = 0 and

Nω(x̂, ŷ) = Nω̃(x̂)× {0},

condition (3.9) ensures the satisfaction of (CQ).
The pseudo–upper-Lipschitz continuity of Φ−1(·) ∩ ω is also implied by the (lo-

cally) upper-Lipschitz continuity of this map. To simplify the corresponding state-
ment, we will assume the following.
(A4) With a given [s× n] matrix C, a given [s×m] matrix D, and a given vector

c ∈ R
s,
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ω := {(x, y) ∈ R
n × R

m |Cx+Dy + c ≤ 0} .(3.10)

For a fixed (x, y) ∈ ω let

M(x, y) :=
{
i ∈ {1, 2, . . . , s} | (Cx)i + (Dy)i + ci = 0

}
.

Consider now the optimization problem

minimize f(x, y)
subject to

0 ∈ A1x+B1y + a1 +Q(A2x+B2y + a2),
(x, y) ∈ ω,

(3.11)

where A1, A2, B1, B2, a1, and a2 are given matrices and vectors of appropriate di-
mensions, and ω is given by (3.10).

Theorem 3.3. Let (x̂, ŷ) be a (local) solution of problem (3.11). Suppose that
Q is polyhedral (i.e., GphQ is a union of finitely many convex polyhedral sets), and
(A1), (A4) are fulfilled. Then there exist a pair (ξ, η) ∈ ∂−f(x̂, ŷ), a KKT pair
(ŵ, ẑ) ∈ NGphQ(A2x̂ + B2ŷ + a2, −A1x̂ − B1ŷ − a1), and a multiplier µ̂ ∈ R

s
+ such

that

0 = ξ +AT
2 ŵ −AT

1 ẑ + C
Tµ̂,

0 = η +BT
2 ŵ −BT

1 ẑ +D
Tµ̂,(3.12)

µ̂i = 0 for all i /∈M(x̂, ŷ).

Proof. By the imposed assumptions, GphΦ is a union of finitely many convex
polyhedral sets and ω is convex polyhedral. This implies in virtue of [19] that Φ−1(·)∩
ω is (locally) upper-Lipschitz at 0, and hence the conditions of Theorem 2.4 are
fulfilled. It remains to express relation (3.3) in terms of our problem data. By the
convexity and polyhedrality of ω one has

Nω(x̂, ŷ) =

{[
CT

DT

]
µ

∣∣∣∣µ ∈ R
s
+, µ

i = 0 for i /∈M(x̂, ŷ)

}
.(3.13)

Hence, it suffices to insert (3.13) into (3.3) and take into account the specific structure
of functions F1, F2.

We conclude this section with a simple academic example illustrating the opti-
mality conditions of Theorem 3.3. Consider the MPEC

minimize
1

2
x− y

subject to
0 ∈ y − x+ ∂|y|,
x ∈ [−2, 0].

(3.14)

In this one-dimensional MPEC it is easy to construct the map S assigning x those y’s
which are feasible with respect to the equilibrium constraint; this map is depicted in
Figure 1. Hence the unique global solution of (3.14) is the point (x̂, ŷ) = (−1, 0). One
has F1(x, y) = y − x, F2(x, y) = y and Q(·) = ∂| · |. Since GphQ is polyhedral (cf.
Figure 2), all assumptions of Theorem 3.3 are fulfilled. On the basis of Definition 1.1
and Figure 2 one easily deduces that

NGph ∂|·|(ŷ, x̂− ŷ) = NGph ∂|·|(0,−1) = {(w, z) | either wz = 0 or w > 0 and z < 0}.
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Fig. 1. GphS.

Conditions (3.12) attain the form

0 =
1

2
+ z,

0 = −1 + w − z,
and we observe that they are fulfilled with

(ŵ, ẑ) =

(
1

2
,−1

2

)
∈ NGph ∂|·|(0,−1).

The next section is devoted to two important classes of MPECs, where the opti-
mality conditions of Theorems 3.1 and 3.3 can be converted to a workable form.

4. Applications. Assume that we are given two continuously differentiable func-
tions F, G[Rn × R

m → R
m] and consider equlibria governed by the parameter-

dependent implicit complementarity problem (ICP):
for a given x ∈ R

n, find y ∈ R
m such that

F (x, y) ≥ 0, y ≥ G(x, y) and 〈y −G(x, y), F (x, y)〉 = 0.

If G ≡ 0, the ICP reduces to the standard nonlinear complementarity problem. As
an ICP one can model, e.g., (discretized) obstacle problems with compliant obstacles
[8] or filtration through porous media [14]. In [16] optimality conditions have been
derived for MPECs with such equilibria under the strong regularity assumption. Here
we remove this assumption and strengthen the conditions from [16] using the approach
of the preceding section.

It is well known that an ICP can equivalently be formulated as the GE of the
type (1.3):

0 ∈ F (x, y) +NR
m
+
(y −G(x, y)).(4.1)
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✲
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Fig. 2. Gph ∂|y|.

Analogously to [15] we associate with a pair (x, y), feasible with respect to (4.1), the
index sets

L(x, y) :=
{
i ∈ {1, 2, . . . ,m} | yi > Gi(x, y)} ,

I(x, y) :=
{
i ∈ {1, 2, . . . ,m} | yi = Gi(x, y)

}
,

I+(x, y) :=
{
i ∈ I(x, y) |F i(x, y) > 0

}
,

I0(x, y) :=
{
i ∈ I(x, y) |F i(x, y) = 0

}
.

Evidently, L(x, y) ∪ I+(x, y) ∪ I0(x, y) = {1, 2, . . . ,m}. Since we will associate these
index sets only with a (locally) optimal pair (x̂, ŷ), their arguments are dropped
whenever they occur as subscripts.

On the basis of Theorem 3.1 we can now state the optimality conditions for the
problem

minimize f(x, y)
subject to

0 ∈ F (x, y) +NR
m
+
(y −G(x, y)),

(x, y) ∈ ω.
(4.2)

Theorem 4.1. Let (x̂, ŷ) be a (local) solution of problem (4.2) and let the as-
sumptions (A1), (A3) be fulfilled. Further suppose that the constraint qualification

(CQ∗)[ −(∇xGI(x̂, ŷ))T −(∇xFL∪I0(x̂, ŷ))T
(EI)

T − (∇yGI(x̂, ŷ))T −(∇yFL∪I0(x̂, ŷ))T
] [

wI
zL∪I0

]
∈ −Nω(x̂, ŷ)

for i ∈ I0(x̂, ŷ), either wizi = 0 or wi < 0 and zi > 0




implies wI = 0, zL∪I0 = 0
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holds true. Then there exist a pair (ξ, η) ∈ ∂−f(x̂, ŷ), a pair (γ, δ) ∈ Nω(x̂, ŷ), and a
KKT pair (ŵ, ẑ) ∈ R

m × R
m such that ŵL = 0, ẑI+ = 0,

0 = ξ − (∇xGI(x̂, ŷ))TŵI − (∇xFL∪I0(x̂, ŷ))TẑL∪I0 + γ,
0 = η + ŵ − (∇yGI(x̂, ŷ))TŵI − (∇yFL∪I0(x̂, ŷ))TẑL∪I0 + δ,

(4.3)

and for i ∈ I0(x̂, ŷ), either ŵiẑi = 0 or ŵi < 0 and ẑi > 0.
Proof. Evidently, the GE (4.1) is a special case of the GE (1.3) with

F1(x, y) = F (x, y), F2(x, y) = y −G(x, y), and Q(·) = NR
m
+
(·).

In virtue of [15, Lemma 2.2] we readily infer that

NGphNR
m
+
(ŷ −G(x̂, ŷ),−F (x̂, ŷ)) = {(w, z) ∈ R

m × R
m |wL = 0, zI+ = 0

and for i ∈ I0(x̂, ŷ) either wizi = 0 or wi < 0 and zi > 0}.
(4.4)

Consequently, it suffices to apply Theorem 3.1 and realize that (CQ) becomes (CQ∗)
and conditions (3.3) attain the form (4.3).

Remark. If G ≡ 0 and the state variable is not subject to any constraints, The-
orem 4.1 reduces to the optimality conditions derived in [15]. Indeed, since ŵI+ is
arbitrary and the third term at the right-hand side of the second equation in (4.3)
disappears, we can neglect all equations

0 = ηi + ŵi − ((∇yFL∪I0(x̂, ŷ))TzL∪I0)i + δi
for i ∈ I+(x̂, ŷ). In the case of genuine ICPs this is, however, not possible.

For the mathematical description of the behavior of some modern materials like
fiberglass or sandwich composites a theory has been developed in [17], leading to
so-called hemivariational inequalities. After a suitable discretization, some of them
attain the form of the GE

0 ∈ A(x) y + b(x) +Q(y),(4.5)

where the maps A[Rn → R
m × R

m] and b[Rn → R
m] are continuously differentiable

and

Q(y) = X
m

i=1Qi(y
i), Qi(y

i) =

{
∂cJ(yi) for i ∈ I1,
0 for i ∈ {1, 2, . . . ,m} \ I1(4.6)

with a locally Lipschitz function J [R→ R] and a given index set I1 ⊂ {1, 2, . . . ,m}. In
(4.5) y corresponds, e.g., to displacement or stresses at single nodes of discretization
and x describes, e.g., the shape of the body in question; cf. [9]. Since J is a function of
one variable, in most cases the set Gph ∂cJ ⊂ R

2 can easily be constructed. Moreover,
if J is a piecewise smooth function, then also the generalized normal cone can readily
be computed at each point of Gph ∂cJ .

Consider now the problem

minimize f(x, y)
subject to

(x, y) is feasible with respect to the GE (4.5),
(x, y) ∈ ω.

(4.7)
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Theorem 4.2. Let (x̂, ŷ) be a (local) solution of problem (4.7) and let the as-
sumptions (A1), (A3) be fulfilled. Further suppose that the constraint qualification

(CQ+)[
0 −(∇x(A(x̂) ŷ + b(x̂)))T

(EI1)
T −(A(x̂))T

] [
wI1
z

]
∈ −Nω(x̂, ŷ)

for i ∈ I1 one has (wi, zi) ∈ NGph ∂cJ(ŷ
i,−(A(x̂) ŷ + b(x̂))i)


 implies

{
wI1 = 0,
z = 0

holds true. Then there exist a pair (ξ, η) ∈ ∂−f(x̂, ŷ), a pair (γ, δ) ∈ Nω(x̂, ŷ), and a
KKT pair (ŵ, ẑ) ∈ R

m × R
m such that

ŵi = 0 for i /∈ I1,
0 = ξ − (∇x(A(x̂) ŷ + b(x̂)))Tẑ + γ,(4.8)

0 = η + ŵ − (A(x̂))Tẑ + δ,

and for i ∈ I1 one has (ŵi, ẑi) ∈ NGph ∂cJ(ŷ
i,−(A(x̂) ŷ + b(x̂))i).

Proof. It suffices to apply Theorem 3.1 with F1(x, y) := A(x) y+b(x), F2(x, y) :=
y, and Q given by (4.6). If i /∈ I1, then clearly

NGphQi
(ŷi, 0) =

{
(wi, zi) ∈ R× R |wi = 0

}
.

We illustrate now the application of the above statement by a simple academic
example. Consider the MPEC

minimize −2xy − x
subject to

0 ∈ 2xy + x+ ∂cJ(y),
x ∈ [−2, 2],

(4.9)

where

J(y) :=




0 for |y| ≥ 1,

1
2y

2 + y + 1
2 for y ∈ (−1, 0],

1
2y

2 − y + 1
2 for y ∈ (0, 1).

The set Gph ∂cJ is depicted in Figure 3. Due to the relation between our hemivari-
ational inequality and the objective in (4.9), we deduce that (x̂, ŷ) = (1, 0) is the
(global) solution of (4.9). Condition (CQ)+ is fulfilled because Nω(x̂, ŷ) = (0, 0) and

[
0 −1
1 −2

] [
w
z

]
=

[
0
0

]
implies w = z = 0.

System (4.8) attains the form

0 = −1− z,
0 = −2 + w − 2z,

and possesses the unique solution (ŵ, ẑ) = (0,−1). Since (0,−1) evidently belongs to
NGph ∂cJ(0,−1), the optimality conditions of Theorem 4.2 are satisfied.
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Fig. 3. Gph ∂cJ.

5. Concluding remarks. The derived optimality conditions can well be used in
testing of optimality (stationarity) of approximate solutions to problems of the type
(1.5) computed by various available numerical methods.

The computation of the generalized normal cone to the graph of Q is substantially
facilitated provided Q is polyhedral. Then, for a pair (u, v) ∈ GphQ, one has

NGphQ(u, v) =
{⋃
T 0

GphQ(u
′, v′) | (u′, v′) ∈ O ∩GphQ} ,

where O is any sufficiently small neighborhood of (u, v); cf. [2]. The situation is
particularly simple provided

Q(y) = X
m

i=1Qi(y
i),

as in the case of both equilibria considered in the previous section. A different dis-
cretization of hemivariational inequalities leads, however, to a different situation,
where

Q(y) = X
m

j=1Qj(yj)

with the subvectors yj of y having a “low” dimension. Nevertheless, even in such a
situation the computation of NGphQ is still realistic.

In this paper the desired pseudo–upper-Lipschitz continuity of Φ−1(·) ∩ ω (with
Φ given by (3.2)) is in the nonpolyhedral case ensured via condition (CQ) implying
in fact the (more restrictive) pseudo-Lipschitz continuity. It seems that under some
additional assumptions onQ and ω it is possible to guarantee this property by a weaker
condition than (CQ) [4]. This issue is, however, rather complicated and deserves a
separate study.
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The last remark concerns the numerical solution of (1.5). From the above theory
it is clear that under the assumptions of Theorem 3.1 or Theorem 3.3 the function

P : (x, y) �−→ distGphQ

([
F2(x, y)
−F1(x, y)

])
(5.1)

is a Lipschitzian error bound of Φ−1(0) ∩ ω with respect to test vectors from ω ∩ Õ,
where Õ is a neighborhood of (x̂, ŷ). If we succeed to assign the graph of Q a suitable
metric in R

� ×R
m for which the values of P can easily be computed, we could try to

solve (1.5) via the penalized problem

minimize f(x, y) + ρP (x, y)
subject to

(x, y) ∈ ω
(5.2)

with a suitably chosen penalty parameter ρ ≥ 0.

Appendix. The generalized normal cones and the coderivatives of closed-graph
multifunctions admit a rich calculus which is based mainly on the so-called extremal
principle; cf. [11], [12]. Next we give three statements of this calculus which have been
applied in sections 2 and 3. The first one concerns the multifunction

Σ(v) := {u ∈ R
p |H(v, u) ∈ Λ, (v, u) ∈ Ω} ,(A.1)

where v ∈ R
q, H maps R

q × R
p into R

s, Λ ⊂ R
s, and Ω ⊂ R

q × R
p.

Theorem A.1 (see [12, Theorem 6.10]). Let Λ and Ω be closed and let H
be continuously differentiable. For a pair (v, u) ∈ R

q × R
p assume that (v, u) ∈

Ω, H(v, u) ∈ Λ, and the qualification conditions

NΛ(H(v, u)) ∩Ker(∇H(v, u))T = {0},
(∇H(v, u))TNΛ(H(v, u)) ∩ (−NΩ(v, u)) = {0}

are fulfilled. Then for all u∗ ∈ R
p one has the inclusion

D∗Σ(v, u) (u∗) ⊂ {v∗ ∈ R
q | (v∗,−u∗) ∈ (∇H(v, u))TNΛ(H(v, u)) +NΩ(v, u)

}
.(A.2)

The second statement concerns the sum of a function Φ1[R
p → R

�] and a multi-
function Φ2[R

p ❀ R
�].

Theorem A.2 (see [12, Corollary 4.4]). Let Φ1 be continuously differentiable
on a neighborhood of u ∈ R

p and let Φ2 have the closed graph. Then for each v ∈
Φ1(u) + Φ2(u) and v

∗ ∈ R
� one has

D∗(Φ1 +Φ2) (u, v) (v
∗) = (∇Φ1(u))

T
v∗ +D∗Φ2 (u, v − Φ1(u)) (v

∗).(A.3)

In some situations we would like to compute the generalized normal cone to an
intersection of sets. The respective fundamental result from [11] can be, in the case
of only two sets, simplified to the following form.

Theorem A.3. Consider two sets Ω1, Ω2 ⊂ R
s and a point z ∈ clΩ1 ∩ clΩ2.

Assume that

NΩ1
(z) ∩ (−NΩ2

(z)) = {0}.
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Then one has the inclusion

NΩ1∩Ω2
(z) ⊂ NΩ1

(z) +NΩ2
(z).
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[5] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lov́ı̌sek, Variational Inequalities in Mechanics,

Springer-Verlag, New York, 1988.
[6] A. Jourani and L. Thibault, Approximations and metric regularity in mathematical pro-

gramming in Banach space, Math. Oper. Res., 18 (1993), pp. 390–401.
[7] D. Klatte, On quantitative stability for non-isolated minima, Control Cybernet., 23 (1994),

pp. 183–200.
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1. Introduction. Let H = L2(Ω), where Ω ⊂ RN is a bounded domain with
smooth boundary, Q = Ω× (0, T ).

We shall study the optimal control problems governed by nonlinear parabolic
equations of the form

y′ +Ay + β(y) � Bu almost everywhere (a.e.) in Q,(1.1)

with the state constraint

(y(0), y(T )) ∈ S ⊂ H ×H.(1.2)

The pay-off functional is given by

L(y, u) =

∫ T

0

[g(t, y(t)) + h(u(t))]dt.(1.3)

Note that y′ in (1.1) is the strong derivative with respect to t of the function
y : Q→ R as a function of t from [0, T ] to L2(Ω).

For the data in (1.1)–(1.3), we have the following assumptions.
(H1) Let V ⊂ H be a real Hilbert space such that V is dense inH and V ⊂ H ⊂ V ′

algebraically and topologically, where V ′ is the dual of V . Further, the injection of V
into H is compact.

A : V → V ′ is a linear continuous and symmetric operator from V to V ′ satisfying
the coercivity condition

〈Ay, y〉 ≥ w‖y‖2V − α‖y‖2H for all y ∈ V,(1.4)

where w > 0 and α ∈ R.
(H2) β is a maximal monotone graph in R × R with 0 ∈ D(β). Moreover, there

exists a constant C independent of ε such that

〈Ay, βε(y)〉 ≥ −C(1 + ‖βε(y)‖H)(1 + ‖y‖H)(1.5)

∗Received by the editors May 1, 1998; accepted for publication (in revised form) May 28, 1999;
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Foundation of China.
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†Mathematics Department, Huazhong Normal University, Wuhan 430079, P.R. of China
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for all

y ∈ D(AH) ≡ {y ∈ V ;Ay ∈ H},

where βε(r) = ε−1(r − (1 + εβ)−1r) for all ε > 0, r ∈ R.
Let φ : H → R = (−∞,+∞] be the lower semicontinuous convex function defined

by

φ(y) =

∫
Ω

j(y(x))dx,

where j : R→ R is such that β = ∂j.
Then ∂φ(y) = {w ∈ H : w(x) ∈ β(y(x)) a.e. x ∈ Ω} (cf. [1] or [6]), where ∂φ

denotes the subdifferential of φ.
Suppose

D(φ) = H,(1.6)

where D(φ) denotes the effective domain of φ.
(H3) S ⊂ D(φ)×H ⊂ H×H is a convex closed subset with finite codimensionality

(cf. [3]).
(H4) B is a linear continuous operator from a real Hilbert space U to H.
(H5) The functional h : U → R is convex and lower semicontinuous (l.s.c.).

Moreover, there exist c1 > 0 and c2 ∈ R such that h(u) ≥ c1‖u‖2U + c2 for all u ∈ U .
(H6) g : [0, T ] × H → R+ is measurable in t, and for every r > 0, there exists

Lr > 0 independent of t such that g(t, 0) ∈ L∞(0, T ) and

|g(t, y)− g(t, z)| ≤ Lr‖y − z‖H
for all t ∈ [0, T ], ‖y‖H + ‖z‖H ≤ r.

Note that, by (H2), the state equation (1.1) is equivalent to

y′(t) +Ay(t) + ∂φ(y(t)) � Bu(t) a.e. t ∈ (0, T ).(1.7)

As we know (cf. [1]), for any u ∈ L2(0, T ;U), y0 ∈ D(φ) ∩ V , (1.7) with the initial
condition

y(0) = y0(1.8)

has a unique solution

y ≡ y(t, y0, u) ∈W 1.2([0, T ];H) ∩ C([0, T ];H) ∩ L2(0, T ;D(AH)).

If y0 ∈ H(= D(φ), by (1.6)), then (1.7) with (1.8) has a unique solution in
C([0, T ];H) with t1/2y′ ∈ L2(0, T ;H), t1/2y ∈ L2(0, T ;D(AH)).

Now we formulate the optimal control problems as follows.
Let Aad = {(y, u) ∈W 1,2([0, T ];H)∩C([0, T ;H)∩L2(0, T ;D(AH))×L2(0, T ;U) |

y is the solution of (1.7) with (1.8) corresponding to u, (y(0), y(T )) ∈ S}.
We are asked to find

(P) Min L(y, u) over (y, u) ∈ Aad.
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Recently, many mathematicians have discussed the optimal control problems gov-
erned by linear and nonlinear parabolic differential equations. Barbu made many
contributions in this field (cf. [1]). Li and Yong studied the maximal principle for op-
timal control governed by some nonlinear parabolic equations with two point bound-
ary (time variable) state constraints (cf. [3], [4]). Pavel also discussed the necessary
conditions for optimal control governed by linear parabolic equations with two-point
boundary constraints (cf. [6]). However, there are some stronger restrictions on the
nonlinear terms on the case studied by Li and Yong so that the state equation and its
variational equation can be studied by linear semigroup. In Barbu’s works, the two
point boundary state constraints were considered less for the nonlinear state equation.

The present work in this paper is concerned with the optimal control problem
governed by the state equation which is the same as what Barbu discussed in [1] and
much more general than those in Li and Yong’s case [3]. However, the problem studied
in [1] does not involve state constraints.

Because of the involvement of the state constraint, we construct a new kind of
penalty functional for the pay-off function. The idea is based on those in [1]. Also,
some analyses for the state equation, like the sensitivity of the state with respect to
the control, are discussed.

Due to the involvement of monotone graphs in the state equation, we need some
restrictions on the initial data for the state equation, so we assume S ⊂ D(φ) × H
instead of S ⊂ H×H (Li and Yong’s case). Also, the variational equations now involve
measure, so the methods used in Li and Yong’s case do not work here.

The plan of this paper is as follows. Section 2 gives an approximating control
process. In section 3, we state and prove the necessary conditions on optimality for
the problem (P). In section 4, some remarks are given.

2. The approximating control process. Let (y∗, u∗) be optimal for the prob-
lem (P). Then

y∗′(t) +Ay∗(t) + β(y∗(t)) � Bu∗(t), a.e. t ∈ (0, T ), (y∗(0), y∗(T )) ∈ S

and

L(y∗, u∗) = Inf L(y, u) over (y, u) ∈ Aad.

In order to introduce the approximating control process, we need the approximations
βε and βε for β and related results. For the details we refer readers to [1].

Set βε = ε−1(1− (1 + εβ)−1) and

βε(r) =

∫ +∞

−∞
[βε(r − ε2θ)− βε(−ε2θ)]ρ(θ)dθ + βε(0),(2.1)

where ρ is a C∞
0 -mollifier on R, i.e., ρ ∈ C∞

0 (R), ρ(0) = 0 for |r| > 1, ρ(r) = ρ(−r),
and

∫∞
−∞ ρ(r)dr = 1.

Then βε is infinitely differentiable and Lipschitzian with Lipschitz constant ε−1,
and

β̇ε(r) ≥ 0 for all r ∈ R,(2.2)

|βε(r)− βε(r)| ≤ 2ε for all r ∈ R.(2.3)
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Let φε : H → R be given by

φε(y) =

∫
Ω

jε(y(x))dx for all y ∈ H,(2.4)

where jε(r) =
∫ r
0
βε(s)ds for all r ∈ R.

Then φε is Frechet differentiable on H and

∇φε(y(x)) = βε(y(x)) a.e. x ∈ Ω for all y ∈ H.(2.5)

Let φε : H → R be defined by

φε(y) = Inf

{‖y − z‖2H
2ε

+ φ(z); z ∈ H

}
.

Then ∇φε(y(x)) = βε(y(x)) a.e. x ∈ Ω.
We also have

‖∇φε(y)−∇φε(y)‖H ≤ 2ε for all y ∈ H and ε > 0,(2.6)

and

‖φε(y)− φε(y)‖H ≤ Cε‖y‖H for all y ∈ H and ε > 0.(2.7)

Now consider the following approximating equations:{
y′ +Ay + βε(y) = Bu,
y(0) = y0.

(2.8)

As we know, for any y0 ∈ H,u ∈ L2(0, T ;U), (2.8) has a unique solution in W 1,2

((0, T ];H) ∩ C([0, T ];H) ∩ L2(0, T ;V ) (cf. [1]).
We also have the following result on (2.8).
Lemma 2.1. For ε > 0 given, let u1, u2 ∈ L2(0, T ;U) and y1,0, y2,0 ∈ H. Sup-

pose that y1 and y2 are the solutions of (2.8) corresponding to u1, y1,0 and u2, y2,0,
respectively. Then

‖y1 − y2‖C([0,T ];H) ≤ C[ ‖y1,0 − y2,0‖H + ‖u1 − u2‖L2(0,T ;U) ]

for some constant C independent of ε for 1 ≥ ε > 0.
Proof. Note that (2.8) is equivalent to{

y′ +Ay +∇φε(y) = ∇φε(y)−∇φε(y) +Bu,
y(0) = y0.

(2.9)

We have

(y1 − y2)
′ +A(y1 − y2) +∇φε(y1)−∇φε(y2)

= ∇φε(y1)−∇φε(y1)− [∇φε(y2)−∇φε(y2)] +B(u1 − u2).
(2.10)

Multiplying (2.10) by (y1− y2) and integrating over (0, t), by (H1) and (2.6), one
obtains

‖(y1 − y2)(t)‖2H + 2w
∫ t

0

‖y1 − y2‖2V ds

≤ ‖y1(0)− y2(0)‖2H + 2α
∫ t

0

‖y1 − y2‖2Hds

+

∫ t

0

4ε‖y1 − y2‖H + Cδ

∫ t

0

‖u1 − u2‖2V + δ

∫ t

0

‖y1 − y2‖2Hds

(2.11)
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for any δ > 0 and some constant Cδ depending on δ.
Applying Gronwall’s inequality to (2.11), we get

‖(y1 − y2)(t)‖C([0,T ];H) ≤ C[‖y1,0 − y2,0‖H + ‖u1 − u2‖L2(0,T ;U)]

for some constant C independent of ε for 0 < ε ≤ 1. This completes the proof.
Next, we recall the approximation gε of g and hε of h as follows. For the details,

we refer readers to [1].
gε : [0, T ]×H → R is defined by

gε(t, y) =

∫
Rn

g(t, pny − ε ∧n τ)ρn(τ)dτ,(2.12)

where n = [ε−1], ρn is a mollifier in Rn, pn : H → Xn is the projection of H
on Xn which is the finite dimensional space generated by {ei}ni=1, where {ei}∞i=1 is
an orthonormal basis in H. ∧n : Rn → Xn is the operator defined by ∧n(τ) =
Σni=1τiei, τ = (τ1, . . . , τn).

hε : H → R is defined by

hε(y) = Inf {‖y − x‖2H/(2ε) + h(x);x ∈ H}.(2.13)

Now we define the penalty Lε : H × L2(0, T ;U)→ R by

Lε(y0, u) =

∫ T

0

[gε(t, yε) + hε(u)]dt+
1

2
‖y0 − y∗(0)‖2H

+ 1
2‖u− u∗‖2L2(0,T ;U) +

1
2ε1/2 [dS(yε(0), yε(T )) + ε1/2]2,

(2.14)

where yε is the solution of (2.8) and hε, gε are given by (2.13) and (2.12), respectively.
dS(yε(0), yε(T )) denotes the distance of (yε(0), yε(T )) to S.

The approximating optimal control problems are as follows:

(Pε) Minimize Lε(y0, u) over (y0, u) ∈ H × L2(0, T ;U).

First of all, we show the existence of the optimalities for (Pε).
Theorem 2.2. (Pε) has at least one optimal solution.
Proof. Let ε > 0 be fixed. It is clear that InfLε(y0, u) > −∞.
Let d = Inf Lε(y0, u), (y0, u) ∈ H × L2(0, T ;U) and {y0,n, un} be a minimizing

sequence such that

d ≤ Lε(y0,n, un) ≤ d+ n−1.(2.15)

By (H5), (H6), and (2.15), {un} and {y0,n} are bounded in L2(0, T ;U) and H, respec-
tively. Without loss of generality, we may assume that un → ũ weakly in L2(0, T ;U),
and y0,n → ỹ0

∗ weakly in H (relabeling if necessary).
By Lemma 2.1, it is clear that Lε is continuous in y0,n in H and so by (1.6), for

each n ∈ N . We may choose ỹ0,n ∈ D(φ) ∩ V such that

‖y0,n − ỹ0,n‖H < 1/n and |Lε(y0,n, un)− Lε(ỹ0,n, un)| < 1/n.(2.16)

Let ỹε,n be the solution of (2.9) corresponding to un and ỹ0,n, i.e., ỹε,n ∈W 1,2([0, T ];H)∩
C([[0, T ];H) ∩ L2(0, T ;V ) and satisfy

{
ỹ′ε,n +Aỹε,n +∇φε(ỹε,n) = ∇φε(ỹε,n)−∇φε(ỹε,n) +Bun,
ỹε,n(0) = ỹ0,n.

(2.17)
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Multiplying (2.17) by ỹε,n and integrating over (0, t), by (H1), we have

‖ỹε,n(t)‖2H + 2w
∫ t

0

‖ỹε,n(s)‖2V ds+ 2
∫ t

0

〈∇φε(ỹε,n), ỹε,n〉ds

≤ ‖y0,n‖2H +
∫ t

0

〈Bun, ỹε,n〉ds+ α

∫ t

0

‖ỹε,n‖2Hds+

∫ t

0

〈∇φε(ỹε,n)−∇φε(ỹε,n), ỹε,n〉ds.

This implies by Gronwall’s inequality and (2.6) that

‖ỹε,n‖C([0,T ];H) + ‖ỹε,n‖L2(0,T ;V ) +

∫ t

0

〈∇φε(ỹε,n), ỹε,n〉ds ≤ C,(2.18)

where C is a constant independent of ε and n (cf. [1]).
Multiplying (2.17) by ỹ′ε,n and integrating from 0 to t, we have

∫ t

0

‖ỹ′ε,n(s)‖2H +
∫ t

0

〈Aỹε,n, ỹε,n〉+
∫ t

0

〈∇φε(ỹε,n), ỹ
′
ε,n〉

=

∫ t

0

〈Bun, ỹε,n〉+
∫ t

0

〈∇φε(ỹε,n)−∇φε(ỹε,n), ỹ
′
ε,n〉.

(2.19)

Note that
∫ t

0

〈Aỹε,n, y
′
ε,n〉ds =

1

2

∫ t

0

d

ds
〈Aỹε,n, ỹε,n〉ds

= 1
2 [〈Aỹε,n(t), ỹε,n(t)〉 − 〈Aỹ0,n, ỹ0,n〉].

(2.20)

Since {ỹ0,n} ⊂ V ∩D(φ) is bounded, we have that 〈Aỹ0,n, ỹ0,n〉 is bounded.
∫ t

0

〈∇φε(ỹε,n), ỹ
′
ε,n〉ds =

∫ t

0

d

ds
φε(ỹε,n(s))ds = φε(ỹε,n(t))− φε(ỹ0,n).(2.21)

Since φε is convex and continuously Frechet differentiable and {ỹ0,n} is bounded,
{φε(ỹ0,n)} is bounded. By (2.18)–(2.21), we obtain

‖ỹ′ε,n‖2L2(0,T ;H) + ‖ỹε,n‖2L2(0,T ;V ) + ‖ỹε,n‖2C([0,T ];H) + φε(ỹε,n(t)) ≤ C,(2.22)

where C is a constant independent of n and may be different from the constant in
(2.18).

The convexity and continuity of φε imply that φε is bounded below by an affine
functional in H. Thus (2.22) shows that

‖ỹ′ε,n‖L2(0,T ;H) + ‖ỹε,n‖L2(0,T ;V ) + ‖ỹε,n‖C([0,T ];H) ≤ C.(2.23)

Multiplying (2.17) by Aỹε,n and integrating over (0, t), by (2.18)–(2.23), (H1),
and (1.5) of (H2), we may obtain

‖Ayε,n‖2L2(0,T ;H) ≤ C.(2.24)

Now by (2.18), (2.23), and (2.24), using the Arzela–Ascoli theorem, we obtain (cf.
Lemma 5.1 of [1]) that there exist subsequences of {ỹε,n} and {un}, still denoted by
them, such that

ỹε,n → ỹ∗ε strongly in C([0, T ];H) ∩ L2(0, T ;V ) as n→∞,
Aỹε,n → Aỹ∗ε weakly in L2(0, T ;H) as n→∞, and
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ỹ′ε,n → ỹ∗ε weakly in L2(0, T ;H) as n→∞.
Thus ∇φε(ỹε,n)→ ∇φε(ỹ∗ε,n) in L2(0, T ;H).
So by taking the limit for n→∞ in (2.17), we have

{
(ỹ∗ε )

′ +Aỹ∗ε +∇φε(ỹ∗ε ) = Bũ∗,
ỹ∗ε (0) = ỹ∗0 .

Since d ≤ Lε(y0,n, un) ≤ d+ 1/n, by (2.16) we have

d ≤ Lε(ỹ0,n, un) ≤ d+ 2/n.(2.25)

Since ỹε,n → ỹ∗ε strongly in C([0, T ];H), we obtain (note that hε is convex)

∫ T

0

gε(t, ỹε,n)dt→
∫ T

0

gε(t, ỹ
∗
ε )as n→∞ and limn→∞

∫ T

0

hε(uε) ≥
∫ T

0

hε(u
∗).

This with (2.25) implies

Lε(ỹ
∗
0 , u

∗) = d.

This completes the proof.
The following results are useful in discussing the approximating control problems.
Lemma 2.3. Let uε ∈ L2(0, T ;U) and yε0 be such that u

ε → u weakly in L2(0, T ;U)
and yε0 → y0 weakly in H as ε → 0. Let yε be the solution of (2.8) corresponding to
uε and yε0. Then yεn → y strongly in L2(0, T ;H), yεn(t) → y(t) weakly in H for
every t ∈ [0, T ] on a subsequence {εn}, where y ∈W 1,2((0, T ];H)∩C([0, T ];H) is the
solution of the problem{

y′ +Ay + β(y) � Bu a.e. t ∈ (0, T ),
y(0) = y0.

Proof. We have{
(yε)′ +Ayε +∇φε(y

ε) = ∇φε(y
ε)−∇φε(yε) +Buε,

yε(0) = yε0.
(2.26)

Multiplying (2.26) by yε and integrating over (0, t), by (H1) and (2.6), we obtain

‖yε(t)‖2H +
∫ T

0

‖yε‖2V +
∫ t

0

φε(y
ε)ds ≤ C(2.27)

for any t ∈ (0, T ).
Multiplying (2.26) by s.(yε(s))′ and integrating over (0, t) by (2.6), we get

∫ t

0

s‖(yε)′(s)‖2H −
∫ t

0

s〈Ayε, yε〉ds

+t〈Ayε(t), yε(t)〉 −
∫ t

0

φε(y
ε)ds+ tφε(y

ε(t))

≤
∫ t

0

〈Buε, s(yε)′〉+ t

∫ t

0

2ε‖(yε)′‖Hds.

By (2.27) and the boundedness of

∫ t

0

〈Ayε, yε〉,
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which is from (H1) and (2.27), we obtain

∫ t

0

s‖(yε)′(s)‖2Hds+ t〈Ayε(t), yε(t)〉+ tφε(y
ε(t)) ≤ C(2.28)

for each t ∈ [0, T ], where C is a constant independent of ε and t ∈ [0, T ].
Multiplying (2.26) by tφε(y

ε(t)) and integrating from 0 to t, by (2.27), (2.28),
(H1), and (1.5) of (H2), we obtain

∫ t

0

s‖φε(yε(t))‖2H ≤ C.(2.29)

Multiplying (2.26) by sAyε(s) and integrating over (0, t), by (2.6), using the same
arguments as above, we obtain

∫ t

0

s‖Ayε(s)‖2H ≤ C.(2.30)

Now by (2.27)–(2.30), using the Arzela–Ascoli theorem, there exists a y ∈W 1,2((0, T ];H)∩
L2(0, T ;V ) ∩ C([0, T ];H) such that (cf. [1])

yεn → y weakly in L2(0, T ;V ) and strongly in L2(δ, T ;H) for each δ > 0,
Ayεn → Ay weakly in every L2(δ, T ;H),
(yεn)′ → y′ weakly in every L2(δ, T ;H), and
∇φεn(y

εn)→ ξ weakly in every L2(δ, T ;H).
It follows that (cf. [1], [5]) yεn → y strongly in L2(0, T ;H) and ∇φεn(y

εn)→ ξ ∈
∂φ(y) weakly in every L2(δ, T ;H) on a subsequence {εn}. Also, y satisfies{

y′ +Ay + β(y) � Bu,
y(0) = y0.

Now by (2.27)–(2.30), using the same arguments as those in [1], (cf. Lemma 5.2
of [1]), we get yεn(t)→ y(t) weakly in H for each t ∈ [0, T ].

This completes the proof.
Lemma 2.4. Let y0 ∈ D(φ) ∩ V, u ∈ L2(0, T ;U), and yε be the solution of the

problem (2.8). Then yε → y in C([0, T ];H)∩L2(0, T ;V ), where y ∈W 1,2([0, T ];H)∩
C([0, T ];H) is the solution of the problem (1.1) with the initial condition y(0) = y0.
Moreover,

‖yε − y‖C([0,T ];H) ≤ Cε1/2,(2.31)

where C is a constant independent of ε.
This result is due to Barbu (cf. Lemma 5.1 of [1]).
Lemma 2.5. Let (yε,0, uε) be optimal for the problem (P ε) and yε be the solu-

tion corresponding to uε and yε,0. Then yεn → y∗ in C([0, T ];H) and uεn → u∗ in
L2(0, T ;U) strongly as εn → 0 on some subsequence {εn}.

Proof. For each ε > 0, let yε be the solution of (2.8) corresponding to y∗(0) and
u∗. By Lemma 2.4, yε → y∗ in C([0, T ];H). We have (cf. [1], [5])

gε(t, y
ε(t))→ g(t, y∗(t)) for all t ∈ [0, T ], hε(u

∗(t))→ h(u∗(t)) a.e. t ∈ (0, T ).
So

limε→0

∫ t

0

gε(t, y
ε(t)) =

∫ t

0

g(t, y∗(t))dt, limε→0

∫ t

0

hε(u
∗(t)) =

∫ t

0

h(u∗(t)).(2.32)
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Since (yε,0, uε) is optimal for the problem (Pε), we have

Lε(yε,0, uε) ≤ Lε(y
∗(0), u∗)

=

∫ T

0

[gε(t, y
ε) + hε(u

∗)]dt+
1

2ε1/2
[dS(y

ε(0), yε(t)) + ε1/2]2.

By (2.31), we get

[ds(yε(0),yε(T ))+ε1/2]2

2ε1/2

≤ {[‖yε(0)−y∗(0)‖2
H+‖yε(T )−y∗(T )‖2

H ]1/2+ε1/2}2

2ε1/2

≤ Cε1/2 → 0 as ε→ 0.

(2.33)

By (2.32) and (2.33), we yield

limε→0Lε(yε,0, uε) ≤ L(y∗, u∗).(2.34)

On the other hand, one can easily verify that {uε} and {yε,0} are bounded in
L2(0, T ;U) and H, respectively.

Without loss of generality, we may assume that uε → u∗
1, yε,0 → y∗1,0 weakly in

L2(0, T ;U) and H, respectively.
Let y∗1(t) be the solution of (2.8) corresponding to y∗1,0 and u∗

1.
By Lemma 2.3, yε → y∗1 strongly in L2(0, T ;H).
Consider limε→0Lε(yε,0, uε).
By the arguments in [1],

limε→0

∫ T

0

hε(uε) ≥
∫ T

0

h(u∗
1), limε→0

∫ T

0

gε(t, yε) =

∫ T

0

g(t, y∗1).

Thus

limε→0

∫ T

0

Lε(yε,0, uε) ≥
∫ T

0

[g(t, y∗1) + h(u∗
1)].(2.35)

By (2.14) and (2.34), one can check easily that

1

2ε1/2
[dS(yε(0), yε(T )) + ε1/2]2 ≤ C.

Thus dS(yε(0), yε(T ))→ 0 as ε→ 0.
By Lemma 2.3, there exists a subsequence of {ε}ε>0, still denoted by itself, such

that yε(T )→ y∗1(T ) weakly in H.
Since S is convex and closed in H ×H, we have

(y∗1,0, y
∗
1(T )) ∈ S.(2.36)

Indeed, suppose that (2.36) did not hold.
By the Hahn–Banach theorem, there exist f ∈ H ×H and α ∈ R such that

f(y∗1,0, y
∗
1(T )) > α and f(y0, y1) < α for all (y0, y1) ∈ S.(2.37)

Choose γ > 0 such that

f(y∗1,0, y
∗
1(T )) > α+ γ.(2.38)
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Since dS(yε(0), yε(T ))→ 0, there exists (y′ε(0), y
′
ε(T )) ∈ S such that

‖y′ε(0)− yε(0)‖H + ‖y′ε(T )− yε(T )‖H < ε.

It is clear that (y′ε(0), y
′
ε(T ))→ (y∗1,0, y

∗
1(T )) weakly in H ×H. Thus

f(y′ε(0), y
′
ε(T ))→ f(y∗1,0, y

∗
1(T )) as ε→ 0.(2.39)

By (2.37)–(2.39), we obtain

α ≥ limε→0f(y
′
ε(0), y

′
ε(T )) = f(y∗1,0, y

∗
1(T )) > α+ γ.

This contradiction shows (2.36).
Now (2.36) yields (y∗1 , u

∗
1) is admissible, i.e., (y

∗
1 , u

∗
1) ∈ Aad and

L(y∗1 , u
∗
1) ≥ L(y∗, u∗).(2.40)

Thus by (2.34), (2.35), and (2.40), we imply

limε→0Lε(yε,0, uε) = L(y∗, u∗).

By (2.14), we obtain

uε → u∗ strongly in L2(0, T ;U) and yε,0 → y∗(0) strongly in H.(2.41)

Now we prove yε → y∗ strongly in C([0, T ];H).
Since y∗(0) ∈ D(φ)∩V, by Lemma 2.1, we may assume without loss of generality

that yε,0 ∈ D(φ) ∩ V (since D(φ) ∩ V = H by the assumption (1.6)).
Multiply the equation

{
y′ε +Ayε +∇φε(yε) = ∇φε(yε)−∇φε(yε) +Buε,
yε(0) = yε,0 a.e. t ∈ (0, T )(2.42)

by yε, y
′
ε and∇φε(yε), respectively. Using the similar arguments in the proof of Lemma

2.3 and noting (2.41) and the fact that yε,0 and y∗(0) ∈ D(φ) ∩ V, we obtain after
some manipulation

(2.43)

‖yε(t)‖2H +
∫ T

0

[‖yε(t)‖2V + ‖y′ε(t)‖2H + ‖∇φε(yε(t))‖2H ]dt ≤ C for t ∈ [0, T ], ε > 0.

On the other hand, by (2.42) we have



(yε − yλ)

′ +A(yε − yλ) +∇φε(yε)−∇φλ(yλ)
= ∇φε(yε)−∇φε(yε) +∇φλ(yλ)−∇φλ(yλ) +B(uε − uλ),

yε − yλ(0) = yε,0 − yλ,0.
(2.44)

Multiplying (2.44) by (yε − yλ) and using assumption (H1) and (2.6), we obtain

1
2
d
dt‖yε(t)− yλ(t)‖2 + w‖yε(t)− yλ(t)‖2
+〈∇φε(yε(t))−∇φλ(yλ(t)), yε(t)− yλ(t)〉
≤ (1 + α)‖yε(t)− yλ(t)‖2H + (ε+ λ)

+〈B(uε − uλ), yε − yλ〉+ 1
2‖yε,0 − yλ,0‖2H .

(2.45)
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Recall (cf. [5]) that

∇φε(yε) = ε−1(yε − (I + ε∂φ)−1yε) ∈ ∂φ((I + ε∂φ)−1yε).

Since by (2.43) {∇φε(yε)} is bounded in L2(0, T ;H), we have by integrating (2.45)
over (0, t) that

1
2‖yε(t)− yλ(t)‖2H + w

∫ t

0

‖yε(s)− yλ(s)‖2V ds

≤ α̃

∫ t

0

‖yε(s)− yλ(s)‖2Hds+

∫ T

0

‖B(uε − uλ)‖2H + 1
2‖yε,0 − yλ,0‖2H

+

∫ t

0

〈∇φε(yε(s))−∇φλ(yλ(s)), ε∇φε(yε(s))− λ∇φλ(yλ(s))ds〉+ (ε+ λ)

≤ α̃

∫ t

0

‖yε(s)− yλ(s)‖2Hds+ C(ε+ λ)

+ 1
2‖yε,0 − yλ,0‖2H + ‖B(uε − uλ)‖2L2(0,T ;H).

By Gronwall’s inequality,

‖yε(t)− yλ(t)‖2H +
∫ T

0

‖yε(t)− yλ(t)‖2V dt
≤ C(ε+ λ) + ‖yε,0 − yλ,0‖2H + ‖B(uε − uλ)‖2L2(0,T ;H).

(2.46)

By (2.41), (2.43), and (2.46), using the same arguments in [1] (cf. Theorem 4.5 of
[1]), we obtain

yε → y∗ in C([0, T ];H) ∩ L2(0, T ;V ).

This completes the proof.

3. Necessary conditions on optimality. Let ∂g be the generalized gradient
of y → g(t, y) and ∂h be the subdifferential of h (cf. [2]).

Let Y ∗ = (Hs(Ω))′ + V ′ which is the dual of Y = Hs(Ω) ∩ V with s > N/2. We
state the main results of the necessary conditions on optimality as follows.

Theorem 3.1. Let (y∗, u∗) be an optimal pair of problem (P). Suppose that (H1)−
(H6) hold. Then there exist the function p ∈ L∞(0, T ;H)∩L2(0, T ;V )∩BV ([0, T ];Y ∗),
the measure µ ∈ (L∞(Q))∗, and λ0 ∈ R with λ0 ≥ 0 satisfying

p′ −Ap− µ ∈ L∞(0, T ;H),

p′(t)−Ap(t)− µ ∈ λ0∂g(t, y
∗(t)) a.e. in (0, T ),

〈 p(0), x0 − y∗(0) 〉 − 〈 p(T ), x1 − y∗(T ) 〉 ≤ 0
for all (x0, x1) ∈ S (transversality condition).

B∗p(t) ∈ λ0∂h(u
∗(t)) a.e. t ∈ (0, T ),

and (λ0, p) �= 0.
Proof. Let (yε,0, uε) be optimal for the problem (P ε) and yε be the solution of

(2.8) corresponding to (yε,0, uε).
For any v ∈ L2(0, T ;U), η ∈ H given, let uλε = uε + λv, yλε,0 = yε,0 + λη, λ > 0,

and let yλε be the solution of the problem (2.8) corresponding to yλε,0 and uλε .
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By Lemma 2.1, yλε → yε strongly in C([0, T ];H) as λ→ 0.
Since (yε,0, uε) is optimal, we have Lε(y

λ
ε,0, u

λ
ε ) ≥ Lε(yε,0, uε) for any λ > 0,

v ∈ L2(0, T ;U), and η ∈ H.
Thus

Lε(y
λ
ε,0, u

λ
ε )− Lε(yε,0, uε)

λ
≥ 0.(3.1)

Let ∇gε(t, yε) be the gradient of gε to the second variable at yε, and let ∇hε(uε)
be the gradient of hε at uε. After some simple calculations, we obtain

limλ→0

∫ T

0

gε(t, y
λ
ε )− gε(t, yε)

λ
=

∫ T

0

〈∇gε(t, yε), zε〉(3.2)

with zε ∈ C([0, T ];H) ∩W 1,2([0, T ];H) satisfying

{
z′ε +Azε + β̇ε(yε)zε = Bv,
zε(0) = η,

(3.3)

limλ→0

∫ T

0

hε(u
λ
ε )− hε(uε)

λ
dt =

∫ T

0

〈∇hε(uε), v〉dt,(3.4)

limλ→0
1
2

[‖uλ
ε−u∗‖2

H−‖uε−u∗‖2
H

λ +
‖yλε,0−y∗(0)‖2

H−‖yε,0−y∗(0)‖2
H

λ

]

=

∫ T

0

〈uε − u∗, v〉dt+ 〈yε,0 − y∗(0), η〉,
(3.5)

and

limλ→0
1

2ε1/2

{
[dS(yλε (0),yλε (T ))+ε1/2]2−[dS(yε(0),yε(T ))+ε1/2]2

λ

}
= 1

ε1/2 [ dS(yε(0), yε(T )) + ε1/2 ] [ 〈aε , η〉+ 〈bε , zε(T )〉 ],
(3.6)

where (aε, bε) ∈ ∂dS(yε(0), yε(T )), the subdifferential of dS at (yε(0), yε(T )).
Since S is convex and closed,

∂ds(yε(0), yε(T )) =

{ ∇ds(yε(0), yε(T )) if (yε(0), yε(T )) �∈ S,
0 if (yε(0), yε(T )) ∈ S

and

‖aε‖2H + ‖bε‖2H = 1 if (yε(0), yε(T )) �∈ S.(3.7)

Let

λε =
ε1/2

ds(yε(0), yε(T )) + ε1/2
.(3.8)

By (3.7) and (3.8)

2 ≥ |λε|2 + ‖aε‖2H + ‖bε‖2H ≥ 1.(3.9)
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By (3.1)–(3.6), we yield

λε

[∫ T

0

〈∇gε(t, yε), zε〉dt+
∫ T

0

〈∇hε(uε), v〉dt
]
+ [〈aε, η〉+ 〈bε, zε(T )〉]

≥
∫ T

0

〈u∗ − uε , v〉dt+ 〈y∗(0)− yε,0 , η〉 ≡ q(ε, v, η).

(3.10)

By (3.9), we may assume that (relabeling if necessary)

λε → λ0 and aε → a, bε → b weakly in H.(3.11)

It follows by Theorem 1.14 of [1] that the boundary value problem

{
p′ε −Apε − β̇ε(yε)pε = λε∇gε(t, yε) in Q,
pε(T ) = −bε in Ω

(3.12)

has a unique solution pε ∈ L2(0, T ;V ) ∩ C([0, T ];H) with p′ε ∈ L2(0, T ;V ′).
Since yε → y∗ strongly in C([0, T ];H)∩L2(0, T ;V ) from Lemma 2.5, by the same

arguments as those in [1] (cf. Lemma 5.3 of [1]), there exists p ∈ BV ([0, T ];Y ∗) ∩
L2(0, T ;V ) ∩ L∞(0, T ;H) and µ ∈ (L∞(Q))∗ such that on some subsequence {εn},
(3.13)

pεn → p in L2(0, T ;H), weakly in L2(0, T ;V ), weak star in L∞(0, T ;H),

where Y ∗ = (Hs(Ω))′ ∩ V ′ with s > N/2 which is the dual of Y = Hs(Ω) ∩ V, and

pεn(t)→ p(t) strongly in Y ∗ and weakly in H for every t ∈ [0, T ],(3.14)

β̇εn(yεn)pεn → µ weak star in (L∞(Q))∗,(3.15)

∇gεn(t, yεn)→ ξ1 weak star in L∞(0, T ;H)(3.16)

with ξ1(t) ∈ ∂g(t, y∗(t)) a.e. t ∈ (0, T ),
where ∂g(t, y) is the generalized gradient of y → g(t, y).

Now letting εn → 0 in (3.12), it follows by (3.11) and (3.13)–(3.16) that p satisfies
the equations

{
p′ −Ap− µ ∈ λ0∂g(t, y

∗) a.e. in (0, T ),
p(T ) = −b(3.17)

and

p′ −Ap− µ ∈ L∞(0, T ;H),(3.18)

where p′ is the derivative in the sense of V ′-valued distribution.
It follows from (3.3), (3.10), and (3.12) that

−
∫ T

0

〈B∗pε, v〉+ λε

∫ T

0

〈∇hε(uε), v〉+ 〈aε, η〉 − 〈pε(0), η〉 ≥ q(ε, v, η)(3.19)

for all v ∈ L2(0, T ;U) and η ∈ H.
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Since uε → u∗ in L2(0, T ;U), by a standard argument (cf. [1], [5]), we have

∫ T

0

〈∇hε(uε), v〉 →
∫ T

0

〈ξ(t), v〉 with ξ(t) ∈ ∂h(u∗(t)) a.e. t ∈ (0, T )(3.20)

for all v ∈ L2(0, T ;U), where ∂h denotes the subdifferential of h.
Letting ε→ 0 in (3.19), it follows from (3.13) and (3.20) that

−
∫ T

0

〈B∗p, v〉+ λ0

∫ T

0

〈ξ(t), v〉+ 〈a, η〉 − 〈p(0), η〉 ≥ 0(3.21)

for all v ∈ L2(0, T ;U) and η ∈ H.
Since (aε, bε) ∈ dS(yε,0, yε(T )), we have

〈aε, x0 − y0,ε〉+ 〈bε, x1 − yε(T )〉 ≤ 0 for all (x0, x1) ∈ S.

Thus

〈aε, x0 − y∗(0)〉+ 〈bε, x1 − y∗(T )〉
≤ 〈aε, yε,0 − y∗(0)〉+ 〈bε, yε(T )− y∗(T )〉
≡ q1(ε)

(3.22)

for all (x0, x1) ∈ S.
By Lemma 2.5 and (3.9), q1(ε)→ 0 as ε→ 0. We claim (λ0, a, b) �= 0. Indeed, if

λ0 = 0, by (3.9), ‖aε‖2H + ‖bε‖2H ≥ δ > 0.
Since S is finite codimensional (by (H3)), so is S− (y∗(0), y∗(T )) (cf. Proposition

3.4 of [3]).
Thus by (3.22), we yield (a, b) �= 0 and

〈a, x0 − y∗(0)〉+ 〈b, x1 − y∗(T )〉 ≤ 0(3.23)

for all (x0, x1) ∈ S (cf. Lemma 3.6 [3]).
Now by (3.21) we have (λ0, p) �= 0. Indeed, if λ0 = 0, then (a, b) �= 0. By (3.17),

p �= 0 if µ �= 0 or b �= 0 If µ = 0 and b = 0, we have p(0) = 0. Then (3.21) makes
〈a, η〉 ≥ 0 for all η ∈ H. So a = 0. This contradiction implies that p �= 0. Next we
prove the transversality condition.

For any (x0, x1) ∈ S, let v = 0, η = x0 − y∗(0) in (3.21), which yields

〈p(0)− a, x0 − y∗(0)〉 ≤ 0.(3.24)

By (3.23) and (3.24) and noting that p(T ) = −b, we obtain

〈p(0), x0 − y∗(0)〉 − 〈p(T ), x1 − y∗(T )〉 ≤ 0(3.25)

for all (x0, x1) ∈ S.
Finally in (3.21), by letting η = 0 and using a standard argument in [1], it follows

from (3.20) that

B∗p ∈ λ0∂h(u
∗(t)) a.e. t ∈ (0, T ).(3.26)

Thus (3.17), together with (3.18), (3.25), and (3.26) completes the proof.
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4. Some remarks.
Remark 4.1. Let S = Q1 ×Q2, where Q1 ⊂ D(φ) ∩ V ⊂ H, Q2 ⊂ H are convex

and closed sets. Suppose that either Q1 or Q2 is finite codimensional. Then all results
in Theorem 3.1 remain true without assumption (H3). (Note that one of Q1 and Q2

has finite codimensionality which cannot imply that S does.)
Indeed, we need only to show that (λ0, a, b) �= 0 in (3.11).
Suppose that λ0 = 0 and a = 0. Then by (3.9) we have ‖bε‖2H ≥ δ > 0 for

constant δ. Now by (3.22), we have 〈bε, x1−y∗(T )〉 ≤ q̃1(ε) for all x1 ∈ Q2. q̃1(ε)→ 0
as ε→ 0.

Since Q2 is finite codimensional, so is Q2−y∗(T ) (cf. [3]). By the same arguments
in the proof of Theorem 3.1, one obtains bε → b �= 0.

Remark 4.2. Let β be locally Lipschitz continuous, monotone on R, and satisfying
the growth condition

0 ≤ β′(r) ≤ c(|β(r)|+ |r|+ 1) a.e. r ∈ R.(4.1)

Then D(φ) is dense in H (cf. section 5.3 of [1]). Thus, the results of Theorem 3.1
remain true.

Moreover, p ∈ AC([0, T ], Y ∗)∩Cw([0, T ];H) and µ ∈ L1(Q), where Cw([0, T ];H)
denotes the space of all weakly continuous functions from [0, T ] to H.

Remark 4.3. Let β be globally Lipschitz and monotone. Then {β̇ε} is uniformly
bounded on R (cf. Proposition 5.3 of [1]) and D(φ) = H. In this case, we may weaken
the assumption (H3) on S.

Start from the variational equation (3.3):

{
z′ε +Azε + β̇ε(yε)zε = Bv,
zε(0) = η.

(4.2)

Multiplying (4.2) by zε, z
′
ε, Azε and integrating over (0, t), by the uniform bound-

edness of {β̇ε}, we may have
‖zε‖C([0,T ];H) + ‖z′ε‖L2(0,T ;H) + ‖Azε‖L2(0,T ;H) ≤ C.(4.3)

On the other hand, β̇ε(yε)zε is weakly compact in L2(Q), so β̇(yε)zε → µ̃ weakly
in L2(Q).

Thus by (4.2) and (4.3), using the Arzela–Ascoli theorem, on some subsequence
εn, we have

zεn → z in C([0, T ];H) strongly,
Azεn → Az weakly in L2(0, T ;H),
z′εn → z′εn weakly in L2(0, T ;H).

So z ∈ C([0, T ];H) ∩W 1,2([0, T ];H) and satisfies

{
z′ +Az + µ = Bv,
z(0) = η.

(4.4)

Let

R̃r =
{
(η, z(T )) : η ∈ B1(0), where z is the solution of (4.3) with v ∈ B̃r(0)

}
,

where B1(0) is the unit ball of H, and where B̃r(0) is the ball in L2(0, T ;U) with
radius r, center 0.
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Instead of (H3), we may assume
(H̃3) S ⊂ (D(φ) ∩ V ) × H ⊂ H × H is closed and convex. R̃ − S has finite

codimensionality.
The results of Theorem 3.1 remain true if we use (H̃3) instead of (H3).
Indeed, by (3.10) and (3.22), we have

λε

[∫ T

0

〈∆gε(t, yε), zε〉dt+
∫ T

0

〈∆hε(uε), v〉dt
]

+〈aε, η − x0 + y∗(0)〉+ 〈bε, zε(T )− x1 + y∗(T )〉
≥ q2(ε, v, η),

where q2(ε, v, η) = q(ε, v, η)− q1(ε).
Thus

λε

[∫ T

0

〈∆gε(t, yε), zε〉+
∫ T

0

〈∆hε(uε), v〉dt
]

+〈aε, η − x0 + y∗(0)〉+ 〈bε, z(T )− x1 + y∗(T )〉
≥ q2(ε, v, η) + 〈bε, z(T )− zε(T )〉
≡ q̃(ε, v, η),

where q̃(ε, v, η)→ 0 uniformly in η ∈ B1(0), v ∈ B̃r(0), as ε→ 0.
Then (H̃3) guarantees (λ0, a, b) �= 0 (cf. [4]).
At last, we give an example as follows.
Example 1. Let β be a locally Lipschitz continuous monotone graph on R and

satisfy the growth condition (4.1), A = −∆, V = H1
0 (Ω), and S = {y0} × Q2 with

y0 ∈ H1
0 (Ω), and Q2 ⊂ H has finite codimension.

Then problem (P) reduces to the problem as follows:
(P1) Min L(y, u)

subject to all
(y, u) ∈W 1,2([0, T ];H)∩C([0, T ];H)∩L2(0, T ;D(AH))×L2(0, T ;U)
satisfying the parabolic equation


yt −∆y + β(y) = Bu a.e. Q,
y(x, t) = 0 in ∂Ω,
y(x, 0) = y0(x), y(x, T ) ∈ Q2.

By Remark 4.1 and Remark 4.2, we may apply the theorem to problem (P1) to get
the necessary conditions of the pair for the problem (P1).
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Abstract. We study the variations of the quadratic performance associated to a linear differ-
ential system of retarded type for small values of the delays. From an interpretation of delays as
singular perturbations of abstract evolution operators, we revisit the usual theory of representation
and optimal control of retarded systems. This leads to a new parameterization of associated Riccati
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Key words. optimal control, delay, sensitivity, singular perturbation, robust control

AMS subject classifications. 93C25, 49K35, 49K40, 93C73, 93B36

PII. S0363012997329858

1. Introduction. Small time delay often appears as a side effect of network
control of physical systems. In the specific case where the sensors, actuators, and
processors share a single channel, the true open loop system has delayed inputs and
outputs and possibly state delays resulting from delayed output feedback. In view of
real time control, such delays are small but strongly dependent on ordering decisions,
and it would be desirable for a given control law to be able to have an a priori estimate
of the sensitivity of the performance of the controlled system to small delays.

This paper mainly addresses the issue of the variations of the optimal value of a
quadratic cost associated to a linear system perturbed by small delays in its inputs
and state. Therefore, given some delay-vectors �k = (k1, . . . , kI), �h = (h1, . . . , hJ) with
(ki, hj) ∈ [0,K]× [0, H] for K, H > 0, we consider the following equation:




ẋ(t) = A0x(t) +

I∑
i=1

Aix(t− ki) +B0u(t) +

J∑
j=1

Bju(t− hj)

almost everywhere (a.e.) t ∈ [0, T ],
x(0) = x00 ∈ R

n, x = x0 a.e. t ∈ [−K, 0], x0 ∈ L2(−K, 0;Rm),
u ∈ L2(−H,T ;Rm), u = u0 a.e. t ∈ [−H, 0],

(1.1)

where Ai ∈ L(Rn) and Bj ∈ L(Rm,Rn) for i ∈ {0, . . . , I} and j ∈ {0, . . . , J}. Also,
to the solution x(.) = x(.;�k;�h;u) of (1.1), we associate the following quadratic cost:

JT (x) =
1

2
〈x(T ), G(T )x(T )〉Rn +

1

2

∫ T

0

{‖Cx‖2
Rp + 〈u,Ru〉Rm}dt,(1.2)

where G(T ) ∈ L(Rn) is nonnegative for T ∈ R+ and G(∞) = 0; C ∈ L(Rn,Rp); R
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positive. Moreover, by ĴT (�k,�h) we denote the infimum

min
u∈L2(0,T ;Rm)

JT (x(.;�k;�h;u))

for T ∈ R+ ∪ {+∞}. Then the central problem of interest is the computation of the

gradient of the function (�k,�h) −→ ĴT (�k,�h) at the point (�k,�h) = (0, 0).

We recall that, in a more general framework of systems of evolution with small
changes in some parameter, Pritchard [20] has shown that there exists some constant

0 < c < 1, depending on the nondelay optimal feedback and such that cĴT (0, 0) ≤
ĴT (�k, 0), whereas Dontchev [13, 14, 15], with singular perturbation techniques, com-

putes |ĴT (�k, 0) − ĴT (0, 0)| in terms of the multipliers occurring in the optimality
condition. More recently, for a single state delay case, Clarke and Wolenski [3, The-
orem 3.2] prove the differentiability of the optimum of some associated performance
and provide a characterization of the derivative in the multipliers occurring in the
optimality condition. In this paper, we propose a simplification of these results in
the case of quadratic minimization, and extend them to the optimum of the min-max
problem associated to H∞ disturbance attenuation via state feedback controller. We
prove the existence of the partial derivative at zero under weaker conditions than those
of Clarke and Wolenski [3]. Moreover, and this is our major contribution, we provide
an explicit gradient formula for the quadratic optimal cost with partial derivatives
at zero, simply expressed in terms of the solution of the finite dimensional Riccati
equation solving the nondelay optimal control problem, for both finite and infinite
horizons. We also state a similar result for the H∞ robust performance.

The keynote of this paper is an interpretation of the delays as singular perturba-
tions of some evolution operators that leads to an unusual variant of classical state
space representations via semigroup techniques. For the representation of solutions,
we refer to Ichikawa [16], Delfour and Karrakchou [9, 10], and Delfour [8]. Then using
a well-known compensation trick—see, e.g., Kokotović and Yackel [18] for the finite
dimensional case—we parameterize Riccati operators with the delays when revisiting
optimal control of delay systems in the Pritchard and Salamon class [4, 21, 22]. In
view of that parameterization, the problem of the sensitivity analysis of the opti-
mal performance becomes a study, in the neighborhood of zero, of continuity of the
components of some four-block decomposition associated to Riccati operators.

Section 3 introduces the proposed state space representation and defines the
framework in which the control problem will be solved. Next, linear quadratic optimal
control theory for retarded equations is revisited in section 4. New regularity theo-
rems for Riccati operators—some weak differentiability-like results—are presented in
section 5. We believe that these are of independent interest, so we state them as sep-
arate theorems. They make the proof of sensitivity results given in section 6 rather
elementary. Finally, in section 7 we present the H∞ case.

2. Main results.

Theorem 2.1. Let us assume T <∞. Then
(i) with u0 continuous on the left side of 0, we have

∂ĴT
∂hj

(0, 0) = 〈x00, ∆j(PT )x00〉Rn ,(2.1)

where ∆j(PT ) = PT (0)BjR
−1BTPT (0) for PT , the nonnegative symmetric
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solution of the Riccati equation

dPT

dt
+ATPT + PTA− PTBR−1BTPT + CTC = 0 in C(0, T ;L(Rn)),

PT (T ) = G(T ).
(2.2)

(ii) With x0 continuous on the left side of 0, we have

∂ĴT
∂ki

(0, 0) = −〈PTx00, Aix00〉Rn .(2.3)

Theorem 2.2. Assume the triple (A,B,C) stabilizable and detectable. Then
(i) with u0 continuous on the left side of 0, we have

∂Ĵ∞
∂hj

(0, 0) = 〈x00, ∆j(P∞)x00〉Rn ,(2.4)

where ∆j(P∞) = PBjR
−1BTP∞ for P∞, the nonnegative symmetric solution

of the Riccati equation

ATP∞ + P∞A− P∞BR−1BTP∞ + CTC = 0 in L(Rn).(2.5)

(ii) with x0 continuous on the left side of 0, we have

∂Ĵ∞
∂ki

(0, 0) = −〈P∞x00, Aix00〉Rn .(2.6)

Remark 2.1. For the existence of partial derivatives with respect to state delays,
we need only continuity of x0 on the left side of 0, a condition which is weaker than
the existence of ‖ẋ0‖∞ as required in Clarke and Wolenski [3, Theorem 3.2].

Example 2.1. Sensitivity to small input delay. If we take J = 1 and assume
B0 = 0, then ∆1(P∞) = P∞B1R

−1BT
1 P∞ = KoptRKopt ≥ 0 where the matrix

Kopt = −R−1BT
1 P∞ is the optimal gain for h = 0. Therefore formula (2.4) becomes

∂Ĵ∞
∂h

(0, 0) = 〈Koptx00, RKoptx00〉Rn ≥ 0,(2.7)

from which we have ĴT (0, 0) ≤ ĴT (0, h) for a sufficiently small h. Moreover, we see
that the degradation of the optimal performance increases with the optimal
gain.

3. Singular perturbations and product-space approach for representa-
tion of solutions. First of all, we point out that for computation of the partial
derivatives at the point (k, h) = (0, 0), we need only to compare optimal cost with
solely one state or input delay to nondelay optimal cost. So it is sufficient to restrict
further analysis to the cases (I = 0;J = 1) and (I = 1;J = 0) which in fact will
be studied separately. By doing so, we do not lose any generality while we simplify
statements of intermediate steps and proofs. Henceforth, we are justified in assuming
that the system of interest is


ẋ(t) = A0x(t) +A1x(t− k) +B0u(t) +B1u(t− h) a.e. t ∈ [0, T ],
x(0) = x00 ∈ R

n, x = x0 a.e. t ∈ [−k, 0], x0 ∈ L2(−k, 0;Rn),
u ∈ L2(−h, T ;Rm), u = u0 a.e. t ∈ [−h, 0].

(3.1)
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So, in the following, with A = A0 + A1 and B = B0 + B1, we shall look separately
for state space representations when (k = 0, h > 0) and when (k > 0, h = 0). These
situations will be referred to as the retarded input system and retarded state system,
respectively. We start with the retarded input case, since it is enough to provide a
comprehensive statement of the approaches that will be taken in this paper.

3.1. Retarded input system: (k = 0, h > 0). First recall that in this
case, the solution of (3.1) is given in the space H1

loc(0,∞;Rn) by the variation of the
constants formula

x(t) = eAtx00 +

∫ t

0

eA(t−s){B0u(s) +B1u(s− h)}ds.(3.2)

But for controller synthesis, it is more convenient to have a description of this solution
with a variation of the constants formula associated to a nondelay evolution system.
A common way is to follow the choice originated by Ichikawa [16] which consists
in choosing, as a support for description, the extended state defined by the pair
(x(t), v(t, .))

′ ∈ Hm
h = R

n × L2(−h, 0;Rm) with the segment function v given by
v(t, θ) = u(t+θ) for a.e. t ∈ [0, T ] and θ ∈ [−h, 0]. Such a choice leads to an equivalent
linear system of evolution in Hm

h with unbounded input but bounded solutions as
explained in [16] (see also Bensoussan et al. [1]). That line is well known to provide
both optimal feedback and cost.

Now we point out that it is nothing but the presence of the delay that has brought
the system from finite to infinite dimensions, so the delay may be interpreted as a
singular perturbation in a convenient framework. Moreover, in view of sensitivity
analysis, it is desirable for simplicity to have a non-delay-dependent state space. A
natural way to do this is to rescale the variable θ, in order to choose Hm

1 = R
n ×

L2(−1, 0;Rm) as state space. The proposed rescaling will transform our problem with
varying space to one with evolution operators singularly parameterized by the delay.

Introduce the scaled functions uh and ϕh, defined in L2(0, T ;L2(−1, 0;Rm)) and
L2(−1, 0;Rm), respectively, by uh(t, σ) = v(t, σh) and ϕh(σ) = u0(σh) for a.e. t ∈
[0, T ] and σ ∈ [−1, 0]. Then observing that h∂uh

∂t = ∂uh

∂σ in L2(0, T ;L2(−1, 0;Rm))
with uh(0, .) = ϕh ∈ L2(−1, 0;Rm) and uh(., 0) = u ∈ L2(0, T ;Rm), the use of stan-
dard transposition techniques yields

 h
∂uh

∂t
= Duh + δ∗σ=0u in L2(0, T ;H1(−1, 0;Rm)

′

uh(0, .) = ϕh(.) ∈ L2(−1, 0;Rm),
(3.3)

where D = ∂
∂σ with domain D(D) = {u ∈ H1(−1, 0;Rm), u(0) = 0}.

Then, using the shorthand Hm = Hm
1 , setting Xh(t, .) = ( x(t)

uh(t,.)
) ∈ Hm, and

W = R
n ×H1(−1, 0;Rm), we get, for any h > 0, the following equation of evolution:




∂Xh

∂t
= AhXh + Bhu in L2(0, T ;Wm

′
),

Xh(0, .) =

(
x00

ϕh

)
∈ Hm,

(3.4)

where

Ah =

(
A B1δσ=−1

0
1

h
D

)
, D(Ah) = R

n ×D(D), Bh =
(

B0
1

h
δ∗σ=0

)
∈ L(Rm,Wm

′
).
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Note that if we have chosen Hm
H with H ≥ h as initial state space as it is done

sometimes in the literature, then the rescaling will lead to Hm
H
h

instead of Hm
1 .

Now it clear that h = 0 is a singularity of operators Ah and Bh. The next step is
the well-posedness of that equation. At this stage, observe that if—by construction—
the extended state space is Hm, then the input operator Bh is unbounded in Hm.
Further insight into the characteristics of the operator Ah will show that despite that
unboundedness, the solution of (3.4) will remain inside Hm.

Proposition 3.1. Henceforth let the space Hm be identified with its dual and
take it as a pivot space. Then we have the following:

(i) Ah is the infinitesimal generator of a C0-semigroup Sh(t) on Hm. In ad-
dition, the Hm-adjoint of the operator Ah is given with D(A∗

h) = {( yw ) ∈Wm, w(−1) = hBT
1 y} by

A∗
h

(
y
w

)
=

(
AT

0 y

− 1
h
Dw

)
.

(ii) Furthermore, for t ≥ 0, the restriction to D(A∗
h) of S∗

h, the adjoint of the
semigroup Sh, defines a C0-semigroup on Hm and then Sh(t) may be extended
to a C0-semigroup on the Hilbert space D(A∗

h)
′
.

That means that the operator Ah is the infinitesimal generator of a C0-semigroup
Sh(t) on Hilbert spaces ordered by dense and continuous injections, namely D(Ah) ↪→
Hm ↪→ D(A∗

h)
′
. Therefore the weak solution of (3.4) may be defined by the variation

of the constants formula

Xh(t, .) = Sh(t)
(

x00

ϕh(.)

)
+

∫ t

0

Sh(t− s)Bhu(s)ds,(3.5)

where, at first sight, it seems that we only have Xh ∈ C(0, T ;D(A∗
h)

′
). But in fact,

due to the structure of the semigroup Sh, we have additional regularity in view of the
following property of the convolution term.

Lemma 3.2. The operator u �−→ {t → ∫ t

0
Sh(t − s)Bhu(s)ds} is linear and

continuous from L2(0, T ;Rm) to C(0, T ;Hm).
The proofs of Proposition 3.1 and Lemma 3.2 are given in the appendix. Their

combination is useful towards a complete characterization of the introduced infinite
dimensional state representation which ultimately satisfies the following.

Theorem 3.3.
(i) The function Xh given by formula (3.5) is the unique solution in{

X ∈ C(0, T ;Hm) :
dX

dt
∈ L2(0, T ;D(A∗

h)
′
)

}
(3.6)

of the weak equation


dX

dt
= AhX + Bhu in L2(0, T ;D(A∗

h)
′
),

X(0) =

(
x00

ϕh

)
∈ Hm.

(3.7)

In addition, there exists a constant c > 0 such that

‖Xh‖C(0,T ;Hm) +

∥∥∥∥∂Xh

∂t

∥∥∥∥
L2(0,T ;D(A∗

h
)′ )
≤ c

[∥∥∥∥
(
x00

ϕh

)∥∥∥∥
Hm

+ ‖u‖L2(0,T ;Rm)

]
.

(3.8)
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(ii) Moreover, the first component of this weak solution Xh is equal to x, given
by the formula (3.2), which is the unique solution of the retarded equation
(3.1).

The derivation of this theorem is immediate. The first item comes from the
lemma, when using, e.g., the reference [1, Theorem 3.1, p. 173]. The second one is
the outcome of a detailed rewriting of formula (3.5).

Remark 3.1. It is worth recalling that the property Xh ∈ C(0, T ;Hm) follows
easily from continuity of the translation in L2 combined with the estimation

‖x‖W 1,2(0,T ;Rn) ≤ C
[|x00|Rn + ‖x0‖L2(−K,0;Rn) + ‖u‖Lp(−H,T ;Rm)

]
(3.9)

which can be found, e.g., in [1]. So the interest of the relation ∂Xh

∂t ∈ L2(0, T ; D(A∗
h)

′
)

is in additional information on the segment function uh, which satisfies equation
∂uh

∂t = h∂uh

∂σ with uh(t, 0) = u(t), and belongs to L2(0, T ;H1(−1, 0;Rm)
′
).

3.2. Retarded state system: (k > 0, h = 0). In this case the solution is
given in H1

loc(0,∞;Rn) by the variation of the constants formula

x(t) = eA0tx00 +

∫ t

0

eA0(t−s)A1x(s− k)ds+

∫ t

0

eA0(t−s)Bu(s)ds.(3.10)

It is well known that this solution may be described in a product-space framework by
means of the pair (x(t), z(t, .))

′
with z(t, θ) = x(t+ θ), t ≥ 0, θ ∈ [−k, 0]. Moreover,

when considering only the homogeneous part of the retarded equation, this pair is
generated by a C0-semigroup acting on the extended initial condtion (x00, x0)

′
. See,

e.g., Delfour [8] or Staffans [25, 26] for further details.
To emphasize the singular perturbation effect of the delay, we rescale the segment

function z before following the product-space lines for state representation. To this
end, we introduce the functions defined by xk(t, σ) = x(t + σk) for t ≥ 0 and σ ∈
[−1, 0], and ψk(σ) = x0(σk). Then the solution of the homogeneous part of the
retarded equation may be described from (x00, ψ

k)
′
with some linear operator given

in Hn = R
n × L2(−1, 0;Rn) by

Sk(t)
(

x00

ψk(.)

)
=

(
x(t)

xk(t, .)

)
∀ t ≥ 0 and

(
x00

ψk

)
∈ Hn.(3.11)

This next statement is a characterization of Sk that comes from the usual properties of
the extended C0-semigroup associated to a delay equation of retarded type [1, p. 61].

Proposition 3.4. Sk is a C0-semigroup on Hn which is generated by the operator
defined on Hn with domain D(Ak) = {(xy ) ∈ Wn = R

n×H1(−1, 0;Rn), y(0) = x} as

Ak =

(
A0 A1δσ=−1

0
1

k

∂

∂σ

)
.

Thus setting Xk = (
x(t)

xk(t,.)
) and Bk = (B0 ) ∈ L(Rm,Hn), we have the following

evolution equation




∂Xk

∂t
= AkXk + Bku in L2(0, T ;Hn),

Xk(0, .) =

(
x00

ψk(.)

)
∈ Hn.

(3.12)
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Now we have a bounded equation of evolution in the state space Hn. It is obvious
that for any initial condition in Hn, its solution satisfies Xk ∈ C(0, T ;Hn). More-
over, (3.12) may be extended by means of the method of transposition. In addition,
easy computations lead to the following characterization of the adjoint of Ak that will
be useful here.

Lemma 3.5. The Hn-adjoint of the operator Ak is given with domain D(A∗
k) =

{( vw ) ∈ Wn, w(−1) = kAT
1 v} as

A∗
k

(
v
w

)
=


AT

0 v +
1

k
δσ=0w

−1
k

∂

∂σ
w


 .

Then we have the following theorem.
Theorem 3.6. Given any t ∈ [0, T ], X0 ∈ Hn, and u ∈ L2(0, T ;Rm),

X(t) = Sk(t)X0 +

∫ t

0

Sk(t− s)Bku(s)ds ∈ Hn(3.13)

is the unique solution in the space

{
X ∈ C(0, T ;Hn) :

dX

dt
∈ L2(0, T ;D(A∗

k)
′
)

}
(3.14)

of the transposed adjoint equation

{
dX

dt
= ÃkX + Bku in L2(0, T ;D(A∗

k)
′
),

X(0) = X0 ∈ Hn,
(3.15)

where

Ãk ∈ L(D(Ak),Hn) ∩ L(Wn,Wn
′
) ∩ L(Hn,D(A∗

k)
′
)(3.16)

is the extension of Ak given on Wn by

Ãk =

(
A0 A1δσ=−1
1

k
δ∗σ=0

1

k
D

)
.(3.17)

Extension Ãk generates Sk, henceforth considered as a C0-semigroup on any of the
three spaces D(Ak) ↪→ Hn ↪→ D(A∗

k)
′
which are ordered by continuous and dense

injections. Specifically, for X0 = (
x00

ψk ), X coincides with the augmented state given

from x by ( x
xk ).

Proof. Theorem 3.6 is given in Appendix A.3.
Remark 3.2. Since Bku ∈ L2(0, T ;Hn) =⇒ {t → ∫ t

0
Sk(t − s)Bku(s)ds} ∈

L2(0, T ;D(Ak)) and in view of [1, Proposition 3.2], the different concepts of solu-
tion (strong, mild, and weak) coincide for the equation of evolution (3.12), so we just
say “the solution.” Furthermore, we may notice that

X0 ∈ D(Ak) =⇒ Xk ∈ L2(0, T ;D(Ak)),(3.18)

X0 ∈ Wn =⇒ Xk ∈ L2(0, T ;Wn).(3.19)
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4. Linear quadratic optimal control revisited. To begin with, we state in
the first subsection the solution of the linear quadratic minimization problem as a spe-
cial case of the general result for systems belonging to the abstract class of Pritchard
and Salamon [21]. The interest in such a setting is that it notably simplifies the form
of well-known associated Riccati equations that can be found in many places in the
literature. Without attempting to give a complete overview of references on existence
and representation of the solution of the Riccati equation for delay systems, we men-
tion the works of Bensoussan et al. [1], Delfour and Karrakchou [9, 10], Pritchard
and Salamon [21, 22], Salamon [23, 24], Staffans [27], and Vinter and Kwong [30].
The second subsection introduces, for these infinite dimensional Riccati operators, a
parameterization by the delays which corresponds to a singular perturbation analysis
as proposed by Kokotović and Yackel [18] in finite dimensions. Thanks to such a pa-
rameterization, the question of the dependance of the solution of the Riccati equation
with respect to the delays just turns to a problem of existence of weak limits for some
appropriate operators.

Before going further, we recall that the Pritchard and Salamon class is a class of
systems satisfying the regularity conditions stated in the following definition [4].

Definition 4.1. Consider W, V, U , and K four real and separable Hilbert spaces
such that W ↪→ V, and consider S(t) a C0-semigroup on V and W . Then the linear
system (S,B, C)


 x(t) = S(t)x0 +

∫ t

0

S(t− s)Bu(s)ds, t ≥ 0,
y(t) = Cx(t), (x0, u) ∈ V × L2

loc(0,∞;U)
(4.1)

is said to belong to the abstract Pritchard and Salamon class for W and V with respect
to S—in short (S,B, C) ∈ CPS(W,V,U,K)—if we have the following.

(1) B ∈ L(U, V ) is such that there exists t and b > 0 satisfying

∫ t

0

S(t− s)Bu(s)ds ∈W and ‖
∫ t

0

Sh(t− s)Bu(s)ds‖W ≤ b‖u‖L2(0,t;U).

(2) C ∈ L(W,K) is such that there exists t and c > 0 satisfying

‖CS(.)x‖L2(0,t;K) ≤ c‖x‖V ∀x ∈W.

If, moreover, DV (A) ↪→W , then (S,B, C) is said to be regular.
4.1. Solution of the control problem. We have the following.

Proposition 4.2.

(i) Denote the operator (C, 0) ∈ L(Hm,Rp) as Ch and assume h > 0. Then the
triple (Sh,Bh, Ch) ∈ CPS(Hm,D(A∗

h)
′
,Rm,Rp) and is regular.

(ii) Denote the operator (C, 0) ∈ L(Hn,Rp) as Ck and assume k > 0. Then the
triple (Sk,Bk, Ck) ∈ CPS(Hn,D(A∗

k)
′
,Rn,Rp) and is regular.

Then, with the notation

σ+
s [V ] = {P ∈ Ls(V, V

′
), 〈Pφ, φ〉V,V ′ ≥ 0 ∀φ ∈ V },(4.2)

we can state the next theorem as the particular case of [21, Proposition 2.8].
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Theorem 4.3 (Finite horizon control: T < ∞).

(i) Assume h > 0 and denote (G(T )
0

0
0 ) ∈ L(Hm) as Gh(T ). Then there exists a

unique operator PT,h such that

ĴT (0, h) =
1

2
〈Xh(0, .),PT,h(0)Xh(0, .)〉Hm ,(4.3)

and the optimal control is uopt(t) = −R−1B∗
hPT,h(t)Xh(t, .), with Xh given by

Theorem 3.3. That operator PT,h ∈ C1(0, T,Ls(Hm)) ∩ C(0, T, σ+
s [D(A∗

h)
′
])

is the unique nonnegative self-adjoint solution of the Riccati equation

∂PT,h
∂t

+A∗
hPT,h + PT,hAh − PT,hBhR−1B∗

hPT,h + C∗hCh = 0,
PT,h(T ) = Gh(T ).

(4.4)

(ii) Assume k > 0 and denote (G(T )
0

0
0 ) ∈ L(Hn) as Gk(T ). Then there exists a

unique operator QT,k such that

ĴT (k, 0) =
1

2
〈Xk(0, .),QT,k(0)Xk(0, .)〉Hn ,(4.5)

and the optimal control is uopt(t) = −R−1B∗
kQT,k(t)Xk(t, .), where Xk is

given by Theorem 3.6. QT,k ∈ C1(0, T,Ls(Hn)) ∩ C(0, T, σ+
s [D(A∗

k)
′
]) is the

unique nonnegative self-adjoint solution of the Riccati equation

∂QT,k

∂t
+ Ã∗

kQT,k +QT,kÃk −QT,k(t)BkR−1B∗
kQT,k + C∗kCk = 0,

QT,k(T ) = Gk(T ).
(4.6)

Below, we recall the weak stabilizability and detectability assumptions required
to state the infinite horizon case as an application of [21, Theorem 3.4].

Definition 4.4. Set J∞(u, x, y) = ‖y‖2L2(0,∞,K) + ‖R
1
2u‖2L2(0,∞,K) for some R

positive in U and (x, u, y) satisfying (4.1). (S,B, C) ∈ CPS(W,V,U,K) is said to be
(1) stabilizable if ∀x0 ∈ V,∃ux0

∈ L2(0,∞;Rm) such that J∞(ux0
, x, y) <∞;

(2) detectable if ∀ (x0

u ) ∈ V × L2(0,∞;Rm) such that J∞(u, x, y) <∞, we have
x ∈ L2(0,∞;V )).

Theorem 4.5 (Infinite horizon control).
(i) Assume that (Sh,Bh, Ch) is stabilizable and detectable in the sense of Defini-

tion 4.4. Then there exists a unique operator P∞,h such that

Ĵ∞(0, h) =
1

2
〈Xh(0, .),P∞,hXh(0, .)〉Hm(4.7)

and the optimal control is uopt(t) = −R−1B∗
hP∞,hXh(t, .). That P∞,h ∈

σ+
s [D(A∗

h)
′
] is the unique nonnegative self-adjoint solution of the Riccati equa-

tion (in Hm)

A∗
hP∞,h + P∞,hAh − P∞,hBhR−1B∗

hP∞,h + C∗hCh = 0.(4.8)

(ii) Assume that (Sk,Bk, Ck) is stabilizable and detectable in the sense of Defini-
tion 4.4. Then there exists a unique operator Q∞,k such that

Ĵ∞(k, 0) =
1

2
〈Xk(0, .),Q∞,kXk(0, .)〉Hn ,(4.9)
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and the optimal control is uopt(t) = −R−1B∗
kQ∞,kXk(t, .). That Q∞,k ∈

σ+[D(A∗
k)

′
] is the unique nonnegative self-adjoint solution of the Riccati equa-

tion (in Hn)

Ã∗
kQ∞,k +Q∞,kÃk −Q∞,kBkR−1B∗

kQ∞,k + C∗kCk = 0.(4.10)

Remark 4.1. If we define the functions Nh and ∆k by Nh(λ) = B0 + B1e
−λh

and ∆k(λ) = λId − A0 − A1e
λk for k, h ≥ 0, and λ ∈ C, then using, e.g., [22,

Theorem 3.5], stabilizability and detectability in Theorem 4.5 can be reformulated as

more usual rank tests for [∆•(λ), N•(λ)] and [∆•(λ)
C ]. Moreover, for the input delay

case, a simpler test is given by Chyung [2]: Rank
[
D AD A2D . . . An−1D

]
= n, with

D = B0 + e−AhB1.

4.2. Parameterization and decomposition of Riccati operators. In this
subsection, we propose for the previously given Riccati operators a four-block de-
composition combined with a parameterization by the delays h or k. This type of
parameterization was introduced by Kokotović and Yackel [18] for the Riccati ma-
trix solving the LQ control problem of singular perturbed finite dimensional systems.
Here, it makes available some regularity results on Riccati operators and this leads
to a decomposition of Riccati equations which will be useful for sensitivity analy-
sis. We restrict detailed computations and proofs to the finite horizon input delay
case. The state delay and stationary cases may be derived in a similar way. Input
delay results are stated in Propositions 4.7 and 4.8 and the state delay results are in
Propositions 4.9 and 4.6.

Proposition 4.6. For any h > 0, t ∈ [0, T ], and T < ∞, the Riccati operator
PT,h(t) has in Ls(Hm) the decomposition

PT,h(t) =
( P1

T,h(t) hP2
T,h(t)

hP2∗
T,h(t) hP3

T,h(t)

)
(4.11)

with P1
T,h ∈ C1(0, T ;Ls(Rn)); and operators P2

T,h ∈ C1(0, T ;Ls(L2(−1, 0;Rm),Rn))

and P3
T,h ∈ C1(0, T ;Ls(L2(−1, 0;Rm)) having representations

[P2∗
T,h(t)x](σ) = P2∗

T,h(t, σ)x ∀(x, σ) ∈ R
n × [−1, 0],(4.12)

[P3
T,h(t)y](σ) =

∫ 0

−1

P3
T,h(t, σ, r)y(r)dr ∀y ∈ L2(−1, 0;Rm)(4.13)

that satisfy, for t and r ∈ [0, T ],
P2∗
T,h(t, .) ∈ H1(−1, 0;L(Rn,Rm)),(4.14)

P3
T,h(t, ., r) ∈ H1([−1, 0];L(Rm)).(4.15)

Moreover, P3
T,h(t) maps L2(−1, 0;Rm) to H1(−1, 0;Rm) and the following limiting

conditions hold:

P2∗
T,h(t,−1) = BT

1 P1
T,h(t),(4.16)

[P3
T,h(t)y](−1) = hBT

1 P2
T,h(t)y ∀y ∈ L2(−1, 0;Rm).(4.17)

Proof. First, we point out that the existence of a four-block decomposition is a
consequence of linearity of PT,h(t) and the product-space structure of Hm = R

n ×
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L2(−1, 0,Rm).We impose the presence of the factor h in this decomposition with the
aim of simplifying the singularity which appears in Bh for small values of h. Then
the representations of the blocks with the kernels of some continuous operator is a
classical trick (see, e.g., Ichikawa [16], Delfour, McCalla, and Mitter [11], or Delfour
and Mitter [12]). The only remaining point is in regard to regularity results and
limiting conditions. For that, we may remember that the integral form of the Riccati
operator arising in the solution of the control problem is obtained via a quasi-evolution
operator (see, e.g., Curtain and Pritchard [5, 6], Pritchard and Salamon [21]) in such
a way that the desired result will follow from a decomposition of the integral Riccati
equation.

The quasi-evolution operator Uh ∈ L(Hm) we mention is linked to Ph in the
following way:

Uh(t, s)X = Sh(t− s)X −
∫ t

s

Sh(t− r)BhR−1B∗
)h
PT,hU)h(r, s)Xdr,(4.18)

PT,h(t)X = S∗
h(T − t)Gh(T )Uh(T, t)X +

∫ T

t

S∗
h(r − t)C∗hChUh(r, t)Xdr,(4.19)

for X ∈ Hm and 0 ≤ s ≤ t ≤ T.

Now let us decompose Uh as Uh = (U11

U21

U12

U22
) and set X = (xy ) ∈ Hm. Then, since

Gh = (G0 0
0 ) and Ch = (C, 0), when writing Sh = (S11

0
S12

S22
), we get

S∗
h(T − t)GhUh(T, t)

(
x
y

)
=

(S∗
11(T − t)G [ U11(T, t)x+ U12(T, t)y ]
S∗

12(T − t)G [ U11(T, t)x+ U12(T, t)y ]

)
.

Therefore the decomposition of PT,h produces the relations

P1
T,h(t)x = S∗

11(T − t)GU11(T, t)x+

∫ T

t

S∗
11(r − t)C∗CU11(r, t)xdr,(4.20)

hP2
T,h(t)y = S∗

11(T − t)GU12(T, t)y +

∫ T

t

S∗
11(r − t)C∗CU12(r, t)ydr;(4.21)

and, for σ ∈ [−1, 0],

hP2∗
T,h(t, σ)x = S∗

12(T − t)(σ)GU11(T, t)x+

∫ T

t

S∗
12(r − t)(σ)C∗CU11(r, t)xdr,(4.22)

hP3
T,h(t)y(σ) = S∗

12(T − t)(σ)GU12(T, t)y +

∫ T

t

S∗
12(r − t)(σ)C∗CU12(r, t)ydr.(4.23)

But for y ∈ R
n, we have S∗

11(t) = eA
T t and S∗

12(t)y(σ) = hχ{t−hj≥0}e−h(σ+1)B1S∗
11(t)y.

Then the regularities of P2∗
T,h and P3

T,h as well as the limiting conditions follow from

the property: σ −→ S∗
11(t− h(σ + 1)) ∈ H1(−1, 0;Rn).

As a consequence of the Proposition 4.6, we may decompose the Riccati differen-
tial equation (4.4) in order to identify the components P1

T,h, P2
T,h and P3

T,h. Then we

get (we set H1 = H1(−1, 0;Rm) and L2 = L2(−1, 0;Rm))


〈Ṗ1
T,h(t)x1, x2〉Rn = − 〈(A−B0R

−1δσ=0P2∗
T,h(t, σ))x1,P1

T,h(t)x2〉Rn

− 〈P1
T,h(t)x1, (A−B0R

−1δσ=0P2∗
T,h(t, σ))x2〉Rn

+ 〈BT
0 P1

T,h(t)x1, R
−1BT

0 P1
T,h(t)x2〉Rn

+ 〈δσ=0P2∗
T,h(t, σ)x1, R

−1δσ=0P2∗
T,h(t, σ)x2〉Rm

− 〈Cx1, Cx2〉Rp ,
P1
T,h(T )x1 = G(T )x1 ∀x1, x2 ∈ R

n;

(4.24)
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h〈Ṗ2
T,h(t)y, x〉Rn = − 〈P1

T,h(t)B1δσ=−1y, x〉Rn

+ 〈P1
T,h(t)B0R

−1δσ=0P3
T,h(t)y, x〉Rn

+ 〈δσ=0P3
T,h(t)y,R

−1δσ=0P2∗
T,h(t, σ)x〉Rm

− 〈Dy,P2∗
T,h(t, .)x〉L2 + h{〈P2

T,h(t)y,Ax〉Rn

− 〈BT
0 P2

T,h(t)y,R
−1BT

0 P1
T,h(t)x〉Rn

− 〈BT
0 P2

T,h(t)y,R
−1δσ=0P2∗

T,h(t, σ)x〉Rm},
P2∗
T,h(t,−1)x = BT

1 P1
T,h(t)x ∀x ∈ R

n ∀y ∈ H1;

(4.25)




h〈Ṗ3
T,h(t)y, z〉L2 = − 〈Dy,P3

T,h(t)z〉L2 − 〈P3
T,h(t)y,Dz〉L2

+ 〈δσ=0P3
T,h(t)y,R

−1δσ=0P3
T,h(t)z〉Rm

+ h{〈BT
0 P2

T,h(t)y,R
−1δσ=0P3

T,h(t)z〉Rm

+ 〈BT
0 P2

T,h(t)z,R
−1δσ=0P3

T,h(t)y〉Rm

− 〈B1δσ=−1y,P2
T,h(t)z〉Rn

−〈P2
T,h(t)y,B1δσ=−1z〉Rn}

+ h2〈BT
0 P2

T,h(t)z,R
−1BT

0 P2
T,h(t)y〉Rm ,

P3
T,h(t)y(−1) = hBT

1 P2
T,h(t)y ∀y, z ∈ H1.

(4.26)

For infinite horizon, we can derive the associated decomposition in a similar way.
Proposition 4.7. For any h > 0, P∞,h may be written in L(Hm) as

P∞,h =

( P1
∞,h hP2

∞,h

hP2∗
∞,h hP3

∞,h

)
,(4.27)

where P1
∞,h ∈ L(Rn); P3

∞,h ∈ L(L2(−1, 0;Rm) with range H1(−1, 0;Rm) satisfies

[P3
∞,hy](−1) = hBT

1 P2
∞,h y ∀y ∈ L2(−1, 0;Rm)(4.28)

and P2
∞,h ∈ L(L2(−1, 0;Rm),Rn) has the following representation:

∀(x, σ) ∈ R
n × [−1, 0] : [P2∗

∞,hx](σ) = P2∗
∞,h(σ)x,(4.29)

with P2∗
∞,h ∈ H1(−1, 0;L(Rn,Rm)) satisfying the limiting condition

P2∗
∞,h(−1) = BT

1 P1
∞,h.(4.30)

For the state delay, we have analogues of Proposition 4.6 and 4.7.
Proposition 4.8. For any k > 0, t ∈ [0, T ], and T < ∞, the Riccati operator

QT,k(t) has in Ls(Hn) the following decomposition:

QT,k(t) =

( Q1
T,k(t) kQ2

T,k(t)

kQ2∗
T,k(t) kQ3

T,k(t)

)
,(4.31)

with Q1
T,k ∈ C1(0, T ;Ls(Rn)) and operators Q2

T,k ∈ C1(0, T ;Ls(L2(−1, 0;Rm),Rn))

and Q3
T,k ∈ C1(0, T ;Ls(L2(−1, 0;Rn)) having representations

[Q2∗
T,k(t)x](σ) = Q2∗

T,k(t, σ)x ∀(x, σ) ∈ R
n × [−1, 0],(4.32)

[Q3
T,k(t)y](σ) =

∫ 0

−1

Q3
T,k(t, σ, r)y(r)dr ∀y ∈ L2(−1, 0;Rn)(4.33)



DELAY SENSITIVITY OF QUADRATIC CONTROLLERS 1667

that satisfy, for t and r ∈ [0, T ],
Q2∗

T,k(t, .) ∈ H1(−1, 0;L(Rn,Rn)),(4.34)

Q3
T,k(t, ., r) ∈ H1([−1, 0];L(Rn)).(4.35)

Moreover, Q3
T,k(t) maps L2(−1, 0;Rn) to H1(−1, 0;Rn) and we also have

Q2∗
T,k(t,−1) = AT

1Q1
T,k(t),(4.36)

[Q3
T,k(t)y](−1) = kAT

1Q2
T,k(t)y ∀y ∈ L2(−1, 0;Rn).(4.37)

Proposition 4.9. For any k > 0, the Riccati operator Q∞,k may be written in
L(Hn) in the following way:

Q∞,k =

( Q1
∞,k kQ2

∞,k

kQ2∗
∞,k kQ3

∞,k

)
,(4.38)

where Q1
∞,k ∈ L(Rn), and Q3

∞,k ∈ L(L2(−1, 0;Rn) with range H1(−1, 0;Rn) satisfies

[Q3
∞,ky](−1) = kAT

1 Q2
∞,k y ∀y ∈ L2(−1, 0;Rn);(4.39)

and Q2
∞,k ∈ L(L2(−1, 0;Rn),Rn) has the following representation:

∀(x, σ) ∈ R
n × [−1, 0] : [Q2∗

∞,kx](σ) = Q2∗
∞,k(σ)x(4.40)

with Q2∗
∞,k ∈ H1(−1, 0;L(Rn,Rn)) satisfying the limiting condition

Q2∗
∞,k(−1) = A1

TQ1
∞,k.(4.41)

Then we may decompose the Riccati equation (4.6) in the following way (we set
H1 = H1(−1, 0;Rn) and L2 = L2(−1, 0;Rn):




∀ x1, x2 ∈ R
n :

〈Q̇1
k(t)x1, x2〉Rn = − 〈A0x1,Q1

T,k(t)x2〉Rn − 〈Q1
T,k(t)x1, A0x2〉Rn

− 〈x1, R
−1δσ=0Q2∗

T,k(t, σ)x2〉Rn

− 〈R−1δσ=0Q2∗
T,k(t, σ)x1, x2〉Rn

+ 〈BTQ1
T,k(t)x1, B

TQ1
T,k(t)x2〉Rn

− 〈Cx1, Cx2〉Rp ,
Q1

T,k(T )x1 = G(T )x1,

(4.42)




∀x ∈ R
n,∀y ∈ H1 :

k〈Q̇2
T,k(t)y, x〉Rn = − 〈Q1

T,k(t)A1δσ=−1y, x〉Rn

+ 〈R−1δσ=0Q3
T,k(t)y, x〉Rn − 〈Dy,Q2∗

T,k(t, .)x〉L2

+ k〈BTQ2
T,k(t)y,B

TQ1
T,k(t)x〉Rm

+ k〈Q2
T,k(t)y,A0x〉Rn ,

Q2∗
k (t,−1)x = AT

1Q1
T,k(t)x,

(4.43)




∀y ∈ H1,∀z ∈ H1 :

〈kQ̇3
T,k(t)y, z〉L2 = − 〈Dy,Q3

T,k(t)z〉L2 − 〈Q3
T,k(t)y,Dz〉L2

+ k{〈A1δσ=−1y,Q2
T,k(t)z〉Rn

− 〈Q2
T,k(t)y,A1δσ=−1z〉Rn}

+ k2〈BTQ2
T,k(t)y,B

TQ2
T,k(t)z〉Rm

Q3
T,k(t)y(−1) = kAT

1Q2
T,k(t)y.

(4.44)
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Some closing remarks follow.
Remark 4.2. In view of Proposition 4.9, we may derive the equations satisfied

by the components Qi
∞,k, for i ∈ {1, 2, 3}, from (4.42), (4.43), (4.44). Obviously it

is sufficient to take 0 as a substitute for their right-hand side and the ordered triple
(Q1

∞,k,Q2
∞,k,Q3

∞,k) for (Q1
T,k,Q2

T,k,Q3
T,k).

Remark 4.3. A similar remark holds for the triples (P1
∞,h,P2

∞,h,P3
∞,h) and

(P1
T,h,P2

T,h,P3
T,h) when recalling that the triple (P1

T,h,P2
T,h,P3

T,h) satisfies the sys-
tem of equations (4.24), (4.25), (4.26).

5. Differentiability results for Riccati operators. For regularity results on
Riccati operators P•,k and Q•,k, we shall use the shorthand

Eq = L(Hq)× L(L2(−1, 0;Rq),Rn)× L(L2(−1, 0;Rq)) for q ∈ {m,n}(5.1)

and Im defined as Im(y) = −
∫ 0

−1

y(σ)dσ for y ∈ R
m.(5.2)

The first theorem is on the sensitivity of the Riccati operator solving the input delay
case.

Theorem 5.1. We have the following items.
(i) For T <∞ and t ∈ [0, T ], the mapping

Φ :

R
∗
+ −→ L(Hm)× Em,

h �−→
(
dP1

T,h

dt
(t), P1

T,h(t), P2
T,h(t), P3

T,h(t)

)
(5.3)

satisfies

w − lim
h→0

Φ(h) =

(
dPT

dt
(t), PT (t), PT (t)B1 Im, 0

)
,(5.4)

where PT ∈ L(Rn) is the nonnegative symmetric solution of the Riccati equa-
tion

dPT

dt
+ATPT + PTA− PTBR−1BTPT + CTC = 0 in C(0, T ;L(Rn)),

PT (T ) = G(T ).
(5.5)
Moreover P1

T,h, the finite dimensional 1-1-block of PT,h, satisfies
(
dP1

T,h

dt
, P1

T,h

)
=

(
dPT

dt
, PT

)
+ o(h) on [0, T ].(5.6)

(ii) For T =∞, the mapping

Φ :
R

∗
+ −→ Em,

h �−→ (P1
∞,h, P2

∞,h, P3
∞,h)

(5.7)

satisfies

w − lim
h→0

Φ(h) = (P∞, P∞B1 Im, 0),(5.8)
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where P∞ ∈ L(Rn) is the nonnegative symmetric solution of the equation

A∗P∞ + P∞A− P∞BR−1B∗P∞ + C∗C = 0.(5.9)

Moreover P1
∞,h, the finite dimensional 1-1-block of P∞,h, satisfies

P1
∞,h = P∞ + o(h).(5.10)

Note first that Theorem 5.1 implies that for any T ∈ R ∪ {+∞} :

w − lim
h→0

PT,h =
(
PT 0
0 0

)
in Hm,(5.11)

which is a classical result from Delfour [8]. So by continuity, we can give a meaning to
the number PT,0 by setting PT,0 = w − limh→0PT,h. The novelty is that this theorem
may be interpreted as a weak differentiability result for Riccati operators PT,h, for
any T ∈ R ∪ {+∞}. Indeed, we can evaluate the limiting value of the ratio

VT (h) =
PT,h − PT,0

h
,(5.12)

since Theorem 5.1 simply says that in Hm = R
n × L2(0, T ;Rm),

w − lim
h→0

VT (h) =

(
0 PTB1 Im

−BT
1 PT 0

)
for any T ∈ R ∪ {+∞}.(5.13)

Likewise for the state delay case, we have the following.
Theorem 5.2. We have the following items.
(i) For T <∞ and t ∈ [0, T ], the mapping

Ψ :

R
∗
+ −→ L(Hn)× En,

k �−→
(
dQ1

T,k

dt
(t), Q1

T,k(t), Q2
T,k(t), Q3

T,k(t)

)
(5.14)

satisfies

w − lim
k→0

Ψ(k) =

(
dPT

dt
(t), PT (t), PT (t)A1 In, 0

)
,(5.15)

where PT ∈ L(Rn) is the nonnegative symmetric solution of the Riccati equa-
tion (5.5). Moreover, Q1

T,k, the finite dimensional 1-1-block of QT,k, satisfies(
dQ1

T,k

dt
, Q1

T,k

)
=

(
dPT

dt
, PT

)
+ o(k) on [0, T ].(5.16)

(ii) For T =∞, the mapping

Ψ :
R

∗
+ −→ En,

k �−→ (Q1
∞,k, Q2

∞,k, Q3
∞,k)

(5.17)

satisfies

w − lim
k→0

Ψ(k) = (P∞, P∞A1 In, 0),(5.18)

where P∞ ∈ L(Rn) is the nonnegative symmetric solution of the Riccati equa-
tion (5.9). Moreover, Q1

∞,k, the finite dimensional 1-1-block of Q∞,k, satisfies

Q1
∞,k = P∞ + o(k).(5.19)
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Obviously, we have w − limk→0QT,k = (PT

0
0
0 ) in Hn. Then setting QT,0 = PT

and WT (k) =
QT,k−QT,0

k , it results from Theorem 5.2 that we have, in Hn = R
n ×

L2(0, T ;Rn),

w − lim
h→0

WT (k) =

(
0 PTA1 In

−AT
1 PT 0

)
for any T ∈ R ∪ {+∞}.(5.20)

The proofs of Theorems 5.1 and 5.2 are identical. We restrict ourselves to the first
one.

Proof of Theorem 5.1. Proof of (i). Denote

(P1
0 (t), Ṗ1

0 (t), P2
0 (t), P3

0 (t)) = w − lim
h→0

Φ(h).(5.21)

Because ∀h > 0, ∀t ∈ [0, T ] : Ṗh(t) ∈ L(Hm), there exists some M > 0 such that
‖Ṗh(t)‖ ≤M . Using the shorthand H1 = H1(−1, 0;Rm) and L2 = L2(−1, 0;Rm), we
get

∀x ∈ R
n, ∀y ∈ H1 : lim

h→0
h〈Ṗ2

h(t)y, x〉Rn = 0,(5.22)

∀y, z ∈ H1 : lim
h→0

h〈Ṗ3
h(t)y, z〉L2 = 0.(5.23)

Thus it follows from (4.24) to (4.26) that (P1
0 (t), Ṗ1

0 (t), P2
0 (t), P3

0 (t)) satisfies the
following:




〈Ṗ1
0 (t)x1, x2〉Rn = − 〈(A−B0R

−1δσ=0P2∗
0 (t, σ))x1,P1

0 (t)x2〉Rn

− 〈P1
0 (t)x1, (A−B0R

−1δσ=0P2∗
0 (t, σ))x2〉Rn

+ 〈BT
0 P1

0 (t)x1, R
−1BT

0 P1
0 (t)x2〉Rn

+ 〈δσ=0P2∗
0 (t, σ)x1, R

−1δσ=0P2∗
0 (t, σ)x2〉Rm

− 〈Cx1, Cx2〉Rp ,
P1

0 (T )x1 = G(T )x1 ∀x1, x2 ∈ R
n;

(5.24)



0 = −〈P1

0 (t)B1δσ=−1y, x〉Rn + 〈P1
0 (t)B0R

−1δσ=0P3
0 (t)y, x〉Rn

+ 〈δσ=0P3
0 (t)y,R

−1δσ=0P2∗
0 (t, σ)x〉Rm − 〈Dy,P2∗

0 (t, .)x〉L2 ,
P2∗

0 (t,−1)x = BT
1 P1

0 (t)x ∀x ∈ R
n,∀y ∈ H1;

(5.25)

{
0 = −〈Dy,P3

0 (t)z〉L2 − 〈P3
0 (t)y,Dz〉L2 + 〈δσ=0P3

0 (t)y,R
−1δσ=0P3

0 (t)z〉Rm

P3
0 (t)y(−1) = 0 ∀y, z ∈ H1.

(5.26)

This last equation may be viewed as the stationary Riccati equation associated to the
control problem




∂Y

∂t
(t, σ) = DY (t, σ) + δ∗σ=0u(t), a.e. t ≥ 0

u ∈ L2(0,∞;Rm), Y (0, σ) ∈ L2(−1, 0;Rm),

min
u∈L2(0,∞;Rm)

J(Y, u) =

∫ ∞

0

1

2
〈u,Ru(t)〉Rmdt.

(5.27)

Now we point out that this function Y we wish to control satisfies the equation of
transport associated to a unit delay (h = 1). That is, Y is given by

Y (t, σ) = u(t+ σh)|h=1
= u(t+ σ), −1 ≤ σ ≤ 0.(5.28)
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Therefore the optimal command for the quadratic control problem (5.27) is the input
u ≡ 0 in L2(−1, 0;Rm), which implies that the solution of (5.26) is

P3
0 (t) ≡ 0 in L2(−1, 0;Rm),(5.29)

which agrees with the limiting condition [P3
0 (t)y](−1) = 0.

Now let us clarify the relationship between P2
0 and P1

0 , which satisfy the system{
0 = 〈P1

0 (t)B1δσ=−1y, x〉Rn + 〈Dy,P2∗
0 (t, .)x〉L2 ,

P2∗
0 (t,−1)x = BT

1 P1
0 (t)x ∀x ∈ R

n, ∀y ∈ H1.
(5.30)

By transposition, we get P2
0 (t, .)D = −P1

0 (t)B1δσ=−1 so that multiplying on the right

side with the inverse of the operator D = ∂
∂σ yields

P2
0 (t)y = −P1

0 (t)B1δσ=−1

∫ 0

σ

y(s)ds

= −P1
0 (t)B1

∫ 0

−1

y(s)ds = −P1
0 (t)B1Imy ∀y ∈ L2(−1, 0;Rm).

(5.31)

There remains the computation of P1
0 . For this we need further insight in the ex-

pression P2∗
0 (t, 0), so we shall apply the integration by parts formula to the factor

〈Dy,P2∗
0 (t, .)x〉L2 . Taking y ∈ D(D) = {y ∈ H1(−1, 0;Rm, y(0) = 0}, we get
〈Dy,P2∗

0 (t, .)x〉L2 = −〈y,DP2∗
0 (t, .)x〉L2 − 〈ϕ(−1),P2∗

0 (t,−1)x〉Rm ,(5.32)

so (5.30) becomes

0 = 〈y,DP2∗

0 (t, .)x〉L2 ∀
(
x
y

)
∈ R

n ×D(D),
P2∗

0 (t,−1)x = BT
1 P1

0 (t)x.
(5.33)

With a density argument, we deduce that the linear form

y → 〈y(σ), DP2∗
0 (t, σ)x〉L2 =

∫ 0

−1

〈y(σ), ∂

∂σ
P2∗

0 (t, σ)x〉Rmdσ

is identically equal to zero on H1(−1, 0;Rm), and then
∫ 0

−1

∂

∂σ
P2∗

0 (t, σ)xdσ = 0. So

finally we have

P2∗
0 (t, 0)x = P2∗

0 (t,−1)x = BT
1 P1

0 (t)x ∀x ∈ R
n.(5.34)

Because ∀x ∈ R
n, we have δσ=0P2∗

0 (t, σ)x = BT
1 P1

0 (t)x, we see that P1
0 satisfies



〈Ṗ1
0 (t)x1, x2〉Rn = − 〈(A−B0R

−1BT
1 P1

0 (t))x1,P1
0 (t)x2〉Rn

− 〈P1
0 (t)x1, (A−B0R

−1BT
1 P1

0 (t)x2〉Rn

+ 〈BT
0 P1

0 (t)x1, R
−1BT

0 P1
0 (t)x2〉Rn

+ 〈BT
1 P1

0 (t)x1, R
−1BT

1 P1
0 (t)x2〉Rm − 〈Cx1, Cx2〉Rp ,

P1
0 (T )x1 = G(T )x1 ∀ x1, x2 ∈ R

n.

(5.35)

Thus, recalling that B = B0 +B1, we may write

〈Ṗ1

0 (t)x1, x2〉Rn = − 〈P1
0 (t)x1, Ax2〉Rn − 〈P1

0 (t)x1, AP1
0 (t)x2〉Rn

+ 〈BTP1
0 (t)x1, R

−1BTP1
0 (t)x2〉Rn − 〈Cx1, Cx2〉Rp ,

P1
0 (T )x1 = Gx1 ∀ x1, x2 ∈ R

n,
(5.36)
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which means that P1
0 = PT , the unique solution of (5.5), thus completing the proof

of formula (5.4).

For approximation of the 1-1-block of PT,h (equation (5.6)) let us assume that

P1
h(t) = [P1

0 + hP1,r
h ](t), t ∈ [0, T ].

Then we have




〈Ṗ1,r
h (t)x1, x2〉Rn = −〈(A−B0R

−1δσ=0P2∗
h (t, σ))x1,P1,r

h (t)x2〉Rn

−〈P1,r
h (t)x1, (A−B0R

−1δσ=0P2∗
h (t, σ))x2〉Rn

+〈BT
0 P1

h(t)x1, R
−1BT

0 P1,r
h (t)x2〉Rn

+〈BT
0 P1,r

h (t)x1, R
−1BT

0 P1,r
h (t)x2〉Rn

+h 〈BT
0 P1,r

h (t)x1, R
−1BT

0 P1
0 (t)x2〉Rn ,

P1,r
h (T )x1 = 0 ∀ x1, x2 ∈ R

n,

(5.37)

and passing to the limit with (P1,r
0 (t), Ṗ1,r

0 (t)) = w − limh→0(P1,r
h (t), Ṗ1,r

h (t)),
and recalling that P2∗

0 (t, 0) = BT
1 P1

0 (t), we get



〈Ṗ1,r

0 (t)x1, x2〉Rn = −〈(A−BR−1BTP1
0 (t))x1,P1,r

0 (t)x2〉Rn

−〈P1,r
0 (t)x1, (A−BR−1BTP1

0 (t))x2〉Rn ,

P1,r
0 (T )x1 = 0 ∀ x1, x2 ∈ R

n,

(5.38)

so that (
dP1

T,h

dt (t), P1,r
0 (t)) ≡ (0, 0). This implies

(
dP1

T,h

dt
(t), P1

T,h(t)

)
=

(
dPT

dt
(t), PT (t)

)
+ o(h) for t ∈ [0, T ],(5.39)

which ends the proof of item (i).

Finally, we observe that item (ii) can be derived in a similar way, thus completing
the proof.

6. Proof of main results. The proofs of Theorems 2.1 and 2.2, identical in
principle, are based on Theorems 5.1 and 5.2, respectively. We restrict ourselves to
the first one.

Proof of Theorem 2.1. As pointed out in section 3, we may also restrict ourselves
to I = J = 1.

Proof of (i). Recall that ĴT (0, 0) =
1
2 〈x00, PT (0)x00〉Rn and that we also have

ĴT (0, h) =
1

2
〈x00,P1

h(0)x00〉Rn +
h

2
[2〈x00,P2

h(0)ϕ
h〉L2 + 〈ϕh,P3

h(0)ϕ
h〉L2 ].(6.1)

Now, in view of Theorem 5.1(i), which ensures that P1
h(0) = PT (0) + o(h), we have

ĴT (0, 0) =
1

2

〈
x00, P1

h(0)x00

〉
Rn + o(h)〈x00, x00〉Rn .(6.2)

Moreover, from Theorem 5.1, we also have

lim
h→0

〈y,P3
h(0)y〉L2 = 0 ∀y ∈ L2(6.3)
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so that

lim
h→0

ĴT (0, h)− ĴT (0, 0)

h
= lim

h→0
〈x00, P2

h(0)ϕ
h〉L2(6.4)

= −
〈
BT

1 PT (0)x00, lim
h→0

∫ 0

−1

u(σh)dσ

〉
Rm

(6.5)

(recall that ϕh(σ) = u(σh))

= −
〈
BT

1 PT (0)x00, lim
h→0

1

h

∫ 0

−h

u(θ)dθ

〉
Rm

.(6.6)

The continuity of u on the left side of 0 allows us to write

lim
h→0

1

h

∫ 0

−h

u(θ)dθ = u(0) = −R−1BTPT (0)x00.(6.7)

Therefore we have

lim
h→0

ĴT (0, h)− ĴT (0, 0)

h
= 〈x00,∆1(PT )x00〉Rn(6.8)

with ∆1(PT ) = P (0)B1R
−1BTPT (0), which we wished to prove.

Proof of (ii) Clearly, in view of Theorem 5.2(i), we have

lim
k→0

ĴT (k, 0)− ĴT (0, 0)

k
= lim

k→0

〈
x00, Q2

k(0)ψ
k
〉
L2 ,(6.9)

and this readily turns into

lim
k→0

ĴT (k, 0)− ĴT (0, 0)

k
= −〈AT

1 PT (0)x00, lim
k→0

∫ 0

−1

ψk(σ)dσ〉Rn(6.10)

= −〈AT
1 PT (0)x00, lim

k→0

∫ 0

−1

x0(σk)dσ〉Rn .(6.11)

From continuity of x at 0, we get

lim
k→0

∫ 0

−1

x0(σk)dσ = lim
k→0

1

k

∫ 0

−k

x0(θ)dθ〉Rn = x0(0) = x00,(6.12)

and then

lim
k→0

ĴT (k, 0)− ĴT (0, 0)

k
= −〈A1x00, P (0)x00〉Rn ,(6.13)

which ends this proof.

7. Application to sensitivity of H∞ robust performance. As a typical
example of H∞ suboptimal control we consider the system




ẋ(t) = Ax(t− k) +B0u(t) +B1u(t− h) +Bdw(t) a.e. t ≥ 0,
z(t) = Cx(t) +Du(t),
x(0) = x00 ∈ R

n, x = x0 a.e. t ∈ [−k, 0], u = u0 a.e. t ∈ [−h, 0],
x0 ∈ L2(−k, 0;Rn), u ∈ L2(−h,∞;Rm), w ∈ L2(0,∞;Rq),

(7.1)
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where (A,Bd, B1) ∈ L(Rn × R
q × R

m,Rn) and (C,D) ∈ L(Rn × R
m,Rp), with

the objective of ensuring a given level of disturbance attenuation. We recall (see
Tadmor [28]) that for γ > 0, the inequality ‖z‖L2(0,∞;Rp) < γ2 ‖w‖L2(0,∞;Rq) is
achievable if and only if there exists a control uγ ∈ L2(0,∞;Rm) that realizes

Ĵγ(k, h) = sup
w∈L2(0,∞;Rq)

inf
u∈L2(0,∞;Rm)

1

2

{‖z‖L2(0,∞;Z) − γ2 ‖w‖L2(0,∞;Rq)}.(7.2)

Assume that the initial conditions u0 and x0 are continuous on the left side of 0, the
triple (A,B1, C) is controllable and observable, D

T [C D] = [0 R] with R positive
definite, and moreover there exists some ε > 0 such that ∀ (ω, x, u) ∈ R× R

n × R
m

satisfying jωx = Ax + Bu we have ‖Cx +Du‖Rp ≥ ε‖x‖Rn . Then it is known from

Glover and Doyle [17] that Ĵγ(0, 0) exists if and only if there exists a nonnegative
solution to the Riccati equation

ATPγ + PγA+ Pγ(γ
−2BdB

T
d −BR−1BT )Pγ + CTC = 0,(7.3)

where B = B0 +B1. Then we have the following statement.
Theorem 7.1. Take a γ > 0 such that there exists a nonnegative solution to

the Riccati equation (7.3). Assume that there exists some neighborhood of (0, 0) where
(k, h) −→ Jγ(k, h) is well defined. Then, with x0 continuous on the left side of 0, we
have

∂Ĵγ(0, 0)

∂k
= 〈Pγx00, Ax00〉Rn ,(7.4)

∂Ĵγ(0, 0)

∂h
= −〈Pγx00, B1R

−1BTPγx00〉Rn .(7.5)

For instance, this theorem says that if B0 = 0 and h is sufficiently small, then we

have:
∂Ĵγ(0,0)

∂h = −〈x00,KγRKγx00〉Rn ≤ 0, where Kγ = −R−1BT
1 Pγ is the nondelay

H∞ suboptimal gain, so that Ĵγ(0, h) ≤ Ĵγ(0, 0) ≤ 0. This means that even if there
exists a γ-admissible feedback for a small h > 0, the corresponding closed loop system
is less robust than the closed loop system, ensuring the disturbance attenuation at
the same level without delay. Moreover, for a given γ, the degradation of the robust
performance due to the presence of a small input delay is proportional to the square
of the nondelay H∞ suboptimal gain.

Sketch of the proof. Briefly, we only recast the problem of sensitivity analysis
in the framework previously introduced for the LQ optimal case and use a Riccati-type
result given by Van Keulen [29] for H∞ control in the Pritchard and Salamon class.
Then we have analogues of Propositions 4.8 and 4.6 (likewise for Theorems 5.1(ii)
and 5.2(ii)). In the following, we survey the main lines of the retarded input case.

First, we observe that with Bd = (Bd

0 ) ∈ L(Rq,Hm), a product-space description
of (7.1) is obtained in Hm by adding the input Bdw to the equation of evolution (3.4).
That is, the solution x is the first component of

Yh(t, σ) = Sh(t)
(

x00

ϕh(σ)

)
+

∫ t

0

Sh(t− s){Bdw(s) + Bhu(s)}ds,(7.6)

and setting Ch = (C 0 ) ∈ L(Hm,Rq) gives

z(t) = ChYh(t, σ) +Du(t),(7.7)
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with (Sh,Bh, Ch) ∈ CPS(Hm,D(A∗
h)

′
,Rm,Rp) (see Proposition 4.2(i)). Now we re-

mark that if there exists some feedback F ∈ L(Hm,Rm) (an admissible output oper-
ator) such that the semigroup

SBhF
(t)x = Sh(t)x+

∫ t

0

Sh(t− s)BhF SBhF
(s)xds, t ≥ 0, x ∈ Hm,(7.8)

is exponentially stable on D(A∗
h)

′
, then with [29, Lemma 2.14], we get


Yh(t, σ) = SBhF

(t)

(
x00

ϕh(σ)

)
+

∫ t

0

SBhF
(t− s)Bdw(s)ds,

z(t) = (Ch +DF )Yh(t, σ).
(7.9)

Moreover, we then have regular (SBhF
,Bd, (Ch + DF )) ∈ CPS(Hm,D(A∗

h)
′
,Rm,Rp),

and it follows from [29, Lemma 3.2] that the linear operator GBhF
defined by

GBhF
w(t) = (Ch +DF )

∫ t

0

SBhF
(t− s)Bdw(s)ds(7.10)

satisfies

GBhF
∈ L(L2(0,∞;Rq), L2(0,∞;Rp)).(7.11)

The feedback F ∈ L(Hm,Rm) will be said to be γ-admissible for system (7.6)–(7.7) if
it is an admissible output operator for Hm and D(A∗

h)
′
with respect to Sh, such that

the semigroup SBhF
is exponentially stable on D(A∗

h)
′
and GBhF

satisfies ‖GBhF
‖ ≤ γ.

Then the solution of problem (7.2) comes from Van Keulen [29, Theorem 4.4].
That is, assuming that there exists ε > 0 such that ∀(ω,X, u) ∈ R × D(Ah) × R

m

satisfying jωX = AhX+Bhu, we have ‖ChX+Du‖Rp ≥ ε‖X‖Hm and thatDT [C D] =
[0 R] with R positive; the two following items are equivalent.

(1) There exists a γ-admissible feedback for the system (7.6)–(7.7).
(2) There exists a unique operator Pγ,h ∈ σ+[D(A∗

h)
′
] solution of the Riccati

equation (in Hm)

A∗
hPγ,h + Pγ,hAh + Pγ,h(γ−2BdB∗

d − BhR−1B∗
h)Pγ,h + C∗hCh = 0.(7.12)

Moreover, the feedback Fγ = −R−1B∗
hPγ,h is γ-admissible and the input

uγ(t, h) = FγYh(t, .) achieves

Ĵγ(0, h) = −1
2
〈Yh(0, .),Pγ,hYh(0, .)〉Hm .(7.13)

The rest of the proof is easy. Observing that Proposition 4.8 still holds when taking
Pγ,h as a substitute for Ph, and setting

Pγ,h =
( P1

γ,h hP2
γ,h

hP2∗
γ,h hP3

γ,h

)

in L(Hm), we get the following equations:


∀x1, x2 ∈ R
n :

0 = − 〈(A−B0R
−1δσ=0P2∗

γ,h)x1,P1
γ,hx2〉Rn

− 〈P1
γ,h(t)x1, (A−B0R

−1δσ=0P2∗
γ,h)x2〉Rn

+ 〈BT
0 P1

γ,hx1, R
−1BT

0 P1
γ,hx2〉Rn

+ γ−2〈BT
d P1

γ,hx1, B
T
d P1

γ,hx2〉Rn

+ 〈δσ=0P2∗
γ,hx1, R

−1δσ=0P2∗
γ,hx2〉Rm + 〈Cx1, Cx2〉Rp ,

(7.14)
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∀x ∈ R
n, ∀y ∈ H1 :

0 = − 〈P1
γ,hB1δσ=−1y, x〉Rn + 〈P1

γ,hB0R
−1δσ=0P3

γ,hy, x〉Rn

+ 〈δσ=0P3
γ,hy,R

−1δσ=0P2∗
γ,hx〉Rm − 〈Dy,P2∗

γ,hx〉L2

+ h{〈P2
γ,hy,Ax〉Rn − 〈BT

0 P2
hy,R

−1BT
0 P1

γ,hx〉Rn

− 〈BT
0 P2

γ,hy,R
−1δσ=0P2∗

γ,hx〉Rm},
P2∗
γ,h(−1) = BT

1 P1
γ,h,

(7.15)

and




∀y ∈ H1, ∀z ∈ H1 :
0 = − 〈Dy,P3

h(t)z〉L2 − 〈P3
γ,hy,Dz〉L2

+ 〈δσ=0P3
hy,R

−1δσ=0P3
γ,hz〉Rm

+ h{〈BT
0 P2

γ,hy,R
−1δσ=0P3

γ,hz〉Rm

+ 〈BT
0 P2

γ,hz,R
−1δσ=0P3

γ,hy〉Rm

− 〈B1δσ=−1y,P2
γ,hz〉Rn − 〈P2

γ,hy,B1δσ=−1z〉Rn}
+ h2〈BT

0 P2
γ,hz,R

−1BT
0 P2

γ,hy〉Rm ,

P3
γ,hy(−1) = hBT

1 P2
γ,hy.

(7.16)

Remark 7.1. Except for the term γ−2BdB
T
d in (7.21), we have to deal with the

set of equations satisfied by the components of the decomposition of Ph (cf. (4.24) to
(4.26) and Remark 4.3). Therefore Theorem 5.1(i) remains true when setting Pγ,h as
a substitute for Ph and Pγ for P∞. Thus, in particular, we have

P1
γ,h = Pγ + o(h), w − lim

h→0
P3
γ,h = 0,(7.17)

w − lim
h→0

P2
γ,hy = −PγB1

∫ 0

−1

y(σ)dσ ∀y ∈ L2(−1, 0;Rm).(7.18)

Therefore we get

lim
h→0

Ĵγ(0, h)− Ĵγ(0, 0)

h
= − lim

h→0
〈x00, P2

γ,hϕ
h〉L2 = 〈BT

1 Pγx00, lim
h→0

∫ 0

−1

ϕh(σ)dσ〉L2 .

But ϕh(σ) = u0(σh) so that
∫ 0

−1
ϕh(σ)dσ = 1

h

∫ 0

−h
u0(θ)dθ and then with continuity

of u on the left side of 0 we have

lim
h→0

∫ 0

−1

ϕh(σ)dσ = lim
h→0

1

h

∫ 0

−h

u0(θ)dθ = uγ(0) = −R−1BTPγx00.

So finally we get

lim
h→0

Ĵγ(0, h)− Ĵγ(0, 0)

h
= −〈x00, PγB1R

−1BTPγx00〉Rn ,

which we aimed to prove.

8. Conclusion. In this paper, we have considered the sensitivity of the optimal
cost for linear time invariant systems with respect to small delays. We have given
a new approach to solving this problem and provided new results. Related topics of
interest, such as providing a measure of degradation for when the delay free optimal
feedback is implemented on the delayed model, are under investigation.
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Appendix.

A.1. Proof of Proposition 3.1. Part (i). The characterization of the C0-
semigroup Sh and Ah and Part (i) follows easily from a rescaling in the standard form
of the solution semigroup for the delay equation (see, e.g., [16]). This semigroup is

given as Sh(t) = (S11(t)
0

S12(t)
S22(t)

), where S11(t) ∈ L(Rn), S12(t) ∈ L((L2(−1, 0;Rm),Rn)

and S22(t) ∈ L(L2(−1, 0;Rm)) are given by

S11(t) = eAt, S12(t)z = h

∫ t
h

0

eA(t−σh)B1z(σ − 1)dσ,

S22(t) = T

(
t

h

)
, with T (t) semigroup of translation in L2(−1, 0;Rm).

(A.1)

Now let us characterize the adjoint ofAh. For this, taking some (
x
z ) ∈ D(Ah), consider

( vw ) ∈ D(A∗
h) and (

f
g ) ∈ Hm such that

〈
Ah

(
x
z

)
,

(
v
w

)〉
H
= 〈Ax+B1z(−1), v〉Rn +

1

h

∫ 0

−1

〈Dz,w〉Rmdσ

= 〈x, f〉Rn +

∫ 0

−1

〈z, g〉Rmdσ.

So choosing z = 0, we get 〈Ax, v〉Rn = 〈x, f〉Rn . So v ∈ R
n and AT v = f .

Moreover, since
∫ 0

−1
〈z, g〉Rmdσ = −∫ 0

−1
〈Dz,

∫ σ

−1
g(s)ds〉Rmdσ, we have

∫ 0

−1
〈Dz, 1

hw

− BT
1 v +

∫ σ

−1
g(s)ds〉Rmdσ = 0. Therefore w = h(BT

1 v − ∫ σ

−1
g(s)ds), which implies

w(−1) = hBT
1 v and Dw = −hg. So finally we get

A∗
h

(
y
w

)
=

(
AT y

− 1
h
Dw

)
and D(A∗

h) =

{(
y
w

)
∈ Wm, w(−1) = hBT

1 y

}
,

which we intended to prove.
Part (ii). Now the semigroup {Sh(t)}t≥0 may be extended by transposition and

duality as a semigroup on D(A∗
h)

′
(see, e.g., [19]) as soon as we prove that {S∗

h(t)}t≥0

is a C0-semigroup on D(A∗
h). The adjoint semigroup S∗

h may be computed as S∗
h(t) =

(S
∗
11(t)

S∗
12(t)

0
S∗

22(t)
) ∈ L(H), where

S∗
11(t) = eA

T t, t ≥ 0,
S∗

12(t)v(σ) = hBT
1 S∗

11(t− h(σ + 1))v with S∗
11(t) = S∗

11(t)χ{t≥0},

S∗
22(t)z(σ) =




z

(
σ − t

h

)
if t− h < σh ≤ 0,

0 if − h ≤ σh ≤ t− h.

Then for the rest of the proof, it will be sufficient to check that the space D(A∗
h) is

stable by S∗
h(t). For that, take (

v
w ) ∈ D(A∗

h) and denote ψ(σ) the second component

of S∗
h(t)(

v
w ). Then ψ(σ) = hBT

1 S
∗
11(t−h(σ+1))v+w(σ− t

h ), which implies :ψ(−1) =
hBT

1 S∗
11(t)v.

Moreover, 


σ ≤ t− h

h
=⇒ ψ(σ) = hBT

1 S∗
11(t− h(σ + 1))v,

σ >
t− h

h
=⇒ ψ(σ) = w

(
σ − t

h

)
,
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with limσ→ t−h
h

w(σ − t
h ) = w(−1) = hBT

1 v = ψ( t−h
h ). Therefore, in order to prove

that Dψ ∈ L2(−1, 0;Rm), it is enough to prove that hBT
1 S∗

11(t − h(. + 1))v ∈
H1(−1, t−h

h ;R
m) ∀v ∈ R

n. But we may point out that {t → S∗
11(t) = eA

T t} ∈
H1(0, T ;L(Rn)), so when introducing F defined from [−1, 0] to R

n as F (σ) = S∗
11(t−

h(σ + 1))v, we have the following smoothness property:

F ∈ H1

(
t− T − h

h
,
t− h

h
;Rn

)
⊂ H1

(
−1, t− h

h
;Rn

)
∀h > 0.

So the final conclusion follows from the remark:

BT
1 ∈ L(Rn,Rm) =⇒ hBT

1 S∗
11(t−h(.+1))v = hBT

1 F (.) ∈ H1

(
−1, t− h

h
;Rm

)
.

A.2. Proof of Lemma 3.2. In view of [1, Proposition 3.1, p. 172], this is
equivalent to proving that there exists some b > 0 such that ∀ t ∈ [0, T ] and u ∈
L2(0, t ; R

m), we get

∫ t

0

Sh(t− s)Bhu(s)ds ∈ Hm and ‖
∫ t

0

Sh(t− s)Bhu(s)ds‖Hm ≤ b‖u‖L2(0,t;Rm).

To this end, it will be sufficient to prove that y −→ 〈∫ t

0
Sh(t − s)Bhu(s)ds, y〉Hm

defines a continuous linear form for the normed space topology of Hm.
For this, let us take z = ( yw ) ∈ D(A∗

h) = {( yw ) ∈ Wm, w(−1) = hBT
1 y}. Then

〈∫ t

0

Sh(t− s)Bhu(s)ds, z
〉

Hm

=

∫ t

0

〈Bhu(s)︸ ︷︷ ︸
∈ Wm′

, S∗
h(t− s)z︸ ︷︷ ︸

∈ D(A∗
h
) ⊂Wm

〉Hmds.

So denoting ψ the second component of S∗
h(t− s)z, we get, with Appendix A.1,

ψ(σ) = hBT
1 eA

T (t−s−h(σ+1))yχ{σ≤ t−s−h
h } + w

(
σ − t− s

h

)
χ{σ≥ t−s−h

h }

in such a way that ψ defines a continuous function (see the end of the proof of
Proposition 3.1 in appendix A.1 for details). Then applying the Dirac distribution
δθ=0 to ψ, we get

∫ t

0

〈Bhu(s),S∗
h(t− s)z〉Hmds =

∫ t

0

〈u(s), B0e
AT (t−σh)y +B1

T eA
T (t−h−s)yχ{s ≤ t−h}

+
1

h
w

(
t− s

h

)
χ{s > t−h}〉Hm

h
ds

=

〈∫ t

0

eA(t−s)B0u(s)ds+

∫ t

0

eA(t−s)B1u(s− h)ds, y

〉
Rn

+

∫ 0

−h

〈u(s(h+ 1) + t), w(s)〉Rmds,

which proves the continuity of z → 〈∫ t

0
Sh(t − s)Bhu(s)ds, z〉Hm in D(A∗

h) endowed
with the normed space topology of Hm. By density argument, we conclude that this
continuity result remains true in the normed space Hm

h .
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A.3. Proof of Theorem 3.6. In view of Remark 3.2 about identifying strong
and weak solutions, we just need to prove that Ãk defined by (3.17) coincides on Wn

with (A∗
k)

∗, the transposed adjoint of Ak. To this end, we shall use the method of
transposition which simply reduces to a double integration by parts. Starting with
the equation




(
x(t)
y(t, .)

)
=

(
A0 A1δσ=−1

0
1

k

∂

∂σ

)(
x(t)
y(t, .)

)
(

x(0)
y(0, .)

)
=

(
x00

ψk(.)

) in Hm,(A.2)

we observe that any ( x(t)
y(t,.)

) ∈ D(Ak) satisfies

{
y(t, .) ∈ H1(−1, 0;Rn) a.e. t ∈ [0, T ],
y(t, 0) = x(t) ∈ L2(0, T ;Rn),

(A.3)

and also that such a y is the solution to the equation of transport:




k
∂y

∂t
=

∂y

∂σ
y(0, .) = ψk(.) ∈ L2(−1, 0;Rn)
y(t, 0) = x(t) ∈ L2(0, T,Rn)

in L2(0, T ;L2(−1, 0;Rn)).(A.4)

Now let us apply the method of transposition to the previous equation. Take ϕ ∈
L2(0, T ;L2(−1, 0;Rn)) = L2(0, T ;Rn)× L2(−1, 0;Rn). Then (A.4) implies

k

∫ t=T

t=0

∫ σ=0

σ=−1

∂y

∂t
(t, σ)ϕ(t, σ)dtdσ =

∫ t=T

t=0

∫ σ=0

σ=−1

∂y

∂σ
(t, σ)ϕ(t, σ)dtdσ.(A.5)

From an integration by parts, it follows that

k

∫ σ=0

σ=−1

(
yϕ|t=T

t=0 −
∫ t=T

t=0

y
∂ϕ

∂t

)
dσ =

∫ t=T

t=0

(
yϕ|σ=0

σ=−1 −
∫ σ=0

σ=−1

y
∂ϕ

∂σ
dσ

)
dt.(A.6)

Now, let us make the following assumptions on the test-functions:

ϕ(t,−1) = 0 a.e. t ∈ [0, T ] and ϕ(T, σ) = 0 a.e. σ ∈ [−1, 0].
Then in view of the initial and limiting conditions given in (A.4), (A.6) becomes

k

∫ σ=0

σ=−1

ψk(σ)ϕ(0, σ)dσ−
∫ t=T

t=0

∫ σ=0

σ=−1

y

(
k
∂ϕ

∂t
− ∂ϕ

∂σ
dσ

)
dt =

∫ t=T

t=0

x(t)ϕ(t, σ)dt.

(A.7)
Since a necessary condition to make such an equation meaningful is

k
∂ϕ

∂t
− ∂ϕ

∂σ
∈ L2(0, T ;Rn)× L2(−1, 0;Rn),

we choose the space

Etest =
{
ϕ ∈ L2(0, T ;L2(−1, 0;Rn)),

∣∣∣∣∣ k
∂ϕ

∂t
− ∂ϕ

∂σ
∈ L2(0, T ;L2(−1, 0;Rn)),

ϕ(T, .) = 0, ϕ(.,−1) = 0,

}
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as a set of test-functions. From

∂

∂t

∗
= − ∂

∂t
, D

(
∂

∂t

∗)
= {y ∈ H1(0, T ;Rn), y(T ) = 0}

and
∂

∂σ

∗
= − ∂

∂σ
, D

(
∂

∂σ

∗)
= {y ∈ H1(−1, 0;Rn), y(−1) = 0},

we see that the space Etest is a subset of the set of strong solutions of the adjoint
equation of (A.4) and that

ϕ ∈ Etest ⇔ ϕ(., σ) ∈ H1

(
0, T ;D

(
∂

∂σ

∗))
and ϕ(t, .) ∈ H1

(
−1, 0;D

(
∂

∂t

∗))
.

Now for ϕ ∈ Etest, we may write, with L2 × L2 = L2(0, T ;Rn)× L2(−1, 0;Rn),

k〈ψk, δt=0ϕ〉L2(−1,0;Rq) −
〈
y,

(
k
∂

∂t
− ∂ϕ

∂σ

)
ϕ

〉
L2×L2

= 〈δ∗σ=0x(t), ϕ〉L2×L2 .(A.8)

Then with the operator ∂
∂t − ∂ϕ

∂σ , the formal adjoint of the operator −( ∂∂t − ∂ϕ
∂σ ), we

get

k〈ψk, δt=0ϕ〉L2(−1,0;Rn) +

〈(
k
∂

∂t
− ∂ϕ

∂σ

)
y, ϕ

〉
L2×L2

= 〈δ∗σ=0x(t), ϕ〉L2×L2 .(A.9)

Hence 


k
∂y

∂t
(t, .) =

∂y

∂σ
(t, .) + δ∗σ=0x(t)

= Dy(t, .) + δ∗σ=0x(t)
y(0, .) = ψk(.) ∈ L2(−1, 0;Rn)

in H1(−1, 0;Rn)
′
,(A.10)

where D = ∂
∂σ with D( ∂

∂σ ) = {y ∈ H1(−1, 0;Rn), y(0) = 0}.
We may observe that the linear operator ( ∂

∂σ

∗
)∗ ∈ L(L2(−1, 0;Rn),D( ∂

∂σ

∗
)′) has

been constructed en route as a continuous extension of D ∈ L(D(D), L2(−1, 0;Rn)).
Hence D may be seen as an element of

L(H1(−1, 0;Rn), H1(−1, 0;Rn)
′
) ∩ L

(
L2(−1, 0;Rn),D

(
∂

∂σ

∗)′)
.

Now (A.2) becomes


(
ẋ
ẏ

)
= Ãk

(
x
y

)
(

x(0)
y(0, .)

)
=

(
x00

ψk(.)

)
∈ Hn

in L2(0, T,D(A∗
k)

′
),(A.11)

where Ãk is the extension by transposition of Ak, given on Wn by

Ãk =

(
A0 A1δσ=−1
1

k
δ∗σ=0

1

k
D

)

and satisfies Ãk ∈ L(D(Ak),Hn) ∩ L(Wn,Wn
′
) ∩ L(Hn,D(A∗

k)
′
), which is what

we wanted to prove.
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Abstract. An adaptive, ergodic cost stochastic control problem for a partially known, semilin-
ear, stochastic system in an infinite dimensional space is formulated and solved. The solutions of the
Hamilton–Jacobi–Bellman equations for the discounted cost and the ergodic cost stochastic control
problems require some special interpretations because they do not typically exist in the usual sense.
The solutions of the parameter dependent ergodic Hamilton–Jacobi–Bellman equations are obtained
from some corresponding discounted cost control problems as the discount rate tends to zero. The
solutions of the ergodic Hamilton–Jacobi–Bellman equations are shown to depend continuously on
the parameter. A certainty equivalence adaptive control is given that is based on the optimal con-
trols from the solutions of the ergodic Hamilton–Jacobi–Bellman equations and a strongly consistent
family of estimates of the unknown parameter. This adaptive control is shown to achieve the optimal
ergodic cost for the known system.

Key words. stochastic adaptive control, ergodic control, stochastic semilinear systems, stochas-
tic optimal control, distributed parameter systems

AMS subject classifications. 93C40, 93C20, 60J27, 60H15

PII. S0363012999351826

1. Introduction. Ergodic cost stochastic control problems for finite dimen-
sional, nonlinear stochastic systems have been investigated for more than two decades
(e.g., [2], [9], [25], and [1], [28], and the references therein). There has been some work
on the corresponding adaptive control problem for these partially known stochastic
systems. In [3], [4], [5] some properties of the solution of the Hamilton–Jacobi–
Bellman (HJB) equation of optimal control are used to verify self-optimality of an
adaptive control using a strongly consistent family of estimates of the unknown pa-
rameters. In [17] an almost optimal adaptive control is constructed for a partially
known nonlinear stochastic system. To obtain an optimal feedback control in an ex-
plicit form, the associated HJB equation must be solved, and for an adaptive control
problem, a continuous dependence of the solution of the HJB equation must be ver-
ified. Some results for an infinite time horizon discounted cost control problem for a
semilinear stochastic system in an infinite dimensional state space are given in [22],
where the HJB equation is considered in the mild form, and in [23], where a viscos-
ity solution of the HJB equation is used. Some results for an ergodic cost control
problem for a semilinear stochastic system in an infinite dimensional state space are
given in [20], where the HJB equation is solved. This is apparently the only result for
ergodic cost control for semilinear stochastic systems using the HJB equation. Some
other approaches and results for ergodic cost control are given in [16], [18]. For adap-
tive control, there are results for linear stochastic systems with an ergodic quadratic
cost in [13], [14], [15]. Since the results for the discounted cost and the ergodic cost
stochastic control problems for known semilinear stochastic systems are relatively re-
cent, it appears that this is the first work on adaptive control for stochastic semilinear
systems.
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In this paper an adaptive, ergodic cost control problem is solved for a semilinear
stochastic system in an infinite dimensional state space using a solution of the HJB
equation. An adaptive control is obtained from the certainty equivalence principle and
the optimal control from the solution of the HJB equation. Continuity of the optimal
cost with respect to the parameter is shown and the adaptive control is verified to be
self-optimal.

A brief outline of the paper is given now. In section 2, the adaptive control prob-
lem is formulated and the assumptions are described. An example of a controlled
stochastic parabolic partial differential equation is given for which the assumptions
are satisfied. Some preparatory results for the analysis of the adaptive control prob-
lem are given. For example, the tightness of the probability laws of the solutions of
the controlled semilinear systems and a uniform boundedness of their moments are
verified. Some uniform bounds on the derivatives of the Markov transition semigroup
for the uncontrolled system are also verified. In section 3, the parameter estimation
problem is considered. In this section it is assumed that the unknown parameter
appears affinely in the stochastic system. With an identifiability condition, it is
shown that a family of least squares estimates is strongly consistent. In section 4,
the self-optimality of an adaptive control is verified. Initially the parameter depen-
dent, infinite dimensional HJB equations for the ergodic and discounted costs control
problems are formally introduced. Their solutions are defined by the generator of
an Ornstein–Uhlenbeck semigroup. A family of suitably normalized solutions of the
HJB equations for the discounted costs are shown to be relatively compact for ar-
bitrarily small discount rates and all values of the parameter in the Sobolev space
W 1,2(H,µ), where H is the Hilbert space that is the state space for the system and µ
is a limiting Gaussian measure for the solution of the associated uncontrolled linear
system (Ornstein–Uhlenbeck process). This relative compactness property provides
the ergodic control result as a suitable limit of the discounted control results as the
discount rate tends to zero. The proof of the relative compactness uses a method
in [20] for known systems in a space of continuous, polynomially bounded functions
where an upper bound on the norm of the controls is required. The existence and the
uniqueness of the solution of the ergodic HJB equation and its relation to an optimal
control and the optimal cost are given. While the existence of the solution follows
from a result in [20], the uniqueness of the solution in W 1,2(H,µ) is new. The contin-
uous dependence of the solutions of the ergodic HJB equations on the parameter in
the W 1,2(H,µ) is verified. A certainty equivalence adaptive control is defined that is
based on the optimal controls from the solutions of the ergodic HJB equations and a
strongly consistent family of estimates of the unknown parameter. The main results
of section 4, Theorem 4.1 and Corollary 4.2, state the self-optimality of this adaptive
control, that is, this adaptive control achieves the optimal ergodic cost for the true
system.

2. Preliminaries. Let (X(t), t ≥ 0) be an H-valued, parameter dependent,
controlled process that satisfies the stochastic differential equation

dX(t) = (AX(t) + f(α,X(t))− u(t))dt+Q1/2dW (t),(2.1)

X(0) = x,

where H is a real, separable Hilbert space with inner product 〈·, ·〉 and norm | · |,
A : Dom(A) → H is a densely defined, unbounded linear operator on H, f(α, ·) :
H → H for each α ∈ A ⊂ R

q that is a compact set of parameters, (W (t), t ≥ 0) is a
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standard, cylindrical H-valued Wiener process defined on a filtered probability space
(Ω,F , (Ft),P) and Q1/2 ∈ L(H). The family of admissible controls is

U = {u : R+ × Ω→ BR | u is measurable and (Ft) adapted},(2.2)

where BR = {y ∈ H | |y| ≤ R} and R > 0 is fixed. A family of Markov controls, e.g.,
u(t) = ũ(X(t)), is also considered where ũ ∈ Ũ and

Ũ = {ũ : H → BR | ũ is Borel measurable}.(2.3)

The cost functionals J(x, λ, u) and J̃(x, u) are given as

J(x, λ, u) = Ex,u

∫ ∞

0

e−λt(ψ(X(t)) + h(u(t)))dt(2.4)

and

J̃(x, u) = lim inf
T→∞

Ex,u
1

T

∫ T

0

(ψ(X(t)) + h(u(t)))dt,(2.5)

where λ > 0, h : BR → R+, and ψ : H → R, that describe a discounted and an
ergodic control problem, respectively.

The adaptive control problem is to find a family of strongly consistent estimates
of the unknown parameter α and to determine an adaptive control from the family of
admissible controls such that the optimal ergodic cost, infu∈U J̃(x, u), is achieved.

The following assumptions are selectively used in the paper.
(A1) The linear operator Q = Q1/2∗Q1/2 is invertible, Q−1 ∈ L(H) and (S(t), t ≥

0), where S(t) = etA, is an exponentially stable semigroup of contractions,
that is,

‖S(t)‖L(H) ≤ e−ωt

for all t ≥ 0 and some ω > 0. Furthermore, the semigroup is Hilbert–Schmidt
and there is a γ > 0 such that

∫ T

0

t−γ‖S(t)‖2HSdt <∞

for some T > 0, where ‖ · ‖HS is the Hilbert–Schmidt norm.
(A2) The function f(α, ·) : H → H is Lipschitz continuous and Gâteaux differen-

tiable. The Gâteaux derivative Df(α, ·)h is continuous on H for each h ∈ H
and α ∈ A and there is a β ∈ R such that

〈Df(α, x)h, h〉 ≤ β|h|2

for all x ∈ H, h ∈ H, and α ∈ A.
(A3) The function f(·, x) : A → H is continuous for each x ∈ H and there are

constants p > 0 and C > 0 such that

|f(α, x)| ≤ C(1 + |x|p)

for each x ∈ H and α ∈ A.
(A4) ψ ∈ Cb(H).



1686 T. E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

(A5) The function h : H → R is convex and bounded on bounded sets and contin-
uous. The function H̃ : H → R given by H̃(x) = sup|y|≤R[〈y, x〉 − h(y)] is
continuously Fréchet differentiable.

Some implications of the assumptions (A1)–(A5) are described now. Consider
the linear stochastic differential equation obtained from (2.1) by choosing f ≡ 0 and
u ≡ 0, that is,

dZ(t) = AZ(t)dt+Q1/2dW (t),(2.6)

Z(0) = x.

It is well known (e.g., [11]) that if (A1) is satisfied then (2.6) has a unique mild
solution

Z(t) = S(t)x+

∫ t

0

S(t− r)Q1/2dW (r)(2.7)

which is an H-valued process with continuous sample paths, is ergodic, and has a
unique invariant probability measure

µ = N(0, Q∞),(2.8)

where

Q∞ =

∫ ∞

0

S(r)QS∗(r)dr

is a trace class operator on H. If (A2) is satisfied, then (2.1) has a unique mild
solution

X(t) = S(t)x+

∫ t

0

S(t− r)(f(α,X(r))− u(r))dr +
∫ t

0

S(t− r)Q1/2dW (r)(2.9)

for each u ∈ U and α ∈ A. If the control in (2.1) has the feedback form u(t) = ũ(X(t)),
where ũ ∈ Ũ , then the solution of (2.1) is obtained by an absolute continuity of
measures as a weak solution in the probabilistic sense. More specifically, if P is the
probability measure for the solution of (2.1) with u ≡ 0, then the probability measure
Pũ for the solution of

dX(t) = (AX(t) + f(α,X(t))− ũ(X(t)))dt+Q1/2dW (t),(2.10)

X(0) = x

is induced from P by the Radon–Nikodým derivative

dPũ
dP

= exp

[
−
∫ T

0

〈Q−1/2ũ(X(s)), dW (s)〉 − 1

2

∫ T

0

|Q−1/2ũ(X(s))|2ds
]
.(2.11)

The assumption (A3) is used to verify a suitable continuous dependence of the solu-
tions of the ergodic HJB equations on the parameter which is important to verify the
self-optimality of a certainty equivalence adaptive control. The assumptions (A4) and
(A5) are standard conditions on a cost functional in the stochastic control of semilin-
ear systems (e.g., [20], [22]). Note that (A5) is satisfied in the case where h(x) = |x|2
so that H̃(x) = Ĥ(|x|), where

Ĥ(r) =

{
r2

4 if |r| ≤ 2R,

R|r| −R2 if |r| > 2R.
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To provide some additional perspective for the adaptive control problem, an ex-
ample of a stochastic partial differential equation that satisfies the assumptions is
given. Consider the stochastic partial differential equation

∂y

∂t
(t, ξ) =

∂2y

∂ξ2
(t, ξ) + F (α, y(t, ξ))− u(t, ξ) + η(t, ξ)(2.12)

for (t, ξ) ∈ R+ × (0, 1) with the initial condition y(0, ξ) = y0(ξ), ξ ∈ (0, 1) and the
Dirichlet boundary conditions

y(t, 0) = y(t, 1) = 0

for t ≥ 0. The function F : A × R → R satisfies the following: F (·, y) is continuous
for each y ∈ R, F (α, ·) is (globally) Lipschitz continuous for each α ∈ A, |F (α, y)| ≤
C(1 + |y|) for some C > 0 and all α ∈ A and y ∈ R, and F ′(α, y) ≤ β for some
β ∈ R, and the term η formally denotes a space time white noise. The control
(u(t), t ≥ 0) is assumed to be adapted to the noise process and to take values in
a ball, BR, in L

2(0, 1). The formal equation (2.12) can be rigorously described in
a standard way as an equation of the form (2.1) in the Hilbert space H = L2(0, 1),
A = ∂2/∂ξ2, Dom(A) = {ϕ ∈ L2(0, 1) | ϕ,ϕ′ are absolutely continuous, ϕ′′ ∈ L2(0, 1),
ϕ(0) = ϕ(1) = 0}, f(α, x)(ξ) = F (α, x(ξ)) for x ∈ H, α ∈ A, ξ ∈ (0, 1) and a
cylindrical Wiener process with Q = δI where δ > 0 is a constant and I is the identity
on I. For ψ and h in the cost functionals (2.4), (2.5) arbitrary ψ ∈ Cb(L2(0, 1)) and
h : L2(0, 1) → R+ satisfying (A5) can be chosen, e.g., h(u) = |u|2. It is well known
that all of the assumptions (A1)–(A5) are satisfied where γ ∈ (0, 1/4) in (A1).

It is convenient to denote by P
α
x,u the probability measure on Ω for the solution

of (2.1) with X(0) = x, a control u ∈ U , and a parameter α ∈ A. Let E
α
x,u be the

expectation for the probability P
α
x,u.

In the following proposition some stability, boundedness, and tightness properties
are given.

Proposition 2.1. If (A1) and (A2) are satisfied, where ω − β > 0, then the
following apply.

(i) For each p′ > 0 and T > 0 the following inequalities are satisfied:

sup
α∈A

sup
u∈U

E
α
x,u

[
sup

0≤t≤T
|X(t)|2p′

]
≤ CT |x|2p′ + C̃T(2.13)

and

sup
t∈R+

sup
α∈A

sup
u∈U

E
α
x,u[|X(t)|2p′ ] ≤ C1|x|2p′ + C2.(2.14)

(ii) For each x ∈ H, α ∈ A, and u ∈ U the following inequality is satisfied:

lim sup
t→∞

1

t

∫ t

0

|X(s)|2ds <∞ almost surely (a.s.) P
α
x,u.(2.15)

(iii) For each x ∈ H, α ∈ A, and u ∈ U there is a sequence (Kn, n ∈ N) of
compact sets in H such that

lim
n→∞ sup

t≥1
P
α
x,u(X(t) ∈ H \Kn) = 0,(2.16)

so the family of measures (µX(t), t ≥ 1) is tight where µX(t) is the probability
law for X(t).
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Proof. To verify (i) the solution of (2.1) can be expressed as

X(t) = µ(t, Z̃) + Z̃(t),

where

Z̃(t) = −
∫ t

0

S(t− r)u(r)dr +
∫ t

0

S(t− r)Q1/2dW (r)

and µ(t, ϕ) is the solution of the deterministic integral equation

µ(t, ϕ) = S(t)x+

∫ t

0

S(t− r)f(α, µ(r, ϕ)) + ϕ(r))dr,

where ϕ ∈ C(R+, H) and ϕ(0) = 0. Since the semigroup (S(t), t ≥ 0) is exponentially
stable, it easily follows that

sup
t∈R+

E|Z̃(t)|m <∞(2.17)

for each m > 0. Thus to verify (2.14), it suffices to show that

supE
α
x,u[|µ(t, Z̃)|2p

′
] ≤ C(1 + |x|2p′)(2.18)

for some constant C and the supremum is taken over all t ∈ R+, u ∈ U , and α ∈ A.
It can be assumed in (A2) that β ≤ 0, for otherwise βI can be subtracted from f
and added to A. Using the standard approximation of f by the sequence (fn, n ∈ N),
where fn = (1/n)[(I − nf)−1 − I], and using the Gronwall lemma it follows that

|µ(t, ϕ)|2p′ ≤ e−2p′ωt|x|2p′ + 2p

∫ t

0

e−2p′ω(t−s)|f(α,ϕ(s))| |µ(s, ϕ)|2p′−1ds(2.19)

(cf. [20, Lemma 2.2] or [12] for a similar verification). By (A3) it follows that

|f(α, x)| ≤ C̃(1 + |x|p)(2.20)

for all x ∈ H and α ∈ A and some constant C̃. If p′ = 1/2, then (2.17) and (2.19)
imply (2.18). Otherwise a verification by induction is made as follows. Assume that

sup
t∈R+, α∈A, u∈U

E
α
x,u[|µ(t, Z̃)|2p

′−(1/2)] ≤ C3|x|2p′−(1/2) + C4

for all x ∈ H and some constants C3 and C4. Using (2.19) and the Hölder inequality
with exponents q = [2p′ − (1/2)]/(2p′ − 1) and q′ = q/(q − 1) it follows that

E
α
x,u[|µ(t, Z̃)|2p

′
] ≤ e−2p′ωt|x|2p′ + C5

∫ t

0

e−2p′ω(t−s)(Eαx,u|f(α, Z̃(s))|q
′
)1/q

′
ds

· (Eαx,u|µ(t, Z̃)|2p
′−(1/2))1/q

≤ C6|x|2p′ + C7

for all x ∈ H and some constants C6 and C7. This completes the verification of (2.14).
It has been shown [30] that

E

[
sup

0≤t≤T
|Z̃(t)|q

]
<∞
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for each q > 0. Thus the inequality (2.13) follows from (2.19) in a similar way.
To verify (ii) the inequalities (2.19) and (2.20) imply that

1

t

∫ t

0

|µ(r, ϕ)|2dr ≤ C8(x)

t
+ C9

1

t

∫ t

0

|ϕ(s)|2pds

for some C8(x) depending on x ∈ H and constant C9. Thus

1

t

∫ t

0

|X(s)|2ds ≤ 2

t

∫ t

0

|µ(s, Z̃)|2ds+ 2

t

∫ t

0

|Z̃(s)|2ds

≤ 2C8(x)

t
+

2C9

t

∫ t

0

|Z̃(s)|2pds+ 2

t

∫ t

0

|Z̃(s)|2ds.(2.21)

Note that

1

t

∫ t

0

∣∣∣∣
∫ s

0

S(s− r)u(r)dr
∣∣∣∣
2q

ds ≤ 1

t

∫ t

o

(
R

ω

)2q

ds ≤
(
R

ω

)2q

(2.22)

and

lim
t→∞

1

t

∫ t

0

∣∣∣∣
∫ s

0

S(s− r)Q1/2dW (r)

∣∣∣∣
2q

ds = C(q)(TrQ∞)q a.s. P
α
x,u(2.23)

for any q ∈ N, and C(q) depends only on q. This equality follows because the

Ornstein–Uhlenbeck process (
∫ t
0
S(t − r)dW (r), t ≥ 0) is ergodic and by the strong

law of large numbers (cf. [27]) the family of time averages in (2.23) converge almost
surely to the 2qth moment of the invariant measure, µ = N(0, Q∞). The inequalities
(2.21) and (2.22) and the equality (2.23) verify the inequality (2.15) in (ii).

To verify (iii) the solution (X(t), t ≥ 0) of (2.1) is expressed as

X(t+ 1) = S(1)X(t) +

∫ t+1

t

S(t+ 1− r)(f(α,X(r))− u(r))dr

+

∫ t+1

t

S(t+ 1− r)Q1/2dW (r)

= S(1)X(t) +

∫ 1

0

S(1− r)λ(α, r + t)dr +
∫ 1

0

S(1− r)Q1/2dW̃ (r),(2.24)

where W̃ (r) =W (r + t) and

λ(α, s) = f(α,X(s))− u(s).

Since it can be assumed that γ ∈ (0, 1) in (A1), let q = 1/γ and v ∈ (1/q, 1]. Define
the linear operator Jv : L2(0, 1;H)→ H as

Jvh =

∫ 1

0

(1− s)v−1S(1− s)h(s)ds.

It is well known (e.g., [11]) that Jv is a compact operator and

∫ 1

0

S(1− r)Q1/2dW (r) =
sin 1

2πγ

π
Jγ/2(Y ),
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where

Y (s) =

∫ s

0

(s− u)−γ/2S(s− u)Q1/2dW (u).

Thus (2.24) can be rewritten as

X(t+ 1) = S(1)X(t) + J1λ(α, ·+ t) +
sin 1

2πγ

π
Jγ/2(Y )

for t ≥ 0. Let | · |q be the norm in Lq(0, 1;H). By (2.20) and (i) it follows that

E
α
x,u|λ(α, ·+ t)|qq ≤ E

α
x,uk1

(
Rq + k2

∫ 1

0

|X(r + t)|qpdt
)
≤ k3(2.25)

and (A1) implies that

E
α
x,u

∫ 1

0

|Y (s)|2ds ≤ k4

∫ 1

0

(∫ s

0

(s− u)−γ |S(s− u)|2HSdu

)2

ds ≤ k5(2.26)

for some constants k1 − k5 that do not depend on t ∈ R+, α ∈ A, and u ∈ U . Define
a sequence of compact sets (Kn, n ∈ N) as

Kn = {y ∈ H | y ∈ S(1)x+ J1h+ Jγ/2g, |x|2 + |h|qq + |g|qq ≤ n}.
By the Chebyshev inequality it follows that

P
α
x,u(X(t+ 1) /∈ Kn) ≤ 1

n

[
E
α
x,u

(
|X(t)|2 + |λ(α, ·+ t)|qq +

(
sin 1

2πγ

π

)q
|Y |qq

)]

so that

lim
n→∞ sup

t≥1
P
α
x,u(X(t) ∈ H \Kn) = 0

by (2.25), (2.26), and (i).
In what follows let (Pαt , t ≥ 0) be the Markov transition semigroup induced by

the solution of (2.1) with u ≡ 0. It is clear that for each α ∈ A, (Pαt , t ≥ 0) is a
semigroup of bounded, linear operators on Cb(H).

This section is concluded with some bounds on the Fréchet derivative of Pαt ϕ for
t ≥ 0. For a bounded, Borel measurable function φ : H → R, let ‖φ‖ = supx∈H |φ(x)|
be the essential supremum.

Proposition 2.2. If (A1) and (A2) are satisfied with ω − β > 0, then for each
t > 0, α ∈ A, and ϕ ∈ Cb(H) the function Pαt ϕ : H → Cb(H) is Fréchet differentiable
and its Fréchet derivative DPαt ϕ satisfies the following inequalities:

‖DPαt ϕ‖ ≤ |Q−1/2|L(H)t
−1/2‖ϕ‖, t > 0,(2.27)

and

‖DPαt ϕ‖ ≤ |Q−1/2|L(H)e
−(ω−β)(t−1)‖ϕ‖, t > 1,(2.28)

where ‖ · ‖ = supx∈H | · |. From (2.27) and (2.28) the following inequality is satisfied:

‖DPαt ϕ‖ ≤ k(ω1)|Q−1/2|L(H)t
−1/2e−ω1t‖ϕ‖(2.29)



ADAPTIVE CONTROL 1691

for t > 0 and each ω1 ∈ (0, ω − β) for a constant k(ω1) that depends only on ω1, ω,
and β.

Proof. Let (Xα,x(t), t ≥ 0) be the solution of (2.1) with u ≡ 0. By Proposition
7 in [10] it follows that the map x �→ Xα,x(t) is Gâteaux differentiable in the mean
square for each t ∈ R+ and its directional derivative at x in the direction h ∈ H,
Y α,x
h (t), is a mild solution of the random linear differential equation

d

dt
Y α,x
h (t) = (A+Df(α,Xα,x(t)))Y α,x

h (t),

Y α,x
h (0) = h.

Let gn(α, x) = n(nI − A)−1Df(α, x) for n ∈ N and let (yn(t), t ≥ 0) be the strong
solution of the random linear differential equation

d

dt
yn(t) = (A+ gn(α,X

α,x(t)))yn(t),

yn(0) = n(nI −A)−1h = hn.

By (A1) it follows that

d

dt
|yn(t)|2 = 2〈(A+ gn(α,X

α,x(t)))yn(t), yn(t)〉
≤ −2ω|yn(t)|2 + 2〈gn(α,Xα,x(t))yn(t), yn(t)〉

so that

|yn(t)|2 ≤ |hn|2 − 2ω

∫ t

0

|yn(s)|2ds+ 2

∫ t

0

〈gn(α,Xα,x(s))yn(s), yn(s)〉ds.

Letting n → ∞ and using standard properties of the Yoshida approximations and
(A2) it follows that

|Y α,x
k (t)| ≤ |h|2 − 2(ω − β)

∫ t

0

|Y α,x
h (s)|2ds

and

|Y α,x
h (t)|2 ≤ |h|2e−2(ω−β)t.(2.30)

By Theorem 4.1 in [12] it follows that DPαt ϕ ∈ Cb(H) for t > 0 and

〈DPαt ϕ(x), h〉 =
1

t
Eϕ(Xα,x(t))

∫ t

0

〈Q−1/2Y α,x
h (s), dW (s)〉

for t > 0 is satisfied for each h ∈ H, so by (2.30) it follows that

‖DPαt ϕ‖ ≤ |Q−1/2|L(H)t
−1/2‖ϕ‖(2.31)

for t > 0 and (2.27) is verified. Furthermore, setting ϕα1 = Pα1 ϕ and using the
semigroup property of Pαt it follows that

〈DPαt ϕ(x), h〉 = 〈DPαt−1ϕ
α
1 (x), h〉

= 〈D(Eϕα1 (X
α,x(t− 1)), h〉

= E〈Dϕα1 (Xα,u(t− 1), Y α,x
h (t− 1)〉

for t > 1, h ∈ H, and x ∈ H. Now using (2.30) and (2.31) with t = 1 it follows that

‖DPαt ϕ‖ ≤ |Q−1/2|L(H)‖ϕ‖e−(ω−β)(t−1)

for t ≥ 1.
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3. Parameter estimation. In this section the estimation of the unknown pa-
rameter is considered where the parameter appears affinely in f , that is,

f(α, x) = fo(x) +

q∑
i=1

αifi(x),(3.1)

where α = (α1, . . . , αq)T. It is assumed that f0, f1, . . . , fq satisfy the relevant condi-
tions on f in (A2) and (A3).

Let (u(t), t ≥ 0) be an admissible control and let (X(t), t ≥ 0) be the associated
solution of (2.1). For notational simplicity, the dependence of X on u is suppressed.
Let

A(t) = (aij(t))(3.2)

and

Ã(t) = (ãij(t))(3.3)

for t ≥ 0 be two L(Rq,Rq)-valued processes, where

aij(t) =

∫ t

0

〈Pfi(X(s)), Pfj(X(s))〉ds

and

ãij(t) =
aij(t)

aii(t)
,

and P : H → P (H) is a fixed finite dimensional projection on H with range in
Dom(A∗) that is chosen to satisfy the subsequent assumptions (A6) and (A7).

For the verification of the strong consistency (e.g., [26]) of a family of least squares
estimates of the unknown parameter vector, the following two assumptions are used.

(A6) For each admissible control law, the L(Rq,Rq)-valued process (Â(t), t ≥ 0)
satisfies

lim inf
t→∞ |det Ã(t)| > 0 a.s.

and
(A7) there is a c > 0 such that |Pfi(x)|2 > c for i ∈ {1, . . . , q} and all x ∈ H.

It is elementary to give examples where (A6) and (A7) are satisfied. For example,
(A6) and (A7) are trivially satisfied if (Pf1, Pf2, . . . , Pfq) are nonzero, orthogonal
elements for each x ∈ H and their norms are uniformly bounded away from zero.

The estimate of the unknown parameter vector at time t, α̂(t), is the minimizer
of the quadratic functional of α, L(t;α), given by

L(t;α) = −
∫ t

0

q∑
i=1

〈Pαifi(X(s)), dPX(s)〉

+
1

2

∫ t

0

q∑
i=1

|Pαifi(X(s))|2ds.(3.4)
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The minimizer of (3.4) is the solution of the family of linear equations

A(t)α̂(t) = A(t)α0 + b(t)(3.5)

or equivalently

Ã(t)α̂(t) = Ã(t)α0 + b̃(t),(3.6)

where A(t) and Ã(t) are given by (3.2) and (3.3), respectively, b(t) = (b1(t), . . . ,
bq(t))

T, b̃(t) = (b̃1(t), . . . , b̃q(t))
T,

bj(t) =

∫ t

0

〈Pfi(X(s)), dPQ1/2W (t)〉

and

b̃j(t) =
bj(t)

ajj(t)

for j = {1, . . . , q}, and α0 is the true parameter vector.
The family of estimates (α̂(t), t ≥ 0) is strongly consistent as described in the

following result.
Theorem 3.1. Let (u(t), t ≥ 0) be an admissible control law. If (A1)–(A4) and

(A6)–(A7) are satisfied, then the family of least squares estimates (α̂(t), t ≥ 0), where
α̂(t) is the solution of (3.6), is strongly consistent, that is,

lim
t→∞ α̂(t) = α0 a.s.,(3.7)

where α0 is the true parameter vector.
Proof. By (A7), a time change in the stochastic integrals in the components of

b(t), and the law of large numbers for Brownian motion, it follows that

lim
t→∞ b̃(t) = 0 a.s.(3.8)

The assumption (A6) ensures that for t � 0 Ã−1(t, ω) exists and is bounded for
almost all ω, so the equality (3.8) implies that α̂(t)→ α0 a.s. as t→∞.

In [21], the parameter estimation of α in (2.1) is considered where f depends on α
not necessarily affinely. With an identifiability condition and some other conditions,
it is shown that a family of maximum likelihood estimates of α is strongly consistent.
This result is a generalization of [5] to some infinite dimensional systems. The infinite
dimensional setting presents some significant difficulties that either do not occur or are
relatively easily overcome in finite dimensions, e.g., the application of an Itô formula
without strong solutions, the tightness of a family of empirical measures, and some
properties of Markov semigroups.

4. Adaptive control. In this section an adaptive control is constructed using
a solution to the infinite dimensional HJB equation. This control is shown to be self-
optimizing for a strongly consistent family of estimates of the unknown parameter.
To verify the self-optimality property, a continuous dependence of the solutions of
the HJB equations with respect to the parameter in a suitable function space is an
important tool. Initially the HJB equations are introduced corresponding to the
discounted and the ergodic cost functionals (2.4) and (2.5) and a summary and some
modifications of some known results on these control problems are given.
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The formal HJB equations corresponding to the control problems (2.1), (2.4) and
(2.1), (2.5) are, respectively,

1

2
TrQD2vλα(x) + 〈Ax,Dvλα(x)〉+ 〈f(α, x), Dvλα(x)〉
− H̃(Dvλα(x)) + ψ(x) = λvλα(x),(4.1)

1

2
TrQD2vα(x) + 〈Ax,Dvα(x)〉+ 〈f(α, x), Dvα(x)〉
− H̃(Dvα(x)) + ψ(x) = ρ(α).(4.2)

In (4.2) it is necessary to solve for the pair (vα, ρ(α)), ρ(α) ∈ R for each α ∈ A.
The existence of strong solutions to (4.1) and (4.2) is unlikely because of the first

two terms on the left-hand side of these equations, specifically because Q is not trace
class and A is only densely defined in H. The approach in [20] is to replace the first
two terms in (4.1) and (4.2) by the generator of an Ornstein–Uhlenbeck semigroup
in a suitable function space. The results of [20], [22] are used but for simplicity the
solutions of (4.1) and (4.2) are defined in a weaker sense which is suitable for the
applications to adaptive control.

Let µ = N(0, Q∞) be the invariant measure and

(Rtϕ)(x) = Exϕ(Z(t))

be the Markov transition semigroup for the Ornstein–Uhlenbeck process (Z(t), t ≥ 0)
that is the solution of (2.6). It is well known that (Rt, t ≥ 0) is a strongly continuous
semigroup on the Hilbert space

H = L2(H,µ).

Let L be the infinitesimal generator of the semigroup (Rt, t ≥ 0) in H. Furthermore,
let L0 be given by

L0ϕ(x) =
1

2
TrQD2ϕ(x) + 〈x,A∗Dϕ(x)〉(4.3)

for x ∈ H and ϕ ∈ Dom(L0), where Dom(L0) = {ϕ ∈ C2
b (H) | (1/2)TrQD2ϕ(·) ∈

Cb(H), 〈·, A∗Dϕ(·)〉 ∈ Cb(H)}.
Let ϕ ∈ Dom(L0) and use the Itô formula to obtain

(Lϕ)(x) = lim
t↓0

1

t
(Rtϕ(x)− ϕ(x))

= lim
t↓0

1

t
(Exϕ(Z(t))− ϕ(x))

= (L0ϕ)(x)

so L is a closed extension of the operator L0. This equality motivates the following
definition of solution of (4.1) and (4.2).

Definition 4.1. A function vλα ∈ Dom(L) and a pair (vα, ρ(α)) ∈ Dom(L)× R

are solutions to (4.1) and (4.2), respectively, if

Lvλα + 〈f(α, ·), Dvλα〉 − H̃(Dvλα) + ψ = λvλα(4.4)
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and

Lvα + 〈f(α, ·), Dvα〉 − H̃(Dvα) + ψ = ρ(α)(4.5)

are satisfied.

This definition of solutions to (4.1) and (4.2) requires only that the solutions be
in Dom(L) ⊂ L2(H,µ) so (4.4) and (4.5) are understood in an L2(H,µ) sense. This
relatively weak notion of solution is used to avoid some technical complications. Some
results on the solutions to (4.1) and (4.2) are given in [20] and [22]. It is shown that
the solutions are more regular than that required in Definition 4.1. For the following
two propositions the parameter α ∈ A is fixed.

Proposition 4.1. If (A1), (A2), (A4), and (A5) are satisfied, then (4.1) has one
and only one solution vλα in Dom(L) ∩ C1

b (H). Furthermore,

vλα(x) = inf
u∈U

J(x, λ, u)(4.6)

so that vλα gives the optimal cost and an optimal control in feedback form is ûλα(x) =
DH̃(Dvλα(x)) for the discounted cost control problem (2.1), (2.4).

This proposition has been basically proven by Gozzi and Rouy [22] when f(α, ·)
is bounded. The generalization in Proposition 4.2 has been done by Goldys and
Maslowski [20].

The ergodic control problem is usually considered to be more difficult than the
discounted control problem because the HJB equation (4.2) has an intrinsic degen-
eracy; that is, there is no uniqueness of the solution to (4.2) because if (vα, ρ(α)) is
a solution of (4.2), then (vα + c, ρ(α)) for c ∈ R is also a solution. The following
proposition describes results in [20] for a slightly more general problem.

Proposition 4.2. If (A1), (A2), (A4), and (A5) are satisfied, where ω − β > 0
and

R <

√
ω1

|Q−1/2|L(H)k(ω1)
√
π
,(4.7)

where ω1 ∈ (0, ω − β) and k(ω1) > 0 is the constant given in (2.29), then there is a
unique solution (vα, ρ(α)) ∈ Dom(L)×R+ such that vα ∈ C1(H), Dvα ∈ Cb(H), and
vα(0) = 0. Furthermore,

ρ(α) = inf
u∈U

J̃(x, u)(4.8)

so that ρ(α) is the optimal cost and an optimal control in feedback form is ûα(x) =
DH̃(Dvα(x)) for the ergodic control problem (2.1), (2.5)

The following result provides a relative compactness of some translates of (vλα)
that allows the ergodic solution vα to be obtained as a “limit” of the discounted
control problems.

Proposition 4.3. If (A1), (A2), (A4), and (A5) are satisfied, where ω − β > 0
and the inequality (4.7) are satisfied, then the family of functions (v̄λα; α ∈ A, λ ∈
(0, 1]) is relatively compact in the Sobolev space W 1,2(H,µ), where v̄λα = vλα − c(α, λ)
and

c(α, λ) =
1

λ

∫
H

(〈f(α, x), Dvλα(x)〉 − H̃(Dvλα(x)) + ψ(x))µ(dx).
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Proof. Let P̂α,λt : Cb(H) → Cb(H) be the Markov transition semigroup corre-

sponding to the solution of (2.1) using the optimal control ûλα, that is, P̂α,λt ϕ(x) =
Eϕ(Xx,α,λ(t)), where (Xx,α,λ(t), t ≥ 0) satisfies

dXx,α,λ(t) = (AXx,α,λ(t) + f(α,Xx,α,λ(t))− ûλα(Xx,α,λ(t)))dt+Q1/2dW (t),

Xx,α,λ(0) = x.

Initially it is verified that there is a function γ ∈ L1(0,∞) that does not depend on α
or λ such that

‖DP̂α,λt ϕ‖ ≤ γ(t)‖ϕ‖(4.9)

for each ϕ ∈ Cb(H). It is known that the function ξ(t, x) = P̂α,λt ϕ(x) is a solution
to the backward Kolmogorov equation, which is defined as a mild solution, that is,
ξ(t, ·) ∈ C1

b (H) for each t > 0 and it satisfies the integral equation

ξ(t, x) = Pαt ϕ(x) +

∫ t

0

Pαt−s〈−ûλα(·), Dξ(s, ·)〉(x)ds(4.10)

for t > 0, where (Pαt , t ≥ 0) is the Markov transition semigroup of the solution of
(2.1) with u ≡ 0. Using the differentiability of (4.10) in x and Proposition 2.2, it
follows that

‖DP̂α,λt ϕ‖ ≤ k(ω1)|Q−1/2|L(H)t
−1/2e−ω1t‖ϕ‖

+

∫ t

0

k(ω1)|Q−1/2|L(H)(t− s)−1/2e−ω1(t−s)R‖DP̂α,λs ϕ‖ds(4.11)

for t > 0, where ω1 ∈ (0, ω−β) and k(ω1) is given in (2.29). Let c = k(ω1)|Q−1/2|L(H)‖ϕ‖
and C = k(ω1)|Q−1/2|L(H)R so (4.11) can be written as

‖DP̂α,λt ϕ‖ ≤ ct−1/2e−ω1t + C

∫ t

0

(t− s)−1/2e−ω1(t−s)‖DP̂α,λt ϕ‖ds.

By the generalized Gronwall lemma (Lemma 7.11 in [24]), if

(
CΓ

(
1

2

))2

< θ < ω1,(4.12)

where Γ(·) is the gamma function, then there is a universal constant k > 0 such that

‖DP̂α,λt ϕ‖ ≤ γ(t)‖ϕ‖
for t > 0, where

γ(t) = k(ω1)|Q−1/2|L(H)

×
(
e−ω1tt−1/2 + k

∫ t

0

e(θ−ω1)(t−s)(t− s)−1/2e−ω1ss−1/2ds

)

and γ ∈ L1(0,∞) by a property of convolution from Young’s inequality. The in-
equality (4.7) guarantees that (4.12) is satisfied for some θ so the inequality (4.9) is
satisfied.
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Next it is shown that there is a constant C1 that does not depend on α or λ such
that

‖Dv̄λα‖ ≤ C1

for λ ∈ (0, 1] and α ∈ A. Since vλα is the optimal cost and ûλα is the optimal control
for the discounted control problem (2.1), (2.4) from Proposition 2.2, it follows that

vλα(x) =

∫ ∞

0

e−λtP̂α,λt (ψ + h(ûαλ))(x)dt

for each x ∈ H, λ ∈ (0, 1], and α ∈ A. Since vλα and v̄λα differ only by a constant, it
follows from (4.9) that

‖Dv̄λα‖ ≤
∫ ∞

0

‖DP̂α,λt (ψ + h(ûαλ))‖dt

≤
(
‖ϕ‖+ sup

|y|≤R
|h(y)|

)∫ ∞

0

γ(t)dt := C1.(4.13)

Let Qt =
∫ t
0
S(r)QS∗(r)dr. Clearly Qt is the covariance operator of the (Gaussian)

probability law of Z(t), where (Z(t), t ≥ 0) is the Ornstein–Uhlenbeck process that
satisfies (2.6). It is known that (Z(t), t ≥ 0) is strongly Feller, that is, Range(S(t)) ⊂
Range(Q

1/2
t ) for t > 0 so the operator Γ(t) = Q

−1/2
t S(t) ∈ L(H) [11]. Furthermore,

it follows from [8] and [20] that

∫ ∞

0

|Γ(t)|L(H)dt <∞.(4.14)

The resolvent of the infinitesimal generator L can be expressed as

(λI − L)−1ϕ =

∫ ∞

0

e−λtRtϕdt

for ϕ ∈ H so the solution vλα of (4.4) satisfies the integral equation

vλα =

∫ ∞

0

e−λtRt(〈f(α, ·), Dvλα〉 − H̃(Dvλα) + ψ)dt.

Since the inequality

|DRtϕ|L2(H,µ;H) ≤ |Γ(t)|L(H)|ϕ|H(4.15)

is satisfied for t > 0, by the Cameron–Martin formula (Lemma 3 in [7]) the integral
operators

Tλ =

∫ ∞

0

e−λtDRtdt

for λ ∈ [0, 1] converge in the L(H, L2(H,µ;H)) norm. Since for each t > 0 the linear
operator DRt : H → L2(H,µ;H) is compact [7], the operators Tλ are also compact.
Thus

Dv̄λα = Dvλα = Tλξ
λ
α,
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where T· : [0, 1]→ L(H, L2(H,µ;H)) is continuous and

ξλα := 〈f(α, ·), Dvλα〉 − H̃(Dvλα) + ψ

for α ∈ A and λ ∈ (0, 1] are uniformly bounded in H by (4.13). It follows that the
family (Dv̄λα, α ∈ A, λ ∈ (0, 1]) is relatively compact in L2(H,µ;H). Note that

v̄λα =

∫ ∞

0

e−λtRt(ξλα − λc(λ, α))dt,(4.16)

where ∫
H

(ξλα − λc(λ, α))dµ = 0.(4.17)

Furthermore, by [7] the semigroup is compact in H and there is a λ1 > 0 such that
|Rtϕ|H ≤ e−λ1t|ϕ|H for each ϕ ∈ H satisfying

∫
ϕdµ = 0. Using (4.16) and (4.17), vλα

can replace Dv̄λα above to verify that (vλα, α ∈ A, λ ∈ (0, 1]) is relatively compact in
H.

A result on the approximation of functions in Dom(L) by functions in Dom(L0)
is given. Similar results in different spaces have been given (e.g., [6], [20], [22]). Let
W ⊂W 1,2(H,µ) be given by

W = {ϕ ∈W 1,2(H,µ) |ϕ ∈ Dom(L), ‖Dϕ‖ <∞,
|ϕ(x)|+ |Lϕ(x)| ≤ k(1 + |x|q) for all x ∈ H
and some real numbers k and q}.

Lemma 4.1. If ϕ ∈ W, then there is a sequence (ϕn, n ∈ N) such that ϕn ∈
Dom(L0), ϕn ∈ W for fixed k and q defining W for all n ∈ N, supn ‖Dϕn‖ <∞, and

lim
n→∞ |ϕn − ϕ|H = 0,(4.18)

lim
n→∞ |L0ϕn − Lϕ|H = 0,(4.19)

lim
n→∞ |Dϕn −Dϕ|L2(H,µ;H) = 0.(4.20)

Proof. Choose λ > 0 and fix it. Let ξ = λϕ− Lϕ. Since the inequality

|ξ(x)| ≤ k(1 + |x|q)(4.21)

for all x ∈ H is satisfied, there is a sequence (ξn, n ∈ N) such that ξn ∈ Dom(L0) and
ξn satisfies (4.21) for all n ∈ N, ξn → ξ in H as n → ∞, and supn ‖Dξn‖ < ∞. A
similar construction is given in Lemma 4.5 in [20]. Now let

ϕn =

∫ ∞

0

e−λtRtξndt.(4.22)

Since (λI − L)−1 : Dom(L0) → Dom(L0) and ϕn = (λI − L)−1ξn, it follows that
ϕn ∈ Dom(L0). Furthermore,

|ϕn − ϕ|H ≤
∫ ∞

0

e−λt|Rt(ξn − ξ)|Hdt ≤ |ξn − ξ|H
∫ ∞

0

e−λtdt
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and

|Dϕn −Dϕ|L2(H,µ;H) ≤
∫ ∞

0

e−λt|DRt(ξn − ξ)|L2(H,µ;H)dt

≤ |ξn − ξ|H
∫ ∞

0

e−λt|Γ(t)|L(H)dt.

This latter inequality follows from (4.15) and the convergence of the right-hand side
to zero as n → ∞ follows from (4.14) and the definition of (ξn, n ∈ N). It can be
verified directly that

‖DRtξn‖ =
∥∥∥∥DEξn

(
S(t)x+

∫ t

0

S(t− r)Q1/2dW (r)

)∥∥∥∥ ≤ ‖Dξn‖
for t > 0 so that

sup
n
‖Dϕn‖ ≤ 1

λ
sup
n
‖Dξn‖ <∞.

Since L0ϕn = λϕn − ξn it follows that L0ϕn = Lϕn → y on H as n → ∞ for some
y ∈ H because L is a closed operator. Thus, y = Lϕ. The uniform polynomial bounds
on ϕn and thereby on L0ϕn follow from the same bounds on ξn and (4.22).

The following proposition is a “W 1,2(H,µ)-version” of a result in [20] on the
existence and the uniqueness of a solution to the ergodic HJB equation which is
described in Proposition 4.2. While the existence result is weaker than the one in
Proposition 4.2, the family of solutions for uniqueness is enlarged. The parameter
α ∈ A in the following proposition is fixed.

Proposition 4.4. If (A1), (A2), (A4), (A5) with ω − β > 0, and (4.7) are
satisfied, then there is a unique solution (vα, ρ(α)) ∈ (W ∩ C(H)) × R of (4.2) such
that vα(0) = 0. Furthermore, the equality (4.8) is satisfied and an optimal control in
feedback form is ûα(x) = DH̃(Dvα(x)) for the ergodic control problem (2.1), (2.5).

Proof. The existence of the solution (vα, ρ(α)) with the required properties in-
cluding (4.8) and an optimal feedback control follow from a result in [20] that is given
here as Proposition 4.2. However, it should be noted that the existence of a solution
is a simple consequence of Proposition 4.3. Since (|λc(α, λ)|, λ ∈ (0, 1]) is uniformly
bounded, there is a sequence (λn, n ∈ N) such that λn ↓ 0 and (v̄λn

α , λnc(α, λn)) →
(v̄α, δ) in W

1,2(H,µ) × R for some (v̄α, δ) ∈ W 1,2(H,µ) × R. Letting λn ↓ 0 in (4.1)
and using the closedness of L in H it follows that v̄α ∈ Dom(L) and

Lv̄α + 〈f(α, ·), Dv̄α〉 − H̃(Dv̄α) + ψ = δ

is satisfied.
Now let (v̄, δ̄) ∈ (W ∩ C(H)) × R be a solution of (4.2) satisfying v̄(0) = 0. To

verify uniqueness, it suffices to show that (v̄, δ̄) = (vα, ρ(α)), where (vα, ρ(α)) is the
solution of (4.2) whose existence is given by Proposition 4.2.

Initially it is shown that

δ̄ = ρ(α).(4.23)

This verification is analogous to the corresponding part of the proof of Proposition 4.2
that is given in [20]. Let (v̄n, n ∈ N) be a sequence such that v̄n ∈ Dom(L0) for each
n ∈ N and

v̄n → v̄, L0v̄n → Lv̄ in H,(4.24)
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sup
n
‖Dv̄n‖ <∞, Dv̄n → Dv̄ in L2(H,µ;H),(4.25)

and v̄n and L0v̄n are uniformly, polynomially bounded (cf. Lemma 4.1). Clearly, the
pair (v̄n, δ̄) satisfies the equation

L0v̄n + 〈f(α, ·), Dv̄n〉 − H̃(Dv̄n) + ψn = δ̄,

where

ψn = δ̄ + H̃(Dv̄n)− 〈f(α, ·), Dv̄n〉 − L0v̄n.

Apply the Itô formula using the function −δ̄t + v̄n(x) and the process that is the
solution of (2.1) with the control DH̃(Dv̄n) to show that δ̄ is the optimal cost for the
control problem (2.1) and (2.5), where ψ is replaced by ψn in (2.5). Since ψn → ψ
(at least) pointwise by (4.24) and (4.25) and the sequence (ψn, n ∈ N) is uniformly
polynomially bounded, the limit as n→∞ can be taken to show that δ̄ is the optimal
cost for the control problem (2.1) and (2.5) so that (4.14) is verified.

It remains to show that v̄ = vα. Let (vn, n ∈ N) be a sequence such that

vn → vα, L0vn → Lvα in H,(4.26)

sup
n
‖Dvn‖ <∞. Dvn → Dvα in L2(H,µ;H),(4.27)

and vn and L0vn are uniformly, polynomially bounded using the notation of Lemma
4.1. Recall that α ∈ A is fixed so the dependence of vn on α is suppressed. Let
ūn = DH̃(Dvn) and ū = DH̃(Dvα) be controls. For an arbitrary Φ ∈ C([0, T ], H) it
easily follows from (4.27) that

|Eτ,x,ūnΦ(X(·))− Eτ,x,ūΦ(X(·))|

≤ Eτ,xΦ(X(·))
∣∣∣∣∣exp

(
−
∫ T

0

〈Q−1/2ūn(X(s)), dW (s)〉

−1

2

∫ T

0

|Q−1/2ūn(X(s))|2ds
)

− exp

(
−
∫ T

0

〈Q−1/2ū(X(s)), dW (s)〉 − 1

2

∫ T

0

|Q−1/2ū(X(s))|2ds
)∣∣∣∣∣

→ 0 as n→∞

for τ ∈ [0, T ), where Eτ,x,u and Eτ,x denote the expectations associated with the
initial condition X(τ) = x and (X(t), t ≥ τ) is the solution to (2.1) with X(τ) = x
and u ∈ U and u ≡ 0, respectively. By the Skorokhod theorem there is a probability
space (Ω̃, F̃ , P̃) and stochastic processes (Xn(t), t ≥ τ) for n ∈ N and (X0(t), t ≥ τ)
such that Xn(·) and X0(·) have the probability laws on C([τ,∞);H) that are identical
with the solutions of (2.1) with the feedback controls ūn(Xn) and ū(X0), respectively,
and

lim
n→∞ sup

s∈[τ,T ]

|Xn(s)−X0(s)| = 0 a.s. P̃
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for each T > τ . By the definition of H̃ in (A5) it follows that

0 = H̃(Dvα(x)) + h(ū(x))− 〈ū(x), Dvα(x)〉
≤ H̃(Dv̄(x)) + h(ū(x))− 〈ū(x), Dv̄(x)〉

so that

Lvα(x) + 〈f(α, x), Dvα(x)〉 − 〈ū(x), Dvα(x)〉
≤ Lv̄(x) + 〈f(α, x), Dv̄(x)〉 − 〈ū(x), Dv̄(x)〉,

and therefore

Lvn(x) + 〈f(α, x), Dvn(x)〉 − 〈ūn(x), Dvn(x)〉
≤ L0v̄n(x) + 〈f(α, x), Dv̄n(x)〉 − 〈ūn(x), Dv̄n(x)〉+ δn(x)

for all x ∈ H, where δn : H → R converges to 0 as n→∞ in L2(H,µ) and (δn, n ∈ N)
is uniformly, polynomially bounded. Using the Itô formula it follows that the processes

Ψn(t) = vn(Xn(t))− v̄n(Xn(t))−
∫ t

τ

δn(Xn(s))ds

for t ≥ τ satisfy the inequality

ẼΨn(t) ≤ Ψn(τ) = vn(x)− v̄n(x),
where Ẽ is the expectation in (Ω̃, F̃ , P̃). Note that the probability laws for Xn(s) for
each s ∈ R+ and n ∈ N ∪ {0} are mutually absolutely continuous with µ because by
the Girsanov theorem any of these measures is equivalent to the Gaussian measure
N(S(t)x,Qt) (the law for Z(t) from the solution of (2.6)) and N(S(t)x,Qt) is equiv-
alent to µ from the strong Feller property for each t > 0 and x ∈ H (e.g., [27]). It
follows that

lim
n→∞ ẼΨn(t) = Ẽ(vα(X0(t))− v̄(X0(t)))

and thus

Eτ,x,ū(vα(X(t))− v̄(X(t))) ≤ vα(x)− v̄(x)
for t ≥ τ and x ∈ H. Since τ ∈ [0, t] and x ∈ H are arbitrary, it follows that
the process (vα(X(t)) − v̄(X(t)), t ≥ 0), where (X(t), t ≥ 0) satisfies (2.1) with
u(t) = ū(X(t)), is a supermartingale.

Furthermore,

sup
t≥0

Ex,ū|vα(X(t))− v̄(X(t))| ≤ k sup
t≥0

E(1 + |X(t)|q) <∞

for some positive constants k and q by Proposition 2.1 (i). Thus, there is a limit
of (vα(X(t)) − v̄(X(t)), t ≥ 0) a.s. P

α
x,ū as t → ∞. Since the solution of (2.1)

is ergodic for these feedback controls, for each ball B in H there is a sequence of
random times (σn, n ∈ N) that increase to infinity such that X(σn) ∈ B (cf. [29]).
Since vα(0)− v̄(0) = 0 and vα− v̄ : H → R is a continuous function, letting B = B1/n

for n ∈ N it follows that

lim inf
t→∞ (vα(X(t))− v̄(X(t))) = 0 a.s. P

α
x,ū
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so that

lim
t→∞(vα(X(t))− v̄(X(t))) = 0 a.s. P

α
x,ū.(4.28)

If there is a y ∈ H such that vα(y)− v̄(y) > 0, then vα − v̄ > ∆ > 0 in an open ball
By centered at y. Choosing B = By above gives a contradiction to (4.28) so that
vα ≡ v̄.

Corollary 4.1. If (A1)–(A5) where ω−β > 0 are satisfied and (4.7) is satisfied,
then the function v· : A →W 1,2(H,µ) given by α �→ vα is continuous and

‖Dvα‖ < C1(4.29)

for all α ∈ A and some constant C1 > 0 that does not depend on α ∈ A where vα is
the unique solution of the ergodic HJB equation given in Proposition 4.4.

Proof. Let v̄α be the first component of the solution of the ergodic HJB which
is given in the proof of Proposition 4.4 as a limit of v̄λα in W 1,2(H,µ) as λ ↓ 0. By
(4.13) it follows that

‖Dvα‖ = ‖Dv̄α‖ ≤ C1

because by the uniqueness part of Proposition 4.4 vα and v̄α differ only by a constant.
Clearly the family (v̄α, α ∈ A) is relatively compact inW 1,2(H,µ) by Proposition 4.3.
Using this relative compactness and the closedness of the derivative operator for any
sequence (v̄αn , n ∈ N) such that αn → α0 as n → ∞ there is a subsequence again
denoted (v̄αn , n ∈ N) such that v̄αn → ṽ and Dv̄αn → Dṽ a.e. µ for some ṽ. Further-
more, the sequence (ρ(αn), n ∈ N) is uniformly bounded by (4.13) and Proposition 4.4
and there is a subsequence again denoted by (ρ(αn), n ∈ N) such that ρ(αn)→ ρ̃ for
some ρ̃ ∈ R. Since Lv̄αn + 〈f(αn, ·), Dv̄n〉 − H̃(Dv̄αn) + ψ = ρ(αn) and the operator
L is closed in H, it follows by (A3) that the limit as n→∞ is

Lṽ + 〈f(α, ·), Dṽ〉 − H̃(Dṽ) + ψ = ρ a.e. µ.

By (4.29), ṽ is continuous and Dṽ is bounded so that ṽ ∈ W. By the uniqueness
part of Proposition 4.4 it follows that ṽ − ṽ(0) = vα0

. By (4.28) and the (µ) almost
sure convergence v̄αn

→ ṽ as n → ∞ it follows that v̄αn(0) → ṽ(0). Therefore,
vαn = v̄αn − ṽαn(0)→ ṽ − ṽ(0) = vα0

as n→∞.
For a certainty equivalence adaptive control and a consistent family of estimators

of the unknown parameter vector, it is shown that this control is self optimizing.
Consider (2.1) with the true parameter value α0 ∈ A, that is,

dX(t) = (AX(t) + f(α0, X(t))− ũ(t))dt+Q1/2dW (t),

X(0) = x,

where

ũ(t) = DH̃(Dvα(t)(X(t))),(4.30)

where (α(t), t ≥ 0) is an adapted, measurable, A-valued process satisfying

lim
t→∞α(t) = α0(4.31)

in probability P and vα is given in Proposition 4.4.
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The following theorem and its corollary provide solutions to an adaptive control
problem described by (2.1) and (2.5).

Theorem 4.1. Given the adaptive control problem described by (2.1) and (2.5),
where α0 ∈ A is the true parameter vector, if (A1)–(A5) are satisfied, ω − β > 0, the
inequality (4.7), is satisfied, and the A-valued family of estimates of α0 (α(t), t ≥ 0),
satisfies (4.31), then

J̃(x, ũ) = ρ(α0)(4.32)

for each x ∈ H, where ũ is the adaptive control given by (4.30).
Proof. For notational simplicity, let v = vα0

and ρ = ρ(α0). Let vn ∈ Dom(L0)
for n ∈ N be a sequence that converges to v as in (4.26), (4.27). The Itô formula
applied to (vn(X(t))− ρt, t ≥ 0) yields the equation

− ρt+ Ex,ũvn(X(t))

= vn(x) + Ex,ũ

∫ t

0

[−ρ+ L0vn(X(s)) + 〈f(α0, X(s)), Dvn(X(s))〉
− 〈ũ(s), Dvn(X(s))〉]ds.

Since vn satisfies

L0vn + 〈f(α0, ·), Dvn〉 − H̃(Dvn) + ψn = ρ,

where

ψn = ρ+ H̃(Dvn)− 〈f(α0, ·), Dvn〉 − L0vn,

it follows that

− ρt+ Ex,ũvn(X(t))

= vn(x) + Ex,ũ

∫ t

0

[−ψn(X(s)) + H̃(Dvn(X(s)))− 〈ũ(s), Dvn(X(s))〉]ds.

By the definition of H̃ in (A5) it follows that

−H̃(Dvn(X(s)))− h(ũ(X(s))) + 〈ũn(X(s)), Dvn(X(s))〉 = 0,

where

ũn(x) = DH̃(Dvn(x)).

Therefore,

ρt = Ex,ũvn(X(t))− vn(x)

+ Ex,ũ

∫ t

0

[ψn(X(s)) + h(ũn(X(s))) + 〈ũ(s)− ũn(X(s)), Dvn(X(s))〉]ds.

Using the properties of convergence vn → v in (4.26), (4.27), the uniform polynomial
bound on the sequence (vn, n ∈ N) and Proposition 2.1 (i), the passage to the limit
(n→∞) yields the equation

ρt = Ex,ũv(X(t))− v(x)

+ Ex,ũ

∫ t

0

[ψ(X(s)) + h(ũ0(X(s))) + 〈ũ(s)− ũ0(X(s)), Dv(X(s))〉]ds,(4.33)
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where ũ0(x) = DH̃(Dv(x)). By Proposition 2.1 (i) it follows that

lim
t→∞

1

t
Ex,ũv(X(t)) = 0

for each x ∈ H. By an interpolation result (Lemma 4.6 in [22]) it follows that

‖Dvλα‖r,θ ≤ c1 + c2‖Dvλα‖+ c3 sup
x∈Br

|f(α, x)|‖Dvλα‖(4.34)

for some universal constants c1, c2, c3 and a suitable constant θ > 0, where ‖ · ‖r,θ
denotes the norm of Hölder continuous functions with exponent θ on the ball Br.
The result in [22] is stated for r = ∞ and f bounded but (4.34) follows directly if
f is truncated outside of Br and using the fact that L is a local operator so the
truncation does not affect the solution vλα in Br. By (A3) and (4.13) it follows that
‖Dvλα‖r,θ ≤ c3(1+ rp) for some constant c3 that does not depend on α or λ. Thus by
the proof of Corollary 4.1 it follows that

lim
α→α0

Dvα = Dvα0
(4.35)

uniformly on compact sets. For a compact set K ⊂ H if follows that

Ex,ũ|DH̃(Dvα0(X(s)))−DH̃(Dvα(t)(X(s)))|
= Ex,ũ|DH̃(Dvα0(X(s)))−DH̃(Dvα(t)(X(s)))|1{X(s)∈K}
+ Ex,ũ|DH̃(Dvα0(X(s)))−DH̃(Dvα(t)(X(s)))|1{X(s)/∈K}.(4.36)

The second term on the right-hand side of (4.36) is bounded above by

2RPx,ũ(X(s) ∈ H \K)

which can be made arbitrarily small for a compact set K sufficiently large by Propo-
sition 2.1 (iii) for s ≥ 1 and R is given in (2.2). The first term on the right-hand side
of (4.36) tends to zero as s→∞ by the locally uniform convergence in (4.35). These
two facts imply that

lim
s→∞ Ex,ũ|DH̃(Dvα0(X(s)))−DH̃(Dvα(s)(X(s)))| = 0.(4.37)

By a similar argument it follows that

lim
s→∞ Ex,ũ|h(DH̃(Dvα0

(X(s))))− h(DH̃(Dvα(s)(X(s))))| = 0.(4.38)

Dividing (4.33) by t and letting t → ∞, the equality (4.32) follows by (4.37) and
(4.38). This completes the proof.

Corollary 4.2. Given the adaptive control problem described by (2.1) and (2.5),
where α0 ∈ A0, is the true parameter vector and f satisfies (3.1). Let (α(t), t ≥ 0) be
the family of estimates of α0 given by

α(t) = 1{α̂(t)∈A}α̂(t) + 1{α̂(t)/∈A}α∗,

where α̂(t) is the solution of (3.5) and α∗ is a fixed element of A. If (A1)–(A7) are
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satisfied, ω − β > 0, and the inequality (4.7) is satisfied, then

J̃(x, ũ) = ρ(α0)

for each x ∈ H, where ũ is the adaptive control given by (4.30).
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Abstract. The time-optimal control problem to a stationary point for an affine analytic
nonlinear system is considered as a certain nonlinear power Markov moment min-problem. Condi-
tions for a solution to be asymptotically close to a solution of a linear time-optimal control problem
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1. Introduction and the main result. In the mathematical theory of linear
control problems a remarkable place is occupied by the moment method. This method
allows us to consider a number of such problems as problems from functional analysis.
That gives a deep and well-developed technique for investigation.

The initial idea of the approach relies on the interpretation of the transfer condi-
tions given by the Cauchy formula as moment equalities with respect to the control
function. More specifically, let a linear system of the form

ẋ = A(t)x+B(t)u(1.1)

be given, x ∈ R
n, u ∈ R

1, and the control u(t), t ∈ [0, T ] transfers the system from
an initial state x(0) = x0 to the final state x(T ) = 0. Then the function u(t) satisfies
the moment equalities

x0
k = 〈gk, u〉 =

∫ T

0

gk(t)u(t)dt, k = 1, . . . , n,(1.2)

where gk(t) = −φ−1(t)B(t) and φ(t) is the fundamental matrix of the system ẋ =
A(t)x such that φ(0) = I.

If admissible controls are taken from a ball in a certain functional space H, then
the control problem becomes the abstract Krein moment problem [15] in H and the
controllability conditions are interpreted as conditions for solvability of the moment
problem.

One of the most important and natural statements of a control problem is the
problem with geometric restrictions on control. In this case H = L∞[0, T ], and we
obtain the famous (−1, 1)-Markov moment problem [17],

sk =

∫ T

0

gk(t)u(t)dt, k = 1, . . . , n, −1 ≤ u(t) ≤ 1.(1.3)
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This problem has a unique solution if and only if s is such that [0, T ] is the small-
est interval for which (1.3) holds. Moreover, if the functions g1(t), . . . , gn(t) form a
Tchebycheff system on (0, T ), then in the mentioned case u(t) equals ±1 and has no
more than n− 1 points of discontinuity.

That leads to the following statement of the moment problem (Markov moment
problem on the smallest possible interval or min-problem [11]): for a given sequence
of functions {gk(t)}nk=1, t ∈ [0, T ], and a vector s, find the smallest possible interval
[0, θs] ⊂ [0, T ] such that for θ = θs the following representation holds:

sk =

∫ θ

0

gk(t)u(t)dt, k = 1, . . . , n, |u(t)| ≤ 1;(1.4)

and construct the function u(t) = us(t) corresponding to this representation. The pair
(θs, us(t)) is called the solution of the min-problem. It follows from the above that
the function us(t) is unique, equals ±1 on (0, θs), and has no more than n− 1 points
of discontinuity.

From the point of view of the optimal control, the Markov moment min-problem
(1.4) is equivalent to the time-optimal control problem for linear system (1.1). In this
relation note that the uniqueness and cited properties of the function us(t) (which is
interpreted as the time-optimal control) are well known in optimal control theory.

Nevertheless, the statement of the Markov min-problem gives a new, more precise
tool for investigation of time optimality. On the one hand, it allows us to obtain an
analytic solution of the time-optimal control problem in a number of important special
cases [12, 13, 14] by employing deep techniques from classical moment theory. On the
other hand, it suggests an approach to study the optimal solutions (θs, us(t)), in
particular, their behavior depending on the sequence {gk(t)}nk=1 defined, in turn, by
the system parameters.

Suppose the functions g1(t), . . . , gn(t) are real analytic in t ∈ [0, T ]. Then we
represent the moment equalities (1.4) in the following form:

sk =

∞∑
i=0

1

i!
g
(i)
k (0)

∫ θ

0

tiu(t)dt, k = 1, . . . , n.(1.5)

Let the functions g1(t), . . . , gn(t) be linearly independent, as corresponds to the con-
dition of null-controllability of (1.1). Let �1 < · · · < �n be indices of the first n lin-
early independent vectors from the sequence {g(j)(0)}∞j=0, and G = ( 1

�1!
g(�1)(0), . . . ,

1
�n!g

(�n)(0))−1. Then (1.5) leads to

s̃k = (Gs)k =

∫ θ

0

t�ku(t)dt+

∞∑
j=�k+1

rkj

∫ θ

0

tju(t)dt, k = 1, . . . , n.

Note that in the right-hand side of the equalities the second term has a higher order of
smallness than the first one as θ → 0. So, these equalities suggest asymptotic closeness
of the solution of the min-problem (1.4) and the solution of the power min-problem
with gaps [14]

s̃k =

∫ θ

0

t�ku(t)dt, k = 1, . . . , n, |u(t)| ≤ 1,(1.6)

as θ is small. Define this closeness more precisely following [18] as follows.
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Definition 1.1. Two moment min-problems of the form (1.4) (with respect to
sequences {gk(t)}nk=1 and {g̃k(t)}nk=1 of linearly independent functions), with solutions

(θs, us(t)) and (θ̃s, ũs(t)), respectively, are called locally equivalent to each other in a
neighborhood of the origin if there exists a linear nonsingular operator L : R

n → R
n

such that

θ̃Ls
θs
→ 1,

1

θ

∫ θ

0

|ũLs(t)− us(t)|dt→ 0 as s→ 0,

where θ = min{θ̃Ls, θs}.
Two time-optimal control problems (for controllable systems ẋ = A(t)x + B(t)u

and ẋ = Ã(t)x + B̃(t)u) are called locally equivalent to each other in a neighborhood
of the origin if the corresponding moment min-problems are locally equivalent.

This approach allows us to construct a complete local classification of moment
min-problems of the form (1.4) with real analytic functions gk(t) (and time-optimal
control problems for systems of the form (1.1) with real analytic coefficients). This
classification given in [18] is based on the following theorem.

Theorem 1.2 (on local equivalence of linear problems). Two time-optimal con-
trol problems (for controllable systems ẋ = A(t)x + B(t)u and ẋ = Ã(t)x + B̃(t)u
with real analytic coefficients) are locally equivalent in a neighborhood of the origin if
and only if the indices of the first n linearly independent vectors from the sequences
{(−A(t) + d/dt)iB(t)∣∣

t=0

}∞i=0 and {(−Ã(t) + d/dt)iB̃(t)∣∣
t=0

}∞i=0 coincide.

This fact means in essence that every min-problem (1.4) is locally equivalent to a
certain power min-problem with gaps (1.6). Thus, in the sense of asymptotic behavior
of solutions, the set of Markov moment min-problems of the form (1.4) splits into
equivalence classes, and power min-problems with gaps (1.6) are representatives of
these classes.

In the present work we intend to develop the moment approach to nonlinear
systems of the form

ẋ = a(t, x) + b(t, x)u, a(t, 0) ≡ 0,(1.7)

in order to study the asymptotic behavior of solutions of the nonlinear time-optimal
control problem to the stationary point x = 0 in a sense close to Definition 1.1.
Namely, we are interested in the special subclass of such systems which are “close” to
linear ones in the sense of the following definition.

Definition 1.3. Consider two time-optimal control problems

ẋ = a(t, x) + b(t, x)u(t), |u(t)| ≤ 1, x(0) = x0, x(θ) = 0, θ → min,(1.8)

and

ẋ = A(t)x+B(t)u(t), |u(t)| ≤ 1, x(0) = x0, x(θ) = 0, θ → min,(1.9)

in a neighborhood of the origin. Suppose a(t, 0) ≡ 0 and both of systems are null-
controllable. Denote by (θLinx0 , uLinx0 (t)) the solution of linear problem (1.9) and by
{(θx0 , ũ(t)) : ũ(t) ∈ Ux0} the set of solutions of nonlinear problem (1.8) (it is nonempty
due to null-controllability of the system; see [3]).

The nonlinear time-optimal control problem (1.8) is said to be locally equivalent
to the linear problem (1.9) if there exists a nonsingular transformation Φ of a neigh-
borhood of the origin in R

n, Φ(0) = 0, such that

θΦ(x0)

θLinx0

→ 1, sup
ũ(t)∈UΦ(x0)

1

θ

∫ θ

0

|uLinx0 (t)− ũ(t)|dt→ 0 as x0 → 0,(1.10)
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where θ = min{θΦ(x0), θ
Lin
x0 }.

In other words, the local equivalence means that there exists such a change of
variables z = Φ−1(x) in the nonlinear system that solutions {(θzx0 , ũ(t)) : ũ(t) ∈
Uzx0} of the time-optimal control problem for the system in the new variables z are
“asymptotically close” to the solution of the linear problem, i.e.,

θzx0

θLinx0

→ 1, sup
ũ(t)∈Uz

x0

1

θ

∫ θ

0

|uLinx0 (t)− ũ(t)|dt→ 0 as x0 → 0; θ = min{θzx0 , θLinx0 }.

In order to formulate the main result we introduce mappings Ra, Rb (correspond-
ing to a(t, x), b(t, x)) acting on a real analytic vector function d(t, x) by the rule

Rad(t, x) = dt(t, x) + dx(t, x) · a(t, x),

Rbd(t, x) = dx(t, x) · b(t, x).

Here dt(t, x) = ∂d(t, x)/∂t, and dx(t, x) is the matrix {∂di(t, x)/∂xj}j=1,...,n
i=1,...,n . Further,

let [Ra, Rb] denote the operator commutator, [Ra, Rb] = Ra ◦ Rb − Rb ◦ Ra, and
ad0

Ra
Rb = Rb, adm+1

Ra
Rb = [Ra, admRa

Rb], m ≥ 0. Let also E(x) ≡ x. Note that the
condition a(t, 0) ≡ 0 implies

adiRa
RbE(x)∣∣

t=0
x=0

= (−ax(t, 0) + d/dt)ib(t, 0)∣∣
t=0

, i ≥ 0.(1.11)

The main result of the paper is the following theorem.
Theorem 1.4 (on local equivalence of nonlinear problems to linear ones). Con-

sider a time-optimal control problem for control affine real analytic system (1.7). Let
its linearization ẋ = ax(t, 0)x+ b(t, 0)u be controllable.

The original nonlinear time-optimal control problem is locally equivalent to the
problem for a certain linear system (and then, in particular, for its own linearization)
in the sense of Definition 1.3 if and only if the system satisfies condition (E),

(E)
[
adm1

Ra
Rb, · · ·

[
ad

mk−1

Ra
Rb, admk

Ra
Rb
] · · ·]E(x)∣∣

t=0
x=0

∈ Lin
{

adiRa
RbE(x)∣∣

t=0
x=0

}m−2

i=0
,

where m = m1 + · · ·+mk + k for all k ≥ 2, m1, . . . ,mk ≥ 0.
In its turn the time-optimal control problem for the linearization is reduced to the

Markov moment min-problem which is equivalent to the power moment min-problem
with gaps in the sense of Definition 1.1. The solution of this latter problem (which
can be computed analytically in a number of cases) may serve as an approximation of
the optimal time and control for the original problem in a neighborhood of the origin
(after a change of variables z = LΦ−1(x), where Φ is from Definition 1.3 and L is
a certain matrix). Moreover, this change of variables may be chosen in polynomial
form.

Remark 1.5. If rank{adiRa
RbE(x)| t=0

x=0

}Ni=0 = n, then condition (E) is substan-

tial for k ≥ 2 and m1, . . . ,mk ≥ 0 such that m = m1 + · · · +mk + k ≤ N + 1 only.
That means that only a finite number of relations determines the property of local
equivalence to a linear time-optimal control problem.

Remark 1.6. The proof of the sufficiency of the theorem is constructive, namely,
we explicitly build a polynomial change of variables z = Φ−1(x) (section 5).
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In order to prove Theorem 1.4, we propose a development of the moment approach
to the nonlinear case. We suggest considering the following:

(i) series of nonlinear power moments instead of systems of the form (1.7);
(ii) transformations of such series instead of changes of variables in systems;
(iii) nonlinear moment min-problems instead of time-optimal control problems.

In this way the local equivalence of time-optimal control problems turns into the local
equivalence of moment min-problems.

Elements of the moment approach are given in sections 2–5.
In Theorem 2.1 the representation of systems of the form (1.7) as series of nonlin-

ear power moments is given. In essence, we transform M. Fliess’ series representation
of trajectories of system (1.7) to the case when the final point is fixed.

The concept of a nonlinear power Markov moment min-problem is introduced in
section 3 as well as the definition of local equivalence of nonlinear and linear problems.

The basic tool in our approach is the concept of an essentially linearizable (ess-
linearizable) series of nonlinear power moments given in section 4. Two substantial
steps of the proof of Theorem 1.4 are presented in Theorems 4.2 and 5.1. Theorem 4.2
shows that a nonlinear time-optimal control problem is locally equivalent to a linear
one if and only if its series is ess-linearizable. On the other hand, Theorem 5.1 states
that the series is ess-linearizable if and only if the system satisfies condition (E).

As a result, the proof of Theorem 1.4 following from Theorems 4.2 and 5.1 can
be found in section 6 as well as a number of special classes of systems satisfying the
conditions of the theorem.

Section 7 contains a description of some results developing the moment approach
and announces some future results.

2. Series of nonlinear power moments. The basic point for the present sec-
tion is conditions which the control function u(t) transferring the initial state to the
origin by virtue of system (1.7) satisfies.

For systems of the form (1.7), it is natural to consider the Volterra series expansion
of a solution [1, 2, 8, 9, 16], as an analogue of the Cauchy formula for the linear
case. Taking into account that the final point x(θ) = 0 is stationary for system (1.7)
(a(t, 0) ≡ 0), one can obtain the transform conditions in the following form:

x0
q =

∞∑
k=1

∫ θ

0

∫ τ1

0

. . .

∫ τk−1

0

wq(τ1, . . . , τk)u(τ1) · · ·u(τk)dτk · · · dτ2dτ1,(2.1)

q = 1, . . . , n, where the kernels wq(τ1, . . . , τk) depend on system parameters and the
control u(t) transfers system (1.7) from x0 to the origin in time θ. Equalities (2.1) are
supposed to be considered as a generalization of moment equalities (1.2).

In order to generalize the representation (1.5), it seems to be natural to pass in
(2.1) to the expansion of kernels wq(τ1, . . . , τk) into Taylor series. Note, however, that
the series we obtain does not possess an important property: its remainder is not of
higher order of smallness than the partial sum as θ → 0. To satisfy this condition one
has to change the manner of summation of the series. This leads us to the necessity of
finding another form of transfer conditions called a series of nonlinear power moments.

Theorem 2.1. Let functions a(t, x), b(t, x) be analytic on a neighborhood of the
origin in R

n+1. Denote by Ux0(θ) the set of all controls u(t) ∈ L∞[0, θ], ‖u‖ ≤ 1,
transferring x0 to the origin in time θ by virtue of system (1.7).

Then there exists a number T0 > 0 such that for any θ ∈ [0, T0] a point x0

satisfying the condition Ux0(θ) �= ∅ admits the representation in the form of a series
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of nonlinear power moments,

x0 =

∞∑
m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θ, u), u(t) ∈ Ux0(θ),(2.2)

where ξm1...mk
(θ, u) denote nonlinear power moments of the function u(t),

ξm1...mk
(θ, u) =

∫ θ

0

∫ τ1

0

. . .

∫ τk−1

0

τm1
1 τm2

2 . . . τmk

k

k∏
j=1

u(τj)dτk . . . dτ2dτ1,(2.3)

and constant vector coefficients vm1...mk
are of the form

vm1...mk
=

(−1)k

m1! . . .mk!
adm1

Ra
Rb ◦ · · · ◦ admk

Ra
RbE(x)∣∣

t=0
x=0

.(2.4)

Moreover, there exists a constant K > 0 such that for any θ ∈ [0, T0] and u(t) ∈
L∞[0, θ], ‖u‖ ≤ 1, the following estimate holds:

∞∑
m=1

∥∥∥∥∥∥∥
∑

m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θ, u)

∥∥∥∥∥∥∥
< K.(2.5)

Let us explain the place which this result occupies with respect to Fleiss’ well-
known expansion of a solution of the Cauchy problem for system (1.7) into a series of
iterated integrals [4, 5, 6, 7]. Suppose u(t) ∈ Ux0(θ) and consider the trajectory x(t)
of (1.7). Then the vector function y(t) = x(θ− t) is a solution of the Cauchy problem

ẏ = −â(t, y)− b̂(t, y)û(t), y(0) = 0,

where û(t) = u(θ − t), â(t, y) = a(θ − t, y), and b̂(t, y) = b(θ − t, y), and satisfies the
end condition y(θ) = x0. Applying Fliess’ expansion to y(t), we obtain

y(t) = y(0) +

∞∑
m=1

∑
M⊂{1,...,m}

(−1)mRĉm ◦Rĉm−1
◦ · · ·

◦Rĉ1E(y)∣∣
t=0
y=0

∫ t

0

∫ τ1

0

. . .

∫ τm−1

0

∏
j∈M

u(θ − τj)dτm . . . dτ2dτ1,

where ĉj(t, y) = b̂(t, y) if j ∈M , and ĉj(t, y) = â(t, y) otherwise; E(y) ≡ y. Obviously,
this representation implies

x(θ − t) =

∞∑
m=1

∑
M⊂{1,...,m}

(−1)mRcm ◦Rcm−1
◦ · · ·

◦Rc1E(x)∣∣
t=θ
x=0

∫ θ

θ−t

∫ τ1

θ−t
. . .

∫ τm−1

θ−t

∏
j∈M

u(τm+1−j)dτm . . . dτ2dτ1,
(2.6)

where cj(t, x) = b(t, x) if j ∈ M, and cj(t, x) = a(t, x) otherwise. One can show that
there exists T0 > 0 such that (2.6) holds for t = θ ∈ [0, T0].
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It is easy to see that in the case of an autonomous system (a(t, x) ≡ a(x), b(t, x) ≡
b(x)), coefficients of the expansion do not depend on θ. So, taking into account the
condition a(0) ≡ 0 which implies Rma d(0) = 0, m ≥ 1, we obtain representation
(2.2)–(2.4) directly by simplification of integrals∫ θ

0

∫ τ1

0

. . .

∫ τm−1

0

∏
j∈M

u(τm+1−j)dτm . . . dτ2dτ1,

which leads to nonlinear power moments.
However, in the nonautonomous case the coefficients of integrals in (2.6) are

functions on θ. Hence, to obtain representation (2.2)–(2.4) from (2.6), one has to
transform the sum expanding each coefficient into the Taylor series at t = 0. This
shows a difference between the expansion of the Cauchy problem solution and transfer
conditions which coefficients are calculated at the final point with respect to the state
(x = 0) and at the “initial point” with respect to the time (t = 0). Therefore, the
direct reduction of a nonautonomous case to an autonomous one which is generally
accepted for the Cauchy problem is impossible for the transfer problem. This fact
explains the meaning of Theorem 2.1.

We emphasize especially that representation (2.2)–(2.4) holds only if x = 0 is a
stationary point for the system.

Definition 2.2. We say that a series S of the form

S =
∞∑
m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

,(2.7)

vm1...mk
∈ R

n, represents a system of the form (1.7) if there exist two real analytic
vector functions a(t, x), b(t, x) such that coefficients vm1...mk

satisfy (2.4).
Note that each such series represents not one system but a family of systems

(connected by certain time-dependent changes of variables).
An essential advantage of representation (2.2)–(2.4) is a possibility to study an-

alytic transformations of system (1.7) as analytic transformations over its series of
nonlinear power moments and, therefore, as certain transformations over the vector
coefficients vm1...mk

. The following lemma states the exact expression for coefficients
of the transformed series.

Lemma 2.3. Let a series S represent a system of the form (1.7), and let F be
an analytic transformation of a neighborhood of the origin in R

n, F (0) = 0. Then the
series S̃ = F (S) represents the system ż = ã(t, z) + b̃(t, z)u, where z = F (x) and the
coefficients ṽm1...mk

of S̃ can be found by the following formulas:

ṽm1...mk
=

k∑
r=1

1

r!
D(r)F (0)

∑′
vmi11 ...mi11

· · · vmir1 ...mirr
,(2.8)

where D(r) is the rth derivative operator and the sum
∑′

is taken on all collections of
nonempty nonintersecting sets {ij1, . . . , ij�j}, j = 1, . . . , r, such that ij1 < · · · < ij�j
and ∪rj=1{ij1, . . . , ij�j} = {1, . . . , k}.

Further, we use the following definition.
Definition 2.4. For given vm1...mk

, we refer to the number m = m1+· · ·+mk+k
as the order of vm1...mk

and to the number k as its multiplicity.
Remark 2.5. As follows from Lemma 2.3, all terms of multiplicity k in the series

S̃ = F (S) are completely determined by the first k derivatives of the transformation
F .
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3. Nonlinear moment min-problem. In [11, 12], the new approach to a time-
optimal control problem has been introduced on the base of the concept of a Markov
moment min-problem to which the time-optimal control problem can be reduced.
Developing this idea, we formulate the nonlinear Markov moment problem on the
smallest possible interval (nonlinear moment min-problem) for a series S of the form
(2.7) representing a system as follows.

For any vector s ∈ R
n, indicate (if possible) the minimal number θs ≥ 0 for which

there exists a function us(t) ∈ L∞[0, θs] such that ‖us‖ ≤ 1 and the following equality
holds:

s =

∞∑
m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θ, u),(3.1)

as θ = θs and u(t) = us(t). If such a pair (θs, us(t)) exists, then it is called a solution
of the min-problem.

Note that the nonlinear Markov moment min-problem is naturally interpreted as
the time-optimal control problem for system (1.7) (from the point x(0) = s). Moreover,
if the system is locally null-controllable, then a solution of the time-optimal control
problem exists for any initial point from a neighborhood of the origin due to [3].

In [11, 18] the question on local equivalence of linear moment min-problems was
considered. It proved to be that power moment min-problems with gaps [14] play the
main role in this investigation. Now we introduce the concept of local equivalence of
a nonlinear moment min-problem and a linear power moment min-problem.

Definition 3.1. Let the nonlinear Markov moment min-problem (3.1) have a
solution for any s from a neighborhood of the origin. Denote by {(θs, ũ(t)) : ũ(t) ∈ Us}
the set of all its solutions.

This problem is called locally equivalent to the power moment min-problem with
gaps

sq =

∫ θ

0

t�qu(t)dt, q = 1, . . . , n, 0 ≤ �1 < · · · < �n,(3.2)

if there exists a nonsingular analytic transformation Φ of a neighborhood of the origin,
Φ(0) = 0, such that

θΦ(s)

θLins

→ 1,(3.3)

sup
ũ(t)∈UΦ(s)

1

θ

∫ θ

0

|uLins (t)− ũ(t)|dt→ 0,(3.4)

as s→ 0, where θ = min{θΦ(s), θ
Lin
s } and (θLins , uLins (t)) is a solution of (3.2).

Note that this definition in essence coincides with the definition of local equiva-
lence between nonlinear and linear time-optimal control problems (Definition 1.3).

4. Essentially linearizable series and local equivalence. Within our ap-
proach, we introduce the following definition.

Definition 4.1. A series S of the form (2.7) is called linearly nonsingular if
rank{vi}∞i=0 = n.
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A series S of the form (2.7) is called essentially linear (ess-linear) if it is linearly
nonsingular and

vm1...mk
∈ Lin{vi}m−2

i=0 , where m = m1 + · · ·+mk + k

for any k ≥ 2, m1, . . . ,mk ≥ 0. We denote by Le the set of all ess-linear series.
A series S is called ess-linearizable if there exists an analytic transformation (ess-

linearizing transformation) F of a neighborhood of the origin, F (0) = 0, such that
F (S) ∈ Le.

In other words, a linearly nonsingular series is ess-linear if and only if each co-
efficient of multiplicity greater than 1 is included in the linear span of coefficients of
smaller order and multiplicity 1.

The following theorem shows the significance of this concept.
Theorem 4.2. Consider a time-optimal control problem for control affine real

analytic system (1.7). Let its linearization at the origin be controllable.
The original nonlinear time-optimal control problem is locally equivalent to the

problem for a certain linear system in the sense of Definition 1.3 if and only if the
series S representing the system (1.7) is ess-linearizable.

Proof of sufficiency. Suppose the ess-linearizable series S of the form (2.7) repre-
sents the system (1.7). Let F be such a transformation that S̃ = F (S) ∈ Le. Without
loss of generality, we may assume that S̃ is of the form S̃ = Ξ + ρ̃, where

Ξ = (ξ�1 , . . . , ξ�n), ρ̃q =

∞∑
m=�q+2

∑
m1+···+mk+k=m

k≥1,mj≥0

(ṽm1...mk
)qξm1...mk

, q = 1, . . . , n,

where coefficients ṽm1...mk
and vm1...mk

are connected by equalities (2.8).
We prove that nonlinear Markov moment min-problem (3.1) for the series S is

locally equivalent to linear problem (3.2) in the sense of Definition 3.1 with transfor-
mation Φ = F−1; therefore, the original nonlinear time-optimal control problem is
locally equivalent to the problem for a certain linear system in the sense of Definition
1.3.

Put Φ = F−1; then the set of solutions {(θΦ(s), ũ(t)) : ũ(t) ∈ UΦ(s)} of the
problem (3.1) coincides with the set of solutions of the problem

s = Ξ(θ, u) + ρ̃(θ, u);(4.1)

that is,

s = Ξ(θΦ(s), ũ) + ρ̃(θΦ(s), ũ) for any ũ(t) ∈ UΦ(s).

Denote by (θLins , uLins (t)) the solution of the linear problem (3.2). Then

θLins0 ≤ θΦ(s), s0 = s− ρ̃(θΦ(s), ũ), ũ(t) ∈ UΦ(s).(4.2)

Estimate θΦ(s) from above. Following [11] we introduce the operator D : R
n →

R×L∞[0,∞], associating a pair (θLinx , uLinx (t)) to a vector x. Obviously, the operator
Gs(x) = s − ρ̃(D(x)) is defined in a neighborhood of the origin. Next we show that
the operator Gs has a stationary point in a certain subneighborhood of the origin.

Since ξm1...mk
(θ, u) = θmξm1...mk

(1, û), wherem = m1+· · ·+mk+k, û(t) = u(tθ),
t ∈ [0, 1], we have from (2.5)∥∥∥∥∥∥∥

∑
m1+···+mk+k=m

k≥1,mj≥0

ṽm1...mk
ξm1...mk

(θ, u)

∥∥∥∥∥∥∥
≤ (K1θ)

m, m ≥ 1,
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where the constant K1 does not depend on θ and u(t) ∈ L∞[0, θ], ‖u‖ ≤ 1. Hence, for
θ → 0,

|ρ̃q(θ, u)| ≤
∞∑

m=�q+2

(K1θ)
m ≤ K2θ

�q+2, q = 1, . . . , n.(4.3)

Consider now the closed neighborhood of the origin Vε = {x : |xq| ≤ ε�q+1, q =
1, . . . , n}, ε > 0, and note that θLinx ≤ C1ε for any x ∈ Vε, where C1 = max{θLinx , x ∈
V1} ≥ 1. Put ε(s) = max1≤q≤n{(2|sq|)

1
q+1 }. It is easy to see that if ε(s) ≤ (2K2C

�n+2
1 )−1,

then the operator Gs maps the closed set Vε(s) to itself. At the same time, Gs is con-
tinuous, and hence it has a stationary point s1 ∈ Vε(s), Gs(s1) = s1, that is,

s = Ξ(θLins1 , uLins1 ) + ρ̃(θLins1 , uLins1 ).

Hence

θΦ(s) ≤ θLins1 , s1 = s− ρ̃(θLins1 , uLins1 )→ 0 as s→ 0.(4.4)

Thus from (4.2)–(4.4), we have

θLins0 ≤ θΦ(s) ≤ θLins1 ,(4.5)

∣∣∣(s1 − s0)
q

∣∣∣ ≤ 2K2(θLins1 )�q+2,
∣∣∣(s− s1)

q

∣∣∣ ≤ K2(θLins1 )�q+2, q = 1, . . . , n.

Following [18], we introduce an operator Hδ : R
n → R

n acting by the rule

Hδ(x) =
( x1

δ�1+1
, . . . ,

xn
δ�n+1

)
,

and we note that

θLinx = δθLinHδ(x)
, uLinx (t) = uLinHδ(x)

(t/δ), t ∈ [0, θLinx ].

Putting δ = θLins1 , we obtain

θLinHδ(s1)
= 1,

∥∥Hδ(s
1 − s0)

∥∥ ≤ 2K2δ,
∥∥Hδ(s− s1)

∥∥ ≤ K2δ,

so dist(Hδ(s
0), {x : θLinx = 1}) ≤ 2K2δ, dist(Hδ(s), {x : θLinx = 1}) ≤ K2δ. Since θLinx

is uniformly continuous as a function of x and δ = θLins1 → 0 as s→ 0, we have

θLins

θLins1
=
θLinHδ(s)

θLinHδ(s1)

= θLinHδ(s)
→ 1,

θLins0

θLins1
=
θLinHδ(s0)

θLinHδ(s1)

= θLinHδ(s0)
→ 1 as s→ 0,

which proves (3.3) due to (4.5).
In order to prove (3.4), let us make use of the fact that the function uLins (t) is

piecewise constant, |uLins (t)| = 1, and has no more than n− 1 points of discontinuity

on the interval (0, θLins ). For any s consider the polynomial ps(t) =
∑n

q=1 α
(s)
q t�q ,

t ∈ [0, 1], max1≤q≤n |α(s)
q | = 1, which has its roots in the points of discontinuity
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of uLins (tθLins ) and sign ps(t) = uLins (tθLins ) as uLins (tθLins ) �= 0. Let us consider any
ũ(t) ∈ UΦ(s) and put ũ(t) = 0 as t > θΦ(s). We have

∫ θLin
s

0

ps(t/θ
Lin
s )uLins (t)dt−

∫ θΦ(s)

0

ps(t/θ
Lin
s )ũ(t)dt

=

n∑
q=1

α(s)
q

ξ�q (θLins , uLins )− ξ�q (θΦ(s), ũ)

(θLins )�q
=

n∑
q=1

α
(s)
q

(θLins )�q
ρ̃q(θΦ(s), ũ),

which yields

∣∣∣∣∣
∫ θLin

s

0

ps(t/θ
Lin
s )uLins (t)dt−

∫ θΦ(s)

0

ps(t/θ
Lin
s )ũ(t)dt

∣∣∣∣∣ ≤
n∑
q=1

K2θ
�q+2

Φ(s)

(θLins )�q
.

On the other hand,

∫ θLin
s

0

ps(t/θ
Lin
s )uLins (t)dt−

∫ θΦ(s)

0

ps(t/θ
Lin
s )ũ(t)dt

=

∫ θLin
s

0

ps(t/θ
Lin
s )

(
uLins (t)− ũ(t)

)
dt+

∫ θLin
s

θΦ(s)

ps(t/θ
Lin
s )ũ(t)dt.

Thus we get

1

θLins

∫ θLin
s

0

∣∣ps(t/θLins )
∣∣ ∣∣uLins (t)− ũ(t)

∣∣ dt =
1

θLins

∣∣∣∣∣
∫ θLin

s

0

ps(t/θ
Lin
s )

(
uLins (t)− ũ(t)

)
dt

∣∣∣∣∣

≤ θΦ(s)

n∑
q=1

K2

(
θΦ(s)

θLins

)�q+1

+

n∑
q=1

1

�q + 1

∣∣∣∣∣1−
(
θΦ(s)

θLins

)�q+1
∣∣∣∣∣

for any ũ(t) ∈ UΦ(s). The latter relation and (3.3) yield

sup
ũ(t)∈UΦ(s)

1

θLins

∫ θLin
s

0

∣∣ps(t/θLins )
∣∣ ∣∣uLins (t)− ũ(t)

∣∣ dt→ 0 as s→ 0.(4.6)

Now we prove that (4.6) implies (3.4). Consider any sequence {sk}∞k=1, sk → 0 as
k →∞, and any ũk(t) ∈ UΦ(sk). Without loss of generality, we assume that psk(t)→
p(t) as k → ∞ pointwise, where p(t) =

∑n
q=1 αqt

�q , t ∈ [0, 1], max1≤q≤n |αq| = 1.
Further, for any ε > 0, we put Fε = {t ∈ [0, 1] : |p(t)| ≥ ε}. Note that µFε → 1 as
ε→ 0. Then we get

∫ 1

0

∣∣uLinsk
(tθLinsk

)− ũk(tθLinsk
)
∣∣ dt ≤ 1

ε

∫
Fε

|p(t)| ∣∣uLinsk
(tθLinsk

)− ũk(tθLinsk
)
∣∣ dt+2(1−µFε)

≤ 2

ε

∫ 1

0

|p(t)− psk(t)|dt+
1

ε

∫ 1

0

|psk(t)| ∣∣uLinsk
(tθLinsk

)− ũk(tθLinsk
)
∣∣ dt+ 2(1− µFε).
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Using the arbitrariness of ε, we obtain from this relation and (4.6)

lim
k→∞

sup
ũk(t)∈UΦ(sk)

∫ 1

0

∣∣uLinsk
(tθLinsk

)− ũk(tθLinsk
)
∣∣ dt = 0,

and, therefore, (3.4) is valid due to (3.3). Sufficiency is proved.
Necessity is based essentially on Lemma 8.3.
Let the original nonlinear time-optimal control problem be locally equivalent

to the problem for the linear system ẋ = A(t)x + B(t)u, and let �1 < · · · < �n
be indices of the first n linearly independent vectors from the sequence {(−A(t) +
d/dt)jB(t)|t=0}∞j=0. Then the corresponding linear moment min-problem is locally
equivalent to the power moment min-problem with gaps (3.2) [18]. Hence, under the
conditions of the theorem, nonlinear moment min-problem (3.1) for a series S repre-
senting the system is locally equivalent to the power moment min-problem with gaps
(3.2) as well. Without loss of generality, we may assume that the transformation Φ
satysfying (3.3), (3.4) is the identity one. Our aim is to show that S is ess-linear and
{v�i}ni=1 are the first n linearly independent elements from the sequence {vj}∞j=0.

Let (θs, us(t)) and (θLins , uLins (t)) be solutions of min-problems (3.1) and (3.2),
respectively. Then for any s from a neighborhood of the origin we have

s =

n∑
i=1

eiξ�i(θ
Lin
s , uLins ) =

∞∑
m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θs, us),(4.7)

where ei = (0, . . . , 1, . . . , 0) with 1 on the ith place. Further, (3.3), (3.4) give

ξm1...mk
(θs, us)− ξm1...mk

(θLins , uLins ) = ō((θLins )m) as s→ 0,(4.8)

m = m1 + · · ·+mk + k. Besides, since ξm1...mk
(θ, u) = θmξm1...mk

(1, û), where û(t) =
u(tθ), t ∈ [0, 1], then estimate (2.5) for the series S implies

∥∥∥∥∥∥∥
∑

m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θs, us)

∥∥∥∥∥∥∥
≤ (K1θs)

m(4.9)

as θs ∈ [0, T0), T0 > 0, where the constant K1 does not depend on s.
Denote by U j , j ≥ 0, the set of all functions uj(t) ∈ L∞[0, 1], ‖uj‖ = 1, having

no more than j points of discontinuity. When s runs through the domain {s ∈ R
n :

θLins < T0}, the function uLins (tθLins ) runs through the set Un−1. Hence, we infer from
(4.7)–(4.9)

�n+1∑
m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

θmvm1...mk
(ξm1...mk

(1, un−1) + ō(1)) + ō(θ�n+1)

=

n∑
i=1

θ�i+1eiξ�i(1, un−1)

(4.10)

as θ → 0, which is valid for any function un−1(t) ∈ Un−1.
Further, we prove that S ∈ Le by induction on the order of vm1...mk

using the
following notation.
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Notation. We say that two vectors z1, z2 ∈ R
n are equivalent up to terms of order

m ≥ 1 with respect to the series S and write z1
m,S∼= z2 if z1 − z2 ∈ Lin{vi}m−2

i=0 as
m ≥ 2 and z1 = z2 as m = 1.

Now let q = 1 or q ≥ 2, rank{vj}q−2
j=0 = r, {v�i}ri=1 be the first r linearly indepen-

dent vectors from the sequence {vj}q−2
j=0 (if r > 0), and

v�i
�i+1,S∼= ei, i = 1, . . . , r, vm1...mk

m,S∼= 0, k ≥ 2, m1+· · ·+mk+k = m ≤ q−1.

Then (4.10) implies in particular

(vq−1 − w)ξq−1(1, ur) +
∑

m1+···+mk+k=q

k≥2,mj≥0

vm1...mk
ξm1...mk

(1, ur)
q,S∼= 0

for any ur(t) ∈ Ur, where w = er+1 as q = �r+1 + 1 and w = 0 otherwise. Due to

Lemma 8.3, we get vm1...mk

q,S∼= 0 for any k ≥ 2, m1+· · ·+mk+k = q and vq−1

q,S∼= er+1

if q = �r+1 + 1. The induction arguments complete the proof.
Remark 4.3. As follows from the proof of Theorem 4.2, one can simplify Def-

inition 3.1. Namely, in (3.4) it is sufficient to require the existence of a function

uΦ(s)(t) ∈ UΦ(s) such that
1
θ

∫ θ
0
|uΦ(s)(t)− uLins (t)|dt→ 0.

5. Essentially linearizable series and condition (E). The result of this
section is the following theorem.

Theorem 5.1. A series S representing a system of the form (1.7) is ess-lin-
earizable if and only if this system is null-controllable with respect to the first approx-
imation and satisfies condition (E).

Proof of necessity. Let a series representing a systems of the form (1.7) be ess-
linearizable. Then, in particular, it is linearly nonsingular, and hence, due to (1.11)
the system is null-controllable with respect to the first approximation.

Note that condition (E) is satisfied for systems represented by ess-linear series.
On the other hand, the property of a system to satisfy condition (E) is invariant with
respect to nonsingular analytic substitutions of variables. In fact, if F is an analytic
transformation and the system (1.7) in the new variables z = F (x) takes the form
ż = ã(t, z) + b̃(t, z)u, then

admRã
Rb̃E(z)∣∣

t=0
z=0

= D(1)F (0) admRa
RbE(x)∣∣

t=0
x=0

, m ≥ 0,

[
adm1

Rã
Rb̃, . . . ,

[
ad

mk−1

Rã
Rb̃, admk

Rã
Rb̃
] · · ·]E(z)∣∣

t=0
z=0

= D(1)F (0)
[
adm1

Ra
Rb, · · ·

[
ad

mk−1

Ra
Rb, admk

Ra
Rb
] · · ·]E(x)∣∣

t=0
x=0

for any k ≥ 2, m1, . . . ,mk ≥ 0. Hence condition (E) is satisfied for systems represented
by ess-linearizable series as well.

To prove sufficiency we need the following notation.

Notation. We say that a linearly nonsingular series S(p) with coefficients v
(p)
m1...mk

is partially ess-linear up to terms of multiplicity p and write S(p) ∈ Lpe if p = 1 or

v
(p)
m1...mk

m,S(p)

∼= 0 for k such that 2 ≤ k ≤ p, where m = m1 + · · · +mk + k (in terms
of the notation introduced in the proof of Theorem 4.2).
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Sufficiency. Let a series S represent a system of the form (1.7) which is null-
controllable with respect to the first approximation and satisfies condition (E). Then
S is linearly nonsingular. Let {v�1 , . . . , v�n}, �1 < · · · < �n, be the first n linearly
independent vectors from the sequence {vi}∞i=0. Due to Remark 2.5, one can find an
ess-linearizing transformation in the form of a polynomial of power �n+1. We describe
such a transformation in the form of the ess-linearizing algorithm for the series S.

The 1st step. The linear transformation F1 = (v�1 , . . . , v�n)−1 maps S to the

series S(1) = F1(S) =
∑
v
(1)
m1...mkξm1...mk

∈ L1
e such that v

(1)
�q

= eq, q = 1, . . . , n.

The (p + 1)th step. Assume that after p steps the series S is transformed to the
series S(p) ∈ Lpe of the form

S(p)
q = ξ�q +

�n+1∑
m=�q+2

min{m,p}∑
k=1

∑
m1+···+mk+k=m

(v(p)m1...mk
)qξm1...mk

+

�n+1∑
m=p+1

m∑
k=p+1

∑
m1+···+mk+k=m

(v(p)m1...mk
)
q
ξm1...mk

+ ρ(p)q ,

(5.1)

where v
(p)
�r

= er, r = 1, . . . , n, and ρ
(p)
q contain terms of order greater than �n + 1,

ρ(p)q =

∞∑
m=�n+2

∑
m1+···+mk+k=m

(v(p)m1...mk
)qξm1...mk

, q = 1, . . . , n.

Then the series S(p) represents a system ẋ = a(p)(t, x) + b(p)(t, x)u, and this system
satisfies condition (E).

Introduce the polynomial transformation Fp+1 defined as

(5.2)

D(1)Fp+1(0) = I, D(k)Fp+1(0) = 0, k �= 1, k �= p+ 1,

(
D(p+1)Fp+1(0)er1 · · · erp+1

)
q

=

{
0 as �q + 1 < �r1 + · · ·+ �rp+1

+ p+ 1,

−
(
v
(p)
�r1 ...�rp+1

)
q

as �q + 1 ≥ �r1 + · · ·+ �rp+1 + p+ 1

for q = 1, . . . , n, 1 ≤ r1 ≤ · · · ≤ rp+1 ≤ n,
and consider the series S(p+1) = Fp+1(S(p)). Due to Lemmas 8.4 and 8.5 we get
S(p+1) ∈ Lp+1

e .
In other words, for any q = 1, . . . , n we subtract the product of the lines of

(5.1) with the indices r1, . . . , rp+1 multiplied by (v
(p)
�r1 ...�rp+1

)q from the qth line if and

only if �q + 1 ≥ �r1 + · · · + �rp+1 + p + 1, 1 ≤ r1 ≤ · · · ≤ rp+1 ≤ n, q = 1, . . . , n.

As v
(p)
�r

= er, r = 1, . . . , n; then this allows us to exclude from the qth equality of
(5.1) the moments ξ�r1 ...�rp+1

such that 1 ≤ r1 ≤ · · · ≤ rp+1 ≤ n, where �q + 1 ≥
�r1 + · · ·+ �rp+1 + p+ 1, q = 1, . . . , n. Conditions (i) and (ii) of Lemma 8.4 (satisfied
due to Lemma 8.5) obviously yield that all moments of the form ξm1...mp+1 such that
m1 + · · ·+mp+1 + p+ 1 ≤ �q + 1, m1, . . . ,mp+1 ≥ 0, become excluded from the qth
equality too; therefore, S(p+1) ∈ Lp+1

e .
After �n + 1 steps of the algorithm, one obtains the ess-linearizing transformation

F = F�n+1 ◦ · · · ◦ F1 since S(�n+1) ∈ Le, and, therefore, S is ess-linearizable.



MOMENT APPROACH TO NONLINEAR TIME OPTIMALITY 1721

6. Proof of Theorem 1.4 and examples. The proof of Theorem 1.4 follows
from Theorems 4.2 and 5.1 immediately. Really, let a system of the form (1.7) be null-
controllable with respect to the first approximation. Due to Theorem 4.2, the nonlinear
time-optimal control problem for this system is equivalent to a certain linear problem
if and only if the series representing the system is ess-linearizable. At the same time,
Theorem 5.1 yields that this series is ess-linearizable if and only if the system satisfies
condition (E). The construction of the polynomial transformation F = Φ−1 may be
found in the proof of Theorem 5.1.

Moreover, as follows from the proof of Theorem 4.2, the equivalent linear time-
optimal control problem corresponds to the moment min-problem (3.2), where �1, . . . ,
�n are indices of the first n linearly independent vectors from the sequence {vi}∞i=0.
Taking into account (1.11), we get that the time-optimal control problem for the
linearization corresponds to the moment min-problem which is equivalent to (3.2) as
well. Hence, if the nonlinear time-optimal control problem is equivalent to a certain
linear problem, then it is equivalent to the problem for the linearization as well.

The fact that the solution of the problem (3.2) may serve as an approximation
of the optimal time and control for the original time-optimal control problem in a
neighborhood of the origin (after the change of variables) immediately follows now
from Definitions 1.1 and 1.3 and Theorem 1.2.

Consider now special classes of systems satisfying conditions of Theorem 1.4.
(i) Consider a system of the form

ẋ = A(t)x+ f(t)(u+ g(t, x)), g(t, 0) ≡ 0,(6.1)

where x ∈ R
n, u ∈ R

1, A(t), f(t), and g(t, x) are a matrix, an n-dimensional vec-
tor, and a function real analytic in neighborhoods of the origin in R

1 and R
n+1,

respectively. The system (6.1) is of the form (1.7) where a(t, x) = A(t)x+ f(t)g(t, x),
b(t, x) = f(t). Obviously,

adRa RbE(x) = µ1
1(t, x)∆f(t) + µ1

0(t, x)f(t),

where ∆ = d
dt −A(t), µ1

1(t, x) ≡ 1, µ1
0(t, x) = −∑n

i=1
∂
∂xi
g(t, x)fi(t). It is easy to see

that for any m ≥ 0,

admRa
RbE(x) =

m∑
j=0

µmj (t, x)∆jf(t),

where µmm(t, x) ≡ 1 and µmj (t, x) are real analytic functions, j = 0, . . . ,m− 1.
Suppose the system ẋ = A(t)x + f(t)u is locally controllable, which yields

rank{∆mf(0)}∞m=0 = n. Then rank{admRa
RbE(x)| t=0

x=0

}∞m=0 = n, so the series of non-

linear power moments representing system (6.1) is linearly nonsingular. Further,

[
adm1

Ra
Rb, · · ·

[
ad

mk−1

Ra
Rb, admk

Ra
Rb
] · · ·]E(x) =

M∑
j=0

µm1...mk
j (t, x)∆jf(t),

where M = max{m1, . . . ,mk} ≤ m1 + · · ·+mk +k−2 as k ≥ 2 and µm1...mk
j (t, x) are

real analytic functions, j = 0, . . . ,M, k ≥ 2, m1, . . . ,mk ≥ 0. Hence condition (E) is
satisfied and the time-optimal control problem for system (6.1) is locally equivalent
to the linear time-optimal problem for the system ẋ = A(t)x+ f(t)u.
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(ii) Consider an autonomous “shifted” bilinear system of the form

ẋ = Ax+ (Bx+ f)u,(6.2)

where x ∈ R
n, u ∈ R

1, f ∈ R
n. We have a(x) = Ax, b(x) = Bx + f . Denote

by [A,B] the matrix commutator, [A,B] = B · A − A · B, and let ad0
AB = B,

adm+1
A B = [A, admA B], m ≥ 1. Then

admRa
RbE(x) = admA Bx+ (−1)mAmf, m ≥ 0,

[
adm1

Ra
Rb, · · ·

[
ad

mk−1

Ra
Rb, admk

Ra
Rb
] · · ·]E(x)

=
[
adm1

A B, · · · [ad
mk−1

A B, admk

A B
] · · ·]x+

∑
(p1,...,pk)∈Z

µp1...pk adp1A B · · · ad
pk−1

A B ·Apkf,

where Z denotes the set of all permutations of numbers m1, . . . ,mk and µp1...pk ∈ R,
k ≥ 2, m1, . . . ,mk ≥ 0.

Now let the system (6.2) be of the form

ẋ1 = u(1 +B11x1 + · · ·+B1nxn),
ẋq = xq−1 + u(Bqqxq + · · ·+Bqnxn), 2 ≤ q ≤ n.(6.3)

Then adiRa
RbE(0) = (−1)iei+1, i = 0, . . . , n−1. Further, elements of matrices adpAB,

p ≥ 0, satisfy the condition (adpAB)ij = 0 as i > j+ p, 1 ≤ i, j ≤ n. Hence adpABeq ∈
Lin{ej}q+pj=1 , q = 1, . . . , n− p, 0 ≤ p ≤ n− 1, and therefore

adp1A B · · · ad
pk−1

A B ·Apkf ∈ Lin{adiRa
RbE(0)}Mi=0,

where M = p1 + · · · + pk = m1 + · · · + mk ≤ m1 + · · · + mk + k − 2 as k ≥ 2,
which proves (E). Thus the time-optimal control problem for system (6.3) is locally
equivalent to the linear problem for the system ẋ1 = u, ẋq = xq−1, q = 2, . . . , n.

(iii) Consider the nonlinear triangular system

ẋq = ϕq(t, x1, . . . , xq+1), 1 ≤ q ≤ n− 1,
ẋn = ϕn(t, x) + ψ(t, x)u,

(6.4)

where ϕq(t, x1, . . . , xq+1), q = 1, . . . , n − 1, ϕn(t, x), and ψ(t, x) are real analytic
functions in neighborhoods of the origin in R

q+2 and R
n+1, respectively, ϕq(t, 0) ≡ 0,

q = 1, . . . , n. Suppose also ∂
∂xq+1

ϕq(0, 0) �= 0, q = 1, . . . , n − 1, ψ(0, 0) �= 0. Under

these conditions there exists a nonsingular transformation which reduces system (6.4)
to the system ẋq = xq+1, q = 1, . . . , n − 1, ẋn = α(t, x) + β(t, x)u; α(t, 0) ≡ 0,
β(0, 0) �= 0, and can be found constructively [10]. Let us prove that the time-optimal
control problem for system (6.4) is locally equivalent to the problem for the system
ẋq = xq+1, q = 1, . . . , n− 1, ẋn = u.

We have a(t, x) = (ϕ1(t, x1, x2), . . . , ϕn(t, x)); hence

ax(t, x) =




∗ ∂ϕ1(t,x)
∂x2

0 . . . 0

∗ ∗ ∂ϕ2(t,x)
∂x3

. . . 0
. . . . . . . . . . . . . . .
∗ ∗ ∗ . . . ∂ϕn−1(t,x)

∂xn

∗ ∗ ∗ . . . ∂ϕn(t,x)
∂xn



,
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and therefore adRa
RbE(x) = ∂ϕn−1(t,x)

∂xn
ψ(t, x)en−1 + µ1

n(t, x)en. One easily proves
that

admRa
RbE(x) =

n−1∏
j=n−m

∂ϕj(t, x)

∂xj+1
ψ(t, x)en−m+

m∑
j=1

µmn+1−j(t, x)en+1−j , 1 ≤ m ≤ n−1.

Thus, rank{admRa
RbE(x)| t=0

x=0

}n−1
m=0 =n and Lin{admRa

RbE(x)| t=0
x=0

}Mm=0 =Lin{ej}nj=n−M ,
0 ≤M ≤ n− 1. Further,

[
adm1

Ra
Rb, · · ·

[
ad

mk−1

Ra
Rb, admk

Ra
Rb
] · · ·]E(x) =

min{M,n−1}∑
j=0

µm1...mk
n−j (t, x)en−j ,

where M = max{m1, . . . ,mk} ≤ m1 + · · · +mk + k − 2 as k ≥ 2, which proves the
validity of (E) and, therefore, the desired result.

7. Some ways of generalization and arising problems.
(A) Within the moment approach, the further step which seems to be natural is to

consider series of nonlinear power moments, transformations of series, and nonlinear
moment min-problems irrespective to systems and the time-optimal control problem,
as it has been done for the linear case [11]. In this way a natural object is a series
of the form (2.7) with arbitrary constant vector coefficients vm1...mk

satisfying the
requirement (2.5) (which implies the convergence) and the Markov moment min-
problem (3.1) for this series. In this relation it is extremely important to emphasize
that, in contrast to the linear case, not every such series represents a system of the
form (1.7). The first difficulty to emerge is the question on the existence of a solution
of the min-problem. To avoid it one can modify the definition of the local equivalence
of the nonlinear moment min-problem to a linear one. We require:

(i) the “local controllability” property: for any s from a neighborhood of the
origin there exists θ such that the set Us(θ) of all u(t) ∈ L∞[0, θ], ‖u‖ ≤ 1,
satisfying (3.1) is not empty;

(ii) the existence of an approximation θ̃Φ(s) of θinfΦ(s) = inf{θ : UΦ(s)(θ) �= ∅} such

that UΦ(s)(θ̃Φ(s)) �= ∅ and

θLins

θ̃Φ(s)

→ 1,
θ̃Φ(s)

θinfΦ(s)

→ 1, sup
ũ(t)∈UΦ(s)(θ̃Φ(s))

1

θ

∫ θ

0

∣∣uLins (t)− ũ(t)
∣∣ dt→ 0 as s→ 0,

where θ = min{θLins , θinfΦ(s)}.
With this definition the sufficiency in Theorem 4.2 remains true:
(i) If the series S is ess-linearizable (Definition 4.1) and {v�i}ni=1 are the first n

linearly independent vectors from the sequence {vi}∞i=0, then the nonlinear
moment min-problem is locally equivalent to the linear one of the form (3.2).
The necessity in Theorem 4.2 can be proved in the following particular case.

(ii) If the nonlinear moment min-problem is locally equivalent to the linear min-
problem of the form

sq =

∫ θ

0

tq−1u(t)dt, q = 1, . . . , n,

then the series S is ess-linearizable and rank{vi}n−1
i=0 = n.
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However, in the general case the necessity in Theorem 4.2 is false. For example,
the one-dimensional moment min-problems s = ξ000 + ξ2 and s = ξ2 are equivalent
although the series S = ξ000 + ξ2 is not ess-linearizable.

(B) The representation of systems in the form of series of nonlinear power mo-
ments is easily extended to the case of multi-input systems,

ẋ = a(t, x) +

h∑
i=1

bi(t, x)ui.(7.1)

For such systems a representation of the form (2.2) becomes an expansion with respect
to nonlinear power “multimoments,”

ξi1 ... ikm1...mk
=

∫ θ

0

∫ τ1

0

. . .

∫ τk−1

0

τm1
1 τm2

2 . . . τmk

k

k∏
j=1

uij (τj)dτk . . . dτ2dτ1,

with coefficients analogous to (2.4) but including admRa
Rbi , m ≥ 0, i = 1, . . . , h.

Condition (E) is generalized in a natural way as well.
Finally, one may consider series of nonlinear power “multimoments” with arbi-

trary constant coefficients satisfying an estimate analogous to (2.5). We call the series
ess-linearizable if it can be transformed to the form

F (S)q = ξ
iq
�q

+

h∑
j=iq+1

αqjξ
j
�q

+ ρq, q = 1, . . . , n,

where ρq includes terms of order greater than �q + 1. Here �q ≥ 0, iq ∈ {1, . . . , h}, and
(�1, i1) < · · · < (�n, in) in the lexicographic sense.

For systems of the form (7.1), the result analogous to Theorem 5.1 is valid.
(i) A series of nonlinear power “multi-input” moments representing a system

of the form (7.1) is ess-linearizable if and only if the system satisfies condi-
tion (E).
For series with arbitrary coefficients, we have the following assertions.

(ii) For a linearly nonsingular series of nonlinear power “multi-input” moments
with arbitrary coefficients, the ess-linearizing algorithm can be applied; it
gives an ess-linear series after a finite number of steps if and only if the series
is ess-linearizable.

(iii) The series S is ess-linearizable if and only if each series S(p) ∈ Lpe, p ≥ 1, con-
structed by the ess-linearizing algorithm satisfies the conditions of Lemma 8.4
and, therefore, can be transformed to S(p+1) ∈ Lp+1

e using a transformation
analogous to (5.2).

(C) One of our main ideas is to interpret “the closeness” of a given nonlinear
system to a linear one in terms of the reducibility of its series to the form S = Ξ +R,
where Ξ is a vector of linear moments and Rq/Ξq → 0 as θ → 0, ‖u‖ ≤ 1. This
suggests considering the much more general problem on classification of systems of
the form (7.1). Namely, one can regard two systems as equivalent if their series are
reducible to the same “canonical form” S = C+R with the “principal part” C, where
the components Cq are linear combinations of certain moments and Rq/Cq → 0 as
θ → 0, ‖u‖ ≤ 1. The question is how to choose “principal parts” which represent
classes of equivalence and systems corresponding to them. In the forthcoming paper,
we give such a classification in terms of some structures induced by systems in the
algebra of nonlinear power “multimoments.”
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Another important question is to investigate the realizability of series of nonlinear
power “multimoments” as systems of the form (7.1):

(i) under what conditions on coefficients of the series there exist such vector
functions a(t, x), b1(t, x), . . . , bh(t, x) that the series represents (7.1);

(ii) under what conditions these vector functions are time-independent.
This question will be a subject of a forthcoming paper as well.

8. Auxiliary results. This section contains the technical results used in sec-
tions 4 and 5.

Denote by U j , j ≥ 0, the set of all functions uj(t) ∈ L∞[0, 1], ‖uj‖ = 1, having
no more than j points of discontinuity.

Lemma 8.1. Let r ≥ 2, 0 = α0 < α1 < α2 ≤ · · · ≤ αr−1 ≤ αr = 1, and

u1
r(t) = σ(−1)j−1, t ∈ [αj−1, αj), j = 1, . . . , r, σ = ±1

(that is the function u1
r has at least one point of discontinuity). Then any moment

ξm1...mk
(1, u1

r), k ≥ 2, can be represented as ξm1...mk
(1, u1

r) =
∑m

j=0 α
j
1ϕj(α2, . . . , αr−1),

m = m1 + · · ·+mk + k, where, in particular,

ϕj(α2, . . . , αr−1) =

{
0 as 0 < j ≤ mk,

2σ
mk+1ξm1...mk−1

(1, ur−1) as j = mk + 1,

and the function ur−1(t) ∈ Ur−1 is defined as follows:

ur−1(t) = −σ, t ∈ [0, α1), ur−1(t) = σ(−1)j−1, t ∈ [αj−1, αj), j = 2, . . . , r.

To formulate the following lemma, we introduce the notations

k∏
j=�

ad
mj

Ra
Rb = adm

Ra
Rb ◦ · · · ◦ admk

Ra
Rb, 1 ≤ � ≤ k,

[
ad

mj

Ra
Rb

]k
j=�

= [adm

Ra
Rb, · · · [ad

mk−1

Ra
Rb, admk

Ra
Rb] · · ·], 1 ≤ � ≤ k − 1.

(8.1)

Lemma 8.2. Suppose that a series S of the form (2.7) represents a system of the
form (1.7), q ≥ 2, rank{vi}q−2

i=0 = r, and �1 < · · · < �r are indices of the first r linearly
independent vectors from the sequence {vi}q−2

i=0 . Let also

vm1...mk

m,S∼= 0

for any k ≥ 2, m1, . . . ,mk ≥ 0 such that m1 + · · ·+mk + k = m ≤ q − 1. Then

i−1∏
j=1

ad
mj

Ra
Rb ◦

[
ad

mj

Ra
Rb

]p−1

j=i
◦

k∏
j=p

ad
mj

Ra
RbE(x)∣∣

t=0
x=0

q,S∼= 0

for any k ≥ 3, m1, . . . ,mk ≥ 0 such that m1 + · · ·+mk + k = q and any p = 3, . . . , k,
i = 1, . . . , p− 2. As a consequence,

(i) for any k ≥ 3, m1, . . . ,mk ≥ 0 such that m1 + · · · + mk + k = q, and any
permutation Z(1, . . . , k − 1) of numbers {1, . . . , k − 1} we have

vm1...mk
− vZ(m1,...,mk−1)mk

q,S∼= 0;
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(ii) for any k ≥ 2, m1, . . . ,mk ≥ 0 such that m1 + · · ·+mk + k = q and {m1,

. . . ,mk−1} �⊂ {�1, . . . , �r}, we have vm1...mk

q,S∼= 0.
Lemma 8.3 (on equivalence of series having the same values on bang-bang con-

trols). Let a series S of the form (2.7) represent a system of the form (1.7). Let q ≥ 2
be such a number that

vm1...mk

m,S∼= 0

for any k ≥ 2, m1, . . . ,mk ≥ 0 such that m = m1 + · · · + mk + k ≤ q − 1. Put
r = rank{vj}q−2

j=0, and suppose

(vq−1 − w)ξq−1(1, ur) +
∑

m1+···+mk+k=q

k≥2,mj≥0

vm1...mk
ξm1...mk

(1, ur)
q,S∼= 0(8.2)

for any ur(t) ∈ Ur, where w ∈ R
n. Then

vq−1

q,S∼= w, vm1...mk

q,S∼= 0(8.3)

for any k ≥ 2, m1, . . . ,mk ≥ 0 such that m1 + · · ·+mk + k = q.
Proof. Suppose r = 0; then vj = 0 as j ≤ q − 2 and vm1...mk

= 0 as k ≥ 2,
m1 + · · ·+mk+k = q due to assertion (ii) of Lemma 8.2. Then (8.2) implies vq−1 = w,
which proves (8.3).

Now let r ≥ 1. We proceed by induction on the last index mk. Suppose p = 0 or
1 ≤ p ≤ q − 1 and the second relation of (8.3) holds for any set of indices m1, . . . ,mk

such that k ≥ 2, 0 ≤ mk ≤ p− 1, m1, . . . ,mk−1 ≥ 0, m1 + · · ·+mk + k = q. Our aim
is to show that (8.3) is valid for any m1, . . . ,mk such that mk = p, m1, . . . ,mk−1 ≥ 0,
m1 + · · ·+mk−1 + p+ k = q. We have from (8.2) and the induction supposition that
for any ur(t) ∈ Ur,

(vq−1 − w)ξq−1(1, ur) +
∑

m1+···+mk+k=q

k≥2, m1,...,mk−1≥0,mk≥p

vm1...mk
ξm1...mk

(1, ur)
q,S∼= 0.

Let ur(t) have at least one point of discontinuity α1 ∈ (0, 1). Then, using Lemma 8.1

and the equality ξq−1(1, ur) = ± 1
q (2
∑r

j=1(−1)j−1αqj + (−1)r), we obtain vq−1

q,S∼= w

if p = q − 1 (the first of relations (8.3)) and

∑
m1+···+mk−1+p+k=q

k≥2,mj≥0

vm1...mk−1p ξm1...mk−1
(1, ur−1)

q,S∼= 0 for any ur−1(t) ∈ Ur−1(8.4)

if p ≤ q − 2.
Let �1 < · · · < �r be indices of the first r linearly independent vectors from the

sequence {vj}q−2
j=0. Due to assertion (ii) of Lemma 8.2, (8.4) reads

∑
m1+···+mk−1+p+k=q

k≥2,mj≥0

m1,...,mk−1∈{1,...,r}

vm1...mk−1p ξm1...mk−1
(1, ur−1)

q,S∼= 0.(8.5)
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Let Z denote the set of all distinct permutations of numbers m1, . . . ,mk−1, and N
denotes the number of such permutations. Since

∑
(q1,...,qk−1)∈Z

vq1...qk−1p ξq1...qk−1
= vm1...mk−1p

∑
(q1,...,qk−1)∈Z

ξq1...qk−1

+
∑

(q1,...,qk−1) �=(m1,...,mk−1)

(vq1...qk−1p − vm1...mk−1p)ξq1...qk−1
,

and

∑
(q1,...,qk−1)∈Z

ξq1...qk−1
=

N

(k − 1)!

k−1∏
i=1

ξmi ,

we get from (8.5) and assertion (i) of Lemma 8.2 that

∑
m1+···+mk−1+p+k=q

k≥2,mj≥0

m1≤...≤mk−1∈{1,...,r}

vm1...mk−1p
N

(k − 1)!

k−1∏
i=1

ξmi(θ, ūr−1)
q,S∼= 0(8.6)

for any θ ≥ 0 and control ūr−1(t) = ur−1(t/θ), t ∈ [0, θ], where ur−1(t) runs through
the set Ur−1. Since {ξ�j (θ, ūr−1)}rj=1 are independent as polynomials of r variables

(points of discontinuity of ūr−1(t) and θ), we have from (8.6) that vm1...mk−1p

q,S∼= 0
if m1 ≤ · · · ≤ mk−1 and m1, . . . ,mk−1 ∈ {�1, . . . , �r}. Finally, Lemma 8.2 yields that
(8.3) holds for any m1, . . . ,mk such that mk = p, m1, . . . ,mk−1 ≥ 0, m1 + · · · +
mk−1 + p+ k = q.

Lemma 8.4. Let S(p) ∈ Lpe, p ≥ 1. Denote S(p+1) = Fp+1(S(p)), where Fp+1 is
defined by (5.2). Then S(p+1) ∈ Lp+1

e under the two following conditions satisfied for
any m1, . . . ,mp+1 ≥ 0.

(i) For an arbitrary permutation Z(1, . . . , p+ 1) of numbers {1, . . . , p+ 1}

v(p)m1...mp+1

m,S(p)

∼= v
(p)
Z(m1,...,mp+1)

, m = m1 + · · ·+mp+1 + p+ 1.

(ii) If v
(p)
m1

m,S(p)

∼= ∑n1

�=1 α�v
(p)
q , then v

(p)
m1...mp+1

m,S(p)

∼= ∑n1

�=1 α�v
(p)
qm2...mp+1 , where

m = m1 + · · ·+mp+1 + p+ 1, α� ∈ R.
Lemma 8.5. Let S(p) ∈ Lpe represent a control system ẋ = a(p)(t, x) + b(p)(t, x)u,

which satisfies condition (E). Then (under the notations analogous to (8.1)) the fol-
lowing equalities hold:

�∏
j=1

ad
mj

R
a(p)

Rb(p) ◦
[
ad

mj

R
a(p)
Rb(p)

]q
j=l+1

◦
p+1∏
j=q+1

ad
mj

R
a(p)

Rb(p)E(x)∣∣
t=0
x=0

m,S(p)

∼= 0

for any q = 2, . . . , p + 1, � = 0, . . . , q − 2; m1, . . . ,mp+1 ≥ 0, where m = m1 + · · · +
mp+1 + p as q < p+ 1 and m1 + · · ·+mp+1 + p+ 1 as q = p+ 1. As a consequence,
conditions (i) and (ii) of Lemma 8.4 are satisfied.
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Abstract. We consider some observability inequalities from boundary for a general shallow
shell with a middle surface of any shape. At first, an estimate is established by the geometric multi-
plier method in the case that no boundary conditions are imposed under some checkable geometric
conditions. Then our results yield continuous observability estimates for two kinds of boundary
conditions which have a physical meaning with an explicit observability time and hence, by duality,
exact controllability results.
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1. Introduction: Statement of main results. The purpose of this paper is to
establish some observability estimates for the shallow shell from which some boundary
exact controllability results can be derived. This problem has been well understood
in the case of wave equations and plates and, in particular, in the constant coefficient
case; see Komornik [19], Lagnese and Lions [21]. It is, in general, hard to handle the
variable coefficient case in which some special tools are often needed in addition to the
classical multiplier method, for instance, the microlocal analysis method of Bardos,
Lebeau, and Rauch [1], the pseudodifferential method of Tataru [28], [29], [30], and
the geometric method of Yao [36]. In the case of thin shells with a middle surface
of any shape, very little is apparently known in the context of control/stabilization
theory, partly because thin shell problems are always of variable coefficient (at least
about space variables). Generally, direct adaptation of the techniques, traditionally
developed in assuming that the middle surface is defined by one coordinate, would not
be fully adequate when dealing with some observability estimates since the presence
of the Christoffel symbols Γkjk can often make computing too complicated.

First, we shall briefly introduce the classical shallow model in a version produced
by Yao [37], in which the middle surface is viewed as a Riemann manifold with the
induced metric in R

3. One of the advantages in doing this is to build a bridge to
modern geometry. For instance, the Bochner technique, which cannot be applied
once fixed in one coordinate, is the key ingredient used throughout this paper to
overcome the complexity of computation when we deal with all the estimates. This
technique, which describes a method initiated by Bochner some fifty years ago for
proving some identities of geometric interest, is not so easily described, but it offers
the greatest computational simplification on some variable coefficient problems. For
details, we refer to Wu [35].

Next, we set up an assumption (H2) on the middle surface under which an estimate
for the shallow model is established in the case that no boundary conditions are
imposed (Theorem 1.1). In fact, this assumption also works for some observability
inequalities of Naghdi’s models; see Yao [40]. In subsection 2.1 we shall show that
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the main assumption (H2) always holds locally for the middle surface of any shape
(Proposition 2.2) and how to find a vector field to meet it when the middle surface
of the shallow shell is of constant curvature or revolution (Propositions 2.3 and 2.4).
In particular, several examples of the middle surface that verify the main assumption
(H2) are presented in subsection 1.4.

Finally, the estimates in Theorem 1.1 will produce continuous observability in-
equalities in both Dirichlet and Neumann cases (Theorems 1.2 and 1.3), respectively,
by a compactness/uniqueness argument to absorb the lower order terms as in Bardos,
Lebeau, and Rauch [1] or in Zuazua [41]. Fortunately, all the uniqueness results we
need here can, in both cases, be derived from certain old uniqueness issues (Proposi-
tion 2.13), i.e., Hörmander [16], or Shirota [27].

In addition, regularities of solutions to all the shallow equations needed here
should be an intrinsic issue. Since we are mainly concerned with estimates of in-
equalities, it is assumed that all the regularities of solutions we need hold in this
paper.

We mention that some works have been done on control problems of some special
shallow shells, for example, Chen, Coleman, and Liu [8] for circular cylindrical shells,
Lasiecka, Triggiani, and Valente [23], Triggiani [32] for spherical shells, and Geymont,
Loreti, and Valente [12].

1.1. Some notation. We introduce some notation in preparation for shallow
shell equations and the observability inequalities. It is mentioned that all definitions
and notation in this subsection are standard and classical in the literature.

Denote the usual inner product in R
3 by 〈·, ·〉, i.e., the dot product. Let M be

a surface in R
3. For simplicity, M is assumed to be smooth. Surface M produces

a natural Riemannian manifold of dimension 2 with the induced metric in R
3. We

denote this induced metric on surface M by g or by 〈·, ·〉, as convenient. For each
x ∈ M , Mx is the tangential space of M at x. It is assumed that surface M is
orientable with the unit normal field N on M . Denote the set of all vector fields on
M by X (M). Denote the set of all k-order tensor fields and the set of all k-forms on
M by T k(M) and Λk(M), respectively, where k is a nonnegative integer. Then

Λk(M) ⊂ T k(M).(1.1)

In particular, Λ0(M) = T 0(M) = C∞(M) is the set of all C∞ functions on M and

T 1(M) = T (M) = Λ(M) = X (M),(1.2)

where Λ(M) = X (M) is in the following isomorphism: for X ∈ X (M) given,

U(Y ) = 〈Y,X〉 ∀ Y ∈ X (M)(1.3)

determines a unique U ∈ Λ(M).
It is well known that, for each x ∈M , k-order tensor space T kx on Mx is an inner

product space defined as follows. Let e1, e2 be an orthonormal basis of Mx. For any
α, β ∈ T kx , x ∈M , the inner product is given by

〈α, β〉Tk
x
=

2∑
i1,...,ik=1

α(ei1 , . . . , eik)β(ei1 , . . . , eik) atx.(1.4)

In particular, for k = 1 definition (1.4) becomes

g(α, β) = 〈α, β〉Tx
= 〈α, β〉 ∀ α, β ∈Mx,(1.5)
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that is, the induced inner product of Mx in R
3.

Let Ω be a bounded region of surface M with a regular boundary Γ or without
boundary (when Γ is empty). From (1.4), T k(Ω) are then inner product spaces in the
following sense:

(T1, T2)Tk(Ω) =

∫
Ω

〈T1, T2〉Tk
x
dx, T1, T2 ∈ T k(Ω),(1.6)

where dx is the volume element of surface M in its Riemannian metric g.
The completions of T k(Ω) in inner products (1.6) are denoted by L2(Ω, T k). In

particular, L2(Ω,Λ) = L2(Ω, T ). L2(Ω) is the completion of C∞(Ω) in the following
inner product:

(f, h)L2(Ω) =

∫
Ω

f(x)h(x) dx, f, h ∈ C∞(Ω).(1.7)

Let D be the Levi–Civita connection on M in the induced metric g of surface
M . For U ∈ X (M), DU is the covariant differential of U which is a 2-order covariant
tensor field in the following sense:

DU(X,Y ) = DY U(X) = 〈DY U, X〉 ∀X, Y ∈Mx, x ∈M.(1.8)

We also define D∗U ∈ T 2(M) by

D∗U(X,Y ) = DU(Y,X) ∀X, Y ∈Mx, x ∈M,(1.9)

that is, D∗U ∈ T 2(M) is the transpose of DU . For any T ∈ T 2(M), the trace of T
at x ∈M is defined by

trT =

2∑
i=1

T (ei, ei)(1.10)

where e1, e2 is an orthonormal basis of Mx. It is obvious that trT ∈ C∞(M) if
T ∈ T 2(M).

For T ∈ T k(M) and X ∈ X (M), we define lXT ∈ T k−1(M) by

lXT (X1, . . . , Xk−1) = T (X,X1, . . . , Xk−1) ∀X1, . . . , Xk−1 ∈ X (M).(1.11)

For X, Y ∈ X (M), the curvature operator RXY : X (M)→ X (M) is defined by

RXY = −DXDY +DYDX +D[X,Y ],(1.12)

where [X,Y ] is the Lie product of vector fields X and Y . We have the following
identity (see Wu [33, section 2, Lem. 4]):

D2T (. . . , X, Y ) = D2T (. . . , Y,X) + (RXY T )(. . .),(1.13)

for T ∈ T k(M), . . . , X, Y ∈ X (M).
The curvature tensor R of the Levi–Civita connection is given by

R(X,Y, Z,W ) = 〈RXY Z, W 〉, X, Y, Z, W ∈Mx, x ∈M,(1.14)

which is a 4-order tensor field on M .
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The Sobolev space Hk(Ω) is the completion of C∞(Ω) with respect to the norm

‖f‖2Hk(Ω) =

k∑
i=1

‖Dkf‖2L2(Ω,Tk) + ‖f‖2L2(Ω), f ∈ C∞(Ω),(1.15)

where Dkf is the kth covariant differential of f in the induced metric g of M , which
is a k-order tensor field on Ω, and ‖ · ‖L2(Ω,Tk) and ‖ · ‖L2(Ω) are the induced norms in
inner products (1.6)–(1.7), respectively. For details on Sobolev spaces on Riemannian
manifolds, we refer to Hebey [15] or Taylor [31].

Another important Sobolev space for us is Hk(Ω,Λ), defined by

Hk(Ω,Λ) = {U |U ∈ L2(Ω,Λ), DiU ∈ L2(Ω, T i+1), 1 ≤ i ≤ k}(1.16)

with inner product

(U, V )Hk(Ω,Λ) =

k∑
i=0

(DiU,DiV )L2(Ω,T i+1) ∀ U, V ∈ Hk(Ω,Λ)(1.17)

(for example, see Wu [34]). In particular, H0(Ω,Λ) = L2(Ω,Λ).
For Γ̂ ⊂ Γ, set

H1
Γ̂
(Ω,Λ) = {W |W ∈ H1(Ω,Λ), W |Γ̂ = 0};(1.18)

H2
Γ̂
(Ω) =

{
w |w ∈ H2(Ω), w|Γ̂ =

∂w

∂n
|Γ̂ = 0

}
.(1.19)

In particular, H1
0 (Ω,Λ) = H1

Γ(Ω,Λ) and H2
0 (Ω) = H2

Γ(Ω).

1.2. Model. Let us assume that the middle surface of the shell occupies a
bounded region Ω of surface M in R

3. The shell, a body in R
3, is defined by

S = { p | p = x+ zN(x), x ∈ Ω, −h/2 < z < h/2 },(1.20)

where h is the thickness of the shell, i.e., “small”; see Ciarlet and Paumier [9].
Denote by ζ(x) the displacement vector of point x of the middle surface. We

decompose displacement vector ζ into sums:

ζ(x) = W (x) + w(x)N(x), x ∈ Ω, W (x) ∈Mx,(1.21)

i.e., W and w are components of ζ on the tangent plane and on the normal of the un-
deformed middle surface Ω, respectively. The linearized strain tensor and the change
of curvature tensor of the middle surface Ω are given by

Υ(ζ) =
1

2
(DW +D∗W ) + wΠ(1.22)

and

ρ(ζ) = −D2w(1.23)

in a coordinate-free form, respectively, where Π is the second fundamental form of
surface M and D2w the Hessian of w, which are justified for a shallow shell. For
(1.22) and (1.23), we refer to Niordson [25, p. 355] or to Koiter [17, p. 27].
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The shell strain energy associated to a displacement field ζ of the middle surface
Ω can be written as

B1(ζ, ζ) =
Eh

1− µ2

∫
Ω

B(ζ, ζ) dx,(1.24)

where

B(ζ, ζ) = a(Υ(ζ),Υ(ζ)) + γa(ρ(ζ), ρ(ζ)), γ = h2/12,(1.25)

a(Υ(ζ),Υ(ζ)) = (1− µ)〈Υ(ζ),Υ(ζ)〉T 2
x
+ µ(trΥ(ζ))2,(1.26)

for x ∈ Ω, where E, µ denote, respectively, Young’s modulus and Poison’s coefficient
of the material. For (1.24), we refer to Bernadou and Boisserie [3, p. 15].

Thus, with expression (1.24), we are able to associate the following symmetric
bilinear form, directly defined on the middle surface Ω:

B(ζ, η) =
∫

Ω

B(ζ, η) dx,(1.27)

where ζ is given in (1.21) and

η = U + uN, U(x) ∈Mx, x ∈ Ω.(1.28)

Denote by H and by k the mean curvature and the Gauss curvature of surface
M , respectively. From Yao [37], we have the following Green formula for a shallow
shell.

Formula I. Let bilinear form B(·, ·) be given in (1.27). For ζ = (W,w), η =
(U, u) ∈ H1(Ω,Λ)×H2(Ω), we have

B(ζ, η) = (Aζ, η)L2(Ω,Λ)×L2(Ω) +

∫
Γ

∂(Aζ, η) dΓ,(1.29)

where

∂(Aζ, η) = B1(W,w)〈U, n〉+B2(W,w)〈U, τ〉
+γ

[
(∆w + (1− µ)B3w)

∂u

∂n
−
(
∂∆w

∂n
+ (1− µ)B4w

)
u

]
;(1.30)

n, τ are the normal and the tangential along curve Γ, respectively;

Aζ =

( −∆µW − (1− µ)kW −F(w)
γ[∆2w − (1− µ)δ(kdw)] + (H2 − 2(1− µ)k)w + G(W )

)
,(1.31)

∆µ is of the Hodge–Laplacian type, applied to 1-forms (or equivalently, vector fields),
defined by

∆µ = −
(
1− µ

2
δd+ dδ

)
,(1.32)

where d is the exterior differential, δ the formal adjoint of d, ∆ the Laplacian on
manifold M ,

{F(w) = (1− µ)ldwΠ+ µHdw + wdH,
G(W ) = (1− µ)〈DW,Π〉T 2

x
− µHδW,(1.33)
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and 


B1(W,w) = (1− µ)Υ(ζ)(n, n) + µ(wH − δW ),
B2(W,w) = (1− µ)Υ(ζ)(n, τ),
B3w = −D2w(τ, τ),

B4w =
∂

∂τ
(D2w(τ, n)) + k(x)

∂w

∂n
.

(1.34)

By the “principle of virtual work” and Formula I, we obtain the following dis-
placement equations for a shallow shell (see Yao [37]) after changing t to t/λ with
λ2E/(1− µ2) = 1.

Formula II. We assume that there are no external loads on the shell and that
the shell is clamped along a portion Γ0 of Γ and is free on Γ1, where Γ0 ∪ Γ1 = Γ
and Γ0 ∩ Γ1 = ∅. Then the displacement vector ζ = (W,w) satisfies the following
boundary value problem:

Wtt − [∆µW + (1− µ)kW + F (w)] = 0

wtt − γ∆wtt + γ
(
∆2w − (1− µ)δ(kdw)

)
+(H2 − 2(1− µ)k)w + G(W )] = 0

ζ(0) = ζ0, ζt(0) = ζ1




in Q∞,(1.35)

W = 0

w =
∂w

∂n
= 0


 on Σ0∞,(1.36)

B1(W,w) = B2(W,w) = 0

∆w + (1− µ)B3w = 0

∂∆w

∂n
+ (1− µ)B4w − ∂wtt

∂n
= 0




on Σ1∞,(1.37)

where

Q∞ = Ω× (0,∞), Σ0∞ = Γ0 × (0,∞), Σ1∞ = Γ1 × (0,∞).(1.38)

Remark 1.1. In the literature, for some special cases the displacement equa-
tions are expressed in terms of three displacement components of the shell and their
derivatives such as spherical shells (Lasiecka, Trigginia, and Valente [23]) and circu-
lar cylindrical ones (Chen, Coleman, and Liu [8]). For a shell with a general middle
surface of any shape, this method may not be possible (see some comments by Koiter
[18, p. 33]) and we have to draw support from Formula II.

Remark 1.2. If the shell is flat, a plate, (1.35) is uncoupled. The equation on
component w is the same as in Lagnese [20, pp. 15–16], a Kirchhoff plate (see Yao
[37]).

1.3. Observability inequalities. In obtaining observability inequalities, the
ellipticity of the shell strain energy is necessary, which is assumed throughout; that
is, there is constant λ0 ≥ 1 such that (H.1)

λ0B(ζ, ζ) ≥ ‖DW‖2L2(Ω,T 2) + γ‖D2w‖2L2(Ω,T 2)(1.39)
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for ζ = (W,w) ∈ H1(Ω,Λ)×H2(Ω). The above inequality is established if Π and DΠ
are small enough (see Bernadou and Oden [5]) and proved if there is some information
on the curvature of the middle surface (Yao [37]).

Main Assumption (H.2). Suppose that there is a vector field V ∈ X (M) such
that

DV (X,X) = b(x)|X|2, X ∈Mx, x ∈ Ω,(1.40)

where b is a function on Ω. Set

a(x) =
1

2
〈DV, E〉T 2

x
, x ∈ Ω,(1.41)

where E is the volume element of M . Moreover, suppose that b and a meet inequality

2min
x∈Ω

b(x) > λ0(1 + µ)max
x∈Ω
|a(x)|.(1.42)

We say that middle surface Ω satisfies assumption (H2) if there is a vector field V
such that conditions (1.40) and (1.42) hold.

Set

σ0 = max
x∈Ω
|V |; σ1 = min

x∈Ω
b(x)− λ0(1 + µ)

2
max
x∈Ω
|a(x)|;(1.43)

Q = Ω× (0, T ); Σ0 = Γ0 × (0, T ); Σ1 = Γ1 × (0, T ).(1.44)

Remark 1.3. Geometric condition (1.40) is used in Yao [38] for some observability
inequalities of the Euler–Bernoulli equation with variable coefficients. If the shell is
flat, a plate, then M = R

2. For any x0 ∈ R
2, set V = x−x0. It is easily checked that

DV = g, x ∈ R
2,

where g is the dot product in R2, with b = 1 and a = 0. For any M , we will show that
there always exists a vector field to meet condition (1.40) on Ω (Proposition 2.2 of
subsection 2.1). In addition, relations (2.8) in Proposition 2.2 mean that Assumption
(H2) always holds locally. Indeed, for any x0 ∈ M fixed, by relations (2.8) there are
a vector field V , defined by (2.7), and ε > 0 such that

2 min
x∈B(ε)

b(x) > λ0(1 + µ) max
x∈B(ε)

|a(x)|,

where B(ε) is the geodesic ball with radius ε and centered at x0. The above inequality
means that Assumption (H2) is true if middle surface Ω ⊂ B(ε).

Let surface M be of constant curvature or revolution. Propositions 2.3 and 2.4
in subsection 2.1 will show that there exists a vector field V such that relation (1.40)
holds on the whole surface M with a(x) = 0∀x ∈ M . So if middle surface Ω ⊂ M
such that b(x) �= 0∀x ∈ Ω, then Assumption (H2) holds for Ω.

The total energy of the shell is to be defined by

E(t) =
1

2
[‖Wt‖2L2(Ω,Λ) + ‖wt‖2L2(Ω) + γ‖Dwt‖2L2(Ω,Λ) + B(η, η)].(1.45)

For η = (W,w), we set

η1 = (W, 0); η2 = (0, w);(1.46)
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L(t) = ‖W (t)‖2L2(Ω,Λ) + ‖w(t)‖2L2(Ω) + γ‖wt(t)‖2L2(Ω) + ‖Dw(t)‖2L2(Ω,Λ).(1.47)

Theorem 1.1. Let Assumptions (H.1) and (H.2) hold. Let η = (W,w) solve the
problem

ηtt − γ(0,∆wtt) +Aη = 0(1.48)

such that all the terms on the left-hand side of inequality (1.49) below are well defined.
Given T > 0, then for any ε > 0, there is Cε > 0, independent of η, such that

SB|Σ+Cε

[
L(0) + L(T ) +

∫ T

0

L(t)dt

]
+(σ0λ0+ε)[E(0)+E(T )] ≥ σ1

∫ T

0

E(t)dt,

(1.49)
where

SB|Σ =
1

2

∫
Σ

[|ηt|2 + γ|Dwt|2 −B(η, η)]〈V, n〉 dΣ

+

∫
Σ

[
∂

(
Aη, m(η)− 1

2
bη2 +

1

2
hη1

)
+ γ

(
V (w)− 1

2
bw

)
∂wtt
∂n

]
dΣ;(1.50)

m(η) = (DVW,V (w)); h = 2b− σ1.(1.51)

Dirichlet control. First, we consider the Dirichlet mixed problem in unknown
ζ = (Φ, φ):




ζtt − γ(0,∆φtt) +Aζ = 0 in Ω× (0, T ),
ζ(0) = ζ0, ζt(0) = ζ1 on Ω,
Φ|Γ1

= 0, Φ|Γ0 = U, 0 < t < T,

φ|Γ1 =
∂φ

∂n
|Γ1 = 0, 0 < t < T,

φ|Γ0
= u,

∂φ

∂n
|Γ0

= v, 0 < t < T,

(1.52)

with control functions U , u, and v. Its dual version in η = (W,w) follows:




ηtt − γ(0,∆wtt) +Aη = 0 in Q,
η(0) = η0, ηt(0) = η1 on Ω,
W = 0 on Σ,

w =
∂w

∂n
= 0 on Σ.

(1.53)

Remark 1.4. In the flat case, for the normal component, one control function
∂φ
∂n |Γ0 = v is enough; see Lagnese and Lions [21]. We here add another control function
φ|Γ0 = u for problem (1.52) in order to avoid the following uniqueness assumption:
the problem




λ2η − λ2γ(0,∆w) +Aη = 0 on Ω,
W = 0 on Γ,

w =
∂w

∂n
= 0 on Γ,

DnW = ∆w = 0 on Γ0

(1.54)

admits the unique zero solution. The above uniqueness result does not fall into a class
of systems to which the Holmgren theorem may be applied even if the coefficients are
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analytic since it is not the Cauchy problem for component w(it does for component
W ). For the flat case, it has been proved in Lagnese and Lions [21].

Continuous observability inequality in the Dirichlet case. From Propo-
sition 2.12 of subsection 2.2, it is easily checked that if η = (W,w) solves problem
(1.53), then

SB|Σ =
1

2

∫
Σ

B(η, η)〈V, n〉 dΣ.(1.55)

The exact controllability of problem (1.52) then leads to the following observability
inequality: to seek constant T0 > 0 such that, for any T > T0, there is c > 0 satisfying

∫
Σ0

[
B(η, η) + γ

(
∂∆w

∂n

)2
]
dΣ ≥ cE(0),(1.56)

where η = (W,w) is a solution to problem (1.53) with the initial data (η0, η1) ∈(
L2(Ω,Λ)×H1

0 (Ω)
)× (H−1(Ω,Λ)× L2(Ω)

)
, and

∫
Σ0

B(η, η) dΣ = γ

∫
Σ0

(∆w)2 dΣ+

∫
Σ0

[
(DW (n, n))

2
+

1− µ

2
(DW (τ, n))

2

]
dΣ.

(1.57)
We have the following theorem.
Theorem 1.2 (Dirichlet case). Let Assumptions (H.1) and (H.2) hold. Then for

any T > T0, there exists c > 0 such that observability inequality (1.56) holds, where

T0 = 2λ0σ0/σ1;(1.58)

Γ0 = {x |x ∈ Γ, V (x) · n(x) > 0}.(1.59)

Neumann control. Here we let Γ1 �= ∅, Γ0 ∩ Γ1 = ∅ and consider problem
ζ = (Φ, φ):

{
ζtt − γ(0,∆φtt) +Aζ = 0 in Q,
ζ(0) = ζ0, ζt(0) = ζ1 on Ω.

(1.60)

We can act on Σ1 = Γ1 × (0, T ) by

{
Φ = 0 on Σ1,

φ =
∂φ

∂n
= 0 on Σ1,

(1.61)

and we can act on Σ0 by




B1(Φ, φ) = u1 B2(Φ, φ) = u2 on Σ0,
∆φ+ (1− µ)B3φ = v1 on Σ0,
∂∆φ

∂n
+ (1− µ)B4φ− ∂φtt

∂n
= v2 on Σ0.

(1.62)

The dual problem for the above is the following in η = (W,w):

{
ηtt − γ(0,∆wtt) +Aη = 0 in Q,
η(0) = η0, ηt(0) = η1 on Ω,

(1.63)
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subject to the boundary condition{
W = 0 on Σ1,

w =
∂w

∂n
= 0 on Σ1,

(1.64)




B1(W,w) = B2(W,w) = 0 on Σ0,
∆w + (1− µ)B3w = 0 on Σ0,
∂∆w

∂n
+ (1− µ)B4w − ∂wtt

∂n
= 0 on Σ0.

(1.65)

Continuous observability inequality in the Neumann case. Let η = (W,w)
solve problem (1.63)–(1.65). It is easy to check from Proposition 2.12 of subsection 2.2
and boundary conditions (1.64) and (1.65) that

SB|Σ =
1

2

∫
Σ0

[|ηt|2 + γ|Dwt|2 −B(η, η)]〈V, n〉 dΣ+
1

2

∫
Σ1

B(η, η)〈V, n〉 dΣ.(1.66)

It follows from (1.66) that to obtain the observability inequality is to seek T0 > 0 such
that for any T > T0, there is c > 0 satisfying∫

Σ0

[|ηt|2 + γ|Dwt|2] dΣ ≥ cE(0)(1.67)

for all initial data (η0, η1) ∈ (H1
Γ1
(Ω,Λ)×H2

Γ1
(Ω)

) × (L2(Ω,Λ)× L2(Ω)
)
for which

the left-hand side of (1.67) is finite.
We have the following theorem.
Theorem 1.3 (Neumann case). Let Assumptions (H.1) and (H.2) hold. Then

for any T > T0, there is c > 0 such that inequality (1.67) holds, where T0 and Γ0 are
defined by (1.58) and (1.59), respectively.

Remark 1.5. Exact controllability results (in suitable function spaces) for T > T0

follow from (1.56) and (1.67) and duality.
Remark 1.6. Let the shell be flat, that is, M = R

2. Then system (1.35) becomes
two systems, where one is a wave equation on component W and the other is a plate
on component w. We may take λ0 = 1. If we set V = x− x0, x0 a fixed point in R

2,
then inequalities (1.56) and (1.67) on component w are exactly the same as in Lagnese
and Lions [21]. In this case, σ1 = 1. It follows that T0 = 2diameter(Ω), which is
the best for wave component W ; see Komornik [19]. In this sense, T0 in (1.58) is the
best.

1.4. Some examples. We give here some examples that verify Assumption
(H2).

Example 1.1. Let middle surface Ω be of constant curvature. Suppose that the
curvature of manifold (M, g) is constant k. Given x0 ∈ M , let ρ be the distance
function from x ∈M to x0 on (M, g), i.e., ρ(x) = dis(x0, x). Set V = h(ρ)Dρ, where
h(ρ) is defined by

h(ρ) =




sin(
√
kρ(x)), k > 0,

ρ(x), k = 0,
sinh(

√−kρ(x)), k < 0.

(1.68)

By Proposition 2.3 of subsection 2.1, we have

DV = b(x)g and a(x) = 0,(1.69)
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where

b(x) =



√
k cos

(√
kρ(x)

)
, k > 0,

1, k = 0,√−k cosh (√−kρ(x)) , k < 0.

(1.70)

It follows that Assumption (H2) holds with vector field V if and only if minx∈Ω b(x) >
0. By expression (1.70), we have the following conclusions:

(a) If k > 0, Assumption (H2) holds when Ω is contained by a geodesic ball with
radius π/(2

√
k);

(b) If k ≤ 0, Assumption (H2) holds for any Ω ⊂M .
Example 1.2. Let middle surface Ω be a portion of surface M of revolution, where

M = {(x, y, z) | (x, y) ∈ R
2, z = log(1 + x2 + y2)}.(1.71)

Set f(r) = log(1 + r2). It is easy to check that the curvature is

k(p) = − 2(1 + r2)

[1 + (1 + r2)2]2
< 0,(1.72)

where p = (x, y, f(r)) and r =
√

x2 + y2 so that inequality (2.25) in Proposition 2.4
holds. By applying Proposition 2.4 of subsection 2.1 to this case, there are a vector
field V on M and a function b(p) > 0 on M such that

DV = b(p)g and a(p) = 0 ∀p ∈M,(1.73)

where g is the induced metric of M in R
3 and a(p) = 1

2 〈DV, E〉T 2
p
is defined by (1.41),

that is, Assumption (H2) holds for any Ω ⊂M .
Finally, we give an example with Assumption (H2) holding but a(x) = 1

2 〈DV, E〉T 2
x
�=

0.
Example 1.3. Consider a helicoid, defined by

M = {α(t, s) | (t, s) ∈ R
2, t > 0},(1.74)

where

α(t, s) = (t cos s, t sin s, c0s), c0 > 0.(1.75)

The Gauss curvature is −c20/(t2 + c20)
2.

We set

E1 = αt = (cos s, sin s, 0);(1.76)

E2 =
1√

t2 + c20
αs =

1√
t2 + c20

(−t sin s, t cos s, c0).(1.77)

Then E1, E2 makes up a frame field on the whole surface M . We may obtain

DE1
E1 = 0; DE2E1 =

t

t2 + c20
E2;(1.78)

DE1E2 = 0; DE2E2 =
−t

t2 + c20
E1,(1.79)
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where D is the Levi–Civita connection of surface M .
For any c > 0, we set

Vc = fcE1 + hE2,(1.80)

where

fc =
√

t2 + c20

(∫ t

0

dt√
t2 + c20

+ c

)
; h =

√
t2 + c20s.(1.81)

We then have

DVc = bcg + aE for c > 0,(1.82)

where g is the induced metric of M in R
3, E is the volume element of M , and

bc = 1 +
t

t2 + c20
fc; a = − st√

t2 + c20
.(1.83)

It is clear that, for any Ω ⊂M bounded with Ω ⊂M and for any constant c1 > 0,
there is c > 0 large enough such that

min
x∈Ω

bc ≥ c1 max
x∈Ω
|a|;(1.84)

that is, for any Ω ⊂M , we can find a vector field Vc (c > 0 large enough), defined by
(1.80), to meet geometric conditions (1.40) and (1.42).

Remark 1.7. It is easy to check by the curvature information and Yao [37] that
Examples 1.1–1.3 satisfy Assumption (H1), too.

2. Geometric conditions; proofs of main results.

2.1. On geometric conditions. We give some information on how to find a
vector field to meet conditions (1.40) and (1.42).

Proposition 2.1. Let vector field V be given such that (1.40) holds. If T ∈
T 2(M) is a symmetric, 2-order tensor field, then

〈T, T (·, D·V )〉T 2
x
= b|T |2T 2

x
at x ∈M ;(2.1)

trT trT (·, D·V ) = b(trT )2 at x ∈M,(2.2)

where “·” denotes the position of the variable.
Proof. Let T ∈ T 2(M) be symmetric. Given x ∈ M , there is an orthonormal

basis e1, e2 of Mx such that

T (e1, e2) = 0, at x,(2.3)

since T (·, ·) is a symmetric, bilinear form on Mx ×Mx. Conditions (1.40) and (2.3)
yield

T (ei, DeiV )= T (ei, DV (ei, ei)ei +DV (ej , ei)ej)

= bT (ei, ei) +DV (ej , ei)T (ei, ej) = bT (ei, ei)(2.4)
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for j �= i, i = 1, 2. By (2.3) and (2.4), we obtain

〈T, T (·, D·V )〉T 2
x
=

2∑
ij=1

T (ei, ej)T (ei, DejV ) =

2∑
i=1

T (ei, ei)T (ei, DeiV )

= b

2∑
i=1

(T (ei, ei))
2 = b

2∑
ij=1

(T (ei, ej))
2 = b|T |2T 2

x
at x

and

trT (·, D·V ) =

2∑
i=1

T (ei, DeiV ) = b

2∑
i=1

T (ei, ei) = btrT at x.

Consider a set Θ which consists of all the C∞ functions q such that there is a
region ℵ ⊂M satisfying Ω ⊂ ℵ and

∆q = k(x) ∀ x ∈ ℵ,(2.5)

where k is the Gaussian curvature function of M . It is easily checked that Θ is
nonempty by an elliptic boundary value problem for the Laplacian since Ω ⊂M is a
bounded region with a nonempty boundary Γ. For a given q ∈ Θ, consider a metric
on ℵ given by

ĝ = e2qg,(2.6)

where g is the induced metric of M in R
3. Denote by (ℵ, ĝ) the Riemannian manifold

with metric (2.6) and by ρ̂(x) the distance function on (ℵ, ĝ) from x0 ∈ ℵ to x ∈ ℵ,
respectively. Let D̂ be the covariant differential of (ℵ, ĝ) in metric ĝ.

Proposition 2.2. Given q ∈ Θ and x0 ∈ ℵ, set

V (x) = ρ̂(x)D̂ρ̂(x), x ∈ ℵ.(2.7)

Then vector field V on ℵ (so that on Ω) meets condition (1.40) where b = 1 − V (q)
and a = 〈Dq ⊗ V, E〉T 2

x
such that

lim
x→x0

b(x) = 1 and lim
x→x0

a(x) = 0,(2.8)

that is, conditions (1.40) and (1.42) hold locally.
Proof. We do a computation in a coordinate. Let (x1, x2) be a coordinate on ℵ.

Set

gij =

〈
∂

∂xi
,

∂

∂xj

〉
and ĝij = ĝ

(
∂

∂xi
,

∂

∂xj

)
(2.9)

for 1 ≤ i, j ≤ 2. It follows from (2.6) and (2.9) that ĝij = e2qgij .

Denote the coefficients of connections D and D̂ by Γkij and by Γ̂kij , respectively.
From Schoen and Yau [26, Chapter 5], we have formulae

Γkij = Γ̂kij − δik
∂q

∂xj
− δjk

∂q

∂xi
+ gij

2∑
l=1

gkl
∂q

∂xl
(2.10)
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and

∆q − k + k̂e2q = 0 in ℵ,(2.11)

where k̂ is the Gaussian curvature function of (ℵ, ĝ) in metric ĝ and (gij) = (gij)
−1.

Relations (2.5) and (2.11) yield

k̂ = 0 in ℵ,(2.12)

i.e., (ℵ, ĝ) is of zero curvature. It is well known that

D̂V =
1

2
D̂2ρ̂2 = ĝ in ℵ(2.13)

because of (2.12).

Let V = h1
∂

∂x1
+ h2

∂

∂x2
. For any vector field X = X1

∂

∂x1
+X2

∂

∂x2
, it follows

from (2.10) that

DXV =

2∑
j=1

X(hj)
∂

∂xj
+

2∑
ij=1

XihjD ∂
∂xi

∂

∂xj
=

2∑
j=1

X(hj)
∂

∂xj
+

2∑
k=1

2∑
ij=1

XihjΓ
k
ij

∂

∂xk

= D̂XV − V (q)X −X(q)V + 〈X,V 〉Dq.

(2.14)

By (2.14), (2.6), and (2.13), we obtain

DV (X,X)= 〈D̂XV,X〉 − V (q)|X|2 = e−2qD̂V (X,X)− V (q)|X|2
= e−2q ĝ(X,X)− V (q)|X|2 = (1− V (q))|X|2(2.15)

∀ X ∈Mx, x ∈ ℵ, and

a(x)=
1

2
〈DV, E〉 = 1

2
[DV (e1, e2)−DV (e2, e1)]

= 〈e1, V 〉e2(q)− 〈e2, V 〉e1(q) = 〈Dq ⊗ V, E〉T 2
x
,(2.16)

where e1, e2 is an orthonormal basis of Mx with the positive orientation. Since
eq|D̂ρ̂| = 1 we then obtain |V | = ρ̂(x)e−q so that (2.8) follows from (2.16) and
b = 1− V (q).

Given x0 ∈ M . Let r: (0,∞) → R
n be a geodesic with r(0) = x0 parameterized

by arc length in Riemannian metric g. Denote the distance on (M, g) by dis. For
sufficiently small t > 0 we know that dis(r(t), x0) = t, since the exponential map
expx0 : Mx0 → M is injective on a sufficiently small ball in (M, g). We recall that
r(t0) is called the cut point of r with respect to x0, if t0 > 0 is such that dg(r(t), x

0) =
t, 0 ≤ t < t0, and dg(r(t), x

0) < t ∀ t > t0; see Cheeger and Ebin [6]. The union of
all cut points is called the cut locus of x0 and denoted by cut(x0). For any X ∈Mx0 ,
|X| = 1, there is at most one cut point on the geodesic expx0tX (t ≥ 0). Thus
cut(x0) is the image of the exponential map on some closed subset of Sn−1 and the
n-dimensional measure of cut(x0) is zero. Set µ(X) = dg(x

0, r(t0)), if r(t0) is the cut
point of x0 along r(t) = expx0tX; µ(X) =∞, when there is no cut point of x0 along
r, where X ∈ Sn−1 ⊂Mx0 . We define

E(x0) =
{
tX | 0 ≤ t < µ(X), X ∈ Sn−1 ⊂Mx0

}
.
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Then expx0 : E(x0)→ expx0E(x0) is a diffeomorphism. It is obvious that expx0E(x0)
is a star domain and

M = expx0(E) ∪ cut(x0).

Proposition 2.3. Let M be of constant curvature k. Given x0 ∈ M , let ρ
be the distance function from x ∈ M to x0 on (M, g), i.e., ρ(x) = dis(x0, x). Set
V = h(ρ)Dρ, where h(ρ) is defined by

h(ρ) =




sin(
√
kρ(x)), k > 0,

ρ(x), k = 0,
sinh(

√−kρ(x)), k < 0,

(2.17)

for x ∈ expx0
E(x0). Then

DV = b(x)g and a(x) = 0, x ∈ expx0
E(x0),(2.18)

where

b(x) =



√
k cos(

√
kρ(x)), k > 0,

1, k = 0,√−k cosh(√−kρ(x)), k < 0.

(2.19)

Proof. It is well known that

D2ρ(τ, τ) =




√
k cot(

√
kρ(x)), k > 0,

1

ρ(x)
, k = 0,

√−k coth(√−kρ(x)), k < 0,

x ∈ expx0
E(x0),(2.20)

where τ ∈Mx such that Dρ, τ is an orthonormal basis of Mx and D2ρ is the Hessian
of distance function ρ at x. Since D2ρ(Dρ,X) = 0 for any X ∈ Mx, it follows from
(2.20) that

DV (X,Y ) = h′(ρ)〈Dρ,X〉〈Dρ, Y 〉+ h(ρ)D2ρ(X,Y ) = b(x)〈X,Y 〉,(2.21)

for any X,Y ∈Mx. Since DV is symmetric, a(x) = 0.
Proposition 2.4. Let f be a function on the zy-plane, z = f(y) for y > 0.

Consider a surface, given by

M =
{
(x, y, z) | z = f(r), r =

√
x2 + y2, (x, y) ∈ R

2
}
.(2.22)

The curvature is

k(p) =
f ′(r)f ′′(r)
r(1 + f ′2)2

, p = (x, y, z) ∈M.(2.23)

Then there exist a vector field V and a function b such that

DV = b(p)g and a(p) = 0, p ∈M,(2.24)

where g is the induced metric of M in R
3. Furthermore, if∫

k(t)>0

tk(t)dt ≤ 1,(2.25)



1744 PENG-FEI YAO

then

b(p) > 0 ∀p ∈M,(2.26)

where

k(t) =
f ′(r(t))f ′′(r(t))

r(t)(1 + f ′2(r(t)))2
, t > 0,(2.27)

and r(t) is defined by equation

t =

∫ r(t)

0

√
1 + f ′2(s)ds,(2.28)

for t ≥ 0.
Proof. Denote p0 = (0, 0, f(0)). Let ρ(p) = dis(p0, p) be the distance function

from p ∈M to p0 on (M, g). Set V = ϕ(ρ)Dρ, where ϕ is the solution to the problem

{
ϕ′′(t) + k(t)ϕ(t) = 0, t > 0,
ϕ(0) = 0, ϕ′(0) = 1.

(2.29)

We will show that DV = ϕ′(ρ(p))g for any p ∈M .

Let p = (x, y, f(r)) ∈M with r =
√

x2 + y2. Since M is of revolution, it is easily
checked that curve σ: [0, ρ(p)]→M , given by

σ(t) =
(
r(t)

x

r
, r(t)

y

r
, f(r(t))

)
,

is the unique minimizing geodesic, parameterized by arc length, which joins p0 to p.
Since k(σ(t)) = k(t) for 0 ≤ t ≤ ρ(p), it is well known that

D2ρ(τ, τ) =
ϕ′(ρ)
ϕ(ρ)

,(2.30)

where τ ∈Mp such that Dρ, τ is an orthonormal basis of Mp. It follows from (2.30)
that

DV (X,Y )= 〈DY V,X〉 = ϕ′(ρ)〈Dρ,X〉〈Dρ, Y 〉+ ϕ(ρ)D2ρ(X,Y )

= ϕ′(ρ)〈Dρ,X〉〈Dρ, Y 〉+ ϕ′(ρ)〈X, τ〉〈Y, τ〉 = ϕ′(ρ)〈X,Y 〉,(2.31)

for any X,Y ∈Mp.
Let inequality (2.25) hold. We next prove ϕ′(t) > 0 for t ≥ 0.

Set k̃(t) = max(k, 0). Let φ be the solution to the problem

{
φ′′(t) + k̃(t)φ = 0, t > 0,
φ(0) = 0, φ′(0) = 1.

(2.32)

Inequality (2.25) means that

∫ ∞

0

tk̃(t) dt ≤ 1.(2.33)

By Proposition 4.2 of Green and Wu [13], it follows from (2.32) and (2.33) that

φ > 0 and φ′ > 0 on (0,∞).(2.34)
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In addition, Sturm’s theorem gives

ϕ ≥ φ > 0 on (0,∞)(2.35)

since k̃(t) ≥ k(t) for t ≥ 0. To complete our proof, by (2.34) it will suffice to prove
ϕ′ ≥ φ′ on (0,∞). Set u(t) = ϕ′φ− ϕφ′. By (2.29), (2.32), and (2.35), we obtain

u′(t) = ϕ′′φ− ϕφ′′ = (k̃ − k)ϕφ ≥ 0(2.36)

on (0,∞). It follows from (2.36) and u(0) = 0 that u(t) ≥ 0 on (0,∞). We then have,
from (2.34) and (2.35),

(
ϕ′

φ′

)′
=

1

φ′2 [(k̃ − k)ϕφ′ + k̃u(t)] ≥ 0(2.37)

on (0,∞). Inequality (2.37) gives ϕ′ ≥ φ′ on (0,∞) since ϕ′(0) = φ′(0) = 1.

2.2. Some multiplier identities.. To estimate inequality (1.49), we need some
multiplier identities which have been built for the classical wave equations; see Lions
[24], Lasiecka and Triggiani [22], and Chen [7]; for the Kirchhoff plates, see Lagnese
and Lions [21]; and for variably coefficient wave equations and Euler–Bernoulli equa-
tions see Yao [36], [38]. We now consider their generalizations for the shallow shell.

In the following, let vector field V be such that condition (1.40) holds. Denote
by lot(η) the lower order term with respect to the energy level, that is, for any ε > 0
there is cε > 0 such that

|lot(η)| ≤ ε

∫ T

0

E(t)dt+ cε

[
L(0) + L(T ) +

∫ T

0

L(t)dt

]
,(2.38)

where E(t) and L(t) are defined in (1.45) and (1.47), respectively.

Proposition 2.5. Let η = (W,w) solve problem (1.48) such that all the terms
in (2.39) and (2.40) below are well defined. Let f be a function on Ω. Then

∫
Q

f [|Wt|2 −B(η, η1)] dQ = −
∫

Σ

∂(Aη, fη1) dΣ+ lot(η);(2.39)

∫
Q

f [w2
t +γ|Dwt|2−B(η, η2)] dQ = −

∫
Σ

[
∂(Aη, fη2) + γfw

∂wtt
∂n

]
dΣ+lot(η),(2.40)

where η1, η2 are given by (1.46).

Proof. We multiply (1.48) by fη2. Then

(wt, fw)L2(Ω)|T0 −
∫
Q

fw2
t dQ−γ

∫ T

0

(∆wtt, fw)L2(Ω)dt

+

∫ T

0

(Aη, fη2)L2(Ω,Λ)×L2(Ω)dt = 0.(2.41)
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The third term equals

−γ(∆wt, fw)L2(Ω)|T0 + γ

∫ T

0

(∆wt, fwt)L2(Ω)dt

= γ(Dwt, D(fw))L2(Ω,Λ)|T0 − γ

∫
Q

〈Dwt, D(fwt)〉dQ

−γ
∫

Γ

fw
∂wt
∂n

dΓ|T0 + γ

∫
Σ

fwt
∂wt
∂n

dΣ

= −γ
∫
Q

f |Dwt|2dQ− γ

∫
Σ

fw
∂wtt
∂n

dΣ+ lot(η).(2.42)

The fourth term equals (using formula (1.29))∫
Q

fB(η, η2)dQ−
∫

Σ

∂(Aη, fη2)dΣ+ lot(η),(2.43)

since we have

D2(fw) = fD2w +Df ⊗Dw +Dw ⊗Df + wD2f,(2.44)

where “⊗ ” is the tensor product, and∫
Q

B(η, fη2)dQ = γ

∫
Q

a(ρ(η), ρ(fη2)) dQ =

∫
Q

fB(η, η2) dQ+ lot(η).(2.45)

Inserting (2.42) and (2.43) into (2.41), we obtain identity (2.40).
We multiply (1.48) by fη1 and obtain identity (2.39) through a similar computa-

tion.
Lemma 2.6. For any W , V ∈ X (M), we have

D(DVW ) = DV (DW ) +R(V, ·,W, ·) +DW (·, D·V ),(2.46)

where R(·, ·, ·, ·) is the tensor of curvature, given in (1.14), and “·” denotes the position
of variable.

Proof. Given x ∈M , let E1, E2 be a frame field normal at x. We then have, from
(1.14) and (1.13),

D(DVW )(Ei, Ej) = Ej(DVW (Ei)) = Ej(DW (Ei, V ))

= D2W (Ei, V, Ej) +DW (Ei, DEjV )

= D2W (Ei, Ej , V ) +RV Ej
W (Ei) +DW (Ei, DEj

V )

= DV (DW )(Ei, Ej) +R(V,Ej ,W,Ei) +DW (Ei, DEjV ), at x,(2.47)

since (DEj
Ei)(x) = 0 and (DV Ei)(x) =

∑2
k=1 〈V,Ek〉(DEk

Ei)(x) = 0 for 1 ≤ i,
j ≤ 2.

Identity (2.46) follows from (2.47).
Lemma 2.7. Let V ∈ X (Ω) be given. Set

G(V, η)(X,Y ) =
1

2
[DW (X,DY V ) +DW (Y,DXV )], X, Y ∈Mx, x ∈M.(2.48)

Then

Υ(m(η)) = DVΥ(η) +G(V, η) + l(η);(2.49)
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ρ(m(η)) = DV ρ(η) + ρ(η)(·, D·V ) + ρ(η)(D·V, ·) + l(η),(2.50)

where l(η) denote all the terms such that
∫ T
0
|l(η)|dt = lot(η).

Proof. First, by (1.22) and (2.46), we have

DVΥ(η)=
1

2
[DV (DW ) +DV (D

∗W )] + V (w)Π + wDVΠ

=
1

2
[D(DVW ) + (D(DVW ))∗ −R(V, ·,W, ·)−R(W, ·, V, ·)]

−G(V, η) + V (w)Π + wDVΠ = Υ(m(η))−G(V, η)− l(η),(2.51)

that is, identity (2.49), where

l(η) =
1

2
[R(V, ·,W, ·) +R(W, ·, V, ·)]− wDVΠ.(2.52)

Given x ∈ Ω, let E1, E2 be a frame field normal at x. By (1.13), we then have

D2(V (w))(Ei, Ej)= EjEi(Dw(V )) = Ej(D
2w(Ei, V ) +Dw(DEi

V ))

= D3w(Ei,W,Ej) +D2w(Ei, DEjV ) + Ej〈Dw,DEiV 〉
= DV (D

2w)(Ei, Ej) +R(Dw,Ei,W,Ej)

+D2w(Ei, DEjV ) + Ej〈Dw,DEi
V 〉 at x,(2.53)

since (DEi
Ej)(x) = 0 for 1 ≤ i, j ≤ 2. The last term in (2.53) can be computed as

follows:

Ej(DV (Dw,Ei))= D2V (Dw,Ei, Ej) +DV (DEj
Dw,Ei)

= lDwD
2V (Ei, Ej) +D2w(DEiV,Ej), at x.(2.54)

Inserting (2.54) into (2.53) yields

D2(V (w)) = DV (D
2w) +D2w(·, D·V ) +D2w(D·V, ·)− l(η),(2.55)

where

l(η) = −R(Dw, ·, V, ·)− lDwD
2V,(2.56)

that is, identity (2.50) since ρ(η) = −D2w.
Lemma 2.8. Let V ∈ X (Ω) be such that (1.40) holds. Then

B(η,m(η))=
1

2

∫
Γ

B(η, η)〈V, n〉 dΓ +

∫
Ω

a(Υ(η), G(V, η)) dx

+

∫
Ω

b[B(η, η2)−B(η, η1)] dx+ l(η).(2.57)

Proof. First, we compute
∫
Ω
a(Υ(η),Υ(m(η))dx.

By (2.49), we obtain

〈Υ(η),Υ(m(η))〉T 2
x
=

1

2
V (|Υ(η)|2T 2

x
) + 〈Υ(η), G(V, η)〉T 2

x
+ 〈Υ(η), l(η)〉T 2

x
(2.58)
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for x ∈ Ω. It follows from (2.58) and by divergence formula that∫
Ω

〈Υ(η),Υ(m(η))〉T 2
x
dx =

1

2

∫
Γ

|Υ(η)|2T 2
x
〈V, n〉 dΓ−

∫
Ω

b|Υ(η)|2T 2
x
dx

+

∫
Ω

〈Υ(η), G(V, η)〉T 2
x
dx+ l(η),(2.59)

since divV = 2b.
Given x ∈ Ω. Let E1, E2 be a frame field normal at x. We then have

V (trΥ(η)) =

2∑
i=1

DVΥ(η)(Ei, Ei) = trDVΥ(η) at x,(2.60)

since (DV Ei)(x) = 0 for i = 1, 2. From (2.49) and (2.60), an argument similar to
(2.59) gives∫

Ω

trΥ(η)trΥ(m(η)) dx =
1

2

∫
Γ

(trΥ(η))2〈V, n〉 dΓ−
∫

Ω

b(trΥ(η))2 dx

+

∫
Ω

trΥ(η)trG(V, η) dx+ l(η).(2.61)

Using (2.59), (2.61), and (1.26), we obtain the following identity:∫
Ω

a(Υ(η),Υ(m(η))) dx =
1

2

∫
Γ

a(Υ(η),Υ(η))〈V, n〉 dΓ−
∫

Ω

bB(η, η1) dx

+

∫
Ω

a(Υ(η), G(V, η)) dx+ l(η),(2.62)

since B(η, η1) = a(Υ(η),Υ(η)) + l(η).
We now compute

∫
Ω
γa(ρ(η), ρ(m(η)))dx.

Since ρ(η) is symmetric, we have by properties (2.1), (2.2), and identity (2.50)

〈ρ(η), ρ(m(η))〉T 2
x
=

1

2
V (|ρ(η)|2T 2

x
) + 2b|ρ(η)|2 + l(η);(2.63)

trρ(η)trρ(m(η)) =
1

2
V ((trρ(η))2) + 2b(trρ(η))2 + l(η).(2.64)

Combining (2.63) with (2.64) we obtain the following identity by divergence formula:∫
Ω

γa(ρ(η), ρ(m(η))) dx =
1

2

∫
Γ

γa(ρ(η), ρ(η))〈V, n〉 dΓ

+

∫
Ω

bB(η, η2) dx+ l(η).(2.65)

Adding up (2.62) and (2.65), we obtain identity (2.57).
Proposition 2.9. Let η = (W,w) solve problem (1.48). Then

1

2

∫
Σ

[|ηt|2 + γ|Dwt|2 −B(η, η)]〈V, n〉 dΣ

+

∫
Σ

[
∂(Aη,m(η)) + γV (w)

∂wtt
∂n

]
dΣ

= Z|T0 +

∫
Q

b[|ηt|2 +B(η, η2)−B(η, η1)] dQ

+

∫
Q

a(Υ(η), G(V, η)) dQ+ lot(η),(2.66)
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where

Z = (ηt,m(η))L2(Ω,Λ)×L2(Ω) + γ(Dwt, D(V (w)))L2(Ω).(2.67)

Proof. We multiply (1.48) by m(η). Then

(ηt,m(η))L2(Ω,Λ)×L2(Ω)|T0 −
∫ T

0

(ηt,m(ηt))L2(Ω,Λ)×L2(Ω) dt

−γ
∫ T

0

(∆wtt, V (w))L2(Ω)dt+

∫ T

0

(Aη,m(η))L2(Ω,Λ)×L2(Ω) dt = 0.(2.68)

Let us compute each term in (2.68) separately.
By the divergence formula

second term = −1

2

∫
Q

V (|ηt|2)dQ = −1

2

∫
Σ

|ηt|2〈V, n〉dΣ+

∫
Q

b|ηt|2dQ.(2.69)

By Yao [36, Lemma 2.1] and (1.40), we have

〈Dwt, D(V (wt))〉= DV (Dwt, Dwt) +
1

2
div(|Dwt|2V )− 1

2
|Dwt|2divV

=
1

2
div(|Dwt|2V )(2.70)

since divV = 2b. It follows from (2.70) and Green’s formula that

−(∆wt, V (wt))L2(Ω) =
1

2

∫
Γ

|Dwt|2〈V, n〉 dΓ−
∫

Γ

V (wt)
∂wt
∂n

dΓ.(2.71)

By (2.71), we obtain

third term= −γ(∆wt, V (w))L2(Ω)|T0 + γ

∫ T

0

(∆wt, V (wt))L2(Ω)dt

= γ(Dwt, D(V (w)))L2(Ω,Λ)|T0 −
γ

2

∫
Σ

|Dwt|2〈V, n〉dΣ

−γ
∫

Σ

V (w)
∂wtt
∂n

dΣ.(2.72)

By formulae (1.29) and (2.57), we have

third term=

∫ T

0

B(η,m(η)) dt−
∫

Σ

∂(Aη,m(η)) dΣ

=
1

2

∫
Σ

B(η, η)〈V, n〉 dΣ−
∫

Σ

∂(Aη,m(η)) dΣ+ lot(η)

+

∫
Q

b[B(η, η2)−B(η, η1)] dQ+

∫
Q

a(Υ(η), G(V, η)) dQ.(2.73)

Adding up all the terms, we obtain identity (2.66).
Lemma 2.10. Let Z be given in (2.67). Then, for any ε > 0, there is cε > 0,

independent of η, such that

|Z(t)| ≤ (λ0σ0 + ε)E(t) + cεL(t),(2.74)
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where λ0 and σ0 are defined in (1.39) and (1.43), respectively.
Proof. Given ε > 0, it is easily checked that there is cε > 0 such that

|(wt, V (w))L2(Ω) + γ(Dw,DDwtV )L2(Ω,Λ)| ≤ εE(t) + cεL(t).(2.75)

Therefore by formula D(V (w)) = Dw(D·V ) + lVD
2w and (2.75), we obtain the

following estimate:

|Z|= |(Wt, DVW )L2(Ω,Λ) + γ(Dwt, lVD
2w)L2(Ω,Λ)

+(wt, V (w))L2(Ω) + γ(Dw,DDwtV )L2(Ω,Λ)|
≤ σ0[‖Wt‖L2(Ω,Λ)‖DW‖L2(Ω,T 2) + γ‖Dwt‖L2(Ω,Λ)‖D2w‖L2(Ω,T 2)]

+εE(t) + cεL(t)

≤ (σ0λ0 + ε)E(t) + cεL(t).(2.76)

Lemma 2.11. Let V ∈ X (Ω) be such that conditions (1.40) and (1.42) hold. Then

∫
Ω

a(Υ(η1), G(V, η1)) dx ≥ σ1

∫
Ω

B(η1, η1) dx.(2.77)

Proof. It is easily checked that condition (1.40) implies

DV = bg + aE , x ∈ Ω,(2.78)

where g is the induced metric of M in R
3 and E the volume element of M .

Given x ∈ Ω, since Υ(η1) is symmetric, we may take e1, e2, as an orthonormal
basis of Mx, with the positive orientation such that

DW (e1, e2) +DW (e2, e1) = 0 atx.(2.79)

Formula (2.78) implies

De1V = be1 − ae2, De2V = ae1 + be2 atx.(2.80)

Denote Wij = DW (ei, ej) for 1 ≤ i, j ≤ 2. Then formulae (2.80) and (2.48) yield

G(V, η1)(e1, e1) = DW (e1, De1V ) = bW11 − aW12;(2.81)

G(V, η1)(e2, e2) = DW (e2, De2V ) = aW21 + bW22 atx.(2.82)

It follows from (2.81), (2.82), and (2.79) that

〈Υ(η1), G(V, η1)〉T 2
x
= b(W 2

11 +W 2
22) + aW21(W11 +W22).(2.83)

Similarly, we may obtain

trΥ(η1)trG(V, η1) = b(W11 +W22)
2 + 2aW21(W11 +W22) atx.(2.84)

Thus relations (2.83) and (2.84) yield

a(Υ(η1), G(V, η1))= ba(Υ(η1),Υ(η1)) + (1 + µ)aW21(W11 +W22)

≥ ba(Υ(η1),Υ(η1))− 1 + µ

2
|a||DW |2T 2

x
.(2.85)
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By inequality (1.39) and (2.85), we obtain inequality (2.77).
Proposition 2.12. Let η = (W,w) ∈ H1(Ω,Λ)×H2(Ω) and Γ̂ ⊂ Γ be relatively

open such that

W |Γ̂ = 0, w|Γ̂ =
∂w

∂n
|Γ̂ = 0.(2.86)

Then

(i) B(η, η) = γ(∆w)2 + (DW (n, n))
2
+

1− µ

2
(DW (τ, n))

2
on Γ̂;(2.87)

(ii) ∂(Aη,m(η)) = B(η, η)〈V, n〉 on Γ̂.(2.88)

Proof. Given x ∈ Γ̂, conditions W |Γ̂ = w|Γ̂ = 0 imply

DτW = 0;(2.89)

Υ(η)(τ, τ) = DW (τ, τ) = 〈DτW, τ〉 = 0;(2.90)

Υ(η)(n, τ) =
1

2
[DW (τ, n) + 〈DτW,n〉] = 1

2
DW (τ, n);(2.91)

Υ(η)(n, n) = DW (n, n).(2.92)

It follows from (2.89)–(2.92) that

|Υ(η)|2T 2
x
= (DW (n, n))2 +

1

2
(DW (τ, n))2; (trΥ(η))2 = (DW (n, n))2,(2.93)

so that we obtain

a(Υ(η),Υ(η)) = (DW (n, n))2 +
1− µ

2
(DW (τ, n))2 at x.(2.94)

A similar computation yields

a(ρ(η), ρ(η)) = (∆w)2 at x.(2.95)

Inserting (2.94) and (2.95) into (1.25), we obtain (2.87).
By Yao [38, Lemma 2.5] and (2.86), we have

∂(V (w))

∂n
= 〈V, n〉∆w and V (w) = 〈Dw, V 〉 = 0 on Γ̂.(2.96)

Since DVW = 〈V, n〉DnW + 〈V, τ〉DτW = 〈V, n〉DnW , we obtain

〈DVW,n〉 = 〈V, n〉DW (n, n) and 〈DVW, τ〉 = 〈V, n〉DW (τ, n) on Γ̂.(2.97)

In addition, condition (2.86) implies

B1(W,w) = (1− µ)DW (n, n) + µDW (n, n) + µ〈DτW, τ〉 = DW (n, n);(2.98)

B2(W,w) =
1− µ

2
[DW (τ, n) + 〈DτW,n〉] = 1− µ

2
DW (τ, n);(2.99)

B3w = −D2w(τ, τ) = −〈Dτ (Dw), τ〉 = 0;(2.100)
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B4w =
∂

∂τ

(
D2w(τ, n)

)
=

∂

∂τ

(
D2w(n, τ)

)
=

∂

∂τ
(〈Dτ (Dw), n〉) = 0.(2.101)

Inserting (2.96)–(2.101) into (1.30), we obtain (2.88) by (i).
Proposition 2.13. Let λ be a complex number and Γ̂ ⊂ Γ be relatively open.

Let η = (W,w) solve the problem

λ2η − λ2γ(0,∆w) +Aη = 0 on Ω(2.102)

subject to boundary conditions

{
W = DW = 0 on Γ̂,

w =
∂w

∂n
= ∆w =

∂∆w

∂n
= 0 on Γ̂.

(2.103)

Then

W = w = 0 on Ω.(2.104)

Proof. It will suffice to show that this uniqueness result is the Cauchy problem
consisting of a system of three equations of the fourth order with the same principal
part ∆2, where ∆ is the Laplacian on manifold M . Therefore, this proposition is
covered by Shirota [27] .

Denote by LF (η) some terms for which there is constant C such that

|LF (η)|2 ≤ C

3∑
i=0

(|DiW |2 + |Diw|2) on Ω.(2.105)

It is easily checked from (2.102) and (1.31) that we have the following equation
on component W :

1− µ

2
δdW + dδW = (k − µk − λ2)W + F(w).(2.106)

Applying dδ to both sides of equation (2.106), we obtain

dδdδW = dδ[(k − µk − λ2)W + F(w)],(2.107)

since δ2 = 0. Similarly, it follows that

δdδdW =
2

1− µ
δd[(k − µk − λ2)W + F(w)].(2.108)

Relations (2.107) and (2.108) yield

∆2W = LF (η),(2.109)

where ∆ is the Hodge–Laplacian, defined by ∆ = δd+ dδ.
Let (x1, x2) be a coordinate and W = (w1, w2) in this coordinate. It is easy to

check that

∆2W = (∆2w1,∆
2w2) + LF (w1, w2).(2.110)
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By (2.109) and (2.110), system (2.102) is equivalent to the following




∆2w1 = LF (w1, w2, w),
∆2w2 = LF (w1, w2, w),
∆2w = LF (w1, w2, w).

(2.111)

To complete the proof, we have to show that there are the Cauchy data on Γ̂
enough for problem (2.111). For this purpose, by boundary conditions (2.103), it will
suffice to show

D2W |Γ̂ = D3W |Γ̂ = 0.(2.112)

Given x ∈ Γ̂, let E1, E2 be a frame field normal at x such that E1(x) = n and
E2(x) = τ . By (2.103), we obtain at x

D2W (Ei, Ej , τ) = τ(DW (Ei, Ej))−DW (DτEi, Ej)−DW (Ei, DτEj) = 0,(2.113)

for 1 ≤ i, j ≤ 2. It follows from (1.13), (2.103), and (2.113) that at x

D2W (Ei, τ, Ej) = D2W (Ei, Ej , τ) +R(τ, Ej ,W,Ei) = 0,(2.114)

for 1 ≤ i, j ≤ 2.
By Wu [35, pp. 305–306] and (2.113–2.114), we have at x

δdW= −
2∑
i=1

DEiDEiW +

2∑
ij=1

〈DEjDEiW,Ej〉Ei

= −
2∑
i=1

[D2W (n,Ei, Ei)n+D2W (τ, Ei, Ei)τ ] +

2∑
i=1


 2∑
j=1

D2W (Ej , Ei, Ej)


Ei

= −D2W (τ, n, n)τ ;

(2.115)

dδW= −
2∑
i=1


 2∑
j=1

D2W (Ej , Ej , Ei)


Ei = −D2W (n, n, n)n.

(2.116)

After inserting (2.115) and (2.116) into (2.106), we obtain by (2.103)

−D2W (n, n, n)n− (1− µ)D2W (τ, n, n)

2
τ = (k − µk − λ2)W + F(w) = 0(2.117)

at x, that is, D2W (n, n, n) = D2W (τ, n, n) = 0, which implies

D2W = 0 at x.(2.118)

Similarly, we may obtain D3W |Γ̂ = 0.
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2.3. Proofs of main results.
Proof of Theorem 1.1. Since Υ(η) = Υ(η1)+ l(η) and G(V, η) = G(V, η1), inequal-

ity (2.77) yields

∫
Ω

a(Υ(η), G(V, η)) dx ≥ σ1

∫
Ω

B(η, η1) dx+ l(η).(2.119)

In addition, it is easily checked that B(η1, η2) = l(η) so that we have

B(η, η2) = B(η2, η2) + l(η).(2.120)

We now are ready to establish inequality (1.49).
By (1.50), (2.66), and (2.119), we obtain the following:

SB|Σ= Z|T0 +

∫
Q

b[|ηt|2 +B(η, η2)−B(η, η1)] dQ

+

∫
Q

a(Υ(η), G(V, η)) dQ+ lot(η)

+
1

2

∫
Σ

[
∂(Aη,−bη2 + hη1)− γbw

∂wtt
∂n

]
dΣ

≥ Z|T0 +

∫
Q

b(|Wt|2 + w2
t ) dQ

+

∫
Q

bB(η, η2) dQ+

∫
Q

(σ1 − b)B(η, η1) dQ+ lot(η)

+
1

2

∫
Σ

[
∂(Aη,−bη2 + hη1)− γbw

∂wtt
∂n

]
dΣ.(2.121)

Now rewrite the sum of the second, the third, and the fourth terms in the right-
hand side of inequality (2.121), as follows in terms of identities (2.39) and (2.40):

∫
Q

b(|Wt|2 + w2
t ) dQ+

∫
Q

bB(η, η2) dQ+

∫
Q

(σ1 − b)B(η, η1) dQ

= σ1

∫ T

0

E(t)dt+
1

2

∫
Q

(b− σ1)[w
2
t + γ|Dwt|2 +B(η2, η2)] dQ+

∫
Q

bw2
t dQ

(2.122)

+
1

2

∫
Q

(2b− σ1)[|Wt|2 −B(η, η1)] dQ+
1

2

∫
Q

b[B(η, η2)− w2
t − γ|Dwt|2] dQ+ lot(η)

≥ σ1

∫ T

0

E(t)dt+
1

2

∫
Σ

[
∂(Aη, bη2 − hη1) + γbw

∂wtt
∂n

]
dΣ+ lot(η),

(2.123)

where h = 2b − σ1. Inserting (2.123) into (2.121), we obtain the desired inequality
(1.49) by means of inequality (2.74).

Proofs of Theorems 1.2 and 1.3. By a compactness/uniqueness argument as in
Bardos, Lebeau, and Rauch [1] or in Zuazua [41], the lower order terms in estimate
(1.49) can be absorbed and we obtain both inequalities (1.56) and (1.67), since in
both cases the uniqueness we need is covered by Proposition 2.13. It is mentioned
that in both cases we also have E(t) = E(0).
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Abstract. In this paper the theory of evolution semigroups is developed and used to provide a
framework to study the stability of general linear control systems. These include autonomous and
nonautonomous systems modeled with unbounded state-space operators acting on Banach spaces.
This approach allows one to apply the classical theory of strongly continuous semigroups to time-
varying systems. In particular, the complex stability radius may be expressed explicitly in terms of
the generator of an (evolution) semigroup. Examples are given to show that classical formulas for
the stability radius of an autonomous Hilbert-space system fail in more general settings. Upper and
lower bounds on the stability radius are proven for Banach-space systems. In addition, it is shown
that the theory of evolution semigroups allows for a straightforward operator-theoretic analysis of
internal stability as determined by classical frequency-domain and input-output operators, even
for nonautonomous Banach-space systems. In particular, for the nonautonomous setting, internal
stability is shown to be equivalent to input-output stability for stabilizable and detectable systems.
For the autonomous setting, an explicit formula for the norm of input-output operator is given.
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1. Introduction. Presented here is a study of stability of infinite-dimensional
linear control systems which is based on the relatively recent development of the
theory of evolution semigroups. These semigroups have been used in the study of
exponential dichotomy of time-varying differential equations and more general hy-
perbolic dynamical systems; see [7, 23, 24, 27, 29, 34, 43] and the bibliographies
therein. The intent of this paper is to show how the theory of evolution semigroups
can be used to provide a clarifying perspective, and prove new results, on the uniform
exponential stability for general linear control systems, ẋ(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t), t ≥ 0. The operators A(t) are generally unbounded operators on
a Banach space X, while the operators B(t) and C(t) may act on Banach spaces U
and Y , respectively. In addressing the general settings, difficulties arise both from the
time-varying aspect and from a loss of Hilbert-space properties. This presentation,
however, provides some relatively simple operator-theoretic arguments for properties
that extend classical theorems of autonomous systems in finite dimensions. The topics
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covered here include characterizing internal stability of the nominal system in terms
of appropriate input-state-output operators and, subsequently, using these properties
to obtain new explicit formulas for bounds on the stability radius. Nonautonomous
systems are generally considered, but some results apply only to autonomous ones,
such as the upper bound for the stability radius (section 4.3), the formula for the norm
of the input-output operator in Banach spaces (section 4.4), and a characterization
of stability that is related to this formula (section 5.2).

Although practical considerations usually dictate that U and Y are Hilbert spaces
(indeed, finite dimensional), the Banach-space setting addressed here may be moti-
vated by the problem of determining optimal sensor (or actuator) location. For this,
it may be natural to consider U = X and B = IX (or Y = X and C = IX) [5]; if
the natural state space X is a Banach space, then, as will be shown in this paper,
Hilbert-space characterizations of internal stability or its robustness do not apply. We
also show that even in the case of Hilbert spaces U and Y , known formulas for the
stability radius involving the spaces L2(R+, U) and L

2(R+, Y ) do not apply if the L2

norm is replaced by, say, the L1 norm—see the examples in subsection 4.5. In addition
to the general setting of nonautonomous systems on Banach spaces, autonomous and
Hilbert-space systems are considered.

For the autonomous case, the primary observation we make about general Banach-
space settings versus the classical L2 and Hilbert-space setting can be explained using
the notion of Lp–Fourier multipliers. For this, let H(s) = C(A − is)−1B, s ∈ R,
denote the transfer function, and let F denote the Fourier transform. The transfer
function H is said to be an Lp–Fourier multiplier if the operator u �→ F−1H(·)Fu
can be extended from the Schwartz class of rapidly decaying U -valued functions to
a bounded operator from Lp(R;U) to Lp(R;Y ); see, e.g., [1] for the definitions. As
shown in Theorem 4.11, the norm of this operator is equal to the norm of the input-
output operator. If U and Y are Hilbert spaces and p = 2, then H is an L2–Fourier
multiplier if and only if ‖H(·)‖ is bounded on R; see formula (4.20). For Banach
spaces and/or p �= 2, this latter condition is necessary but not sufficient for H to
be an Lp–Fourier multiplier. As a result, our formula (4.18) for the norm of the
input-output operator is more involved.

To motivate the methods, recall Lyapunov’s stability theorem which says that if A
is a bounded linear operator onX and if the spectrum of A is contained in the open left
half of the complex plane, then the solution of the autonomous differential equation
ẋ(t) = Ax(t) on X is uniformly exponentially stable; equivalently, the spectrum
σ(etA) is contained in the open unit disk {z ∈ C : |z| < 1} for t > 0. This is
a consequence of the fact that when A is a bounded operator, then the spectral
mapping theorem holds: σ(etA) \ {0} = etσ(A), t �= 0. Difficulties with Lyapunov’s
theorem arise when the operators A are allowed to be unbounded. In particular,
it is well known that there exist strongly continuous semigroups {etA}t≥0 that are
not uniformly exponentially stable even though Reλ ≤ ω < 0 for all λ ∈ σ(A); see,
e.g., [2, 29, 41]. For nonautonomous equations the situation is worse. Indeed, even
for finite-dimensional X it is possible for the spectra of A(t) to be the same for all
t > 0 and contained in the open left half-plane, yet the corresponding solutions to
ẋ(t) = A(t)x(t) are not uniformly exponentially stable (see [15, Ex. 7.1] for a classical
example). In the development that follows we plan to show how these difficulties
can be overcome by the construction of an “evolution semigroup.” This is a family
of operators defined on a superspace of functions from R into X, such as Lp(R, X),
1 ≤ p <∞, or C0(R, X).
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Section 2 sets up the notation and provides background information. Section 3
presents the basic properties of the evolution semigroups. Included here is the prop-
erty that the spectral mapping theorem always holds for these semigroups when they
are defined on X-valued functions on the half-line, such as Lp(R+, X). A consequence
of this is a characterization of exponential stability for nonautonomous systems in
terms of the invertibility of the generator Γ of the evolution semigroup. This operator
and its role in determining exponential stability is the basis for many of the subse-
quent developments. In particular, the semigroup {etA}t≥0 is uniformly exponentially
stable provided Re λ < 0 for all λ ∈ σ(Γ).

Section 4 addresses the topic of the (complex) stability radius; that is, the size of
the smallest disturbance, ∆(·), under which the perturbation, ẋ(t) = (A(t)+∆(t))x(t),
of an exponentially stable system, ẋ(t) = A(t)x(t), loses exponential stability. Re-
sults address structured and unstructured perturbations of autonomous and nonau-
tonomous systems in both Banach- and Hilbert-space settings. Examples are given
which highlight some important differences between these settings. Also included in
this section is a discussion about the transfer function for infinite-dimensional time-
varying systems. This concept arises naturally in the context of evolution semigroups.

In section 5 the explicit relationship between internal and external stability is
studied for general linear systems. This material expands on the ideas begun in [37].
A classical result for autonomous systems in Hilbert space is the fact that exponential
stability of the nominal system (internal stability) is, under the hypotheses of stabiliz-
ability and detectability, equivalent to the boundedness of the transfer function in the
right half-plane (external stability). Such a result does not apply to nonautonomous
systems, and a counterexample shows that this property fails to hold for Banach-
space systems. Properties from section 4 provide a natural Banach-space extension
of this result: the role of transfer function is replaced by the input-output operator.
Moreover, for autonomous systems we provide an explicit formula relating the norm
of this input-output operator to that of the transfer function. Finally, we prove two
theorems—one for nonautonomous and one for autonomous systems—which charac-
terize internal stability in terms of the various input-state-output operators.

This introduction concludes with a brief synopsis of the main results. The charac-
terization of uniform exponential stability in terms of an evolution semigroup and its
generator is given in Theorem 3.2, Theorem 3.5, and Corollary 3.6. Although these
results are essentially known, the proofs are approached in a new way. In particular,
Theorem 3.5 identifies the operator G = −Γ−1 used to determine stability throughout
the paper. Theorem 4.2 records the main observation that the input-output operator,
L = CGB, for a general nonautonomous system is related to the inverse of the genera-
tor of the evolution semigroup. A very short proof of the known fact that the stability
radius for such a system is bounded from below by ‖L‖−1 is also provided here. The
upper bound for the stability radius, being given in terms of the transfer function, ap-
plies only to autonomous systems and is proven in subsection 4.3. The upper bound,
as identified here for Banach spaces, seems to be new although our proof is based on
the idea of the Hilbert-space result of [18, Thm. 3.5]. In subsection 4.3 we also intro-
duce the pointwise stability radius and dichotomy radius. Estimates for the former are
provided by Theorems 4.3 and 4.4 while the latter is addressed in Lemma 4.5. Exam-
ples 4.13 and 4.15 show that, for autonomous Banach-space systems, both inequalities
for the upper and lower bounds on the stability radius (see Theorem 4.1) can be strict.
In view of the possibility of the strict inequality ‖L‖ > sups∈R

‖C(A− is)−1B‖, The-
orem 4.11 provides a new Banach-space formula for ‖L‖ in terms of A, B, and C. In
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section 5 this expression for ‖L‖ is used to relate state-space versus frequency-domain
stability—concepts which are not equivalent for Banach-space systems. A special case
of this expression gives a new formula for the growth bound of a semigroup on a Ba-
nach space; see Theorem 5.4 and the subsequent paragraph. Finally, Theorem 5.3
extends a classical characterization of stability for stabilizable and detectable control
systems as it applies to nonautonomous Banach-space settings.

2. Notation and preliminaries. Throughout the paper, L(X,Y ) will denote
the set of bounded linear operators between complex Banach spaces X and Y . If A
is a linear operator on X, σ(A) will denote the spectrum of A, ρ(A) will denote the
resolvent set of A relative to L(X) = L(X,X), and ‖A‖• = ‖A‖•,X := inf{‖Ax‖ : x ∈
Dom(A), ‖x‖ = 1}. In particular, if A is invertible in L(X), ‖A‖• = 1/‖A−1‖L(X).
Also, let C+ = {λ ∈ C : Re λ > 0}.

If A generates a strongly continuous (or C0) semigroup {etA}t≥0 on a Banach
space X, the following notation will be used: s(A) = sup{Reλ : λ ∈ σ(A)} denotes the
spectral bound; s0(A) = inf{ω ∈ R : {λ : Reλ > ω} ⊂ ρ(A) and supReλ>ω ‖(A −
λ)−1‖ < ∞} is the abscissa of uniform boundedness of the resolvent; and ω0(e

tA) =
inf{ω ∈ R : ‖etA‖ ≤ Metω for some M ≥ 0 and all t ≥ 0} denotes the growth
bound of the semigroup. In general, s(A) ≤ s0(A) ≤ ω0(e

tA) (see, e.g., [29]) with
strict inequalities possible; see [2, 29, 41] for examples. However, when X is a Hilbert
space, the following spectral mapping theorem of Gearhart holds (see, e.g., [2, p. 95]
or [29, 33]).

Theorem 2.1. If A generates a strongly continuous semigroup {etA}t≥0 on a
Hilbert space, then s0(A) = ω0(e

tA). Moreover, 1 ∈ ρ(e2πA) if and only if iZ ⊂ ρ(A)
and supk∈Z

‖(A− ik)−1‖ <∞.
In particular, this result shows that on a Hilbert space X the semigroup {etA}t≥0

is uniformly exponentially stable if and only if supλ∈C+
‖(A− λ)−1‖ <∞ [19].

Now consider operators A(t), t ≥ 0, with domain Dom(A(t)) in a Banach space
X. If the abstract Cauchy problem

ẋ(t) = A(t)x(t), x(τ) ∈ Dom(A(τ)), t ≥ τ ≥ 0,(2.1)

is well-posed in the sense that there exists an evolution (solving) family of opera-
tors U = {U(t, τ)}t≥τ on X which gives a differentiable solution, then x(·) : t �→
U(t, τ)x(τ), t ≥ τ, in R is differentiable, x(t) is in Dom(A(t)) for t ≥ 0, and (2.1)
holds. The precise meaning of the term evolution family used here is as follows.

Definition 2.2. A family of bounded operators {U(t, τ)}t≥τ on X is called an
evolution family if

(i) U(t, τ) = U(t, s)U(s, τ) and U(t, t) = I for all t ≥ s ≥ τ ;
(ii) for each x ∈ X the function (t, τ) �→ U(t, τ)x is continuous for t ≥ τ .

An evolution family {U(t, τ)}t≥τ is called exponentially bounded if, in addition,
(iii) there exist constants M ≥ 1, ω ∈ R such that

‖U(t, τ)‖ ≤Meω(t−τ), t ≥ τ.

Remarks 2.3.
(a) An evolution family {U(t, τ)}t≥τ is called uniformly exponentially stable if in

part (iii), ω can be taken to be strictly less than zero.
(b) Evolution families appear as solutions for abstract Cauchy problems (2.1).

Since the definition requires that (t, τ) �→ U(t, τ) is merely strongly continu-
ous, the operators A(t) in (2.1) can be unbounded.
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(c) In the autonomous case where A(t) ≡ A is the infinitesimal generator of a
strongly continuous semigroup {etA}t≥0 on X, then U(t, τ) = e(t−τ)A for
t ≥ τ is a strongly continuous exponentially bounded evolution family.

(d) The existence of a differentiable solution to (2.1) plays little role in this paper,
so the starting point will usually not be (2.1), but rather the existence of an
exponentially bounded evolution family.

In the next section we will define the evolution semigroup relevant to our interests
for the nonautonomous Cauchy problem (2.1) on the half-line R+ = [0,∞). For now,
we begin by considering the autonomous equation ẋ(t) = Ax(t), t ∈ R, where A is
the generator of a strongly continuous semigroup {etA}t≥0 on X. If FR is a space of
X-valued functions, f : R → X, define

(Et
R
f)(τ) = etAf(τ − t) for f ∈ FR.(2.2)

If FR = Lp(R, X), 1 ≤ p < ∞, or FR = C0(R, X), the space of continuous functions
vanishing at infinities (or another Banach function space as in [34]) this defines a
strongly continuous semigroup of operators {Et

R
}t≥0 whose generator will be denoted

by ΓR. In the case FR = Lp(R, X), ΓR is the closure (in Lp(R, X)) of the operator
−d/dt+A, where (Af)(t) = Af(t) and

Dom(−d/dt + A) = Dom(−d/dt) ∩Dom(A)
= {v ∈ Lp(R, X) : v ∈ AC(R, X), v′ ∈ Lp(R, X),

v(s) ∈ Dom(A) for almost every s, and −v′ +Av ∈ Lp(R, X)}.
The important properties of this “evolution semigroup” are summarized in the fol-
lowing remarks; see [23] and also further developments in [29, 34, 43]. The unit circle
in C is denoted here by T = {z ∈ C : |z| = 1}.

Remarks 2.4. The spectrum σ(Et
R
) for t > 0 is invariant with respect to rotations

centered at the origin, and σ(ΓR) is invariant with respect to translations along iR.
Moreover, the following are equivalent.

(i) σ(etA) ∩ T = ∅ on X.
(ii) σ(Et

R
) ∩ T = ∅ on FR.

(iii) 0 ∈ ρ(ΓR) on FR. As a consequence,

σ(Et
R
) \ {0} = etσ(ΓR), t > 0.(2.3)

Note that {Et
R
}t≥0 has the spectral mapping property (2.3) on FR even if the

underlying semigroup {etA}t≥0 does not have the spectral mapping property on X.
In the latter case, it may be that the exponential stability of the solutions to ẋ = Ax
on R are not determined by the spectrum of A. However, such stability is determined
by the spectrum of ΓR. This is made explicit by the following corollary of Remarks 2.4.
The spectral bound s(ΓR) and the growth bound ω0(E

t
R
) for the evolution semigroup

coincide and are equal to the growth bound of {etA}t≥0 :

s(ΓR) = ω0(E
t
R
) = ω0(e

tA).

One of the difficulties related to nonautonomous problems is that their associ-
ated evolution families are two-parameter families of operators. From this point of
view, it would be of interest to define a one-parameter semigroup that is associated
to the solutions of the nonautonomous Cauchy problem (2.1). For such a semigroup
to be useful, its properties should be closely connected to the asymptotic behavior of
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the original nonautonomous problem. Ideally, this semigroup would have a generator
that plays the same significant role in determining the stability of the solutions as
the operator A played in Lyapunov’s classical stability theorem for finite-dimensional
autonomous systems ẋ = Ax. This can, in fact, be done, and the operator of in-
terest is the generator of the following evolution semigroup that is induced by the
two-parameter evolution family: if U = {U(t, τ)}t≥τ is an evolution family, define
operators Et

R
, t ≥ 0, on FR = Lp(R, X) or FR = C0(R, X) by

(Et
R
f)(τ) = U(τ, τ − t)f(τ − t), τ ∈ R, t ≥ 0.(2.4)

When U is exponentially bounded, this defines a strongly continuous evolution semi-
group on FR whose generator will be denoted by ΓR. As shown in [23] and [34], the
spectral mapping theorem (2.3) holds for this semigroup. Moreover, the existence of
an exponential dichotomy for solutions to ẋ(t) = A(t)x(t), t ∈ R, is characterized by
the condition that ΓR is invertible on FR. Note that in the autonomous case where
U(t, τ) = e(t−τ)A, this is the evolution semigroup defined in (2.2). In the nonau-
tonomous case, the construction of an evolution semigroup is a way to “autonomize”
a time-varying Cauchy problem by replacing the time-dependent differential equation
ẋ = A(t)x on X by an autonomous differential equation ḟ = Γf on a superspace of
X-valued functions.

3. Evolution semigroups and Cauchy problems. In order to tackle the
problem of characterizing the exponential stability of solutions to the nonautonomous
Cauchy problem (2.1) on the half-line R+, the following variant of the above evolu-
tion semigroup is needed. As before, let {U(t, τ)}t≥τ be an exponentially bounded
evolution family, and define operators Et, t ≥ 0, on functions f : R+ → X by

(Etf)(τ) =

{
U(τ, τ − t)f(τ − t), 0 ≤ t ≤ τ,
0, 0 ≤ τ < t.(3.1)

This defines a strongly continuous semigroup of operators on the space of functions
F = Lp(R+, X), and the generator of this evolution semigroup will be denoted by Γ.
This also defines a strongly continuous semigroup on C00(R+, X) = {f ∈ C0(R+, X) :
f(0) = 0}. For more information on evolution semigroups on the half-line, see also
[27, 28, 29, 43].

3.1. Stability. The primary goal of this subsection is to identify the useful prop-
erties of the semigroup of operators defined in (3.1) which will be used in the subse-
quent sections. In particular, the following spectral mapping theorem will allow this
semigroup to be used in characterizing the exponential stability of solutions to (2.1)
on R+. See also [34, 43] for different proofs. The spectral symmetry portion of this
theorem is due to Rau [38].

Theorem 3.1. Let F denote C00(R+, X) or Lp(R+, X). The spectrum σ(Γ) is
a half-plane, the spectrum σ(Et) is a disk centered at the origin, and

etσ(Γ) = σ(Et) \ {0}, t > 0.(3.2)

Proof. The arguments for the two cases F = C00(R+, X) and F = Lp(R+, X) are
similar, so only the first one is considered here.

We first note that σ(Γ) is invariant under translations along iR, and σ(Et) is
invariant under rotations about zero. This spectral symmetry is a consequence of the
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fact that for ξ ∈ R,

Eteiξ·f = eiξ·e−iξtEtf, and Γeiξ· = eiξ·(Γ− iξ).(3.3)

The inclusion etσ(Γ) ⊆ σ(Et) \ {0} follows from the standard spectral inclusion
for strongly continuous semigroups [2]. In view of the spectral symmetry, it suffices to
show that σ(Et)∩T = ∅ whenever 0 ∈ ρ(Γ). To this end, we replace the Banach space
X in Remarks 2.4 by C00(R+, X) and consider two semigroups {Ẽt}t≥0 and {Et}t≥0

with generators Γ̃ and G, respectively, acting on the space C0(R, C00(R+, X)). These
semigroups are defined by

(Ẽth)(τ, θ) =

{
U(θ, θ − t)h(τ − t, θ − t) for θ ≥ t,
0 for 0 ≤ θ < t,

(Eth)(τ, θ) =
{
U(θ, θ − t)h(τ, θ − t) for θ ≥ t,
0 for 0 ≤ θ ≤ t,

where τ ∈ R and h(τ, ·) ∈ C00(R+, X). Note that if H ∈ C0(R, C00(R+, X)), then
h(τ, ·) := H(τ) ∈ C00(R+, X) and we recognize {Ẽt}t≥0 as the evolution semigroup
induced by {Et}t≥0, as in (2.2):

(ẼtH)(τ) = EtH(τ − t).
Also, the semigroup {Et}t≥0 is the family of multiplication operators given by

(EtH)(τ) = EtH(τ).

The generator G of this semigroup is the operator of multiplication by Γ: (GH)(τ) =
Γ(H(τ)), where H(τ) ∈ Dom(Γ) for τ ∈ R. In particular, if 0 ∈ ρ(Γ) on F , then
(G−1H)(τ) = Γ−1(H(τ)), and so 0 ∈ ρ(G).

Let J denote the isometry on C0(R, C00(R+, X)) given by (Jh)(τ, θ) = h(τ +θ, θ)
for τ ∈ R, θ ∈ R+. Then J satisfies the identity

(EtJh)(τ, θ) = (JẼth)(τ, θ), τ ∈ R, θ ∈ R+.

It follows that GJH = J Γ̃H for H ∈ Dom(Γ̃), and J−1GH = Γ̃J−1H for H ∈
Dom(G). Consequently, σ(G) = σ(Γ̃) on C0(R, C00(R+, X)). In particular, 0 ∈ ρ(Γ̃).
Therefore, σ(Et)∩T = ∅ follows from Remarks 2.4 applied to the semigroup {Et}t≥0

on F in place of {etA}t≥0 on X.
The facts that σ(Γ) is a half-plane and σ(Et) is a disk follow from the spectral

mapping property (3.2) and [38, Prop. 2].
An important consequence of this theorem is the property that the growth bound

ω0(E
t) equals the spectral bound s(Γ). This leads to the following simple result on

stability.
Theorem 3.2. Let F denote C00(R+, X) or Lp(R+, X). An exponentially

bounded evolution family {U(t, τ)}t≥τ is exponentially stable if and only if the growth
bound ω0(E

t) of the induced evolution semigroup on F is negative.
Proof. Let F = C00(R+, X). If {U(t, τ)}t≥τ is exponentially stable, then there

exist M > 1, β > 0 such that ‖U(t, τ)‖L(X) ≤ Me−β(t−τ), t ≥ τ . For τ ≥ 0 and
f ∈ C00(R+, X),

‖Eτf‖C00(R+,X) = sup
t>0

‖Eτf(t)‖X = sup
t>τ

‖U(t, t− τ)f(t− τ)‖X
≤ sup

t>τ
‖U(t, t− τ)‖L(X)‖f(t− τ)‖X

≤Me−βτ‖f‖C00(R+,X).
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Conversely, assume there exist M > 1, α > 0 such that ‖Et‖ ≤ Me−αt, t ≥ 0.
Let x ∈ X, ‖x‖ = 1. For fixed t > τ > 0, choose f ∈ C00(R+, X) such that
‖f‖C00(R+,X) = 1 and f(τ) = x. Then,

‖U(t, τ)x‖X = ‖U(t, τ)f(τ)‖X = ‖E(t−τ)f(t)‖X
≤ sup

θ>0
‖E(t−τ)f(θ)‖X

= ‖E(t−τ)f‖C00(R+,X)

≤Me−α(t−τ).

A similar argument works for F = Lp(R+, X).

The remainder of this subsection focuses on the operator used for determining
exponential stability. In fact, stability is characterized by the boundedness of this
operator which, as seen below, is equivalent to the invertibility of Γ, the generator of
the evolution semigroup. We begin with the autonomous case.

Datko and van Neerven have characterized the exponential stability of solutions
for autonomous equations ẋ = Ax, t ≥ 0, in terms of a convolution operator G induced
by {etA}t≥0. In this autonomous setting,

(Etf)(τ) =

{
etAf(τ − t), 0 ≤ t ≤ τ,
0, 0 ≤ τ < t,(3.4)

and the convolution operator takes the following form: for f ∈ L1
loc(R+, X),

(Gf)(t) :=

∫ t

0

eτAf(t− τ) dτ =

∫ ∞

0

(Eτf)(t) dτ, t ≥ 0.(3.5)

For the reader’s convenience, we cite Theorem 1.3 of [28] (see also [13]) in the following
remarks.

Remarks 3.3. If {etA}t≥0 is a strongly continuous semigroup on X, and 1 ≤ p <
∞, then the following are equivalent.

(i) ω0(e
tA) < 0.

(ii) Gf ∈ Lp(R+, X) for all f ∈ Lp(R+, X).

(iii) Gf ∈ C0(R+, X) for all f ∈ C0(R+, X).

Remarks 3.4.

(a) Note that condition (ii) is equivalent to the boundedness of G on Lp(R+, X).
To see this, it suffices to show that the map f �→ Gf is a closed operator on
Lp(R+, X) and then to apply the closed graph theorem. For this, let fn → f
and Gfn → g in Lp(R+, X). Then (Gfn)(t)→ (Gf)(t) for each t ∈ R. Also,
every norm-convergent sequence in Lp(R+, X) contains a subsequence that
converges pointwise almost everywhere. Thus (Gfnk

)(t)→ g(t) for almost all
t. This implies that Gf = g, as claimed.

(b) Also, condition (iii) is equivalent to the boundedness of G on C0(R+, X).
This follows from the uniform boundedness principle applied to the operators
Gt : f �→

∫ t
0
eτAf(t− τ) dτ .

We now extend this result so that it may be used to describe exponential stability
for a nonautonomous equation. For this define an operator G in an analogous way:
let {U(t, τ)}t≥τ be an evolution family and {Et}t≥0 the evolution semigroup in (3.1).
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Then define G for f ∈ L1
loc(R+, X) as

(Gf)(t) :=

∫ ∞

0

(Eτf)(t) dτ =

∫ t

0

U(t, t− τ)f(t− τ) dτ

=

∫ t

0

U(t, τ)f(τ) dτ, t ≥ 0.

(3.6)

For G acting on F = C00(R+, X) or Lp(R+, X), standard semigroup properties show
that G equals −Γ−1 provided the semigroup {Et}t≥0 or the evolution family is uni-
formly exponentially stable. Parts (i) ⇔ (ii) of Remarks 3.3 and the nonautonomous
version below are the classical results by Datko [13]. Our proof uses the evolution
semigroup and creates a formally autonomous problem so that Remarks 3.3 can be
applied.

Theorem 3.5. The following are equivalent for the evolution family of operators
{U(t, τ)}t≥τ on X.

(i) {U(t, τ)}t≥τ is exponentially stable.
(ii) G is a bounded operator on Lp(R+, X).
(iii) G is a bounded operator on C0(R+, X).
Before proceeding with the proof, note that statement (ii) is equivalent to the

statement: Gf ∈ Lp(R+, X) for each f ∈ Lp(R+, X). This is seen as in Remark 3.4.
See also [6] for similar facts.

Proof. By Theorem 3.2, (i) implies that {Et}t≥0 is exponentially stable, and
formula (3.6) implies (ii) and (iii). The implication (ii)⇒(i) will be proved here;
the argument for (iii)⇒(i) is similar. The main idea is again to use the “change-of-
variables” technique, as in the proof of Theorem 3.1.

Consider the operator G̃ on Lp(R, Lp(R+, X)) = Lp(R× R+, X) defined as mul-
tiplication by G. More precisely, for h ∈ Lp(R × R+, X) with h(θ) := h(θ, ·) ∈
Lp(R+, X), define

(G̃h)(θ, t) = G(h(θ))(t) =

∫ t

0

U(t, t− τ)h(θ, t− τ) dτ, t ∈ R+, θ ∈ R.

In view of statement (ii), this operator is bounded. For the isometry J defined
on the space Lp(R, Lp(R+, X)) by (Jh)(θ, t) = h(θ + t, t), we have

(J−1
G̃Jh)(θ, t) =

∫ t

0

U(t, t− τ)h(θ − τ, t− τ) dτ.(3.7)

Next, let {Et}t≥0 be the evolution semigroup (3.1) induced by {U(t, τ)}t≥τ , and
define G∗ to be the operator of convolution with this semigroup as in (3.5); that is,

(G∗h)(θ) =
∫ ∞

0

Eτh(θ − τ) dτ, h ∈ Lp(R, Lp(R+, X)).(3.8)

If h(θ, ·) = h(θ) ∈ Lp(R+, X), then by definition (3.1), evaluating (3.8) at t gives

[(G∗h)(θ)] (t) = (G∗h)(θ, t) =
∫ t

0

U(t, t− τ)h(θ − τ, t− τ) dτ, t ∈ R+, θ ∈ R.

(3.9)

From (3.7) it follows that G∗ = J−1
G̃J is a bounded operator on Lp(R, Lp(R+, X)).



1766 CLARK, LATUSHKIN, MONTGOMERY-SMITH, AND RANDOLPH

Now, each function h+ ∈ Lp(R+, L
p(R+, X)) is an Lp(R+, X)-valued function

on the half-line R+. We extend each such h+ to a function h ∈ Lp(R, Lp(R+, X))
by setting h(θ) = h+(θ) for θ ≥ 0 and h(θ) = 0 for θ < 0. Note that G∗h ∈
Lp(R, Lp(R+, X)) because G∗ is bounded on Lp(R, Lp(R+, X)). Consider the function
f+ : R+ → Lp(R+, X) defined by

f+(t) =

∫ t

0

Eτh+(t− τ) dτ =

∫ ∞

0

Eτh(t− τ) dτ, t ∈ R+.

To complete the proof of the theorem, it suffices to prove the following claim:

f+ ∈ Lp(R+, L
p(R+, X)).

Indeed, the operator h+ �→ f+ is the convolution operator as in (3.5) defined by
the semigroup operators Et instead of etA. An application of Remarks 3.3 to Et on
Lp(R+, X) (in place of etA on X) shows that the semigroup {Et}t≥0 is exponentially
stable on Lp(R+, X) provided that

f+ ∈ Lp(R+, L
p(R+, X)) for each h+ ∈ Lp(R+, L

p(R+, X)).

But if {Et}t≥0 is exponentially stable, the evolution family {U(t, τ)}t≥τ is exponen-
tially stable by Theorem 3.2.

To prove the claim, apply formula (3.9) for h(θ, t) = h+(θ, t), θ ≥ 0, and
h(θ, t) = 0, θ < 0, t ∈ R+, where h+(θ) = h+(θ, ·). This gives

(G∗h)(θ, t) =




∫ min{θ,t}

0

U(t, t− τ)h+(θ − τ, t− τ) dτ for θ ≥ 0, t ∈ R+,

(G∗h)(θ, t) = 0 for θ < 0, t ∈ R+.

Thus the function

θ �→ (G∗h)(θ, ·) = (G∗h)(θ) ∈ Lp(R+, X)

is in the space Lp(R+, L
p(R+, X)). On the other hand, denoting f+(θ, ·) := f+(θ) ∈

Lp(R+, X), we have that

f+(θ, t) =

∫ min{θ,t}

0

U(t, t− τ)h+(θ − τ, t− τ) dτ, θ, t ∈ R+.

Thus θ �→ f+(θ, ·) = (G∗h)(θ, ·) is a function in Lp(R+, L
p(R+, X)), and the claim is

proved.
This theorem makes explicit, in the case of the half-line R+, the relationship be-

tween the stability of an evolution family {U(t, τ)}t≥τ and the generator Γ of the
corresponding evolution semigroup (3.1). Indeed, as shown above, stability is equiv-
alent to the boundedness of G, in which case G = −Γ−1. Combining Theorems 3.1,
3.2, and 3.5 yields the following corollary.

Corollary 3.6. Let {U(t, τ)}t≥τ be an exponentially bounded evolution family
and let Γ denote the generator of the induced evolution semigroup on Lp(R+, X),
1 ≤ p <∞, or C00(R+, X). The following are equivalent.

(i) {U(t, τ)}t≥τ is exponentially stable.
(ii) Γ is invertible with Γ−1 = −G.
(iii) s(Γ) < 0.

For more information on stability and dichotomy of evolution families on the semiaxis
see [27].
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3.2. Perturbations and robust stability. This subsection briefly considers
perturbations of (2.1) of the form

ẋ(t) = (A(t) +D(t))x(t), t ≥ 0.(3.10)

It will not, however, be assumed that (3.10) has a differentiable solution. For example,
let {etA0}t≥0 be a strongly continuous semigroup generated by A0, let A1(t) ∈ L(X)
for t ≥ 0, and define A(t) = A0 + A1(t). Then even if t �→ A1(t) is continuous, the
Cauchy problem (2.1) may not have a differentiable solution for all initial conditions
x(0) = x ∈ Dom(A) = Dom(A0) (see, e.g., [31]). Therefore we will want our de-
velopment to allow for equations with solutions that exist only in the following mild
sense.

Let {U(t, τ)}t≥τ be an evolution family of operators corresponding to a solution
of (2.1), and consider the nonautonomous inhomogeneous equation

ẋ(t) = A(t)x(t) + f(t), t ≥ 0,(3.11)

where f is a locally integrable X-valued function on R+. A function x(·) is a mild
solution of (3.11) with initial value x(θ) = xθ ∈ Dom(A(θ)) if

x(t) = U(t, θ)xθ +

∫ t

θ

U(t, τ)f(τ) dτ, t ≥ θ.

Given operators D(t), the existence of mild solutions to an additively perturbed (3.10)
corresponds to the existence of an evolution family {U1(t, τ)}t≥τ satisfying

U1(t, θ)x = U(t, θ)x+

∫ t

θ

U(t, τ)D(τ)U1(τ, θ)x dτ(3.12)

for all x ∈ X. It will be assumed that the perturbation operators D(t) are strongly
measurable and essentially bounded functions of t. In view of this, we use the notation
Ls(X) to denote the set L(X) endowed with the strong operator topology, and we
use L∞(R+,Ls(X)) to denote the set of bounded, strongly measurable L(X)-valued
functions on R+. A function D(·) ∈ L∞(R+,Ls(X)) induces a multiplication operator
D defined by Dx(t) = D(t)x(t) for x(·) ∈ Lp(R+, X). In fact, D is a bounded operator
on Lp(R+, X) with ‖D‖ ≤ ‖D(·)‖∞ := ess supt∈R+

‖D(t)‖.
Evolution semigroups induced by an evolution family as in (3.1) have been studied

by several authors who have characterized such semigroups in terms of their gener-
ators on general Banach function spaces of X-valued functions (see [36, 43] and the
bibliographies therein). The sets F = Lp(R+, X) or F = C00(R+, X) considered here
are examples of more general “Banach function spaces.” In the development that fol-
lows we use a theorem of Schnaubelt [43] (see also Räbiger et al. [35, 36]) which shows
exactly when a strongly continuous semigroup on F arises from a strongly continuous
evolution family on X. We state a version of this result which will be used below;
a more general version is proven in [36]. The set C1

c (R+) consists of differentiable
functions on R+ that have compact support.

Theorem 3.7. Let {T t}t≥0 be a strongly continuous semigroup generated by Γ
on F . The following are equivalent.

(i) {T t}t≥0 is an evolution semigroup; i.e., there exists an exponentially bounded
evolution family so that T t is defined as in (3.1).

(ii) There exists a core, C, of Γ such that for all ϕ ∈ C1
c (R+) and f ∈ C, it follows

that ϕf ∈ Dom(Γ) and Γ(ϕf) = −ϕ′f+ϕΓf . Moreover, there exists λ ∈ ρ(Γ)
such that R(λ,Γ) : F → C00(R+, X) is continuous with dense range.
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Now let {U(t, τ)}t≥τ be an evolution family onX, and let Γ be the generator of the
corresponding evolution semigroup, {Et}t≥0, as in (3.1). If D(·) ∈ L∞(R+,Ls(X)),
then the multiplication operator D is a bounded operator on F = Lp(R+, X). Since
a bounded perturbation of a generator of a strongly continuous semigroup is itself
such a generator, the operator Γ1 = Γ+D generates a strongly continuous semigroup,
{Et

1}t≥0 on F (see, e.g., [30]). In fact, Γ1 generates an evolution semigroup; see
[35, 43].

Proposition 3.8. Let D(·) ∈ L∞(R+,Ls(X)), and let {U(t, τ)}t≥τ be an ex-
ponentially bounded evolution family. Then there exists a unique evolution family
U1 = {U1(t, τ)}t≥τ which solves the integral equation (3.12). Moreover, U1 is expo-
nentially stable if and only if Γ +D is invertible.

Proof. As already observed, Γ1 = Γ + D generates a strongly continuous semi-
group, {Et

1}t≥0 on F . To see that this is in fact an evolution semigroup, note that
for λ ∈ ρ(Γ) ∩ ρ(Γ1),

Range(R(λ,Γ)) = Dom(Γ) = Dom(Γ +D) = Range(R(λ,Γ1))

is dense in C00(R+, X). Also, if C is a core for Γ, then it is a core for Γ1, and so for
ϕ ∈ C1

c (R), f ∈ C,

Γ1(ϕf) = Γ(ϕf) +D(ϕf) = −ϕ′f + ϕΓf + ϕDf = −ϕ′f + ϕ(Γ +D)f.
Consequently, Theorem 3.7 shows that {Et

1}t≥0 corresponds to an evolutionary family,
{U1(t, τ)}t≥τ . Moreover, x(t) = U1(t, τ)x(τ) is seen to define a mild solution to (3.10).
Indeed,

Et
1f = Etf +

∫ t

0

E(t−τ)DEτ
1 f dτ(3.13)

holds for all f ∈ F . In particular, for x ∈ X and any ϕ ∈ C1
c (R), setting f = ϕ ⊗ x

in (3.13), where ϕ⊗ x(t) = ϕ(t)x, and using a change of variables leads to

ϕ(θ)U1(t, θ)x = ϕ(θ)U(t, θ)x+ ϕ(θ)

∫ t

θ

U(t, τ)D(τ)U1(τ, θ)x dτ.

Therefore, (3.12) holds for all x ∈ X.
Finally, Corollary 3.6 shows that U1 is exponentially stable if and only if Γ1 is

invertible.
The existence of mild solutions under bounded perturbations of this type is well

known (see, e.g., [10]), but an immediate consequence of the approach given here is
the property of robustness for the stability of {U(t, τ)}t≥τ . Indeed, by continuity
properties of the spectrum of an operator Γ, there exists ε > 0 such that Γ1 is invert-
ible whenever ‖Γ1 − Γ‖ < ε; that is, {U1(t, τ)}t≥τ is exponentially stable whenever
‖D(·)‖∞ < ε. Also, the type of proof presented here can be extended to address the
case of unbounded perturbations. For an example of this, we refer to [36]. Finally, and
most important to the present paper, is the fact that this approach provides insight
into the concept of the stability radius. This topic is studied next.

4. Stability radius. The goal of this section is to use the previous development
to study the (complex) stability radius of an exponentially stable system. Loosely
speaking, this is a measurement on the size of the smallest operator under which the
additively perturbed system loses exponential stability. This is an important concept
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for linear systems theory and was introduced by Hinrichsen and Pritchard as the
basis for a state-space approach to studying robustness of linear time-invariant [17]
and time-varying systems [16, 18, 32]. A systematic study of various stability radii in
the spirit of the current paper has recently be given by Fischer and van Neerven [14].

4.1. General estimates. In this subsection we give estimates for the stability
radius of general nonautonomous systems on Banach spaces. The perturbations con-
sidered here are additive “structured” perturbations of output feedback type. That is,
let U and Y be Banach spaces, and let ∆(t) : Y → U denote an unknown disturbance
operator. The operators B(t) : U → X and C(t) : X → Y describe the structure
of the perturbation in the following (formal) sense: if u(t) = ∆(t)y(t) is viewed as a
feedback for the system

ẋ(t) = A(t)x(t) +B(t)u(t), x(s) = xs ∈ Dom(A(s)),

y(t) = C(t)x(t), t ≥ s ≥ 0,
(4.1)

then the nominal system ẋ(t) = A(t)x(t) is subject to the structured perturbation

ẋ(t) = (A(t) +B(t)∆(t)C(t))x(t), t ≥ 0.(4.2)

In this section B and C do not represent input and output operators; rather, they
describe the structure of the uncertainty of the system. Also, systems considered
throughout this paper are not assumed to have differentiable solutions, and so (4.2) is
to be interpreted in the mild sense as described in (3.12), where D(t) = B(t)∆(t)C(t).
Similarly, (4.1) is interpreted in the mild sense; that is, there exists a strongly con-
tinuous exponentially bounded evolution family {U(t, τ)}t≥τ on a Banach space X
which satisfies

x(t) = U(t, s)x(s) +

∫ t

s

U(t, τ)B(τ)u(τ) dτ,

y(t) = C(t)x(t), t ≥ s ≥ 0.

(4.3)

In the case of time-invariant systems, (4.3) takes the form

x(t) = etAx0 +

∫ t

0

e(t−τ)ABu(τ) dτ,

y(t) = Cx(t), t ≥ 0,

(4.4)

where {etA}t≥0 is a strongly continuous semigroup on X generated by A, x(0) = x0 ∈
Dom(A).

It should be emphasized that we will not address questions concerning the ex-
istence of solutions for a perturbed system (4.2) beyond the point already discussed
in Proposition 3.8. In view of that proposition, we make the following assumptions:
B, C, and ∆ are strongly measurable and essentially bounded functions of t; i.e.,
B(·) ∈ L∞(R+,Ls(U,X)), C(·) ∈ L∞(R+,Ls(X,Y )), and ∆(·) ∈ L∞(R+,Ls(Y,U)).
As such, they induce bounded multiplication operators, B, C, and ∆̃ acting on the
spaces Lp(R+, U), L

p(R+, X), and Lp(R+, Y ), respectively.
Next, for an exponentially bounded evolution family {U(t, τ)}t≥τ , define the

“input-output” operator L on functions u : R+ → U by the rule

(Lu)(t) = C(t)

∫ t

0

U(t, τ)B(τ)u(τ) dτ.
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Using the above notation, note that L = CGB. Much of the stability analysis that
follows is based on this observation in combination with Theorem 3.5 which shows
that the operator G completely characterizes stability of the corresponding evolution
family.

We now turn to the definition of the stability radius. For this let U = {U(t, τ)}t≥τ
be an exponentially stable evolution family on X. Set D = B∆̃C, and let U∆ =
{U∆(t, τ)}t≥τ denote the evolution family corresponding to solutions of the perturbed
equation (3.10). That is, U∆ satisfies

U∆(t, s)x = U(t, s)x+

∫ t

s

U(t, τ)B(τ)∆(τ)C(τ)U∆(τ, s)x dτ, x ∈ X.

Define the (complex) stability radius for U with respect to the perturbation structure
(B(·), C(·)) as the quantity

rstab(U , B,C) = sup{r ≥ 0 : ‖∆(·)‖∞ ≤ r ⇒ U∆ is exponentially stable}.
This definition applies to both nonautonomous and autonomous systems, though in
the latter case the notation rstab({etA}, B,C)) will be used to distinguish the case
where all the operators except ∆(t) are independent of t. We will have occasion to
consider the constant stability radius which is defined for the case in which ∆(t) ≡ ∆ is
constant; this will be denoted by rcstab({etA}, B,C)) or rcstab(U , B,C)), depending
on the context. The above remarks concerning Γ + D (see Proposition 3.8), when
combined with Theorem 3.2, make it clear that

rstab(U , B,C) = sup{r ≥ 0 : ‖∆(·)‖∞ ≤ r ⇒ Γ + B∆̃C is invertible}.(4.5)

It is well known that for autonomous systems in which U and Y are Hilbert
spaces and p = 2, the stability radius may be expressed in terms of the norm of the
input-output operator or the transfer function

1

‖L‖L(L2)
= rstab({etA}, B,C) = 1

sups∈R
‖C(A− is)−1B‖ ;(4.6)

see, e.g., [18, Thm. 3.5]. For nonautonomous equations, a scalar example given in
Example 4.4 of [16] shows that, in general, a strict inequality 1/‖L‖ < rstab(U , B,C)
may hold. Moreover, even for autonomous systems, when Banach spaces are allowed
or when p �= 2, Example 4.13 and Example 4.15 below will show that neither of the
equalities in (4.6) necessarily hold. Subsection 4.3 focuses on autonomous equations,
and a primary objective there is to prove the following result.

Theorem 4.1. For the general autonomous systems,

1

‖L‖L(Lp)
≤ rstab({etA}, B,C) ≤ 1

sups∈R
‖C(A− is)−1B‖ , 1 ≤ p <∞.(4.7)

As seen next, the lower bound here holds for general nonautonomous systems and may
be proven in a very direct way using the make-up of the operator L = CGB. This
lower bound is also proven in [18, Thm. 3.2] using a completely different approach.

Theorem 4.2. Assume U is an exponentially stable evolution family, and let Γ
denote the generator of the corresponding evolution semigroup. If

B(·) ∈ L∞(R+,Ls(U,X)) and C(·) ∈ L∞(R+,Ls(X,Y )),
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then L is a bounded operator from Lp(R+, U) to Lp(R+, Y ), 1 ≤ p <∞, the formula

L = CGB = −CΓ−1B
holds, and

1

‖L‖ ≤ rstab(U , B,C).(4.8)

In the “unstructured” case, where U = Y = X and B = C = I, one has

L = −Γ−1, and
1

‖Γ−1‖ ≤ rstab(U , I, I) ≤
1

r(Γ−1)
,

where r(·) denotes the spectral radius.
Proof. Since U is exponentially stable, Γ is invertible and Γ−1 = −G. The

required formula for L follows from (3.6).
Set H := Γ−1B∆̃. To prove (4.8), let ∆(·) ∈ L∞(R+,Ls(Y,U)) and suppose that

‖∆(·)‖∞ < 1/‖L‖. Then ‖L∆̃‖ < 1, and hence I−L∆̃ = I+CΓ−1B∆̃ is invertible on
Lp(R+, Y ). That is, I+CH is invertible on Lp(R+, Y ), and hence I+HC is invertible
on Lp(R+, X) (with inverse (I −H(I + CH)−1C)). Now

Γ + B∆̃C = Γ(I + Γ−1B∆̃C) = Γ(I +HC),
and so Γ + B∆̃C is invertible. It follows from the expression (4.5) that 1/‖L‖ ≤
rstab(U , B,C).

For the last assertion, suppose that rstab(U , I, I) > 1/r(Γ−1). Then there exists
λ such that |λ| = r(Γ−1) and λ+Γ−1 is not invertible. But then setting ∆̃ ≡ 1

λ gives

‖∆̃‖ = 1
|λ| < rstab(U , I, I), and so Γ + ∆̃ = ∆̃(λ + Γ−1)Γ is invertible, which is a

contradiction.

4.2. The transfer function for nonautonomous systems. In this subsection
we consider a time-varying version of (4.6) and then observe that the concept of a
transfer function, or frequency-response function, arises naturally from these ideas.
For this we assume in this subsection that X, U , and Y are Hilbert spaces and p = 2.

Let {U(t, τ)}t≥τ be a uniformly exponentially stable evolution family, and let
{Et}t≥0 be the induced evolution semigroup with generator Γ on L2(R+, X). Recall
that B and C denote multiplication operators, with respective multipliers B(·) and
C(·), that act on the spaces L2(R+, U) and L2(R+, X), respectively. Let B̃ and C̃
denote operators of multiplication induced by B and C, respectively; e.g., (B̃u)(t) =
B(u(t)) for u : R+ → L2(R+, U). Now consider the operator G∗ as defined in (3.8)
and note that operator L∗ := C̃G∗B̃ may be viewed (formally) as an input-output
operator for the “autonomized” system ḟ = Γf +Bu, g = Cf , where the state space
is L2(R+, X). It follows from the known Hilbert-space equalities in (4.6) that

1

‖L∗‖ = rstab({Et},B, C) = 1

sups∈R
‖C(Γ− is)−1B‖ .

Note, however, that the rescaling identities (3.3) for Γ imply that

‖L∗‖ = ‖C(Γ− is)−1B‖ = ‖CΓ−1B‖ = ‖L‖,
and so the stability radius for the evolution semigroup is also 1/‖L‖. In view of the
above-mentioned nonautonomous scalar example for which 1/‖L‖ < rstab(U , B,C), we
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see that even though the evolution semigroup (or its generator) completely determines
the exponential stability of a system, it does not provide a formula for the stability
radius.

However, the operator C(Γ − is)−1B appearing above suggests that the trans-
fer function for time-varying systems arises naturally when viewed in the context of
evolution semigroups. Several authors have considered the concept of a transfer func-
tion for nonautonomous systems, but the work of Ball, Gohberg, and Kaashoek [4]
seems to be the most comprehensive in providing a system-theoretic input-output in-
terpretation for the value of such a transfer function at a point. Their interpretation
justifies the term frequency-response function for time-varying finite-dimensional sys-
tems with “time-varying complex exponential inputs.” Our remarks concerning the
frequency response for time-varying infinite-dimensional systems will be restricted to
inputs of the form u(t) = u0e

λt.
For motivation, consider the input-output operator L associated with an au-

tonomous system (4.4) where the nominal system is exponentially stable. The transfer
function of L is the unique bounded analytic L(U, Y )-valued function H, defined on
C+ = {λ ∈ C : Re λ > 0} such that for any u ∈ L2(R+, U),

(L̂u)(λ) = H(λ)û(λ), λ ∈ C+,

where ̂ denotes the Laplace transform (see, e.g., [44]). In this autonomous set-
ting, A generates a uniformly exponentially stable strongly continuous semigroup,
and L = CGB, where G is the operator of convolution with the semigroup operators

etA (see (3.5)). Standard arguments show that (L̂u)(λ) = C(λ−A)−1Bû(λ); that is,
H(λ) = C(λ−A)−1B.

Now let L be the input-output operator for the nonautonomous system (4.3). We
wish to identify the transfer function of L as the Laplace transform of the appropriate
operator. We are guided by the fact that, just as (λ−A)−1 may be expressed as the
Laplace transform of the semigroup generated by A, the operator (λ − Γ)−1 is the
Laplace transform of the evolution semigroup. For nonautonomous systems, L is again
given by CGB, although now G from (3.6) is not, generally, a convolution operator.
So instead recall the operator G∗ from (3.8) which is the operator of convolution with
the evolution semigroup {Et}t≥0. As noted above, the operator L∗ := C̃G∗B̃ may be
viewed as an input-output operator for an autonomous system (where the state space
is L2(R+, X)). Therefore, the autonomous theory applies directly to show that, for
u ∈ L2(R+, L

2(R+, U)),

(L̂∗u)(λ) = C(λ− Γ)−1Bû(λ).(4.9)

In other words, the transfer function for L∗ is C(λ− Γ)−1B, where

C(λ− Γ)−1Bu = C
∫ ∞

0

e−λτEτBu dτ, u ∈ L2(R+, U).

Evaluating these expressions at t ∈ R+ gives

[C(λ− Γ)−1Bu](t) =
∫ t

0

C(t)U(t, τ)B(τ)u(τ)e−λ(t−τ) dτ.(4.10)

It is natural to call C(λ − Γ)−1B the transfer function for the nonautonomous sys-
tem. Moreover, the following remarks show that, by looking at the right-hand side of
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(4.10), this gives a natural frequency-response function for nonautonomous systems.
To see this, we first consider autonomous systems and note that the definition of the
transfer function for an autonomous system can be extended to allow for a class of
“Laplace transformable” functions that are in L2

loc(R+, U) (see, e.g., [44]). This class
includes constant functions of the form v0(t) = u0, t ≥ 0, for a given u0 ∈ U . If a
periodic input signal of the form u(t) = u0e

iωt, t ≥ 0, (for some u0 ∈ U and ω ∈ R)
is fed into an autonomous system with initial condition x(0) = x0, then, by definition
of the input-output operator, we have

(Lu)(t) = C(iω −A)−1Bu0 · eiωt − CetAx0, (Lu)(t) = C

∫ t

0

e(t−s)ABu(s) ds.

Thus the output

y(t;u(·), x0) = (Lu)(t) + CetAx0 = C(iω −A)−1Bu0 · eiωt

has the same frequency as the input. In view of this, the function C(iω − A)−1B
is sometimes called the frequency-response function. Now recall that the semigroup
{etA}t≥0 is stable and so limt→∞ ‖CetAx0‖ = 0. On the other hand, consider v(t) =
u0 and (formally) apply C(iω−Γ)−1B to this v. For x0 = (iω−A)−1Bu0, a calculation
based on the Laplace transform formula for the resolvent of the generator (applied to
the evolution semigroup {Et}t≥0) yields the identity[C(iω − Γ)−1Bu0

]
(t) = C(iω −A)−1Bu0 − CetAx0 · e−iωt.

Let us consider this expression [C(iω−Γ)−1Bu0](t) in the nonautonomous case. By
(4.10), this coincides with the frequency-response function for time-varying systems
which is defined in [4, Cor. 3.2] by the formula

∫ t

0

C(t)U(t, τ)B(τ)u0e
iω(τ−t) dτ.

Also, as noted in this reference, the result of our derivation agrees with the Arveson
frequency-response function as it appears in [42]. We recover it here explicitly as the
Laplace transform of an input-output operator (see (4.9)).

4.3. Autonomous systems. In this subsection we give the proof of (4.7) when
X, U , and Y are Banach spaces. In the process, however, we also consider two other
“stability radii”: a pointwise stability radius and a dichotomy radius.

First, we give a generalization to Banach spaces of Theorem 2.1 (cf. [23]). Here,
Fper denotes the Banach space Lp([0, 2π], X), 1 ≤ p < ∞. If {etA}t≥0 is a strongly
continuous semigroup on X, {Et

per}t≥0 will denote the evolution semigroup defined

on Fper by the rule Et
perf(s) = etAf([s − t](mod 2π)); its generator will be denoted

by Γper. The symbol Λ will be used to denote the set of all finite sequences {vk}Nk=−N
in X or D(A), or {uk}Nk=−N in U .

Theorem 4.3. Let A generate a C0 semigroup {etA}t≥0 on X. Let B and C be
as above, and ∆ ∈ (Y,U). Let {et(A+B∆C)}t≥0 be the strongly continuous semigroup
generated by A+B∆C. Then the following are equivalent.

(i) 1 ∈ ρ(e2π(A+B∆C)).
(ii) iZ ⊂ ρ(A+B∆C) and

sup
{vk}∈Λ

‖∑k(A− ik +B∆C)−1vke
ik(·)‖Fper

‖∑k vke
ik(·)‖Fper

<∞.
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(iii) iZ ⊂ ρ(A+B∆C) and

inf
{vk}∈Λ

‖∑k(A− ik +B∆C)vkeik(·)‖Fper

‖∑k vke
ik(·)‖Fper

> 0.

Further, if Γper denotes the generator of the evolution semigroup on Fper, as above,
and if 1 ∈ ρ(e2πA), then Γper is invertible and

‖CΓ−1
perB‖ = sup

{uk}∈Λ

‖∑k C(A− ik)−1Buke
ik(·)‖Lp([0,2π],Y )

‖∑k uke
ik(·)‖Lp([0,2π],U)

,(4.11)

where CΓ−1
perB ∈ L(Lp([0, 2π], U), Lp([0, 2π], Y )).

Proof. The equivalence of (i)–(iii) follows as in Theorem 2.3 of [23]. For the last
statement, let {uk} be a finite set in U , and consider functions f and g of the form

f(s) =
∑
k

(A− ik)−1Buke
iks and g(s) =

∑
k

Buke
iks.

Then f = Γ−1
perg. For,

(Γperf)(s) =
d

dt

∣∣∣∣
t=0

etAf([s− t]mod2π)

=
∑
k

[A(A− ik)−1Buke
iks − ik(A− ik)−1Buke

iks] = g(s).

For functions of the form h(s) =
∑

k uke
iks, where {uk}k is a finite set in U , we have

CΓ−1Bh =
∑

k C(A − ik)−1Buke
ik(·). Taking the supremum over all such functions

gives

‖CΓ−1
perB‖ = sup

h

‖CΓ−1
perBh‖
‖h‖

= sup
{uk}∈Λ

‖∑k C(A− ik)−1Buke
ik(·)‖Lp([0,2π],Y )

‖∑k uke
ik(·)‖Lp([0,2π],U)

.

In view of these facts we introduce a “pointwise” variant of the constant stability
radius: for t0 > 0 and λ ∈ ρ(et0A), define the pointwise stability radius

rcλstab(e
t0A, B,C) := sup{r > 0 : ‖∆‖L(Y,U) ≤ r ⇒ λ ∈ ρ(et0(A+B∆C))}.

By rescaling, the study of this quantity can be reduced to the case of λ = 1 and
t0 = 2π. Indeed,

rcλstab(e
t0A, B,C) =

2π

t0
rcλstab(e

2πA′
, B,C) where A′ =

t0
2π
A.

Also, after writing λ = |λ|eiθ (θ ∈ R), note that

rcλstab(e
2πA, B,C) = rc1stab(e

2πA′′
, B,C) for A′′ = A− 1

2π
(ln |λ|+ iθ).

Therefore,

rcλstab(e
t0A, B,C) =

2π

t0
rc1stab(e

2πA′′′
, B,C)
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for

A′′′ =
1

2π
(t0A− ln |λ| − iθ).

In the following theorem we estimate rc1stab(e
2πA, B,C). The idea for the proof

goes back to [18]. See also further developments in [14].
Theorem 4.4. Let {etA}t≥0 be a strongly continuous semigroup generated by A

on X, and assume 1 ∈ ρ(e2πA). Let Γper denote the generator of the induced evolution
semigroup on Fper. Let B ∈ L(U,X) and C ∈ L(X,Y ). Then

1

‖CΓ−1
perB‖

≤ rc1stab(e2πA, B,C) ≤
1

supk∈Z
‖C(A− ik)−1B‖ .(4.12)

If U and Y are Hilbert spaces and p = 2, then equalities hold in (4.12).
Proof. The first inequality follows from an argument as in Theorem 4.2. For the

second inequality, let ε > 0, and choose ū ∈ U with ‖ū‖ = 1 and k0 ∈ Z such that

‖C(A− ik0)−1Bū‖Y ≥ sup
k∈Z

‖C(A− ik)−1B‖ − ε > 0.

Using the Hahn–Banach theorem, choose y∗ ∈ Y ∗ with ‖y∗‖ ≤ 1 such that

〈
y∗,

C(A− ik0)−1Bū

‖C(A− ik0)−1Bū‖Y

〉
= 1.

Define ∆ ∈ L(Y,U) by

∆y = − 〈y∗, y〉
‖C(A− ik0)−1Bū‖Y ū, y ∈ Y.

We note that

∆C(A− ik0)−1Bū = −〈y
∗, C(A− ik0)−1Bū〉
‖C(A− ik0)−1Bū‖Y ū = −ū,(4.13)

and

‖∆‖ ≤ 1

‖C(A− ik0)−1Bū‖Y ≤
1

supk∈Z
‖C(A− ik0)−1Bū‖Y − ε .(4.14)

Now set v̄ := (A− ik0)−1Bū in X. By (4.13), ∆Cv̄ = −ū, and so

(A− ik0 +B∆C)v̄ = (A− ik0)v̄ +B∆Cv̄ = Bū−Bū = 0.

Therefore,

inf
{vk}∈Λ

‖∑k(A− ik +B∆C)vkeik(·)‖Fper

‖∑k uke
ik(·)‖Fper

≤ ‖(A− ik0 +B∆C)v̄eik0(·)‖Fper

‖v̄eik0(·)‖Fper

= 0.

By Theorem 4.3, 1 /∈ ρ(e2π(A+B∆C)). This shows that rc1stab(e
2πA, B,C) ≤ ‖∆‖.

To finish the proof, suppose that rc1stab(e
2πA, B,C) > (supk∈Z

‖C(A−ik)−1B‖)−1.
Then with r := (supk∈Z

‖C(A− ik)−1Bū‖Y − ε)−1, and ε > 0 chosen to be sufficiently
small, one has

1

supk∈Z
‖C(A− ik)−1Bū‖Y < r < rc1stab(e

2πA, B,C).
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But then by (4.14), ‖∆‖ ≤ r < rc1stab(e2πA, B,C), which is a contradiction.
For the last statement of the theorem, note that Parseval’s formula applied to

(4.11) gives

‖CΓ−1
perB‖ = sup

{uk}∈Λ

(∑
k ‖C(A− ik)−1Buk‖2Y

)1/2
(
∑

k ‖uk‖2U )1/2
≤ sup

k∈Z

‖C(A− ik)−1B‖.(4.15)

Therefore,

1

‖CΓ−1
perB‖

≥ 1

supk∈Z
‖C(A− ik)−1B‖ ,

and hence equalities hold in (4.12).
Next we consider the following “hyperbolic” variant of the constant stability ra-

dius. Recall that a strongly continuous semigroup {etA}t≥0 on X is called hyperbolic
if

σ(etA) ∩ T = ∅, where T = {z ∈ C : |z| = 1}
for some (and, hence, for all) t > 0 (see, e.g., [29]). The hyperbolic semigroups are
those for which the differential equation ẋ = Ax has exponential dichotomy (see, e.g.,
[12]) with the dichotomy projection P being the Riesz projection corresponding to
the part of spectrum of eA that lies in the open unit disc.

For a given hyperbolic semigroup {etA}t≥0 and operators B, C we define the
constant dichotomy radius as

rcdich({etA}, B,C) := sup{r ≥ 0 : ‖∆‖L(Y,U) ≤ r implies

σ(et(A+B∆C)) ∩ T = ∅ for all t > 0}.
The dichotomy radius measures the size of the smallest ∆ ∈ L(Y,U) for which the
perturbed equation ẋ = [A+B∆C]x loses the exponential dichotomy.

Now for any ξ ∈ [0, 1], consider the rescaled semigroup generated by Aξ := A− iξ
consisting of operators etAξ = e−iξtetA, t ≥ 0. The pointwise stability radius can be
related to the dichotomy radius as follows.

Lemma 4.5. Let {etA}t≥0 be a hyperbolic semigroup. Then

rcdich({etA}, B,C) = inf
ξ∈[0,1]

rc1stab(e
2πAξ , B,C).

Proof. Denote the left-hand side by α and the right-hand side by β. First fix r < β.
Let ξ ∈ [0, 1]. If ‖∆‖ ≤ r, then 1 ∈ ρ(e2π(Aξ+B∆C)) and so eiξ2π ∈ ρ(e2π(A+B∆C)) for
all ξ ∈ [0, 1]. That is, eis ∈ ρ(e2π(A+B∆C)) for all s ∈ R, and so σ(e2π(A+B∆C))∩T = ∅.
This shows that r ≤ α, and so β ≤ α.

Now suppose r < α. If ‖∆‖ ≤ r, then σ({et(A+B∆C)}) ∩ T = ∅, and so eiξt ∈
ρ(et(A+B∆C)) for all ξ ∈ [0, 1], t ∈ R. That is, 1 ∈ ρ(et(Aξ+B∆C)). This says r ≤ β
and so α ≤ β.

Under the additional assumption that the semigroup {etA}t≥0 is exponentially
stable (that is, hyperbolic with a trivial dichotomy projection P = I), Lemma 4.5
gives, in fact, a formula for the constant stability radius. Indeed, the following simple
proposition holds.

Proposition 4.6. Let {etA}t≥0 be an exponentially stable semigroup. Then

rcdich({etA}, B,C) = rcstab({etA}, B,C).
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Proof. Denote the left-hand side by α and the right-hand side by β. Take
r < β and any ∆ with ‖∆‖ ≤ r. By definition of the constant stability radius,
ω0({et(A+B∆C)}) < 0. In particular, σ(et(A+B∆C)) ∩ T = ∅, and r ≤ α shows that
β ≤ α.

Suppose that β < r < α for some r. By the definition of the stability radius β,
there exists a ∆ with ‖∆‖ ∈ (β, r) such that the semigroup {et(A+B∆C)}t≥0 is not
stable.

For any τ ∈ [0, 1] one has ‖τ∆‖ ≤ r < α. By the definition of the dichotomy radius
α it follows that the semigroup {et(A+τB∆C)}t≥0 is hyperbolic for each τ ∈ [0, 1]. Now
consider its dichotomy projection

P (τ) = (2πi)−1

∫
T

(
λ− eA+τB∆C

)−1
dλ,

which is the Riesz projection corresponding to the part of σ(eA+τB∆C) located inside
of the open unit disk. The function τ �→ P (τ) is norm continuous. Indeed, since the
bounded perturbation τB∆C of the generator A is continuous in τ , the operators
et(A+τB∆C), t ≥ 0, depend on τ continuously (see, e.g., [30, Cor. 3.1.3]); this implies
the continuity of P (·) (see, e.g., [12, Thm. I.2.2]).

By assumption {etA}t≥0 is exponentially stable, so P (0) = I. Also, P (1) �= I
since the semigroup {et(A+B∆C)}t≥0 with ‖∆‖ ≤ r < α is hyperbolic but not stable.
Since either ‖I − P (τ)‖ = 0 or ‖I − P (τ)‖ ≥ 1, this contradicts the continuity of
‖P (·)‖.

A review of the above development shows that the inequality claimed in (4.7) of
Theorem 4.1 can now be proved.

Proof of Theorem 4.1. Indeed, rstab({etA}, B,C) ≤ rcstab({etA}, B,C), and so

1

‖L‖ ≤ rstab({e
tA}, B,C) ≤ rcstab({etA}, B,C) (Theorem 4.2)

≤ rcdich({etA}, B,C) (Proposition 4.6)

≤ inf
ξ∈[0,1]

rc1stab(e
2πAξ , B,C) (Lemma 4.5)

≤ inf
ξ∈[0,1]

1

supk∈Z
‖C(Aξ − ik)−1B‖ (Theorem 4.4)

=
1

sups∈R
‖C(A− is)−1B‖ .

We will need below the following simple corollary that holds for bounded gener-
ators A. (In fact, as shown in [14, Cor. 2.5], formula (4.16) below holds provided A
generates a semigroup {etA}t≥0 that is uniformly continuous just for t > 0.)

Corollary 4.7. Assume A ∈ L(X) generates a (uniformly continuous) stable
semigroup on a Banach space X. Then

rcstab({etA}, B,C) = 1

sups∈R
‖C(A− is)−1B‖ .(4.16)

Proof. By Theorem 4.1, it remains to prove only the inequality “≥.” Fix ∆ with
‖∆‖ strictly less than the right-hand side of (4.16). Since A + B∆C ∈ L(X), it
suffices to show that A + B∆C − λ = (A − λ)(I + (A − λ)−1B∆C) is invertible for
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each λ with Re λ ≥ 0. By the analyticity of resolvent, supRe λ≥0 ‖C(A − λ)−1B‖ ≤
sups∈R

‖C(A− is)−1B‖. Thus

‖∆‖ < 1

sups∈R
‖C(A− is)−1B‖

≤ 1

supRe λ≥0 ‖C(A− λ)−1B‖ ≤
1

‖C(A− λ)−1B‖ , Re λ ≥ 0,

implies that I+C(A−λ)−1B∆ is invertible. Therefore (cf. the proof of Theorem 4.2),
I + (A− λ)−1B∆C is invertible.

4.4. The norm of the input-output operator. Since the lower bound on the
stability radius is given by the norm of the input-output operator, which is defined by
way of the solution operators, it is of interest to express this quantity in terms of the
operators A, B, and C. In this subsection it is shown that for autonomous systems
this quantity can, in fact, be expressed explicitly in terms of the transfer function

‖L‖ = sup
u∈S(R,U)

‖ ∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖ ∫
R
u(s)eis(·) ds‖Lp(R,U)

.(4.17)

Here we use S(R, X) to denote the Schwartz class of rapidly decreasing X-valued
functions defined on R: {v : R → X

∣∣ sups∈R
‖smv(n)(s)‖ <∞;n,m ∈ N}. As noted

in (4.6), ‖L‖ equals sups∈R
‖C(A− is)−1B‖ if U and Y are Hilbert spaces and p = 2.

The section concludes by providing a similar expression, involving sums, which serves
as a lower bound for the constant stability radius.

The current focus is on autonomous systems, so let {etA}t≥0 be a strongly con-
tinuous semigroup generated by A and consider the evolution semigroups {Et

R
}t≥0

defined on functions on the entire real line as in (2.2), and {Et}t≥0 defined for func-
tions on the half-line as in (3.4). As before, ΓR and Γ will denote the generators of
these semigroups on Lp(R, X) and Lp(R+, X), respectively. Both semigroups will be
used as we first show that ‖CΓ−1

R
B‖ equals the expression in (4.17) and then check

that ‖L‖ ≡ ‖CΓ−1B‖ = ‖CΓ−1
R
B‖.

Given v ∈ S(R, X), let gv denote the function

gv(τ) =
1

2π

∫
R

v(s)eiτs ds, τ ∈ R,

and set G = {gv : v ∈ S(R, X)}. Assuming sups∈R
‖(A − is)−1‖ < ∞, define, for a

given v ∈ S(R, X), the function

fv(τ) =
1

2π

∫
R

(A− is)−1v(s)eiτs ds, τ ∈ R,

and set F = {fv : v ∈ S(R, X)}.
Proposition 4.8. Assume sups∈R

‖(A− is)−1‖ <∞. Then
(i) G consists of differentiable functions, and is dense in Lp(R, X);
(ii) F is dense in Dom(ΓR);
(iii) if v ∈ S(R, X), then ΓRfv = gv.
Proof. For g ∈ L1(R, X), denote the Fourier transform by

ĝ(τ) =
1

2π

∫
R

e−isτg(s) ds.
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Note that G = {g : R → X : ∃ v ∈ S(R, X) so that ĝ = v}, and so G contains the set
{g ∈ L1(R, X) : ĝ ∈ S(R, X)}. Since the latter set is dense in Lp(R, X), property (i)
follows.

G consists of differentiable functions since for v ∈ S(R, X), the integral defining gv
converges absolutely. Moreover, for v ∈ S(R, X), the function w(s) = (A− is)−1v(s),
s ∈ R, is also in S(R, X), since sups∈R

‖(A − is)−1‖ < ∞. Hence fv is differentiable
with derivative

f ′v(τ) =
1

2π

∫
R

is(A− is)−1v(s)eiτs ds =
1

2π

∫
R

isw(s)eiτs ds.

So f ′v ∈ Lp(R, X), and hence F is dense in Dom(−d/dt+A).
Property (iii) follows from the following calculation:

(Γfv)(τ) =
1

2π

∫
R

[−is(A− is)−1v(s)eisτ +A(A− is)−1v(s)eisτ ] ds

=
1

2π

∫
R

(A− is)(A− is)−1v(s)eisτ ds = gv(τ).

Set ΛS = {v ∈ S(R, X) : v(s) ∈ Dom(A) for s ∈ R, Av ∈ S(R, X)}.
Proposition 4.9. Let {etA}t≥0 be a strongly continuous semigroup generated by

A. Let Γ and ΓR be the generators of the evolution semigroups on Lp(R+, X) and
Lp(R, X), as defined in (3.4) and (2.2), respectively. Then the following assertions
hold.

(i) If σ(A) ∩ iR = ∅ and sups∈R
‖(A− is)−1‖ <∞, then

‖ΓR‖•,Lp(R,X) = inf
v∈ΛS

‖ ∫
R
(A− is)v(s)eis(·) ds‖Lp(R,X)

‖ ∫
R
v(s)eis(·) ds‖Lp(R,X)

.

(ii) If ΓR is invertible on Lp(R, X), then {etA}t≥0 is hyperbolic and

‖Γ−1
R
‖L(Lp(R,X)) = sup

v∈S(R,X)

‖ ∫
R
(A− is)−1v(s)eis(·) ds‖Lp(R,X)

‖ ∫
R
v(s)eis(·) ds‖Lp(R,X)

.

(iii) If Γ is invertible on Lp(R+, X), then {etA}t≥0 is exponentially stable and

‖Γ−1‖L(Lp(R+,X)) = ‖Γ−1
R
‖L(Lp(R,X)).

Proof. To show (i), let v ∈ S(R, X). Since sups∈R
‖(A− is)−1‖ <∞, the formula

w(s) = (A− is)−1v(s), s ∈ R, defines a function w in ΛS . Now

gv(τ) =
1

2π

∫
R

(A− is)(A− is)−1v(s)eisτ ds =
1

2π

∫
R

(A− is)w(s)eisτ ds

and

fv(τ) =
1

2π

∫
R

w(s)eisτ ds.

However, from Proposition 4.8,

‖ΓR‖• = inf
fv∈F

‖ΓRfv‖
‖fv‖ = inf

v∈S(R,X)

‖gv‖
‖fv‖ = inf

w∈ΛS

‖ ∫
R
(A− is)w(s)eis(·) ds‖
‖ ∫

R
w(s)eis(·) ds‖ .
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To see (ii), note that

‖Γ−1
R
‖ = ‖ΓR‖−1

• =

[
inf

v∈S(R,X)

‖ΓRfv‖
‖fv‖

]−1

= sup
v∈S(R,X)

‖fv‖
‖gv‖ .

For (iii) note that ‖ΓR‖•,Lp(R,X) ≤ ‖Γ‖•,Lp(R+,X). Indeed, let f ∈ Lp(R, X) with
supp f ⊆ R+. If f ∈ Dom(−d/dt + A), then suppΓRf ⊆ R+ and ‖ΓRf‖Lp(R,X) =
‖Γf‖Lp(R+,X). To see that ‖ΓR‖• ≥ ‖Γ‖• , let ε > 0 and choose f ∈ Dom(−d/dt+A)
with compact support such that ‖f‖Lp(R,X) = 1 and ‖ΓR‖• ≥ ‖ΓRf‖− ε. Now choose
τ ∈ R such that fτ (s) := f(s − τ), s ∈ R, defines a function, fτ ∈ Lp(R, X), with
supp fτ ⊆ R+. Let f̄τ denote the element of Lp(R+, X) which coincides with fτ on
R+. Then ‖fτ‖ = ‖f̄τ‖ and Γf̄τ = −d/dt f(· − τ) + Af(· − τ) = (ΓRf)τ . Therefore,
‖ΓR‖• ≥ ‖ΓRf‖ − ε = ‖(ΓRf)τ‖ − ε = ‖ΓRf̄τ‖ − ε ≥ ‖Γ‖• − ε.

Proposition 4.10. The set GU = {gu : u ∈ S(R, U)} is dense in Lp(R, U). If
u ∈ S(R, U) and B ∈ L(U,X), then Bu ∈ S(R, X) and ΓRfBu = Bgu.

Proof. The first statement is clear, as in Proposition 4.8. The second follows from
the properties of Schwartz functions, and from the calculation

ΓRfBu
= g

Bu
(τ) =

1

2π

∫
R

Bu(s)eisτ ds = B
1

2π

∫
R

u(s)eisτ ds.

Recall (see Remarks 2.4 and Theorem 3.2) that {etA}t≥0 is hyperbolic (respec-
tively, stable) if and only if ΓR (respectively, Γ) is invertible on Lp(R, X) (respectively,
Lp(R+, X)).

Theorem 4.11. If ΓR is invertible on Lp(R, X), then

‖CΓ−1
R
B‖ = sup

u∈S(R,U)

‖ ∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖ ∫
R
u(s)eis(·) ds‖Lp(R,U)

.(4.18)

If Γ is invertible on Lp(R+, X), then the norm of L = CΓ−1B, as an operator from
Lp(R+, U) to Lp(R+, Y ), is given by the above formula:

‖L‖ = ‖CΓ−1
R
B‖.(4.19)

If, in addition, U and Y are Hilbert spaces and p = 2, then

‖L‖ = sup
s∈R

‖C(A− is)−1B‖L(U,Y ).(4.20)

Proof. For u ∈ S(R, U), consider functions fBu and gu. Proposition 4.10 gives
fBu = Γ−1

R
Bgu and

‖CΓ−1
R
B‖ = sup

gu∈GU

‖CΓ−1
R
Bgu‖Lp(R,Y )

‖gu‖Lp(R,U)
= sup

gu∈GU

‖CfBu‖
‖gu‖

= sup
u∈S(R,U)

‖ ∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖ ∫
R
u(s)eis(·) ds‖Lp(R,U)

,

which proves (4.18).
Now if Γ is invertible on Lp(R+, X), then {etA}t≥0 is exponentially stable by

Corollary 3.6. Hence ΓR is invertible on Lp(R, X). Moreover, for the case of the
stable semigroup {etA}t≥0, the formula for Γ−1

R
(see, e.g., [25]) takes the form

(Γ−1
R
f)(t) =

∫ ∞

0

esAf(t− s) ds =
∫ t

−∞
e(t−s)Af(s) ds.
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If supp f ⊆ (0,∞), then

(Γ−1
R
f)(t) =

∫ t

−∞
e(t−s)Af(s) ds =

∫ t

0

e(t−s)Af(s) ds.(4.21)

For a function h ∈ Lp(R+, X), define an extension h̃ ∈ Lp(R, X) by h̃(t) = h(t) for
t ≥ 0 and h̃(t) = 0 for t < 0. Then (4.21) shows that Γ−1

R
h̃ = (Γ−1h)∼. In particular,

for u ∈ Lp(R+, U), L̃u = ˜CΓ−1Bu = CΓ−1
R
Bũ. Therefore,

‖Lu‖Lp(R+,Y ) = ‖L̃u‖Lp(R,Y ) = ‖CΓ−1
R
Bũ‖Lp(R,Y )

≤ ‖CΓ−1
R
B‖ · ‖ũ‖Lp(R,U) = ‖CΓ−1

R
B‖ · ‖u‖Lp(R+,U).

This shows that ‖L‖ ≤ ‖CΓ−1
R
B‖.

To prove that equality holds in (4.19), let ε > 0 and choose u ∈ Lp(R, U), ‖u‖ = 1,
such that ‖CΓ−1

R
Bu‖Lp(R,Y ) ≥ ‖CΓ−1

R
B‖ − ε. Without loss of generality, u may be

assumed to have compact support. Now choose r such that suppu(· − r) ⊆ (0,∞)
and set w(·) := u(· − r). Then w ∈ Lp(R, U) with suppw ⊆ (0,∞). Let w̄ denote the
element of Lp(R+, U) that coincides with w on R+. As in (4.21) we have

CΓ−1
R
Bw(t) = C

∫ t

0

e(t−s)ABw(s) ds = C

∫ t

−∞
e(t−s)ABw(s) ds.

Since ‖w̄‖Lp(R+,U) = ‖w‖Lp(R,U) = ‖u‖Lp(R,U) = 1, it follows that

‖L‖ ≥ ‖Lw̄‖Lp(R+,Y ) = ‖L̃w̄‖Lp(R,Y )

= ‖L ˜̄w‖Lp(R,Y ) = ‖CΓ−1
R
Bw‖Lp(R,Y )

= ‖C
∫ ·

−∞
e(·−τ)ABu(τ) dτ‖Lp(R,Y )

= ‖CΓ−1
R
Bu‖Lp(R,Y ) ≥ ‖CΓ−1

R
B‖ − ε.

This confirms (4.19). Parseval’s formula and (4.7) give (4.20).
If {etA}t≥0 is exponentially stable, then the inequalities in (4.7) give lower and

upper bounds on the stability radius in terms of L and C(A − is)−1B, respectively.
The previous theorem shows that ‖L‖ can be explicitly expressed in terms of an
integral involving C(A − is)−1B. We conclude by observing that a lower bound for
the constant stability radius can be expressed by a similar formula involving a sum.
For this, let ξ ∈ [0, 1] and set

Sξ := sup
{uk}∈Λ

‖∑k C(A− iξ − ik)−1Buke
ik(·)‖Lp([0,2π],Y )

‖∑k uke
ik(·)‖Lp([0,2π],U)

.

We note that Sξ is computed as in (4.11) with A replaced by Aξ = A− iξ.
Corollary 4.12. Let {etA}t≥0 be an exponentially stable semigroup generated

by A. Then

1

supξ∈[0,1] Sξ
≤ rcstab({etA}, B,C) ≤ 1

sups∈R
‖C(A− is)−1B‖ .
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Proof. Fix ξ ∈ [0, 1], and let Γper,ξ denote the generator on Lp([0, 2π], X) of the
evolution semigroup induced by {etAξ}t≥0. By Theorem 4.3, ‖CΓ−1

per,ξB‖ = Sξ, and so
by Theorem 4.4,

1

Sξ
≤ rc1stab(e2πAξ , B,C) ≤ 1

supk∈Z
‖C(Aξ − ik)−1B‖ .

By Proposition 4.6, taking the infimum over ξ ∈ [0, 1] gives

1

supξ∈[0,1] Sξ
≤ inf

ξ∈[0,1]
rc1stab(e

2πAξ , B,C) = rcstab({etA}, B,C)

≤ inf
ξ∈[0,1]

1

supk∈Z
‖C(Aξ − ik)−1B‖

=
1

sups∈R
‖C(A− is)−1B‖ .

4.5. Two counterexamples. In contrast to the Hilbert-space setting, the fol-
lowing Banach-space examples show that either inequality in (4.7) may be strict. We
start with the example where the second inequality in (4.7) is strict.

Example 4.13. An example due to Arendt (see, e.g., [29], Ex. 1.4.5) exhibits
a (positive) strongly continuous semigroup {etA}t≥0 on a Banach space X with the
property that s0(A) < ω0(A) < 0 for the abscissa of uniform boundedness of the
resolvent and the growth bound. Now, for α such that 0 ≤ α ≤ −ω0(A), consider
a rescaled semigroup generated by A + α, and denote by ΓA+α the generator of the
induced evolution semigroup on Lp(R+, X). The following relationships hold:

for 0 ≤ α < −ω0(A), s0(A+ α) = s0(A) + α < ω0(A) + α = ω0(A+ α) < 0;

for α0 := −ω0(A), s0(A+ α0) < ω0(A+ α0) = 0.

This says that s0(A+ α) < 0 for all α ∈ [0, α0] and hence

M := sup
α∈[0,α0]

sup
s∈R

‖(A+ α− is)−1‖ <∞.

Now note (see Corollary 3.6) that ω0(A + α) < 0 if and only if ‖Γ−1
A+α‖ < ∞. Since

ω0(A + α) → 0 as α → α0, we conclude that ‖Γ−1
A+α‖ → ∞ as α → α0. Since

α �→ ‖Γ−1
A+α‖ is a continuous function of α on [0, α0), there exists α1 ∈ [0, α0) such

that ‖Γ−1
A+α1

‖ > M , and so the following inequality is strict:

1

‖Γ−1
A+α1

‖ <
1

sups∈R
‖(A+ α1 − is)−1‖ .

Also, we claim that there exists α2 ∈ [0, α0) such that the following inequality is
strict:

rcstab({et(A+α2)}, I, I) < 1

sups∈R
‖(A+ α2 − is)−1‖ .

To see this, let us suppose that for each α ∈ [0, α0) one has rcstab({et(A+α)}, I, I) ≥
1/(2M). Again, using that ω0(A + α) → 0 as α → α0, find α ∈ [0, α0) such that
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|ω0(A + α)| < 1/(2M). Let ∆ = ω0(A + α)I. Since ‖∆‖ = |ω0(A + α)|, by the
definition of stability radius one has

0 > ω0(A+ α+∆) = ω0(A+ α)− ω0(A+ α) = 0,

which is a contradiction. Thus there exists α2 ∈ [0, α0) such that

rcstab({et(A+α2)}, I, I) ≤ 1

2M
<

1

M
≤ 1

sups∈R
‖(A+ α2 − is)−1‖ ,

as claimed.
This example shows that the second inequality in (4.7) can be strict due to the

Banach-space pathologies related to the failure of Gearhart’s Theorem 2.1. Another
example, given below, shows that the first inequality in (4.7) could be strict due to
the lack of Parseval’s formula (see (4.15) in the proof of Theorem 4.4). That is, the
choice of p = 2 in (4.6) is as important as the fact that X in (4.6) is a Hilbert space.
First, we need a formula for the norm of the input-output operator on L1(R+, X).

Proposition 4.14. Assume {etA}t≥0 is an exponentially stable C0 semigroup
on a Banach space X. The norm of the operator L = Γ−1 on L1(R+, X) is

‖Γ−1‖L(L1(R+,X)) = sup
‖x‖=1

∫ ∞

0

‖etAx‖ dt.(4.22)

Proof. Recall (see (3.5)) that

Γ−1f(t) = −
∫ t

0

eτAf(t− τ) dτ t ∈ R+, f ∈ L1(R+, X)

is the convolution operator. Choose positive δn ∈ L1(R+,R) with ‖δn‖L1 = 1 such
that

‖g ∗ δn − g‖L1(R+,X) → 0 as n→∞ for each g ∈ L1(R+, X).

Fix x ∈ X, ‖x‖ = 1, let f = δnx ∈ L1(R+, X), and note that

Γ−1f(t) = −
∫ t

0

eτAx δn(t− τ) dτ = −(g ∗ δn)(t) for g(t) = etAx, t ∈ R+.

This implies “≥” in (4.22). To see “≤,” take f =
∑N

i=1 αixi with αi ∈ L1(R+,R)
having disjoint supports and ‖xi‖ = 1, i = 1, . . . , N . Now ‖f‖L1(R+,X) =

∑
i ‖αi‖L1 ,

and for fi(t) = etAxi one has

Γ−1f(t) = −
∫ t

0

∑
i

eτAxiαi(t− τ) dτ = −
∑
i

(fi ∗ αi)(t).

Using Young’s inequality,

‖Γ−1f‖L1(R+,X) ≤
∑
i

‖fi ∗ αi‖L1(R+,X)

≤
∑
i

‖fi‖L1(R+,X)‖αi‖L1 ≤ sup
‖x‖=1

∫ ∞

0

‖etAx‖ dt
∑
i

‖αi‖L1 .
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Example 4.15. Take X = C
2 with the :1 norm. Let

A =

(−1 1
−1 −1

)
so that etA =

(
e−t cos(t) e−t sin(t)
−e−t sin(t) e−t cos(t)

)
,

and

(A− is)−1 =
1

(1 + is)2 + 1

(−1− is −1
1 −1− is

)
.

Since the extreme points of X are eiθe1 and eiθe2 (θ ∈ R), where e1 and e2 are the
unit vectors of C

2, we see that

‖(A− is)−1‖ = |1 + is|+ 1

|(1 + is)2 + 1| .

It may be numerically established that

sup
s∈R

‖(A− isI)−1‖ ≈ 1.087494476.

By Corollary 4.7, the reciprocal to the last expression is equal to rcstab({etA}, I, I).
On the other hand, using Proposition 4.14,

‖L‖ = ‖Γ−1
A ‖ = sup

‖x‖=1

∫ ∞

0

‖etAx‖ dt

=

∫ ∞

0

|e−t cos(t)|+ |e−t sin(t)| dt ≈ 1.262434309.

Therefore, the first inequality in (4.7) may be strict.

The following example shows that the norm of the input-output operator depends
on p.

Example 4.16. Let

A =

(
9/2 −5/2
25/2 −13/2

)
,

acting on C
2 with the Euclidean norm. Thus

etA = e−t
(
cos t+ (11/2) sin t −(5/2) sin t

(25/2) sin t cos t− (11/2) sin t

)
.

Then

‖Γ−1‖L1→L1
≥
∫ ∞

0

‖etAe1‖ dt ≈ 7.748310791,

whereas

‖Γ−1‖L2→L2 = sup
s∈R

‖(A− is)−1‖ ≈ 2.732492852.
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5. Internal and external stability. Work aimed at properties of stability and
robustness of linear time-invariant systems is often based on transform techniques.
More specifically, if the transfer function H(λ) = C(A−λ)−1B is a bounded analytic
function of λ in the right half-plane C+ = {λ ∈ C : Reλ > 0}, then the autonomous
system (4.4) is said to be externally stable. This property is often used to deduce
internal stability of the system, i.e., the uniform exponential stability of the nominal
system ẋ = Ax. The relationship between internal and external stability has been
studied extensively; see, e.g., [3, 9, 8, 21, 26, 39, 40] and the references therein. In
this section we examine the extent to which these techniques apply to Banach-space
settings and time-varying systems. For this, input-output stability of the system (4.3)
will refer to the property that the input-output operator L is bounded from Lp(R+, U)
to Lp(R+, Y ). If internal stability is assumed initially, then the inequalities in (4.7)
exhibit a relationship between these concepts of stability. The next two theorems look
at these relationships more closely and show, in particular, when internal stability may
be deduced from one of the “external” stability conditions. Therefore, throughout
this section {U(t, τ)}t≥τ will denote a strongly continuous exponentially bounded
evolution family that is not assumed to be exponentially stable.

5.1. The nonautonomous case. In this subsection we give a very short proof
of the fact that for general nonautonomous systems on Banach spaces, internal sta-
bility is equivalent to stabilizability, detectability, and input-output stability. Before
proceeding, it is worth reviewing some properties of time-invariant systems. For
this, let {etA}t≥0 be a strongly continuous semigroup generated by A on X, and let
H∞

+ (L(X)) denote the space of operator-valued functions G : C → L(X) which are
analytic on C+ and supλ∈C+

‖G(λ)‖ < ∞. If X is a Hilbert space, it is well known

that {etA}t≥0 is exponentially stable if and only if λ �→ (λ − A)−1 is an element of
H∞

+ (L(X)); see, e.g., [11, Thm. 5.1.5]. This is a consequence of the fact that when
X is a Hilbert space, s0(A) = ω0(e

tA) (see [29] or Theorem 2.1). If X is a Banach
space, then strict inequality s0(A) < ω0(e

tA) can hold, and so exponential stability
is no longer determined by the operator G(λ) = (λ−A)−1. Extending these ideas to
address systems (4.4), one considers H(λ) = C(λ−A)−1B: it can be shown that if U
and Y are Hilbert spaces, then (4.4) is internally stable if and only if it is stabilizable,
detectable, and externally stable (i.e., H(·) ∈ H∞

+ (L(U, Y ))). See Rebarber [39] for a
general result of this type. It should be pointed out that this work of Rebarber and
others more recently allows for a certain degree of unboundedness of the operators
B and C. Such “regular” systems (see [44]) and their time-varying generalizations
might be addressed by combining the techniques of the present paper (including the
characterization of generation of evolution semigroups as found in [36]) along with
those of [18] and [20]. This will not be done here.

If one allows for Banach spaces, the conditions of stabilizability and detectability
are not sufficient to ensure that external stability implies internal stability. Indeed, let
A generate a semigroup for which s0(A) < ω0(e

tA) = 0 (see Example 4.13). Then the
system (4.4) with B = I and C = I is trivially stabilizable, detectable, and externally
stable. But since ω0(e

tA) = 0, it is not internally stable.
Since the above italicized statement concerning external stability fails for Banach-

space systems (4.4) and does not apply to time-varying systems (4.3), we aim to prove
the following extension of this.

Theorem 5.1. The system (4.3) is internally stable if and only if it is stabilizable,
detectable, and input-output stable.

This theorem appears as part of Theorem 5.3. A version of it for finite-dimensional
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time-varying systems was proven by Anderson in [3]. The fact that Theorem 5.1
actually extends the Hilbert-space statement above follows from the fact that the
Banach-space inequality supλ∈C+

‖H(λ)‖ ≤ ‖L‖ (see [45]) which relates the operators
that define external and input-output stability is actually an equality for Hilbert-space
systems (see also [44]).

In Theorems 5.1 and 5.3 the following definitions are used.
Definition 5.2. The nonautonomous system (4.3) is said to be
(a) stabilizable if there exists F (·) ∈ L∞(R+,Ls(X,U)) and a corresponding ex-

ponentially stable evolution family {UBF (t, τ)}t≥τ such that, for t ≥ s and
x ∈ X, one has

UBF (t, s)x = U(t, s)x+

∫ t

s

U(t, τ)B(τ)F (τ)UBF (τ, s)x dτ ;(5.1)

(b) detectable if there exists K(·) ∈ L∞(R+,Ls(Y,X)) and a corresponding ex-
ponentially stable evolution family {UKC(t, τ)}t≥τ such that, for t ≥ s and
x ∈ X, one has

UKC(t, s)x = U(t, s)x+

∫ t

s

UKC(t, τ)K(τ)C(τ)U(τ, s)x dτ.(5.2)

An autonomous control system is called stabilizable if there is an operator F ∈
L(X,U) such that A+BF generates a uniformly exponentially stable semigroup; that
is, ω0(A+BF ) < 0. Such a system is detectable if there is an operator K ∈ L(Y,X)
such that A+KC generates a uniformly exponentially stable semigroup.

Using Theorem 3.5 to characterize exponential stability in terms of the operator
G as in (3.6) makes the proof of the following theorem a straightforward manipulation
of the appropriate operators.

Theorem 5.3. The following are equivalent for a strongly continuous exponen-
tially bounded evolution family of operators U = {U(t, τ)}t≥τ on a Banach space X.

(i) U is exponentially stable on X.
(ii) G is a bounded operator on Lp(R+, X).
(iii) System (4.3) is stabilizable and GB is a bounded operator from Lp(R+, U) to

Lp(R+, X).
(iv) System (4.3) is detectable and CG is a bounded operator from Lp(R+, X) to

Lp(R+, Y ).
(v) System (4.3) is stabilizable and detectable and L = CGB is a bounded operator

from Lp(R+, U) to Lp(R+, Y ).
Proof. The equivalence of (i) and (ii) is the equivalence of (i) and (ii) in Theo-

rem 3.5.
To see that (ii) implies (iii), (iv), and (v), note that B and C are bounded, and

thus L is bounded when G is bounded. So when (ii) holds, the exponential stability of
U together with the boundedness of B(·), C(·), F (·), and K(·) assure the existence of
the evolution families {UBF (t, τ)}t≥τ and {UKC(t, τ)}t≥τ as solutions of the integral
equations in Definition 5.2, thereby showing that (iii), (iv), and (v) hold.

To see that (iii)⇒ (ii), first note that the assumption of stabilizability assures the
existence of an exponentially stable evolution family UBF = {UBF (t, τ)}t≥τ satisfying
(5.1) for some F (·) ∈ L∞(R+,Ls(X,U)). Given this exponentially stable family, we
define the operator GBF by

GBF f(s) :=

∫ s

0

UBF (s, τ)f(τ) dτ =

∫ ∞

0

(Eτ
BF f)(s) dτ,(5.3)
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where {Eτ
BF f}t≥0 is the semigroup induced by the evolution family UBF as described

in (3.1). GBF is a bounded operator on Lp(R+, X) by the equivalence of (i) and (ii).
For f(·) ∈ Lp(R+, X) and s ∈ R+, take x = f(s) in (5.1). Then let ξ = τ − s to

obtain

UBF (t, s)f(s) = U(t, s)f(s) +

∫ t−s

0

U(t, ξ + s)B(ξ + s)F (ξ + s)UBF (ξ + s, s)f(s) dξ.

From this equation and from the definition of the semigroups {Et}t≥0 and {Et
BF }t≥0

we obtain

(Et−s
BF f)(t) = (Et−sf)(t) +

∫ t−s

0

(Et−s−ξBFEξ
BF f)(t) dξ

and hence for 0 ≤ r and 0 ≤ σ that

(Er
BF f)(σ) = (Erf)(σ) +

∫ r

0

(Er−ξBFEξ
BF f)(σ) dξ.

Integrate from 0 to ∞ to obtain

(GBF f)(σ) = (Gf)(σ) +

∫ ∞

0

∫ r

0

(Er−ξBFEξ
BF f)(σ) dξ dr.

Let r = ζ + η and ξ = η to obtain

(GBF f)(σ) = (Gf)(σ) +

∫ ∞

0

∫ ∞

0

(EζBFEη
BF f)(σ) dη dζ

= (Gf)(σ) + (GBFGBF f)(σ).

(5.4)

That G is bounded now follows from (5.4), the boundedness of GB, and the bound-
edness of GBF and F .

To see that (iv) ⇒ (ii), first note that the assumption of detectability assures the
existence of an exponentially stable evolution family UKC = {UKC(t, τ)}t≥τ satisfying
(5.2) for some K(·) ∈ L∞(R+,Ls(Y,X)). Given this exponentially stable family, the
operator GKC , defined in a manner analogous to GBF in (5.3), is a bounded operator
on Lp(R+, X). A derivation beginning with (5.2) and similar to that which gave
(5.4) now gives GKC = G + GKCKCG. This equation, together with the assumed
boundedness of GKC , K, and CG, gives the boundedness of G.

Finally, to see that (v) ⇒ (ii), again note that the assumption of detectability
yields an exponentially stable evolution family UKC and an associated bounded opera-
tor GKC . For u(·) ∈ Lp(R+, U) and s ∈ R+ take x = B(s)u(s) in (5.2). A calculation
similar to that which gave (5.4) now gives GKCB = GB + GKCKCGB. The assumed
boundedness of L = CGB, K, and GKC now yields the boundedness of GB. The
boundedness of GB together with the assumption of stabilizability implies that G is
bounded by the equivalence of (iii) and (ii).

5.2. The autonomous case. The main result of this subsection is Theorem 5.4
which builds on Theorem 4.11 and parallels Theorem 5.3 for autonomous systems of
the form (4.4). The main point is to provide explicit conditions, in terms of the
operators A, B, and C, which imply internal stability.

Let Aα := A− αI denote the generator of the rescaled semigroup {e−αtetA}t≥0.
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Theorem 5.4. Let {etA}t≥0 be a strongly continuous semigroup on a Banach
space X generated by A. Let U and Y be Banach spaces and assume B ∈ L(U,X)
and C ∈ L(X,Y ). Then the following are equivalent.

(i) {etA}t≥0 is exponentially stable.

(ii) G is a bounded operator on Lp(R+, X).

(iii) σ(A) ∩ C+ = ∅ and sup
v∈S(R,X)

‖ ∫
R
(Aα − is)−1v(s)eis(·) ds‖Lp(R,X)

‖ ∫
R
v(s)eis(·) ds‖Lp(R,X)

<∞
for all α ≥ 0.

(iv) σ(A) ∩ C+ = ∅ and sup
u∈S(R,U)

‖ ∫
R
(Aα − is)−1Bu(s)eis(·) ds‖Lp(R,X)

‖ ∫
R
u(s)eis(·) ds‖Lp(R,U)

<∞

for all α ≥ 0, and (4.4) is stabilizable.

(v) σ(A) ∩ C+ = ∅ and sup
v∈S(R,X)

‖ ∫
R
C(Aα − is)−1v(s)eis(·) ds‖Lp(R,Y )

‖ ∫
R
v(s)eis(·) ds‖Lp(R,X)

<∞

for all α ≥ 0, and (4.4) is detectable.

(vi) σ(A) ∩ C+ = ∅ and sup
u∈S(R,U)

‖ ∫
R
C(Aα − is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖ ∫
R
u(s)eis(·) ds‖Lp(R,U)

<∞

for all α ≥ 0, and (4.4) is both stabilizable and detectable.
Moreover, if {etA}t≥0 is exponentially stable, then the norm of the input-output oper-
ator L = CGB is equal to

sup
u∈S(R,U)

‖ ∫
R
C(A− is)−1Bu(s)eis(·) ds‖Lp(R,Y )

‖ ∫
R
u(s)eis(·) ds‖Lp(R,U)

.

Proof. First note that the equivalence of statements (i) and (ii) follows from
Remarks 3.3. Also, the implication (i)⇒(vi), as well as the last statement of the
theorem, follow from Theorem 4.11. The exponential stability of {etA}t≥0 is equivalent
to the invertibility of ΓR (Corollary 3.6), and so (iii) follows from (i) by Proposition 4.9.

To see that (iii) implies (i), begin by setting α = 0. We wish to use properties
of F as in Proposition 4.8. We begin by observing that if the expression in (iii) is
finite, then sups∈R

‖(A − is)−1‖ < ∞. Indeed, if this were not the case, then there
would exist sn ∈ R and xn ∈ Dom(A) with ‖xn‖ = 1 such that ‖(A− isn)xn‖ → 0 as
n→∞. Choose functions βn ∈ S(R) with the property that

lim
n→∞

‖ ∫
R
βn(s)(isn − is)eis(·) ds‖Lp(R)

‖ ∫
R
βn(s)eis(·) ds‖Lp(R)

= 0.(5.5)

Note: to construct such a sequence of functions βn, one takes, without loss of general-
ity, sn = 0 in (5.5) and chooses a “bump” function β0(s) where β0(0) = 1 and β0 has
support in (−1, 1). Then set βn(s) = nβ0(ns). If ˇ denotes the inverse Fourier trans-
form, then β̌n(τ) = β̌0(τ/n). Also, for αn(s) = sβn(s), one has α̌n(τ) =

1
n α̌0(τ/n),

and so

‖ ∫
R
βn(s)se

is(·) ds‖pLp(R)

‖ ∫
R
βn(s)eis(·) ds‖pLp(R)

=
‖α̌n‖p
‖β̌n‖p

=

(
1
n

)p ‖α̌0‖p
‖β̌0‖p

→ 0 as n→∞.
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Now, setting vn(s) := βn(s)(A − is)xn gives a function vn in S(R, X) with the
properties that (A− is)−1vn(s) = βn(s)xn. Thus

‖ ∫
R
(A− is)−1vn(s)e

is(·) ds‖
‖ ∫

R
vn(s)eis(·) ds‖ =

‖ ∫
R
βn(s)xne

is(·) ds‖
‖ ∫

R
βn(s)(A− is)xneis(·) ds‖

=
‖ ∫

R
βn(s)xne

is(·) ds‖
‖ ∫

R
βn(s)(A− isn)xneis(·) ds+ βn(s)(isn − is)xneis(·) ds‖

≥ ‖ ∫
R
βn(s)xne

is(·) ds‖
‖(A− isn)xn‖ ‖

∫
R
βn(s)eis(·) ds‖+ ‖

∫
R
βn(s)(isn − is)xneis(·) ds‖

=

(
‖(A− isn)xn‖+

‖ ∫
R
βn(s)(isn − is)eis(·) ds‖
‖ ∫

R
βn(s)eis(·) ds‖

)−1

.

By the choice of sn, xn, and βn, this last expression goes to∞ as n→∞, contradicting
(iii). Hence if the expression in (iii) is finite for α = 0, then sups∈R

‖(A− is)−1‖ <∞.
Now we may apply Proposition 4.8(ii) and Proposition 4.9 to obtain

‖ΓR‖• = inf
v∈S(R,X)

‖ΓRfv‖
‖fv‖ = inf

v∈S(R,X)

‖gv‖
‖fv‖ =

(
sup

v∈S(R,X)

‖fv‖
‖gv‖

)−1

> 0.

This shows that 0 /∈ σap(ΓR) and so, by [23], it follows that σap(e
tA)∩T = ∅. On the

other hand, since σ(A)∩ iR = ∅, it follows from the spectral mapping theorem for the
residual spectrum σr(e

tA) that

σ(etA) ∩ T =
[
σap(e

tA) ∪ σr(etA)
] ∩ T = ∅.

The same argument holds for any α ≥ 0. As a result, {etAα}t≥0 is hyperbolic for each
α ≥ 0, and thus {etA}t≥0 is exponentially stable.

So far it has been shown that the statements (i)–(iii) are equivalent, and that
statement (i) implies (vi). By showing that (vi)⇒(iv)⇒(iii) and (vi)⇒(v)⇒(iii), we
complete the proof.

To see that (vi) implies (iv), begin by setting α = 0. Since (4.4) is detectable, there
exists K ∈ L(Y,X) such that A +KC generates an exponentially stable semigroup.
By the implication (i)⇒(iii) for the semigroup {et(A+KC)}, it follows that

M1 := sup
v∈S(R,X)

‖ ∫
R
(A+KC − is)−1v(s)eis(·) ds‖

‖ ∫
R
v(s)eis(·) ds‖

is finite. So

sup
u∈S(R,U)

‖ ∫
R
(A+KC − is)−1Bu(s)eis(·) ds‖

‖ ∫
R
u(s)eis(·) ds‖

(5.6)

= sup
u∈S(R,U)

‖ ∫
R
(A+KC − is)−1Bu(s)eis(·) ds‖

‖ ∫
R
Bu(s)eis(·) ds‖ · ‖B

∫
R
u(s)eis(·) ds‖

‖ ∫
R
u(s)eis(·) ds‖ ≤M1‖B‖.

By hypothesis in (vi),

M2 := sup
u∈S(R,U)

‖ ∫
R
C(A− is)−1Bu(s)eis(·) ds‖
‖ ∫

R
u(s)eis(·) ds‖
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is finite. For u ∈ S(R, U), let w(s) = KC(A− is)−1Bu(s), s ∈ R. Then

‖ ∫
R
(A+KC − is)−1KC(A− is)−1Bu(s)eis(·) ds‖

‖ ∫
R
u(s)eis(·) ds‖(5.7)

=
‖ ∫

R
(A+KC − is)−1w(s)eis(·) ds‖

‖ ∫
R
w(s)eis(·) ds‖ · ‖K

∫
R
C(A− is)−1Bu(s)eis(·) ds‖
‖ ∫

R
u(s)eis(·) ds‖

≤M1‖K‖M2.

Finally, since

(A− is)−1B = (A+KC − is)−1B

+ (A+KC − is)−1KC(A− is)−1B,

it follows from (5.6) and (5.7) that

sup
u∈S(R,U)

‖ ∫
R
(A− is)−1Bu(s)eis(·) ds‖
‖ ∫

R
u(s)eis(·) ds‖ ≤M1‖B‖+M1‖K‖M2.

This argument holds for all α ≥ 0, so the implication (vi)⇒(iv) follows.
To see that (iv) implies (iii), we again argue only in the case α = 0. Since (4.4) is

stabilizable, there exists F ∈ B(X,U) such that A + BF generates an exponentially
stable semigroup. By the implication (i)⇒(iii) for the semigroup {et(A+BF )}, it follows
that

M3 := sup
v∈S(R,X)

‖ ∫
R
(A+BF − is)−1v(s)eis(·) ds‖

‖ ∫
R
v(s)eis(·) ds‖

is finite. By the hypotheses in (iv),

M4 := sup
u∈S(R,U)

‖ ∫
R
(A− is)−1Bu(s)eis(·) ds‖
‖ ∫

R
u(s)eis(·) ds‖

is finite. For v ∈ S(R, X), set w(s) = F (A+BF − is)−1v(s), s ∈ R. Then

sup
v∈S(R,X)

‖ ∫
R
(A− is)−1BF (A+BF − is)−1v(s)eis(·) ds‖

‖ ∫
R
v(s)eis(·) ds‖(5.8)

=
‖ ∫

R
(A− is)−1Bw(s)eis(·) ds‖
‖ ∫

R
w(s)eis(·) ds‖ · ‖F

∫
R
(A+BF − is)−1v(s)eis(·) ds‖

‖ ∫
R
v(s)eis(·) ds‖

≤M4‖F‖M3.

Since

(A− is)−1 = (A+BF − is)−1 + (A− is)−1BF (A+BF − is)−1,

it follows from (5.8) that

sup
v∈S(R,X)

‖ ∫
R
(A− is)−1v(s)eis(·) ds‖
‖ ∫

R
v(s)eis(·) ds‖ ≤M3 +M4‖F‖M3.



STABILITY IN BANACH SPACES 1791

Thus (iii) follows from (iv). Similar arguments show that (vi)⇒(v) and that
(v)⇒(iii).

From the equivalence of statements (i) and (iii), it follows that the growth bound
of a semigroup on a Banach space is given by

ω0(e
tA) = inf

{
α ∈ R : sup

v∈S(R,X)

‖ ∫
R
(Aα − is)−1v(s)eis(·) ds‖
‖ ∫

R
v(s)eis(·) ds‖ <∞

}
.

This is a natural generalization of the formula for the growth bound for a semigroup
on a Hilbert space as provided by Gearhart’s theorem (see [19, 2, 29, 33] and cf.
Theorem 2.1):

ω0(e
tA) = s0(A) = inf

{
α ∈ R : sup

Reλ≥α
‖(A− λ)−1‖ <∞

}
.

Theorem 5.5. Let {etA}t≥0 be a strongly continuous semigroup on a Banach
space X with the property that s0(A) = ω0(e

tA). Assume (4.4) is stabilizable and
detectable. If C+ ⊂ ρ(A) and M := sups∈R

‖C(A − is)−1B‖ < ∞, then {etA}t≥0 is
exponentially stable.

Proof. Choose operators F ∈ L(X,U) and K ∈ L(Y,X) such that the semigroups
generated by A + BF and A +KC are exponentially stable. Then s0(A + BF ) < 0
and s0(A+KC) < 0, and so

M1 := sup
s∈R

‖(A+BF − is)−1‖ and M2 := sup
s∈R

‖(A+KC − is)−1‖

are both finite. Since

(A− is)−1B = (A+KC − is)−1B + (A+KC − is)−1KC(A− is)−1B,

it follows that

M3 := sup
s∈R

‖(A− is)−1B‖ ≤M2‖B‖+M2‖K‖M.

Also,

(A− is)−1 = (A+BF − is)−1 + (A− is)−1BF (A+BF − is)−1,

and so

sup
s∈R

‖(A− is)−1‖ ≤M1 +M3‖F‖M1.

Therefore, ω0(e
tA) = s0(A) < 0.

The following result, based on [22], describes a particular situation in which
s0(A) = ω0(e

tA).
Corollary 5.6. Assume that for the generator A of a strongly continuous semi-

group {etA}t≥0 on a Banach space X there exists an ω > ω0(e
tA) such that

∫ ∞

−∞
‖(ω + iτ −A)−1x‖2X dτ <∞ for all x ∈ X,(5.9)
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and
∫ ∞

−∞
‖(ω + iτ −A∗)−1x∗‖2X∗ dτ <∞ for all x∗ ∈ X∗,(5.10)

where X∗ is the adjoint space. Then system (4.4) is internally stable if and only if it
is stabilizable, detectable, and externally stable.

Proof. According to [22] (see also [29, Cor. 4.6.12]), conditions (5.9)–(5.10) imply
s0(A) = ω0(e

tA). Now Theorem 5.5 gives the result.
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Abstract. We prove that, in every stochastic game with finitely many states and actions, there
exists at least one state, starting from which an equilibrium payoff exists. This is achieved by proving
that there exists a solvable set. This generalizes to an arbitrary number of players a result due to
Thuijsman and Vrieze in the case of two players.
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1. Introduction. We prove that, in every stochastic game with finitely many
states and actions, there exists at least one state, starting from which an equilibrium
payoff exists. An associated ε-equilibrium profile consists of playing essentially like
some stationary profile x, sustained by appropriate threats. More precisely, the players
cycle periodically over some ergodic sets of the Markov chain induced by x and travel
between these sets by using small perturbations of x.
This result is a generalization to an arbitrary number of players of a result due to

Thuijsman and Vrieze [6] (see also [8]) in the case of two players. For two players, the
analog result turned out to be the first step in the proof of existence of equilibrium
payoffs for general two-player games (cf. [9]).
The proof is much more involved than for two players. Usually, states are com-

pared by means of the (undiscounted) minmax values. This is not enough here. We
order the states lexicographically, using discounted minmax values. We argue that
the set of states with highest minmax values contains a solvable set. As far as I
know, this is the first result on nonzero-sum games for which this refined comparison
between states turns out to be important (a similar comparison was used by Tijs and
Vrieze [7] for two-player, zero-sum games).
This has the consequence that in every stochastic game, there exists at least one

initial state for which an equilibrium payoff does exist.
Section 2 is devoted to the model and the statement of the result. Section 3 con-

tains some additional definitions and a refined statement of the result. The existence
of a solvable set is established in section 5.

2. Model and results.

2.1. Rules of the games. For every finite set S, ∆(S) is the simplex of proba-
bility distributions over S; for µ ∈ ∆(S) and s ∈ S, the probability of s is µ(s). The
set of players is I = {1, . . . , I}, with I ∈ N.
A stochastic game is described by a finite set of statesK, the finite setAi of actions

available to player i ∈ I in each state k, a transition function q : K×A→ ∆(K), with
A =

∏
iA

i, which describes the evolution of the state of the game, and a function
g : K ×A→ RI which describes the payoff received by the players in any stage.
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The game is played as follows. The set of stages is the set N∗ of positive integers.
The initial state k1 is given. In stage n, the current state kn is announced to the
players. Each player i chooses an action ain ∈ Ai; the action combination an = (a

i
n)i∈I

is publicly announced, kn+1 is drawn according to q(·|kn, an), and the game proceeds
to stage n+ 1.
We denote by H∞ = (K × A)N the set of plays and by Hn = (K × A)n−1 ×K

the set of histories up to stage n. A strategy of player i is a sequence σi = (σin)n∈N∗ ,
where σin : Hn → ∆(Ai) describes the behavior of player i in stage n. The set of
strategies of player i is denoted by Σi, and we set Σ =

∏
i∈I Σ

i.
We denote by Hn the algebra of cylinder sets over H∞, induced by Hn, and we

set H∞ = σ(Hn, n ∈ N∗).
We denote by Pk,σ the probability distribution over (H∞,H∞), when the initial

state is k, and the players use the strategies σ. Expectations with respect to Pk,σ are
denoted by Ek,σ.
The mixed extension of q to K ×∏i∆(A

i) is still denoted by q. We will follow
standard use and denote by −i the coalition of players other than i: we set A−i =∏
j �=iA

j , Σ−i =
∏
j �=i Σ

i, and we use similar shortcuts whenever needed.
All norms used in the paper are supremum norms. We assume for simplicity that

‖g‖ ≤ 1. The cardinality of a finite set A is denoted by |A|. Finally, for P ∈ ∆(K)
and f : K → R, we denote either by Pf or P [f ] the expectation of f under P .

2.2. minmax and equilibrium payoffs. We denote by gn = g(kn, an) ∈ RI

the payoff in stage n and by

γn(k, σ) = Ek,σ

[
1

n

n∑
p=1

gp

]

the expected average payoff up to stage n, when the initial state is k, and the players
use σ ∈ Σ. We set γn(σ) = (γn(k, σ))k∈K , and we will use similar vector notations
whenever convenient.
As often happens in stochastic games, punishment strategies will play an impor-

tant role. Recall that vi ∈ RK is the minmax for player i if (see [3]) the following
hold.

1. Players −i can guarantee vi: for every ε > 0, there exists σ−i
ε ∈ Σ−i and a

stage N0 ∈ N, such that
∀σi ∈ Σi, n ≥ N0, γ

i
n(σ

i, σ−i
ε ) ≤ vi + ε.

2. Player i can defend vi: for every ε > 0, there exists a stage N0 ∈ N, such
that for every σ−i ∈ Σ−i,

∃σi ∈ Σi, such that ∀n ≥ N0, γ
i
n(σ

i, σ−i) ≥ vi − ε.

The first condition says that, by playing (σ−i
ε ), players other than i ensure that

player i’s average payoffs will not exceed vi. The second says that player i always has
a reply which keeps his average payoff above vi. Therefore, vi(k) is the punishment
level that players −i may inflict on player i, starting from k.
The existence of the minmax in this framework has been proven by Neyman [4],

extending the proof of Mertens and Neyman [2].
As usual, we say that σ∗ ∈ Σ is an ε-equilibrium profile in the n-stage game if for

every k ∈ K, i ∈ I, and σi ∈ Σi,
γin(k, σ

i, σ−i
∗ ) ≤ γin(k, σ∗) + ε.
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We say that σ∗ is an ε-equilibrium profile if it is an ε-equilibrium profile in the n-stage
game for every n large enough.

Finally, we define equilibrium payoffs.

Definition 1. Let d ∈ (RI)K . d is an equilibrium payoff if, for every ε > 0,
there exists an ε-equilibrium profile σ∗ and an integer N0 such that

||d− γn(σ
∗)|| < ε ∀n ≥ N0.

The set of equilibrium payoffs of Γ is denoted by E(Γ). It is clear how to specialize
the above definitions to a given initial state. We denote Ek(Γ) the set of equilibrium
payoffs of the game Γ, with initial state k. Notice that Ek(Γ) ⊂ RI and that E(Γ) =∏
k∈K Ek(Γ).

Our basic result is the following.

Theorem 2. There exists k ∈ K, with Ek(Γ) �= ∅.
We actually prove a more precise result, stated below (Proposition 9).

3. Preliminaries. In this section, we define solvable states and give in Propo-
sition 7 an improved statement of Theorem 2.

3.1. Stationary strategies and communication. A strategy of player i is
stationary if the behavior of player i depends only upon the current state. Thus a
stationary strategy can be identified to a vector xi = (xik), where x

i
k ∈ ∆(Ai) is the

lottery used by player i whenever the current state is k. We denote by Si(= ∆(Ai)K)
the set of stationary strategies of player i and set S =∏i Si.
For xik ∈ ∆(Ai), supp(xik) = {ai ∈ Ai, xik(a

i) > 0} is the support of xik. For
xi = (xik)k∈K ∈ Si, we set supp(xi) =

∏
ksupp(x

i
k).

For every x ∈ S, the sequence (kn)n∈N∗ is a Markov chain under Pk,x. Hence
γ(x) = limn→∞ γn(x) exists. For simplicity, we shall speak of ergodic sets for x,
instead of ergodic sets for the Markov chain induced by x, and we shall use similar
shortcuts whenever convenient. If R is an ergodic set for x, then γ(k, x) is independent
of k ∈ R. We simply write γR(x).

We define now communicating sets, which generalize ergodic sets. A perturbation
of x ∈ S is a profile x̃ ∈ S such that supp(x) ⊆ supp(x̃).
Let x ∈ S, and let k, k′ ∈ K. A finite sequence (k0 = k, k1, . . . , kN = k′) in K is

a path from k to k′ under x if, for any n ∈ {0, . . . , N − 1}, q(kn+1|kn, xkn) > 0. k
leads to k′ under x if there exists a path from k to k′.
A subset E of K is closed under x if q(E|k, xk) = 1 for every k ∈ E.

Definition 3. Let x ∈ S, E ⊆ K. E is a communicating set for x if, for any
k, k′ ∈ E, there exists a perturbation x̃ of x such that, under x̃, E is closed and k
leads to k′.
This captures the idea that the players are able to visit an infinite number of

times any given state in E, without leaving E.

Definition 4. C(x) is the set of communicating sets for x.

Remark. Of course, any set which is ergodic for x is a communicating set for x.
More generally, let x, x′ ∈ S be such that supp(x) ⊆ supp(x′). Every ergodic set for
x′ is a communicating set for x.

3.2. Solvable sets. Let x ∈ S, and let E ∈ C(x). We denote by RE(x) the set
of subsets of E which are ergodic for x. Since a communicating set for x is closed
under x, RE(x) �= ∅.
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Definition 5. Let x ∈ S, E ∈ C(x), and µ ∈ ∆(RE(x)). The 3-tuple (E, x, µ)
is solvable if for every k ∈ E, i ∈ I, ai ∈ Ai, one has

q(·|k, ai, x−i
k )v

i ≤
∑

R∈RE(x)

µ(R)γiR(x).

It is convenient to say simply that E is solvable. We refer to the quantity∑
R∈RE(x)

µ(R)γiR(x)

as the solvable payoff of E. It follows from the definition that the solvable payoff
is at least maxk∈E v(k). We shall prove Propositions 6 and 7, stated below. They
obviously imply Theorem 2.

Proposition 6. Let (E, x, µ) be a solvable set. For k ∈ E,
∑
R µ(R)γR(x) ∈

Ek(Γ).
Proposition 7. There exists a solvable set.
The notion of solvable sets that is used here for n-player games is the generaliza-

tion of the one that proved most useful in the analysis of two-player games (see [9]).
It turns out that the proof of Proposition 7 we give below establishes the existence of
easy initial sets.

Definition 8. Let E ⊆ K. The set E is an easy initial set if, for every ε > 0,
there exists a stationary profile x such that E is an ergodic set for x and, for every
k ∈ E, i ∈ I, ai ∈ Ai, one has

q(·|k, ai, x−i
k )v

i − ε ≤ γiE(x).

This notion is due to Thuijsman and Vrieze [6]. It is not difficult to check that easy
initial sets are solvable. Therefore, the existence of easy initial sets is a stronger result
than the existence of solvable sets. Also, replacing solvable sets by easy initial sets in
the statement of Proposition 6 (and modifying the rest of the statement accordingly)
would allow for a slightly easier proof. We nevertheless deal here with the notion of
solvable sets, since this notion is slightly easier to use in two-player games. This hints
that it might also be the case for n-player games.

3.3. Reminder on discounted games. We recall here some known facts about
discounted games. For λ ∈ (0, 1], σ ∈ Σ, and k ∈ K, we denote by

γλ(k, σ) = Ek,σ

[
λ

∞∑
n=1

(1− λ)n−1gn

]

the discounted payoff induced by σ, when the initial state is k.
For i ∈ I, we also denote by viλ(k) = minΣ−i maxΣi γiλ(k, σ

−i, σi) the discounted
minmax value for player i.
For λ ∈ (0, 1], i ∈ I, and x ∈ S, we define an operator U i

λ,x over functions
u : K → R by

U i
λ,xu(k) = λgi(k, xk) + (1− λ)q(·|k, xk)u.

Let e ∈ RK be the vector (1, 1, . . . , 1). The following two facts are well known.
Fact 1. For u : K → R, c ∈ R, x ∈ S, and λ ∈ (0, 1],

U i
λ,xu ≥ u− c · e⇒ γiλ(x) ≥ u− c

λ
.
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Indeed, U i
λ,xu ≥ u − c · e yields inductively (U i

λ,x)
nu ≥ u − c( 1−(1−λ)n

λ ) · e. The
right-hand side property follows, since γiλ(x) = limn→∞(U i

λ,x)
nu.

Fact 2 (see Shapley [5]). For every x−i ∈ S−i, there exists xi ∈ Si, such that
U i
λ,(x−i,xi)v

i
λ ≥ viλ.

It is known (cf. Bewley and Kohlberg [1] and Neyman [4]) that vi = minλ→0 v
i
λ

and that, for each i ∈ I and k ∈ K, the function λ �→ viλ(k) has a Puiseux expansion
in a neighborhood of 0: there exists λ0 > 0,M ∈ N, N ∈ Z, and a sequence of real
numbers aip(k), p ∈ Z, such that

∀λ < λ0, viλ(k) =

+∞∑
p=N

aip(k)λ
p
M .

Since payoffs are bounded, aip(k) = 0 for p < 0.

4. Solvable payoffs are equilibrium payoffs. This lemma is proven in Vieille
[9] in the case of two players. We briefly sketch the extension to an arbitrary number
of players.
We describe ε-equilibrium profiles associated to

∑
R µ(R)γR(x). The players visit

cyclically the elements of RE(x) in a fixed order R1, . . . , RL, without ever leaving
E. In each visit to Rl, they stick to x during Nl stages. Going from one element
Rl to the following one Rl+1 is feasible using small perturbations of x, since E is a
communicating set for x. For each l, we choose a stationary profile x(l), such that
E is closed under x(l), and Rl+1 is the only subset of E which is ergodic for x(l).
Moreover, we require that x(l) be close to x. The length Nl of the visits to Rl is
chosen to be proportional to µ(Rl) and sufficiently large so that (i) the payoff during
one visit to Rl is close to γRl

(x), and (ii) the expected time between two visits is
small compared to the length of the visits.
This behavior is supported by tests, designed as follows. Players need to enforce

not only that each player i plays roughly according to xi during the visits to the
different sets, but also that player i indeed plays xi(l) when the profile asks for going
from one ergodic set Rl to the following one Rl+1. On the equilibrium path, there
will be infinitely many cycles and hence infinitely many excursions from Rl to Rl+1.
Denote by Fl the smallest subset of E, which contains Rl and is closed for x(l). On
the equilibrium path, only states in Fl can be reached during an excursion from Rl to
Rl+1. Moreover, each of the states in Fl will be visited infinitely many times during
these excursions. These observations allow for standard statistical checking of the play
of each player, based on the empirical distribution of moves. Details are standard.
As soon as one of the statistical tests is failed by some player, say by player i, the

others switch to a punishment profile which brings player i’s future payoffs down to
vi.

Remark. If one did replace minmax values by maxmin values in the definition
of a solvable set, the proof of existence would be much simpler than the one below.
However, the above scenario does not work, since there is no punishment profile which
brings player i’s payoffs down to the maxmin.

Remark. In the two-player case, simpler ε-equilibrium profiles can be designed.
Checking of the opponent’s play can be reduced to checking that its average payoff
remains (after sufficiently many stages) close to its theoretical payoff. This is not true
for more than two-player games, since it might then be in player i’s interest to deviate
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in such a way as to increase player j’s payoff (j �= i), in order to benefit from the
punishment of player j.1

Remark. In the case of two players, Proposition 6 can be extended. Assume that
perfect monitoring does not hold, and that, prior to playing in stage n, each player
is only told the current state kn and the payoff vector obtained in the previous stage
gn−1. There might exist profitable deviations from the above scenario. However, this
is not the case (hence the scenario describes an ε-equilibrium profile) if the following
additional assumptions are satisfied.

1. v is constant over E.
2. For each R ∈ RE(x), the perturbation x̃ of x which is used to reach R can
be chosen in such a way that for every k ∈ E, i ∈ I, and ai ∈ Ai,

q(·|k, ai, x̃−i
k )v

i ≤
∑

R∈RE(x)

µ(R)γiR(x).

(The first test in the scenario can no longer be performed; it has to be replaced
by: check that the current state is in E.) The solvable sets which we define below will
enjoy these additional properties by construction. Therefore, Theorem 2 still holds.

5. Existence of a solvable set.

5.1. Preliminary discussion. A few preliminary explanations are in order at
this point. We prove below the existence of a solvable set within the set of states with
highest minmax value (ranked according to some lexicographic order).
The basic idea is the following. Intuitively, each player i might prevent the play

from leaving the states with highest minmax value: otherwise, players −i could bring
players i’s average payoffs below this highest value (simply by playing in such a way
that the play reaches a set with lower minmax values, and by playing optimally from
then on). The obvious idea is then to order the states lexicographically, according to
their minmax values, to consider the set F of states with maximal minmax values,
and to find a stationary equilibrium in the discounted constrained game, in which
each player is restricted to the actions that prevent the play from leaving F (this
is a bit loose, since the corresponding sets of actions have to be defined iteratively;
precise statements will follow). One then would prove that the payoff induced by
this constrained equilibrium is individually rational, and one would deduce that some
ergodic set for this equilibrium is solvable.
There are difficulties in implementing this program. If one deals with the undis-

counted minmax value, it is not true that constrained discounted equilibria yield
individually rational payoffs (even approximately), as is shown by the two-player,
zero-sum example below.

0 1∗

1∗ 0∗

This game has one nonabsorbing state k, which is described by the previous matrix,
and two absorbing states k0 and k1, with payoffs 0 and 1. As usual, the meaning of a
starred entry is that, if the entry is played in state k, the play moves to the absorbing
state with the corresponding payoff. Since an absorbing state is always solvable, the
existence of solvable sets is here trivial. However, observe that the undiscounted value
in the nonabsorbing state is 1 (the stationary strategy which puts a weight of ε to the

1I wish to thank a referee for pointing this out.
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bottom row guarantees 1− ε). The states with maximal undiscounted value to player
1 are therefore k and k1. Set F = {k, k1}. In the nonabsorbing state, the only action
of player 1 that prevents the play from leaving F is the top row. Given that player 1 is
playing the top row, both actions of player 2 prevent the play from leaving F . In the
constrained game, where player 1 is restricted to the top row, the unique discounted
equilibrium is clearly obtained when player 2 plays the left row, which results in a
payoff of zero, which is not individually rational. Thus the above program fails (of
course, one might argue that, for every player, there is always one initial state such
that the corresponding payoff is individually rational; the fact that we deal with more
than two players would lead to substantial difficulties).
Therefore, some care is needed in the comparison of states. We instead deal with

the discounted minmax value. But it is not true that a player can prevent the play
from leaving the set of states with highest discounted minmax value, as is shown by
the next trivial one-player game.

0→ 1←
k0 k1

This game has two states: the player has only one action in each state, and the play
bounces back and forth between k0 and k1 (arrays indicate transitions, and numbers
indicate current payoffs). The discounted payoff starting from k1 is

1
2−λ , which is

higher than the payoff 1−λ
2−λ starting from k0. Notice that the spread

λ
2−λ is some

O(λ). This is why the correct notion of comparison will allow for this O(λ).

5.2. States with high discounted minmax value. Let f : (0, 1] → R be a
function with a Puiseux expansion f(λ) =

∑∞
p=0 apλ

p
M in the neighborhood of 0. We

use the Landau notation and write f = O(λ) if the function λ �→ f(λ)
λ is bounded in

a neighborhood of 0. This amounts to 1
M inf{p ∈ N, ap �= 0} ≥ 1.

Let F ⊆ K. Since F is finite, it is clear that λ �→ maxF viλ has a Puiseux expansion
in the neighborhood of 0. We set

Bi(F ) = {k ∈ F, max
F

viλ − viλ(k) = O(λ)} :

this is the (nonempty) subset of states of (almost) highest value for player i.
For k ∈ Bi(F ), there exist c0 ≥ 0 and λ0 > 0 such that

∀λ < λ0, max
F

viλ − viλ(k) ≤ c0λ.(1)

For k /∈ Bi(F ), there exists c1 > 0, λ0 > 0, and β < 1, such that

∀λ < λ0, max
F

viλ − viλ(k) > c1λ
β .(2)

Since K and I are finite, we may choose c0, c1, λ0, and β independently of F, k,
and i.
Set then F0 = K and, for i = 1, . . . , I, Fi = Bi(Fi−1), and F = FI . We shall

prove the following improvement of Proposition 7.
Proposition 9. There exists a solvable set (E, x, µ), with E ⊆ F .
Remark. The order 1, . . . , I on the players is obviously arbitrary: if one constructs

the sets (Fi) using any other order on the players, the conclusion of Proposition 9 still
holds.
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For k ∈ F , we define inductively subsets Ãik of A
i for i = 1, . . . , I. The definitions

of Ã1
k and of Ã

i
k are similar. We give only the latter. For k ∈ K, set Bj

k = Ãjk if j < i

and Bj
k = Ajk if j > i.

For k ∈ Fi, we set

Ãik = {ai ∈ Ai ∀a−i ∈ B−i
k , q(Fi|k, ai, a−i) = 1} :

this set contains the actions of player i that prevent the play from leaving Fi, if players
−i play actions in B−i

k . For k /∈ Fi, we set Ã
i
k = Ai.

Leaving aside for a moment the issue of nonemptiness of Ãik, we briefly explain
the motivation and the agenda.

By induction, given that players −i use only actions with B−i
k , the play, once

in Fi−1, stays in Fi−1. Fi is to be thought of as those states in Fi−1 with maximal
minmax value to player i. For k ∈ Fi, Ã

i
k is the set of actions which force the

play to remain within Fi. We shall consider discounted games in which each player
i is restricted to actions in Ãik. These games do have a stationary equilibrium xλ
(standard proof). We shall prove that any subset E of F which is ergodic for some
xλ is solvable, with payoff limλ→0 γλ(k, xλ), where k ∈ E. In order to establish this
fact, we need to prove three kinds of results.

• A communication property: it will be trivial, given the construction of the
set.
• No unilateral deviation of a player i can increase the current minmax level:
∀ai,q(·|k, ai, x−i

k )v
i ≤ vi(k). This will be straightforward, given the defini-

tions of the sets (Fi) and (Ã
i).

• Somewhat surprisingly, the only nontrivial issue is that of individual ratio-
nality: is it true that limλ→0 γ

i
λ(k, xλ) ≥ vi(k)? The positive answer will be

deduced from Lemma 12.

5.3. Properties of Ãi
k. For k ∈ Fi and λ < λ0, the following hold by definition:

1. For each ai ∈ Ai and a−i ∈ B−i
k , one has q(Fi−1|k, ai, a−i) = 1; hence, using

(1),

q(·|k, ai, a−i)viλ ≤ viλ(k) + c0λ;

therefore,

U i
λ,ai,a−iviλ(k) ≤ viλ(k) + C0λ(3)

for some C0 which depends only upon the data of the game.
2. For each ai /∈ Ãik, there exists a−i ∈ B−i

k , such that q(Fi|k, ai, a−i) < 1.
Since q(Fi|k, ai, a−i) = 1, this implies, using (2), that

q(·|k, ai, a−i)viλ < viλ(k)− ηc1λ
β + c0λ,

where η > 0 depends only upon q. Therefore, there exists λ1 < λ0 such that

∀λ < λ1, U
i
λ,ai,a−iviλ(k) < viλ(k)− c2λ

β(4)

for some c2 > 0 which depends upon the data of the game.
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Lemma 10. Ãik �= ∅ ∀i, k ∈ Fi.
Proof. We proceed by induction over i. Fix x−i with supp(x−i) = B−i. For each

λ > 0, there exists ai = (aik) ∈ (Ai)K such that U i
λ,(ai,x−i)v

i
λ ≥ viλ (Fact 2). Since

(Ai)K is finite, there exist ai ∈ (Ai)K and a sequence (λn) decreasing to 0, such that
U i
λn,ai,x−iviλn

≥ viλn
for every n.

From (1) and (2), one deduces that aik ∈ Ãik for every k.
We shall need the following property.
Lemma 11. Let Ω be a finite set, P1, P2 ∈ ∆(Ω), u : Ω→ R. Then

|P1u− P2u| ≤ ‖P1 − P2‖ max
k,k′∈Ω

|u(k)− u(k′)|.

Proof. Clearly, |P1u−P2u| is unchanged when a constant is added to u. Replace
u by u−minΩ u, so that maxk,k′∈Ω |u(k)− u(k′)| = maxΩ u. Then

|P1u− P2u| ≤
∑
k∈Ω

|P1(k)− P2(k)|u(k) ≤ ‖P1 − P2‖max
Ω

u.

The next lemma essentially entails that provided players −i use some profile x−i

with supp(x−i) ⊆ B−i, there is a reply xi of player i with supp(xi) ⊆ Ãi, such that
γiλ(x

−i, xi) ≥ viλ − o(1).
Choose a real number γ > 0, such that β + γ < 1.

Lemma 12. Let λ < min{λ1, (
c2
C0
)

1
1−β−γ }, and let x−i ∈ S−i. If supp(x−i) ⊆ B−i,

there exists ai ∈ Ãi, such that

U i
λ,ai,x−iviλ ≥ viλ − c3λ

1+γ ,

with c3 = |A−i|(1 + 2C0).
Proof. Choose x̃−i, such that



supp(x̃−i) = B−i,
‖x̃−i − x−i‖ ≤ |A−i|λγ ,
x̃jk(a

j
k) ≥ λγ ∀k, j, ajk ∈ Ãjk.

(x̃−i is to be interpreted as a λγ-perturbation of x−i.)
Choose ai = (aik) ∈ (Ai)K , such that U i

λ,ai,x̃−iviλ ≥ viλ. We argue now that

aik ∈ Ãik for every k. Since Ãik = Ai for k /∈ Fi, this may only fail for some k ∈ Fi. In
that case, one would have

U i
λ,ai,a−iviλ(k) ≤ viλ(k) + C0λ

for each a−ik ∈ B−i
k , and

U i
λ,ai,a−iviλ(k) < viλ(k)− c2λ

β

for at least one a−ik ∈ B−i
k . By summation, one would get

U i
λ,ai,x̃−iviλ(k) < viλ(k)− c2λ

β+γ + C0λ,

which would contradict the choice of ai. Hence aik ∈ Ãik for every k ∈ K.
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Apply now Lemma 11, with P1 = q(·|k, aik, x−i
k ), P2 = q(·|k, aik, x̃−i

k ), and u = viλ.
This yields

|U i
λ,ai,x̃iviλ(k)− U i

λ,ai,x−iviλ(k)| ≤ λ‖x̃ik − xik‖max |gi|
+‖x̃ik − xik‖ max

k1,k2∈F
|viλ(k1)− viλ(k2)|

≤ |A−i|λ1+γ(1 + 2C0).

The result follows.

5.4. Constrained games and solvable sets. Let S̃i = {xi ∈ Si, supp(xi) ⊆
Ãi}, and set S̃ = ∏i S̃i. Let λ > 0. We define a best-reply map Bλ : S̃ → S̃. For
i ∈ I, x ∈ S̃, and k ∈ K, set

Bi
λ,k(x

−i) = argmax∆(Ãi
k)U

i
λ,.,x−iviλ(k),

and

Bi
λ(x

−i) =
∏
k

Bi
λ,k(x

−i).

Finally, we set Bλ(x) =
∏
iB

i
λ(x

−i).
Clearly, Bλ is upperhemicontinuous and convex-valued. Therefore, by Kakutani’s

theorem, it has a fixed point xλ. By compactness, there exists a sequence (λn)n
decreasing to 0, such that x = limn→∞ xλn

and γ = limn→∞ γλn
(xλn

) exist.
Let x ∈ S̃ such that supp(x) = Ã. By construction, F is stable under x. Choose

a set E ⊆ F , ergodic for x.
Lemma 13. There exists a distribution µ over RE(x) such that (E, x, µ) is solv-

able.
Proof. To avoid cumbersome notations, we write λ instead of λn. All limits below

are taken along the sequence (λn).
First, notice that supp(x) ⊆ supp(x); since E is ergodic for x, E ∈ C(x). Also,

since supp(xλ) ⊆ supp(x), E is stable under xλ.
Using Lemma 12 and the fixed-point property of xλ, one has

U i
λ,xλ

viλ ≥ viλ − c3λ
1+γ

for each player i. Hence γiλ(xλ) ≥ viλ − c3λ
γ , by Fact 1.

For k0 ∈ E, it is well known (see Thuijsman and Vrieze [6]) that limλ→0 γλ(k0, xλ)
belongs to the convex hull of {γR(x), R ∈ RE(x)}. Hence there exists a distribution
µ over RE(x), such that

lim
λ→0

γλ(k0, xλ) =
∑

R∈RE(x)

µ(R)γR(x) ≥ v(k0).

To complete the proof, we prove that

q(·|k, ai, x−i
k )v

i ≤ max
E

vi(5)

for each i, k ∈ E, and ai ∈ Ai.
By construction, vi(k) = maxFi−1 v

i for every player i and k ∈ E. In particular,
v is constant over E.
Since supp(xjk) ⊆ Bj

k for each j �= i, one has q(Fi−1|k, ai, x−i
k ) = 1. This implies

(5).
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MAXIMALLY ROBUST CONTROLLERS FOR MULTIVARIABLE
SYSTEMS∗
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Abstract. The set of all optimal controllers which maximize a robust stability radius for
unstructured additive perturbations may be obtained using standard Hankel-norm approximation
methods. These controllers guarantee robust stability for all perturbations which lie inside an open
ball in the uncertainty space (say, of radius r1). Necessary and sufficient conditions are obtained for a
perturbation lying on the boundary of this ball to be destabilizing for allmaximally robust controllers.
It is thus shown that a “worst-case direction” exists along which all boundary perturbations are
destabilizing. By imposing a parametric constraint such that the permissible perturbations cannot
have a “projection” of magnitude larger than (1− δ)r1, 0 < δ ≤ 1, in the most critical direction, the
uncertainty region guaranteed to be stabilized by a subset of all maximally robust controllers can
be extended beyond the ball of radius r1. The choice of the “best” maximally robust controller—in
the sense that the uncertainty region guaranteed to be stabilized becomes as large as possible—is
associated with the solution of a superoptimal approximation problem. Expressions for the improved
stability radius are obtained and some interesting links with µ-analysis are pursued.

Key words. robust control, µ-analysis, stability radius, superoptimization, Nehari problem

AMS subject classifications. 93B28, 93B40, 93B36

PII. S0363012999350559

1. Notation. R,R+, and C denote the sets of real, nonnegative, and complex
numbers, respectively. C+ (C̄+), C− (C̄−) denote the open (closed) right half-plane and
the open (closed) left half-plane, respectively. For a complex matrix A, AT denotes
the transpose while A′ denotes the complex-conjugate transpose. σi(A) denotes the
ith largest singular value. The smallest singular value is denoted by σ(A) and the
largest singular value is denoted by σ̄(A). The norm of A is defined as ‖A‖ = σ̄(A).
For a square A, λ(A) is the spectrum of A and λmax(A) is the largest eigenvalue.

Lp×m∞ denotes the space of all p × m matrix functions with entries uniformly
bounded on the jω-axis. Hp×m

∞ and H−p×m
∞ denote the subspaces of Lp×m∞ consisting

of all matrix functions whose elements are analytic in C̄+ and C̄−, respectively. ‖.‖∞
denotes the L∞ norm of matrices in L∞ or theH∞ norm of matrices inH∞, depending
on context. γBHp×m

∞ = {G ∈ Hp×m
∞ : ‖G‖∞ ≤ γ} is the γ ball of Hp×m

∞ . The prefix
R before a set symbol means that the elements of the set are restricted to be real-
rational. Matrix dimensions of spaces will be occasionally suppressed.

G(s)∼ := G′(−s̄) denotes the para-hermitian conjugate of G(s). G(s)−∼ stands
for (G(s)∼)−1. The Hankel operator with symbol G ∈ H∞ is denoted by ΓG while
σi(ΓG) denotes the ith largest Hankel singular value of G. The Hankel norm of G,
σ1(ΓG), is also written as ‖ΓG‖ and the smallest Hankel singular value as σ(ΓG).

A real-rational function G(s) is called stable if it has no poles in C̄+. If G(s) has
no poles in C̄−, it is called antistable. Matrix (scalar and vector) transfer functions will
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be represented by uppercase (lowercase) boldface letters and with the dependence on
s mostly suppressed. If G−1 = γ−2G∼, then G is called γ-allpass (or simply allpass
if γ = 1) and satisfies GG∼ = G∼G = γ2I. A matrix function G ∈ RH∞ which
satisfies G∼G = I is called inner. A matrix function G(s) ∈ RH∞ which has full
column rank for all s ∈ C̄+ is called outer. If U ∈ Ll×q∞ and

H =

[
H11 H12

H21 H22

]
∈ L(p+q)×(m+l)

∞

with H11 ∈ Lp×m∞ , we define the lower linear fractional map Fl(H,U) = H11 +
H12U(I − H22U)−1H21, provided that I − H22(∞)U(∞) is invertible. If U ∈
Lm×p
∞ , we define the upper linear fractional map Fu(H,U) = H22 + H21U(I −
H11U)−1H12, provided that I − H11(∞)U(∞) is invertible. If U is a set, then
Fl(H,U) denotes the set {Fl(H,U) : U ∈ U} and if G1,G2,G3 ∈ L∞ have appro-
priate dimensions, then G1 +G2UG3 denotes the set {G1 +G2UG3 : U ∈ U}.

If G ∈ L∞, we define, for each i, s∞i (G) = supω∈R σi(G(jω)). Clearly, s∞1 (G) =
‖G‖∞. Suppose that T is a set of matrix functions. T ∈ T is called a kth level
superoptimal function if it minimizes the sequence {s∞1 (T ), s∞2 (T ), . . . , s∞k (T )} with
respect to lexicographic ordering among all T ∈ T . The minimized sequence is
denoted by {s1(T ), . . . , sk(T )}, and the si(T )s are called the superoptimal levels
of T .

2. Introduction. The work presented in this paper is related to the problem of
maximizing the robust stability radius for systems subject to unstructured additive
perturbations [25], [6], [23], [24]. In [6] it was shown that this problem is equivalent
to a Nehari approximation. Moreover, an explicit state-space parametrization was
obtained for all controllers which guarantee a robust stabilization radius r < r1. A
parametrization of all maximally robust controllers (r = r1) is implicit in [6] and may
be obtained from [4], [5]. The theory of optimal interpolation is used in [23] to give a
solution for single input/single output systems.

In the multi-input/single output or single input/multi-output case, the optimal
controller is unique. In the matrix case, however, a continuum of optimal controllers
typically exists. It is therefore natural to ask whether a subset of these controllers
offers improved robust stability properties, in the sense that it guarantees closed-loop
stability for a larger class of uncertainties, compared to those offered by the optimal
solution set considered in total. More specifically, we seek to identify the set of all
controllers which guarantees robust stability for the largest possible region of the
uncertainty space containing the open ball of radius r1 as a subset. Clearly, this can
only be achieved by imposing a structure on the set of admissible uncertainties.

Our approach is as follows: From the work in [25], [24], and [6] the maximum
robust stability radius r1 is the inverse of the smallest achievable H∞ norm among
all interpolating functions T = {K(I − GK)−1}, as K varies over the set of all
internally stabilizing compensators of G. Using an allpass dilation technique, the set
of all optimal interpolating functions T1 = {T ∈ T : ‖T ‖∞ = r−1

1 } ⊆ T has the form

T1 = Y diag(r−1
1 a, R̂+Q)X, where R̂ ∈ RH−

∞, X and Y are square inner matrices,
a is a scalar allpass function, and Q is the set of all r−1

1 suboptimal Nehari extensions

of R̂, i.e., Q = {Q ∈ H∞ : ‖R̂+Q‖∞ ≤ r−1
1 }.

Every optimal controller corresponding to an interpolating function in T1 stabi-
lizes all perturbations which lie inside the open ball Dr1 = {∆ ∈ L∞ : ‖∆‖∞ <
r1, η(G+∆) = η(G)}, where η(·) denotes number of poles in C+. Next, we consider
perturbations ∆ which lie on the boundary of Dr1 . It is shown that such boundary
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y1

Fig. 1. Closed-loop system.

perturbations are uniformly destabilizing (i.e., they destabilize the closed-loop system
for every optimal controller) if and only if |xT (jω)∆(jω)y(jω)| = r1 for some fre-
quency ω, and where xT and y are the first row and column ofX and Y , respectively.
Moreover, all frequencies ω are equally critical, in the sense that destabilizing bound-
ary perturbations can be constructed for every ω ∈ R. This shows that it is futile
to attempt to extend the uncertainty set guaranteed to be stabilized by a subset of
all optimal controllers in the (frequency-dependent) direction defined by vectors xT

and y. By imposing a parametric constraint (uniform in ω) such that the permis-
sible perturbations cannot have a “projection” of magnitude larger than (1 − δ)r1
(0 < δ ≤ 1) in this direction, the uncertainty region guaranteed to be stabilized by a
subset of all optimal controllers can be extended beyond Dr1 . Using a result in [15],
it is shown that for each δ ∈ (0, 1] the corresponding constrained robust stability ra-
dius is maximized by the set of controllers which minimize the first two superoptimal
levels of T . A closed-form expression of the improved stability radius is also obtained
which involves δ and the first two superoptimal levels of T . This work is related to
the results presented in [18] which also uses superoptimization concepts to give an
extension of the allowable perturbation set.

An alternative interpretation of our results leads to interesting connections with
the problem of robust stabilization of systems subject to structured perturbations and
µ-synthesis in general [19]. By suitably defining δ, robust stabilization problems for
a number of uncertainty structures can be formulated in our setting, and bounds on
the achievable robust-stability radius can be obtained. An upper bound on µ for the
constant complex case is derived in the last section.

The layout of the paper is as follows: Section 3 outlines a number of known
results in the area of robust stabilization of systems subject to unstructured additive
perturbations. The maximum robust stability radius is obtained by solving a Nehari
approximation problem [6] and leads to a parametrization of all optimal interpolating
functions, using the results of [4], [5]. An alternative parametrization of this set
is obtained in section 4, using an allpass dilation technique [7], [5]. A recursive
application of this method leads to the solution of the superoptimal approximation
problem [26], [22], [16], [13], [14], [12], [20], [21]. In our context, this parametrization
of the set of all optimal interpolating functions is used to characterize all uniformly
destabilizing boundary perturbations. This analysis is carried out in section 4, which
also includes our main result (Theorem 4.8) whose proof is based on a result from
[15] (see Theorems 4.6 and 4.7). In section 5 a new (upper) bound on the structured
singular value µ is obtained (for the constant problem). Finally, section 6 contains
the conclusions.

3. Robust stabilization for unstructured additive perturbations. Let
G ∈ RL∞. When ∆ = 0, the closed-loop system in Figure 1 is internally stable
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if and only if it is well-posed, i.e., det(I − G(∞)K(∞)) �= 0 and the four transfer
functions (u1, u2) → (y1, y2) are in H∞. In this case, we write (G,K) ∈ S and
K ∈ K. Consider the set of additively perturbed systems G +∆,∆ ∈ Dr(G,w),
where w is a scalar outer RH∞ (weighting) function and

Dr(G,w) =
{
∆ ∈ L∞ : ‖w−1∆‖∞ < r, η(G) = η(G+∆)

}
,

in which η(·) denotes the number of poles in C+, counted in a MacMillan degree sense.
The system (G,K) is said to be (r,w) robustly stable if (G + ∆,K) ∈ S for all
∆ ∈ Dr(G,w). (G,K) is said to be maximally robustly stable if (i) (G,K) is (r1,w)
robustly stable and (ii) there exists ∆ ∈ ∂Dr1(G,w) = {∆ ∈ L∞ : ‖w−1∆‖∞ =
r1, η(G) = η(G+∆)}, such that (G+∆,K) /∈ S. The following theorem [25] gives
necessary and sufficient conditions for robust stabilization in the presence of additive
unstructured perturbations.

Theorem 3.1 (see [25], [6], [24]). Let G ∈ RL∞ and suppose that (G,K) ∈ S.
Then (G,K) is (r,w) robustly stable if and only if ‖wK(I −GK)−1‖∞ ≤ r−1.

The following result [6], [1] shows that, without loss of generality, G can be
assumed to be antistable and w can be taken to be equal to one.

Theorem 3.2 (see [6], [1]). Let w−1G have a decomposition w−1G = G1 +G2

with G∼
1 ,G2 ∈ RH∞, and G1(∞) = 0. Then there exists a K ∈ L∞ such that

(G,K) is (r,w) robustly stable if and only if K = w−1K1(I +G2K1)
−1 for some

K1 such that (G1,K1) is (r, 1) robustly stable and det{(I +G2K1)(∞)} �= 0.
Remark 3.1. We assume for simplicity that G∼ ∈ RH∞, G(∞) = 0, and w = 1.

We also use the simplified notation

Dr(G) := Dr(G, 1) = {∆ ∈ L∞ : ‖∆‖∞ < r, η(G) = η(G+∆)} ,(1)

∂Dr(G) := ∂Dr(G, 1) = {∆ ∈ L∞ : ‖∆‖∞ = r, η(G) = η(G+∆)}.(2)

Let G have left and right coprime factorizations G =NM−1 = M̃
−1
Ñ , respec-

tively, with N ,M , Ñ ,M̃ ∈ RH∞ and let U ,V , Ũ , Ṽ ∈ RH∞ satisfy the Bezout
identities Ṽ M − ŨN = I and M̃V − ÑU = I. Then the set of all stabilizing
controllers of G is

K = {(U +MQ)(V +NQ)−1 : Q ∈ H∞}.(3)

Let T = {K(I − GK)−1 : K ∈ K}. We refer to T as the set of all interpolating
functions. Using the parametrization of K in (3) gives the alternative characterization
of T as

T = {(U +MQ)M̃ : Q ∈ H∞}.(4)

Let G have a minimal balanced realization G(s) = C(sI − A)−1B + D, such that
Re λi(A) > 0 for all i and with AΣ + ΣA′ = BB′, A′Σ + ΣA = C ′C, Σ =
diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Let F = B′Σ−1 and H = Σ−1C ′.
The coprime factors N ,M , Ñ ,M̃ can now be defined (together with U ,V , Ũ , Ṽ )
as [

M(s) U(s)
N(s) V (s)

]
=

[ −F
C

]
(sI −A+BF )

−1 [ B H
]
+

[
I 0
0 I

]
,

[
Ṽ (s) −Ũ(s)

−Ñ(s) M̃(s)

]
=

[
F
−C
]
(sI −A+HC)

−1 [ B H
]
+

[
I 0
0 I

]
,
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with M and M̃ inner [3]. The next result shows that the maximal robust stability
radius is equal to the smallest Hankel singular value of G(−s).

Theorem 3.3 (see [6], [24]). Let G∼ ∈ RH∞,G(∞) = 0. Then the maximum
stability radius r1 for which (G,K) is (r1, 1) robustly stable for some K ∈ K is given
by r1 = σ(ΓG(−s)).

Proof. From Theorem 3.1 (G,K) is (r, 1) robustly stable if (i) K stabilizes G
internally, and (ii) ‖K(I −GK)−1‖∞ ≤ r−1. Hence,

r−1
1 = inf {‖K(I −GK)−1‖∞ :K ∈ K},

where K is the set of all internally stabilizing controllers of G. From (4),

r−1
1 = inf {‖(U +MQ)M̃‖∞ : Q ∈ H∞} = inf {‖M∼U +Q‖∞ : Q ∈ H∞}(5)

since M ,M̃ are inner. A straightforward state-space calculation shows that

M∼U(s) = −B′Σ−1(sI −A)−1Σ−1C ′ ∈ RH−
∞(6)

in previously defined notation. From Nehari’s theorem the infimum in (5) is attained
and is given by the Hankel norm of M∼U(−s). It is also straightforward to verify
that the realization in (6) is balanced with grammians equal to −Σ−1. Thus, the
realization in (6) is minimal, and

r−2
1 = ‖ΓM∼U (−s)‖2 = λmax(Σ

−2) = σ−2(ΓG(−s))

from which it follows that r1 = σ(ΓG(−s)), as required.
Remark 3.2. Let G satisfy the assumptions of Theorem 3.3 and assume that the

MacMillan degree of G is n. Let the Hankel singular values of G(−s) andM∼U(−s)
be {σi(ΓG(−s))} and {σi(ΓM∼U (−s))}, respectively, ordered in nonincreasing order

of magnitude. Then σn(ΓG(−s)) > 0. Further, a slight adaptation of Theorem 3.3

shows that σi(ΓG(−s)) = σ−1
n−i+1(ΓM∼U (−s)) for each i = 1, 2, . . . , n.

4. Main results. The set of all maximally robust controllers may be character-
ized in terms of the set of all optimal Nehari extensions of M∼U , i.e., the set of all
Q ∈ H∞ which achieve

‖M∼U +Q‖∞ = r−1
1 .(7)

This set can be parametrized as a linear fractional map of the set of all r1 stable
contractions [4], [5]. This parametrization is outlined next.

Remark 4.1. To avoid a messy indexing system we assume hereafter that the
largest Hankel singular values ofR(−s) and R̂(−s) defined below in Theorems 4.1 and
4.2, respectively, are nonrepeated. These conditions are equivalent to the assumption
that the first two superoptimal levels s1(T ) and s2(T ) are nonrepeated.

Theorem 4.1 (see [14], [5], [7]). Let R = M∼U ∈ RH−p×m
∞ and define r1 =

σ̄−1(ΓR(−s)) (see Theorem 3.3). Then there exists an embedding of R of the form

H =

[
H11 H12

H21 H22

]
=

[
R+Q11 Q12

Q21 Q22

]

:=

[
R 0
0 0

]
+Qa ∈ RL(p+m−1)×(m+p−1)

∞
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with Qa ∈ RH∞, such that HH∼ =H∼H = r−2
1 Ip+m−1 and ‖H22‖∞ = ‖Q22‖∞ <

r−1
1 . Further, the set of all (optimal) Q ∈ Hp×m

∞ such that ‖R+Q‖∞ = r−1
1 is given

by

S1 = Fl(Qa, r1BH(p−1)×(m−1)
∞ ).(8)

Let K1 denote the set of all maximally robust (r1-robust) controllers of G, and
let T1 = {K(I −GK)−1 : K ∈ K1} ⊆ T denote the set of all optimal interpolating
functions. In view of (3) and (4), together with Theorems 3.3 and 4.1, these sets may

be parametrized as K1 = {(U +MQ)(V +NQ)−1 : Q ∈ Fl(Qa, r1BH(p−1)×(m−1)
∞ )}

and

T1 = {(U +MQ)M̃ : Q ∈ Fl(Qa, r1BH(p−1)×(m−1)
∞ )},(9)

respectively. The next theorem gives an alternative parametrization of the set of all
optimal solutions of (7), and therefore of T1 in (9). The result shows that T1 can be
diagonalized by rational allpass transformations and is used extensively in this work.

Theorem 4.2 (see [10]). Let all variables be as defined in Theorem 4.1. Then,
the following hold:

1. There exists an r−1
1 -allpass completion of H22 = Q22 of the form

H̄ =

[
H̄11 H̄12

H̄21 H22

]
=

[
R̂+ Q̄11 Q̄12

Q̄21 Q22

]
:=

[
R̂ 0
0 0

]
+ Q̄a

with Q̄a ∈ RH∞ such that H̄H̄
∼
= H̄

∼
H̄ = r−2

1 Ip+m−2, R̂ ∈ RH−(p−1)×(m−1)
∞

and Q̄
−1
12 , Q̄

−1
21 ∈ RH∞.

2. The set of all Q̄ ∈ H(p−1)×(m−1)
∞ such that ‖R̂+ Q̄‖∞ ≤ r−1

1 is given by

S̄1 = Fl(Q̄a, r1BH(p−1)×(m−1)
∞ ).

3. There exist inner matrices X and Y and a scalar allpass function a such
that

T1 = Y diag(r−1
1 a,Fl(H̄, r1BH(p−1)×(m−1)

∞ ))X.(10)

Further,

Fl(H̄, r1BH(p−1)×(m−1)
∞ ) = {R̂+Q̄ : Q̄ ∈ H(p−1)×(m−1)

∞ , ‖R̂+Q̄‖∞ ≤ r−1
1 }.

(11)
Proof.
1. The construction of the r−1

1 -allpass completion H̄ is an exercise in standard
factorization theory which can be performed using either transfer function or
state-space techniques [3]. The details can be found in [14], [11], [12], [10].

2. The fact that r−1
1 is a suboptimal level of R̂ follows from part 1 since Q̄11 ∈

RH∞ and ‖R̂+ Q̄11‖∞ ≤ ‖H̄‖∞ = r−1
1 . Part 2 now follows from part 1 and

[5, Theorem 3.2] since Q̄a, Q̄
−1
12 , Q̄

−1
21 , R̂

∼ ∈ RH∞ by construction.

3. Define V ⊥ = H12H̄
−1
12 ∈ RH∞ and W⊥ = H∼

21H̄
−∼
21 ∈ RH−

∞. Since r1H
and r1H̄ are allpass, a manipulation will verify that V ∼

⊥H11W⊥ = H̄11 and

H̄21H̄
∼
21 = r−2

1 Im−1 −H22H
∼
22 =H21H

∼
21 =⇒ W∼

⊥W⊥ = Im−1.
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Similarly,

H̄
∼
12H̄12 = r−2

1 Ip−1 −H∼
22H22 =H

∼
12H12 =⇒ V ∼

⊥V ⊥ = Ip−1.

Hence there exist v ∈ RHp×1
∞ , w∼ ∈ RH1×m

∞ such that

V =
[
v V ⊥

]
, W =

[
w W⊥

]
(12)

are square inner. Now consider the product

[
V ∼ 0
0 I

]
H

[
W 0
0 I

]
=


 v∼H11w v∼H11W⊥ v∼H12

V ∼
⊥H11w V ∼

⊥H11W⊥ V ∼
⊥H12

H21w H21W⊥ H22




=


 v

∼H11w Y 12 Y 13

Y 21 H̄11 H̄12

Y 31 H̄21 H22


 .(13)

Since V ,W , r1H, and r1H̄ are allpass, all Y ij terms in (13) are equal to
zero, and v∼H11w is r−1

1 -allpass, i.e., v∼H11w = r−1
1 a for some scalar

allpass rational function a. A simple manipulation using (13) verifies that

Fl(H, r1BH(p−1)×(m−1)
∞ ) = V diag(r−1

1 a,Fl(H̄, r1BH(p−1)×(m−1)
∞ ))W∼.

(14)
Since

Fl(H, r1BH(p−1)×(m−1)
∞ ) = {R+Q : Q ∈ H∞, ‖R+Q‖∞ = r−1

1 }

we may write from (8), (9), and (14)

T1 = (U +MFl(Qa, r1BH(p−1)×(m−1)
∞ ))M̃

=M(M∼U + Fl(Qa, r1BH(p−1)×(m−1)
∞ ))M̃

=MFl(H, r1BH(p−1)×(m−1)
∞ )M̃

= Y diag(r−1
1 a,Fl(H̄, r1BH(p−1)×(m−1)

∞ ))X

as required, with Y :=MV and X :=W∼M̃ square inner.
This proves the theorem.

Remark 4.2. The theorem shows that every optimal interpolating function T ∈ T1

has a partial pseudosingular value decomposition with largest “singular value” r−1
1

and corresponding left and right “singular vectors”Mv and w∼M̃ , respectively. The
two “singular vectors” corresponding to the largest “singular value” are real-rational.

In what follows we develop improved robust stability properties for the set of
controllers which minimize the pair {s1(T ), s2(T )} with respect to lexicographic or-
dering. We denote the set of interpolating functions with this property by T2 and the
corresponding set of controllers by K2. Clearly, T2 ⊆ T1 ⊆ T and K2 ⊆ K1 ⊆ K. We
refer to T2 (K2) as the superoptimal set of interpolating functions (controllers) with
respect to the first two levels. The following lemma gives a parametrization of the set
T2.

Lemma 4.3. T2 may be parametrized as

T2 = Y 1 diag(s1a, s2b, Ř+ S2)X1(15)
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in which s1 and s2 denote the first two superoptimal levels of T with s1 = r−1
1 , Y 1

and X1 are square inner matrices, a and b are scalar rational allpass functions,
Ř ∈ RH−(p−2)×(m−2)

∞ , and S2 = {Q̌ ∈ H∞ : ‖Ř + Q̌‖∞ ≤ s2}. Further, the first
column (row) of Y 1 (X1) is identical to the first column (row) of Y (X) defined in
Theorem 4.2.

Proof. From (10), since X and Y are square inner and a is allpass, we have

s2 = inf { ‖Fl(H̄,U)‖∞ : U ∈ r1BH(p−1)×(m−1)
∞ }.

Using (11) this is equivalent to

s2 = inf {‖R̂+ Q̂‖∞ : Q̂ ∈ H(p−1)×(m−1)
∞ } = ‖Γ ˆR(−s)‖,

where the second equality follows from Nehari’s theorem. Clearly, T2 may be obtained
by replacing Fl(H̄, r1BH(p−1)×(m−1)

∞ ) by the set

{R̂+ Q̂ : Q̂ ∈ H(p−1)×(m−1)
∞ , ‖R̂+ Q̂‖∞ = s2},(16)

which reveals the recursive character of the problem. Since R̂ ∈ RH−(p−1)×(m−1)
∞ , a

parametrization of (16) may be obtained from Theorem 4.1 with R replaced by R̂
and s1 replaced by s2. That is, Theorem 4.1 guarantees that there exists an s2-allpass
embedding of R̂ of the form

Ĥ =

[
Ĥ11 Ĥ12

Ĥ21 Ĥ22

]
:=

[
R̂+ Q̂11 Q̂12

Q̂21 Q̂22

]
=

[
R̂ 0
0 0

]
+ Q̂a

in which Q̂11 ∈ RH(p−1)×(m−1)
∞ , Q̂12 ∈ RH(p−1)×(p−2)

∞ , Q̂21 ∈ RH(m−2)×(m−1)
∞ ,

and Q̂22 ∈ RH(m−2)×(p−2)
∞ and such that ĤĤ

∼
= Ĥ

∼
Ĥ = s22Ip+m−3

and ‖Ĥ22‖∞ = ‖Q̂22‖∞ < s2. Moreover, the set of all Q̂ in (16) is generated by

Fl(Q̂a, s
−1
2 BH(p−2)×(m−2)

∞ ). Next, we apply Theorem 4.2 to obtain an s2-allpass em-

bedding of Ĥ22 = Q̂22 of the form

Ȟ =

[
Ȟ11 Ȟ12

Ȟ21 Ĥ22

]
=

[
Ř+ Q̌11 Q̌12

Q̌21 Q̂22

]
=

[
Ř 0
0 0

]
+ Q̌a

with Q̌11 ∈ RH(p−2)×(m−2)
∞ , Q̌12 ∈ RH(p−2)×(p−2)

∞ , and Q̌21 ∈ RH(m−2)×(m−2)
∞ .

Also, Ř ∈ RH−(p−2)×(m−2)
∞ , Q̌

−1

12 , Q̌
−1

21 ∈ RH∞, and ȞȞ
∼
= Ȟ

∼
Ȟ = s22Ip+m−4.

Further, Theorem 4.2 shows that the set of all Q̌ ∈ H∞ such that ‖Ř + Q̌‖∞ ≤ s2
is given by S2 = Fl(Q̌a, s

−1
2 BH(p−2)×(m−2)

∞ ). The proof of Theorem 4.2(3) may now
be repeated step by step to show that there exist square inner matrices V 1 andW∼

1

and a scalar rational allpass function b such that

Fl(Ĥ, s−1
2 BH(p−2)×(m−2)

∞ ) = V 1 diag(s2b,Fl(Ȟ, s−1
2 BH(p−2)×(m−2)

∞ ))W∼
1 .

Hence from (10), T2 = Y 1 diag(s1a, s2b,Fl(Ȟ, s−1
2 BH(p−2)×(m−2)

∞ ))X1, where we
have defined the square inner matrix functions

Y 1 = Y diag(1,V 1), X1 = diag(1,W∼
1 )X.

Equation (10) agrees with the parametrization in (15). Note further that the first
column (row) of Y 1 (X1) is identical with the first column (row) of Y (X) and that
for every Q̌ ∈ S2, ‖Ř+ Q̌‖∞ ≤ s2, as required.
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In the next part of the section we identify the set of all ∆ ∈ ∂Dr1(G) which
destabilize (G,K) for everyK ∈ K1. We refer to such∆’s as uniformly destabilizing.

Lemma 4.4. There exists ∆ ∈ ∂Dr1(G) such that (G +∆,K) /∈ S for every
K ∈ K1. Furthermore, ∆ can be chosen to be a stable real-rational matrix function.

Proof. Pick any ωo ∈ R and define

∆o =X
∼(jωo) diag(r1/a(jωo), 0)Y ∼(jωo) ∈ Cm×p.

Then η(G) = η(G + ∆o), ‖∆o‖∞ = r1 and so ∆o ∈ ∂Dr1(G). Let T ∈ T1 be
any optimal interpolating function so that T = Y diag(r−1

1 a,Φ)X, where Φ =

Fl(H̄, r1Ψ) for some Ψ ∈ BH(p−1)×(m−1)
∞ from Theorem 4.2. Then it is simple to

show that det [I −∆oT (jωo)] = 0 for any Ψ and so det [I −∆oT (jωo)] = 0 for all
T ∈ T1. Since

det {I − (G+∆o)K(jωo)} = det {I −GK(jωo)}det {I −∆oT (jωo)} = 0,

(G+∆o,K) /∈ S for every K ∈ K1 by the generalized Nyquist theorem [25].
In the final part of the proof, we construct a stable real-rational ∆ such that

∆ ∈ ∂Dr1(G) and ∆(jωo) = ∆o. Define the unit vectors

y1 = a(−jωo)v′(jωo)M ′(jωo) ∈ C1×p, x1 = M̃
′
(jωo)w(jωo) ∈ Cm×1

so that x1 is the first column ofX
∼(jωo) and y1/a(−jωo) is the first row of Y ∼(jωo).

Next, express each component of x1 and y1 as

(x1)i = x̂ie
jφi , (y1)i = ŷie

jθi ,

where ŷi, x̂i ∈ R and φi, θi ∈ [0, π). (This fixes the signs of ŷi, x̂i.) Define the inner
vector functions

ŷ(s) =



ŷ1

s−α1

s+α1

...

ŷp
s−αp

s+αp


 , x̂(s) =




x̂1
s−β1

s+β1

...

x̂m
s−βm

s+βm




so that

arg

{
jωo − αi
jωo + αi

}
= θi , i = 1, 2, . . . , p, arg

{
jωo − βi
jωo + βi

}
= φi, i = 1, 2, . . . ,m,

with αi, βi ∈ R+ for all i. (If θi = 0 or φi = 0, we simply replace the ith entry of ŷ or
x̂ by x̂i or ŷi, respectively.) Next, define the RH∞ function ∆ = r1x̂ŷ

T ∈ RHm×p
∞

and note that ∆(jωo) = ∆o = r1x1y
T
1 by construction. Since ∆ ∈ RH∞, η(G) =

η(G+∆). Finally, note that ‖∆‖∞ = r1, which implies that ∆ ∈ ∂Dr1(G).
Remark 4.3. The proof is an adaptation of a result in [25]. Indeed, it is not

surprising that (real-rational) destabilizing perturbations exist on ∂Dr1(G). The new
information supplied by Lemma 4.4 is that (real-rational) boundary perturbations
exist which are destabilizing for every maximally robust controller K ∈ K1.

Denote by xT and y the first row and column of X and Y , respectively, de-
fined in Theorem 4.2. Then, all uniformly destabilizing perturbations constructed in
Lemma 4.4 have the property that |xT∆y(jω)| = r1 for some ω ∈ R. Moreover,
such perturbations can be constructed for every ω ∈ R. The next result shows that
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condition |xT∆y(jω)| = r1 is necessary for a ∆ ∈ ∂Dr1(G) to be destabilizing for
every K ∈ K1.

Lemma 4.5. Let ∆ ∈ ∂Dr1(G) be a destabilizing perturbation of G for every
K ∈ K1. Then there exists an ω ∈ R, such that

|xT (jω)∆(jω)y(jω)| = r1.(17)

Proof. The set T1 is given by (10). Pick any Ψ ∈ r1BH(p−1)×(m−1)
∞ so that

‖Ψ‖∞ < r1. Since H̄ is r−1
1 -allpass, Φ = Fl(H̄,Ψ) satisfies ‖Φ‖∞ < r−1

1 . Since ∆
destabilizes G for every K ∈ K1, it is also destabilizing for

K = (U +MFl(Qa,Ψ))(V +NFl(Qa,Ψ))−1 ∈ K1,

corresponding to the interpolation function T = Y diag(r−1
1 a,Φ)X. Since α∆ is

a stabilizing perturbation of G for every α ∈ [0, 1), there exists ωo ∈ R such that
det {Im −∆(jωo)T (jωo)} = 0 or equivalently that

det

{
Im −∆(jωo)Y (jωo)

[
r−1
1 a(jωo) 0

0 Φ(jωo)

]
X(jωo)

}
= 0,

which implies that

det

{
Im −X(jωo)∆(jωo)Y (jωo)

[
r−1
1 a(jωo) 0

0 Φ(jωo)

]}
= 0.(18)

Define [
xT1

XT
⊥

]
=X(jωo),

[
y1 Y⊥

]
= Y (jωo), and

∆̃ =

[
δ̃11 ∆̃12

∆̃21 ∆̃22

]
=

[
xT1

XT
⊥

]
∆(jωo)

[
y1 a(jωo) Y⊥

]
.

Then (18) may be written as

det

[
1− r−1

1 δ̃11 −∆̃12Φ(jωo)

−r−1
1 ∆̃21 Im−1 − ∆̃22Φ(jωo)

]
= 0.(19)

Next, we show that δ̃11 = r1. Suppose for contradiction that

1− r−1
1 δ̃11 �= 0.(20)

Then (19) implies that

(1− r−1
1 δ̃11) det

{
Im−1 − ∆̃22Φ− r−1

1 ∆̃21

(
1− r−1

1 δ̃11

)−1

∆̃12Φ(jωo)

}
= 0,

⇒ det

{
Im−1 −

(
∆̃22 + r−1

1 ∆̃21

(
1− r−1

1 δ̃11

)−1

∆̃12

)
Φ(jωo)

}
= 0,

⇒ det
{
Im−1 −Fu(∆̃, r−1

1 )Φ(jωo)
}
= 0.
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Since 1 − r−1
1 δ̃11 �= 0 by assumption, the upper linear fractional map is well-posed;

moreover, σ̄(∆̃) = r1 which implies that σ̄(Fu(∆̃, r−1
1 )) ≤ r1 [5]. Also, since σ̄(Φ(jωo))

< r−1
1 , we have that σ̄(Fu(∆̃, r−1

1 )Φ(jωo)) < 1. Hence,

σ
(
I −Fu(∆̃, r−1

1 )Φ(jωo)
)
≥ 1− σ̄

(
Fu(∆̃, r−1

1 )Φ(jωo)
)
> 0,

and thus det{I −Fu(∆̃, r−1
1 )Φ(jωo)} �= 0, contradicting (20). Hence,

δ̃11 = r1 ⇒ | xT (jωo)∆(jωo)y(jωo) | = r1

since |a(jωo)| = 1.
Remark 4.4. Lemma 4.5 above shows that every ∆ ∈ ∂Dr1(G) which is desta-

bilizing for all K ∈ K1 satisfies |xT (jωo)∆(jωo)y(jωo)| = r1 for some ωo ∈ R.
Define the inner product of two matrices of compatible dimensions A and B as
〈A,B〉 = trace(A′B). Then, (17) says that every ∆ ∈ ∂Dr1(G) which is desta-
bilizing for all K ∈ K1 satisfies |〈y(jωo)xT (jωo),∆(jωo)〉| = r1, i.e., that it has
projection of magnitude r1 in the “most critical direction” y(jωo)x

T (jωo) for some
ωo ∈ R. Moreover, the proof of Lemma 4.4 shows that all frequencies ω ∈ R are
“equally critical,” in the sense that the generalized Nyquist criterion can be violated
at any ω ∈ R. This implies that it is futile to attempt to extend the uncertainty set
guaranteed to be stabilized by a subset of K1 in the (frequency-dependent) direction
y(jω)xT (jω), ω ∈ R. Suppose now that we impose a “structure” on the perturbation
set of the form

| xT (jω)∆(jω)y(jω) | ≤ r1(1− δ) for all ω ∈ R
for some (fixed) δ ∈ [0, 1). Note in view of Lemmas 4.4 and 4.5 that this bound is
assumed to be uniform in ω. In other words, we constrain the perturbation set so that
∆ cannot have a projection of magnitude larger that r1(1 − δ) in the most critical
direction for all ω ∈ R. Formally, define the set

E(δ, µ) = {∆ ∈ Dµ(G) : ‖xT∆y‖∞ ≤ r1(1− δ)},(21)

where Dµ(G) is defined in (1). Then, for each δ ∈ (0, 1] we want to find the set of
controllers Kδ ⊆ K1 which maximize µ = µ(δ) under the constraint that G +∆ is
stable for all ∆ ∈ Dr1(G) ∪ E(δ, µ). Suppose that the maximum µ is attained and
is given by µ∗(δ). It is clear that µ∗(δ) is a nondecreasing function of δ ∈ (0, 1].
It is shown below that the sets Kδ are identical for every δ ∈ (0, 1] and equal to
K2. A closed-form expression of µ∗(δ) is also obtained which involves the first two
superoptimal levels of T .

The problem formulation in the above remark is motivated by a related problem
in [15]: Suppose that A ∈ Cn×n is nonsingular. We know that if σ̄(E) = σ(A), then
A− E is singular if and only if 〈unv′n, E〉 = u′nEvn = σ(A), where un and vn denote
the singular vectors of A corresponding to σ(A). Also, if σ̄(E) < σ(A), then A − E
is nonsingular. Suppose that σ̄(E) = σ(A) and E is constrained to have a projection
of magnitude (strictly) less than σ(A) in the direction unv

′
n. This means that A−E

cannot become singular, and therefore, σ̄(E) must increase for A−E to lose rank. To
find how much σ̄(E) can increase before singularity occurs, we formulate the problem

d(φ) = min {‖E‖ : det(A− E) = 0, |〈unv′n, E〉| ≤ φ}(22)

for φ < σ(A) := σn(A). The solution to this problem is provided by the next theorem.
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Theorem 4.6. Let A be a square nonsingular complex matrix which has a
singular value decomposition A = UΣV ′, where Σ = diag(σ1, . . . , σn−1, σn) with
σ1 ≥ · · · ≥ σn−2 ≥ σn−1 > σn > 0 and denote by un and vn the last columns of
U and V , respectively. Then all E which minimize (22) are given by

E = U


 Ps 0 0

0 −φ ν
0 ν′ φ


V ′,

where Ps is arbitrary except for the constraint

‖Ps‖ ≤
√
σnσn−1 + φ(σn − σn−1)(23)

and ν is given by

ν =
√
(φ+ σn−1)(σn − φ)ejθ, θ ∈ [0, 2π).

The minimum value of d(φ) in (22) is given by the right-hand side (RHS) of (23).
Proof. See [15]. In the original statement of the theorem [15], all singular values

of A are assumed to be distinct. This assumption can be relaxed to the condition
σn ≥ · · · ≥ σn−2 ≥ σn−1 > σn > 0 used here.

Remark 4.5. Theorem 4.6 says that, provided |〈unv′n, E〉| ≤ φ < σn, ‖E‖ can
increase from σn to d(φ) =

√
σnσn−1 + φ(σn − σn−1) before A − E becomes singu-

lar. In [15] this is exploited to derive robust-stability bounds for a class of additive,
multiplicative, and inverse-multiplicative perturbations. Note that these results are
a posteriori, i.e., they can be applied to assess the robust stability of a design only
after a compensator has been designed. In our case, the results in [15] can be applied
a priori in the sense that they can be used to characterize directly the subset of all
maximally robust controllers which maximize the “radius” µ(δ) of the uncertainty
set E(µ, δ) defined in (21). The a priori character of these results in our case is a
consequence of the alternative parametrization of the set of all optimal interpolation
functions given in Theorem 3.2, which shows that there exists a (frequency-dependent)
worst-case direction (defined by the vectors y =Mv and xT = w∼M̃ in (12)) which
is identical for all maximally robust controllers K ∈ K1. The vectors v and w are
associated with the maximal Schmidt pair of the Hankel operator ΓR(−s) (see [16] for
details).

In what follows, we use Theorem 4.6 to characterize the subset of all optimal
controllers K1 which maximize µ∗(δ). We first need a slightly different version of
Theorem 4.6 which also allows us to treat the nonsquare and the singular cases.

Theorem 4.7. Suppose that T ∈ Cp×m has a singular value decomposition,
T = U diag(Σ, 0)V ′, with Σ = diag(σ1, σ2, . . . , σt), σ1 > σ2 ≥ σ3 ≥ · · · ≥ σt > 0.
Let v and u be the first columns of V and U , respectively, and let φ < σ−1

1 be given.
Define

Bm×p
d = {E ∈ Cm×p : ‖E‖ < d},

P(φ) = {E ∈ Cm×p : |v′Eu| ≤ φ},(24)

and

d(φ) = sup {d : det(Im − ET ) �= 0 for all E ∈ Bm×p
d ∩ P(φ)}.(25)
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Then
1. d(φ) is given by

d(φ) =

√
1

σ1σ2
− φ

(
1

σ2
− 1

σ1

)
;(26)

2. all E ∈ P(φ) such that det(Im − ET ) = 0 and ‖E‖ = d(φ) are given by

E = V


 φ ν 0
ν′ −φ 0
0 0 Ps


U ′, ν = ejθ

√(
1

σ2
+ φ

)(
1

σ1
− φ

)
,(27)

where θ ∈ [0, 2π) and Ps is arbitrary except from the constraint ‖Ps‖ ≤ d(φ).
Proof. Introduce the partitions U = [U1 U2] and V = [V1 V2], where U1 ∈ Cp×t

and V ′
1 ∈ Ct×m. For E ∈ Cm×p,

det(Im − ET ) �= 0⇔ det (Im − V ′EU diag(Σ, 0)) �= 0

which is also equivalent to

det

[
It − V ′

1EU1Σ 0
−V ′

2EU1Σ Im−t

]
�= 0⇔ det(Σ−1 − V ′

1EU1) �= 0.

Let r = σ−1
1 . The transformation

Cm×p → Ct×t : E → Ẽ = V ′
1EU1(28)

maps Bm×p
r onto V ′

1Bm×p
r U1 = Bt×tr : Clearly, for any E ∈ Bm×p

r , ‖Ẽ‖ ≤ ‖E‖ and
hence Ẽ ∈ Bt×tr . Conversely, since all solutions to the equation Ẽ = V ′

1EU1 are given
by

E =
[
V1 V2

] [ Ẽ Ẽ12

Ẽ21 Ẽ22

] [
U ′

1

U ′
2

]
,(29)

where Ẽ21 ∈ C(m−t)×t, Ẽ12 ∈ Ct×(p−t), and Ẽ22 ∈ C(m−t)×(p−t) are arbitrary matrices
of the specified dimensions, every Ẽ ∈ Bt×tr is the image of the set

{
E =
[
V1 V2

] [ Ẽ Ẽ12

Ẽ21 Ẽ22

] [
U ′

1

U ′
2

]
:

∥∥∥∥
[

Ẽ Ẽ12

Ẽ21 Ẽ22

]∥∥∥∥ < d

}
⊆ Bm×p

r

under (28). Moreover, since |v′1Eu1| ≤ φ⇔ |Ẽ11| ≤ φ, (25) is equivalent to

d(φ) = sup {d : det(Σ−1 − Ẽ) �= 0 for all Ẽ ∈ {Ẽ ∈ Bt×tr : |Ẽ11| < φ}},

where Ẽ11 denotes the (1,1) element of Ẽ. By introducing suitable permutations,
d(φ) may obtained by applying Theorem 4.6 and is given by the RHS of (26) which
proves part 1. The set of all Ẽ with ‖Ẽ‖ = d(φ) such that det(Σ−1 − Ẽ) = 0 under
the constraint |Ẽ11| ≤ φ < σ−1

1 is given via a slight adaptation of Theorem 4.6 as

Ẽ =


 φ ν 0
ν′ −φ 0

0 0 P̃s


 ,(30)
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in which ν is defined in (27) and P̃s ∈ C(t−2)×(t−2) is arbitrary except from the
constraint ‖P̃s‖ ≤ d(φ). It then follows from (29) and the properties of (28) that all
E ∈ P(φ, d) such that det(Im − ET ) = 0 and ‖E‖ = d(φ) are of the form given in
(29) with Ẽ given by (30) subject to the constraint ‖E‖ ≤ d(φ), Thus all such E’s
are of the form

E = V




φ ν 0 E14

ν′ −φ 0 E24

0 0 P̃s E34

E41 E42 E43 E44


U ′(31)

subject to the constraint ‖E‖ ≤ d(φ). Since

[
φ ν
ν′ −φ

] [
φ ν
ν′ −φ

]
= d(φ)2I2

we have that E14 = 0, E24 = 0, E41 = 0, E42 = 0, and

∥∥∥∥
[
P̃s E34

E43 E44

]∥∥∥∥ ≤ d(φ).

Thus (31) agrees with the parametrization of part 2.
Remark 4.6. Note that d(φ) depends only on the two largest singular values of T ,

σ1 and σ2, and on φ (and hence on u and v, the left and right singular vectors corre-
sponding to σ1). Note also that d(φ) is a decreasing function of σ2. Since all optimal
interpolating functions have the same largest singular value s1 (for all frequencies),
and furthermore, share the same left and right singular vectors corresponding to s1,
Theorem 4.7 suggests a link between the maximization of µ∗(δ) and the minimization
of the second largest singular value of the elements of T1.

The next theorem, which is our main result, shows that µ∗(δ) is maximized
uniquely by the set of all superoptimal controllers with respect to the first two levels.

Theorem 4.8. Let T1 ⊆ Hp×m
∞ be as defined in (10). Let xT and y be the first

row and column of X and Y , respectively, and define Dr(G) and E(δ, µ) as in (1)
and (21), respectively, for some (fixed) δ ∈ [0, 1]. Let µ∗(δ) be the supremum of µ
such that there exists a K for which (G+∆,K) ∈ S for every ∆ ∈ Dr1(G)∪E(δ, µ).
Then the following hold:

1. For each δ,

µ∗(δ) =

√
1

s1

(
δ

s2
+

1− δ

s1

)
≥ r1,

where s1 and s2 are the two superoptimal levels of T with s1 = r−1
1 .

2. For each 0 < δ ≤ 1 the following two statements are equivalent:
(a) (G+∆,K) ∈ S for every ∆ ∈ Dr1(G) ∪ E(δ, µ∗(δ)),
(b) K ∈ K2.

3. (a) E(0, µ∗(0)) = Dr1(G),
(b) for each K ∈ K2, (G+∆,K) ∈ S for every ∆ ∈ ⋃δ∈[0,1] E(δ, µ∗(δ)).

4. Let σn and σn−1 denote the two smallest Hankel singular values of G(−s)
with σn−1 > σn. Then,

µ∗(δ) ≥
√
δσnσn−1 + (1− δ)σ2

n.
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Proof. Let K ∈ K2 and define T = K(I − GK)−1 ∈ H∞. Fix δ ∈ (0, 1] and
define

µ∗
1(δ,K) = sup { µ : (G+∆,K) ∈ S for all∆ ∈ Dr1(G) ∪ E(δ, µ)}

and µ∗
1(δ) = sup {µ∗

1(δ,K) : K ∈ K2}. Clearly µ∗
1(δ,K) ≤ µ∗

1(δ) ≤ µ∗(δ). We show
that

r1 ≥ µ∗
1(δ,K) ≥

√
1

s1

(
δ

s2
+

1− δ

s1

)
.(32)

Since the largest Hankel singular value of R(−s) is assumed to be simple, we have
from [16] that s2 ≤ σ2(ΓR(−s)) < σ1(ΓR(−s)) = s1. Set µ1 equal to the RHS of

(32) and suppose for contradiction that there exists a ∆ ∈ Dr1(G) ∪ E(δ, µ1) such
that (G +∆,K) /∈ S. Clearly, if ∆ ∈ Dr1(G) it cannot be destabilizing and hence
∆ ∈ E(δ, µ1)\Dr1(G). Thus r1 ≤ ‖∆‖∞ < µ1 and ‖xT∆y‖∞ ≤ r1(1 − δ). Since K
stabilizes G, it follows from the generalized Nyquist theorem that

det(I −GK(jω)) �= 0 for all ω ∈ R.(33)

Now, let ξ vary continuously in the interval [0, 1] and consider the resulting deforma-
tion of the Nyquist plot of det(I − (G+ ξ∆)K(jω)). Since ∆ is destabilizing, there
exist an ωo ∈ R and a ξo ∈ (0, 1] such that

det(I − (G(jωo) + ξo∆(jωo))K(jωo)) = 0

which implies that

det(I −G(jωo)K(jωo)) det(I − ξo∆(jωo)T (jωo)) = 0

or equivalently that

det(I − ξo∆(jωo)T (jωo)) = 0(34)

from (33). Now ‖xT∆y‖∞ ≤ r1(1− δ) implies that

ξo|xT (jωo)∆(jωo)y(jωo)| ≤ 1− δ

s1
:= φ(35)

since 0 < ξo ≤ 1. Since the two largest singular values of T (jωo) are s1 and s2,
respectively, Theorem 4.7 guarantees that det(I− ξoET (jωo)) �= 0 for all E such that

‖E‖ < 1

ξo

√
1

s1s2
− φ

(
1

s2
− 1

s1

)
=

1

ξo

√
1

s1

(
δ

s2
+

1− δ

s2

)
=
µ1

ξo
(36)

provided that

ξo|xT (jωo)Ey(jωo)| ≤ 1− δ

s1
= φ.(37)

Thus, Theorem 4.7 also guarantees the nonsingularity of I − ξo∆(jωo)T (jωo) from
(35), (36), and the fact that ‖∆(jωo)‖ ≤ ‖∆‖∞ < µ1 ≤ µ1ξ

−1
o . This contradicts (34)

and hence shows that

µ∗(δ) ≥ µ∗
1(δ) ≥ µ∗

1(δ,K) ≥
√

1

s1

(
δ

s2
+

1− δ

s1

)
.(38)
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Next, it is shown that the second and third inequalities in (38) are in fact equalities.
To establish this fact, it suffices to construct a ∆ ∈ RH∞ (⇒ η(G) = η(G +∆))
such that (i) ‖∆‖∞ is equal to the RHS of (38), (ii) ‖xT∆y‖∞ ≤ r1(1− δ), and (iii)
(G+∆,K) is unstable for every K ∈ K2.

Using Lemma 4.3 the interpolating function T ∈ T2 corresponding to anyK ∈ K2

can be written in the form

T = Y 1 diag(s1a, s2b, Ř+ Q̌)X1,

in which Y 1 and X1 are square inner matrices, a and b are scalar allpass functions,
and ‖Ř + Q̌‖∞ ≤ s2. In addition, also from Lemma 4.3, the first column (row) of
Y 1 (X1) is identical to the first column (row) of Y (X); these are denoted by y and
xT , respectively. Define the allpass matrix function Y 2 = Y 1 diag(a, b, Ip−2). Then
T = Y 2 diag(s1, s2, Ř+Q̌)X1. FactorX

∼
1 and Y ∼

2 asX∼
1 =N1diag(d1,d2, . . . ,dm)

and Y ∼
2 = diag(d̃1, d̃2, . . . , d̃p)N2 where the functionsN1,N2,d

−1
i , d̃

−1

i are inRH∞,

N1,N2 are square inner, and the di’s, d̃i’s are scalar allpass functions; these are left
and right coprime factorizations of the columns ofX∼

1 and the rows of Y ∼
2 with inner

denominators. Next pick any ωo ∈ R, and write for each i = 1, 2, di(jωo) = exp(jφi),
d̃i(jωo) = exp(jφ̃i), where −π ≤ φi, φ̃i < π. Define two diagonal inner matrices A1 =
diag(α1,α2) and A2 = diag(α̃1, α̃2) as follows: For each i ∈ {1, 2}, if 0 < φi < π
(0 < φ̃i < π), set αi(s) = (s − βi)(s + βi)

−1 (α̃i(s) = (s − β̃i)(s + β̃i)
−1), where

arg(jωo− βi)(jωo+ βi)
−1 = φi > 0 (arg(jωo− β̃i)(jωo+ β̃i)

−1 = φ̃i > 0). In the case
that −π < φi < 0, set αi(s) = −(s − βi)(s + βi)

−1 (α̃i(s) = −(s − β̃i)(s + β̃i)
−1),

where arg(jωo−βi)(jωo+βi)−1 = π+φi > 0 (arg(jωo−β̃i)(jωo+β̃i)−1 = π+φ̃i > 0).
Finally, if φi = 0 (φ̃i = 0) or φi = −π (φ̃i = −π), set αi (α̃i) to 1 or −1, respectively.

Next, let N11 (N21) denote the matrix consisting of the first two columns (rows)
of N1 (N2), and define ∆ ∈ RH∞ as

∆ =N11A1

[
φ νo
νo −φ

]
A2N21,

where φ is defined in (35) and

νo =

√(
1

s2
+ φ

)(
1

s1
− φ

)
=

√
δ

s1

(
1

s2
+

1− δ

s1

)
,(39)

where the second equality in (39) follows by using the definition of φ in (35). Since
N11, N

T
21, A1, and A2 are inner matrices,

‖∆‖∞ =

∥∥∥∥
[
φ νo
νo −φ

]∥∥∥∥ =
√
φ2 + ν2

o ,

which is equal to the RHS of (38) after some simple algebra.
Since, X1X

∼
1 = Im and X and X1 have the same first row (xT ), we have

xTX∼
1 = [1 0 . . . 0] ⇒ xTN1 diag(d1,d2, . . . ,dm) = [1 0 . . . 0],

and hence

xTN11 = [ d−1
1 0 ].(40)
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Similarly, since Y ∼
1 Y 1 = Ip and matrices Y and Y 1 share their first column (y),

Y ∼
1 y =




1
0
...
0


⇒

 a 0 0

0 b 0
0 0 Ip−2


Y ∼

2 y =




1
0
...
0




or, equivalently, that

N2y =



d̃
−1

1 a−1

0
...
0


 ⇒ N21y =

[
d̃
−1

1 a−1

0

]
.(41)

Using (40) and (41) we conclude that

‖xT∆y‖∞ =

∥∥∥∥xTN11A1

[
φ νo
νo −φ

]
A2N21y

∥∥∥∥
∞

= ‖φa−1d−1
1 d̃

−1

1 α1α̃1‖∞ = φ,

using (37) and the fact that a,d1,d3,α1, and α̃1 are all scalar allpass.
Using the identity det(I −AB) = det(I −BA), det(Im −∆(jωo)T (jωo)) can be

written as

det

{
I −X1(jωo)N11(jωo)A1(jωo)

[
φ νo
νo −φ

]
A2(jωo)N21(jωo)Y 2(jωo)Π

}
,

where we have defined Π = diag(s1, s2, Ř(jωo) + Q̌(jωo)). It is now easy to verify
from the construction of A1 and A2 above that

X1(jωo)N11(jωo)A1(jωo) =

[
I2

0m−2,2

]
, A2(jωo)N21(jωo)Y 2(jωo) = [I2 02,p−2],

and hence

det(Im −∆(jωo)T (jωo)) = det


 1− φs1 −νos2 0

−νos1 1 + φs2 0
0 0 Im−2




or

det(Im −∆(jωo)T (jωo)) = (1− φs1)(1 + φs2)− ν2
os1s2 = 0,

after some simple algebra using (39). This implies that

det(Im − (G(jωo) +∆(jωo))K(jωo)) = 0,

and hence ∆ is destabilizing from the generalized Nyquist theorem [25]. This shows
that the third inequality in (38) is indeed an equality as claimed. Since ∆ is destabi-
lizing for every K ∈ K2, the second equality in (38) also follows.

To establish that the first inequality in (38) is an equality it suffices to construct
for eachK ∈ K1\K2 a∆ ∈ RHm×p

∞ such that (i) ‖∆‖∞ is (strictly) less than the RHS
of (38), (ii) ‖xT∆y‖∞ ≤ r1(1 − δ), and (iii) (G +∆,K) /∈ S. Take any K ∈ K1,
K /∈ K2 and let T = K(I − GK)−1. From Theorem 4.2, T ∈ T1 has the form
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T = Y diag(s1a, R̂ + Q̄)X, where ‖R̂ + Q̄‖∞ ≤ s1. Since T /∈ T2, there exists an
ωo ∈ R+ such that

s2 < σ
(
R̂(jωo) + Q̄(jωo)

)
≤ s1.

Let R̂(jωo) + Q̄(jωo) have a singular value decomposition

R̂(jωo) + Q̄(jωo) = U diag(Σ, 0p−t−1,m−t−1)V
′,

where Σ = diag(σ1, σ2, . . . , σt) with σ1 ≥ σ2 ≥ · · · ≥ σt > 0. Then, s2 < σ1 ≤ s1.
Denote by u = [u1 u2 . . . up−1]

T and v = [v1 v2 . . . vm−1]
T the first column of U

and V , respectively. Define an inner vector ψ = [ψ1 ψ2 . . . ψp−1]
T ∈ RH(p−1)×1

∞
as follows: Write ui = ρiexp(jθi) for each i = 1, 2, . . . , p, where the ρi’s are real and
0 ≤ θi < π; if θi �= 0, set ψi(s) = ρi(s− βi)(s+ βi)

−1, where βi > 0 and is such that

arg((jωo − βi)(jωo + βi)
−1) = θi; if θi = 0, set ψi = ρi. Clearly, ψ ∈ RH(p−1)×1

∞ ,

ψ∼ψ = 1, and ψ(jωo) = u. In a similar way, construct an RH(m−1)×1
∞ inner vector

ξ which “interpolates” v at s = jωo, i.e., ξ(jωo) = v.

Define X̂1 = diag(1, ξ∼) ∈ RL2×m
∞ and Ŷ 1 = Y diag(a,ψ) ∈ RLp×2

∞ . Clearly,

X̂1X̂
∼
1 = Ŷ

∼
1 Ŷ 1 = I2. Define factorizations of the columns (rows) of X̂

∼
1 (Ŷ

∼
1 )

of the form X̂
∼
1 = N̂1diag(d1,d2) and Ŷ

∼
1 = diag(d̃1, d̃2)N̂2 such that N̂1 and

N̂
T

2 are inner and d1,d2, d̃1, d̃2 are scalar allpass. Similar to a previous part of
the proof, define 2 × 2 inner matrices A1 = diag(α1,α2) and A2 = diag(α̃1, α̃2)
such that d1(jωo)α1(jωo) = 1, d2(jωo)α2(jωo) = 1, d̃1(jωo)α̃1(jωo) = 1, and
d̃2(jωo)α̃2(jωo) = 1.

Define ∆ ∈ RHm×p
∞ as

∆ = N̂1A1

[
φ ν1
ν1 −φ

]
A2N̂2, ν1 =

√(
1

σ1
+ φ

)(
1

s1
− φ

)
.

The inner character of N̂1, N̂
T

2 ,A1, and A2 implies that ‖∆‖∞ =
√
φ2 + ν2

1 <√
φ2 + ν2

o since s2 < σ1. Thus, ‖∆‖∞ is strictly less than the RHS of (38). Moreover,
it can be easily verified that ‖xT∆y‖∞ = φ. Finally, using the identity det(I−AB) =
det(I −BA) we can write

det(Im −∆(jωo)T (jωo)) = det


Im − Z1

[
φ ν1
ν1 −φ

]
Z2


 s1 0 0

0 σ1 0
0 0 ∗




 ,

where

Z1 = diag(1, V ′)X(jωo)N1(jωo)A1(jωo),

Z2 = A2(jωo)N2(jωo)Y (jωo) diag(a(jωo), U),

and * denotes a matrix not relevant for our present purposes. It can be easily verified
from the above construction that ZT1 = [I2 02,m−1] and Z2 = [I2 02,p−1], and hence

det(Im −∆(jωo)T (jωo)) = det


 1− φs1 −ν1σ1 0

−ν1s1 1 + φσ1 0
0 0 Im−2


 = 0,
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Fig. 2. Extended permissible uncertainty set.

which implies that (G +∆,K) is unstable from the generalized Nyquist theorem.
Since such destabilizing ∆’s with ‖∆‖∞ < µ∗

1(δ) and ‖xT∆y‖∞ = r1(1− δ) can be
constructed for anyK ∈ K1\K2, we conclude that µ

∗(δ) = µ∗
1(δ) and part 1 is proved.

It is also clear that K2 is the set of all controllers K such that (G +∆,K) ∈ S for
every ∆ ∈ Dr1(G) ∪ E(δ, µ∗(δ)) and part 2 follows.

To prove part 3, note that setting δ = 0 in (21) gives

E(0, µ) = {∆ ∈ L∞ : ‖∆‖∞ < µ, ‖xT∆y‖∞ ≤ r1, η(G) = η(G+∆)}.

Since from Lemma 4.4 there exist uniformly destabilizing perturbations of G in
∂D(G), we have that µ∗(0) ≤ r1. Now,

E(0, r1) = {∆ ∈ L∞ : ‖∆‖∞ < r1, ‖xT∆y‖∞ ≤ r1, η(G) = η(G+∆)}.(42)

In view of the condition ‖∆‖∞ < r1 in (42) and the fact that ‖x‖∞ = ‖y‖∞ = 1,
condition ‖xT∆y‖∞ ≤ r1 in the characterization of E(0, r1) in (42) is superfluous
and thus E(0, r1) = Dr1(G). Hence, µ∗(0) = r1 and the set of all K such that
(G +∆,K) ∈ S for every ∆ ∈ Dr1(G) ∪ E(0, µ∗(0)) = Dr1(G) is clearly K1. Since
K2 ⊆ K1, part 3 follows immediately from part 2. Finally, part 4 follows from the
relations s1 = σ1(ΓR(−s)) = σ−1

n , σ2(ΓR(−s)) = σ−1
n−1 (see Theorem 3.3 and the

subsequent remark), and the inequality s2 ≤ σ2(ΓR(−s)) (see [16]).
Remark 4.7. Figure 2 is an illustration of the set

⋃
δ∈[0,1] E(δ, µ∗(δ)) in the two-

dimensional case. Here, s1 = 1 and s2 = 0.25. The “worst direction” is assumed to be
the horizontal axis. The (open) disc of radius one represents the set of uncertainties
guaranteed to be stabilized by optimal controllers. The area bounded by the solid
curve represents the set of uncertainties guaranteed to be stabilized by (second-level)
superoptimal controllers. Note the increase in the stability radius in all directions
other than the worst direction.

5. An upper bound on the structured-singular value. So far, our results
have been restricted to the unstructured uncertainty case. Our overall aim has been
to use the degrees of freedom in the set of all optimal (“maximally robust”) controllers
K1 in order to extend as far as possible the region of the uncertainty space guaranteed
to be stabilized by a subset of K1. The optimal subset of K1 has been identified as
the set of superoptimal controllers with respect to the first two levels, K2.
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A different interpretation of our method allows us to apply our results to struc-
tured uncertainty models as well. The crucial point is that the region of the uncer-
tainty space which is nondestabilizing can be extended beyond Dr1 only by imposing
a structure on the admissible set of uncertainties; this structure, in our case, is of
the form of a projection (uniform in frequency) in the “worst-case direction” 〈yxT , .〉,
along which all uniformly destabilizing perturbations in ∂Dr1(G) have been shown to
lie. Suppose that the uncertainty is known to have a (block) diagonal structure, ∆,
say. The following general procedure can be used in principle to obtain a lower bound
on r∆, the robust stability radius with respect to structure ∆.

• Maximize the robust stability radius for a class of unstructured perturba-
tions; let the maximum (unstructured) robust stability radius be r1 and the
corresponding worst-case direction be 〈yxT , .〉.

• Given a specific uncertainty structure ∆, find the largest δ∗ ∈ (0, 1] compat-
ible with ∆, i.e., the maximum δ∗ ∈ (0, 1] such that |〈yxT ,∆〉| ≤ r1(1− δ∗),
uniformly in ω for every ∆ ∈∆.

• Then µ∗(δ∗) is a guaranteed lower bound of the robust stability radius of the
system with respect to uncertainty structure ∆.

This general method for calculating bounds for the structured robust-stability radius,
r∆ (equivalently the structured singular value µ∆), will be developed in future work.
In this section we present preliminary results for the constant µ problem and a simple
example illustrating our method. A more complete development is given in [9].

We use the definitions and notation of [19]. Let T ∈ Cn×n have a singular value
decomposition

T = UΣV ′, Σ = diag(σ1, σ2, . . . , σn), U, V ∈ Cn×n, U ′U = V ′V = In(43)

and assume that

σ1 > σ2 ≥ σ3 ≥ · · · ≥ σn > 0.(44)

Define the structured uncertainty set

∆ = {diag(δ1Ir1 , . . . , δSIrS ,∆1, . . . ,∆F ) : δ1, . . . , δS ∈ C,∆j ∈ Cmj×mj , j = 1, . . . , F}

with
∑S
i=1 ri+

∑F
j=1mj = n and let B∆ = {∆ ∈∆ : ‖∆‖ ≤ 1}. Then the structured

singular value of T is defined as

µ∆(T )−1 = min
∆∈∆

det(I−∆T )=0

‖∆‖ = min
∆∈∆

det(Σ−1−V ′∆U)=0

‖∆‖

(if there exists no ∆ ∈ ∆ such that det(I − ∆T ) = 0, we define µ∆(T ) = 0).
Let u, v ∈ Cn×1 be the first columns of U and V , respectively. Partition u and v
compatibly with ∆ as follows:

u =




u1

...
uS
uS+1

...
uS+F



, v =




v1
...
vS
vS+1

...
vS+F



, ui, vi ∈ Cri , uS+j , vS+j ∈ Cmj(45)
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for i = 1, . . . , S and j = 1, . . . , F . Then it is straightforward to verify that

α0 := max
∆∈B∆

|v′∆u| =
S∑
i=1

|v′iui|+
F∑
j=1

‖vS+j‖‖uS+j‖ ≤ 1.(46)

Define the set ∆α0 := {∆ ∈ Cn×n : |v′∆u| ≤ α0‖∆‖}. Clearly ∆ ⊆ ∆α0 . It follows
that

µ∆(T )−1 = min
∆∈∆

det(Σ−1−V ′∆U)=0

‖∆‖ ≥ min
∆∈∆α0

det(Σ−1−V ′∆U)=0

‖∆‖ =: µ̄∆(T )−1.

Thus µ̄∆(T ) is an upper bound on µ∆(T ). The evaluation of µ̄∆(T ) is related to
the results of [15] (see Theorem 4.7). The next result uses Theorem 4.7 to give an
expression for µ̄∆(T ) that involves only σ1, σ2, u, v, and the uncertainty set ∆ and
shows that µ̄∆(T ) is increasing in σ2.

Theorem 5.1. Let T ∈ Cn×n have a singular value decomposition as in (43)
and assume that (44) is satisfied. Let u and v and the first columns of U and V ,
respectively, be partitioned as in (45) and define α0 as in (46).

1. Let

d = (σ1 − σ2)α0/2 +
√
[(σ1 − σ2)α0/2]2 + σ1σ2.(47)

Then

µ̄∆(T ) :=


 min

det(Σ−1−V ′∆U)=0

|v′∆u|≤α0‖∆‖

‖∆‖



−1

= d.(48)

2. For all α0 ∈ [0, 1] we have

µ∆(T ) ≤ µ̄∆(T ) ≤ σ1.(49)

3. If α0 = 1, then

µ∆(T ) = µ̄∆(T ) = σ1.(50)

4. If α0 < 1, then

µ∆(T ) ≤ µ̄∆(T ) < σ1(51)

with µ∆(T ) = µ̄∆(T ) if and only if there exists ∆ ∈∆ such that

V ′∆U = d−1


 α0 ejθ

√
1− α2

0 0

e−jθ
√
1− α2

0 −α0 0
0 0 ∆22


(52)

for arbitrary θ and any ∆22 ∈ C(n−2)×(n−2) satisfying ‖∆22‖ ≤ 1.
Proof.
1. We first show that

µ̄∆(T )−1 ≤ d−1.(53)
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Let

∆ = d−1V


 α0

√
1− α2

0 0√
1− α2

0 −α0 0
0 0 0(n−2)×(n−2)


U ′.

Then it is easy to verify that ‖∆‖ = d−1, |v′∆u| = α0d
−1 ≤ α0‖∆‖, and

det (Σ−1 − V ′∆U) = σ−1
1 σ−1

2 − α0d
−1(σ−1

2 − σ−1
1 )− α2

0d
−2 = 0

after some manipulation, and this proves (53). Thus we can restrict our
search in (48) to the set

{∆ ∈ Cn×n : ‖∆‖ ≤ d−1, |v′∆u| ≤ α0d
−1}

and so

µ̄∆(T )−1 = min
det(Σ−1−V ′∆U)=0

|v′∆u|≤α0d−1

‖∆‖≤d−1

‖∆‖

=

√
σ−1

1 σ−1
2 − α0d−1(σ−1

2 − σ−1
1 ) = d−1,(54)

where the first equality in (54) follows from Theorem 4.7 and the second
equality follows from a straightforward calculation using the definition of d
(in fact, d is defined so that d−1 is the positive solution of (54)).

2. It is straightforward to verify that d ≤ σ1. The first inequality follows from
the definitions of µ̄∆(T ) and µ∆(T ).

3. Suppose that α0 = 1. Then a simple calculation verifies that d = σ1 which
proves the second equality in (50). To prove the first equality, define

∆ = σ−1
1 diag(δ1Ir1 , . . . , δSIrS ,∆1, . . . ,∆F ) ∈∆,

where

δi =
|v′iui|
v′iui

∈ C (δi = 0 if v′iui = 0), i = 1, . . . , S,

∆j =
vju

′
j

‖vj‖‖uj‖ ∈ C
mj×mj (∆j = 0 if ‖vj‖‖uj‖ = 0), j = 1, . . . , F,

where ui, vi are defined in (45). Then ‖∆‖ = σ−1
1 and v′∆u = σ−1

1 . This
implies that V ′∆U = diag(σ−1

1 ,∆22) for some ∆22 with ‖∆22‖ ≤ σ−1
1 . It is

easy to verify that det (Σ−1 − V ′∆U) = 0 and so µ∆(T ) = σ1 and the first
equality in (50) is proved.

4. Suppose that α0 < 1. Then a simple verification shows that d < σ1 and
establishes the second inequality in (51). Part 2 of Theorem 4.7 gives all ∆
such that ‖∆‖ = d−1, det(Σ−1−V ′∆U) = 0, and |v′∆u| ≤ α0d

−1 as in (52).
Hence µ∆(T ) = µ̄∆(T ) if and only if there exists such a ∆ ∈∆.

This completes the proof.
Remark 5.1. Note that µ̄∆(T ) depends only on σ1, σ2, and α0 (see (47) and

(48)), and α0 in turn depends only on u, v, and the structured uncertainty set ∆ (see
(46)). In the context of the robust stabilization of systems with unstructured additive
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Fig. 3. σ1(T ) (dashed), D-iteration upper bound (dash-dot), and upper bound µ̄∆(T ) (solid).

perturbations, all optimal interpolating functions share the same largest singular value
s1 at all frequencies. They also share the same (frequency-dependent) singular vectors
corresponding to s1 (the inner vectors x and y). Thus the only free parameter that
can be used to minimize µ̄∆(·) within the set T1 is the second largest singular value.
Noting that µ̄∆(·) is a nonincreasing function of σ2 (see (47)) suggests that within
T1, µ̄∆(·) is minimized by T2. This will be elaborated in a future work.

Remark 5.2. The bound µ̄∆, although in general tighter than σ1, is less tight
than the upper bound of the D-iteration [19]. In fact, it is shown in [19] that at the
end of the D-iteration, either

1. σ1(T ) = σ2(T ), in which case our results are not applicable (see (44)), or
2. σ1(T ) > σ2(T ), in which case µ∆(T ) = σ1(T ). It can be shown that this

corresponds to α0 = 1.
The main purpose in this work is to illustrate the improved robustness properties of
superoptimal controllers, rather than attempting to improve the D-iteration bound.

Example 5.1. This example illustrates the upper bound µ̄∆(T ), where

T
s
=

[
A B
C D

]
=




−5.91 −11.49 6.03 −0.59 −1.90 0.19 1.35
−1.85 −5.62 1.63 −0.31 1.11 0.63 0.12
−7.71 −17.40 7.07 0.97 0.72 −0.35 −0.58
−0.37 0.49 0.52 0.01 0.22 0.71 0.97
1.43 −0.09 1.36 0.60 0.70 0.23 0.36
0.07 0.37 −0.41 0.82 0.52 0.45 0.05

−0.23 −0.15 0.66 0.98 0.93 0.17 0.76




is chosen as random with A stable. The computation is carried out pointwise across
the frequency grid, i.e., for each ω, σ1(T (jω)) and µ̄∆(T (jω)) are computed and
compared with the D-iteration upper bound. The uncertainty structure ∆ is taken
to be diagonal, i.e., S = 0, F = 4,mj = 1 for j = 1, . . . , 4. The plots are shown in
Figure 3.

6. Conclusions. By way of conclusion, we summarize our contribution.
• We have analyzed in detail the maximum robust stabilization problem subject
to unstructured additive perturbations. We have shown that a critical direc-
tion exists in the uncertainty space, along which all maximum-norm boundary
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perturbations are destabilizing for every optimal controller.
• We have shown that by imposing a parametric constraint in the most critical
direction, the set of uncertainties guaranteed to be stabilized by a subset of
all optimal controllers can be further extended. We have shown that the
optimal solution to this problem is associated with the set of superoptimal
controllers with respect to the first two levels, and we have obtained a closed-
form expression for the improved robust stability radius which involves the
first two superoptimal levels.

• By adapting out results to the structured uncertainty case, we have obtained
an easily computable upper bound on the structured-singular value (which
is tighter than the largest singular value), without the need to carry out a
D-iteration. We have further shown that the minimization of this bound is
equivalent to the minimization of the second largest singular value, which
again motivates superoptimization.

There are a number of related research directions which we intend to pursue.
• For purposes of clarity, our technique has been restricted to unstructured
additive uncertainty models. There is no conceptual difficulty, however, in
extending our method to other types of unstructured uncertainty (multi-
plicative, inverse-multiplicative, coprime) or to include frequency weightings.
Rather than analyzing each case individually, we intend to address the gen-
eral problem involving linear fractional transformation uncertainty models
[17]. This is likely to involve a general-distance superoptimal approximation
problem, the solution of which is already in place [26], [8], [16], [13], [14], [12].

• Our method relies on Theorem 4.7 which generalizes a result in [15]. Section
5 suggests that generalizing this theorem should be useful in robust stability
analysis of systems subject to structured uncertainty. We have derived some
results in this direction which will be reported in a future publication.

• We intend to investigate the possibility of applying our method as an alterna-
tive to current µ-synthesis techniques. The main potential advantage of our
approach is the possibility of avoiding the calculation of the optimal scaling
“D-matrix” in the D −K iteration [2] (currently carried out pointwise over
a discretized frequency grid) by using instead the directionality information
provided by the two Schmidt vectors, which define the worst-case direction
in our setting. The success of such an approach will ultimately rest on how
tightly we can overbound the structured singular value. Although our com-
putational experience so far is promising, this remains an open question.
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Abstract. We study the disturbance decoupling problem for linear time invariant descriptor
systems. We give necessary and sufficient conditions for the existence of a solution to the disturbance
decoupling problem with or without stability via a proportional and/or derivative feedback that
also makes the resulting closed-loop system regular and/or of index at most one. All results are
proved constructively based on condensed forms that can be computed using orthogonal matrix
transformations, i.e., transformations that can be implemented in a numerically stable way.
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1. Introduction. We consider linear and time-invariant continuous descriptor
systems of the form

Eẋ(t) = Ax(t) +Bu(t) +Gq(t), x(t0) = x0, t ≥ t0,

y(t) = Cx(t),(1)

where E, A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×p, C ∈ Rq×n, and ẋ = dx/dt. The term
q(t), t ≥ 0, represents a disturbance, which may represent modeling or measuring er-
rors, noise, or higher order terms in linearization. We study the problem of construct-
ing feedbacks that suppress this disturbance in the sense that q(t) does not affect the
input-output behavior of the system. In this paper, we study only square systems
(E,A are square). This seems to be a restriction, since in general models that arise
from automatic modeling or from heterogeneous systems are often rectangular, e.g.,
[16]. In [7], however, it was shown that for every rectangular system there exists an
underlying square system that can be obtained via a numerically backward stable
procedure by removing redundancies and higher index uncontrollable and unobserv-
able parts in the system. It is possible to formulate all the results in this paper also
for rectangular systems, by incorporating the transformations performed in [7] into
the methods and the theorems. But this would make the paper, which is quite tech-
nical already, even longer and more technical. For this reason we restrict ourselves to
the square case. Similarly, we also assume without loss of generality (w.l.o.g.) that
B,G are full column rank and C is full row rank, i.e., rank (B) = m, rank (G) = p,
rank (C) = q. If this is not the case, then this can be easily achieved, via a numerically
stable procedure, by removing the nullspaces and appropriate renaming of variables.
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The theory for (1) is well established from the analytical, geometric, and numerical
points of view; see, e.g., [11, 17, 22, 30]. Existence and uniqueness of (classical)
solutions to (1) for sufficiently smooth input functions and consistent initial values
are guaranteed if (E,A) is regular, i.e., if det(αE − βA) �= 0 for some (α, β) ∈ C2.
This means in particular that the system has to be square. The system (1) is said to
have index at most one if the dimension of the largest nilpotent block in the Kronecker
canonical form of (E,A) is at most one [14, 4]. It is well known that systems that
are regular and of index at most one can be separated into purely dynamical and
purely algebraic parts (fast and slow modes), and in theory the algebraic part can be
eliminated to give a reduced-order standard system. The reduction process, however,
may be ill-conditioned with respect to numerical computation. For this reason it
is preferable to use descriptor system models rather than turning the problem into
a standard system. Nonetheless most numerical simulation methods work well for
systems of index at most one (see [4]) and the usual class of piecewise continuous input
functions can be used. Also classical techniques for important control applications
like stabilization, pole assignment, or linear quadratic control can be applied; see,
e.g., [22, 5, 6].

If the index is larger than one, however, then impulses arise in the response of
the system if the control is not sufficiently smooth [5, 11]. This restricts the set of
admissable input functions and impulses can also arise due to the presence of modeling,
measurement, linearization, and roundoff errors in the real system. Furthermore, the
use of numerical integration methods is restricted; see [4].

There are essentially two possibilities to deal with higher index systems in the
context of control systems. Either an index reduction is performed (see, e.g., [7, 18])
to obtain an equivalent system of index at most one, or an appropriate feedback
control is chosen to ensure that the closed-loop system is regular and of index at most
one. Techniques for the construction of such feedbacks were developed in [5, 6, 8]
based on transformations to condensed forms via orthogonal matrix transformations,
which can be implemented as numerically stable algorithms. This paper, which is
strongly inspired by the work of [5, 6, 8], extends these techniques to the solution of
the disturbance decoupling problem.

The disturbance decoupling problem for descriptor systems (1) can be stated as
follows: Find necessary and sufficient conditions under which there exists a propor-
tional and derivative feedback of the form u(t) = Fx(t) − Kẋ(t), such that matrix
pencil (E + BK,A + BF ) is regular and of index at most one and C(s(E + BK) −
(A + BF ))−1G = 0, where C(s(E + BK) − (A + BF ))−1G is the transfer-function
matrix of the closed-loop system

(E +BK)ẋ(t) = (A+BF )x(t) +Gq(t), y(t) = Cx(t).(2)

For standard systems (E = I) this problem is well studied (see [23, 24, 25, 26, 27,
29, 30]). Our attention, however, will focus on the case that E is singular. Let us
briefly summarize some previous results. The disturbance decoupling problem for
continuous-time descriptor systems was first formulated in [21] and the problem was
solved under the assumption, among other conditions, that the output is independent
of the input disturbance in the sense that there is a set of admissible initial conditions
such that the response of the system is zero. But, since the disturbance input is
usually unknown, it is not clear how, and if at all, a given initial state x0 can be
qualified as an admissible initial condition. In [3] the problem was solved from the
geometric point of view, using the concepts of sliding and coasting subspaces by means
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of a set of necessary and sufficient conditions for obtaining disturbance decoupling in
implicit discrete systems. These results are not constructive and numerically stable
methods cannot be based on this approach. Furthermore the index of the system is
not considered. In [19, 20] again the discrete time disturbance decoupling problem is
discussed and structurally equivalent characterizations are presented for the solvability
of the disturbance decoupling problems for implicit discrete-time systems.

In [1] the standard disturbance decoupling problem for continuous-time descriptor
systems was considered as formulated in the standard state-space system theory [30],
i.e., given the system (1), find (if possible) a proportional state feedback such that, re-
gardless of the initial value of x0, the disturbance input has no influence on the output
of the systems for t ≥ 0, and yet the uniqueness of solutions for the closed-loop system
is ensured. Also in [1] necessary and sufficient conditions were given for solvability of
the disturbance decoupling problem under the assumptions rank

[
E G

]
= n and

rank
[

E B G
]
= n. But the obtained conditions are rather cumbersome and are

only partly given in terms of the original data (E,A,B,C,G). Moreover, combined
derivative and proportional state feedback, the index and stability of the system, and
also numerical aspects of the algorithms have not been considered in the literature so
far.

To demonstrate the great flexibility of our matrix pencil approach, we also discuss
the extra requirement that the closed-loop system be stable, i.e., that all the finite
generalized eigenvalues of s(E + BK) − (A + BF ) are in the open left half-plane.
Furthermore a similar approach yields also the solution for partly measurable distur-
bances, i.e., we also study the use of a proportional and derivative feedback of the
form u(t) = Fx(t)−Kẋ(t) +Hq(t), such that the matrix pencil (E +BK,A+BF )
is regular, of index at most one, and

C(s(E +BK)− (A+BF ))−1(G+BH) = 0.

Again, we also include the stability of the closed-loop system as an extra requirement.
All our results are proved constructively, based on condensed forms under orthog-

onal matrix transformations which can be directly implemented as numerically stable
algorithms.

The paper is organized as follows. In section 2 we introduce some notation and
give some preliminary results. In sections 3 and 4 we solve the disturbance decoupling
problems without and with stability, respectively. We discuss separately the case that
the system is only regularized and that it also has index at most one. It should be
noted that several more results on this topic could have been included but are omitted
for lack of space. See the technical reports [9, 10].

2. Preliminaries. In this section we introduce the notation and give some pre-
liminary results. We denote by deg(p) the degree of a polynomial p and by rankg[M(s)]
the generic rank of a rational matrix valued function M(s) and by C̄+ the closed right
half-plane. Let the orthogonal complement of the space spanned by the columns of
a matrix M be denoted by M⊥. A matrix with orthogonal columns spanning the
right nullspace of a matrix M is denoted by S∞(M) and a matrix with orthogonal
columns spanning the right nullspace of MT by T∞(M). For convenience of notation
we identify a subspace and a matrix whose columns form an orthonormal basis of this
subspace. These orthonormal bases will be available from the condensed forms that
we determine.

In principle the complete analysis of descriptor systems could be based on the Kro-
necker canonical forms of the associated matrix pencils [14, 13], but it is in general
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impossible to compute the Kronecker canonical form with a finite precision numerical
algorithm, since small changes in the data can drastically change the canonical form.
Instead one can obtain a condensed form under orthogonal equivalence transforma-
tions. This form, the generalized upper triangular (GUPTRI) form, is well analyzed
[12, 13], and numerically stable algorithms are available and have been implemented
in LAPACK [2]. The GUPTRI form displays all the invariants, in particular, the left
and right Kronecker indices, but it is not the complete canonical form.

Lemma 2.1 (see [12]). Given a matrix pencil (E,A), E,A ∈ Rn×l, there exist
orthogonal matrices P ∈ Rn×n, Q ∈ Rl×l such that (PEQ,PAQ) are in the following
GUPTRI form:

P (sE −A)Q =




l1 l2 l3 l4

n1 sE11 −A11 sE12 −A12 sE13 −A13 sE14 −A14

n2 0 sE22 −A22 sE23 −A23 sE24 −A24

n3 0 0 sE33 −A33 sE34 −A34

n4 0 0 0 sE44 −A44


.(3)

Here n2 = l2, n3 = l3, sE11 −A11, and sE44 −A44 contain all left and right singular
Kronecker blocks of sE−A, respectively. Furthermore, sE22−A22 and sE33−A33 are
regular and contain the regular finite and infinite structure of sE −A, respectively.

Based on the form (3), we introduce the following spaces which we will use to de-
scribe a geometric, coordinate-free, characterization of the solution to the disturbance
decoupling problem.

Definition 2.2 (see [12]). Given a matrix pencil (E,A), E,A ∈ Rn×l, and
orthogonal matrices P,Q such that P (sE −A)Q is of the form (3). Then

1. The minimal left reducing subspace Vm−l[E,A] of (E,A) is the space spanned
by the leading n1 columns of P

T .
2. The minimal right reducing subspace Vm−r[E,A] of (E,A) is the space spanned
by the leading l1 columns of Q.

3. The left reducing subspace corresponding to the finite spectrum of (E,A),
denoted by Vf−l[E,A], is the space spanned by the leading n1 +n2 columns of
PT .

4. The right reducing subspace corresponding to the finite spectrum of (E,A),
denoted by Vf−r[E,A], is the space spanned by the leading l1 + l2 columns of
Q.

The problem of constructing feedbacks such that the closed-loop system is regular,
of index at most one, and stable has already been studied in detail in the literature.
We summarize some of the relevant results in the following lemmas.

Lemma 2.3 (see [5, 11, 28]). Given E,A ∈ Rn×n, B ∈ Rn×m.
(i) There exists F ∈ Rm×n such that (E,A+BF ) is regular if and only if

rankg
[

sE −A B
]
= n.(4)

(ii) There exists F ∈ Rm×n such that (E,A + BF ) is regular and of index at
most one if and only if

rank
[

E AS∞(E) B
]
= n.(5)

(iii) There exist F,K ∈ Rm×n such that (E+BK,A+BF ) is regular and of index
at most one if and only if

rank
[

E AS∞(TT∞(B)E) B
]
= n.(6)
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(iv) There exists a matrix F ∈ Rm×n such that (E,A+BF ) is regular and stable
if and only if

rank
[

sE −A B
]
= n ∀s ∈ C+.(7)

(v) There exists a matrix F ∈ Rm×n such that (E,A + BF ) is regular, stable,
and of index at most one if and only if conditions (5) and (7) hold.

(vi) There exist matrices F,G ∈ Rm×n such that (E + BG,A + BF ) is regular
and stable if and only if condition (7) holds.

(vii) There exist matrices F,G ∈ Rm×n such that (E + BG,A + BF ) is regular,
stable, and of index at most one if and only if conditions (6) and (7) hold.

Remark 2.1. Condition (5) is often called controllability at infinity, since if it
holds, then the Jordan structure of the spectrum at infinity can be modified arbitrarily.
This condition is not invariant under derivative feedback (see [5]), hence condition (6)
is needed when combined state and derivative is used. Condition (4) is sometimes
called regularizability [7]. If a system satisfies both (5) and (7), then it is called
strongly stabilizable; see [22, p. 14].

The spaces occurring in Lemma 2.3 can be easily computed via numerically stable
procedures, like singular value decomposition or rank revealing QR-decompositions
[15, 2]. Thus, they can be checked numerically within the limitations of numerical
rank decisions and nullspace computations in finite arithmetic.

For the disturbance decoupling problem, we need the following lemma.
Lemma 2.4. Consider a system of the form (1). If (E,A) is regular, then C(sE−

A)−1G = 0 if and only if

rankg

[
sE −A G

C 0

]
= n.

Proof . The proof follows directly from the fact that for any s ∈ C with det(sE−
A) �= 0 we have

rank (C(sE −A)−1G) = rank

[
sE −A G

C 0

]
− rank (sE −A).

We close this section with a technical lemma that we will use frequently in sub-
sequent sections.

Lemma 2.5. Consider matrices E,A,B such that

sE −A :=

[ t

l1 sE1 −A1

l2 −A2

]
, B :=

[ r

l1 B1

l2 B2

]

with l1 ≤ t and B2 of full row rank.
(i) If

rankg

[
sE1 −A1 B1

−A2 B2

]
= l1 + l2,(8)

then there exist a matrix F ∈ Rr×t and a nonsingular matrix Z ∈ Rt×t such
that

(sE −A−BF )Z =

[ l1 t− l1

l1 sΘ1 − Φ1 −Φ2

l2 0 0

]
(9)

with (Θ1,Φ1) regular.
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(ii) If (8) holds and furthermore

rank

[
E1 A1S∞(E1) B1

0 A2S∞(E1) B2

]
= l1 + l2,(10)

then there exist a matrix F ∈ Rr×t and a nonsingular matrix Z ∈ Rt×t such
that (sE −A−BF )Z has partitioning (9) with (Θ1,Φ1) regular and of index
at most one.

Proof. Let W ∈ Rt×t and Q ∈ Rr×r be orthogonal matrices such that

(sE −A)W =

[ l1 t− l1

l1 sE11 −A11 −A12

l2 −A21 −A22

]
,

[
B1

B2

]
Q =

[ l2 r − l2

l1 B11 B12

l2 B21 0

]

with B21 nonsingular (note that B2 has full row rank).

(i) Condition (8) is equivalent to

rankg

[
sE11 −A11 A12 B11 B12

−A21 A22 B21 0

]
= l1 + l2.

Since B21 is nonsingular, using Schur complements, this is equivalent to

rankg
[

sE11 − (A11 −B11B
−1
21 A21) A12 −B11B

−1
21 A22 B12

]
= l1.

Then, applying Lemma 2.3(iii) immediately gives the existence of a regularizing feed-
back.

(ii) Analogously, (10) is equivalent to

rank

[
E11 A11S∞(E11) A12 B11 B12

0 A21S∞(E11) A22 B21 0

]
= l1 + l2,

which is equivalent to

rank
[

E11 (A11 −B11B
−1
21 A21)S∞(E11) (A12 −B11B

−1
21 A22) B12

]
= l1.

Lemma 2.3(i) then gives the existence of a feedback that makes the system regular
and of index at most one.

Actually the feedbacks in both cases can be constructed explicitly as follows. Let

Z := W

[
I 0

Z̃ I

]
, F := Q

[
F11 F12

F21 0

]
WT ,

where F11 and F12 are constructed from

B21

[
F11 F12

]
= − [ A21 A22

]
(11)

and Z̃ and F21 are constructed via the algorithm given in the appendix of [5].
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Remark 2.2. The construction of the feedback in the proof of Lemma 2.5 needs
the solution of a linear system in (11). This system may be very ill-conditioned and
hence a numerical solution of this system may create large errors. A different approach
to constructing the desired feedback is the following.

Using a rank revealing QR-decomposition, construct an orthogonal matrix P such
that

P

[
B11

B21

]
=:

[
0

B̃21

]

with B̃21 nonsingular. Set, with compatible partitioning,

P

[
sE11 −A11 A12

−A21 A22

]
=:

[
sẼ11 − Ã11 Ã12

sẼ21 − Ã21 Ã22

]
, P

[
B12

0

]
=:

[
B̃12

B̃22

]
.

Then apply the algorithm in the appendix of [5] to compute Z̃ and F21 such that
(Ẽ11, Ã11 + Ã12X + B̃12F21) is regular and of index at most one.

After having introduced the preliminaries, in the next sections we discuss the
disturbance decoupling problem.

3. The disturbance decoupling problem. In this section, we first establish
a condensed form for matrix quintuples (E,A,B,C,G) under orthogonal equivalence
transformations and then solve the disturbance decoupling problem without the sta-
bility requirement.

The general philosophy is to generate an equivalent representation of the original
system that displays the system properties and can be used to construct the desired
feedbacks in the solution of the disturbance decoupling problem. The main feature of
the new condensed form is that it is (in contrast to canonical forms that are used in
previous work on this subject, like, e.g., [1]) based on orthogonal matrix transforma-
tions which can be implemented as numerically stable algorithms, thus guaranteeing
robust computation of the desired quantities, if this is possible. The spaces that we
will need for the solution are the following (with the notation introduced in section 2).

Π := T∞

([
B G
0 0

])
, Ψ := T∞(G), Λr := Vf−r

[
ΠT
[

E
0

]
,ΠT

[
A
C

]]
,

Λl := Vf−l

[
ΠT
[

E
0

]
,ΠT

[
A
C

]]
, Λt :=

[
Π⊥ Π

] [ I 0
0 Λl

]
.(12)

With the abbreviations Γ1 := [00
ΨTE

0 ] and Γ2 := [Ψ
TB
0

ΨTA
0 ] we further introduce

the spaces

Λ1 := ΛTt

[
E
0

]
Λr, Λ2 := ΛTt

[
A
C

]
Λr,

Λ3 := ΛTt

[
B
0

]
, Λ4 := (V ⊥

f−l[Γ1,Γ2])
T Γ1V

⊥
f−r[Γ1,Γ2].(13)

These spaces can be easily obtained from the following condensed form under
orthogonal transformations.
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Theorem 3.1. Consider a system of the form (1) with E,A ∈ Rn×n, B ∈ Rn×m,
G ∈ Rn×p, C ∈ Rq×n. Then there exist orthogonal matrices U, V ∈ Rn×n such that

UEV =




n1 n2 n3

p E11 E12 E13

ñ2 E21 E22 E23

ñ3 0 E32 E33

ñ4 0 E42 E43

ñ5 0 0 E53


, UAV =




n1 n2 n3

p A11 A12 A13

ñ2 A21 A22 A23

ñ3 A31 A32 A33

ñ4 0 A42 A43

ñ5 0 0 A53


,

UB =




p B1

ñ2 B2

ñ3 B3

ñ4 0
ñ5 0


, UG =




p G1

ñ2 0
ñ3 0
ñ4 0
ñ5 0


, CV =

[n1 n2 n3

0 C2 C3

]
,(14)

where G1, E21, B3, and E42 are of full row rank and furthermore

rank (sE53 −A53) = n3, rank


 sE42 −A42 sE43 −A43

0 sE53 −A53

C2 C3


 = n2 + n3 ∀s ∈ C.

Proof. The proof is given constructively via Algorithm 1 in Appendix A.
Using condensed form (14) we can determine directly the following important

spaces and their dimensions.
Lemma 3.2. Let E,A,B,C,G be in the condensed form (14).
(i) We have

τ := dim

(
Vf−l

[[
0 ΨTE
0 0

]
,

[
ΨTB ΨTA
0 C

]])
= ñ2,

µ := dim

(
V ⊥
f−r

[[
ΨTB ΨTE
0 0

]
,

[
0 ΨTA
0 C

]])
= n2 + n3,

η := dim

(
Vf−l

[[
ΨTB ΨTE
0 0

]
,

[
0 ΨTA
0 C

]])
− τ = ñ3.(15)

(ii) Let S := S∞

([
E11

E21

])
; then

rank


 E11 A11S B1

E21 A21S B2

0 A31S B3


 = rank

[
Λ1 Λ2S∞(Λ1) Λ3

]
, with

rank


 E11

E21

0


 = rank(Λ1), rank


 E32 E33

E42 E43

0 E53


 = rank(Λ4).(16)

(iii) The matrix

TT∞




 E11 B1

E21 B2

0 B3






 A11

A21

A31


S∞


TT∞




 B1

B2

B3






 E11

E21

0






has full row rank if and only if TT∞(
[
Λ1 Λ3

]
)Λ2S∞(TT∞(Λ3)Λ1) is of full

row rank.
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Proof. The proof is given in Appendix B.
Based on the condensed form (14) and Lemma 2.3 we obtain the following nec-

essary conditions for the existence of feedbacks that make the system regular and of
index at most one.

Lemma 3.3. Given system (1) in condensed form (14), we have the following.
(i) If there exists a feedback F ∈ Rm×n such that (E,A+BF ) is regular and of

index at most one, i.e., if condition (5) holds, then ñ5 = n3, E53 = 0, A53 is
nonsingular, and furthermore,

rank

[
E32

E42

]
= rank

[
E32 E33

E42 E43

]
.(17)

(ii) If there exist F,K ∈ Rm×n such that (E + BK,A + BF ) is regular and of
index at most one, i.e., if condition (6) holds, then ñ5 = n3, E53 = 0, A53 is
nonsingular and

rank




E11 E12 E13 B1

E21 E22 E23 B2

0 E32 E33 B3

0 E42 E43 0


 = rank




E11 E12 B1

E21 E22 B2

0 E32 B3

0 E42 0


.(18)

Proof. Let the system be given in the condensed form (14).
(i) If there exists F :=

[
F1 F2 F3

]
, partitioned conformly to (14), such

that (E,A+BF ) is regular and of index at most one, then the last block row in (14),
which cannot be modified by proportional feedback, must satisfy rankg(sE53−A53) =
ñ5. But sE53 − A53 is of full column rank for any s ∈ C and thus n3 = ñ5 and
det(sE53 − A53) = det(−A53). Therefore, the nonsingularity of A53 follows directly
from the regularity of (E,A+BF ). Moreover,

rank(E) = deg(det(sE −A−BF ))

= deg


det







sE11 −A11 −B1F1 sE12 −A12 −B1F2

sE21 −A21 −B2F1 sE22 −A22 −B2F2

−A31 −B3F1 sE32 −A32 −B3F2

0 sE42 −A42










+ deg(det(sE53 −A53))

= deg


det







sE11 −A11 −B1F1 sE12 −A12 −B1F2

sE21 −A21 −B2F1 sE22 −A22 −B2F2

−A31 −B3F1 sE32 −A32 −B3F2

0 sE42 −A42










≤ rank







E11 E12

E21 E22

0 E32

0 E42





 .

But, we have

rank(E) ≥ rank







E11 E12

E21 E22

0 E32

0 E42





+ rank(E53),



DISTURBANCE DECOUPLING FOR DESCRIPTOR SYSTEMS 1839

and hence E53 = 0. We also have

rank




E11 E12 E13

E21 E22 E23

0 E32 E33

0 E42 E43


 = rank(E) = rank




E11 E12

E21 E22

0 E32

0 E42


 ,

which implies (17).

(ii) If there exist F :=
[

F1 F2 F3

]
and K :=

[
K1 K2 K3

]
such that

(E + BK,A+ BF ) is regular and of index at most one, then, since E53, A53 are not
affected by these feedbacks, it follows from part (i) that ñ5 = n3, E53 = 0, and A53 is
nonsingular. Similarly to part (i), we get that

rank(E +BK) = rank







E11 +B1K1 E12 +B1K2

E21 +B2K1 E22 +B2K2

B3K1 E32 +B3K2

0 E42





 .

However, since E53 = 0, we also have

rank(E +BK) = rank







E11 +B1K1 E12 +B1K2 E13 +B1K3

E21 +B2K1 E22 +B2K2 E23 +B2K3

B3K1 E32 +B3K2 E33 +B3K3

0 E42 E43





 ,

and hence

rank







E11 +B1K1 E12 +B1K2 E13 +B1K3

E21 +B2K1 E22 +B2K2 E23 +B2K3

B3K1 E32 +B3K2 E33 +B3K3

0 E42 E43







= rank







E11 +B1K1 E12 +B1K2

E21 +B2K1 E22 +B2K2

B3K1 E32 +B3K2

0 E42





 ,

which implies (18).

We will now apply these results to solve the disturbance decoupling problem.

We present the results in a coordinate free way, but note that all the quantities
are available via numerically stable procedures from the results presented before.

Theorem 3.4. Consider a system of the form (1) and let the spaces Λi be as in
(13) and τ , η, and µ as in (15).

(a) There exists a feedback matrix F ∈ Rm×n such that the pencil (E,A + BF )
is regular, of index at most one, and C(sE − (A+BF ))−1G = 0 if and only
if condition (5) and furthermore the following three conditions hold:

τ + µ ≤ n− p;(19)

rank (Λ1) + rank (Λ4) = rank (E);(20)

rank
[
Λ1 Λ2S∞(Λ1) Λ3

]
= p+ τ + η.(21)
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(b) There exist feedback matrices F,K ∈ Rm×n, such that the pencil (E+BK,A+
BF ) is regular of index at most one and C(s(E +BK)− (A+BF ))−1G = 0
if and only if condition (6) holds,

rankg

[
TT∞(G)(sE −A) TT∞(G)B

C 0

]
− rank

[
TT∞(G)B

0

]
≤ n− p,(22)

and W1 := TT∞(
[
Λ1 Λ3

]
)Λ2S∞(TT∞(Λ3)Λ1) has full row rank.

Proof. By Theorem 3.1 there exist orthogonal matrices that transform the system
to the form (14). Thus, for the proof we may assume, w.l.o.g., that the system is
already in form (14).

(a) Necessity. Let F ∈ Rm×n be such that (E,A+BF ) is regular, of index at most
one, and C(sE−(A+BF ))−1G = 0. Partition F =:

[
F1 F2 F3

]
compatibly with

(E,A,B). Then (5) follows directly from Lemma 2.3(ii). Furthermore, by Lemma 2.4

we have that rankg

[
sE21 −A21 −B2F1

−A32 −B3F1

]
= n− p− n2 − n3. Hence, we obtain

n− p− n2 − n3 ≥ rankg
[

sE21 −A21 −B2F1

] ≥ rank(E21) = ñ2,

i.e., by (15), condition (19) holds.
To prove conditions (20)–(21), observe from Lemma 3.3, and since (E,A + BF )

is regular and of index at most one, we have

rank (E) = deg(det(sE −A−BF )) = deg(det(sE53 −A53))

+ deg


det




sE11 −A11 −B1F1 sE12 −A12 −B1F2

sE21 −A21 −B2F1 sE22 −A22 −B2F2

−A31 −B3F1 sE32 −A32 −B3F3

0 sE42 −A42







= deg


det




sE11 −A11 −B1F1 sE12 −A12 −B1F2

sE21 −A21 −B2F1 sE22 −A22 −B2F2

−A31 −B3F1 sE32 −A32 −B3F3

0 sE42 −A42





 .(23)

Hence, from (23) it follows that

rank (E) = rank




E11 E12

E21 E22

0 E32

0 E42




= deg


det




sE11 −A11 −B1F1 sE12 −A12 −B1F2

sE21 −A21 −B2F1 sE22 −A22 −B2F2

−A31 −B3F1 sE32 −A32 −B3F2

0 sE42 −A42





 .(24)

Using that E21, E42 are of full row rank, we may assume, w.l.o.g. (by performing
appropriate equivalence transformations), that

E11 =

[
0 0 0
0 Σ11 0

]
, E21 =

[
Σ21 0 0

]
, E32 =

[
0 0 0
0 Θ32 0

]
,

E42 =
[
0 0 Σ42

]
, E12 =

[
Ẽ12 0 0
0 0 0

]
, E22 = 0,
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where Σ11 ∈ Rp1×p1 ,Σ21 ∈ Rñ2×ñ2 ,Σ42 ∈ Rñ4×ñ4 are nonsingular and Θ32 ∈
R(n2−ñ4)×t is of full column rank. Partition accordingly, A42 =

[
Φ64 Φ65 Φ66

]
,

and

A11 +B1F1 =

[
Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

]
, A12 +B1F2 =

[
Φ14 Φ15 Φ16

Φ24 Φ25 Φ26

]
,

A21 +B2F1 =
[
Φ31 Φ32 Φ33

]
, A22 +B2F2 =

[
Φ34 Φ35 Φ36

]
,

A31 +B3F1 =

[
Φ41 Φ42 Φ43

Φ51 Φ52 Φ53

]
, A32 +B3F2 =

[
Φ44 Φ45 Φ46

Φ54 Φ55 Φ56

]
.

Then (24) yields that


 TT∞(Ẽ12)Φ13 TT∞(Ẽ12)Φ14S∞(Ẽ12)

Φ43 Φ44S∞(Ẽ12)

TT∞(Θ32)Φ53 TT∞(Θ32)Φ54S∞(Ẽ12)




is nonsingular.
Hence, we obtain that

rank


 TT∞(Ẽ12)Φ13

Φ43

TT∞(Θ32)Φ53


 = n1 − p1 − ñ2.(25)

But, from Lemma 2.4 we have

rankg


 sΣ21 − Φ31 −Φ32 −Φ33

−Φ41 −Φ42 −Φ43

−Φ51 −Φ52 −Φ53


 = n− p− n2 − n3 = n1 − p,

and hence

rank

[
Φ43

TT∞(Θ32)Φ53

]
≤ rank

[
Φ43

Φ53

]
≤ n1 − p− ñ2.(26)

Thus, by (25), we have

rank (TT∞(Ẽ12)Φ13) ≥ p− p1,(27)

where p− p1 is the number of rows of Φ13. This implies that Ẽ12 = 0, and hence (24)
implies that

rank (E) = rank


 E11

E21

0


+ rank

[
E32

E42

]
,

and thus, Lemma 3.3(i) yields that

rank(E) = rank


 E11

E21

0


+ rank


 E32 E33

E42 E43

0 E53


 .

Then, Lemma 3.2(ii) gives (20). Furthermore, using (26) and (27) we have that

rank (Φ13) = p− p1, rank

[
Φ43

Φ53

]
= rank

[
Φ43

TT∞(Θ32)Φ53

]
= n1 − p− ñ2,
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and thus with S := S∞([E11

E21
]), we obtain

rank


 E11 A11S B1

E21 A21S B2

0 A31S B3


 = p+ ñ2 + ñ3.(28)

Then (21) follows directly from Lemma 3.2(ii).
Sufficiency. Using conditions (19) and (21) and Lemmas 2.3(ii) and (2.5)(ii),

there exist F̃1 ∈ Rm×n1 and a nonsingular matrix Z ∈ Rn1×n1 such that


 sE11 −A11 −B1F̃1

sE21 −A21 −B2F̃1

−A31 −B3F̃1


Z

=




p+ ñ2 n1 − p− ñ2

p sΘ11 − Φ11 −Φ12

ñ2 sΘ21 − Φ21 −Φ22

ñ3 0 0




with ([Θ11

Θ21
], [Φ11

Φ21
]) regular and of index at most one.

By (5) and (20) and Lemma 3.3 it follows that ñ5 = n3, E53 = 0, A53 is nonsin-
gular, and furthermore,

rank(E) = rank


 E11

E21

0


+ rank

[
E32

E42

]
.(29)

Note that B3 and E42 are of full row rank, so by Lemma 2.3(ii) there exist matrices
F̂1 ∈ Rm×(n1−p−ñ2) and F2 ∈ Rm×n2 such that

([
0 E32

0 E42

]
,

[
B3F̂1 A32 +B3F2

0 A42

])

is regular and of index at most one. Taking F1 := F̃1 +
[
0 F̂1

]
Z−1, F :=[

F1 F2 F3

]
with F3 arbitrary, it is easy to see that (E,A + BF ) is regular, of

index at most one, and C(sE −A−BF )−1G = 0.
(b) Necessity. Let F,K ∈ Rm×n be such that (E + BK,A + BF ) is regular, of

index at most one, and C(s(E+BK)−(A+BF ))−1G = 0. Then condition (6) follows
directly from Lemma 2.3(iii). As in (a), by Lemma 2.4 we have that

rankg

[
s(E21 +B2K1)− (A21 +B2F1)

sB3K1 − (A31 +B3F1)

]
= n− p− n2 − n3,

which implies that

rankg

[
sE21 −A21 B2

−A31 B3

]
− rank

[
B2

B3

]

= rankg

[
s(E21 +B2K1)− (A21 +B2F1) B2

sB3K1 − (A31 +B3F1) B3

]
− rank

[
B2

B3

]

≤ rankg

[
s(E21 +B2K1)− (A21 +B2F1)

sB3K1 − (A31 +B3F1)

]
= n− p− n2 − n3.
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Thus,

n− p ≥ n2 + n3 + rankg

[
sE21 −A21 B2

−A31 B3

]
− rank

[
B2

B3

]

= rankg

[
TT∞(G)(sE −A) TT∞(G)B

C 0

]
− rank

[
TT∞(G)B

0

]
,

i.e., (22) holds.
Since [E21+B2K1

B3K1

B2

B3
] is of full row rank, from (28) we have that


 E11 +B1K1 (A11 +B1F1)S̃ B1

E21 +B2K1 (A21 +B2F1)S̃ B2

B3K1 (A31 +B3F1)S̃ B3




is of full row rank, where

S̃ := S∞




 E11 +B1K1

E21 +B2K1

B3K1




 .

Equivalently, we obtain that 
 E11 A11S̃∞ B1

E21 A21S̃∞ B2

0 A31S̃∞ B3




is of full row rank. Thus, using the relation between

S∞


TT∞




 B1

B2

B3






 E11

E21

0






and S̃∞, we have that

TT∞




 E11 B1

E21 B2

0 B3






 A11

A21

A31


S∞


TT∞




 B1

B2

B3






 E11

E21

0






is of full row rank and using Lemma 3.2(iii) so is W1.
Sufficiency. Since E21, B3 are of full row rank, using Lemma 2.1, we can determine

orthogonal matrices P1 ∈ Rp×p, P2 ∈ R(ñ2+ñ3)×(ñ2+ñ3), and W ∈ Rm×m such that

[
P1

P2

]
 sE11 −A11 sE12 −A12 sE13 −A13

sE21 −A21 sE22 −A22 sE23 −A23

−A31 sE32 −A32 sE33 −A33




=




n1 n2 n3

l1 sΘ11 − Φ11 sΘ12 − Φ12 sΘ13 − Φ13

p− l1 sΘ21 − Φ21 sΘ22 − Φ12 sΘ23 − Φ13

l2 sΘ31 − Φ21 sΘ32 − Φ32 sΘ33 − Φ33

ñ2 + ñ3 − l2 sΘ41 − Φ41 sΘ42 −Θ42 sΘ43 − Φ43


,

[
P1

P2

]
 B1

B2

B3


W =




l1 B̃11 0
p− l1 B̃21 B̃22

l2 0 0
ñ2 + ñ3 − l2 B̃41 0
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with B̃22,Θ31 of full row rank and B̃41 nonsingular. Now determine K11,K21 from

[
B̃21 B̃22

B̃41 0

]
W

[
K11

K21

]
= −

[
Θ21

Θ41

]
.

The last two conditions imply that p+ l2 ≤ n1 and

rank




Θ11 + B̃11K11 Φ11S̃ B̃11 0

0 Φ21S̃ B̃21 B̃22

Θ31 Φ31S̃ 0 0

0 Φ41S̃ B̃41 0


 = p+ ñ2 + ñ3,

where S̃ = S∞([Θ11+B̃11K11

Θ31
]). By Lemma 2.5 there exist F11, F21, and a nonsingular

matrix Z satisfying




s(Θ11 + B̃11K11)− Φ11 − B̃11F11

−Φ21 − B̃21F11 − B̃22F21

sΘ31

−Φ41 − B̃41F11


Z

=




p+ l2 n1 − p− l2

l1 sΘ̃11 − Φ̃11 −Φ̃12

p− l1 −Φ̃21 −Φ̃22

l2 sΘ̃31 − Φ̃31 −Φ̃32

ñ2 + ñ3 − l2 0 0




with




 Θ̃11

0

Θ̃31


 ,


 Φ̃11

Φ̃21

Φ̃31






regular and of index at most one. Using condition (6) and Lemma 3.3(ii), we obtain
that ñ5 = n3. Hence, we can determine K̂11, K̂21, K12,K22 such that

[
B̃21 B̃22

] [ K̂11 K12

K̂21 K22

]
= − [ 0 Θ22

]
,

and

[
B̃41K̂11 Θ42 + B̃41K12

0 E42

]
is nonsingular. Let

K1 :=

[
K11

K21

]
+

[
0 K̂11

0 K̂21

]
Z−1, K2 :=

[
K12

K22

]
, K3 :=

[
K13

K23

]
,

and

F1 :=

[
F11

F21

]
,
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where K13,K23 will be determined later, and set K := W
[

K1 K2 K3

]
and

F := W
[

F1 0 0
]
. Then we have

[
P1

P2

I

]
(s(E + BK) − (A+ BF ))

[
Z

I

]

=




sΘ̃11 − Φ̃11 sB̃11K̂11 − Φ̃12 s(Θ12 + B̃11K12) − Φ12 s(Θ13 + B̃11K13) − Φ13

−Φ̃21 −Φ̃12 −Φ22 s(Θ23 + B̃21K13 + B̃22K23) − Φ23

sΘ̃31 − Φ̃31 −Φ̃32 sΘ32 − Φ32 sΘ33 − Φ33

0 s(B̃41K̂11) s(Θ42 + B̃41K12) − Φ42 s(Θ43 + B̃41K13) − Φ43

0 0 sE42 − A42 sE43 − A43

0 0 0 sE53 − A53


 .

By (18), and since [ B̃41K̂11

0
Θ42+B̃41K12

E42
] is nonsingular, we have that

rank




Θ̃11 Θ12 Θ13 B̃11

Θ̃31 Θ32 Θ33 0

0 Θ42 Θ43 B̃41

0 E42 E43 0


 = rank




Θ̃11 Θ12 B̃11

Θ̃31 Θ32 0

0 Θ42 B̃41

0 E42 0


 .

Therefore, there exists K13 such that

rank




Θ̃11 Θ12 + B̃11K12 Θ13 + B̃11K13

Θ̃31 Θ32 Θ33

0 Θ42 + B̃41K12 Θ43 + B̃41K13

0 E42 E43


 = rank




Θ̃11 Θ12 + B̃11K12

Θ̃31 Θ32

0 Θ42 + B̃41K12

0 E42


 .

Finally, we determine K23 from

B̃22K23 = −(Θ23 + B̃21K13).

We have from Lemma 3.3 that E53 = 0 and that A53 is nonsingular. Thus, for F,K
determined by the described procedure, (E+BK,A+BF ) is regular and of index at
most one. It is also easy to see that C(s(E +BK)− (A+BF ))−1G = 0.

Remark 3.1. If the index one condition is not required, then in case (a) necessary
and sufficient conditions are given by (4), (19), and

rankg

[
sE −A B

C 0

]
= rankg

[
sE −A B G

C 0 0

]
(30)

and in case (b) by (4), (22), and (30). The proof of the necessary and sufficient condi-
tions and the construction of feedbacks that regularize the system without achieving
index at most one are discussed in detail in [9].

Remark 3.2. The previous results can also be modified to the case when only
derivative feedback is used. Since the results are essentially dual results to the ones
for state feedback by exchanging the roles of E and A, we omit them. Details are
given in the reports [9, 10].
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4. The disturbance decoupling problem with stability. In this section we
study the case where the extra requirement that the closed-loop system be stable is
added. Similarly to section 3, first we prove a condensed form for matrix quintuples
(E,A,B,C,G) under orthogonal equivalence transformations and determine different
left and right reducing subspaces that are needed for the solution of the disturbance
decoupling problem with stability.

Theorem 4.1. Given a system of the form (1), there exist orthogonal matrices
U, V ∈ Rn×n such that

U(sE −A)V =




n1 n2 n3 n4

ñ1 sE11 −A11 sE12 −A12 sE13 −A13 sE14 −A14

ñ2 −A21 sE22 −A22 sE23 −A23 sE24 −A24

ñ3 −A31 sE32 −A32 sE33 −A33 sE34 −A34

ñ4 0 sE42 −A42 sE43 −A43 sE44 −A44

ñ5 0 0 sE53 −A53 sE54 −A54

ñ6 0 0 0 sE64 −A64



,

UB =




ñ1 B1

ñ2 0
ñ3 B3

ñ4 0
ñ5 0
ñ6 0



, UG =




ñ1 G1

ñ2 G2

ñ3 G3

ñ4 0
ñ5 0
ñ6 0



, CV =

[n1 n2 n3 n4

0 0 C3 C4

]
,(31)

where E11, G2, B3, and E53 are of full row rank, E42 is square and nonsingular (i.e.,
n2 = ñ4,), and furthermore ∀s ∈ C

rank (sE64 −A64) = n4, rank

[
sE53 −A53

C3

]
= n3,

rank


 sE11 −A11 B1 G1

−A21 0 G2

−A31 B3 G3


 = ñ1 + ñ2 + ñ3.

Proof. The proof is constructive and can be obtained by an algorithm similar to
Algorithm 1. A detailed description of the method can be found in [10].

Similarly to the proof of Lemma 3.2, using the condensed form (31) we can char-
acterize the following spaces:

∆r := Vm−r

[
ΠT
[

E
0

]
,ΠT

[
A
C

]]
, ∆l := Vm−l

[
ΠT
[

E
0

]
,ΠT

[
A
C

]]
,

∆t :=
[
Π⊥ Π

] [ I 0
0 ∆l

]
,

∆1 := ∆T
t

[
E
0

]
∆r, ∆2 := ∆T

t

[
A
C

]
∆r,

∆3 := ∆T
t

[
B
0

]
, ∆4 := ∆T

t

[
G
0

]
,(32)
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where Π is as in (12). We introduce furthermore the following indices which are
determined by the condensed form of Theorem 4.1:

ν := rank
[

B G
]
+ rank(∆l), ξ := rank(∆r),

χ := dim

(
Vm−l

[[
E 0 0
0 0 0

]
,

[
A B G
C 0 0

]])

+ dim

(
Vf−l

[[
E B G
0 0 0

]
,

[
A 0 0
C 0 0

]])

− dim

(
Vf−l

[[
E B 0
0 0 0

]
,

[
A 0 G
C 0 0

]])
.(33)

From the form (31) we then immediately obtain that

ξ = n1, χ = ñ1 + ñ2, ν = ñ1 + ñ2 + ñ3.

Theorem 4.2. Consider a system of the form (1), spaces ∆i as in (32), and
indices χ, ξ, and ν as in (33).

(a) There exist feedback matrices F ∈ Rm×n and H ∈ Rm×d such that (E,A +
BF ) is regular, of index at most one, stable, and C(sE − (A+BF ))−1(G+
BH) = 0 if and only if conditions (5) and (7) and the following three condi-
tions hold:

rank
[

s∆1 −∆2 ∆3

]
= ν ∀s ∈ C+,(34)

rank
[
∆1 ∆2S∞(∆1) ∆3

]
= ν,(35)

χ ≤ ξ.(36)

(b) There exist feedback matrices F,K ∈ Rm×n, and H ∈ Rm×d such that (E +
BK,A + BF ) is regular, of index at most one, stable, and C(s(E + BK) −
(A + BF ))−1(G + BH) = 0 if and only if conditions (6), (7), and (34), as
well as

rankg

[
TT∞(B)(sE −A) TT∞(B)G

C 0

]
≤ n,(37)

hold and furthermore W2 := TT∞(
[
∆1 ∆3

]
)∆2S∞(TT∞(∆3)∆1) is of full

row rank.
Proof. Let U, V ∈ Rn×n be orthogonal matrices such that U(sE−A)V , UB, CV ,

and UG are in the form (31). Then condition (34) translates to

rank


 sE11 −A11 B1

−A21 0
−A31 B3


 = ñ1 + ñ2 + ñ3 ∀s ∈ C+

and (36) means that ñ1 + ñ2 ≤ n1. Condition (35) translates to

rank


 E11 A11S∞(E11) B1

0 A21S∞(E11) 0
0 A31S∞(E11) B3


 = ñ1 + ñ2 + ñ3

and W2 has full rank if and only if

TT∞




 E11 B1

0 0
0 B3






 A11

A21

A31


 S∞


TT∞




 B1

0
B3






 E11

0
0






has full row rank.
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(a) Necessity. Let F ∈ Rm×n and H ∈ Rm×d be such that (E,A+BF ) is regular,
of index at most one, and stable and C(sE− (A+BF ))−1(G+BH) = 0. Conditions
(5) and (7) follow directly by Lemma 2.3(v). If we partition

FV =
[ n1 n2 n3 n4

F1 F2 F3 F4

]
,

then by Lemma 2.4 we have that

4∑
i=1

ni = n = rankg

[
sE − (A+BF ) G+BH

C 0

]

= n2 + n3 + n4 + rankg


 sE11 − (A11 +B1F1) G1 +B1H

−A21 G2

−(A31 +B3F1) G3 +B3H


 .

Hence,

rankg


 sE11 − (A11 +B1F1) G1 +B1K

−A21 G2

−(A31 +B3F1) G3 +B3K


 = n1,(38)

which implies condition (36), since

ñ1 + ñ2 = rankg

[
sE11 − (A11 +B1F1) G1 +B1H

−A21 G2

]
≤ n1.

To show (34) let P1 be an orthogonal matrix such that

PT
1


 G1 +B1H

G2

G3 +B3H


 =

[
t1 G̃1

t̃2 0

]
(39)

with G̃1 of full row rank. Set

[
t1 sẼ11 − Ã11

t̃2 sẼ21 − Ã21

]
:= PT

1


 sE11 − (A11 +B1F1)

−A21

−(A31 +B3F1)


(40)

and compute the GUPTRI form of (Ẽ21, Ã21)

P̂T
1 (sẼ21 − Ã21)Q1 =

[ r1 r2

t2 sΘ21 − Φ21 sΘ22 − Φ22

t3 0 sΘ32 − Φ32

]
(41)

with Θ21 of full row rank and sΘ32 − Φ32 of full column rank ∀s ∈ C. Set

[ r1 r2

sΘ11 − Φ11 sΘ12 − Φ12

]

:= (sẼ11 − Ã11)Q1,


t1 Ψ1

t2 Ψ2

t3 Ψ3


 :=

[
I

P̂T
1

]
PT

1


 B1

0
B3


 .(42)
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Since

rank


 sE11 −A11 B1 G1

−A21 0 G2

−A31 B3 G3


 = rank


 sΘ11 − Φ11 sΘ12 − Φ12 Ψ1 G̃1

sΘ21 − Φ21 sΘ22 − Φ22 Ψ2 0
0 sΘ32 − Φ32 Ψ3 0




= ñ1 + ñ2 + ñ3 = t1 + t2 + t3

∀s ∈ C, it follows that rank
[

sΘ32 − Φ32 Ψ3

]
= t3 ∀s ∈ C. By (38) we also have

that t1 + t2 + r2 = t1 + rankg(sΘ21 − Φ21) + r2 = n1 = r1 + r2, or equivalently we
have that

t1 + t2 = r1 and

[
sΘ11 − Φ11

sΘ21 − Φ21

]
is square.(43)

We know that (E,A + BF ) is regular and stable, so we have that ([Θ11

Θ21
], [Φ11

Φ21
]) is

regular and stable. Therefore, we have ∀s ∈ C+ that

rank


 sE11 −A11 B1

−A21 0
−A31 B3


 = rank


 sE11 − (A11 +B1F1) B1

−A21 0
−(A31 +B3F1) B3




= rank


 sΘ11 − Φ11 sΘ12 − Φ12 Ψ1

sΘ21 − Φ21 sΘ22 − Φ22 Ψ2

0 sΘ32 − Φ32 Ψ3




= t1 + t2 + rank
[

sΘ32 − Φ32 Ψ3

]
= t1 + t2 + t3 = ñ1 + ñ2 + ñ3,

which gives condition (34).
We have that E11, G2, and B3 are of full row rank, so that

[
Θ32 Ψ3

]
is also

of full row rank. Since (E,A + BF ) is regular and of index at most one, we have
that ([Θ11

Θ21
], [Φ11

Φ21
]) is also regular and of index at most one. Then, using the standard

characterization of pencils that are regular and of index at most one, e.g., [5], we

obtain that rank[Θ11

Θ21

Φ11Ŝ

Φ21Ŝ
] = t1 + t2 with Ŝ = S∞([Θ11

Θ21
]). Therefore, we have

ñ1 + ñ2 + ñ3 = t1 + t2 + t3 ≥ rank


 E11 A11S∞(E11) B1

0 A21S∞(E11) 0
0 A31S∞(E11) B3




= rank


 E11 (A11 +B1F1)S∞(E11) B1

0 A21S∞(E11) 0
0 (A31 +B3F1)S∞(E11) B3




= rank


 Θ11 Θ12 Φ̃1S̃ Ψ1

Θ21 Θ22 Φ̃2S̃ Ψ3

0 Θ32 Φ̃3S̃ Ψ3




≥ rank


 Θ11 Θ12 Φ11Ŝ Ψ1

Θ21 Θ22 Φ21Ŝ Ψ2

0 Θ32 0 Ψ3


 = t1 + t2 + t3,

where 
 Φ̃1

Φ̃2

Φ̃3


 =


 Φ11 Φ12

Φ21 Φ22

0 Φ32


 , S̃ = S∞




 Θ11 Θ12

Θ21 Θ22

0 Θ32




 .

Hence, (35) follows.
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Sufficiency. Since conditions (7) and (5) hold, similarly to Lemma 3.3, we have

(44)

rank(E) = rank(E11) + rank




E22 E23

E32 E33

E42 E43

0 E53


, ñ6 = n4, E64 = 0, det(A64) �= 0.

Hence, by condition (36), we have that n2 + n3 ≤ ñ3 + n2 + ñ5, and therefore, as in
Theorem 2.4 of [8], we can compute a matrix X ∈ Rñ3×n2 such that

rank


 E32 +XE22 E33 +XE23

E42 E43

0 E53


 = rank




E22 E23

E32 E33

E42 E43

0 E53


.

As a consequence, we obtain

rank(E) = rank(E11) + rank


 E32 +XE22 E33 +XE23

E42 E43

0 E53


.(45)

Since conditions (34), (36), and (35) hold, by a slight modification of Lemma 2.5,
there exist F̃1 ∈ Rm×n1 and a nonsingular matrix Z such that

 sE11 − (A11 +B1F̃1)
−A21

−(A31 +XA21 +B3F̃1)


Z

=




ñ1 + ñ2 n1 − (ñ1 + ñ2)

ñ1 sΘ11 − Φ11 −Φ12

ñ2 sΘ21 − Φ21 −Φ22

ñ3 0 0




with ([Θ11

Θ21
], [Φ11

Φ21
]) regular, of index at most one, and stable. By condition (7), we

obtain ∀ s ∈ C+

rank




sẼ32 − Ã32 sẼ33 − Ã33 sẼ34 − Ã34 B3

sE42 −A42 sE43 −A43 sE44 −A44 0
0 sE53 −A53 sE54 −A54 0
0 0 sE64 −A64 0


 = n− (ñ1 + ñ2),

where

Ẽ32 = E32 +XE22, Ã32 = A32 +XA22, Ẽ33 = E33 +XE23,

Ã33 = A33 +XA23, Ẽ34 = E34 +XE24, Ã34 = A34 +XA24.

We also have that B3, E53 are of full row rank, E42 and A64 are nonsingular, and
E64 = 0. Moreover, condition (45) obviously says that

rank


 E32 +XE22 E33 +XE23

E42 E43

0 E53




= rank


 E32 +XE22 E33 +XE23 E34 +XE24

E42 E43 E44

0 E53 E54


 .
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Thus, by Lemma 2.3(iv), there exists a matrix

[n1 − (ñ1 + ñ2) n2 n3 n4

F̂1 F2 F3 F4

]
such that





0 Ẽ32 Ẽ33 Ẽ34

0 E42 E43 E44

0 0 E53 E54

0 0 0 E64


 ,




B3F̂1 Ã32 +B3F2 Ã33 +B3F3 Ã34 +B3F4

0 A42 A43 A44

0 0 A53 A54

0 0 0 A64







is regular, of index at most one, and stable.
Let

F1 := F̃1 +
[
0 F̂1

]
Z−1, F :=

[
F1 F2 F3 F4

]
V T ;

we have that (E,A+BF ) is regular, of index at most one, and stable. Furthermore, if
we compute H from (G3+XG2)+B3H = 0, then we also have disturbance decoupling.

(b) Necessity. Let F,K ∈ Rm×n, and H ∈ Rm×d be such that (E+BK,A+BF )
is regular, of index at most one, and stable and the disturbances are decoupled.
Then conditions (6)–(7) and (37) follow directly Lemma 2.3(vii), Lemma 2.4, and the
inequality

rankg

[
TT∞(B)(sE −A) TT∞(B)G

C 0

]
≤ rankg

[
sE − (A+BF ) G+BH

C 0

]
= n.

Partition

FV =:
[ n1 n2 n3 n4

F1 F2 F3 F4

]
, KV =:

[ n1 n2 n3 n4

K1 K2 K3 K4

]
.

To prove (34), note that E11, G2, and B3 are of full row rank, so there exists an
orthogonal matrix P̂1 such that in


t̂1 sÊ11 − Â11

t̂2 −Â21

t̂3 −Â31


 := P̂T

1


 s(E11 +B1K1)−A11

−A21

s(B3K1)−A31


 ,


t̂1 B̂1

t̂2 0
t̂3 B̂3


 := P̂T

1


 B1

0
B3


 ,


t̂1 Ĝ1

t̂2 Ĝ2

t̂3 Ĝ3


 := P̂T

1


 G1

G2

G3


 ,

Ê11, Ĝ2, and B̂3 have full row rank.

If we set P̂ := [ P̂1

I ] ∈ Rn×n, then we obtain that P̂TU(s(E + BK) − A)V ,

P̂TUB, P̂TUG, CV are in the condensed form (31). Since there exist F ∈ Rm×n and
K ∈ Rm×p such that (E + BK,A + BF ) is regular and stable and the disturbances
are decoupled, it follows from part (a) that

rank


 sE11 −A11 B1

−A21 0
−A31 B3


 = rank


 sÊ11 − Â11 B̂1

−Â21 0

−Â31 B̂3


 = t̂1 + t̂2 + t̂3 = ñ1 + ñ2 + ñ3
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∀s ∈ C+, which is condition (34). Moreover, by part (a) we also have

rank


 E11 +B1K1 A11Ŝ B1

0 A21Ŝ 0

B3K1 A31Ŝ B3


 = rank


 Ê11 Â11S∞(Ê11) B̂1

0 Â21S∞(Ê11) 0

0 Â31S∞(Ê11) B̂3




= t̂1 + t̂2 + t̂3

= ñ1 + ñ2 + ñ3

with

Ŝ = S∞




 E11 +B1K1

0
B3K1




 .

Thus we have that

TT∞




 E11 B1

0 0
0 B3






 A11

A21

A31


 Ŝ

is of full row rank and hence W2 is also.
Sufficiency. Since (6) and (7) hold, it follows by Lemma 2.3(vii) that there exist

F0,K0 such that (E +BK0, A+BF0) is regular and of index at most one. Hence

det(U(s(E +BK0)− (A+BF0))V ) �= 0,

deg(det(U(s(E +BK0)− (A+BF0))V )) = rank(U(E +BK0)).

Similarly to Lemma 3.3, a direct calculation yields that

rank


 E22 E23

E42 E43

0 E53


 = rank


 E22 E23 E24

E42 E43 E44

0 E53 E54


 , ñ6 = n4, E64 = 0,

A64 is nonsingular.(46)

Note that since E11, G2, and B3 are of full row rank, there exists an orthogonal matrix
P1 ∈ Rν×ν such that

PT
1


 sE11 −A11 sE12 −A12 sE13 −A13 sE14 −A14 B1 G1

−A21 sE22 −A22 sE23 −A23 sE24 −A24 0 G2

−A31 sE32 −A32 sE33 −A33 sE34 −A34 B3 G3




=




n1 n2 n3 n4 m d

t1 sẼ11 − Ã11 sẼ12 − Ã12 sẼ13 − Ã13 sẼ14 − Ã14 0 G̃1

ñ2 A21 sE22 −A22 sE23 −A23 sE24 −A24 0 G2

t3 sẼ31 − Ã31 sẼ32 − Ã32 sẼ33 − Ã33 sẼ34 − Ã34 B̃3 G̃3


,(47)

with Ẽ11, and B̃3 full row rank. Then (37) implies that t1 + ñ2 ≤ n1. Furthermore,
by (46) we have n2 + n3 ≤ t3 + n2 + ñ5. Note that E42 is nonsingular and E53 is full
row rank; thus, as in the construction given Theorem 2.4 of [8], there exists a matrix
X ∈ Rt3×ñ2 such that

rank


 XE22 XE23

E42 E43

0 E53


 = rank


 E22 E23

E42 E43

0 E53


 .(48)
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With this X, by (46) and (48) we have

rank




Ẽ11 Ẽ12 Ẽ13 Ẽ14

0 E22 E23 E24

0 XE22 XE23 XE24

0 E42 E43 E44

0 0 E53 E54


 = rank(Ẽ11)+rank


 XE22 XE23

E42 E43

0 E53


 .(49)

Determine

K :=
[ n1 n2 n3 n4

K1 K2 K3 K4

]

from

B̃3

[
K1 K2 K3 K4

]
+
[

Ẽ31 Ẽ32 Ẽ33 Ẽ34

]
= 0;

then, since W2 has full rank if and only if rank(Ã11S∞(Ẽ11)) = ñ2, and since we have
already shown that (46) and (49) hold, similarly to the sufficiency in part (a), we
obtain the desired feedback matrices F and H. See [10] for details.

Remark 4.1. If the index one condition is not required, then in (a) necessary and
sufficient conditions are given by (7), (34), and (36) and in (b) by (7), (34), and (37).
The proof of these conditions and the construction of feedbacks that regularize the
system without achieving index at most one are discussed in detail in [10].

Remark 4.2. We can extend these results to systems that include a feedthrough
term, which arises frequently in H∞ and LQG control (see [26]), i.e., systems of the
form

Eẋ(t) = Ax(t) +Bu(t) +Gq(t); x(t0) = x0, t ≥ t0,

y(t) = Cx(t) +Du(t),(50)

where E,A,B,G,C are as in (1) and D ∈ Rp×m.

Using the singular value decomposition of D, e.g., [15],

PTDW =

[ rd m− rd

rd D1 0
q − rd 0 0

]
,(51)

with P,W orthogonal and D1 of size rd × rd and nonsingular, we can set

BW =:
[ rd m− rd

B1 B2

]
, PTC =:

[
rd C1

q − rd C2

]
,

WTu =:

[
u1

u2

]
, PT y =:

[
y1

y2

]
(52)

and furthermore for F ∈ Rm×n

[
F1

F2

]
:= WTF −

[
D−1

1 C1

0

]
.(53)
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Then for the solution of the disturbance decoupling problem it suffices to perform
the analysis of the augmented system

Ê ˙̂x = Âx̂+ B̂û+ Ĝq,

ŷ = Ĉx̂,(54)

where

Ê :=

[
E 0
0 0

]
, Â :=

[
A B1

C1 D1

]
∈ Rn̂×n̂,

B̂ :=

[
B2

0

]
∈ Rn̂×m̂, Ĉ :=

[
C2 0

] ∈ Rp̂×n̂, Ĝ :=

[
G
0

]
∈ Rn̂×d̂,

and n̂ := n+rd, m̂ := m−rd, p̂ := p−rd. For this system the results from the previous
section apply, and hence the case of systems with feedthrough can be reduced to the
previous results. See [10] for more details.

5. Conclusions. In this paper we have studied the disturbance decoupling prob-
lem with or without stability for descriptor systems. We have given necessary and
sufficient conditions for solving this problem and at the same time ensuring that the
resulting closed-loop system is regular and has index at most one. The proofs are
constructive, based on condensed forms that can be computed via orthogonal matrix
transformations and can be implemented as numerically stable procedures.

Appendix A.

Constructive proof of Theorem 3.1. In the following algorithm we need row com-
pressions, column compressions, or simultaneous row and column compressions of
matrices. Such compressions can be obtained in the usual way via QR-factorizations,
rank revealing QR-factorizations, URV-decompositions, or singular value decomposi-
tions; see [15, 2].

We also need the computation of GUPTRI forms which can be obtained via the
LAPACK routine DGGBAK from LAPACK [2].

Algorithm 1.

Input: Matrices E, A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×p, C ∈ Rq×n.
Output: Orthogonal matrices U, V, P,W , and the condensed form (14).

Step 1. Perform a row compression and a column compression such that

UB =:


 B1

B2

0


 , UG =:


 G1

0
0


 , CV =:

[
0 C3

]

with G1, B2 of full row rank and C3 of full column rank. Set

U(sE −A)V =:


 sE11 −A11 sE13 −A13

sE21 −A21 sE23 −A23

sE31 −A31 sE33 −A33


 .

Step 2. Compute the GUPTRI form of (E31, A31),

U2(sE31 −A31)V2 =:

[
sE31 −A31 sE32 −A32

0 sE42 −A42

]
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with E31 of full row rank and sE42 −A42 of full column rank for any s ∈ C. Set

[
sE11 −A11

sE21 −A21

]
V2 =:

[
sE11 −A11 sE12 −A12

sE21 −A21 sE22 −A22

]
,

U2(sE33 −A33) =:

[
sE33 −A33

sE43 −A43

]
.

Step 3. Compute the GUPTRI form of
(
[

E42 E43

]
,
[

A42 A43

]
),

U3

[
sE42 −A42 sE43 −A43

]
V3 =:

[
sE42 −A42 sE43 −A43

0 sE53 −A53

]

with E42 of full row rank and sE53 −A53 of full column rank for any s ∈ C. Set


 sE12 −A12 sE13 −A13

sE22 −A22 sE23 −A23

sE32 −A32 sE33 −A33


 :=


 sE12 −A12 sE13 −A13

sE22 −A22 sE23 −A23

sE32 −A32 sE33 −A33


V3

and
[

C2 C3

]
:=
[
0 C3

]
V3.

Step 4. Perform a row compression

U4

[
sE21 −A21

sE31 −A31

]
=:

[
sE21 −A21

−A31

]

with E21 of full row rank. Set

[
sE22 −A22 sE23 −A23

sE32 −A32 sE33 −A33

]
:= U4

[
sE22 −A22 sE23 −A23

sE32 −A32 sE33 −A33

]
,

[
B2

B3

]
:= U4

[
B2

0

]
,

and

U :=


 I

U4

I



[

I
U3

] [
I

U2

]
U1, V := V1

[
V2

I

] [
I

V3

]
.

Appendix B.
Proof of Lemma 3.2. Let Ũ be an orthogonal matrix such that

Ũ

[
B2

B3

]
=

l2
ñ2 + ñ3 − l2

[
B̃2

0

]

with B̃2 of full row rank. Set

Ũ

[
sE21 −A21 sE22 −A22 sE23 −A23

−A31 sE32 −A32 sE33 −A33

]

=:

[ n1 n2 n3

l2 sẼ21 − Ã21 sẼ22 − Ã22 sẼ23 − Ã23

ñ2 + ñ3 − l2 sẼ31 − Ã31 sẼ32 − Ã32 sẼ33 − Ã33

]
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and partition Ũ = l2
ñ2+ñ3−l2 [ Ũ2

Ũ3
]. Then since


 sE42 −A42 sE43 −A43

0 sE53 −A53

C2 C3




is of full column rank and G1, E21, and B3 are of full row rank ∀s ∈ C, we have that
Ẽ31 is also of full row rank, and

Π =


 0 0

ŨT
3 0
0 Iñ4+ñ5+q


 ∈ R(n+q)×(n+q−p−l2),

[
Π⊥ Π

]
=

[
WT
π

Iñ4+ñ5+q

]
∈ R(n+q)×(n+q),

Λr =

[
In1

0

]
Wr ∈ Rn×n1 , Λl =

[
Iñ2+ñ3−l2

0

]
W̃T
l ∈ R(n+q−p−l2)×(ñ2+ñ3−l2),

Λt =

[
WT
π

Iñ4+ñ5+q

] [
Ip+ñ2+ñ3

0

] [
Ip+l2

W̃T
l

]
,

where Wπ,Wr, W̃l are orthogonal. If we set Wl = [ Ip+l2
W̃l

]Wπ, then we obtain

Λ1 = Wl


 E11

E21

0


Wr, Λ2 = Wl


 A11

A21

A31


Wr, Λ3 = Wl


 B1

B2

B3


 .

Note that
 A11

A21

A31


WrS∞




 E11

E21

0


Wr


 =


 A11

A21

A31


S∞




 E11

E21

0




 ,

TT∞


Wl


 E11Wr B1

E21Wr B2

0 B3




Wl


 A11

A21

A31


Wr = TT∞




 E11 B1

E21 B2

0 B3






 A11

A21

A31


Wr,

S∞


TT∞


Wl


 B1

B2

B3




Wl


 E11

E21

0


Wr


 = WT

r S∞


TT∞




 B1

B2

B3






 E11

E21

0




 .

Since B3 is of full row rank, there exists an orthogonal matrix Ṽ such that[
B3 A31

]
Ṽ =

[
0 Φ32

]
with Φ32 nonsingular. Set (with conformal partitioning)[

B2 A21

]
Ṽ =

[
Φ21 Φ22

]
,
[
0 E21

]
Ṽ =

[
Θ21 Θ22

]
, and V̂ := [ Ṽ I ] ∈

R(n+m)×(n+m). Then, we obtain that

[ −ΨB Ψ(sE −A)
0 C

]
V̂

=




sΘ21 − Φ21 sΘ22 − Φ22 sE22 −A22 sE23 −A23

0 −Φ32 sE32 −A32 sE33 −A33

0 0 sE42 −A42 sE43 −A43

0 0 0 sE53 −A53

0 0 C2 C3


 .
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Since E21, B2 are of full row rank and Φ32 is nonsingular, it follows that Θ21 is also
of full row rank. Note that

 −Φ32 sE42 −A42 sE43 −A43

0 0 sE53 −A53

0 C2 C3




is of full column rank ∀ s ∈ C. Hence,

rank(Λ4) = rank




0 E32 E33

0 E42 E43

0 0 E53

0 0 0


 = rank


 E32 E33

E42 E43

0 E53


 .

Since

[
Ψ(sB) Ψ(sE −A)

0 −C
]
=




sB2 sE21 −A21 sE22 −A22 sE23 −A23

sB3 −A31 sE32 −A32 sE33 −A33

0 0 sE42 −A42 sE43 −A43

0 0 0 sE53 −A53

0 0 −C2 −C3


 ,

[B2

B3

E21

0 ] are of full row rank and


 sE42 −A42 sE43 −A43

0 sE53 −A53

−C2 −C3




is of full column rank ∀s ∈ C.
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Abstract. For discrete-time linear systems over a principal ideal domain, three types of (C,A)-
invariance can be distinguished. Connections between these notions are investigated. For pure
submodules, necessary and sufficient conditions for dynamic (C,A)-injection invariance are given.
Sufficient conditions are obtained in the general case.
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1. Introduction. Consider a real n-dimensional linear system

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t),(1.1)

with a dynamical observer of the form

z(t + 1) = Az(t) + Bu(t)−K[y(t)− Cz(t)].

The error e(t) = x(t)−z(t) satisfies e(t+1) = (A+KC)e(t). Hence, if φ is a subspace
of R

n which is invariant under A+KC, then the error e(t) will remain in φ provided
that the initial error e(0) is in φ. Such (C,A)-invariant subspaces, which are basic
tools for the construction of observers, have been studied in [3], [28], [25], [8], [11].
The differentiable structure of sets of (C,A)-invariant subspaces was investigated in
[10]. Classification and parametrization results were obtained in [16]. Applications to
disturbance decoupling by observation feedback and disturbance decoupled estimation
can be found in [25].

If (1.1) is a system over a field, then the following important fact is well known.
Given φ, there exists a K such that (A + KC)φ ⊆ φ if and only if

A(φ ∩KerC) ⊆ φ.(1.2)

For systems over rings, Example 1.2 below shows that the equivalence between (A +
KC)-invariance and the geometric property (1.2) is not valid in general, which gives
rise to distinct notions of (C,A)-invariance. It is indispensable for prospective ap-
plications of systems over rings to clarify the interdependence of those invariance
concepts. If a real linear system depends polynomially on a parameter or if it has
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commensurable delays, then it can be viewed as a system over the ring R[s] or more
generally as a system over a principal ideal domain (PID) (see, e.g., [26], [23], [12]).
Accordingly in this paper the underlying ring R will be a PID. We refer to [7] for
linear systems over PIDs and to [9], [17], [2] for applications. In a subsequent paper
[19] we apply our present results to disturbance decoupling by dynamic measurement
feedback. An example of an engineering application is the decoupling control of a
ship propelled by a pitch propeller. The problem was studied by Kono et al. [21]. It
was solved in [17] by applying results on diagonal decoupling to delay systems.

Let (C, A) and (A, B) be pairs of matrices with A ∈ Rn×n, C ∈ Rl×n, B ∈
Rn×m. In this paper, φ will always be a submodule of Rn with rankφ = r and
rank(φ ∩KerC) = k.

Definition 1.1.
(i) A submodule φ is called (C,A)-invariant if

A(φ ∩KerC) ⊆ φ.

(ii) We say φ is (C,A)-injection-invariant if there exists a matrix K ∈ Rn×l such
that

(A + KC)φ ⊆ φ.(1.3)

It is well known that (1.3) implies (1.2). If R is not a field, then the converse
need not be true. The following example can be found in [8].

Example 1.2. Take R = Q[τ ], n = 2, and define

A =

(
1 0
1 1

)
, C = (τ 0), φ = Im

(
1

0

)
.(1.4)

Clearly φ is (C,A)-invariant because of φ ∩ KerC = 0. If K = (α β)T is a matrix
such that (1.3) holds, then 1 + βτ = 0, which is possible for β ∈ R[1/τ ] but not for
β ∈ R. We point out that the submodule Cφ = τR does not satisfy (φ⊥)⊥ = φ such
that the example later will confirm Corollary 5.2.

The next example shows that injection-invariance can be achieved by extending
the data A, C, φ in a way which corresponds to dynamic feedback.

Example 1.3. Define A, C, φ as in (1.4). Set

Ae =


 1 0 0

1 1 0
0 0 0


 , Ce =

(
τ 0 0
0 0 1

)
, φe = ImMe, Me =


 1 0

0 1
0 τ


 .

Define

Ke =


0 0

0 0
1 1


 .

Then

(Ae + KeCe)Me = Me

(
1 0
1 1

)
,

i.e., (Ae + KeCe)φe ⊆ φe, and φe extends φ in the sense of φe ∩ (R2 ⊕ 0) = φ⊕ 0.
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With regard to the preceding example and in particular motivated by a dual
concept in the theory of (A,B)-invariant submodules (to be discussed in section 2)
we introduce another invariance notion. Let q be a nonnegative integer, and let 0q be
the zero submodule of Rq. We consider extensions of order q of A and C of the form

Aeq =

(
A 0
0 0q×q

)
, Ceq =

(
C 0
0 Iq

)
.(1.5)

To a submodule φ we associate the sets

E(φ, q) = {ψ |ψ submodule of Rn+q, ψ ∩ (Rn ⊕ 0q) = φ⊕ 0q},
and

E(φ) = ∪{E(φ, q), q ≥ 0}.
This type of module extensions appears already in [25].

Definition 1.4. We call φ dynamically (C,A)-injection-invariant of order q ≥ 0
if there exist a matrix Ke ∈ R(n+q)×(l+q) and a submodule φe ∈ E(φ, q) such that

(Aeq + KeCeq )φe ⊆ φe.(1.6)

For a pair (C,A) and a submodule φ we now have three notions of invariance. It
is the purpose of this paper to study the relations between those three concepts. In
section 5 we shall prove the following result.

Proposition 1.5. If φ is dynamically (C,A)-injection-invariant, then φ is
(C,A)-invariant.

The theory of (A, B)-invariant submodules in section 2 might suggest that a
converse of Proposition 1.5 should be true, at least for those submodules φ that are
pure, i.e., which are direct summands of Rn, or equivalently, which satisfy (φ⊥)⊥ = φ.
As usual we define φ⊥ = {x ∈ Rn | xT y = 0 for all y ∈ Rn}, and we call Sφ = (φ⊥)⊥

the closure of φ. Because of Sφ = φ, or equivalent closure properties, it has also
been common (see, e.g., [9], [22]) to speak of closed instead of pure submodules.
Basic properties of the closure operator S and of pure submodules will be reviewed
in the appendix. For our purposes it is important to know that (dynamic) (C,A)-
injection-invariance of φ is inherited by Sφ. Our main result for pure submodules is
the following.

Theorem 1.6. Let φ be a pure submodule of Rn of rank r. Then φ is dynamically
(C,A)-injection-invariant if and only if φ⊥ contains a submodule ψ satisfying

(i) rankψ = n− r,
(ii) ATψ ⊆ ψ + Im(CT ).
Note that condition (ii) means that ψ is (AT , CT )-invariant according to Defini-

tion 2.1 below. Hence the two conditions (i) and (ii) hold if and only if the unique
maximal (AT , CT )-invariant submodule of φ⊥ has rank n− r.

Having Theorem 1.6 at our disposal we claim that (C,A)-invariance is not suffi-
cient for dynamical (C,A)-injection-invariance.

Example 1.7. Take R = Q[τ ], n = 2, r = 1, and

A =

(
0 0
1 0

)
, C = (τ 1), φ = Im

(
1

0

)
.

Again we have φ ∩KerC = 0. Hence φ is (C,A)-invariant. It requires a considerable
effort to verify directly that there does not exist an extension φe ∈ E(φ) and a matrix
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Ke such that (Ae + KeCe)φe ⊆ φe. On the other hand, it follows immediately
from Theorem 1.6 that φ cannot be dynamically (C,A)-injection-invariant, since in
φ⊥ = Im(0, 1)T only the zero submodule is (AT , CT )-invariant.

We continue our paper as follows. In section 2 we review types of (A, B)-
invariance that correspond to the notions in Definitions 1.1 and 1.4. It will become
evident that our results with respect to (C,A) are not dual ones of (A, B)-invariance
results. In section 3 we give the proof of Theorem 1.6 and obtain further criteria for
pure submodules. In section 4 we work with bases of submodules and develop matrix
representations which will then be exploited in section 5 to derive sufficient conditions
for (dynamic) (C,A)-injection-invariance in the general nonpure case.

2. (A,B)-invariance. If R is a field, then the (C,A)-invariance condition (1.2)
is equivalent to a dual (AT , CT )-invariance condition for φ⊥. That is, we have

A(φ ∩ kerC) ⊆ φ⇐⇒ ATφ⊥ ⊆ φ⊥ + ImCT .(2.1)

Over a PID, (2.1) in general is no longer true. We have only

AS(φ ∩ kerC) ⊆ S φ⇐⇒ ATφ⊥ ⊆ S
[
φ⊥ + S(ImCT )

]
.(2.2)

Therefore, in general, results on (A,B)-invariance cannot be carried over to dual ones
on (C,A)-invariance. In the special case where φ, ImCT , and φ⊥ + ImCT are pure
submodules the equivalence (2.2) implies (2.1).

For systems over rings dualization, in particular duality between controllability
(or reachability) and observability has been a fundamental issue (see, e.g., [5], [6], and
[15]). It is known [15] that among PIDs only fields have the property that controlla-
bility of (A,B) is always equivalent to observability of the corresponding transposed
system. In general, controlled and observed invariance are intrinsically different con-
cepts. Note that (A,B)-invariance (2.3) is preserved under homomorphisms. On
the other hand consider Example 1.7 where the homomorphism induced by τ �→ 0
destroys (C,A)-invariance.

Let us briefly review some facts and definitions on (A,B)-invariance, for which
we refer to [14], [8], and [18]. In accordance with Definition 1.1 we have two concepts,
a geometric and a feedback characterization.

Definition 2.1.
(i) A submodule ψ of Rn is called (A,B)-invariant if

Aψ ⊆ ψ + ImB.(2.3)

(ii) We say ψ is (A,B)-feedback-invariant if there exists a matrix F ∈ Rm×n such
that

(A + BF )ψ ⊆ ψ.(2.4)

The notion of dynamic (A,B)-feedback-invariance was introduced in [9] and then
also studied in [17] and [18]. For q ≥ 0 let Aeq be given as in (1.5). Define

Be
q =

(
B 0
0 Iq

)

correspondingly. Let P be the projection of Rn ⊕ Rq onto Rn. To a submodule
ψ ⊆ Rn we associate the sets

G(ψ, q) = {µ | µ submodule of Rn ⊕Rq with Pµ = ψ}
and G(ψ) = ∪{G(ψ, q), q ≥ 0}.
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Definition 2.2. A submodule ψ of Rn is called dynamically (A,B)-feedback-
invariant of order q if there exists a ψb ∈ G(ψ, q) and a matrix F b ∈ R(n+q)×(m+q)

such that

(Aeq + Be
qF

b)ψb ⊆ ψb.

We note that for pure submodules and pure extensions, Definition 1.4 and Def-
inition 2.2 are related by duality. Namely, if (φ⊥)⊥ = φ and φe ∈ E(φ, q), then (by
Lemma 3.1 below) we have P[(φe)⊥] = φ⊥. Hence (φe)⊥ ∈ G(φ⊥, q). Similarly, if
ψb ∈ G(ψ, q), then

(ψb)⊥ ∩ (Rn ⊕ 0q) = ψ⊥

and (ψb)⊥ ∈ E(ψ⊥, q).
The interdependence between the preceding three types of invariance with respect

to (A,B) is well understood. It is clear that over a commutative ring (2.4) implies
(2.3). The following example from [14] shows that the converse need not be true.

Example 2.3. Consider R = Q[τ ], n = 2, and

A =

(
1 1
0 1

)
, B =

(
τ 0
0 1

)
, ψ = Im

(
0

τ

)
.

The submodule ψ is (A,B)-invariant but not (A,B)-feedback-invariant.
For pure submodules the two notions of Definition 2.1 coincide.
Proposition 2.4 (see [14]). A pure submodule of Rn is (A,B)-invariant if and

only if it is (A,B)-feedback-invariant.
For the next result, which is in contrast to Proposition 1.5 and Example 1.7, we

refer to [17], [18], and also to [9].
Theorem 2.5.
(i) A submodule ψ of Rn is dynamically (A,B)-feedback-invariant if and only if

it is (A,B)-invariant.
(ii) If ψ is (A,B)-invariant and ψ = ImN, N ∈ Rn×t, rankψ = t, then there

exists an

F b =

(
0n×n F12

0t×n F22

)
∈ R(n+t)×(n+t)

such that

(Aet + Be
tF

b) Im

(
N

It

)
⊆ Im

(
N

It

)
.(2.5)

Proof. We include a proof of (ii), since for Theorem 1.6 we shall need a submodule
of the form ψb = Im

(
N
It

)
. Note that (2.5) holds if

(
AN + BF12

F22

)
=

(
N
It

)
T(2.6)

for some T . Now (2.3) is equivalent to

AN = NS1 + BS2(2.7)

for some matrices S1, S2, over R. Hence we can take F12 = −S2 and F22 = S1, and
(2.7) yields (2.6) with T = S1.
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We have indicated before that (C, A)-invariance is preserved under the closure
operation S. In general, a corresponding result is not true for (A, B)-invariance, not
even for reachable pairs (A, B).

Example 2.6. Take R = Z. If

A =

(
0 0
1 0

)
, B =

(
1 0
0 2

)
, φ = Im

(
2

4

)
,

then φ is (A, B)-invariant but S φ is not.
Hautus [13] has characterized (A,B)-invariance by a frequency domain condition,

which remains valid over commutative rings. For a submodule µ of Rn let

µ[[s−1]] =




∞∑
j=0

vjs
−j , vj ∈ µ




be the set of formal power series in s−1 over µ.
Proposition 2.7. A submodule φ of Rn is (A,B)-invariant if and only if for

each x ∈ φ there exists a ξ(s) ∈ s−1φ[[s−1]] and a w(s) ∈ s−1Rm[[s−1]] such that

x = (sI −A)ξ(s)−Bw(s).(2.8)

Proof. “⇒” Set ξ1 = x. Then we have Aξ1 = ξ2 − Bw1 for some ξ2 ∈ φ and
w1 ∈ Rm and we can define recursively sequences (ξj) and (wj) such that ξj ∈ φ and
ξj+1 = Aξj + Bwj , j ≥ 1. If we set

ξ(s) = ξ1s
−1 + ξ2s

−2 + · · · and w(s) = w1s
−1 + w2s

−2 + · · · ,(2.9)

we obtain (2.8).

“⇐” Now assume (2.8) and (2.9). Then x = ξ1 and 0 = −Aξ1 + ξ2 − Bw1 yield
Ax ∈ φ + ImB.

It would be of interest to know whether (C,A)-invariance can be characterized in
a similar way. Based on the matrix

(
sI −A

C

)

such a frequency domain description could lead to a computable criterion for (C,A)-
invariance.

3. Criteria for pure submodules. Our main objective in this section is the
proof of Theorem 1.6. We begin with a technical result.

Lemma 3.1. If φe ∈ E(φ), then

S P
[
(φe)⊥

]
= φ⊥.(3.1)

Proof. Because of (6.1) we have

S
[
(φe)⊥ + (Rn ⊕ 0)⊥

]
=
(
φe ∩ (Rn ⊕ 0)

)⊥
= φ⊥ ⊕Rq,

and we obtain

S P
[
(φe)⊥] = S P

[
(φe)⊥ + (Rn ⊕ 0)⊥

]
= S P

[
S
(
(φe)⊥ + (Rn ⊕ 0)⊥

)]
= φ⊥.
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Proof of Theorem 1.6. First assume that φ is dynamically (C,A)-injection-
invariant. Let φe ∈ E(φ, q) and Ke be such that

(Ae + KeCe)φe ⊆ φe.(3.2)

Then (AeT + CeTKeT )φe⊥ ⊆ φe⊥ implies

ATP(φe⊥) ⊆ P(φe⊥) + ImCT .

Hence the submodule P(φe⊥) is (AT , CT )-invariant and because of (3.1) it is of rank
n− r.

To prove the converse we have a submodule φ̂ of φ⊥ at our disposal that is
(AT , CT )-invariant and has rank n − r. Then φ̂ = ImN with N ∈ Rn×(n−r) and

KerN = 0. Define φ̂b = Im
(
N
In−r

)
and φe = (φ̂b)⊥. Then

φe = Im

(
In
−NT

)
∈ E(φ, n− r).

Take q = n− r in (1.5). From Theorem 2.5(ii) we know that there exists a matrix Kb

such that

(AeT + CeTKbT )φ̂b ⊆ φ̂b.

Hence

(Ae + KbCe)φe ⊆ φe, φe ∈ E(φ),

which shows that φ is dynamically (C,A)-injection-invariant.
Corollary 3.2. Let φ be a pure submodule of Rn. If

ATφ⊥ ⊆ φ⊥ + S(ImCT ),(3.3)

or if

AKerC ⊆ φ,(3.4)

then φ is dynamically (C,A)-injection-invariant.
Proof. Let λ ∈ R, λ �= 0, be such that λS(ImCT ) ⊆ ImCT . Then rankλφ⊥ = n−

r and (3.3) implies that λφ⊥ is (AT , CT )-invariant. Note that (KerC)⊥ = S(ImCT ).
Hence (3.4) yields ATφ⊥ ⊆ S(ImCT ), which is a special case of (3.3).

The following example shows that condition (3.3) is sufficient but not necessary
for dynamic (C,A)-injection-invariance.

Example 3.3. Consider R = Q[τ ] and

A =


0 0 0

0 1 0
1 0 0


 , C =

(
τ 1 0
0 0 1

)
, φ = Im


 1

0
0


 .

Take q = 2 and φe = ImMe, where

Me =




1 0 0
0 0 1
0 1 0
0 τ 0
0 0 1


 .
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Then φe ∈ E(φ, 2). For

Ke =




0 0 0 0
0 0 0 −1
0 0 0 0
1 0 0 −1
0 0 0 0




we obtain

Im(Ae + KeCe)Me = Im




0 0 0 0 0
0 1 0 0 −1
1 0 0 0 0
τ 1 0 0 −1
0 0 0 0 0


Me = Im




0 0 0
0 0 0
1 0 0
τ 0 0
0 0 0


 ⊆ ImMe.

Hence φ is dynamically (C,A)-injection-invariant. As far as condition (3.3) is con-
cerned we note that

φ⊥ = Im


0 0

1 0
0 1


 = Im(e2, e3).

Now AT e3 = (1, 0, 0)T ∈ φ⊥ + S(ImCT ) would mean


 1

0
0


 =


0 0 τ 0

1 0 1 0
0 1 0 1






a1

a2

a3

a4




for some aj ∈ R = Q[τ ]. But τa3 = 1 is impossible in R. Hence φ is a submodule
which does not satisfy (3.3).

4. Bases and matrices. A nonsingular matrix U ∈ Rn×n is called unimodular
if U−1 ∈ Rn×n. Let us say that there exists a basis of Rn×n such that φ = ImM if
there exists a unimodular U such that U ImM = φ. We first describe transformations
of A, C, φ that preserve the three types of (C,A)-invariance.

Lemma 4.1. Let U ∈ Rn×n and V ∈ Rl×l be unimodular. Set

Ã = U−1AU, C̃ = V CU, φ̃ = U−1φ.(4.1)

The submodule φ is dynamically (C,A)-injection-invariant of order q if and only if φ̃
is dynamically (C̃, Ã)-injection-invariant of the same order.

Proof. Assume φ = ImM, M ∈ Rn×r, and set M̃ = U−1M . Then φ̃ = Im M̃ .
Let Ke ∈ R(n+q)×(l+q) and

Me =

(
Me

1

Me
2

)
∈ R(n+q)×r

be such that Im(Ae + KeCe)Me ⊆ ImMe and ImMe ∈ E(φ, q), i.e., ImM =
Me

1 Ker(Me
2 ). Now define

K̃e =

(
U−1 0

0 Iq

)
Ke

(
V −1 0

0 Iq

)
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and

M̃e =

(
M̃e

1

M̃e
2

)
=

(
U−1 0

0 Iq

)
Me.

Then Im(Ãe + K̃eC̃e)M̃e ⊆ Im M̃e and Im M̃ = M̃e
1 Ker(M̃e

2 ).
It is obvious that a corresponding statement is true for (C,A)-invariance. It

will be convenient to choose a suitable basis of Rn such that conditon (1.2) can be
expressed in terms of blocks of a corresponding matrix representation of A and C.

Lemma 4.2. There exists a basis of Rn such that

φ ∩Ker C = Im


 D1

0(r−k)×k
0(n−r)×k


 , D1 ∈ Rk×k, detD1 �= 0,(4.2)

and

φ = Im


D1 D12

0 D2

0 0


 , D2 ∈ R(r−k)×(r−k), detD2 �= 0.(4.3)

If C is partitionend according to (4.3), then

C = (0 C2 C3), C2 ∈ Rl×(r−k), KerC2 = 0,(4.4)

and

V C2 =

(
C̃2

0

)
, C̃2 ∈ R(r−k)×(r−k), det C̃2 �= 0(4.5)

for some unimodular V .
A basis of Rn can be chosen in such a way that

S φ = Im


Ik 0

0 Ir−k
0 0


 ,(4.6)

and

S φ ∩Ker C = Im


Ik0

0


 .(4.7)

If A(φ ∩Ker C) ⊆ φ, then

A =

(
A11 A12 A13

0 A22 A23

)
, A11 ∈ Rr×k,(4.8)

and

ImA11D1 ⊆ Im

(
D1 D12

0 D2

)
.(4.9)

If φ = S φ, then (4.9) is trivially satisfied.
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Proof. Since KerC is a pure submodule there is a basis of Rn such that KerC =
Im
(
Ip
0

)
. We can modify this basis in such a way that φ = ImM with

M =


M1

M2

0


 ∈ Rn×r, M1 ∈ Rp×r, M2 ∈ Rt×r,

where M2 has full row rank. In particular, we can choose M2 such that M2 =
(0 M22), M22 ∈ Rt×t, detM22 �= 0. Hence

M =


M11 M12

0 M22

0 0


 ,

and we obtain

φ ∩KerC =

{
M

(
x

y

)
, M22y = 0

}
=

{
M

(
x

y

)
, y = 0

}
= Im


M11

0
0


 .

Since M11 has full column rank we have

column rank(M11) = k = rank(φ ∩KerC).

A suitable change of basis of Rn yields M11 =
(
D1

0

)
with D1 as in (4.2), which implies

(4.3). The remaining parts of the lemma are easy to verify.
We now characterize extensions of submodules in terms of matrices. Let φ ⊆ Rn

be given as

φ = ImM, M =

(
D

0

)
, D ∈ Rr×r, detD �= 0.

Consider φe ∈ E(φ, q) with

φe = ImMe = Im


M1

M2

M3


 ∈ R[r+(n−r)+q]×t

and

KerMe = 0.(4.10)

Then φe ∈ E(φ, q) is equivalent to

Im

(
D

0

)
=

(
M1

M2

)
KerM3.(4.11)

We can assume M3 = (0ρ×ρ, M32), KerM32 = 0. Then (4.11) yields M2 =
(0(n−r)×ρ, M22). If M1 = (M11 M12) is partitioned accordingly, then (4.11) is
equivalent to ImD = ImM11. Hence we have ρ ≥ r. Now M11 ∈ Rr×ρ and (4.10)
imply ρ = r. We can take M11 = D and conclude that φe ∈ E(φ) if and only if
φe = ImMe for some Me of the form

Me =


D N

0 P
0 Q


 , KerQ = 0.(4.12)
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If φ = S φ, then M =
(
Ir
0

)
and we can choose N = 0 in (4.12) such that

Me =


Ir 0

0 P
0 Q


 .(4.13)

5. Criteria for nonpure submodules. In this section we shall first give a
proof of Proposition 1.5 and then present results on submodules that are not pure.

Proof of Proposition 1.5. Assume Ae + KeCe ∈ R(n+q)×(n+q) and

Im(Ae + KeCe)Me ⊆ ImMe(5.1)

for some

Ke =

(
K11 K12

K21 K22

)
∈ R(n+q)×(l+q),

and Me =
(
P
Q

)
, Q ∈ Rq×r, with ImMe ∈ E(φ, q). From (5.1) follows

(A + K11C)P + K12Q = PT,(5.2)

K21CP + K22Q = QT(5.3)

for some T ∈ Rr×r. We have to show that y ∈ φ ∩KerC implies Ay ∈ φ. Because of
Im
(
P
Q

) ∈ E(φ, q) we have y = Pw for some w with Qw = 0. Then (5.2), (5.3), and
Cy = 0 yield APw = PTw, QTw = 0. Hence Ay = PTw ∈ φ.

Examining the preceding proof we find that a slightly more general result is true.
Namely, if Ke is a matrix over R[1/d] for some d ∈ R, d �= 0, and if the elements of
Ae + KeCe are in R, then (1.6) implies (C,A)-invariance of φ. We also note that in
Example 1.2 a weaker form of injection-invariance can be achieved with an observer
matrix K over the ring Q[τ, 1/τ ]. It can be an advantage to embed R into a larger
ring R[1/d], e.g., in order to solve coefficient assignment problems [1]. We shall use
that approach below. The following definition will be needed. For a submodule η of
Rl with rank η = t and invariant factors ft | · · · | f1, define ∆(η) = f1. Note that the
submodule η is pure if and only if ∆(η) = 1.

Proposition 5.1. Set d = ∆(Cφ). The submodule φ is (C,A)-invariant if
and only if there exists a matrix K ∈ R[1/d]n×l such that A + KC ∈ Rn×n and
(A + KC)φ ⊆ φ.

Proof. For the “if” part we refer to the remark on the proof of Proposition 1.5.
For the “only if” part, assume φ as in Lemma 4.2 such that

C =

(
0 C̃2 ∗
0 0 ∗

)
, C̃2 ∈ R(r−k)×(r−k), det C̃2 �= 0.

We know that A(φ ∩KerC) ⊆ φ implies

A =

(
A11 A12 ∗
0 A22 ∗

)

and (4.9). Then

Cφ = Im

(
C̃2D2

0

)
.
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Using the Smith form it is easy to see that the elements of (C̃2D2)−1 are in R[1/d].
Therefore, it is possible to choose

K =

(
K11 ∗
K21 ∗

)
∈ R[1/d]r+(n−r)×(k+(l−k))

in such a way that

A11D12 + (A12 + K11C̃2)D2 = 0 and (A22 + K21C̃2)D2 = 0.

Hence K has the desired properties.
We know from Proposition 2.4 that for pure submodules (A,B)-invariance is

equivalent to (A,B)-feedback invariance. The corresponding result for(C,A)-invariance
involves the submodule Cφ.

Corollary 5.2. If Cφ is a pure submodule, then φ is (C,A)-invariant if and
only if φ is (C,A)-injection-invariant.

The next proposition again deals with (C,A)-injection-invariance.
Proposition 5.3. Let φ be a (C,A)-invariant submodule that satisfies

C S(φ) = S(Cφ).(5.4)

If

φ = (φ ∩KerC) + (φ ∩ ImCT ),(5.5)

in particular if φ = S φ, then φ is (C,A)-injection-invariant.
Proof. Let φ, S φ and C be given by (4.3), (4.6), and (4.4). Because of C S(φ) =

ImC2 and (5.4) we can assume

C2 = (Ir−k 0)T(5.6)

in C = (0 C2 C3). Then

ImCT = Im


 0
Ir−k 0
CT3




and (5.5) imply φ = ImM with

M =


D1 0

0 D2

0 0


 .(5.7)

Recall that in the given setting (C,A)-invariance of φ is equivalent to (4.8) and (4.9).
Because of (5.7) we have (4.9) in the form

ImA11D1 ⊆ Im

(
D1 0
0 D2

)
.(5.8)

Let

K =

(
K1

K2

)
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be partitioned conforming to A in (4.8). Then

(A + KC)M =

(
A11 A12 + K1C2

0 A22 + K2C2

)(
D1 0
0 D2

)
.

Because of (5.6) we can choose K1 and K2 in such a way that Ai2 + KiC2 = 0, i =
1, 2. Then (5.8) implies Im(A + KC)M ⊆ ImM, which proves (C,A)-injection-
invariance.

We now extend Theorem 1.6 to submodules φ where all invariant factors are
equal.

Theorem 5.4. Let φ ⊆ Rn be a submodule of rank r that is isomorphic to
dR ⊕ · · · ⊕ dR. Then φ is dynamically (C,A)-injection-invariant if and only if φ⊥

contains an (AT , CT )-invariant submodule of rank n− r.
Proof. “⇐” We can assume

φ = Im

(
dIr
0

)
.

Then S φ =
(
Ir
0

)
. Because of (S φ)⊥ = (φ)⊥ we see from Theorem 1.6 that S φ is

dynamically (C,A)-injection-invariant. Let (S φ)e ∈ E(φ, q) and Ke be such that

(Ae + KeCe)(S φ)e ⊆ (S φ)e.

By (4.13) we have

(S φ)e = Im


Ir 0

0 P
0 Q


 , KerQ = 0,

for some P and Q. Hence φe = d(S φ)e ∈ E(φ, q) and (Ae + KeCe)φe ⊆ φe.
“⇒” Since S φ together with φ is dynamically (C,A)-injection-invariant we can

use Theorem 1.6 again and complete the proof.

6. Appendix on pure submodules and closure. According to Kaplanski
[20] the concept of pure submodules can be attributed to Prüfer (1923). It has been
introduced in systems theory by Conte and Perdon [7]. In this section we collect some
basic facts on pure submodules and a related closure operator, for which we refer to
[4], [27], [7], [22], [24]. The terminology is not uniform. Sometimes pure submodules
are called saturated, e.g., in [27] and [24], or closed, e.g., in [9] and [22]. As before
we are dealing with a PID R and submodules of V := Rn. Let L(V ) be the lattice of
submodules of V .

Definition 6.1. For φ ∈ L(V ) set

S φ = (φ⊥)⊥.

The submodule φ is called pure if φ = S φ.
The mapping φ �→ S φ is a closure operator on L(V ) such that (i) φ ⊆ ψ implies

S φ ⊆ S ψ, (ii) φ ⊆ S φ, and (iii) S(Sφ) = Sφ.
Lemma 6.2.
(i) The closure S φ is the smallest pure submodule of V containing φ. We have

S φ = {x ∈ V | αx ∈ φ for some α ∈ R, α �= 0}.
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(ii) Let the columns of M ∈ Rn×r be a basis of φ. Let fr | · · · | f1 be the invariant
factors of φ such that

Σ =

(
diag(fr, . . . , f1)

0

)

is the Smith form of M . If U and W are unimodular and M = UΣW , then
φ = ImUΣ and S φ = ImU(Ir 0)T .

(iii) rankS φ = rankφ.
(iv) S(φ⊥) = φ⊥.

We include a proof of the identity (6.1) below.
Lemma 6.3. For submodules µ and θ we have

S(µ) ∩ S(θ) = S(µ ∩ θ).

The intersection of pure submodules is pure. Furthermore,

S(µ⊥ + θ⊥) = (µ ∩ θ)⊥.(6.1)

Proof. For π, ρ ∈ L(V ) we have

(π + ρ)⊥ = π⊥ ∩ ρ⊥.
Taking π = µ⊥ and ρ = θ⊥ we obtain

(µ⊥ + θ⊥)⊥ = S(µ) ∩ S(θ),

which implies

S(µ⊥ + θ⊥) = [S(µ) ∩ S(θ)]⊥ = [S(µ ∩ θ)]⊥ = (µ ∩ θ)⊥.

Over PIDs several different ways to characterize pure submodules are known.
Lemma 6.4. For φ ∈ L(V ) the following statements are equivalent.
(i) φ is a pure submodule.
(ii) φ is a direct summand of V .
(iii) φ ∩ αV = αφ for all α ∈ R.
(iv) All invariant factors of φ are 1.
(v) V/φ is torsion-free.
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APPROXIMATION AND LIMIT RESULTS FOR NONLINEAR
FILTERS OVER AN INFINITE TIME INTERVAL: PART II,
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Abstract. The paper is concerned with approximations to nonlinear filtering problems that
are of interest over a very long time interval. Since the optimal filter can rarely be constructed,
one needs to compute with numerically feasible approximations. The signal model can be a jump-
diffusion, reflected or not. The observations can be taken either in discrete or continuous time.
The cost of interest is the pathwise error per unit time over a long time interval. In a previous
paper of the authors [A. Budhiraja and H.J. Kushner, SIAM J. Control Optim., 37 (1999), pp.
1946–1979], it was shown, under quite reasonable conditions on the approximating filter and on
the signal and noise processes that as time, bandwidth, process and filter approximation, etc. go
to their limit in any way at all, the limit of the pathwise average costs per unit time is just what
one would get if the approximating processes were replaced by their ideal values and the optimal
filter was used. When suitable approximating filters cannot be readily constructed due to excessive
computational requirements or to problems associated with a high signal dimension, approximations
based on random sampling methods (or, perhaps, combinations of sampling and analytical methods)
become attractive, and are the subject of a great deal of attention. The work of the previous paper
is extended to a wide class of such algorithms. Under quite broad conditions, covering virtually all
the cases considered to date, it is shown that the pathwise average errors converge to the same limit
that would be obtained if the optimal filter was used, as time goes to infinity and the approximation
parameter goes to its limit in any way at all. All the extensions (e.g., wide bandwidth observation
or system driving noise) in [A. Budhiraja and H.J. Kushner, SIAM J. Control Optim., 37 (1999),
pp. 1946–1979] hold for our random sampling algorithms as well.

Key words. nonlinear filters, numerical approximations to nonlinear filters, robustness of filters,
infinite time filtering, occupation measures, pathwise average errors, random sampling algorithms
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1. Introduction. This paper is an extension of the work in [3], which was con-
cerned with the performance of a wide variety of approximations to optimal nonlinear
filters over very long time intervals, where pathwise average errors are of interest.
Let us first briefly review the motivation for that paper. Suppose that the underlying
signal model is a diffusion or jump-diffusion X(·) (reflected or not), or a discrete time
Markov chain, with white noise corrupted observations, and the dynamics and/or the
observation function are nonlinear. Then, except for some few examples, one cannot
construct “finite” or computable optimal filters, and some type of approximation must
be used.

A very common approximation method starts by approximating the process X(·)
by a simpler process X̃h(·) for which the optimal nonlinear filter can be constructed,
and then uses that filter but with the observations being those on the actual physical
process X(·). For example, X̃h(·) might be a discretized (in state and/or in time)
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form of X(·). It is such that, as h → 0, X̃h(·) converges weakly to X(·). Let Πh(·)
denote the actual approximating filter. For each h, it is a measure valued process, and
Πh(·) converges weakly to the true conditional distribution process as h→ 0, i.e., the
computed expectations of any bounded and continuous function converge to the true
conditional expectation [25, 23]. However, if the filter is to be used over a very long
interval [0, T ], the most appropriate errors are often the pathwise average (rather
than the mathematical expectation) errors per unit time, for whatever definition of
“error” that is appropriate. This is the case since we work with only one long path,
and the mathematical expectation over all paths might not be a useful indicator of
the quality of the approximation. For specificity in this introduction, let us define the
average pathwise cost or error on [0, T ] to be

Gh,T (φ) =
1

T

∫ T

0

f(φ(X(t))− 〈Πh(t), φ〉)dt,(1.1)

where φ(·) is a bounded and continuous function and f(·) is an arbitrary continuous
function. Our results cover much more general forms of the cost or error function.

Now there are two parameters h and T . The convergence of the filter process Πh(·)
over any fixed finite interval says nothing about the behavior of the pathwise average
errors as h → 0 and T → ∞ arbitrarily. Under reasonable conditions, it was shown
in [3] that the pathwise errors converge in probability to an optimal deterministic
limit, and this limit is exactly what one would get for the limit of the mathematical
expectation EGh,T (φ) if the true optimal filter was used instead of Πh(t). This is an
ideal result. The convergence is independent of how h→ 0 or T →∞. For applications,
it is important that h and T be allowed to go to their limits in an arbitrary way.

The reference [3] actually dealt with a much more general setup. The signal process
was allowed to be not necessarily a diffusion but a process (possibly driven by wide
bandwidth noise), which converges weakly to a diffusion as some parameter converges
to its limit (e.g., the noise bandwidth goes to infinity). Wide bandwidth observation
noise was also allowed. The case where the observations are taken in discrete time
was also covered.

We also note the reference [25], where the pathwise average error was replaced
by the expectation of the pathwise average error. In [18], the asymptotics of the filter
alone were dealt with, and it was presumed that the filter was the true optimal filter,
not an approximation.

We now turn to the description of this paper. In [3], the approximate filter was
that for an approximating process X̃h(·) but with the actual physical observations on
X(·) used. One common and convenient example is the Markov chain approximation
method, where the approximating process X̃h(·) is a continuous time interpolation
of a Markov chain [24, 23]. When the dimension is larger than three or four, such
methods can have excessively high computational requirements. Alternatives based
on random sampling or Monte Carlo then become attractive, analogous to the case of
classical multidimensional integration. The topic is of considerable current interest,
e.g., [5, 6, 7, 12, 13, 15, 16, 27, 28, 29]. Such methods are also of interest when the
transition probabilities are very hard to compute, e.g., in discrete time problems,
where the signal is the output of a system with very complex dynamics, but which
can be conveniently simulated. All of the issues in [3] (which were mentioned above)
arise here as well, in addition to the potentially serious errors due to the random
sampling and the very large time intervals. Owing to the sampling errors as well as to
the other (computational and modeling) approximations that are made in the filter
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and signal processes, it is conceivable that the long term pathwise average errors per
unit time will be large, even with approximations that would perform well over some
bounded time interval.

This paper extends the results in [3] to such sampling based algorithms. To dis-
tinguish the algorithms in [3] from those of this paper, we refer to the former as
integration algorithms, since the conditional distributions are computed using inte-
grations or summations over the distributions of the approximating processes. One
must keep in mind that random sampling based filters usually require a large number
of samples if they are to work well.

Appropriate analogues of the occupation measure methods in [3] are employed
for the proofs. Section 2 provides the standard background for the filtering problem
in continuous time. Section 3 discusses the formulation of the limit problem for the
continuous time case in terms of occupation measures and states a main result from
[3] which will be used. Section 4 repeats this for the discrete time problem. In order to
effectively exploit the past results, the problem is set up in such a way that the proofs
are close to those for the “integration” algorithms of [3]. Thus only the differences
in the proofs will be presented. In preparation for this, the structure of the proof
in [3] is briefly outlined, and the points where there will be a difference are noted.
A fundamental assumption in [3] is the consistency assumption which quantifies the
convergence of the computational approximating process X̃h(·) to X(·) as h → 0.
This is A4.1 here. It will be weakened in several ways, depending on the form of the
random sampling algorithm.

Section 5 concerns a variety of forms of the sampling algorithms in discrete time.
The simplest form is based on a pure random sampling of an approximating process
X̃h(·). The part of the convergence proof which differs from that in [3] is given. The
basic scheme can be generalized in many ways. The standard variance reduction meth-
ods such as antithetic variables and stratified sampling can be used. Combinations
of integration and sampling methods are often of great use, since it might be most
convenient to simulate some parts of the problem but to use “integrations” over dis-
tributions of approximating processes in others. See Examples 5.6 and 5.7 in section
5. In order to cover all of the above cases, we reformulate the consistency condition
so that it holds for all the above examples and in fact covers quite general algorithms.
Section 6 concerns the use of importance sampling methods for the discrete time
problem [5, 10, 29]. The standard form is discussed. But the most interesting form
is where the measure change depends on the next observation, which is thus used to
guide the simulation on the current time interval. Some such algorithms were used in
[5, 29], as well as by the authors. The proofs for all of these cases differ only slightly
from that given for the basic example in section 5, and thus only the differences are
discussed. Finally, in section 7 we study the continuous time analogues of the various
random sampling and combined random sampling-integration algorithms studied in
sections 5 and 6. We begin by indicating the form of the approximating filter for the
case where the random samples are mutually independent and identically distributed
(i.i.d.). We then consider a general form of the approximating filter which covers not
only the case of such i.i.d. samples but also various variance reduction schemes and
importance sampling algorithms of the type studied for discrete time problems in
sections 5 and 6.

2. Background: The optimal filter and numerical approximations: Con-
tinuous time. The optimal filter is in continuous time. For simplicity and specificity
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and until further notice, suppose that the signal process is the R
r valued diffusion

dX = p(X)dt+ σ(X)dW,(2.1)

where W (·) is a standard vector-valued Wiener process and p(·) and σ(·) are con-
tinuous. We suppose that the solution is unique in the weak sense for each initial
condition. Furthermore, suppose throughout that there is a compact set G such that
X(t) ∈ G for all t if X(0) ∈ G, and we always let X(0) ∈ G. All probability measures
(random or not) on R

r considered hereafter will be assumed to have their support
contained in G. The observation process is

Y (t) =

∫ t

0

g(X(s))ds+B(t),(2.2)

where g(·) is a continuous vector-valued function and B(·) is a standard vector-valued
Wiener process, independent of W (·) and X(0).

As pointed out in [3], the approximation and limit results proved there continue
to hold, with minor changes in the proofs, for the case where the signal process is a
jump-diffusion or is a reflecting diffusion with appropriate conditions on the reflection
direction. However, for the sake of simplicity, we confine our work to the model (2.1).

Let X̃(·) be a process satisfying (2.1), and which (loosely speaking) is conditionally
independent of (X(·),W (·), B(·)) given its initial condition: We formalize this as
follows. X̃(·) is a process satisfying (2.1) (withW (·) replaced by some other Brownian
motion) such that there exists a (possibly random) probability measure Π∗ on R

r with
the properties that are conditioned on Π∗, X̃(·) is independent of (X(·),W (·), B(·)),
and the conditional distribution of X̃(0) given Π∗ is Π∗. We will call Π∗ the “random
initial distribution” of X̃(·) (i.e., the distribution of X̃(0)). It will vary depending on
the need and will be specified when needed.

For any process U(·), let Ua,b, a ≤ b, denote the set {U(s), a ≤ s ≤ b}. Let EZf
denote the expectation of a function f given the data (or σ-algebra) Z. Until further
notice, let Π(0) denote the distribution of X(0) and Π(t) the distribution of X(t)
given the data Y0,t and Π(0). Define

R(X̃0,t, Y0,t) = exp

[∫ t

0

g′(X̃(s))dY (s)− 1

2

∫ t

0

|g(X̃(s))|2ds
]
.(2.3)

Using the representation of the optimal filter Π(·) as it was originally developed
in [20], for each bounded and measurable real-valued function φ(·), we can define the
evolution of the optimal filter by

∫
φ(x)Π(t)(dx) ≡ 〈Π(t), φ〉 = E{Π(0),Y0,t}[φ(X̃(t))R(X̃0,t, Y0,t)]

E{Π(0),Y0,t}R(X̃0,t, Y0,t)
.(2.4)

The notation E{Π(0),Y0,t} denotes the expectation conditioned on the data Y0,t and on

Π(0) being the initial distribution of X̃(·) (i.e., Π(0) is the current value of what we
generically called Π∗ above). This representation is convenient for our purposes and
is equivalent to the forms used subsequently which were based on measure transfor-
mations, as in [8, 14, 26].

The Markov property of X(·) implies that the filter defined by (2.4) satisfies the
semigroup relation

〈Π(t), φ〉 = E{Π(t−s),Yt−s,t}[φ(X̃(s))R(X̃0,s, Yt−s,t)]

E{Π(t−s),Yt−s,t}R(X̃0,s, Yt−s,t)
, 0 < s ≤ t.(2.5)
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In (2.5), Π(t − s) is the random initial distribution of X̃(·). Throughout the paper,
we use the notation E{Π(a),Ya,b}F (X̃0,s, Ya,b) for the conditional expectation, given

the data {Ya,b,Π(a)} and where the random initial distribution for X̃(·) is Π(a). The
analogous notation will be used when approximations to X̃(·) are used.

An approximating filter. Except for some special cases, Π(t) is very hard to com-
pute for nonlinear problems, and thus one must use some type of approximation.
Perhaps the most common method of approximation is to approximate the signal
process by a simpler form for which a convenient filter can be constructed. Then
the approximate filter is obtained by constructing the filter for that approximating
signal process, but using the actual physical observations. For example, the approx-
imating filter might be that for a time and space discretization of the process (2.1).
The key mathematical ideas behind such approximations and their convergence prop-
erties (over finite time intervals) are in [24], in connection with the Markov chain
approximation method, a canonical form of this idea.

Let us formalize the above canonical approximation. Let X̃h(·) denote the ap-
proximating process, which is used to construct the approximating filter, i.e., the
approximating filter is constructed as though the true process was X̃h(·), but in this
filter, we use the actual physical observations defined by (2.2).

Let Πh(0) be an approximation to the true initial distribution of X(0). The X̃h(·)
might be a Markov process, e.g., a continuous time Markov chain on a finite state
space. More commonly, it is an interpolation of a discrete parameter process: i.e.,
there is δh > 0 which goes to zero as h → 0 such that X̃h(·) is constant on the
intervals [nδh, nδh+ δh) and X̃

h(nδh), n = 0, . . . , is Markov. When the signal process
is defined in continuous time, we always assume that X̃h(·) is of one of these two
forms. Furthermore, we always suppose (without loss of generality) that X̃h(t) takes
values in G.

Define

R(X̃h
0,t, Y0,t) = exp

[∫ t

0

g′(X̃h(s))dY (s)− 1

2

∫ t

0

|g(X̃h(s))|2ds
]
.(2.6)

For Markov X̃h(·), the approximating filter Πh(·) is defined by

〈Πh(t), φ〉 = E{Πh(0),Y0,t}[φ(X̃
h(t))R(X̃h

0,t, Y0,t)]

E{Πh(0),Y0,t}R(X̃
h
0,t, Y0,t)

,(2.7)

and Πh(·) satisfies the semigroup equation

〈Πh(t+ s), φ〉 = E{Πh(t),Yt,t+s}[φ(X̃
h(s))R(X̃h

0,s, Yt,t+s)]

E{Πh(t),Yt,t+s}R(X̃
h
0,s, Yt,t+s)

, s > 0, t ≥ 0.(2.8)

According to our standard notation, the initial distribution of X̃h(·) in (2.6) is Πh(0),
and it is Πh(t) in (2.8).

When X̃h(·) is piecewise constant with X̃h(nδ) being Markov, then the approxi-
mating filter is defined by (2.7) and (2.8), but where t and s are integral multiples of
δ, and Πh(·) is constant on the intervals [nδ, nδ + δ). Thus the evolution of Πh(·) can
be written in recursive form in general. We see that, by Bayes’ rule, (2.7) and (2.8)
are filters for the X̃h(·) process, but with the actual observations Ynδ,nδ+δ used at
step n. The conditions for convergence of this Markov chain approximation method
are in [21, 24]. The following is the essential condition.
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A2.1. A consistency assumption. We assume that for any sequence {Πh} of prob-
ability measures converging weakly to some probability measure Π, X̃h(·) with the
initial distribution Πh converges weakly to X̃(·) with the initial distribution Π.

By the fact that X(·) is a Feller process, A2.1 is equivalent to the following:
For any sequence Πh and any q(·) which is a bounded, continuous, and real-valued
function on the Skorohod space D[G; 0,∞) (the space of G-valued functions which
are right continuous and have left-hand limits and with the Skorohod topology),

EΠhq(X̃h(·))− EΠhq(X̃(·))→ 0,(2.9)

as h→ 0.

3. Occupation measures: Continuous time. We now provide the definitions
which are needed for the formulation of the limit and robustness results. The methods
are based on occupation measure arguments.

Assumptions and definitions. The measure valued process Π(·) is well defined by
(2.4) no matter what the initial condition Π(0) is, even if it is not the distribution
of X(0), or if it is random but independent of (W (·), B(·)). Thus we can speak of
the pair (X(·),Π(·)) as having an arbitrary initial condition. We say that the process
(X(·),Π(·)) is stationary if the distribution of (X(t+ ·),Π(t+ ·)) does not depend on
t. From the Feller–Markov property of X(·) and the semigroup relation (2.5), it is easy
to show that (X(·),Π(·)) is a Feller–Markov process. Since G is compact, M(G) is
compact, and so (X(·),Π(·)) takes values in a compact state space. Thus there exists
at least one stationary process. Let Q̄(·) denote the measure of the joint process Ψ(·)
= (X(·),Π(·), Y (·), B(·),W (·)), where (X(·),Π(·)) is stationary. Let Q̄f (·) denote the
measure of the stationary joint process (X(·),Π(·)).

We make the following key assumption throughout.
A3.1. A uniqueness assumption. The process (X(·),Π(·)) has a unique stationary

measure.
The importance of the uniqueness of the stationary joint process was shown in

[25]. Some discussion of the uniqueness of Q̄f (·) is in [3, section 7], where there is
also a discussion of the filtering interpretation of the stationary process. See also [1]
for other sufficient conditions for A3.1. For each t ≥ 0, define the shifted process
Ψh

f (t, ·) = (X(t+ ·),Πh(t+ ·)) and the centered and/or shifted processes

Ψh(t, ·) = (Ψh
f (t, ·), Y (t+ ·)− Y (t), B(t+ ·)−B(t),W (t+ ·)−W (t)).

The path spaces. The vector-valued processes such as X(·), Y (·), B(·), X̃(·), and
so forth will take values in the path space D[Rk; 0,∞), i.e., in the space of R

k-valued
functions which are right continuous and have left-hand limits, with the Skorohod
topology [2, 9] for the appropriate value of k.

Let M(G) denote the space of measures on G with the weak topology. The
optimal filter Π(t) and its approximations Πh(t) at each time t take values inM(G).
The process Π(·) and its approximations will take values in the space D[M(G); 0,∞),
also with the Skorohod topology used.

For a random variable Z and set A, let IA(Z) denote the indicator function of the
event that Z ∈ A. Let C be a measurable set in the product path space of Ψh(t, ·).
Define the occupation measure Qh,T (·) by

Qh,T (C) =
1

T

∫ T

0

IC(Ψ
h(t, ·))dt.(3.1)
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In what follows, lower case letters x(·), π(·), etc. are used for the canonical sample
paths. Letters such as x, y, . . . , are used to denote vectors such as x(t), y(t), etc. Define
ψf (·) = (x(·), π(·)), Ψf (·) = (X(·),Π(·)), and ψ(·) = (x(·), π(·), y(·), b(·), w(·)).

The random measuresQh,T (·) defined by (3.1) take values in the space of measures
on the product path space

M(D[Rk; 0,∞)×D[M(G); 0,∞))

for the appropriate value of k (which is the sum of the dimensions of x, y, b, w).
An error or cost function. Let F (·) be a real-valued function on D[G; 0,∞) ×

D[M(G); 0,∞) which is measurable and continuous (with probability 1 (w.p.1)) with
respect to the measure Q̄f (·)). Owing to the compactness of G, we can suppose that
F (·) is bounded. As in [3], we are concerned with the asymptotic (pathwise) behavior

of the sample averages
∫ T
0
F (Ψh

f (t, ·))dt/T as h→ 0 and T →∞. Let Qh,T
f (·) denote

the (X(·),Πh(·))−marginal of Qh,T (·), i.e., for arbitrary measurable set C ′ in the
product path space of Ψh

f (t, ·),

Qh,T
f (C ′) =

1

T

∫ T

0

IC′(Ψh
f (t, ·))dt.

By the definition of the occupation measure, we can write

1

T

∫ T

0

F (Ψh
f (t, ·))dt =

∫
F (ψf (·))Qh,T

f (dψf (·)).(3.2)

The representation (3.2) shows that the asymptotic values of the left-hand side can

be obtained from the limits of the set of occupation measures Qh,T
f , as T → ∞ and

h→ 0.
It was shown in [3] that for a broad class of approximate filters

1

T

∫ T

0

F (Ψh
f (t, ·))dt→

∫
F (ψf (·))Q̄f (dψf (·))(3.3)

in probability as T → ∞ and h → 0 in any way at all. As pointed out in [3], the
arbitrariness of the way that T →∞ and h→ 0 is crucial in applications. It was also
shown that

(3.3′)
1

T

∫ T

0

F (Ψh
f (t, ·))dt→

∫
F (ψf (·))Q̄f (dψf (·)),

where Π(·) in (3.3′) is the true optimal filter. Note that via an application of the
dominated convergence theorem, we can replace the expressions on the left sides of
(3.3) and (3.3′) by their expected values.

Let φ(·) be a bounded, continuous, and real-valued function. A special case of
(3.3) is the convergence of the mean square error

Gh,T (φ) ≡ 1

T

∫ T

0

[〈Πh(t), φ〉 − φ(X(t))]2dt

→
∫

[〈π(0), φ〉 − φ(x(0))]2 Q̄f (dψf (·))
(3.4)

in the sense of probability as h → 0 and T → ∞ in any way at all. The right side
of (3.4) is what one would also get as the limit if the true optimal filter was used
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(and even with an expectation of the pathwise average used) [3]. In this sense, there
is pathwise asymptotic optimality of the approximating filter over the infinite time
interval.

The following is the main background theorem from [3].
Theorem 3.1. Let the filtering model be as in section 2. Assume the uniqueness

condition A3.1. Define the approximate filter Πh(·) via (2.7) where X̃h(·) satisfies the
consistency condition A2.1. Then, for every sequence {hk, Tk}k≥1 such that hk → 0
and Tk →∞ as k →∞, the family {Qhk,Tk(·); k ≥ 1} is tight. Extract a weakly con-
vergent subsequence with weak sense limit denoted by Q(·), a measure-valued random
variable. Let Qω(·) denote the sample values of Q(·). Qω(·) induces a process, denoted
by

Ψω(·) = {Xω(·),Πω(·), Y ω(·), Bω(·),Wω(·)} .

Here, the ω indexes the process, not the sample paths of the process. For almost all
ω the following hold. The processes (Bω(·),Wω(·)) are independent standard Wiener,
with respect to which {Xω(·),Πω(·), Y ω(·)} are nonanticipative.

dY ω = g(Xω)dt+ dBω,(3.5)

dXω = p(Xω)dt+ σ(Xω)dWω.(3.6)

For each bounded and measurable real-valued function φ(·),

〈Πω(t), φ〉 =
E{Πω(0),Y ω

0,t}[φ(X̃(t))R(X̃0,t, Y
ω
0,t)]

E{Πω(0),Y ω
0,t}R(X̃0,t, Y ω

0,t)
.(3.7)

Equivalently, for all t, s,

〈Πω(t+ s), φ〉 =
E{Πω(t),Y ω

t,t+s
}[φ(X̃(t+ s))R(X̃0,s, Y

ω
t,t+s)]

E{Πω(t),Y ω
t,t+s

}R(X̃0,s, Y ω
t,t+s)

.(3.8)

(Xω(·),Πω(·)) is the unique stationary process, and hence its distribution does not de-
pend on ω or on the chosen convergent subsequence. Finally, (3.3) holds in probability
as h → 0 and T → ∞ in any way at all for any bounded and measurable real-valued
function F (·) which is continuous almost everywhere with respect to Q̄f (·).

4. The discrete time problem. Now we review the discrete time form of the
results in the previous section. Let all processes be defined in discrete time. The signal
process X(·) = {X(n), n < ∞} is assumed to be Feller–Markov and takes values in
the compact set G. The observations are defined by Y (0) = 0 and

δYn ≡ Y (n)− Y (n− 1) = g(X(n)) + ξ(n), n = 1, . . . ,(4.1)

where {ξ(n)} are mutually independent (0, I)-Gaussian random variables which are
independent of X(·), and g(·) is continuous.

The Bayes’ rule formula for the true conditional distribution of X(n) given Y0,n

can be represented in terms of an auxiliary process X̃(·) as for the continuous time case
in section 2, where X̃(·) has the same evolution law as that of X(·) but (conditioned
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on its possibly random initial distribution) is independent of all the other processes.
Define

R(X̃0,n, Y0,n) = exp

[
n∑

i=1

g′(X̃(i))δYi − 1

2

n∑
i=1

|g(X̃(i))|2
]
.

Then the optimal filter Π(·) can be defined by its moments

〈Π(n), φ〉 = E{Π(0),Y0,n}[φ(X̃(n))R(X̃0,n, Y0,n)]

E{Π(0),Y0,n}R(X̃0,n, Y0,n)
,

where Π(0) is the distribution of X(0) and X̃(0). Alternatively,

〈Π(n), φ〉 = E{Π(n−1),δYn}[φ(X̃(1))R(X̃(1), δYn)]

E{Π(n−1),δYn}R(X̃(1), δYn)
,(4.2)

where with an abuse of notation we have defined

R(x, y) = exp[g(x)′y − |g(x)|2/2].

Analogously to the continuous time observation case, except in some special cases,
one cannot evaluate (4.2), and it is generally necessary to approximate it in some way.
The approximation problems and methods are similar to those in section 3 (see [3] for
details). Namely, build a filter for a simpler Markov process X̃h(·) (in discrete time
here), which has values in the compact set G and which approximates X(·), but use
the actual physical observations.

This procedure is formalized as follows. For n = 1, . . . , define

R(X̃h
0,n, Y0,n) = exp

[
n∑

i=1

g′(X̃h(i))δYi − 1

2

n∑
i=1

|g(X̃h(i))|2
]
.

Now define the approximating filter Πh(·) by its moments:

〈Πh(n), φ〉 = E{Πh(0),Y0,n}[φ(X̃
h(n))R(X̃h

0,n, Y0,n)]

E{Πh(0),Y0,n}R(X̃
h
0,n, Y0,n)

.(4.3)

Then, one has the following recursive representation for Πh(·).

〈Πh(n), φ〉 = E{Πh(n−1),δYn}[φ(X̃
h(1))R(X̃h(1), δYn)]

E{Πh(n−1),δYn}R(X̃h(1), δYn)
.(4.4)

Equations (4.3) and (4.4) correspond to the filter which models the signal process via
X̃h(·) but uses the actual observations δYn = Y (n)− Y (n− 1).

The process X̃h(·) in (4.4) is assumed to be independent of the other processes,
given its initial distribution. We also use the following analogue of the basic consis-
tency assumption A2.1, which is the sense of approximation of X(·) by X̃h(·).

A4.1. A consistency assumption. For any sequence {Πh} of probability measures
converging weakly to some probability measure Π, (X̃h(0), X̃h(1)) with the initial
distribution Πh converges weakly to (X̃(0), X̃(1)) with the initial distribution Π.
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Analogously to the situation in section 3, (4.2) is well defined even if Π(0) is
not the initial distribution of X(·). Allowing the initial condition (X(0),Π(0)) to be
arbitrary, the discrete time process Ψf (·) = (X(·),Π(·)) is Feller–Markov. We now
write the discrete time analogue of the key uniqueness assumption.

A4.2. A uniqueness assumption. There is a unique stationary process Ψf (·) =
(X(·),Π(·)). Denote its measure by Q̄f (·).

The occupation measure. For each n, define B(n) =
∑n

i=1 ξ
i, and define the

analogue of Ψh(t, ·), namely,
Ψh(n, ·) = {X(n+ ·),Πh(n+ ·), Y (n+ ·)− Y (n), B(n+ ·)−B(n)},

Ψh
f (n, ·) = {X(n+ ·),Πh(n+ ·)}.

Define the canonical elements of the path spaces ψ(·) and ψf (·) analogously, as done
in section 3.

The Skorohod topology is replaced by a “sequence” topology, as in [3]. The Πh(n)
still takes values in M(G), and the weak topology is still used on this space. Define
the occupation measure Qh,N (·) as follows. For a Borel set C in the product sequence
space

Qh,N (C) =
1

N

N∑
n=1

IC(Ψ
h(n, ·)).(4.6)

Analogously to the definitions in section 3, define Ψ(·) = (X(·),Π(·), Y (·), B(·)). Let
F (·) be a real-valued bounded and continuous (w.p.1 with respect to Q̄f (·)) function
of ψf (·). Then, the following discrete time analogue of Theorem 3.1 is proved in [3].

Theorem 4.1. Let the filtering model be as above. Assume that A4.2 holds.
Define the approximate filter via (4.3), where we assume that the auxiliary process
X̃h(·) satisfies A4.1. Then {Qh,N (·);h > 0, N ≥ 0} is tight. Let Q(·) denote a weak
sense limit, always as h → 0 and N → ∞. Let ω be the canonical variable on the
probability space on which Q(·) is defined, and denote the sample values by Qω(·).
Then, for each ω, Qω(·) is a measure on the product path (sequence) space. It induces
a process

Ψω(·) = (Xω(·),Πω(·), Y ω(·), Bω(·)) .(4.7)

For almost all ω the following hold. (Xω(·),Πω(·)) is stationary. Bω(·) is the sum
of mutually independent N(0, I) random variables {ξω(n)} which are independent of
Xω(·). Also

δY ω
n ≡ Y ω(n)− Y ω(n− 1) = g(Xω(n)) + ξω(n),(4.8)

and Xω(·) has the transition function of X(·). For each integer n and each bounded
and measurable real-valued function φ(·),

〈Πω(n), φ〉 =
E{Πω(0),Y ω

0,n}[φ(X̃(n))R(X̃0,n, Y
ω
0,n)]

E{Πω(0),Y ω
0,n}R(X̃0,n, Y ω

0,n)
.(4.9)

Finally,

1

N

N∑
n=1

F (Ψh
f (n+ ·)) =

∫
F (ψf (·))Q̄h,N

f (dψf (·))→
∫
F (ψf (·))Q̄f (dψf (·))(4.10)
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in probability, where h→ 0 and N →∞ in any way at all.
Discussion of the proof. In the problems of this paper, the approximating filter will

be constructed using random sampling methods or combinations of random sampling
and integration methods. Since many arguments in the proofs are similar to those used
in [3], in what follows we will try to use as much of the proof in [3] as possible and to
concentrate on the differences. In view of that we now highlight the chief features of the
proof in [3]. We comment on the discrete parameter case, but analogous remarks hold
for the continuous parameter model. Further details are in the reference. In [3] (see
(4.6)), the measure valued random variable Qh,N (·) was obtained as an occupation
measure connected with the processes X(·),Πh(·), B(·), Y (·), and the same definition
will be used in what follows, but with the new definitions of Πh(·) of this paper used.

The first step in the proof of Theorem 4.1 is to show that the sequence {Qh,N (·);h,N}
of measure-valued random variables is tight. For that, it suffices to show that the se-
quence of its expectations is tight [22, Chapter 1.6]. In order to show that, it is
enough to show that the families {X(n + ·);n ≥ 0}, {B(n + ·) − B(n);n ≥ 0},
{Y (n+ ·)− Y (n);n ≥ 0}, and {Πh(n+ ·);h > 0, n ≥ 0} are tight. However, showing
that is trivial in view of the compactness of the state space. We note that in the
continuous time case the proof of tightness of these processes involves a little more
work.

By the first equality in (4.10), the limit is determined by the weak sense limits
of the occupation measures, as N →∞, and h→ 0. Thus we need to determine the
sample values Qω(·) of any weak sense limit Q(·). Equivalently, we need to characterize
the set of processes induced by Qω(·). The proof of the stationarity of (Xω(·),Πω(·))
in [3] will work without any change for the problems of this paper. Furthermore the
proofs of the representation (4.8) and that Xω(·) has the law of evolution of X(·) for
almost all ω will be no different than the analogous arguments in [3], and similarly for
the continuous parameter case. Thus, establishing the representation (4.9) becomes
the only step in the proof that will be different from that in [3]. Once this step is
established, (4.10) follows readily from the uniqueness assumption on the invariant
measure of the joint signal and filter process.

The proof of the representation for Πω(·) will differ, depending on the choice of
Πh(·). The following comments concerning a key detail in the proof of the represen-
tation (4.9) in [3] will be useful in providing a guide to the proofs for the cases of this
paper.

For arbitrary ψ(·) = (x(·), π(·), y(·), b(·)), and integer m define the function A(·)
by

A(ψ(m)) = 〈π(m), φ〉 − E{π(m−1),y(m)}[φ(X̃(1))R(X̃(1), y(m))]

E{π(m−1),y(m)}R(X̃(1), y(m))
.(4.11)

The aim of the proof in [3] was to show that, for almost all ω and all m,

A(Ψω(m)) = 0, w.p.1,(4.12)

which implies (4.9). This was done by showing that

0 = E

∫
Qω(dψ) [A(ψ(m))]

2
1 ,(4.13)

where we define

[A]21 = min{|A|2, 1}.(4.14)
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The prelimit form of the right side of (4.13) is

E

∫
Qh,N (dψ) [A(ψ(m))]

2
1 ,(4.15)

which, by the definition of Qh,N (·), equals

1

N
E

N∑
n=1

[A(Ψh(m+ n))]21,(4.16)

where

A(Ψh(n)) = 〈Πh(n), φ〉 − E{Πh(n−1),δYn}[φ(X̃(1))R(X̃(1), δYn)]

E{Πh(n−1),δYn}R(X̃(1), δYn)
.(4.17)

In order to show (4.13), it suffices to show

E[A(Ψh(n))]21 → 0

uniformly in n as h → 0. Finally, to show the above, it suffices, in view of tightness
of the families {Πh(n);h > 0, n > 0}, {δYn;n > 0}, and the consistency assumption
A4.1, to show that

E

[
〈Πh(n), φ〉 − E{Πh(n−1),δYn}[φ(X̃

h(1))R(X̃h(1), δYn)]

E{Πh(n−1),δYn}R(X̃h(1), δYn)

]2

1

(4.18)

converges to 0 uniformly in n as h→ 0.
However, in view of the definition of Πh(n) via (4.4), the above expression is

identically zero, which implies that (4.13) holds for any weak sense limit. An analogue
of this argument will be used in the next section.

5. Some approximating filters of interest: Discrete time. In [3], the ap-
proximate filter Πh(·) was defined by the analytical formula (4.4) for the discrete time
problem, and by (2.7) for the continuous time problem. One example is the Markov
chain approximation method, where the auxiliary process X̃h(·) is a Markov chain
approximation to X̃(·). When the dimension is high, such methods can have exces-
sively high computational requirements. Alternatives, based on random sampling or
Monte Carlo then become attractive, analogous to the case of classical multidimen-
sional integration [5, 6, 7, 12, 13, 15, 16, 27, 28, 29]. In this section, several forms of
this approach will be discussed. We start with the simplest form, which uses unso-
phisticated random sampling to evaluate the right-hand side of (4.4). The problem is
set up so that much of the proof of [3, Theorem 5.1] (this is Theorem 4.1 above) can
be used. After treating this simple (but canonical) case, we then move on to more
general approximations, pointing out at each instance the crucial condition required
for the analogue of Theorem 4.1 to hold.

Example 5.1 (the basic “sampling” filter). Let vh be a sequence of integers
which goes to infinity as h→ 0. Let Πh(n− 1) denote the estimate of the conditional
distribution of X(n − 1), given Y0,n−1. Given Πh(n − 1), we now construct Πh(n)

based on “random sampling.” Let {X̃h,l,n(·), l ≤ vh} be i.i.d. samples (which are
independent of δYn, conditioned on Πh(n− 1)) from X̃h(·), where X̃h(·) satisfies the
consistency condition A4.1 and has the initial distribution Πh(n− 1). One need only
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simulate samples of X̃h(0), X̃h(1).
The filter Πh(n) is defined by the sample average:

〈Πh(n), φ〉 =
∑vh

l=1 φ(X̃
h,l,n(1))R(X̃h,l,n(1), δYn)/v

h

∑vh

l=1R(X̃
h,l,n(1), δYn)/vh

,(5.1)

which yields our estimate Πh(n) of the conditional distribution of X(n), given Y0,n.
Theorem 5.2. Under A4.1 and A4.2 and the above construction of Πh(·), the

conclusions of Theorem 4.1 hold.
Proof. The basic steps in the proof of Theorem 4.1 were outlined after the state-

ment of that theorem. The proof of the current theorem is similar, and we will only
concern ourselves with the differences.

The set {Qh,N (·);h > 0, T < ∞} is obviously tight since each of the fami-
lies {X(n + ·);n ≥ 0},{B(n + ·) − B(n);n ≥ 0}, {Y (n + ·) − Y (n);n ≥ 0}, and
{Πh(n + ·);h > 0, n ≥ 0} is tight. Let Q(·) = {Q(n), n = 0, 1, . . .} denote the limit
of a weakly convergent subsequence, and denote the samples by Qω(·). Then Qω(·)
induces a process Ψω(·) as in (4.7), and we need to identify the components. The
stationarity of (Xω(·),Πω(·)) is proved as in [3], with no change. Similarly, the char-
acterization (4.8), the properties of Bω(·), and the fact that Xω(·) has the transition
function of X(·) is done exactly as in [3].

The main difference is in the proof of (4.9). Proceeding as illustrated for Theorem
4.1, to identify Πω(·) we need only to show (4.13). Analogously to the procedure in
section 4, this is done by showing that the expression in (4.18) converges to 0 uni-
formly in n as h → 0. By using the definition of Πh(n), (4.18) can be rewritten as

E



∑vh

l=1 φ(X̃
h,l,n(1))R(X̃h,l,n(1), δYn)/v

h

∑vh

l=1R(X̃
h,l,n(1), δYn)/vh

−E{Πh(n−1),δYn}[φ(X̃
h(1))R(X̃h(1), δYn)]

E{Πh(n−1),δYn}R(X̃h(1), δYn)




2

1

.

(5.2)

Owing to the properties of the [·]21 metric defined by (4.14), we can work with the
numerators and denominators separately, and it is only necessary to show that, for
arbitrary bounded and continuous φ(·),

E

[
1

vh

vh∑
l=1

φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)

−E{Πh(n−1),δYn}φ(X̃
h(1))R(X̃h(1), δYn)

]2

1

(5.3)

goes to zero uniformly in n, as h→ 0. But this clearly holds since for each h and n,
{X̃h,l,n(·), l} are mutually i.i.d. and independent of δYn (conditioned on Πh(n− 1)),
and the mean square value (conditional on {Πh(n− 1), δYn}) of the functional

φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)− E{Πh(n−1),δYn}φ(X̃
h,l,n(1))R(X̃h,l,n(1), δYn)

has uniformly (in h, l, n) bounded expectation.
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We remark that in the above proof we found it convenient to work with the ex-
pression in (5.3), however in view of the consistency condition A4.1 on X̃h(·), showing
that the expression in (5.3) goes to zero, uniformly in n, as h → 0 is equivalent to
showing the same for the expression in (5.3′) below.

E


 1

vh

vh∑
l=1

φ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)

−E{Πh(n−1),δYn}φ(X̃(1))R(X̃(1), δYn)




2

1

.

(5.3′)

Example 5.3 (some generalizations of the filter in Example 5.1). As can be
observed from the proof of Theorem 5.1, the crucial step is the establishing of con-
vergence of the expression in (4.18) or, equivalently, of (5.3′), the form that we will
use. This convergence is essentially the consequence of the consistency condition A4.1.
However, as we will indicate in the following discussion, this consistency condition can
be weakened considerably. This leads to many useful extensions of the basic form of
the “sampling” algorithm of Example 5.1.

A weaker form of the consistency assumption A4.1. We retain the assumption
of mutual independence (conditional on Πh(n − 1), δYn) of the {X̃h,l,n(·), l ≤ vh}
for each h, n, and that the probability law of {X̃h,l,n(0)} is Πh(n − 1), but we allow
more flexibility in the choice of the individual X̃h,l,n(·). Namely, in the construction
of Πh(n) in (5.1), the Markov family from which X̃h,l,n(·) is sampled may differ for
different l, n. However, the initial conditions X̃h,l,n(0) still form an i.i.d. sample from
Πh(n− 1). To see the possibilities, write the expression in the brackets in (5.2) as the
sum of the two terms:

∑vh

l=1 φ(X̃
h,l,n(1))R(X̃h,l,n(1), δYn)/v

h

∑vh

l=1R(X̃
h,l,n(1), δYn)/vh

−E{Πh(n−1),δYn}
∑vh

l=1 φ(X̃
h,l,n(1))R(X̃h,l,n(1), δYn)/v

h

E{Πh(n−1),δYn}
∑vh

l=1R(X̃
h,l,n(1), δYn)/vh

,

(5.4)

and

E{Πh(n−1),δYn}
∑vh

l=1 φ(X̃
h,l,n(1))R(X̃h,l,n(1), δYn)/v

h

E{Πh(n−1),δYn}
∑vh

l=1R(X̃
h,l,n(1), δYn)/vh

−E{Πh(n−1),δYn}[φ(X̃(1))R(X̃h(1), δYn)]

E{Πh(n−1),δYn}R(X̃(1), δYn)
.

(5.5)

Owing to the use of the [·]21 metric defined by (4.14), it is enough to work separately
with the differences of the numerators and of the denominators in each of (5.4) and
(5.5). Then, to handle (5.4), use the mutual independence and the uniform bounds on
the expectations of the conditional variances. To handle (5.5), we will use a revised
form of the consistency assumption A4.1, which is the following.

A5.1. For each (n, h), the set {X̃h,l,n(·), l} is mutually independent and inde-
pendent of δYn, conditioned on Πh(n − 1). Suppose that an arbitrary Πh replaces
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Πh(n − 1) in the construction of the {X̃h,l,n(0), l}. Then, as h → 0, for any such
sequence and for each bounded, continuous, and real-valued function Φ(·),

EΠhΦ(X̃h,l,n(1))− EΠhΦ(X̃(1))→ 0(5.6)

uniformly in n and l.
This assumption, when used for Φ(x) ≡ Φy(x) = φ(x)R(x, y) for each fixed y,

leads to the desired convergence for the expression in (5.6). Observe that even though
R(·) is not bounded, we can, without loss of generality, assume so since the family
{δYn;n ≥ 1} is tight. For this reason and the fact that we use the metric (4.14), we
do not need the convergence in A5.1 for Φ(·) = Φy(·) to hold uniformly in y.

Note that we are no longer assuming that the X̃h,l,n(·) are all samples of the
same X̃h(·) process. The second part of A5.1 will hold iff for all Π and any sequence
{hk, lk, nk}k≥1 for which (L(X) denotes the probability law of X)

L(X̃hk,lk,nk(0))⇒ Π

as k →∞, we have that

L(X̃hk,lk,nk(0), X̃hk,lk,nk(1))⇒ L(X̃(0), X̃(1)) as k →∞,

where X̃(0) has the law Π.
Dropping the mutual conditional independence. Return to the expression (5.2).

Let Φ(·) be bounded and continuous. Then the convergence in (5.2) is implied by the
following even weaker consistency assumption, which can replace A4.1 and the mutual
independence in Theorem 5.1.

A5.2. For each (h, n), {X̃h,l,n(·), l} is independent of δYn, conditioned on Πh(n−
1), but they might not be independent in l. They are constructed subject to the
following rule. Suppose that an arbitrary measure Πh,n (on G) takes the role of Πh(n−
1) in the construction of the {X̃h,l,n(·), l}. Then the associated process {X̃h,l,n(·), l} is
constructed such that as h→ 0 for any bounded, continuous, and real-valued function
Φ(·),

1

vh

vh∑
l=1

Φ(X̃h,l,n(1))− E{Πh,n}Φ(X̃(1))→ 0,(5.7)

in probability, uniformly in n.
It is clear that this condition (instead of A4.1 and mutual independence of sam-

ples) suffices for Theorem 5.2 to hold for the corresponding {Πh(n)}. The usefulness
of this condition lies in the cases where the samples {X̃h,l,n(·), l ≤ vh} for fixed h, n
are not mutually independent. It is of particular value when the random sampling
incorporates some variance reduction method where the samples are not mutually
independent, e.g., antithetic variables or stratified sampling such as discussed next.

Variance reduction methods. The standard methods for variance reduction in
Monte Carlo, such as stratified sampling and antithetic variables, can all be used
here and in the subsequent algorithms and examples. We comment on one form of
stratified sampling. Let Πh(n − 1) be concentrated on points {xh,l,n; l = 1, . . . , vh},
and let Πh

l (n− 1) denote the weight that Πh(n− 1) puts on xh,l,n.
In this example, we only use variance reduction to get the samples of the initial

values X̃h,l,n(0). Once these are given, the sample values of X̃h,l,n(1) are obtained by
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sampling independently, using the transition probability of the approximating Markov
process X̃h,n(·). So we concentrate on the initial values for fixed n.

If the vhΠh
l (n − 1) were all integers, then the best sampling of the values of the

X̃h,l,n(0) would be to take the initial point xh,l,n exactly vhΠh
l (n − 1) times, since

then the variance of the sampling error of the initial condition would be zero. Clearly
all the vhΠh

l (n − 1) would not usually be integers, but one tries to approximate the
ideal as well as possible. One common approach is the following. First take the point
xh,l,n exactly [vhΠh

l (n − 1)] (the integer part) times. After this step, the “residual”
number of points remaining to be chosen is

δvh,n =
∑
l

δvh,nl ,

where

δvh,nl = (vhΠh
l (n− 1)− [vhΠh

l (n− 1)]).

The “residual frequency” of point xh,l,n is δvh,nl /δvh,n. Now divide the set {xh,l,n, l}
into disjoint subsets Sh,ni , i = 1, . . . . The set Sh,ni has δvh,n,i points where

δvh,n,i =
∑

l∈Sh,n
i

δvh,nl .

Allocate [δvh,n,i] initial points to subset i, and then select these points randomly (with

replacement) from Sh,ni , where the point xh,l,n ∈ Sh,ni is given the weight δvh,nl /δvh,n,i.
Since

v̄h,n ≡ δvh,n −
∑
i

[δvh,n,i] ≥ 0,

we still need to allocate v̄h,n points, if this is positive. Generally, if the division into
subgroups is done properly, v̄h,n/vh will be either zero or small. If it is positive, either
repeat the above procedure to allocate the remaining v̄h,n points, or just select v̄h,n

points randomly from the original vh points with appropriately modified weights.
It is easy to see that the above construction can be put in the framework of

Example 5.3, and condition A5.2 holds.
The grouping into subsets might be done by dividing the points according to their

“geographic location,” if this is meaningful.
Example 5.4. We would like to treat algorithms that use combinations of ran-

dom sampling and integration methods in a general way. This will require an alteration
in the consistency condition A5.1 or A5.2. In order to motivate the form which it will
take, we first consider an example for which A5.2 is satisfied. Let X̃h,n(·) be processes
satisfying A5.1. Having defined the approximate filter Πh(j) for j = 1, 2, . . . , n − 1
suppose that {X̃h,l,n(·), l ≤ vh} are samples of X̃h,n(·) and that they are conditionally
independent of δYn given Πh(n− 1). Define Πh(n) via (5.1). If the samples are mutu-
ally independent (conditioned on Πh(n− 1)) and X̃h,n(0) has distribution Πh(n− 1),
then condition A5.1 (and thus A5.2) is satisfied. Theorem 5.2 can be proved under
weaker consistency conditions than A5.1 or A5.2, which allow great and useful flexi-
bility in constructing the filter. To motivate a useful general form, let us first rewrite
Example 5.3 in the following suggestive way.
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For each h and n, define a measure (on the sample space G × G) valued ran-

dom variable Ph,n
Πh,n−1 as follows. Let Ph,n

Πh(n−1)
(A) be the fraction of the samples

{X̃h,l,n(·), l ≤ vh} that are in the Borel set A ⊂ G×G. In particular, Ph,n
Πh(n−1)

{B×G}
is the fraction of the samples X̃h,l,n(0) which are in the set B. Since this Ph,n

Πh(n−1)
is

just the “sampling occupation measure,” condition A5.2 is equivalent to

E

[∫
Φ(x(1))dPh,n

Πh(n−1)
(x(·))− E{Πh(n−1)}Φ(X̃(1))

]2
1

→ 0(5.8)

uniformly in n as h→ 0.
Thus the crucial condition becomes the convergence of the expression in (5.8). The

advantage of writing the condition in the form (5.8) is that, being written in terms of

a random measure Ph,n
Πh(n−1)

, it suggests other choices of approximate filters that need

not be based exclusively on Monte Carlo or random sampling. For example, as seen
in Example 5.5 below, Ph,n

Πh(n−1)
might be determined partly by random sampling and

partly analytically.
A generalization of Ph,n

Πh(n−1)
and the approximating filter. Motivated by the

suggestiveness of (5.8), we now consider the following general form of the approximate
filter and the consistency condition. Let {Πh(n);n ≥ 1} be defined recursively as

follows. Having defined Πh(n− 1), let Ph,n
Πh(n−1)

be a measure-valued random variable

on the sample space G×G, which is conditionally independent of δYn given Πh(n−1).
Define Πh(n) by

〈Πh(n), φ〉 =
∫
φ(x(1))R(x(1), δYn)dP

h,n
Πh(n−1)

(x(·))∫
R(x(1), δYn)dP

h,n
Πh(n−1)

(x(·)) .(5.9)

We will need the following consistency condition.
A5.3. For each bounded, continuous, and real-valued function Φ(·), as h→ 0,

∫
Φ(x(1))dPh,n

Πh(n−1)
(x(·))− E{Πh(n−1)}Φ(X̃(1))→ 0,(5.10)

in probability, uniformly in n.
We now have the following useful result whose proof follows from the above com-

ments.
Theorem 5.5. Theorem 5.2 holds for the above constructed Πh(·) if in the as-

sumptions of that theorem the consistency condition A5.3 replaces A4.1 and the mutual
independence of the samples.

Remarks. Although not needed, it will often be the case that

EΠh(n−1)P
h,n
Πh(n−1)

{B ×G} = Πh(n− 1)(B).(5.11)

The advantage of A5.3 is that it can be used for a large variety of approxima-
tion methods. For example, in the form (4.4), Ph.n

Πh(n−1) would be the measure of

(X̃h(0), X̃h(1)) with X̃h(0) having the (random) distribution Πh(n − 1). The condi-
tions for the convergence for the classical Markov chain approximation, the random
sampling method above, and various combinations of them, either in the same or in
different time frames, can all be put into the form of (5.10) for appropriate choices
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of Ph.n
Πh(n−1). Importance sampling methods can also be fit into the same scheme and

used to improve the performance of the filter, as shown in the next section.
Example 5.6 (an application of A5.3). A combination of random sampling and

integration algorithms will be considered in this example. Consider the following
commonly used model. Let X(n) = b(X(n − 1), ζ(n − 1)), where b(·) is bounded
and continuous and the {ζ(n)} are mutually i.i.d. (with distribution function Pζ ,
with compact support), and independent of X(0). First, suppose that Π(n − 1) is
the actual conditional distribution of X(n− 1), given Y0,n−1. Then the optimal Π(n)
is defined by (4.2). If the computation on the right side of (4.2) is not possible,
as is usually the case, it would be approximated in some way. The difficulties in
evaluating the right side might be due to the problem of computing the one step
transition probability of the Markov process {X(n)}, or to the actual integrations
over a possibly continuous state space that are required to evaluate (4.2). As usual,
let h denote the approximation parameter for the actual practical filter, and let Πh(n)
denote the estimate of the conditional distribution given Y0,n.

Let Πh(n− 1) be given. We wish to compute Πh(n). This can be done by a direct
simulation as in Example 5.1, by combined “simulation-integration,” or perhaps even
by a pure “integration,” method. These possibilities will be illustrated. Suppose that
we approximate Pζ by Ph

ζ , which might have a (computationally) more convenient

support and is such that Ph
ζ ⇒ Pζ . In addition, approximate b(·) by a measurable

function bh(·) such that

lim
h→0

sup
x,ζ
|b(x, ζ)− bh(x, ζ)| = 0.

If the associated integrations are convenient to carry out, one can use (4.3) to
define Πh(n), where we define

X̃h(1) = bh(X̃
h(0), ζh).(5.12a)

In (5.12a), X̃h(0) has distribution Πh(n−1) and ζh has distribution Ph
ζ . If the support

of Ph
ζ is finite and bh(·) takes only finitely many values, then the integrations reduce to

summations. The X̃h(·) process thus defined satisfies the consistency condition A4.1.
Hence Theorem 4.1 holds for Πh(·) if A4.2 holds.

Alternatively, one can simply use Monte Carlo as in Example 5.1. All sampling
below is “conditionally independent” of the past, given Πh(n−1). Take vh independent
samples from Πh(n− 1) and from Ph

ζ and call them X̃h,n,l(0) and ζh,n,l, l ≤ vh, resp.
Then use the formula

X̃h,n,l(1) = bh(X̃
h,n,l(0), ζh,n,l)(5.12b)

and (5.1) to get Πh(n).
Combinations of the above two approaches might be worthwhile also. For example,

if the support of the Ph
ζ is a (not too big) finite set, then one can sample from

Πh(n − 1), but “integrate” over the noise for each sample of the initial condition by
doing the necessary summations. One would normally try to choose the support of
Ph
ζ such that the integrals are well approximated for an appropriate set of functions
φ(·). On the other hand, one might discretize the state space such that the support
of the X̃h(0) (i.e., of each of the Πh(n)) is confined to a finite set Gh, and integrate
with respect to the “initial” measure Πh(n − 1), but simulate the noise. For each

of these combinations, there is a Ph,n
Πh(n−1)

such that A5.3 holds, provided that the
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discretization of the space converges to the whole space in an appropriate manner
and, for the part of the computation which involves random sampling, the number of
samples goes to infinity as h → 0. The construction of Ph,n

Πh(n−1)
is not hard and the

details are omitted.

Example 5.7 (a Markov chain approximation method). In this example, by
considering a sampled diffusion model, we illustrate a potentially useful combination
of integration and simulation. Suppose that the signal process X(n) is a sample from
a diffusion process X(·) at discrete time n. Suppose that X(·) solves an Itô equation
with a unique weak sense solution for each initial condition and has continuous drift
and diffusion coefficients. Then the exact filter (4.2) involves getting the probabil-
ity distribution of X̃(1) (which solves the same Itô equation) with the correct initial
distribution Π(n − 1), n = 1, . . .. One could try to solve the Fokker–Planck equa-
tion by some numerical method. This is not easy when there are degeneracies. The
Markov chain approximation method [24] is a general and powerful approach which
converges under the specified conditions, even with quite weak (reflecting) boundary
reflections and jumps added. The following discussion uses the idea of the Markov
chain approximation without going into excessive details.

For each h, let {Xh
n} be a discrete parameter Markov chain on a finite state space

Gh ⊂ G, and let ph(x, z) denote the one step transition probabilities. For δh > 0, define
the continuous time interpolation X̃h(·) by X̃h(t) = Xh

n on the interval [nδh, nδh+δh).
Suppose, without loss of generality, that 1/δh is an integer, and assume that X̃h(·)
satisfies the consistency assumption A4.1. The use of such chains in the construction
of approximate filters is now quite common. See [21, 24, 23]. The references [21, 24]
give straightforward and automatic ways of constructing such chains.

In [21, 24] and in current usage in applications, the process X̃h(·) is used as in
the algorithm (4.4). But it can also be used as the basic simulated process in (5.1).
In order to demonstrate the possibilities, we now illustrate an interesting combination
of these two schemes which is rather different from the combinations illustrated by
Example 5.6. We work with a single observation interval at a time, and for concrete-
ness we discuss the method for the time interval [0, 1]. Let Πh = Πh(0) denote the
approximation to the distribution of X(0). We need to approximate the distribution
of X̃(1). This is done by either computing or estimating the distribution of Xh

1/δh
,

where Xh
0 has the distribution Πh.

To estimate or compute the distribution of Xh
1/δh

, we recursively estimate or

compute the distribution of the Xh
m for m = 1, 2, . . . , 1/δh. The motivation behind

the combined integration/Monte Carlo procedure to be described is that in some
regions of the state space, it might be easier to use one method and in other regions
the other method. For illustrative purposes, we suppose that G is divided into disjoint
subsets G1 and G2 and define Gh,i = Gh ∩ Gi. Suppose that it is easy to compute
the transition probabilities ph(x, z) for x ∈ some neighborhood of G1, but harder for
x outside of that neighborhood. We suppose that it is feasible to run simulations of
the process for any selected initial condition. For example, ph(x, z) might be given
implicitly as the output of a complicated physical mechanism for which the transition
probability is hard to compute when x is in G2 but which can be simulated. We try
to exploit this situation by simulating where convenient and integrating where that
is convenient. The division into subsets Gi and the associated “difficulty” of some
procedure in Gi is meant to be suggestive. We will sometimes be “integrating” when
in G2 and sometimes simulating when in G1. But the major part of each type of
computation will be done in the region where it is advantageous.
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Let us divide the unit interval into nh (an integer) subintervals, with ε = δhkh.
Thus 1/δh = khnh. For notational simplicity, we work with the interval [0, 1], but the
method is identical for all the intervals [n, n+ 1]. Let µhm denote the estimate of the
distribution of Xh

mkh
with values µhm(x), x ∈ Gh, where we start with µ

h
0 = Πh. The

time interval ε should be small enough such that the paths starting in Gh,i stay close
to it with a high probability on that interval. One needs to be careful if ε is allowed
to go to zero as h→ 0 (which we do not do), since it is well known from simulations
that the procedure can degenerate unless vh goes to infinity fast enough (and at a
rate which depends on how fast ε → 0). In fact, there is little loss of generality or
practicality in fixing ε to be a small constant.

Suppose that µhm is given. Then µhm+1 is computed as follows. First, do the
analytic computation using ph(x, z) to get the part of µhm+1(z) which is due to the
initial states in Gh,1. Namely, compute

∑
x∈Gh,1

P{Xh
(m+1)kh

= z
∣∣Xh

mkh
= x}µhm(x).(5.13a)

The part of µhm+1(z) which is due to initial states in Gh,2 is obtained by simula-
tion. To simulate, we sample a total of vh points (where vh →∞) in Gh,2 with relative

probabilities {µhm(x), x ∈ Gh,2}. Denote the samples by {Xh,l,m
0 , l ≤ vh}. The sam-

pling of the {Xh,l,m
0 , l ≤ vh} can be done either with replacement or, preferably, using

a variance reduction method such as the one based on stratified sampling which was
described at the end of Example 5.3. For each of these “initial values” Xh,l,m

0 , l ≤ vh,
simulate at random a path of the chain for kh steps. Let {Xh,l,m

k , k ≤ k0} denote the
sample values.

Then the part of the estimate of µhm+1(z) which is due to initial states in Gh,2 is

[ ∑
x∈Gh,2

µhm(x)

]
1

vh

vh∑
l=1

I{Xh,l,m
kh

=z}.(5.13b)

The sum of (5.13a) and (5.13b) is µhm+1(z). If h → 0 and Πh converges weakly

to, say, Π, it follows from the consistency condition A4.1 for the X̃h(·) process that
µhnh

(·) converges weakly to the distribution of X̃(1), which corresponds to X̃(0) having
distribution Π.

To identify the measure Ph,n
Πh(n−1)

in A5.3 (for our example n = 1) note the follow-

ing. It is the measure on Gh ×Gh, with initial distribution given by our combination
of µh0 (x) for x ∈ Gh,1 and the sampling distribution for x ∈ Gh,2. The distribution of
the terminal value, conditioned on the initial distribution, is computed by repeating
the updating procedure outlined above 1/ε times.

We note that variance reduction methods can be employed in the sampling of the
random paths themselves.

6. More examples: Importance sampling methods for discrete time
models. Importance sampling methods are in common use to improve the perfor-
mance of Monte Carlo algorithms (see, for example, [10, 11]). The basic idea can be
seen from the following simple example. Suppose that we wish to estimate Ef(X) via
Monte Carlo, where f(·) is bounded and continuous and X has distribution P . The
simplest estimate has the form

∑n
i=1 f(Xi)/n, where {Xi} are mutually independent

and chosen at random from P . Suppose that we know that values of X in a set A have
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the dominant effect on Ef(X), where A has small probability. Then large n would be
needed to get a good estimate. Let Q be mutually absolutely continuous with respect
to P, and where Q(A) has a “moderate” value. Then for appropriate choice of Q, the
unbiased estimate

∑n
i=1 f(Xi)[dP/dQ](Xi)/n has a much smaller variance than the

original estimate, where now the Xi are drawn at random and independently from
Q [10, 11]. Importance sampling attempts to sample more (using Q) in the regions
which prior information suggests are more important, and corrects for this bias via
the weighing with the Radon–Nikodym derivative.

Importance sampling has also been used to improve the quality of nonlinear fil-
tering algorithms that use random sampling [5, 29]. When used over an infinite time
interval, the robustness and convergence questions raised earlier in the paper remain
important. In the next example, we discuss the general idea of importance sampling
and show how the associated proof of convergence is covered by what has already
been done for setups such as that in Example 5.1 of section 5. In this next example,
we describe the importance sampling on a typical interval [n− 1, n], and it does not
use the next observation δYn. This next observation can provide useful information
to guide the sampling. There are many intriguing possibilities, and one form of such
a use is discussed in Example 6.4. We only illustrate some possibilities. There are
numerous possible variations, and the choice of the better ones is still a matter of
research. With all of the variations, variance reduction methods can be used, as can
combined sampling-integration methods.

Example 6.1 (the basic idea of importance sampling in Monte Carlo filtering).
Return to the setup used in Example 5.1 of section 5. Let Ph

n−1 denote the probability

law of X̃h(·) = (X̃h(0), X̃h(1)) when Πh(n − 1) is the measure of X̃h(0). For each
h and n, let Mh,n denote a random measure which is almost surely (a.s.) mutually
absolutely continuous (i.e., measure equivalent) with respect to Ph

n−1. For each h

and n, let {X̃h,l,n(·), l ≤ vh} be mutually conditionally independent, conditioned
on δYn, P

h
n−1,M

h,n, and with the distribution Mh,n. Define the likelihood ratio (the

Radon–Nikodym derivative) and its value on the random path X̃h,k,n(·) by

Lh,n =
dPh

n−1

dMh,n
, Lh,k,n =

dPh
n−1

dMh,n
(X̃h,k,n(·)).(6.1)

We introduce the following assumption.
A6.1.

sup
h,n
E
dPh

n−1

dMh,n
(X̃h(0), X̃h(1))R2(X̃h(1), δYn) <∞,(6.2)

where X̃h(·) in (6.2) has the distribution Ph
n−1 (conditioned on δYn, P

h
n−1,M

h,n).
Define the approximate filter Πh(·) to be:

〈Πh(n), φ〉 =
∑vh

l=1 L
h,k,nφ(X̃h,l,n(1))R(X̃h,l,n(1), δYn)/v

h

∑vh

l=1 L
h,k,nR(X̃h,l,n(1), δYn)/vh

.(6.3)

Theorem 6.2. Assume A4.1, A4.2, A6.1, and the filter form (6.3). Then Theo-
rem 5.1 holds.

Proof. To prove the theorem, it suffices to show that

E

[
1

vh

vh∑
k=1

(Lh,k,nΦ(X̃h,k,n(1), δYn)− EΠh(n−1),δYn
Φ(X̃h(1), δYn))

]2

(6.4)
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converges to 0 uniformly in n as h→ 0, where Φ(x, y) = φ(x)R(x, y) and φ(·) is any
bounded and continuous real-valued function.

We can write

EMh,n,Ph
n−1

,δYn
Lh,k,nΦ(X̃h,k,n(1), δYn)

= EMh,n,Ph
n−1

,δYn
Φ(X̃h(1), δYn) = EΠh(n−1),δYn

Φ(X̃h(1), δYn),
(6.5)

where as before the subscript in the expectation is the conditioning data and X̃h(·)
in the second and the third expression has the law (conditioned on Mh,n, Ph

n−1, δYn)
Ph
n−1. The first equality follows by the definition of the Radon–Nikodym derivative.

The second equality is simply a statement of the fact that all we need to know about
X̃h(·) to compute the expectation is its initial distribution and the one step law of
evolution.

UnderMh,n, the samples are mutually independent, conditioned on δYn, P
h
n−1,M

h,n.
By the above facts, (6.4) can be rewritten as

EEMh,n,Ph
n−1

,δYn

[
1

vh

vh∑
k=1

(Lh,k,nΦ(X̃h,k,n(1), δYn)− EΠh(n−1),δYn
Φ(X̃h(1), δYn))

]

=
1

(vh)2
EEMh,n,Ph

n−1
,δYn

vh∑
k=1

[Lh,k,nΦ(X̃h,k,n(1), δYn)− EΠh(n−1),δYn
Φ(X̃h(1), δYn)]

2.

(6.6)

The right-hand side of (6.6) is

O(1)
1

vh
EEMh,n,Ph

n−1
,δYn

[Lh,nR2(X̃h(1), δYn)].

The last term, in turn, can be bounded by

O(1)
1

vh

(
E

[
dPh

n−1

dMh,n
(X̃h(0), X̃h(1))R2(X̃h(1), δYn)

]
+ ER2(X̃h(1), δYn)

)
,

where X̃h(·) is as in A6.1. The above expression is easily seen to be O(1/vh) by
(6.2).

An extension: Dropping the mutual independence. As in Example 5.3 of section 5,
where we relaxed the condition on mutual independence of samples by instead assum-
ing A5.2, we can formulate a similar condition here which can be used to incorporate
variance reduction methods along with importance sampling. More precisely, letMh,n

be as before. Also let {X̃h,l,n(·); l ≤ vh} be as before, except that they need not be
(conditionally) mutually independent. Instead of assuming A6.1, assume A6.2 below.

A6.2. Let Φ(x, y) = φ(x)R(x, y), where φ(·) is a bounded and continuous real-
valued function. Then

E

[
1

vh

vh∑
k=1

(Lh,k,nΦ(X̃h,k,n(1), δYn)− EΠh(n−1),δYn
Φ(X̃h(1), δYn))

]2

1

converges to 0 uniformly in n as h→ 0.
The following extension of Theorem 6.2 can now be stated.
Theorem 6.3. Theorem 5.2 holds for the filter defined by (6.3) under A4.1, A4.2,

and A6.2.
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Remark on A6.1 and A6.2. Assumptions A6.1 and A6.2 are seen to hold for many
examples of interest. Perhaps most commonly, the desired change of measure is such
that

sup
h,n

sup
x,y∈G

dPh
n−1

dMh,n
(x, y) <∞.

In such a case A6.1 is clearly satisfied. Typically the importance sampling is with
respect to initial condition only, and Πh

n−1 is a discrete probability measure (see
Example 6.4). In such situations a natural choice of Mh,n is the measure obtained by
multiplying the probabilities of the points by appropriate weights which are uniformly
bounded in h and n. An important case where the uniform boundedness does not hold,
but where A6.1 can be verified, is described in Example 6.4. Note that if the measure
Mh,n only depends upon {δYj ; j ≤ n− 1}, then A6.1 can be simplified to

sup
h,n
E
dPh

n−1

dMh,n
(X̃h(0), X̃h(1)) <∞.

Furthermore, for all these situations, if the sampling is done from Mh,n, using some
variance reduction scheme of the types illustrated in section 5 rather than in a purely
i.i.d. manner, then A6.2 holds.

As stated above, of special interest is the case where the importance sampling
is with respect to the initial condition only. To illustrate this case, we consider the
special case of Example 5.6 of section 5, where the sampling filter without importance
sampling is given by (5.1) with X̃h,n,l(·) defined via (5.12b). Then Ph

n−1 can be
identified with the measure Πh(n − 1) × Ph

ζ in that this measure determines that of

(X̃h(0), X̃h(1)). Now, let us writeMh,n in a similar manner; namely, Mh,n =Mh,n
0 ×

Ph
ζ , where M

h,n
0 is a random measure on G. In this case, the measure transformation

is over the initial condition only and we have

Lh,n =
dΠh(n− 1)

dMh,n
0

and Lh,k,n =
dΠh(n− 1)

dMh,n
0

(X̃h,k,n(0)).

In the next example, we see that the idea of applying importance sampling to the
initial condition can be enhanced by the use of the next observation δYn, to determine
the Mh,n

0 .
Example 6.4 (observation dependent importance sampling). Appropriate mea-

sure transformations Mh,n (or Mh,n
0 as defined at the end of the above example)

can improve the estimates quite a bit [5, 29]. Better Mh,n will depend on the next
observation δYn, and we will illustrate the point via the signal model of Example 5.6
of section 5, where X̃h(·) is defined by (5.12). Data and examples of such a procedure
can be found in [29]. Again, A6.1 and the mutual absolute continuity are the only
conditions (in addition to A4.1 and A4.2) that need to be verified for Theorem 5.1
to hold for the Πh(·) defined in this example. Keep in mind that we are illustrating
only one type of procedure, and even that has many variations. Consider the following
procedure.

Suppose that Πh(n−1) is concentrated on the vh points {xh,l,n, l ≤ vh}, with the
lth point having probability Πh

l (n− 1). The paths emanating from some of the xh,l,n

might be “poor” predictors of the observation δYn in the sense that the conditional
density

p{δYn|X(n) = bh(x
h,l,n, ξh)}
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is very small with a high probability. For some other points xh,l,n, this value might
be high with a reasonable probability. It seems reasonable to explore the paths ema-
nating from the more promising initial points more fully, if this can be done without
(asymptotically) biasing the procedure. The main problem is that we do not know
(apart from the values of Πh(n − 1)) which are the more promising points and how
much more promising they are. The “weights” for the importance sampling are to be
determined by an exploratory sampling procedure, after which the sampling to get the
next estimate Πh(n) will be done. This “double” sampling explains the complexity
of the following algorithm. Nevertheless, such algorithms are sometimes useful [29]
in that the total computation for a filter with comparable accuracy can be less than
what is needed for a direct method such as that in Example 5.1.

The procedure starts by getting a “typical” value of bh(x
h,l,n, ξh). The word

“typical” is used loosely here. The aim is to get some preliminary approximation
to the “predictive values” of the trajectories emanating from the point, given the
next observation. This “typical value” might be an estimate of the mean value, or it
might be a simple sample value or an average of several sample values. We call these
the “indicator” values and denote them by X̂h,l,n(1), l ≤ vh. Then the “predictive
power” of this indicator value is computed, and the associated weights used to get the
importance sampling measure for the final computation of Πh(n). The details follow
in algorithmic form.

(1) Let X̂h,l,n(1) (l ≤ vh) denote an “indicator” quantity, which (hopefully) is
highly correlated with the “value” of sampling with initial condition xh,l,n.
(The points for which we get such an “indicator” quantity might also be
chosen by some sampling procedure.)

(2) Compute the conditional Gaussian density p(δYn|X(n) = X̂h,l,n(1)), and
define the “conditional likelihood” of the observation

ph,l,n =
p(δYn|X(n) = X̂h,l,n(1))∑

k Π
h
k(n− 1)p(δYn|X(n) = X̂h,k,n(1))

, l ≤ vh.(6.7)

The numerator of ph,l,n up to a normalizing factor is R(X̂h,l,n(1), δYn). Note that
ph,l,n is not a probability. If the numerator in (6.7) is the same for all points, then
ph,l,n = 1 for all l.

(3) Sample mh,n ≥ vh times (with replacement) from the set

{xh,l,n, l ≤ vh}
with weights proportional to the ph,l,nΠh

l (n− 1). Note that
∑

l p
h,l,nΠh

l (n−
1) = 1. This yields a set which we denote by

{xh,l,n, l ≤ mh,n}.
It is found in practice that the performance is often better if mh,n is sev-
eral times vh. This tends to assure a better spread for the support of the
conditional distribution.

(4) Sample {ζh,k,n, k ≤ mh,n} from Ph
ζ and compute

X
h,l,n

(1) = bh(x
h,l,n, ζh,k,n), k ≤ mh,n.(6.8)

(5) If vh = mh,n, then set X̃h,l,n(1) = X
h,l,n

(1) = xh,l,n+1. If vh < mh,n, then

resample at random (with replacement) vh times from {Xh,l,n
(1), l ≤ mh,n}

to get the set {X̃h,k,n(1), k ≤ vh}, and set xh,k,n+1 = X̃h,k,n(1).
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In this procedure, the measureMh,n was defined by definingMh,n
0 via the weight

Mh,n
0,k = ph,k,nΠh

l (n− 1)(6.9)

that it puts on the initial point xh,l,n. Finally, we use the filter defined by (6.3) with

Lh,l,n =
1

ph,l,n
.(6.10)

The set of likelihood functions clearly satisfy A6.1, and the corresponding measures
satisfy the mutual absolute continuity requirement.

Note on numerical data. Various forms of the suggested algorithmic forms have
been simulated on the four-dimensional problem of [4]. The model represented a ship
moving in a region limited by a shoreline, and this led to the nonlinearities. The
observations were angle only, and there was little data in each observation. We tried
to make comparisons with essentially the same program time used for the various
cases. While no effort was made to optimize the performance of any algorithm, certain
conclusions can be drawn. Wherever possible, use an “integration” method. They were
more efficient with “moderately” limited computation time and generally performed
well. Depending on the parameters, the Monte Carlo methods might be close. Variance
reduction methods definitely help. The observation dependent importance sampling
methods of the type of Example 6.4 further reduced the error variances by about 10%.
Now, drop the equal time constraints. There were lower bounds to the (experimental)
error variances for the integration algorithm, as its “order” increased. These bounds
are usually larger than the true variances and were larger than error variances for the
Monte Carlo methods for large numbers of samples. Owing to the large number of
samples (hence pseudorandom numbers) needed for the Monte Carlo, a considerable
effort needs to be put into the coding to achieve realistic execution times. Owing to
the several layers of sampling used in the observation dependent importance sampling
method, combinations of Monte Carlo and integration methods often improved on the
purely Monte Carlo, but there is no room for the many details here.

7. The continuous time problem. In this section we will study the continu-
ous time analogues of the various random sampling and combined random sampling-
integration algorithms studied in sections 5 and 6. Our basic filtering model will be
that in section 2. To fix ideas, we will begin by indicating the form of the approxi-
mating filter for the case where the random samples are mutually independent and
identically distributed, analogously to what was done in (5.1). We will then consider
a general form of the approximating filter which would cover not only the case of such
i.i.d. samples but also various variance reduction schemes and importance sampling
algorithms of the type studied in Examples 5.3, 6.1, and 6.4.

7.1. Example and motivation. In typical uses of the approximation (2.7),
the approximating signal process X̃h(·) is a piecewise constant interpolation of a
discrete time process. One good example is the Markov chain approximation such
as used in Example 5.7. Most current applications seem to use such Markov chain
based approximations, whether they are of the explicit forms discussed in [24] or other
forms which satisfy the required local consistency property, e.g., based on approximate
solutions to the Fokker–Planck equation over small intervals.

Following the idea and terminology of Example 5.7, let Xh
n denote the under-

lying Markov chain, and let X̃h(·) denote its piecewise constant interpolation, with
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interpolation interval δh. Then one can use the approximating filter (2.7). Since the
approximating process X̃h(·) is piecewise constant, R(X̃h

0,t, Y0,t) equals

exp

[t/δh]−1∑
k=0

[
g′(Xh

k ) [Y (kδh + δh)− Y (kδh)]−
δh
2

∣∣g(Xh
k )
∣∣2]

× exp
[
g′(Xh

[t/δh]) [Y (t)− Y ([t/δh]δh)]− t−[t/δh]δh
2 |g(Xh

[t/δh])|2
]
.

(7.1)

However, in practice observations cannot truly be taken continuously, and one would
incorporate the observation into the filter at the discrete time instants nδh only.
In fact, for such nonlinear problems the notion of continuous updating seems to be
a mathematical fiction, although the times between updating might be very small.
Thus one would approximate R(X̃h

0,t, Y0,t) by R
h(X̃h

0,t, Y0,t) which is defined by the
following (piecewise constant) expression

exp

[t/δh]−1∑
k=0

[
g′(Xh

k ) [Y (kδh + δh)− Y (kδh)]−
δh
2

∣∣g(Xh
k )
∣∣2] .(7.2)

Whatever the form of X̃h(·), whether it is obtained explicitly as an interpolation of a
discrete time chain Xh

n or not, the samples X̃h(nδh) are always a Markov chain. For
notational simplicity, we always write X̃h(nδh) = X

h
n .

A random sampling algorithm. The above paragraph argues that it is not a
restriction to require the approximating filter process to be piecewise constant. This
logic also holds for algorithms based on random sampling. It holds even if some higher-
order interpolation method (say that of Milstein or other types used in [17]) is used,
since even then we would use the interpolation to get a better approximation to the
signal process at discrete time instants nδh. Thus, in the approximate filters that are
considered here, we approximate the conditional distribution at the instants nδh, and
we suppose that the filter is constant on [nδh, nδh + δh).

Since the estimate of the conditional distribution will be updated at each nδh,
we could try to duplicate the various methods in Examples 5.1 to 6.4, with the basic
interval being δh, and then prove convergence as δh → 0. The resampling at the
beginning of each interval in the various examples exploited the updated information
to get more sample trajectories from the points which seemed to be more likely, in view
of the information in the observations. But random sampling also loses information.
There is always a chance that the better points will not be sampled. This chance is
reduced as vh increases. When resampling occurs very frequently, say at each time
instant nδh, the procedure can degenerate very fast as δh → 0, unless vh increases
fast enough as δh → 0. One can quantify such a statement. But it is also a common
observation in simulations, including the ones that we have carried out. Reference [6]
resamples at each discrete interval, in a “minimum variance” way, but vh must grow
as 1/δh. Such a rapid increase in v

h is an inefficient use of the computational resources,
especially in view of the fact that the estimates of the conditional distribution do not
change much in small intervals.

Owing to the above observations, we take the following “practical” approach.
Divide time into subunits of (small, but fixed—they do not go to zero) length ε, and
suppose that ε/δh = nh is always an integer. We resimulate the X̃h(·) each ε units of
time, although the observations are incorporated at the instants nδ.

The general model given below is motivated by the ideas of Examples 5.4 to 6.4,
and we give an analogue of condition A5.3 (namely, conditions A7.1, A7.2) which
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covers many cases of interest. But, for specificity, let us first consider the case where
the process X̃h(·) satisfies the consistency assumption A2.1 and the samples taken
on [nε, nε + ε) are mutually independent and independent of Y (·) given their initial
distribution Πh(nε). Denote these samples by {X̃h,l,n(·), l ≤ vh}. Define

Rh(X̃0,s, Ynε,nε+s)(7.3)

= exp

[s/δh]−1∑
k=0

[
g′(Xh

k ) [Y (nε+ kδh + δh)− Y (nε+ kδh)]−
δh
2

∣∣g(Xh
k )
∣∣2] .

Thus Rh(x0,s, Ya,b) differs from R(x0,s, Ya,b) only in that in the former the function
x(·) is replaced by the piecewise constant function with value x(kδh) on [kδh, kδh+δh).
The basic approximating filter based on random sampling for s = qδh < ε where q is
an integer is

〈Πh(nε+ s), φ〉 =
∑vh

l=1 φ(X̃
h,l,n(s))Rh(X̃h,l,n

0,s , Ynε,nε+s)/v
h

∑vh

l=1R
h(X̃h,l,n

0,s , Ynε,nε+s)/vh
.(7.4)

This is just the “continuous time” analogue of (5.1).
As stated earlier, we will suppose that Πh(·) is constant on the intervals [qδh, qδh+

δh). Alternatively, if desired, we can interpolate, and one natural interpolation would
use the form (7.4), but with the term

g′(Xh
[s/δh]) [Y (nε+ s)− Y (nε+ [s/δh]δh)]− s− [s/δh]δh

2
|g(Xh

[s/δh])|2(7.5)

added to the sum in (7.3). The treatment of both forms is nearly identical.
As in the discrete time case, we are interested in random sampling and random

sampling-integration algorithms which are more general than (7.4), with (conditional)
i.i.d. samples. We would like to allow the possibility of incorporating variance reduc-
tion methods as in Example 5.3, or perhaps the sampling can be guided using some
importance sampling scheme as in Examples 6.1 and 6.4. We might even be interested
in algorithms which are part integration and part random sampling, say of the form
discussed in Examples 5.6 and 5.7. In view of this, we work with the following general
form of the approximate filter, which is our continuous time analogue of the discrete
time filter defined via (5.10). The chosen general structure is motivated by the same
considerations which led to (5.10) and A5.11, the desire to include many types of
approximations of interest under one roof, with a general assumption which can be
verified in particular cases of interest, analogously to what was done for the discrete
time case. The conditions A7.1 and A7.2 hold for the independent samples case under
A2.1.

Let δh, ε, nh be as above. Define the approximating filter Πh(·) as follows. Having
defined Πh(t) for 0 ≤ t ≤ nε, let Ph,n

Πh(nε)
be conditionally independent of {Yt−Ynε; t ≥

nε} given Πh(nε). Define, for 1 ≤ j ≤ nh,

〈Πh(nε+ jδh), φ〉 =
∫
φ(x(jδh))R

h(x0,jδh , Ynε,nε+jδh)dP
h,n
Πh(nε)

(x(·))∫
Rh(x0,jδh , Ynε,nε+jδh)dP

h,n
Πh(nε)

(x(·)) .(7.6)

For points in [nε, (n + 1)ε) not of the form nε + jδh, the filter is defined via the
piecewise constant and right continuous interpolation. In the independent sample
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case (7.4), Ph,n
Πh(nε)

is the occupation measure defined analogously to the way it was

defined above (5.9) for the discrete time case. We assume that the family {Ph,n
Πh(nε)

}
satisfies A7.1 and A7.2 below. Given the very general structure allowed for the filter,
some condition such as A7.2 is needed for the continuous time problem in order to
avoid simulated processes that are “wild.” Under A2.1, condition A7.2 holds for the
i.i.d. case illustrated in (7.4), since there each X̃h,l,n(·) is a replica of the X̃h(·) of
A2.1 with initial conditions in the compact set G.

A7.1. For every bounded and continuous real valued function Φ(·) of x(·) on the
interval [0, ε] and which depends on x(·) only at a finite number of points,

lim
h→0

sup
n
E

[∫
Φ(x(·))dPh,n

Πh(nε)
(x(·))− EΠh(nε)Φ(X̃(·))

]2
1

= 0.

We will impose another condition on the Ph,n
Πh(nε)

. For motivation, consider the

case of independent samples discussed above. For µ > 0, δ > 0, define the set of paths

Cδ
µ =

{
x(·) : sup

s≤δ,t+s≤ε,t≤ε
|x(t+ s)− x(t)| ≥ µ

}
.

Then our second condition is the following.
A7.2.

lim
δ→0

lim sup
h

sup
n
EPh,n

Πh(nε)
(Cδ

µ) = 0 for each µ > 0.(7.7)

Remark on A7.1 and A7.2. The assumption A7.1 is similar to the assumption
(A5.3) made for the discrete time problem. For the cases where Ph,n

Πh(nε)
is constructed

via i.i.d. sampling or some variance reduction scheme, it is verified as easily as in the
discrete time case. Also, if this measure is constructed via a combination of sampling
and integration in manner similar to Example 5.7, where the observations are incorpo-
rated at each time nδh, one can again verify A7.1 by using the consistency condition
A2.1. The assumption A7.1 continues to hold if the samplings of the initial conditions
X̃h,l,n(0) are determined by importance sampling as in Example 6.4. Assumption A7.2
simply states that for small h, the sampled paths don’t change much in the mean over
small intervals, uniformly in n. For all the above examples this assumption can be
verified by using the consistency condition A2.1 on the X̃h(·) process.

The following lemma will be used in some of the tightness arguments used below.
Lemma 7.1 [19, Theorem 2.7b]. Let {Zn(·), n} be a family of processes with paths

in the Skorohod space D[S0; 0,∞), where S0 is a complete and separable metric space
with metric γ(·). For each δ > 0 and each t in a dense set, let there be a compact set
Sδ,t ⊂ S0 such that

sup
n
P{Zn(t) /∈ Sδ,t} ≤ δ.

Let F
n
t denote the minimal σ-algebra which measures {Zn(u), u ≤ t}, and let Tn(T )

denote the set of F
n
t -stopping times which are less than T > 0. Suppose that for each

T

lim
δ→0

lim sup
n

sup
τ∈Tn(T )

E [γ (Zn(τ + δ), Zn(τ)) ∧ 1] = 0.

Then {Zn(·)} is tight.
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Theorem 7.2. Let (X(·), Y (·)) be as in section 2. Assume A3.1, A7.1, and A7.2.
Then the conclusions of Theorem 3.1 hold for the approximate filter Πh(·) defined as
above.

Proof. Many of the details of the proof are the same as in the proof of Theorem
3.1 and its variations used in the proof of Theorem 5.2 and its successors for the
discrete time case. The key differences are in the proof of tightness of {Qhk,Tk(·); k ≥
1} for any sequences hk → 0, Tk → ∞, and the proof of the representation (3.8),
and we concentrate on these points. In the discrete time theorems, the tightness of
{Qhk,Tk(·); k ≥ 1} was essentially obvious due to the compactness of G. There was no
issue of “path properties,” in showing the tightness due to the discrete time parameter.
In the current continuous time case, we need to deal with the path properties. Owing
to the use of the weak topology, it is enough to prove the tightness of the set

{〈Πhk(tk + ·), φ〉;hk, Tk}

for each bounded and continuous real-valued function φ(·) on G.
In proving the tightness of the above family, we use the criterion in the lemma.

The main step is establishing that for each φ(·), as above,

lim
δ→0

lim sup
h→0

sup
t

sup
τ∈T h,t(ρ)

E
∣∣〈Πh(t+ τ + δ), φ〉 − 〈Πh(t+ τ), φ〉∣∣2

1
= 0,(7.8)

where T h,t(ρ) denotes the set of stopping times bounded by ρ for the process Πh(t+·).
We can assume without loss of generality that δ in the above expression is less than
ε. Thus t+ τ and t+ τ + δ are either in the same interval of the form [jε, (j + 1)ε) or
they are in adjacent such intervals. This observation along with an application of a
triangle inequality shows that, in order to prove (7.8), it suffices to prove that

lim sup
h→0

sup
j

sup
0≤K1≤K2≤nh,|K1−K2|δh≤δ

E
∣∣〈Πh(jε+K1δh), φ〉 − 〈Πh(jε+K2δh), φ〉

∣∣2
1

(7.9)

converges to 0 as δ → 0. Note that jε+K1δh and jε+K2δh are both in the interval
[jε, jε+ ε].

Now we bound the above expectation by the sum of the following three terms.
The first two terms are, for i = 1, 2,

lim sup
h→0

sup
j

sup
0≤Kiδh≤ε

F1(j, h,Kiδh),(7.10)

where

F1(j, h,Kiδh) =

E

[
〈Πh(jε+Kiδh), φ〉 −

EΠh(jε),Yjε,jε+Kiδh
φ(X̃(Kiδh))R

h(X̃0,Kiδh , Yjε,jε+Kiδh)

EΠh(jε),Yjε,jε+Kiδh
Rh(X̃0,Kiδh , Yjε,jε+Kiδh)

]2

1

.

The third term is

lim sup
h→0

sup
j

sup
0≤K1δh≤K2δh≤ε,|K1−K2|δh≤δ

F2(j, h,K1δh,K1δh),(7.11)
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where

F2(j, h,K1δh,K1δh) =

E

[
EΠh(jε),Yjε,jε+K1δh

φ(X̃(K1δh))R
h(X̃0,K1δh , Yjε,jε+K1δh)

EΠh(jε),Yjε,jε+K1δh
Rh(X̃0,K1δh , Yjε,jε+K1δh)

−
EΠh(jε),Yjε,jε+K2δh

φ(X̃(K2δh))R
h(X̃0,K2δh , Yjε,jε+K2δh)

EΠh(jε),Yjε,jε+K2δh
Rh(X̃0,K2δh , Yjε,jε+K2δh)

]2

1

.

In dealing with (7.11), owing to the properties of the | · |21 metric defined by
(4.14), we need only work with the differences of the numerators and denominators
separately. Then, (7.11) is easily dealt with using the continuity property of X̃(·). In
particular, it follows from the fact that for any bounded and continuous function φ(·)

lim
δ→0

sup
|K1−K2|δh≤δ

sup
π
E

[
Eπ,Yjε,jε+K1δh

φ(X̃(K1δh))R
h(X̃0,K1δh , Yjε,jε+K1δh)(7.12)

−Eπ,Yjε,jε+K2δh
φ(X̃(K2δh))R

h(X̃0,K2δh , Yjε,jε+K2δh)

]2
1

= 0,

where Kiδh ≤ ε.
Now we consider (7.10). By the definition of Πh(jε) in terms of Ph,j

Πh(jε)
in (7.6),

the first term inside the bars in (7.10) equals

∫
φ(x(Kiδh))R

h(x0,Kiδh , Yjε,jε+Kiδh)dP
h,j
Πh(jε)

(x(·))∫
Rh(x0,Kiδh , Yjε,jε+Kiδh)dP

h,j
Πh(jε)

(x(·)) .(7.13)

Again, we need only work with the differences of the numerators of the right-hand
term inside the bars in (7.10) and that in (7.13) for arbitrary bounded and continuous
φ(·).

The proof that the limit of (7.10) as δ → 0 is zero will use an approximation
method. For small ∆ > 0, with ε an integral multiple of ∆, define R∆(x0,s, Ya,a+s) by

exp

{ ∑
i:i∆<s

g′(x(i∆)) [Y (a+ i∆+∆)− Y (a+ i∆)]− ∆

2

∑
i:i∆<s

|g(x(i∆))|2
}
.

For each h, define

Ah,∆ = sup
Kiδh≤ε

sup
j
sup
π
Eπ[R

h(X̃0,Kiδh , Yjε,jε+Kiδh)−R∆(X̃0,Kiδh , Yjε,jε+Kiδh)]
2
1.

For each ρ > 0, there is ∆0 > 0 such that for ∆ < ∆0 and small h > 0 we have
Ah,∆ ≤ ρ. Define
Bh,∆ =

sup
Kiδh≤ε

sup
j
E

∫ [
Rh(x0,Kiδh , Yjε,jε+Kiδh)−R∆(x0,Kiδh , Yjε,jε+Kiδh)

]2
1
dPh,j

Πh(jε)
(x(·)).

(7.14)

By A7.2, for each ρ > 0 there is ∆0 > 0 such that for ∆ < ∆0, and small h > 0, Bh,∆ ≤
ρ. This assertion is proved as follows. Define x∆(t) = x(i∆) for t ∈ [i∆, i∆+∆). To
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prove the assertion, it is sufficient to show that

lim sup
h

sup
j

sup
Ki≤nh∫ [ Ki∑

l=0

[
g(x(lδh))− g(x∆(lδh))

]′
[Y (lδh + δh)− Y (lδh)]

]2

d[EPh,j
Πh(jε)

(x(·))]

(7.15)

is arbitrarily small if ∆ is small enough. By A7.2, we can suppose that the difference
of the g−terms in the bracket in (7.15) is as small as we wish, and this implies the
assertion.

Thus, to show that the limit of (7.10) is zero as δ → 0, it is sufficient to show that

lim
∆→0

lim sup
h→0

sup
j

sup
0≤Kiδh≤ε

E

∣∣∣∣
∫
φ(x(Kiδh))R

∆(x0,Kiδh , Yjε,jε+Kiδh)dP
h,j
Πh(jε)

(x(·))

−EΠh(jε),Yjε,jε+Kiδh
φ(X̃(Kiδh))R

∆(X̃0,Kiδh , Yjε,jε+Kiδh)

∣∣∣∣
2

1

= 0.

(7.16)

By A7.2, it is sufficient to show (7.16) if the Kiδh in the φ(x(Kiδh)) and φ(X̃(Kiδh))
are replaced by the closest integral multiple of ∆ for small ∆. Now, all the Kiδh in
(7.16) are integral multiples of ∆ for some fixed ∆. Hence, the sup0≤Kiδh≤ε in (7.16)
is redundant and can be dropped. We would like to use A7.1 at this point. But A7.1
holds only for each function Φ(·). In (7.16), ∆ is fixed, and we can suppose without
loss of generality that ε = k0∆ for some integer k0. Given any small ρ > 0, there is a
bounded set Bρ such that the values of {Y (jε+ t)− Y (jε), t ≤ ε} are confined to Bρ

with at least probability 1− ρ for all j. Because of this and the continuity of R∆(·),
we need only verify (7.16) for some finite set of values of the Y−variables. Due to this
and to the fact that k0 <∞, we need only evaluate (7.16) for each Y (·) and Kiδh ≤ ε
being some arbitrary multiple of ∆. Then A7.1 can be used and guarantees (7.16).
This completes the proof of tightness of {Qhk,Tk(·), k ≥ 1}.

We now prove the representation in (3.8). The general scheme used in Theorem
5.2 for this characterization will be followed. Let ψ(·) = (x(·), π(·), y(·), b(·)) denote
the canonical paths of the signal process, the conditional probability process, the
observation process, and the observation noise process. They are connected by y(t) =∫ t
0
g′(x(s))ds + b(t). For arbitrary bounded and continuous φ(·), arbitrary ψ(·), and

times t, s, define the function A(ψ(·); t, s)) by

A(ψ(·); t, s) = 〈π(t+ s), φ〉 − E{π(t),yt,t+s}[φ(X̃0,s)R(X̃0,s, yt,t+s)]

E{π(t),yt,t+s}R(X̃0,s, yt,t+s)
.(7.17)

Recall the definition of Ψω(·) from Theorem 3.1. We will also use other notations from
section 3. The aim of the proof of Theorem 3.2 in [3], which is our Theorem 3.1, was
to show that, for almost all ω and all t, s,

A(Ψω(·); t, s) = 0, w.p.1,(7.18)

which implies (3.8). In fact it suffices to consider s ≤ ε. Hereafter we will consider
only such values of s without any further comment.
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The statement in (7.18) will be proved by showing that

0 = E

∫
Qω(dψ) [A(ψ(·); t, s)]21 .(7.19)

The prelimit form of the right side of (7.19) is

E

∫
Qh,T (dψ) [A(ψ(·); t, s)]21 ,

which, by the definition of Qh,T (·), equals
1

T

∫ T

0

E
[
A(Ψh(·);u+ t, s)]2

1
du,(7.20)

where

A(Ψh(·); t, s) = 〈Πh(t+ s), φ〉 − E{Πh(t),Yt,t+s}[φ(X̃(s))R(X̃0,s, Yt,t+s)]

E{Πh(t),Yt,t+s}R(X̃0,s, Yt,t+s)
.(7.21)

In order to show (7.19), it suffices to show that

lim
h
sup
t
E[A(Ψh(·); t, s)]21 → 0.(7.22)

Furthermore, in view of the properties of the X̃(·) process and the tightness of the
set {Πh(t);h, t}, to prove (7.22) it is clearly sufficient to show that

sup
t
E

[
〈Πh(t+ s), φ〉 − E{Πh(t),Yt,t+s}[φ(X̃(s))Rh(X̃0,s, Yt,t+s)]

E{Πh(t),Yt,t+s}Rh(X̃0,s, Yt,t+s)

]2

1

→ 0(7.23)

as h→ 0.
Since s < ε, the points t and t+ s are either in the same subinterval of the form

[jε, (j + 1)ε] or are in adjacent intervals of this form. We consider below the case
of adjacent intervals. The arguments required for the same interval case are simpler
versions of the former case and thus are omitted. Let now t ∈ [jε+ iδh, jε+ iδh + δh)
and t+s ∈ [(j+1)ε+ i′δh, (j+1)ε+ i′δh+δh). Showing (7.23) is equivalent to proving
that, for each s,

E

[
〈Πh(t+ s), φ〉 −

E{Πh(jε+iδh),Yjε+iδh,t+s}
[
φ(X̃(αδh))R

h(X̃0,αδh , Yjε+iδh,(j+1)ε+i′δh)
]

E{Πh(jε+iδh),Yjε+iδh,t+s}R
h(X̃0,αδh , Yjε+iδh,(j+1)ε+i′δh)

]2
1

(7.24)

converges to 0 as h→ 0, uniformly in t, where α = nh + i
′ − i. Thus, |αδh − s| ≤ δh.

The expectation in (7.24) can be bounded above by the sum of

E

[
〈Πh(t+ s), φ〉 −

E{Πh((j+1)ε),Y(j+1)ε,t+s}
[
φ(X̃(i′δh))Rh(X̃0,i′δh , Y(j+1)ε,(j+1)ε+i′δh)

]
E{Πh((j+1)ε),Y(j+1)ε,t+s}R

h(X̃0,i′δh , Y(j+1)ε,(j+1)ε+i′δh)

]2
1

(7.25)

and

E

[
E{Πh((j+1)ε),Y(j+1)ε,t+s}[φ(X̃(i′δh))Rh(X̃0,i′δh , Y(j+1)ε,(j+1)ε+i′δh)]

E{Πh((j+1)ε),Y(j+1)ε,t+s}R
h(X̃0,i′δh , Y(j+1)ε,(j+1)ε+i′δh)

−
E{Πh(jε+iδh),Yjε+iδh,t+s}[φ(X̃(αδh))R

h(X̃0,αδh , Yjε+iδh,(j+1)ε+i′δh)]

E{Πh(jε+iδh),Yjε+iδh,t+s}Rh(X̃0,αδh , Yjε+iδh,(j+1)ε+i′δh)

]2

1

.

(7.26)
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Using the definition from (7.6) of Πh(t+ s) in terms of Ph,j+1
Πh((j+1)ε)

in (7.25) and

working with numerators and denominators separately, as we may, it follows that
showing the convergence to zero of the supt of (7.25) as h → 0 to zero is equivalent
to showing the same for

E

[ ∫
φ(x(i′δh))Rh(x0,i′δh , Y(j+1)ε,(j+1)ε+i′δh)dP

h,j+1
Πh((j+1)ε)

(x(·))

− E{Πh((j+1)ε),Y(j+1)ε,t+s}[φ(X̃(i′δh))Rh(X̃0,i′δh , Y(j+1)ε,(j+1)ε+i′δh)]

]2
1

.

(7.27)

Let ∆ > 0 be small. Now, repeat the logic which led to (7.16). By A7.2 and the
continuity properties of X̃(·), it is sufficient to prove the result if both of the Rh(·) in
(7.27) are replaced by R∆(·), and the i′δh in X̃(i′δh) and x(i′δh) are replaced by the
nearest integral multiple of ∆. Then A7.1 yields the desired convergence. This takes
care of (7.25).

We now turn to (7.26). This time we do not work with the numerators and
denominators separately. For motivation, note that if Πh(·) were the true conditional
distribution for the discrete time signal process X(nδh), then (7.26) is identically zero.
Let ∆ > 0 be small, and let ε be an integral multiple of ∆. Owing to the properties
of X̃(·) and the tightness of the set {Πh(t + ·);h, t}, it is sufficient to show that the
limh supt of (7.26) is zero if Rh(·) were replaced by R∆(·) and the iδh and i′δh were
integral multiples of ∆. Thus we can write t = jε+ k1∆ and t+ s = (j + 1)∆+ k2∆,
where ki∆ ≤ ε. Using the fact that the ki have only finitely many values, it is sufficient
to show that

limh supj E

[
E{Πh((j+1)ε),Y(j+1)ε,(j+1)ε+k2∆}[φ(X̃(k2∆))R

∆(X̃0,k2∆,Y(j+1)ε,(j+1)ε+k2∆)]

E{Πh((j+1)ε),Y(j+1)ε,(j+1)ε+k2∆}[R
∆(X̃0,k2∆,Y(j+1)ε,(j+1)ε+k2∆)]

−
E{Πh(jε+k1∆),Yjε+k1∆,(j+1)ε+k2∆}[φ(X̃(ε−k1∆+k2∆))R

∆(X̃0,ε−k1∆+k2∆,Yjε+k1∆,(j+1)ε+k2∆)]

E{Πh(jε+k1∆),Yjε+k1∆,(j+1)ε+k2∆}[R
∆(X̃0,ε−k1∆+k2∆,Yjε+k1∆,(j+1)ε+k2∆)]

]2
1

=0.

(7.28)

The difficulty in treating this term is that the initial times are different, being
(j + 1)ε in the first term and jε + iδh in the second. Because of this, we need to
represent both initial measures in terms of the same quantity, namely, in terms of
Ph,j

Πh(jε)
, and the details will now be given. Define the function

Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x

)
= E

[
φ(X̃(k2∆))R

∆(X̃0,k2∆, Y(j+1)ε,(j+1)ε+k2∆)
∣∣X̃(0) = x, Y(j+1)ε,(j+1)ε+k2∆

]
.

(7.29)

If φ(·) is equal to the constant function with value unity, we simply write 1 for φ

in (7.29). Then, using the definition (7.6) of Πh((j + 1)ε) in terms of Ph,j
Πh(jε)

, the

numerator of the first term inside the bars in (7.28) can be rewritten as∫
Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

(x(·))∫
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

(x(·)) .(7.30)

The denominator of the left-hand term inside the bars in (7.28) has the same repre-
sentation, but with 1 replacing φ. Thus, that left-hand term can be written as∫

Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

x(·))∫
Θ
(
1, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)dP

h,j
Πh(jε)

(x(·)) .(7.31)
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By A7.1, without changing the limits in (7.28), this fraction can be replaced by

E{Πh(jε),Yjε,(j+1ε)+k2∆}Θ
(
φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)

E{Πh(jε),Yjε,(j+1ε)+k2∆}Θ
(
1, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x(ε)

)
R∆(x0,ε, Yjε,(j+1)ε)

.

(7.32)

In turn, using the Markov property of X̃(·), the definition of Θ(·) as a conditional
expectation, and the fact that R∆(·) is the exponential of a sum, this equals

E{Πh(jε),Yjε,(j+1)ε)+k2∆}φ(X̃(ε+ k2∆))R
∆(X̃0,ε+k2∆, Yjε,(j+1)ε+k2∆)

E{Πh(jε),Yjε,(j+1)ε)+k2∆}R∆(X̃0,ε+k2∆, Yjε,(j+1)ε+k2∆)
.(7.33)

Now we turn our attention to the second term inside the bars in (7.28). This is
treated in essentially the same way as was the first term. Consider the numerator of
that term. The expectation, conditioned on

{X̃(ε− k1∆) = x, X̃0,ε−k1∆, Yjε+k1∆,(j+1)ε+k2∆},
is just

Θ(φ, k2∆, Y(j+1)ε,(j+1)ε+k2∆, x)R
∆(X0,ε−k1∆, Yjε+k1∆,(j+1)ε).

We proceed as we did above with the first term. Using the definition (7.6) yields
an expression analogous to (7.29). Then applying first A7.1 and then the Markov
property of X̃(·) to that expression yields that we can replace the second term in
(7.28) by (7.33) as well without changing the limit. We omit the details, which are
nearly the same as for the first term. Thus the term in the bars in (7.28) can be
replaced by zero without changing the limit.

The proof of (7.22) is now complete.
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Abstract. The linear-quadratic (LQ) control problem is considered for a class of infinite-
dimensional systems with bounded input and output operators, that are not exponentially stabi-
lizable, but only strongly stabilizable. A sufficient condition for the existence of a minimizing control
and of a stabilizing solution to the associated LQ Riccati equation is given. The main contribution
of this paper is the convergence of the stabilizing solutions of a sequence of finite-dimensional Riccati
equations to the strongly stabilizing solution of the infinite-dimensional Riccati equation. The result
is applied to a model of propagation of sound waves in a one-dimensional wave-guide.
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1. Introduction. Controllers designed on the basis of an infinite-dimensional
model of the plant are very often infinite-dimensional as well. In particular, this is
the case for LQ-, LQG-, and H∞-controllers. Of course, when one wants to actually
compute or even implement such a controller, one has to approximate it by a finite-
dimensional controller. Therefore, over the years much research has been directed
towards developing approximation schemes for these controllers and, in particular,
approximation schemes for numerical solutions of algebraic Riccati equations. Many
of the papers use an approach based on approximation results for C0-semigroups, i.e.,
they use a version of the Trotter–Kato theorem in the proof of convergence of the
solution of the Riccati equation (see, for instance, Banks and Burns [1], Gibson [9],
Ito [11], Kappel and Salamon [14], and the references therein).

In all previous papers it was assumed that A generates an exponentially stable
semigroup or that (A,B) is exponentially stabilizable. This is not always the case. In
the literature, there are many examples of systems with dissipative generators that
cannot be exponentially stabilized by a compact feedback operator (see Gibson [8]).
In this paper, we consider the linear-quadratic (LQ) Riccati equation for systems
Σ(A,B,C) with bounded input and output operator, but we assume that Σ(A,B,C)
is strongly stabilizable and not exponentially stabilizable. Such systems occur often
as models of flexible structures and in problems of wave propagation and scattering.
The lack of exponential stability makes the analysis more difficult and our main
contribution is the development of an approximation theory for stabilizing solutions
of the LQ Riccati equation under the relaxed stabilizability assumption of strong
stabilizability. Our present contribution is motivated by recent results on the existence
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of stabilizing solutions to Riccati equations for strongly stabilizable systems with
bounded inputs and outputs (see Oostveen and Curtain [20]).

In section 2, we introduce some of the basic notions and we derive sufficient con-
ditions for the existence and uniqueness of a strongly stabilizing solution to the LQ
Riccati equation for systems that are strongly stabilizable and detectable. Existence
results for (strongly) stabilizing solutions of more general Riccati equations can be
found in Staffans [23] and Mikkola [18]. We prove a sharper existence result, but more
importantly, our approximation results depend on the construction in our proof. Sec-
tion 3 contains results about the convergence of finite-dimensional approximations of
an infinite-dimensional system. The approximation result for the strongly stabilizing
solution of the algebraic Riccati equation then follows in section 4. This result is
specialized to dissipative systems with collocated actuators and sensors in section 5.
These systems have a state-space description Σ(A,B,B∗), where A generates a con-
traction semigroup (i.e., A is a dissipative operator). The terminology “collocated”
for the condition C = B∗ comes from the fact that this condition arises when actu-
ators and sensors are implemented at the same location. Although mathematically
very special, this class is very important from an applications point of view. They
are the typical example of systems that are strongly stabilizable, but not exponen-
tially stabilizable. Finally, in section 6, we illustrate the approximation result with
an example of LQ control for an acoustical problem. The model for this example
was described in Morse and Ingard [19] and Beale [2], and the approximation of the
system was taken from Ito and Propst [12].

2. The standard LQ Riccati equation for strongly stabilizable systems.
Consider the system

ż(t) = Az(t) +Bu(t), z(0) = z0,

y(t) = Cz(t),(2.1)

where A is the infinitesimal generator of a C0-semigroup T (t) on the separable Hilbert
space Z, B ∈ L(U,Z), C ∈ L(Z, Y ), where U and Y are separable Hilbert spaces
as well. In what follows we denote this system by Σ(A,B,C). We want to find
u ∈ L2(0,∞;U) that minimizes the quadratic cost criterion

J (u, z0) =
∫ ∞

0

(‖y(t)‖2 + ‖u(t)‖2)dt.(2.2)

Before we give conditions for the existence of a solution for this problem, we give a
number of definitions related to the stability of systems Σ(A,B,C,D) (i.e., systems
as in (2.1) where the second equation is replaced by y(t) = Cz(t) +Du(t) and D ∈
L(U, Y )). The following concept of a system was introduced in Weiss [24] in the more
general context of well-posed linear systems.

Definition 2.1. Consider the system Σ(A,B,C,D). We introduce the following
maps for this system.

• The input map Φt : L2(0, t;U)→ Z is given by

Φtu =

∫ t

0

T (s)Bu(s)ds.

If for all u limt→∞Φtu exists, then we define the extended input map Φ by

Φu = lim
t→∞Φtu.
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• The output map Ψt : Z → L2(0, t;Y ) defined by

(Ψtz)(·) = CT (·)z.
This map has a limit for t → ∞ as an operator from Z to Lloc2 (0,∞;Y ). If
the limit exists as an operator from Z to L2(0,∞;Y ), then it is called the
extended output map and denoted by Ψ. It is then given by

(Ψz)(·) = CT (·)z.
• The extended input-output map F : L2(0,∞;U)→ L2(0,∞;Y ) is given by

(Fu)(·) = Du(·) + C

∫ ∞

0

T (· − s)Bu(s)ds.

It is defined via a similar limiting procedure as the extended output map.
• For α ∈ R, let C

+
α = {s ∈ C|Re(s) > α}. The transfer function G(s) : C+

α →
L(U, Y ) is given by

G(s) = D + C(sI −A)−1B.

We remark that if T (t) is exponentially stable, then the extended input, out-
put, and input-output maps are well defined and G ∈ H∞. For our applications
exponential stability is too strong and so we introduce the following weaker notions.

Definition 2.2. Consider the system Σ(A,B,C,D) and the associated operators
defined above.

• T (t) is a strongly stable C0-semigroup if limt→∞ T (t)z = 0 for all z ∈ Z;
• Σ(A,B,C,D) is input stable if Φ ∈ L(L2(0,∞;U), Z);
• Σ(A,B,C,D) is output stable if Ψ ∈ L(Z,L2(0,∞;Y ));
• Σ(A,B,C,D) is input-output stable if F ∈ L(L2(0,∞;U),L2(0,∞;Y )).

If Σ(A,B,C,D) satisfies all the above notions, then we call it a strongly stable sys-
tem.

These stability notions could have been defined in a different way. For instance,
output stability is known to be equivalent to the condition C(sI − A)−1z ∈ H2(Y )
for all z ∈ Z. It is also equivalent to C being an infinite-time admissible observation
operator for T (t). Input stability is equivalent to the condition that B∗(sI−A∗)−1z ∈
H2(U) for all z ∈ Z and to B being an infinite-time admissible control operator for
T (t) (see, for instance, Hansen and Weiss [10]). Finally, input-output stability is
equivalent to G(s) ∈ H∞(L(U, Y )).

The intuition behind these definitions is that a system is input stable if every L2-
input results in a bounded state, a system is output stable if every initial condition
results in an L2-output and a system is input-output stable if an L2-input results in an
L2-output. A class of examples of strongly stable systems can be found in section 5.

Next we prove a result on the existence of a unique solution to the LQ control
problem.

Theorem 2.3. Consider the system Σ(A,B,C) with cost criterion (2.2).
a. Suppose that there exists an operator F ∈ L(Z,U) such that A+BF generates

a strongly stable semigroup TF (t) and Σ(A + BF,B, [FC ]) is output stable.
Then there exists a minimizing control u which is given by u(t) = −B∗X0z(t),
where X0 is the minimal self-adjoint nonnegative solution to the algebraic
Riccati equation

A∗Xz +XAz −XBB∗Xz + C∗Cz = 0(2.3)
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for all z ∈ D(A). Moreover, the corresponding minimal cost is given by

J (u, z0) = 〈X0z0, z0〉.
b. If, in addition, there exists an operator L ∈ L(Y,Z) such that A + LC gen-

erates a strongly stable C0-semigroup TL(t) and Σ(A+ LC,
[
L B

]
, C) is

input stable, then X0 is the unique self-adjoint nonnegative solution to (2.3).
Moreover, A−BB∗X0 generates a strongly stable semigroup.

Proof. a. Choosing u = Fz, we obtain

J (Fz, z0) =
∫ ∞

0

(‖CTF (t)z0‖2 + ‖FTF (t)z0‖2)dt

≤ const.‖z0‖2,
since Σ(A + BF,B, [FC ]) is output stable. So the system satisfies the conditions of
Theorem 6.2.4 in Curtain and Zwart [5] and there exists a minimal self-adjoint non-
negative solution X0 of (2.3), such that the minimal cost is J (u, z0) = 〈X0z0, z0〉.
From this we immediately obtain the following estimates, which we will use in the
proof of part b.

∫ ∞

0

‖B∗X0TX0
(t)z0‖2dt ≤ ‖X0‖‖z0‖2(2.4)

and ∫ ∞

0

‖CTX0
(t)z0‖2dt ≤ ‖X0‖‖z0‖2,(2.5)

where TX0(t) is the semigroup generated by A−BB∗X0.
b. We show that (2.4) and (2.5) hold if X0 is any nonnegative solution of the

Riccati equation (2.3). For clarity we write Π for an arbitrary nonnegative solution
and reformulate (2.3) as

A∗
ΠΠz +ΠAΠz +ΠBB

∗Πz + C∗Cz = 0,(2.6)

where AΠ = A−BB∗Π generates the semigroup TΠ(t). Let z = TΠ(t)z0 for z0 ∈ D(A)
and take the inner product with TΠ(t)z0 to obtain

〈ΠTΠ(t)z0, AΠTΠ(t)z0〉+ 〈ΠAΠTΠ(t)z0, TΠ(t)z0〉+ ‖B∗ΠTΠ(t)z0‖2 + ‖CTΠ(t)z0‖2 = 0.
Integrating with respect to t gives

〈ΠTΠ(t)z0, TΠ(t)z0〉+
∫ t

0

‖B∗ΠTΠ(s)z0‖2 +
∫ t

0

‖CTΠ(s)z0‖2 = 〈Πz0, z0〉,(2.7)

and this proves the claim.
c. We generalize Lemma 6.2.6 of Curtain and Zwart [5] to the strongly stable

case. Let Π be a nonnegative solution to (2.3) such that TΠ(t) is strongly stable.
Define the following subset of controls:

Ustab(z0) =

{
u ∈ L2(0,∞;U)|

z(t) = T (t)z0 +

∫ t

0

T (t− s)Bu(s)ds and z(t)→ 0 as t→∞
}
.
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This set is nonempty, since u(t) = −B∗ΠTΠ(t)z0 is in Ustab(z0); the closed-loop
system has the state z(t) = TΠ(t)z0 and u ∈ L2(0,∞;U) follows from part b, above.
Let Π̃ be any other nonnegative self-adjoint solution to (2.3). As in Lemma 6.2.6, it
is easily shown that for any u ∈ Ustab the cost on the finite-interval [0, te] satisfies∫ te

0

(‖y(t)‖2 + ‖u(t)‖2)dt = 〈z0, Π̃z0〉 − 〈z(te), Π̃z(te)〉

+

∫ te

0

〈(u(s) +B∗Π̃z(s)), (u(s) +B∗Π̃z(s))〉ds

≥ 〈z0, Π̃z0〉 − 〈z(te), Π̃z(te)〉.
Since Π̃ ≥ 0 and z(te)→ 0 as te →∞, we arrive at

〈z0, Π̃z0〉 ≤
∫ ∞

0

(‖y(t)‖2 + ‖u(t)‖2)dt
= J (u, z0)

for all u ∈ Ustab. Now u = −B∗ΠTΠ(·)z0 ∈ Ustab and so
〈z0, Π̃z0〉 ≤ J (u, z0) = 〈z0,Πz0〉,

where we have used (2.7) and the fact that TΠ is strongly stable. Thus, Π is the
maximal self-adjoint solution of (2.3).

d. We see that it remains to prove that A − BB∗X0 generates a strongly stable
C0-semigroup. To do this, we write

ż = (A−BB∗X0)z

= (A+ LC)z + (−LC −BB∗X0)z

and so

z(t) = TL(t)z0 −
∫ t

0

TL(t− s)
[
L B

] [ Cz(s)
B∗X0z(s)

]
ds.

Now, by the strong stability of TL(t), TL(t)z0 → 0 as t → ∞. Furthermore, u1(t) =
Cz(t) ∈ L2(0,∞;Y ) by (2.5) and u2(t) = B∗X0z(t) ∈ L2(0,∞;U) by (2.4). So
Lemma 12 in Oostveen and Curtain [20] applies to show that the integral term tends
to zero as t tends to infinity. So, we obtain that z(t) tends to zero as t goes to infinity,
and TX0

(t) is strongly stable.
We remark that a slightly less general version of this theorem was proven in

Oostveen and Curtain [20], in which it was assumed that one could take F = KC and
L = BK for some K ∈ L(Y,U). In Staffans [23] and Mikkola [18] abstract results on
more general Riccati equations are proven. However, Mikkola proved the existence of
a unique stabilizing solution, whereas we prove that the solution is unique in the class
of self-adjoint nonnegative operators. For interpretations of Theorem 2.3 in terms of
strong stabilizability and strong detectability, we refer to Curtain and Oostveen [4].

Next, we show how to reformulate the problem as an equivalent one for a strongly
stable system. This was also done in Oostveen and Curtain [20] under the assumption
that F = KC and L = BK. Our assumptions in this paper are weaker.

Theorem 2.4. Consider the problem of minimizing the cost functional (2.2)
subject to Σ(A,B,C) under the assumption that there exist F ∈ L(Z,U) and L ∈
L(Y,Z) such that
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A1. A+BF and A+LC generate strongly stable C0-semigroups TF (t) and TL(t),
respectively;

A2. Σ(A+BF,B, [FC ]) is input-output stable and output stable;
A3. Σ(A+LC,

[
L B

]
, F ) is input stable, output stable, and input-output sta-

ble.
Then this problem is equivalent to that of minimizing the cost functional

JF (v, z0) =
∫ ∞

0

(‖v(t) + Fz(t)‖2 + ‖y(t)‖2)dt(2.8)

subject to

ż(t) = (A+BF )z(t) +Bv(t), z(0) = z0,

y(t) = Cz(t).(2.9)

The optimal control for (2.8), (2.9) is given by

v(t) = −(F∗
FFF )

−1
F
∗
FΨF z0,(2.10)

where ΨF and FF are the extended output map and the extended input-output map,
respectively, of the system Σ(A + BF,B, [FC ], [

I
0 ]). Moreover, there exists a unique

nonnegative solution to the algebraic Riccati equation (2.3), which is given by

X = Ψ∗
F

[
I − FF (F

∗
FFF )

−1
F
∗
F

]
ΨF .(2.11)

Proof. a. Note that with u = v + Fz, the systems (2.1) (with D = 0) and (2.9)
have the same solution

z(t) = TF (t)z0 +

∫ t

0

TF (t− s)Bv(s)ds

and JF (v, z0) = J (u, z0). Therefore, the two optimization problems are equivalent
if J (u, z0) < ∞ for u ∈ L2(0,∞;U) if and only if v = u − Fz ∈ L2(0,∞;U).
Suppose first that v ∈ L2(0,∞;U). Since Σ(A + BF,B, F ) is input-output stable,
Fz(t)−FTF (t)z0 ∈ L2(0,∞;U) and since Σ(A+BF,B, F ) is output stable, FTF (t)z0
and hence Fz(t) ∈ L2(0,∞;U). Thus u ∈ L2(0,∞;U). The output stability and
input-output stability of Σ(A + BF,B,C) imply that Cz(t) ∈ L2(0,∞;Y ) which,
together with u ∈ L2(0,∞;U), shows that J (u, z0) <∞.

Conversely, suppose that J (u, z0) <∞ and write

z(t) = TL(t)z0 +

∫ t

0

TL(t− s)(Bu(s)− Ly(s))ds.

Then Fz(t)−FTL(t)z0 ∈ L2(0,∞;U) since Σ(A+LC,
[
B L

]
, F ) is input-output

stable. Also, FTL(t)z0 ∈ L2(0,∞;U), since Σ(A + LC,B, F ) is output stable. So
Fz(t) ∈ L2(0,∞;U) and therefore also v = u− Fz ∈ L2(0,∞;U).

b. We now obtain an explicit solution of the minimization of (2.8) for the stable
system (2.9) in terms of the bounded maps FF , ΨF given by

ΨF z0 =

[
F
C

]
TF (t)z0,

(FF v)(t) =

[
v(t)
0

]
+

[
F
C

] ∫ t

0

TF (t− s)Bv(s)ds.
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Since JF (v, z0) <∞ for all v ∈ L2(0,∞;U) we can write (2.8) equivalently as
JF (v, z0) = ‖ΨF z0 + FF v‖2.

Next we show that the cost functional JF is coercive in v. Let the operator FLF denote
the extended input-output map of the system Σ(A+LC,

[
B −L ]

,−F, [ I 0
]
).

By assumption A3, FLF ∈ L(L2(0,∞;U × Y ),L2(0,∞;U)). We show that FLFFF =
IL2(0,∞;U), using a frequency domain argument. Let ̂ denote Laplace transforms and
let v ∈ L2(0,∞;U), y ∈ L2(0,∞;Y ). Then,

( ̂FLF (v ⊕ y))(s)

=
([

I 0
]− F (sI −A− LC)−1

[
B −L ])( v̂(s)

ŷ(s)

)

and

(F̂F v)(s) =

([
I
0

]
+

[
F
C

]
(sI −A−BF )−1B

)
v̂(s).

Now,

( ̂FLFFF v)(s)

=
{
F (sI −A− LC)−1(LC −BF )(sI −A−BF )−1B

−F (sI −A− LC)−1B + F (sI −A−BF )−1B + I
}
v̂(s)

= F (sI −A− LC)−1 {−sI +A+BF + sI −A− LC + LC −BF}
·(sI −A−BF )−1Bv̂(s) + v̂(s)

= v̂(s).

Consequently, (FLFFF v)(t) = v(t) for all v ∈ L2(0,∞;U).
We deduce

‖v‖2 = ‖FLFFF v‖2
≤ ‖FLF ‖2‖FF v‖2
= ‖FLF ‖2〈FF v,FF v〉
≤ ‖FLF ‖2‖F∗

FFF v‖‖v‖.
Note that because of the identity FLFFF = I we cannot have ‖FLF ‖ = 0. Thus,

‖F∗
FFF v‖ ≥ ‖FLF ‖−2‖v‖.(2.12)

We can now apply the theory of paragraphs 1.1.1–1.1.3 in Lions [17] to show that
there exists a unique minimizing control v ∈ L2(0,∞;U) that is characterized by

F
∗
FFF v + F

∗
FΨF z0 = 0.(2.13)

Because (2.12) implies that F
∗
FFF is boundedly invertible, we can solve (2.13) for v

to obtain (2.10).
From Theorem 2.3 we know that

JF (v, z0) = J (u, z0) = 〈X0z0, z0〉
and (2.11) follows.
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It is interesting to note that although the strategy in Oostveen and Curtain [20]
is also to express the general control problem via a feedback in terms of an equivalent
stable one, the feedbacks are different and the formulas for X are very different. In
the stable case (F = 0, L = 0), however, the formulas for X coincide. For proving
convergence results for the standard LQ Riccati equation the approach in this paper
is more convenient.

It turns out that A1, A2, A3, below, are key conditions in proving our main
approximation result in section 4. Consequently, we introduce the following definition.

Definition 2.5. The system Σ(A,B,C) is strongly stabilizable-detectable if
there exist F ∈ L(Z,U) and L ∈ L(Y,Z) such that

A1. A+BF and A+LC generate strongly stable C0-semigroups TF (t) and TL(t),
respectively;

A2. Σ(A+BF,B, [FC ]) is input-output stable and output stable;
A3. Σ(A+LC,

[
L B

]
, F ) is input-output stable, input stable, and output sta-

ble.
We remark that if both A + BF and A + LC generate exponentially stable C0-

semigroups on Z, then the conditions A1, A2, and A3 hold automatically. For a more
detailed analysis of these conditions, we refer to Curtain and Oostveen [4].

3. Approximation for strongly stable systems. Consider again the system
on the Hilbert spaces Z, U , Y

ż(t) = Az(t) +Bu(t),(3.1)

y(t) = Cz(t)

and a sequence of approximating systems on the finite-dimensional spaces ZN =
R
k(N), UN = R

m(N), Y N = R
p(N),

żN (t) = ANzN (t) +BNuN (t),(3.2)

yN (t) = CNzN (t).

We assume the existence of injective linear maps

iN : Rk(N) → Z,

jN : Rm(N) → U,

kN : Rp(N) → Y

and surjective linear maps

πN : Z → R
k(N),

ρN : U → R
m(N),

σN : Y → R
p(N),

such that πN iN , ρN jN , and σNkN are identity maps and iNπN , jNρN , and kNσN are
orthogonal projections. Note that it is not necessary that (iN )∗ = πN , (jN )∗ = ρN ,
or (kN )∗ = σN . On the spaces R

k(N), R
m(N), and R

p(N) we will always consider the
induced inner products

〈z1, z2〉k(N) = 〈iNz1, iNz2〉Z ,
〈u1, u2〉m(N) = 〈jNu1, j

Nu2〉U ,
〈y1, y2〉p(N) = 〈kNy1, k

Ny2〉Y .
(AN )∗, (BN )∗, (CN )∗ will denote the adjoint matrices with respect to the induced
inner products. As we use the norms corresponding to these inner products as well,
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it is obvious that ‖iN‖ = ‖jN‖ = ‖kN‖ = ‖πN‖ = ‖ρN‖ = ‖σN‖ = 1. Define
ZN = range(iNπN ), UN = range(jNρN ), and Y N = range(kNσN ). Then

‖iNBNρN‖L(UN ,ZN ) = ‖BN‖L(Rm(N),Rk(N)),

‖kNCNπN‖L(ZN ,Y N ) = ‖CN‖L(Rk(N),Rp(N)),

and similar equalities hold for all operators defined in an analogous way.
Associated with Σ(A,B,C), we define the operators T,Φ,Ψ,F, G(s) as in Defini-

tion 2.1. The operators TN ,ΦN ,ΨN ,FN , GN (s) are defined in the same way, based
on the system Σ(AN , BN , CN ). In the latter case, we are dealing with a finite-

dimensional system. Hence, TN (t) = eA
N t and (ΨNz)(t) = CNeA

N tz.
Definition 3.1. Σ(AN , BN , CN ) converges strongly to Σ(A,B,C) if for all

z ∈ Z,
T (t)z = lim

N→∞
iNeA

N tπNz,

T ∗(t)z = lim
N→∞

iNe(A
N )∗tπNz

uniformly on compact time intervals, and for all z ∈ Z, u ∈ U , y ∈ Y ,
Bu = lim

N→∞
iNBNρNu,

B∗z = lim
N→∞

jN (BN )∗πNz,

Cz = lim
N→∞

kNCNπNz,

C∗y = lim
N→∞

iN (CN )∗σNy,

u = lim
N→∞

jNρNu,

y = lim
N→∞

kNσNy.

Note that the convergence of the semigroup in the above definition implies, by
taking t = 0, that for all z ∈ Z,

z = lim
N→∞

iNπNz.(3.3)

In connection with the convergence of a sequence of finite-dimensional systems
to an infinite-dimensional system, we introduce a notion of uniform stability of the
sequence of finite-dimensional systems.

Definition 3.2. Σ(AN , BN , CN ) is uniformly output stable if there exists c > 0
such that for all z ∈ Z,

sup
N

∫ ∞

0

‖kNCNeA
N tπNz‖2dt = sup

N

∫ ∞

0

‖kN (ΨNπNz)(t)‖2dt

≤ c‖z‖2.
Σ(AN , BN , CN ) is uniformly input-output stable if there exists c > 0 such that

sup
N
‖kNF

NρN‖ = sup
N
‖kNGN (s)ρN‖H∞

= sup
N
‖kNCN (sI −AN )−1BNρN‖H∞ ≤ c.

In the proof of the following lemma, as well as in all other convergence proofs in
this paper, we will use the fact that if the sequences of operators RN and SN converge
strongly to R and S, respectively, then RNSN converges strongly to RS.
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Lemma 3.3. Suppose that T (t) is strongly stable, Σ(A,B,C) is output stable,
the finite-dimensional systems Σ(AN , BN , CN ) converge strongly to Σ(A,B,C), and
Σ(AN , BN , CN ) is uniformly output stable. Then for all z ∈ Z,

lim
N→∞

kNΨNπNz = Ψz

in L2(0,∞;Y ) and

lim
N→∞

iN (ΨN )∗σNy = Ψ∗y

in Z for all y ∈ L2(0,∞;Y ).
Proof. For any t1 > 0, we obtain

‖Ψz − kNΨNπNz‖2L2(0,∞;Y )

=

∫ ∞

0

‖CT (t)z − kNCNeA
N tπNz‖2dt

=

∫ t1

0

‖CT (t)z − kNCNeA
N tπNz‖2dt

+

∫ ∞

t1

‖CT (t)z − kNCNeA
N tπNz‖2dt

=

∫ t1

0

‖CT (t)z − kNCNeA
N tπNz‖2dt

+

∫ ∞

0

‖CT (t+ t1)z − kNCNeA
N (t+t1)πNz‖2dt.

Now, the integrand of the second integral satisfies

‖CT (t+ t1)z − kNCNeA
N (t+t1)πNz‖2

= ‖CT (t+ t1)z − (kNCNeA
N (t+t1)πNz − kNCNeA

N tπNT (t1)z)

−kNCNeA
N tπNT (t1)z‖2

≤ (‖CT (t+ t1)z‖+ ‖kNCNeA
N t{eAN (t1)πNz − πNT (t1)z}‖

+‖|kNCNeA
N tπNT (t1)z‖)2

≤ 3‖CT (t+ t1)z‖2 + 3‖kNCNeA
N t{eAN (t1)πNz − πNT (t1)z}‖2

+3‖kNCNeA
N tπNT (t1)z‖2.

Hence,

‖Ψz − kNΨNπNz‖2L2(0,∞;Y )

≤
∫ t1

0

‖CT (t)z − kNCNeA
N tπNz‖2dt+ 3

∫ ∞

0

‖CT (t+ t1)z‖2

+3

∫ ∞

0

‖kNCNeA
N t{eAN t1πNz − πNT (t1)z}‖2

+3

∫ ∞

0

‖|kNCNeA
N tπNT (t1)z‖2

=: α1 + α2 + α3 + α4.
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Now we will derive estimates for each of the integral terms α1, α2, α3, α4. For α1 we
have

α1 ≤ 2
∫ t1

0

‖(C − kNCNπN )T (t)z‖2dt

+2 sup
N
‖kNCNπN‖2

∫ t1

0

‖T (t)z − iNeA
N tπNz‖2dt.

The right-hand side tends to zero as N tends to infinity by the Lebesgue dominated
convergence theorem because the systems Σ(AN , BN , CN ) are strongly convergent to
Σ(A,B,C). α2 satisfies

α2 = 2

∫ ∞

0

‖CT (t1 + t)z‖2dt = 2‖ΨT (t1)z‖ ≤ 2‖Ψ‖‖T (t1)z‖,

which tends to zero as t1 tends to infinity, independently of N , because of the
output stability of Σ(A,B,C) and the strong stability of T (t). Since the systems
Σ(AN , BN , CN ) are uniformly output stable, there exists a positive constant c, such
that

α3 ≤ 3c‖iNeAN t1πNz − T (t1)z‖2.

The right-hand side tends to zero as N tends to infinity because Σ(AN , BN , CN )
converges strongly to Σ(A,B,C). For the same constant c, we have

α4 ≤ 3c‖T (t1)z‖2,

the right-hand side of which tends to zero, independently of N, because T (t) is strongly
stable. These estimates together show that kNΨNπNz → Ψz strongly as N → ∞.
Because ‖iN (ΨN )∗σN‖ = ‖ΨN‖ ≤ c, we can use Lemma 3.5 (page 151) of Kato [15]
to argue that it is sufficient for the proof of convergence of iN (ΨN )∗σNy to Ψ∗y
to consider y ∈ L2(0,∞;Y ) with compact support (the argument being that the
class L2(0,∞)-functions with compact support is dense in L2(0,∞)). So, let y ∈
L2(0,∞;Y ) have support on [0, t1], t1 > 0. Then

‖Ψ∗y − iN (ΨN )∗σNy‖

≤
∫ t1

0

‖(T ∗(t)− iNe(A
N )∗tπN )C∗y(t)‖dt

+

∫ t1

0

‖iNe(AN )∗tπN‖‖(C∗ − iN (CN )∗σN )y(t)‖dt.

Both integrals tend to zero as N → ∞ because the systems Σ(AN , BN , CN ) are
strongly convergent to Σ(A,B,C).

Corollary 3.4. Under the assumptions of Lemma 3.3,

lim
N→∞

‖kNCN (sI −AN )−1πNz − C(sI −A)−1z‖H2(Y ) = 0

for all z ∈ Z.
Proof. This result follows directly by taking Laplace transforms in Lemma 3.3

and applying the Paley–Wiener theorem (see, e.g., Theorem A.6.21 in Curtain and
Zwart [5]).
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Lemma 3.5. Suppose that the assumptions of Lemma 3.3 hold and, in addi-
tion, Σ(A,B,C) is input-output stable and Σ(AN , BN , CN ) is uniformly input-output
stable. Then, for all u ∈ L2(0,∞;U),

lim
N→∞

kNF
NρNu = Fu

in L2(0,∞;Y ). Similarly, for all y ∈ L2(0,∞;Y ),
lim
N→∞

jN (FN )∗σNy = F
∗y

in L2(0,∞;U).
Proof. By the uniform input-output stability of the systems Σ(AN , BN , CN ),

the operators kNF
NρN are uniformly bounded in N . Therefore it is sufficient to

prove the convergence F
Nu → Fu for input functions u with compact support. Let

u ∈ L2(0,∞;U) with support in [0, t1], and let y, yN be defined by y = Fu, yN =

kNF
NρNu and define M1 = supN supt∈[0,t1] ‖iNeA

N tπN‖. Then

‖y(t)− yN (t)‖2

≤ 3
∫ t

0

‖(C − kNCNπN )T (s)Bu(t− s)‖2ds

+3 sup
N
‖kNCNπN‖

∫ t

0

‖(T (s)− iNeA
NsπN )Bu(t− s)‖2ds

+3M1 sup
N
‖kNCNπN‖

∫ t

0

‖(B − iNBNρN )u(t− s)‖2ds,

for 0 ≤ t ≤ t1. By the strong convergence of Σ(A
N , BN , CN ) to Σ(A,B,C) and the

Lebesgue dominated convergence theorem, it now follows that ‖y− yN‖L2(0,t1;Y ) → 0
as N →∞. Furthermore, defining

zu =

∫ t1

0

T (t1 − s)Bu(s)ds,

zNu =

∫ t1

0

eA
N (t1−s)BNρNu(s)ds,

we have, since u has support in [0, t1],

y(t+ t1) = (Ψzu)(t),

yN (t+ t1) = kN (ΨNzNu )(t).

Lemma 3.3 now applies to prove that ‖y − yN‖L2(t1,∞;Y ) → 0 as N →∞.
To prove the convergence of (FN )∗, note that because of the uniform boundedness

of (FN )∗ it is again sufficient to consider only y with compact support [0, t1]. The
proof then proceeds completely analogously to the case above.

Corollary 3.6. Under the assumptions of Lemma 3.5,

lim
N→∞

‖kNGN (s)ρN û(s)−G(s)û(s)‖H2(Y ) = 0

for all û(s) ∈ H2(U). Similarly, for all ŷ(s) ∈ H2(Y ),

lim
N→∞

jN (GN (s))∗σN ŷ(s)−G(s)∗ŷ(s)‖H2(Y ) = 0.
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Proof. This result follows directly by taking Laplace transforms in Lemma 3.5
and applying the Paley–Wiener theorem (see, e.g., Theorem A.6.21 in Curtain and
Zwart [5]).

We remark that the above properties even hold for û(s) ≡ u, ŷ(s) ≡ y (see
Corollary 3.4). However, in general we do not have that

lim
N→∞

‖kNCN (sI −AN )−1BNρN − C(sI −A)−1B‖H∞ = 0.

See Proposition 1 and the counterexample on page 1146 in Kappel and Salamon [14].

4. Approximation for strongly stabilizable-detectable systems. In this
section we will prove our main convergence result for Riccati equations for strongly
stabilizable-detectable systems. The idea will be to transform the problem to an
equivalent stable problem as in Theorem 2.4, and to apply the results for stable sys-
tems from section 3 to this stable problem. Before we prove this result in Theorem 4.2,
we state and prove the following lemma, which relates the strong convergence of a
system to which a feedback law is applied to the strong convergence of the original
system.

Lemma 4.1. Let the sequence of systems Σ(AN , BN , CN ) converge strongly to
Σ(A,B,C) and let the sequence of matrices FN ∈ R

m(N)×k(N) be chosen such that the
operator sequences jNFNπN ∈ L(Z,U) and iN (FN )∗ρN ∈ L(U,Z) converge strongly
to F and F ∗, respectively. Then Σ(AN + BNFN , BN , [F

N

CN ]) converges strongly to

Σ(A+BF,B, [FC ]) as N tends to infinity.
Proof. The only nontrivial part of the proof is the proof of the strong convergence

of the sequence iNe(A
N+BNFN )tπNz to TF (t)z, uniformly on compact time intervals,

as N tends to infinity. By Theorem 3.1.7 of Davies [7], this is equivalent to proving
that for all z ∈ D(A), there exists a sequence zN ∈ R

k(N) such that

iNzN → z,

iN (AN +BNFN )zN → (A+BF )z.
(4.1)

Because iNeA
N tπNz converges strongly to T (t)z, there exists a sequence of zN for

every z ∈ D(A) such that
iNzN → z,

iNANzN → Az.
(4.2)

Now taking this sequence zN , we obtain

iN (AN +BNFN )zN = iNANzN + iNBNFNzN .

From (4.2) it follows that the first term converges to Az. For the convergence of the
second term, note that the assumptions state that

iNBNρNu→ Bu for all u ∈ U and

jNFNπNz → Fz for all z ∈ Z,
and so, iNBNρN jNFNπNz = iNBNFNπNz → BFz. Now,

‖iNBNFNzN −BFz‖ ≤ ‖iNBNFN (zN − πNz)‖+ ‖iNBNFNπNz −BFz‖
≤ ‖iNBNFN‖‖(zN − πNz)‖+ ‖iNBNFNπNz −BFz‖.
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Evidently, the second term converges to zero. The same holds for the first term,
because ‖iNBNFN‖ is uniformly bounded by the uniform boundedness theorem and

‖(zN − πNz)‖ = ‖πN iNzN − πN iNπNz‖
≤ ‖πN‖ · ‖iNzN − iNπNz‖
≤ ‖πN‖ (‖iNzN − z‖+ ‖z − iNπNz‖)
→ 0.

Now, we can prove our main result of this section, which is the approximation of
a strongly stabilizing solution of the Riccati equation by a sequence of solutions to
finite-dimensional Riccati equations.

Theorem 4.2. Consider the algebraic Riccati equation (2.3), and assume that
1. the system Σ(A,B,C) is strongly stabilizable-detectable (i.e., there exist F ∈
L(Z,U) and L ∈ L(Y,Z) for which the properties A1–A3 in Definition 2.5
are satisfied);

2. there exists a sequence of systems Σ(AN , BN , CN ) which is strongly conver-
gent to Σ(A,B,C);

3. there exists a sequence of matrices FN ∈ L(Rk(N),Rm(N)) such that
a. jNFNπN → F strongly and iN (FN )∗ρN → F ∗ strongly, where F is the

operator from part 1.;
b. AN +BNFN is a stable matrix;

c. Σ(AN +BNFN , BN , [F
N

CN ]) is uniformly output stable;

d. Σ(AN +BNFN , BN , [F
N

CN ]) is uniformly input-output stable;

4. there exists a sequence of matrices LN ∈ L(Rm(N),Rp(N)) such that
a. AN + LNCN is a stable matrix;
b. Σ(AN + LNCN ,

[
BN LN

]
, FN ) is uniformly input-output stable.

Then for every z ∈ Z,
Xz = lim

N→∞
iNXNπNz,

where X ∈ L(Z) is the unique self-adjoint nonnegative solution of the algebraic Riccati
equation (2.3) and XN ∈ L(Rk(N)) are the unique self-adjoint nonnegative solutions
of the sequence of algebraic Riccati equations

(AN )∗XN +XNAN −XNBN (BN )∗XN + (CN )∗CN = 0.(4.3)

Moreover, denoting FX = −B∗X and FN
XN = −(BN )∗XN , the approximating closed-

loop systems

Σ

(
AN +BNFN

XN , B
N ,

[
FN
XN

CN

])

converge strongly to the infinite-dimensional closed-loop system

Σ

(
A+BFX , B,

[
FX
C

])
.

Proof. We apply Theorem 2.4 to the approximating finite-dimensional systems
Σ(AN , BN , CN ). Since AN +BNFN and AN +LNCN are stable matrices, all of the
assumptions A1–A3 are satisfied and the solutions to (4.3) are given by

XN = (ΨNF )
∗ [I − F

N
F ((F

N
F )

∗
F
N
F )

−1(FNF )
∗]ΨNF ,(4.4)
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where ΨNF and F
N
F are the output map and extended input-output map, respectively,

for the system Σ(AN +BNFN , BN , [F
N

CN ], [
I
0 ]). We apply Lemma 3.3 to obtain

lim
N→∞

(jN ⊕ kN )ΨNF π
Nz = Ψz in L2(0,∞;U ⊕ Y ),(4.5)

lim
N→∞

iN (ΨNF )
∗(ρN ⊕ σN )w = Ψ∗

Fw(4.6)

for all z ∈ Z and w ∈ L2(0,∞;U ⊕ Y ), where jN ⊕ kN denotes the direct sum of jN

and kN , defined by (jN ⊕ kN )(uN , yN ) = (jNuN , kNyN ).
Similarly, Lemma 3.5 yields

(jN ⊕ kN )FNF ρ
N → FF strongly,(4.7)

jN (FNF )
∗(ρN ⊕ σN )→ F

∗
F strongly(4.8)

as N → ∞. Analogously to the definition of FLF in the proof of Theorem 2.4, we
define F

N
LF to be the extended input-output map of the system

Σ(AN + LNCN ,
[
BN −LN ]

,−FN ,
[
I 0

]
).

Assumption 4a of the present theorem tells us that ‖FN
LF ‖ is uniformly bounded. Now

from assumption 3d, sup ‖FNF ‖ <∞, and from (2.12), we have
‖((FNF )∗FNF )−1‖ ≤ ‖FNLF ‖2.

This shows that ‖((FNF )∗FNF )−1‖ is bounded from above uniformly in N . We also
deduce that ‖jN ((FNF )∗FN )−1ρN‖ are uniformly bounded from above, the reason be-
ing that we use the induced inner products on R

m(N) and so ‖((FNF )∗FNF )−1‖ =
‖jN ((FNF )∗FN )−1ρN‖. Thus,

‖jN ((FNF )∗FNF )−1ρNv − (F∗
FFF )

−1v‖
≤ ‖jN ((FNF )∗FNF )−1ρNv − jNρN (F∗

FFF )
−1v‖

+ ‖jNρN (F∗
FFF )

−1v − (F∗
FFF )

−1v‖(4.9)

= ‖jN ((FNF )∗FNF )−1ρN
{
F
∗
FFF − jN (FNF )

∗
F
N
F ρ

N
}
(F∗

FFF )
−1v‖

+ ‖(jNρN − I)(F∗
FFF )

−1v‖
→ 0

as N →∞.
The representations (2.11) and (4.4), together with the convergence results in

(4.5)–(4.9), show that iNXNπN → X strongly asN →∞. It is an easy consequence of
the strong convergence of the stabilizing solutions that the optimal feedback operator
FN
XN

and its adjoint converge strongly to their infinite-dimensional counterparts. The
convergence of the approximating closed-loop systems now follows from the remark
before Theorem 4.2.

In the above theorem we have established the strong convergence of the approx-
imating closed-loop systems to the infinite-dimensional closed-loop system. In prac-
tice, however, one would like to apply the finite-dimensional feedback to the infinite-
dimensional plant. It is easy to see that the resulting closed-loop system

Σ

(
A+BjNFN

XNπ
N , B,

[
FN
XN

C

])

does converge strongly to the infinite-dimensional closed-loop system, as N tends to
infinity. However, we have not been able to show that A + BjNFNπN generates a
strongly stable semigroup. Indeed, we doubt that this is true.
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5. Applications to dissipative systems with collocated actuators and
sensors. The class considered in this section, although mathematically quite special,
is often used to model large flexible structures with collocated sensors and actuators
(see, for instance, Joshi [13]). Systems in this class are the classical examples of
systems that are strongly stabilizable but not exponentially stabilizable. The main
feature is that they may have infinitely many unstable poles, which means that they
are not exponentially stabilizable using a finite-rank, bounded input operator: ex-
ponentially stabilizable systems with a finite-rank, bounded input operator have at
most finitely many unstable poles (see Curtain and Zwart [5, Theorem 5.2.6]). The
state-space description is Σ(A,B,C), where A is a dissipative operator on the Hilbert
space Z, B ∈ L(U,Z) and B = C∗, D = D∗ ≥ 0. The terminology “collocated” for
the condition B = C∗ comes from the fact that the condition arises if the actuators
and sensors are implemented at the same location. This class was analyzed in Curtain
and van Keulen [3], where they showed that the transfer function was positive-real
and that the controllerK = −I robustly stabilized the system with respect to coprime
factor perturbations with a robustness margin of at least 1/

√
2.

We need to define notions of approximate controllability and approximate ob-
servability. We will not give the most intuitive definitions, but instead, we give an
equivalent technical condition. For a more detailed treatment, see, e.g., Curtain
and Zwart [5]. The system Σ(A,B,C) is approximately observable if the operator
Ψ : Z → L2(0,∞;Y ), given by (Ψz)(·) = CT (·)z, satisfies ker(Ψ) = {0}. The system
Σ(A,B,C) is approximately controllable if Σ(A∗, C∗, B∗) is approximately observable.
For a finite-dimensional system, these notions coincide with the usual controllability
and observability definitions.

We consider linear systems Σ(A,B,B∗) under the following assumptions.
H1. A generates a C0-semigroup of contractions T (t) on the separable Hilbert

space Z (i.e., A is a dissipative operator: 〈Az, z〉 + 〈z,Az〉 ≤ 0 for all z ∈
D(A)).

H2. U is a separable Hilbert space and B ∈ L(U,Z).
H3. Σ(A,B,B∗) is approximately observable.
H4. Σ(A,B,B) is approximately controllable.
H5. A has compact resolvent.

The algebraic Riccati equation associated with this system is

A∗Xz +XAz −XBB∗Xz +BB∗z = 0(5.1)

for all z ∈ D(A). The following properties of Σ(A,B,B∗) were proven under the
assumptions H1–H5 in [3, 6, 20, 22], respectively (see Oostveen and Curtain [21] for
more details).

P1. A − BB∗ generates the strongly stable C0-semigroup TB(t) and A∗ − BB∗

generates the strongly stable C0-semigroup T
∗
B(t).

P2.
∫∞
0
‖B∗TB(t)z‖2dt ≤ 1

2‖z‖2.
P3.

∫∞
0
‖B∗T ∗

B(t)z‖2dt ≤ 1
2‖z‖2.

P4. B∗(sI −A+BB∗)−1B ∈ H∞(L(U)) and ‖B∗(sI −A+BB∗)−1B‖∞ ≤ 1.
P5. There exists a unique self-adjoint nonnegative solution X to the algebraic

Riccati equation (5.1) and ‖X‖ ≤ 1.
The properties P1–P4 above can be summarized by saying that, choosing F = −B∗,
L = −B, the system Σ(A,B,B∗) is strongly stabilizable-detectable, i.e., Σ(A −
BB∗, B,B∗) is input stable, output stable, and input-output stable and A − BB∗

generates a strongly stable semigroup.
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The claims above that ‖B∗(sI − A + BB∗)−1B‖∞ ≤ 1 and ‖X‖ ≤ 1 were not
found in [20]. Therefore we will provide proofs for them here. First, note that for
G(s) = B∗(sI −A+BB∗)−1B

G(jω)∗G(jω) + (I −G(jω))∗(I −G(jω))

= 2G(jω)∗G(jω) + I −G(jω)∗ −G(jω)

= I +B∗(−jωI −A∗ +BB∗)−1(A+A∗)(jωI −A+BB∗)−1B

≤ I,

where the inequality follows from the fact that A is dissipative. Thus,

I −G(jω)∗G(jω) ≥ (I −G(jω))∗(I −G(jω)) ≥ 0.

So, G(jω)∗G(jω) ≤ I, which implies that ‖G‖∞ ≤ 1.
For the estimate of the norm of X, note that

〈Xz0, z0〉 ≤ J (−B∗z(t), z0) = 2
∫ ∞

0

‖B∗TB(t)z0‖2dt ≤ ‖z0‖2,

which implies that ‖X‖ ≤ 1.
We now suppose that U and Y are finite-dimensional, U = Y = R

m, and that
there exists a sequence of injective linear maps iN : Rn(N) → Z and a sequence of sur-
jective linear maps πN : Z → R

n(N) such that πN iN = In(N) and i
NπN is an orthogo-

nal projection on Z. We define a sequence of approximating systems Σ(AN , BN , CN )
on R

n(N), where AN : Rn(N) → R
n(N)N is such that

AN + (AN )∗ ≤ 0(5.2)

and BN , CN are chosen such that

BN = πNB,

CN = B∗iN .
(5.3)

Now, we can give sufficient conditions for Σ(AN , BN , CN ) to converge strongly
to Σ(A,B,B∗).

Lemma 5.1. Assume that the following conditions are satisfied.
a1. The sequence of injective maps iN : R

n(N) → Z and the sequence of surjec-
tive maps πN : Z → R

n(N) satisfy πN iN = In(N), i
NπN is an orthogonal

projection on Z, and iNπNz → z as N →∞ for all z ∈ Z.
a2. For all z ∈ D(A) there exists a sequence zN ∈ R

n(N) such that

‖iNzN − z‖ → 0 and

‖iNANzN −Az‖ → 0 as N →∞.
(5.4)

a3. For all z ∈ D(A∗) there exists a sequence zN ∈ R
n(N) such that

‖iNzN − z‖ → 0 and

‖iN (AN )∗zN −A∗z‖ → 0 as N →∞.
(5.5)

Then Σ(AN , BN , CN ) defined by (5.2), (5.3) converges strongly to Σ(A,B,B∗). More-
over, CN = (BN )∗.
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Proof. We first show that CN = (BN )∗. For u ∈ R
m, z ∈ R

n(N),

〈BNu, z〉Rn(N)

= 〈πNBu, z〉Rn(N)

= 〈iNπNBu, iNz〉Z
= 〈u,B∗(iNπN )∗iNz〉Rm

= 〈u,B∗iNπN iNz〉Rm

= 〈u,B∗iNz〉Rm

= 〈u,CNz〉Rm ,

using the facts that iNπN is an orthogonal projection and that πN iN = In(N).
From Theorem 3.1.7 on page 80 in Davies [7], we have that (5.4) is equivalent to

iNeA
N tπNz → T (t)z

uniformly on compact time-intervals for all z ∈ Z, and (5.5) is equivalent to

iNe(A
N )∗tπNz → T ∗(t)z

uniformly on compact time intervals for all z ∈ Z. Next, iNBN = iNπNB → B as
N → ∞ and CNπN = (BN )∗πN = B∗iNπN → B∗ as N → ∞, which completes the
proof.

Lemma 5.2. Let Σ(AN , BN , CN ) satisfy the conditions of Lemma 5.1. Then
CN = (BN )∗. Moreover, Σ(AN − BN (BN )∗, BN , CN ) is uniformly output stable
and uniformly input-output stable. If Σ(AN , BN , (BN )∗) is observable, then AN −
BN (BN )∗ is a stable matrix.

Proof. We have (BN )∗ = CN and AN+(AN )∗ ≤ 0. Therefore, the system Σ(AN−
BN (BN )∗, BN , (BN )∗) satisfies properties P3 and P4. Hence it is uniformly output
stable and uniformly input-output stable. The stability of AN −BN (BN )∗ follows as
in the infinite-dimensional case from the observability of the pair (AN , (BN )∗) and
AN + (AN )∗ ≤ 0. Consider solutions z(t) ∈ R

n(N) of

ż(t) = (AN −BN (BN )∗)z(t), z(0) = z0,

for arbitrary z0 ∈ R
n(N). We introduce as a Lyapunov function for this differential

equation V (z) = ‖z‖2. Then, if we differentiate V along solutions of the differential
equation, we obtain

d

dt
V (z(t))

= 〈z(t), ż(t)〉+ 〈ż(t), z(t)〉
= 〈z(t), (AN −BN (BN )∗)z(t)〉+ 〈(AN −BN (BN )∗)z(t), z(t)〉
= 〈(AN + (AN )∗ − 2BN (BN )∗)z(t), z(t)〉
≤ −2‖(BN )∗z(t)‖2,(5.6)

where the inequality follows from the dissipativity of AN . Now by Lasalle’s invariance
principle (see Lasalle [16]) all solutions z(t) converge to the largest AN −BN (BN )∗-
invariant subset of the set

S = {z ∈ R
n(N)| 〈(AN + (AN )∗ − 2BN (BN )∗)z, z〉 = 0}.
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Now let 0 �= z0 ∈ S, then for all t ≥ 0, z(t) = e(A
N−BN (BN )∗)tz0 ∈ S. And so, by (5.6)

0 =
d

dt
V (z(t)) ≤ −2‖(BN )∗z(t)‖2 = −2‖(BN )∗e(A

N−BN (BN )∗)tz0‖2.

Hence, for all t ≥ 0, (BN )∗e(A
N−BN (BN )∗)tz0 = 0, which by the observability as-

sumption implies that z0 = 0. Thus S = {0} and consequently AN − BN (BN )∗ is
stable.

Remark 5.3. If we assume that iNπNz → z and we choose AN = πNAiN , then
AN satisfies the assumptions of Lemma 5.1, i.e., AN+(AN )∗ ≤ 0 and for all z ∈ D(A),
there is a sequence zN which converges to z and for which iNANzN converges to Az.

Indeed, if we choose the sequence zN = πNz, then

iNzN = iNπNz → z

and

iNANzN = iNπNAiNπNz → Az,

because iNπN converges strongly to I, as N tends to infinity.
Furthermore, for z1, z2 ∈ R

n(N),

〈ANz1, z2〉Rn(N)

= 〈iNπNAiNz1, iNz2〉Z
= 〈AiNz1, iNπN iNz2〉Z since iNπN is an orthogonal projection

= 〈AiNz1, iNz2〉Z since πN iN = IN(n)

= 〈iNz1, A∗iNz2〉Z
= 〈iNπN iNz1, A∗iNz2〉Z since πN iN = IN(n)

= 〈iNz1, iNπNA∗iNz2〉Z since iNπN is an orthogonal projection

= 〈z1, πNA∗iNz2〉Rn(N) ,

and so (AN )∗ = πNA∗iN . Now,

〈(AN + (AN )∗)z, z〉Rn(N)

= 〈πN (A+A∗)iNz, z〉Rn(N)

= 〈iNπN (A+A∗)iNz, iNz〉Z
= 〈(A+A∗)iNz, iNπN iNz〉Z since iNπN is an orthogonal projection

= 〈(A+A∗)iNz, iNz〉Z since πN iN = IN(n)

≤ 0 since A is dissipative.

Thus AN + (AN )∗ ≤ 0.
The following corollary is now a direct consequence of Theorem 4.2, Lemmas 5.1

and 5.2, Remark 5.3, and the properties of systems Σ(A,B,B∗).
Corollary 5.4. Let the system Σ(A,B,B∗) satisfy the assumptions H1–H4, and

furthermore, assume that U = Y = R
m. Let the sequence of approximating systems

Σ(AN , BN , CN ) as in (5.2) and (5.3) satisfy the assumptions of Lemma 5.2. Then
XN → X strongly as N → ∞, where X and XN are the solutions of the Riccati
equation associated with Σ(A,B,B∗) and Σ(AN , BN , CN ), respectively.
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The class of dissipative systems with collocated actuators and sensors has a very
special structure. However, one can also allow hybrid systems composed of a dis-
tributed system of the structure Σ(A,B,B∗) coupled with a finite-dimensional system
Σ(Af , Bf , CF ). The composite system

Σ

([
A 0
0 Af

]
,

[
B
Bf

]
,
[
B∗ Cf

])

will satisfy the assumptions of our theory, provided that Σ(AN , BN , CN ) are chosen as
before and Σ(Af , Bf , Cf ) is minimal. This broadens the class of possible applications
considerably.

6. A numerical example: The one-dimensional wave equation with
boundary oscillators. In this section, we apply the approximation result to a model
of propagation of sound in a one-dimensional wave-guide of length 1, where the ends
react as linear oscillators to the acoustic pressure. Actuating and sensing take place
through the two ends.

Let subscripts x and t denote partial derivatives with respect to these variables.
Ψ(x, t) denotes the velocity potential, so that Ψx(x, t) is the particle velocity in the
fluid and Ψt(x, t) is the acoustic pressure. Now, Ψ satisfies the wave equation

Ψtt(x, t) = Ψxx(x, t), x ∈ (0, 1).

The displacements of the two ends η0(t) at x = 0 and η1(t) at x = 1 satisfy

d2η0

dt2
(t) + d0

dη0

dt
(t) + k0η0(t) = −ρ0Ψt(0, t) + f1(t),

d2η1

dt2
(t) + d1

dη1

dt
(t) + k1η1(t) = −ρ1Ψt(1, t) + f2(t),

where f1 and f2 are external forces at the ends. From continuity of velocity at the
boundary, we obtain

dη0

dt
(t) = −∂Ψ

∂x
(0, t),

dη1

dt
(t) =

∂Ψ

∂x
(1, t).

The measurements are taken to be proportional to the velocities at the endpoints

y1(t) =
1

2ρ0

dη0

dt
(t),

y2(t) =
1

2ρ1

dη1

dt
(t).

The model can be brought into first-order form straightforwardly, introducing z =
col(z1, z2, z3, z4, z5, z6) as the state, where z1 = Ψ, z2 = Ψt, z3 = η0, z4 = η1, z5 = η̇0

and z6 = η̇1. The state-space is then endowed with the norm corresponding to the
energy of the system (see Beale [2]). For the approximation that we want to perform, a
different state-space realization, introduced by Ito and Propst [12], is more convenient.
An important difference between the approach of Ito and Propst and the one of Beale
is that the former obtain an A-operator that has compact resolvent, but Beale does
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not. The approach of Ito and Propst is to decompose Ψ into a part w+ propagating
in the positive direction and a part w− propagating in the negative direction:

w+(x, t) =
1

2
(Ψt(x, t)−Ψx(x, t)),

w−(x, t) =
1

2
(Ψt(x, t) + Ψx(x, t)).

Defining φ0 = η0, φ1 = η1, ψ0 = η̇0, ψ1 = η̇1, we obtain

d

dt




w−(x, t)
w+(x, t)
φ0(t)
φ1(t)
ψ0(t)
ψ1(t)



=




w−
x (x, t)

−w+
x (x, t)
ψ0(t)
ψ1(t)

−ρ0w
−(0, t)− ρ0w

+(0, t)− k0φ0(t)− d0ψ0(t)
−ρ1w

−(1, t)− ρ1w
+(1, t)− k1φ1(t)− d1ψ1(t)



,

with boundary conditions

ψ0(t) = −w−(0, t) + w+(0, t),

ψ1(t) = w−(1, t)− w+(1, t).

The state-space is taken to be Z0 = L2(0, 1)×L2(0, 1)×R
4 with inner product (writing

z = col(w−(x), w+(x), φ0, φ1, ψ0, ψ1))

〈z, z̃〉 = 〈w−, w̃−〉L2
+ 〈w+, w̃+〉L2

+
k0

2ρ0
φ0φ̃0 +

k1

2ρ1
φ1φ̃1(6.1)

+
1

2ρ0
ψ0ψ̃0 +

1

2ρ1
ψ1ψ̃1.

The input and output spaces are U = Y = R
2. Let us define the operators A0, B0,

and C0 as

D(A0) = {z ∈ Z0 | w− ∈ H1(0, 1), w+ ∈ H1(0, 1),(6.2)

ψ0 = −w−(0) + w+(0), ψ1 = w−(1)− w+(1)},

A0z =




w−
x (x, t)

−w+
x (x, t)
ψ0(t)
ψ1(t)

−ρ0w
−(0, t)− ρ0w

+(0, t)− k0φ0(t)− d0ψ0(t)
−ρ1w

−(1, t)− ρ1w
+(1, t)− k1φ1(t)− d1ψ1(t)



,(6.3)

B0 =




0 0
0 0
0 0
0 0
1 0
0 1



, C0 =

[
0 0 0 0 1

2ρ0
0

0 0 0 0 0 1
2ρ1

]
.(6.4)

With these definitions, the system can be written as

ż = A0z +B0u,

y = C0z.

It is an easy computation to see that C0 = B∗
0 .
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In Ito and Propst [12], it was shown that A0 generates a C0-semigroup of contrac-
tions T0(t) on Z0 and A0 has compact resolvent. Because A0 has compact resolvent,
A0 has only point spectrum and it can be computed that λ ∈ σ(A0) if and only if λ
satisfies

0 = (λ2 + (d0 + ρ0)λ+ k0)(λ
2 + (d1 + ρ1)λ+ k1)e

λ(6.5)

−(λ2 + (d0 − ρ0)λ+ k0)(λ
2 + (d1 − ρ1)λ+ k1)e

−λ.

Except λ = 0, all eigenvalues have negative real part and occur in complex conjugate
pairs. The associated eigenvectors are given by

zλ =




(λ2 + (d0 + ρ0)λ+ k0)(λ
2 + (d1 − ρ1)λ+ k1)e

λx

λ2 + (d0 − ρ0)λ+ k0)(λ
2 + (d1 − ρ1)λ+ k1)e

−λx

−2ρ0(λ
2 + (d1 − ρ1)λ+ k1)

−2ρ1(λ
2 + (d0 + ρ0)λ+ k0)e

λ

−2ρ0(λ
2 + (d1 − ρ1)λ+ k1)λ

−2ρ1(λ
2 + (d0 + ρ0)λ+ k0)λe

λ



.

The vectors {zλ| λ ∈ σ(A)} form a complete orthogonal set in Z0, and all eigenvalues
are simple.

Because in acoustics, one is interested only in variations of the pressure, we
have to add an extra condition to “filter out” states that correspond to the hy-
drostatic pressure, i.e., the part of pressure that is constant in the spatial vari-
able. It can be checked that this corresponds to states that are a multiple of z0 =
col(k0k1, k0k1,−2ρ0k1,−2ρ1k0, 0, 0). This leads to the extra condition

∫ 1

0

w−(x)dx+
∫ 1

0

w+(x)dx− φ0 − φ1 = 0.

Therefore, we do not use Z0 as our state-space, but the quotient space

Z =

{
z ∈ Z0|

∫ 1

0

w−(x)dx+
∫ 1

0

w+(x)dx− φ0 − φ1 = 0

}
.

Z is a closed linear subspace of Z0 and thus a Hilbert space with the same inner
product. Define A = A0|Z . A is the generator of a C0-semigroup of contractions T (t)
in Z because T0(t) maps Z into Z (this follows from the fact that z0 is an eigenvector
of A and Z is the orthogonal complement of z0 in Z0).

A also inherits the properties that it is a Riesz-spectral operator and that it has
compact resolvent from A0. So A also has only a point spectrum and λ ∈ σ(A) if
and only if λ �= 0 and λ satisfies (6.5). Define B and C as the restrictions of B0 and
C0 to Z. Using the controllability and observability test in Theorem 4.2.3 of Curtain
and Zwart [5], it can be computed that Σ(A,B,C) is approximately controllable and
approximately observable. We show only the controllability, as the observability is
completely analogous. By Theorem 4.2.3 in Curtain and Zwart [5], Σ(A,B,C) is
controllable if for all λ ∈ σp(A)

(〈b1, zλ〉, 〈b2, zλ〉) �= 0,
where b1, b2 are the two columns of B. In our case,

(〈b1, zλ〉, 〈b2, zλ〉) = (−2ρ0(λ
2 + (d1 − ρ1)λ+ k1)λ, −2ρ1(λ

2 + (d0 + ρ0)λ+ k0)λe
λ).
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As 0 ∈ ρ(A), 〈b1, zλ〉 = 0 implies that λ2+(d1− ρ1)λ+ k1 = 0. Similarly, 〈b2, zλ〉 = 0
implies that λ2 + (d0 + ρ0)λ+ k0 = 0. But these two conditions together imply that
zλ = 0, which contradicts the fact that λ is an eigenvalue of A.

We can summarize the previous results by saying that C = B∗ and the system
Σ(A,B,B∗) satisfies the assumptions H1–H5 as in section 5. In particular, A−BB∗

generates a strongly stable semigroup TB(t). It is interesting to note that TB(t) cannot
be an exponentially stable semigroup for the following reason. Let Ã denote A for
the specific case that d0 = d1 = 0. This operator Ã satisfies Re〈Ãz, z〉 = 0 and so Ã
generates a unitary semigroup T̃ (t). Moreover,

A−BB∗ = Ã−BB∗ −

 0 d0 0

0 d1


 .

So A − BB∗ is a compact perturbation of Ã and the same holds for A + BF for
arbitrary bounded F . Now, because A−BB∗ generates a strongly stable contraction
semigroup TB(t), we can apply Theorem 2 of Gibson [8] to show that the semigroup
TF (t) generated by A+BF is exponentially stable if and only if both TB(t) and T̃ (t)
are exponentially stable. This is impossible, because T̃ (t) is unitary.

Next, we construct a sequence of approximating finite-dimensional systems, and
we will show that it satisfies the conditions that guarantee convergence of the approx-
imating solutions of the finite-dimensional LQ Riccati equations to the solution of the
infinite-dimensional LQ Riccati equation. Ito and Propst proposed an approximation
scheme for Σ(A0, B0, C0). We explain this scheme and then make an obvious modifica-
tion of it to obtain an approximation scheme for Σ(A,B,C). We use a spectral method
based on Legendre polynomials. This method is very well suited for our problem: it
is accurate and converges very fast (faster than the polynomial rate). Moreover, it
is known that this scheme does not produce extraneous eigenvalues, which standard
finite element and finite difference methods may do.

Let z = col(w−(x), w+(x), φ0, φ1, ψ0, ψ1) ∈ Z0. We define z
N
0 by

zN0 = πN0 z = (w−
0 , . . . , w

−
N , w

+
0 , . . . , w

+
N−1, φ

N
0 , φ

N
1 , ψ

N
0 , ψN1 )

T ∈ R
2N+5,

where φN0 = φ0, φ
N
1 = φ1, ψ

N
0 = ψ0, ψ

N
1 = ψ1, and w−

k , w
+
m, k = 0, . . . , N, m =

0, . . . , N−1, are defined as follows. Let Pk(x) be the Legendre polynomial of degree k.
The set {Pk(x), k ∈ N} forms an orthogonal basis of L2(−1, 1) and ‖Pk‖2L2(−1,1) = 2/

(2k+1). Hence the polynomials pk(x) =
√
2k + 1Pk(2x−1) form an orthonormal basis

for L2(0, 1). We expand w−(x) and w+(x) with respect to the basis {pk(x), k ∈ N}
and truncate these expressions as shown below:

w−
N (x) =

N∑
k=0

w−
k pk(x),

w+
N−1(x) =

N−1∑
k=0

w+
k pk(x).

Note the difference in notation between the approximating function w−
N (x) and the

coefficient w−
N . Let i

N
0 denote the corresponding embedding which associates with a

vector v in R
2N+5 an element in Z0, defined by

iN0 v = col

(
N∑
k=0

vk+1pk(x),

N−1∑
k=0

vN+2+kpk(x), v2N+2, v2N+3, v2N+4, v2N+5

)
.
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Next, we introduce

w̃−
N (x) =

N∑
k=0

w−
k pk(x) + apN+1(x),

w̃+
N−1(x) =

N−1∑
k=0

w+
k pk(x) + bpN (x),

where a and b are chosen such that w̃−
N (x) and w̃

+
N−1(x) satisfy the boundary condi-

tions

ψ0 = −w̃−
N (0) + w̃+

N−1(0),

ψ1 = w̃−
N (1)− w̃+

N−1(1).

We will now use w̃−
N (x) and w̃

+
N−1(x) to define the approximation A

N
0 of A0.

AN
0




w−
0
...

w−
N

w+
0
...

w+
N−1

φ0

φ1

ψ0

ψ1




=




a−0
...
a−N
a+
0
...

a+
N−1

ψ0

ψ1

−k0φ0 − d0ψ0 − ρ0w̃
−
N (0)− ρ0w̃

+
N−1(0)

−k1φ1 − d1ψ1 − ρ1w̃
−
N (1)− ρ1w̃

+
N−1(1)




,

and a−0 , . . . , a
−
N , a

+
0 , . . . , a

+
N−1 are defined via

dw̃−
N

dx
(x) =

N∑
k=0

a−k pk(x), −
dw̃+

N−1

dx
(x) =

N−1∑
k=0

a+
k pk(x).

The approximations BN
0 and CN

0 of B0 and C0 are given by

BN
0 =

[
0(2N+3)×2

I2

]
, CN

0 = (BN )∗.

The approximating state zN is now obtained by orthogonal projection of zN0 on the
(2N + 4)-dimensional linear subspace of R

2N+5 of vectors satisfying

∫ 1

0

N∑
k=0

w−
k pk(x)dx+

∫ 1

0

N−1∑
k=0

w+
k pk(x)dx− φ0 − φ1 = 0.

Let this orthogonal projection be denoted by χN and the associated embedding from
R

2N+4 into R
2N+5 by hN . The approximating system Σ(AN , BN , CN ) is obtained by

restricting AN
0 , B

N
0 , and C

N
0 to this (2N+4)-dimensional space, i.e., AN = χNAN

0 h
N ,

BN = χNBN
0 , C

N = CN
0 hN . The projection πN and embedding iN for the total

approximation are now given as

iN : R2N+4 → Z, iN = iN0 h
N ,

πN : Z → R
2N+4, πN = χNπN0 .

Now πN iN is an orthogonal projection in Z and iNπN = I2N+4.
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Table 6.1
Comparison of norms of the different approximations.

N ‖XN‖ ‖XN − πN iMXMπM iN‖
2 0.9802 6.31e-11
4 0.9802 1.81e-10
8 0.9802 6.25e-10
16 0.9802 2.32e-9
32 0.9802 1.57e-8
64 0.9802 0

In Ito and Propst [12] it was shown that for every z ∈ D(A) there exists a sequence
zN ∈ R

2N+4 such that

‖iNzN − z‖ → 0 and

‖iNANzN −Az‖ → 0,

as N → ∞. Similarly, we can prove that for all z ∈ D(A∗) there exists a sequence
zN ∈ R

2N+4 such that

‖iNzN − z‖ → 0 and

‖iN (AN )∗zN −A∗z‖ → 0.

It is easily shown that CN and BN converge strongly to C and B, respectively.
As in Lemma 5.1 these results imply that Σ(AN , BN , CN ) converges strongly to
Σ(A,B,B∗). Hence, we can conclude from Corollary 5.4 that if Σ(AN , BN , CN ) is
observable for all N , then the solution X of the infinite-dimensional LQ Riccati equa-
tion associated with Σ(A,B,B∗) can be approximated by the sequence of solutions
XN of the matrix LQ Riccati equations associated with Σ(AN , BN , CN ).
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Fig. 6.1. Closed-loop poles, N = 2, 4, 8, 16, 32, 64.
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Fig. 6.2. Closed-loop poles, N = 16, 32, 64.

We implemented the approximation scheme in Matlab. The values for the pa-
rameters we used are

ρ0 = ρ1 = 1,

d0 = d1 = 0.01,

k0 = k1 = 1.

We computed the approximating systems for N = 2, 4, 8, 16, 32, 64. Then we com-
puted the solutions to the Riccati equations corresponding to these approximations.
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Fig. 6.3. Open-loop step response, N = 16.
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Fig. 6.4. Closed-loop step response, N = 16.

To illustrate the convergence of the solutions, we compare the solutions in a number of
characteristics. First, we compute the matrix norms of the approximating solutions.
Second, we restrict X64 to the spaces on which the lower-order approximations are
defined and compute the norm of the difference: ‖XN −πN iMXMπM iN‖. This norm
measures to what extent the lower-order approximations matches the behavior of the
higher-order one on the lower-dimensional space. These values are listed in Table 6.1,
above.

Third, we give plots of the closed-loop poles. Finally, we computed the open-
loop and closed-loop step responses for N = 16 and N = 64. Because these were
indistinguishable for the two values of N used, we give only the plots for N = 16.

From these results, we observe the following. The norms of the approximations
are very close to each other, and far larger than the norm of the difference between
the low-order approximations and the restriction of X64 to the lower-order spaces.
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Fig. 6.5. Open-loop step response, N = 16.
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Fig. 6.6. Closed-loop step response, N = 16.

This indicates that the low-order approximations capture very well the behavior of
the infinite-dimensional solution on the finite-dimensional spaces on which they are
defined. The plots of the closed-loop poles in Figures 6.1 and 6.2 indicate that also
the closed-loop system matrices converge as N tends to infinity. As expected, since
the original system is not exponentially stabilizable, the poles are converging to the
imaginary axis. The plots of the step responses are not very different for the different
values of N . We plotted step responses for N = 16 in Figures 6.3 and 6.4. In
Figures 6.5 and 6.6 we plotted the response of the velocity potential Ψ(x, t) to a step
input at x = 0, both for the open-loop and closed-loop system.
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Abstract. We develop and analyze a superlinearly convergent affine-scaling interior-point New-
ton method for infinite-dimensional problems with pointwise bounds in Lp-space. The problem
formulation is motivated by optimal control problems with Lp-controls and pointwise control con-
straints. The finite-dimensional convergence theory by Coleman and Li [SIAM J. Optim., 6 (1996),
pp. 418–445] makes essential use of the equivalence of norms and the exact identifiability of the active
constraints close to an optimizer with strict complementarity. Since these features are not available
in our infinite-dimensional framework, algorithmic changes are necessary to ensure fast local conver-
gence. The main building block is a Newton-like iteration for an affine-scaling formulation of the
KKT-condition. We demonstrate in an example that a stepsize rule to obtain an interior iterate may
require very small stepsizes even arbitrarily close to a nondegenerate solution. Using a pointwise
projection instead we prove superlinear convergence under a weak strict complementarity condition
and convergence with Q-rate >1 under a slightly stronger condition if a smoothing step is avail-
able. We discuss how the algorithm can be embedded in the class of globally convergent trust-region
interior-point methods recently developed by M. Heinkenschloss and the authors. Numerical results
for the control of a heating process confirm our theoretical findings.
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1. Introduction. We introduce an affine-scaling interior-point Newton method
for the solution of the infinite-dimensional nonlinear optimization problem

minimize f(u)

subject to u ∈ B def
= {u ∈ Lp : a(x) ≤ u(x) ≤ b(x) almost everywhere (a.e.) on Ω}

(P)

and study its local convergence behavior in detail. Here Ω ⊂ R
n is a domain with

positive and finite Lebesgue measure 0 < µ(Ω) <∞, and

Lt = Lt(Ω), 1 ≤ t ≤ ∞,

denotes the usual Banach space of (equivalence classes of) real-valued measurable
functions for which the norm

‖u‖t def
=

(∫
Ω

|u(x)|t dx
)1/t

(t <∞), ‖u‖∞ def
= ess sup

x∈Ω
|u(x)|
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is bounded. Let 2 ≤ p ≤ ∞ and assume that the objective function f : D −→ R is
continuous on an open neighborhood D ⊂ Lp of B. Additional requirements on f will
be given below. The lower and upper bound functions a, b ∈ L∞ are assumed to have
positive distance from each other, i.e.,

ess inf
x∈Ω

(b(x)− a(x)) > 0.

Then B has a nonempty L∞-interior

B◦ def
=
⋃
δ>0

{u ∈ Lp : a(x) + δ ≤ u(x) ≤ b(x)− δ for almost all (a.a.) x ∈ Ω} .

Problems of type (P) arise, for instance, when the black-box approach is applied to
optimal control problems with bound-constrained Lp-control. See, e.g., the problems
studied by Burger and Pogu [5], Kelley and Sachs [17], Sachs [24], and Tian and Dunn
[25].

Our minimum assumptions on the objective function f follow.
Assumption.

(A1) f : D ⊂ Lp −→ R is twice continuously Fréchet differentiable with derivatives

g
def
= ∇f : D −→ Lp

′
,

∇2f : D −→ L(Lp, Lp′),
1

p
+

1

p′
= 1.

Moreover, there is Cg > 0 such that ‖g(u)‖∞ < Cg for all u ∈ B.
Since g(u) is an element of Lp

′
, the last requirement looks quite restrictive at

first view. However, the boundedness of ‖g(u)‖∞ is required only for u ∈ B, which
is a bounded subset of L∞. This together with the fact that in many applications
the gradient is defined via the solution of an adjoint differential equation can often be
used to establish this assumption. For details we refer to section 11, where we apply
our theory to the boundary control of a heating process.

The algorithm presented in this paper is based on the application of a Newton-like
iteration to an affine-scaling formulation of the first-order necessary optimality condi-
tions. For finite-dimensional problems this class of algorithms has been introduced and
analyzed by Coleman and Li [6], [7]. Extensions to problems with additional equality
constraints were studied in Dennis, Heinkenschloss, and Vicente [8], Heinkenschloss
and Vicente [15], and Vicente [27], [28]. In all of the above papers except for [28], the
affine-scaling Newton iteration is embedded in a trust-region interior-point algorithm
to achieve global convergence. In a recent paper (Ulbrich, Ulbrich, and Heinkenschloss
[26]) we extended the finite-dimensional global convergence theory of Coleman and
Li [7] for trust-region interior-point algorithms to the infinite-dimensional problem
class (P). The present paper continues these investigations and focuses on the lo-
cal superlinear convergence of a closely related affine-scaling interior-point Newton
method which plays the same important role in our setting as the ordinary Newton
method does in the local analysis of trust-region algorithms for unconstrained opti-
mization. Problem (P) is a special type of cone-constrained optimization problem in
Banach space. For this very general class of problems Alt [2] developed a Lagrange–
Newton-SQP method and proved quadratic convergence. A drawback of SQP-type
methods lies in the fact that in each step a linearly cone-constrained quadratic prob-
lem or, equivalently, a linear generalized equation has to be solved. In our setting
each SQP-subproblem would have the form (P) with the objective f replaced by a
quadratic approximation. The solution of these problems is by no means trivial and
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requires a multiple of the effort needed to perform a Newton-like step. Therefore, al-
though SQP-methods are quadratically convergent, their efficiency crucially depends
on the availability of fast solvers for the subproblems. The method proposed in this
paper will be shown to converge with Q-order 1 + β, 0 < β < 1, while, essentially,
each iteration requires only the solution of a linear equation, which is usually much
cheaper than solving an SQP-subproblem.

During the last fifteen years several attempts have been undertaken to develop
algorithms for which each iteration is not much more expensive than an ordinary
Newton step. One of these is the projected Newton method which was introduced
by Bertsekas [3] for finite-dimensional bound-constrained problems. Kelley and Sachs
[17] extended this method to problems of type (P) with special structure and proved
local convergence with Q-rate 1 + β, 0 < β < 1. The class of problems addressed in
[17] is essentially the same as the one discussed in section 8 of this work. Although
it is possible in the finite-dimensional case to prove quadratic convergence (see [3]),
Kelley and Sachs could not establish this result in their infinite-dimensional setting. In
this paper we develop local convergence results for infinite-dimensional affine-scaling
interior-point Newton methods which are similar to those by Kelley and Sachs for
projected Newton methods. Like Kelley and Sachs, we observe a gap between the
achievable convergence rate in the finite- and infinite-dimensional settings. Our theory
covers a more comprehensive problem class and requires weaker assumptions than that
for projected Newton methods in [17]. The cost for one iteration of our algorithm is
dominated by the solution of a linear equation and is therefore comparable to that of
a projected Newton step.

The development of a local convergence theory for our infinite-dimensional setting
turns out to be much more delicate than in the finite-dimensional case. First of all,
strict complementarity, i.e., g(ū)(x) �= 0 for a.a. x ∈ Ω with ū(x) ∈ {a(x), b(x)}, at a
local solution ū ∈ B of (P) does not guarantee that the absolute value of the gradient
g(ū) is uniformly bounded away from zero on the active set. As a consequence, even for
u ∈ B arbitrarily close to ū, the active set at ū cannot be identified exactly by means
of the information available at u. And, finally, since the Lt- and L∞-norm, 1 ≤ t <∞,
are not equivalent, an iterate uk may be very close to the solution ū in Lt but still
deviate substantially from ū on a small set of nonzero measure. These are the main
reasons why—in contrast to the finite-dimensional case—it seems not to be possible
to achieve quadratic convergence in our general setting. They also make necessary
several modifications of the original finite-dimensional algorithm investigated in [6]
and [7] to establish superlinear convergence in the infinite-dimensional framework.
Essentially, these modifications consist of the enforcement of strict feasibility by a
modified projection instead of a stepsize rule and the introduction of a smoothing
step to overcome the nonequivalence of norms. An example that proves the necessity
of the first modification is given in Example 6.3.

The difficulties described and the necessity of modifications arise not only the-
oretically, but can also be observed in the finite-dimensional numerical practice. In
Examples 6.3 and 6.5 we discuss in detail a scenario where our proof-driven modifica-
tions are shown to be necessary for mesh-independent convergence behavior. In this
example, a simple problem of type (P) is investigated that meets all our assumptions.
By discretizing problem (P) a finite-dimensional bound-constrained problem (PD) is
obtained. To compute an approximate solution of (P) we apply a finite-dimensional
analogue of our affine-scaling interior-point Newton method to the discretized problem
(PD). The algorithm performs almost independently of the mesh size of the discretiza-
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tion and converges locally superlinearly (very close to the solution even quadratically
due to the finite-dimensionality of (PD)). This observed mesh-independent behav-
ior can be viewed as the natural finite-dimensional counterpart to the availability
of an infinite-dimensional convergence theory for this method. For comparison, we
also apply to (PD) the affine-scaling interior-point Newton method without our mod-
ifications, which in finite dimensions is locally quadratically convergent [6], [7]. It
turns out that the region of quadratic convergence is very small and, in addition,
shrinks rapidly for increasingly fine meshes. Therefore, this original algorithm is not
mesh-independent. This shows that the development of efficient algorithms for the
solution of infinite-dimensional optimization problems also leads to improved finite-
dimensional methods.

In the following we give a rough outline of the theory developed in this paper. As
mentioned above, the heart of our algorithm is a Newton-like step applied to the affine-
scaling formulation d(u)g(u) = 0 of the Karush–Kuhn–Tucker (KKT) conditions.
Here d(u) ∈ L∞ denotes a suitably chosen weighting function, the affine-scaling func-
tion. In the Newton equation the generally nonexisting derivative of u �−→ d(u)g(u)
is replaced by an appropriate operator G(u). If usk ∈ B◦ denotes the current (actually
smoothed; see below) iterate, then the affine-scaling Newton step reads

G(usk)(u
n
k+1 − usk) = −d(usk)g(usk).

The analysis of this iteration will be carried out under a regularity assumption on
G(u) and the following smoothness assumption.

Assumption.
(A2) There are 2 ≤ q < r ≤ s ≤ ∞, s ≥ p, such that g : B ⊂ Ls −→ Lr is Lipschitz

continuous with constant Lg and g : B ⊂ Ls −→ Lq is Lipschitz continuously
Fréchet differentiable. We denote the Lipschitz constant of ∇g = ∇2f by Lg′ .

We establish the estimate ‖unk+1 − ū‖q = o(‖usk − ū‖s) if strict complementarity

holds at the local solution ū of (P), and ‖unk+1 − ū‖q ≤ C‖usk − ū‖1+βs , 0 < β < 1,
if a slightly stronger strict complementarity condition is satisfied. This discrepancy
of the norms is, among other things, caused by the fact that the complementarity
can be arbitrarily weak on small sets. To overcome this difficulty we follow [17] and
assume the availability of a smoothing step uk ∈ B◦ �−→ usk = S◦

k(uk) ∈ B◦ with
‖usk − ū‖s ≤ CS‖uk − ū‖q. Moreover, since unk+1 may lie outside of B◦, we define a
back-transport u �−→ P [usk](u) ∈ B◦ by an interior-point modification of the pointwise
projection onto B. We will see that a stepsize rule is inappropriate in our framework,
although it yields quadratic convergence in the finite-dimensional case. We prove that
the combination

uk ❀ usk = S◦
k(uk) ❀ unk+1 ❀ uk+1 = P [usk](u

n
k+1)

generates sequences (uk) and (usk) that converge superlinearly to ū in Lq and Ls,
respectively. If the stronger strict complementarity condition holds we prove con-
vergence with Q-rate 1 + β. We apply our results to a class of problems with L2-
regularization for which a projected Newton method was analyzed in [17] and show
that the assumptions therein imply ours. For this problem class a smoothing step can
be derived from a fixed point formulation of the KKT-conditions. Moreover, we show
that the second-order sufficiency condition of Dunn and Tian [9] implies our regular-
ity assumption on G. Finally, we discuss how our algorithm can be embedded in the
globally convergent class of trust-region interior-point methods recently introduced in
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[26]. The resulting method is applied to the boundary control of a heating process
which was already considered in [5], [20].

This paper is organized as follows. In section 2 we introduce some notation and
put together several important estimates for Lp-spaces. Moreover, we state the first-
order necessary optimality conditions for problem (P) in standard- and affine-scaling
formulation. Our particular choice of the affine-scaling function and the basic affine-
scaling Newton step are introduced in section 3. Here we discuss also why an iteration
based on this step alone is, in general, neither well-defined nor convergent and sketch
the idea of a smoothing step and a back-transport that take care of these problems.
An outline of our algorithm and its convergence properties in a clearly arranged ab-
stract setting is given in section 4. In section 5 we carry out a thorough analysis of the
Newton-like step. In section 6 the affine-scaling interior-point Newton algorithm is
formulated. Moreover, we introduce a back-transport based on a pointwise projection
onto B, explain why in our infinite-dimensional setting a stepsize-rule is not suitable
for a back-transport, and address the smoothing step. Our convergence results are
presented in section 7. In section 8 we apply our results to a class of L2-regularized
problems and show that our assumptions are weaker than those used in [17]. In
section 9 we discuss the relationship between sufficient second-order conditions devel-
oped in [9] and the regularity assumptions we impose on the approximate derivative
operator G. Section 10 addresses the question of how our algorithm can be used to
accelerate the globally convergent class of trust-region interior-point algorithms re-
cently proposed in [26]. Finally, we present numerical results for the boundary control
of a heating process in section 11.

2. Preliminaries.

2.1. Notation. We write Bc = Ω \ B for the complement of a measurable set
B ⊂ Ω and denote the characteristic function of B by χB , i.e., χB(x) = 1 for x ∈ B,
and χB(x) = 0 otherwise. If v : Ω −→ R is measurable, then we set vB

def
= χBv.

Moreover, we write ‖ · ‖t,B for ‖χB · ‖t, 1 ≤ t ≤ ∞.

L(Y,Z) is the space of bounded linear operators from the Banach space Y into
the Banach space Z. The operator norm on L(Lq1 , Lq2) is denoted by ‖ · ‖q1,q2 . We
write I for the identity operator y �−→ y. As representation of the dual space of
Lt, 1 ≤ t < ∞, we choose Lt

′
, 1/t + 1/t′ = 1, with the corresponding dual pairing

〈v, w〉 = ∫
Ω
v(x)w(x)dx, v ∈ Lt, w ∈ Lt

′
.

2.2. Some inequalities. For convenience, we recall a couple of well-known norm
estimates for Lp-spaces.

Lemma 2.1. For all 1 ≤ q1 ≤ q2 ≤ ∞ and v ∈ Lq2(Ω) we have

‖v‖q1 ≤ mq1,q2‖v‖q2

with mq1,q2 = µ(Ω)
1
q1

− 1
q2 . Here 1/∞ has to be interpreted as zero.

Proof. See, e.g., [1, Thm. 2.8].

Lemma 2.2 (interpolation inequality). Given 1 ≤ q1 ≤ q2 ≤ ∞ and 0 ≤ θ ≤ 1,
let 1 ≤ q0 ≤ ∞ satisfy 1/q0 = θ/q1 + (1− θ)/q2. Then for all v ∈ Lq2 ,

‖v‖q0 ≤ ‖v‖
θ
q1
‖v‖1−θq2

.(1)

Proof. See [26, Lem. 5.2].
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Lemma 2.3. Let q0 ∈ [1,∞] and q1, q
′
1 ∈ [1,∞] with 1/q1 + 1/q′1 = 1 be given.

Then for all u ∈ Lq0q1 and v ∈ Lq0q
′
1 we have

‖uv‖q0 ≤ ‖u‖q0q1‖v‖q0q′1 .

Proof. In the nontrivial case q0 <∞, apply Hölder’s inequality:

‖u‖q0q0q1‖v‖
q0
q0q′1

= ‖|u|q0‖q1‖|v|q0‖q′1 ≥ ‖|u|
q0 |v|q0‖1 = ‖uv‖q0q0 .

Lemma 2.4. For v ∈ Lq, 1 ≤ q <∞, and all δ > 0 holds

µ ({x ∈ Ω : |v(x)| ≥ δ}) ≤ δ−q‖v‖qq.

Proof.

‖v‖qq = ‖|v|q‖1 ≥ ‖χ{|v|≥δ}|v|q‖1 ≥ µ({|v| ≥ δ})δq.

2.3. Necessary optimality conditions. The method is based on an affine-
scaling formulation of the first-order necessary optimality conditions. A detailed
derivation of these conditions can be found in [26]. Therein we also prove second-
order necessary conditions which are not needed in our context.

Theorem 2.5 (first-order necessary optimality conditions, KKT conditions). Let
ū be a local minimizer of problem (P) and assume that f is differentiable at ū. In the
case p =∞ assume in addition that the gradient satisfies g(ū) ∈ L1. Then

(O1) ū ∈ B,

(O2) g(ū)(x)



= 0 for x ∈ Ω with a(x) < ū(x) < b(x),
≥ 0 for x ∈ Ω with ū(x) = a(x),
≤ 0 for x ∈ Ω with ū(x) = b(x)

a.e. on Ω,

are satisfied.

Proof. See [26, Thm. 3.1].

The inequality (O2) can be converted into an equation by pointwise multiplication
with an affine-scaling function d(ū), where d : B −→ L∞ satisfies

d(u)(x)



= 0 if u(x) = a(x) and g(u)(x) ≥ 0,
= 0 if u(x) = b(x) and g(u)(x) ≤ 0,
> 0 else

(2)

for a.a. x ∈ Ω. For details we refer to [26]. The idea was first introduced by Coleman
and Li in [7] for the finite-dimensional case.

Lemma 2.6. Let f : D ⊂ Lp −→ R be differentiable and ū ∈ B. In the case
p =∞ assume in addition that the gradient satisfies g(u) ∈ L1, u ∈ B. Then (O2) is
equivalent to

d(ū)g(ū) = 0(3)

for all d satisfying (2).

Proof. See [26, Lem. 3.2].
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3. A Newton-like step. As for all efficient methods, we aim to apply Newton’s
method to a suitable formulation of the optimality system. In our approach we take
(3) which, according to Lemma 2.6, is equivalent to the first-order necessary condition
(O2). We use the freedom provided by (2) to choose the affine-scaling function d in
such a way that dg is as smooth as possible in a neighborhood of a KKT-point ū
of (P). A possible realization of (2) is the following function space analogue of the
affine-scaling matrix of Coleman and Li [7]:

dI(u)(x)
def
=




u(x)− a(x) if g(u)(x) > 0 or
g(u)(x) = 0 and u(x) ≤ (a(x) + b(x))/2,

b(x)− u(x) if g(u)(x) < 0 or
g(u)(x) = 0 and u(x) > (a(x) + b(x))/2.

(4)

In general, the mapping u ∈ B ⊂ L∞ �−→ dI(u) ∈ L∞ is discontinuous at a KKT-
point ū since |dI(u)− dI(ū)| = b− a− |u− ū| on {x ∈ Ω : g(u)(x)g(ū)(x) < 0} (note
that for all these x holds g(ū)(x) �= 0 and thus dI(ū)(x) = 0, since ū is a KKT-point).
In comparison to our smoother choice of d given in (5) below, this would lead to
additional complications in our theory. Our affine-scaling function d enjoys a nice
Lipschitz continuity property (see Lemma 5.3), which is very convenient, especially
for the investigations in sections 8 and 10. Nevertheless, our convergence theory in
section 5 can be extended to the choice d = dI. One has to exploit the fact that the
above-mentioned subset of Ω is small and that d(u)g(u) is small on this set as well.
We discuss this issue in Remark 5.15. Our affine-scaling function is defined as follows:
Choose ζ ∈ (0, 1/2], κ > 0, and define

c : x ∈ Ω �−→ min{ζ(b(x)− a(x)), κ} , ν
def
= ess inf

x∈Ω
c(x).

Then our affine-scaling function is given by d : B −→ L∞,

d(u)(x) =




min{|g(u)(x)|, c(x)} if −g(u)(x) > u(x)− a(x)
and u(x) ≤ (a(x) + b(x))/2,

min{|g(u)(x)|, c(x)} if g(u)(x) > b(x)− u(x)
and u(x) ≥ (a(x) + b(x))/2,

min{u(x)− a(x), b(x)− u(x), c(x)} else.

(5)

Throughout the paper and without further notice we will frequently use the fact that

‖d(u)‖∞ ≤ κ for allu ∈ B.

As we will see in Lemma 5.1, a suitable approximate derivative G(u) ∈ L(Lp, Lp′) of
d(u)g(u) can be obtained by formally applying the product rule which yields

G(u) = d(u)∇2f(u) + d′(u)g(u)I(6)

with d′ : B −→ L∞ suitably chosen. We recall that the only requirements on d′

needed for the global convergence analysis in [26] are the conditions d′(u)g(u) ≥ 0
and ‖d′(u)‖∞ ≤ cd′ for all u ∈ B. Our choice

d′(u) def
= χ{d(u)<c}sgn (g(u)), u ∈ B,

can be motivated as follows: Let ū be a KKT-point and let u tend to ū in Lp.
Then the sets {g(u) > 0 ∧ d(u) = u− a ∧ g(ū) > 0} tend to {g(ū) > 0} in measure.
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Analogously, the sets {g(u) < 0 ∧ d(u) = b− u ∧ g(ū) < 0} tend to {g(ū) < 0}. On
these sets, the choice d′(u) = sgn (g(u)) is obtained by formal differentiation with
respect to u(x). Furthermore, d′(u)g(u) tends to zero on the set {g(ū) = 0} in Lp

′

since ‖d′(u)‖∞ is bounded. It turns out that the contribution of d′(u)g(u) on this set
is small enough for any uniformly bounded choice of d′(u) to get a sufficiently good
approximation G(u)(u− ū) of d(u)g(u)− d(ū)g(ū) (cf. Lemma 5.1).

If u is an interior point of B with respect to the L∞-norm, more precisely u ∈ B◦,
then the multiplication operator d(u)I is an automorphism of Lt for all 1 ≤ t ≤ ∞.
Since our algorithm will rely on the bijectivity of d(uk)I at each iterate uk, we require
uk ∈ B◦ for all k. Given a current iterate uc ∈ B◦, we define a Newton-like step for
the solution of the affine-scaling equation (3):

G(uc)(un − uc) = −d(uc)g(uc).(7)

Let ū ∈ B be a KKT-point, i.e., d(ū)g(ū) = 0. Then subtracting the trivial identity
G(uc)(ū− ū) = −d(ū)g(ū) from (7) yields the equivalent equations

G(uc)(un − ū) = R(uc),(8)

R(u)
def
= d(ū)g(ū)− d(u)g(u)−G(u)(ū− u).(9)

For a classical analysis of the Newton-like iteration induced by (7) we would typically
need that, for suitable q1, q2 and u ∈ B◦ ⊂ Lq1 close to ū, the operator G(u) is
invertible in L(Lq1 , Lq2) and that ‖G(u)−1R(u)‖q1 = o(‖u− ū‖q1). Moreover, for
uc ∈ B◦ close to ū the solution un of (7) is required to lie again in B◦ to keep
the iteration alive. G(u) contains the multiplication operator d′(u)g(u)I which for
arbitrary ε > 0 is an automorphism of Lq1({x ∈ Ω : |g(u)(x)| > ε}). Hence, G(u) ∈
L(Lq1 , Lq2) will, in general, hold only if q1 ≥ q2. However, in Lemma 5.4 we will show
that for q1 ≥ q2 it is untenable to assume the uniform boundedness of ‖G(u)−1‖q2,q1
in a neighborhood of ū. The following approach remedies the situation. With q and s
as in (A2) we will introduce a multiplication operator W (u) ∈ L(Lq, Lq) such that the
uniform boundedness of (W (u)G(u))−1 in L(Lq, Lq) is a relatively weak requirement
which is, e.g., implied by assumptions used for the analysis of a projected Newton
method in [17]. Then, in Lemma 5.9 we will show that under suitable assumptions
‖W (u)R(u)‖q = o(‖u− ū‖s) holds. There seems to be no way to prove the more
favorable estimate ‖W (u)R(u)‖q = o(‖u− ū‖q). Even the weaker estimate ‖R(u)‖q =
o(‖u− ū‖q) requires at least the continuity of the gradient g(u) from Lq to L∞. For
details see Lemma 5.1 and the proof of Lemma 5.5. Kelley and Sachs [17] overcame
similar difficulties by introducing a smoothing step u ∈ Lq �−→ us ∈ Ls with the
property ‖us − ū‖s ≤ const‖u− ū‖q. We take the same approach. Finally, it is
very likely that the iteration eventually breaks down with an un /∈ B◦. Therefore,
we must include a back-transport that takes un back into the interior of B. This
back-transport can be implemented as an interior-point modification of the pointwise
projection P (u) = max {a,min {b, u}} which satisfies |P (u)− ū| ≤ |u− ū|.

4. Outline of the algorithm in an abstract setting. The fundamental build-
ing blocks and convergence properties of the algorithm can be described most conve-
niently in the following abstract framework. Let X0, X1, and X2 be Banach spaces,
K◦ ⊂ X1 be a convex nonempty set, and X1 ⊂ X0 be continuously embedded. Denote
by K the closure of K◦ in X1. Given the mapping E : K −→ X2, we want to solve
the equation

E(u) = 0, u ∈ K.(10)
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To this end, we define a Newton-like iteration based on the linear approximation
E(u + s) − E(u) ≈ G(u)s, G : K◦ −→ L(X0, X2). The kth Newton iteration is
augmented by a smoothing step uk �−→ usk = S◦

k(uk) ∈ K◦ and a back-transport
P [v] : X0 −→ K◦, v ∈ K◦; see below. The index k indicates that the smoothing step
S◦
k can be chosen at runtime.
Algorithm 4.1 (abstract Newton iteration).
1. Choose u0 ∈ K◦.
2. For k = 0, 1, 2, . . .

2.1. If E(uk) = 0, STOP.
2.2. Select and perform a smoothing step: usk = S◦

k(uk).
2.3. Compute unk+1 ∈ X0 from

G(usk)(u
n
k+1 − usk) = −E(usk) (Newton-like step).

2.4. Transport unk+1 back to K◦: uk+1 = P [usk](u
n
k+1).

Let ū ∈ K be a solution to (10). Then we can rewrite the equation in step 2.3 as
follows:

G(usk)(u
n
k+1 − ū) = E(ū)− E(usk)−G(usk)(ū− usk)

def
= R(usk).

Algorithm 4.1 is locally superlinear convergent under the following general assump-
tions.

Abstract Assumptions. There are constants ρ,CS > 0 such that the following
hold:

1. If in the kth iteration of Algorithm 4.1 ‖uk − ū‖X0
< ρ holds, then in step 2.2

the smoothing step S◦
k is chosen in such a way that

‖S◦
k(uk)− ū‖X1

≤ CS‖uk − ū‖X0
.

2. There exists CP > 0 and a monotone increasing function

δP : [0, CSρ) −→ [0,∞), lim
t→0+

δP (t) = 0,(11)

such that for all u ∈ X0, v ∈ K◦ with ‖v − ū‖X1
< CSρ holds

‖P [v](u)− ū‖X0
≤ CP ‖u− ū‖X0

+ δP (‖v − ū‖X1
)‖v − ū‖X1

.

3. There are monotone increasing functions

γ, δR : [0, CSρ) −→ [0,∞), lim
t→0+

γ(t)δR(t) = 0,(12)

a Banach space X3, and an operator W : K◦ −→ L(X2, X3) such that
(a) for all u ∈ K◦, ‖u− ū‖X1

< CSρ, and r ∈ X2 there exists a unique
s ∈ X1 with

G(u)s = r, ‖s‖X0
≤ γ(‖u− ū‖X1

)‖W (u)r‖X3
;

(b) for all u ∈ K◦, ‖u− ū‖X1
< CSρ,

‖W (u)R(u)‖X3
≤ δR(‖u− ū‖X1

)‖u− ū‖X1
.
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Theorem 4.2. Let ū ∈ K be a solution to (10). Assume that the above assump-
tions hold. Then there is 0 < ρ0 ≤ ρ such that for all u0 ∈ K◦, ‖u0 − ū‖X0

< ρ0,
Algorithm 4.1 is well-defined and either terminates with uk ∈ K◦ solving (10) or gen-
erates sequences (uk) ⊂ K◦ and (usk) ⊂ K◦ that converge superlinearly to ū in X0 and
X1, respectively.

Proof. We introduce the abbreviations εk
def
= ‖uk − ū‖X0

and εsk
def
= ‖usk − ū‖X1

.
Let uk ∈ K◦ satisfy εk < ρ. Then εsk < CSρ by Abstract Assumption 1, and thus,
using the assumptions,

εk+1 = ‖P [usk](unk+1)− ū‖
X0
≤ CP ‖unk+1 − ū‖

X0
+ δP (ε

s
k)ε

s
k

≤ CP γ(ε
s
k)‖W (usk)R(u

s
k)‖X3

+ δP (ε
s
k)ε

s
k ≤ (CP γ(ε

s
k)δR(ε

s
k) + δP (ε

s
k))ε

s
k

≤ CS(CP γ(CSεk)δR(CSεk) + δP (CSεk))εk.

(13)

By (11) and (12), there is 0 < ρ0 ≤ ρ such that

CS(CP γ(CSz)δR(CSz) + δP (CSz)) < 1 for all 0 ≤ z < ρ0.

Therefore, if ε0 < ρ0 ≤ ρ, we have εk < ρ0 ≤ ρ for all k. In particular, the algorithm
is well-defined. Moreover,

εsk+1 ≤ CSεk+1 ≤ CS(CP γ(ε
s
k)δR(ε

s
k) + δP (ε

s
k))ε

s
k.(14)

Now (13) yields superlinear convergence of (uk) to ū in X0, and (14) yields superlinear
convergence of (usk) to ū in X1.

Remark 4.3. It is easier to find a smoothing step uk ∈ K◦ �−→ Sk(uk) ∈ X1

that satisfies all requirements in Abstract Assumption 1, except for the condition
Sk(uk) ∈ K◦. If the operator P [v] can be defined in such a way that, in addition to
Abstract Assumption 2, for all u ∈ X1 with ‖u− ū‖X1

< CSρ and all v ∈ K◦ with
‖v − ū‖X0

< ρ holds

‖P [v](u)− ū‖X1
≤ C̄P ‖u− ū‖X1

+ C̄ ′
P ‖v − ū‖X0

,(15)

then obviously uk ∈ K◦ �−→ S◦
k(uk)

def
= P [uk](Sk(uk)) defines a smoothing step satis-

fying Abstract Assumption 1, with CS replaced by C̄PCS + C̄ ′
P . For our problem (P)

we will be able to define P [v] in such a way that (15) holds; see Lemma 6.4.
In our setting we have K◦ = B◦ and, consequently, K = B. The mapping E is

given by u �−→ d(u)g(u). The crucial topics of our analysis consist in the proper choice
of the spaces Xi, the weighting operator W , and the proof that under appropriate
conditions the above abstract assumptions hold. A few remarks on the “nonstandard”
building blocks of Algorithm 4.1 are in order. If there exists a projection P : X0 −→
K ⊂ X0 onto K that is Lipschitz at ū, e.g., P (u) = min {b,max {a, u}} for X0 = Lq

and K = B, then the back-transport operator P [v] can (and will) be implemented
by an interior-point modification of P . More specifically, P [v](u) will consist in the
projection P (u) of u onto K followed by a tiny step towards the point v ∈ K◦ to
achieve P [v](u) ∈ K◦. The idea of a smoothing step was already used by Kelley and
Sachs [17]. It is a tool to compensate the discrepancy of the X0-norm on the left side
and the stronger X1-norm on the right side of the inequality

‖unk+1 − ū‖
X0
≤ γ(‖usk − ū‖X1

)δR(‖usk − ū‖X1
)‖usk − ū‖X1

which is obtained by combining Abstract Assumptions 3(a) and (b).
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5. Analysis of the Newton-like iteration. We return to the affine-scaling
Newton iteration (8) and begin to verify the abstract assumptions of section 4. The
following lemma states a pointwise estimate for the remainder term R(u).

Lemma 5.1. Let (A1) hold. In addition, let (O1) and (O2) be satisfied at ū.
Then for all u ∈ B the inequality

|R(u)| ≤ d(u)|g(ū)− g(u)−∇2f(u)(ū− u)|+ (|g(ū)|d(u) + |g(u)||ū− u|)(16)

holds on Ω and, moreover,

|R(u)| ≤ d(u)|g(ū)− g(u)−∇2f(u)(ū− u)|
+min{max{d(u), |g(u)|}, |g(ū)− g(u)|}max{|ū− u|, |g(ū)− g(u)|}(17)

is satisfied on J
def
= {x ∈ Ω : |u(x)− ū(x)| < c(x)}.

Proof. Let u ∈ B be given and set I = {x ∈ Ω : d(u)(x) < c(x)}. Then we get

d(ū)g(ū)− d(u)g(u)−G(u)(ū− u)

= d(ū)g(ū)− d(u)g(u)− d(u)∇2f(u)(ū− u)− χI |g(u)|(ū− u)

= d(u)(g(ū)− g(u)−∇2f(u)(ū− u)) + g(ū)(d(ū)− d(u))− χI |g(u)|(ū− u).

Since (O1) and (O2) are satisfied at ū we have d(ū)g(ū) = 0 by Lemma 2.6 and hence
the first estimate is obvious. We complete the proof by verifying that for a.a. x ∈ J

R1(u)(x) ≤ min{max{d(u)(x), |g(u)(x)|}, |g(ū)(x)− g(u)(x)|}
(18) ·max{|ū(x)− u(x)|, |g(ū)(x)− g(u)(x)|},

R1(u)(x)
def
=
∣∣g(ū)(x)(d(ū)(x)− d(u)(x)

)− χI(x)|g(u)(x)|
(
ū(x)− u(x)

)∣∣.
We use again d(ū)g(ū) = 0. On the subset of all x ∈ J with g(ū)(x) = 0 we get

R1(u) = χI |g(u)||ū− u| ≤ |g(u)− g(ū)||ū− u|,
and (18) is obvious.

For all x ∈ J with g(ū)(x) �= 0 we have d(ū)(x) = 0. (O2) implies that only the
cases ū(x) = a(x) and g(ū)(x) > 0 or ū(x) = b(x) and g(ū)(x) < 0 can occur.

We first look at x ∈ J with ū(x) = a(x) and g(ū)(x) > 0. Since ζ ≤ 1/2 and
x ∈ J , we get u(x)− a(x) < b(x)− u(x). Hence, we obtain (mind that ū(x) = a(x))

d(u)(x) =

{
min{|g(u)(x)|, c(x)} if −g(u)(x) > u(x)− ū(x) ≥ 0,

min{u(x)− ū(x), c(x)} else.

If d(u)(x) = u(x) − ū(x) < c(x), then x ∈ I and using d(ū)(x) = 0, g(ū)(x) ≥ 0 we
get for all these x

R1(u) =
∣∣|g(ū)| − |g(u)|∣∣|ū− u| ≤ |g(ū)− g(u)||ū− u|.

If, in addition, |g(ū)(x)− g(u)(x)| ≤ d(u)(x), then (18) holds, for

R1(u)(x) ≤ min{d(u)(x), |g(ū)(x)− g(u)(x)|}|ū(x)− u(x)|.
Otherwise, we have |g(ū)(x)− g(u)(x)| > d(u)(x) = u(x)− ū(x) = |ū(x)− u(x)|, and
therefore

R1(u)(x) ≤ min{d(u)(x), |g(ū)(x)− g(u)(x)|}|g(ū)(x)− g(u)(x)|,



AFFINE-SCALING INTERIOR-POINT NEWTON METHODS 1949

which implies (18). If d(u)(x) = |g(u)(x)| < c(x), then x ∈ I, g(u)(x) ≤ 0 ≤ g(ū)(x).
Thus, we have for all such x that max{|g(u)|, |g(ū)|} ≤ |g(ū)− g(u)| and

R1(u) =
∣∣−g(ū)|g(u)| − |g(u)|(ū− u)

∣∣
= |g(u)|∣∣|ū− u| − |g(ū)|∣∣ ≤ |g(u)|max{|ū− u|, |g(ū)|}
≤ min{|g(u)|, |g(ū)− g(u)|}max{|ū− u|, |g(ū)− g(u)|}.

It remains the case x ∈ J ∩ Ic, i.e., x ∈ J and d(u)(x) = c(x). Here u(x) − ū(x) ≥
c(x) = d(u)(x) or −g(u)(x) ≥ c(x) = d(u)(x). Since x ∈ J , the first case cannot
occur. Therefore, we have g(u)(x) ≤ −d(u)(x) ≤ 0 ≤ g(ū)(x) for all x ∈ J ∩ Ic, and
hence

R1(u) = |g(ū)d(u)| ≤ |g(ū)||g(u)| ≤ min{|g(u)|, |g(ū)− g(u)|}|g(ū)− g(u)|.
For ū(x) = b(x) and g(ū)(x) < 0 the same arguments can be used and the proof is
complete.

Let (O1) and (O2) hold for ū. We define the active set Ā and the inactive set Ī:

Ā = {x ∈ Ω : ū(x) ∈ {a(x), b(x)}} , Ī = Āc.

Furthermore, the usual strict complementarity condition shall hold at ū (note that
|g(ū)| is a Lagrange multiplier).

Assumption (strict complementarity condition).
(C) g(ū)(x) �= 0 for a.a. x ∈ Ā.

In contrast to the finite-dimensional case the active set cannot, in general, be
identified after a finite number of iterations under the strict complementarity condition
(C), since the gradient may be arbitrarily small on the active set, especially near its
boundary. But we shall use (C) to show that the residual set of “uncertainty” is small.
We need the following continuity property of d.

Lemma 5.2. Let the assumptions of Lemma 2.6 hold. In addition, let (O1) and
(O2) be satisfied at ū. Then for all u ∈ B the inequality

|d(u)− d(ū)| ≤ max {|u− ū|, |g(u)− g(ū)|}
holds on J

def
= {x ∈ Ω : |u(x)− ū(x)| < (b(x)− a(x))/2}.

Proof. Let x ∈ J be arbitrary. Since (O1) and (O2) hold at ū, the identity
d(ū)g(ū) = 0 is valid by Lemma 2.6. In addition, (O2) ensures that

d(ū)(x) = min {ū(x)− a(x), b(x)− ū(x), c(x)} .
By definition, we have

d(u)(x) = min {u(x)− a(x), b(x)− u(x), c(x)} or(19)

d(u)(x) = min {|g(u)(x)|, c(x)} ≥ min {u(x)− a(x), b(x)− u(x), c(x)} .(20)

For all x from case (19) as well as all x with d(u)(x) = min {|g(u)(x)|, c(x)} ≤ d(ū)(x)
we get

|d(ū)− d(u)| ≤ |min {ū− a, b− ū, c} −min {u− a, b− u, c}| ≤ |u− ū|,
where we have used the inequality (cf. [26, Lem. 9.3])

|min {a1, . . . , an} −min {b1, . . . , bn} | ≤ max {|a1 − b1|, . . . , |an − bn|} .
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For all x with d(u)(x) = min {|g(u)(x)|, c(x)} > d(ū)(x) we have

|d(u)− d(ū)| ≤ d(u) ≤ |g(u)| ≤ |g(u)− g(ū)|.

The last inequality is obvious if g(ū)(x) = 0. For g(ū)(x) �= 0 it follows from the
observation that g(u)(x) and g(ū)(x) have different signs. In fact, by (O2) only
the cases ū(x) = a(x), g(ū)(x) > 0 or ū(x) = b(x), g(ū)(x) < 0 can occur. If
ū(x) = a(x) and g(ū)(x) > 0, then u(x)− a(x) < b(x)− u(x) since x ∈ J . Hence, by
the definition of d(u), d(u)(x) = min {|g(u)(x)|, c(x)} is only possible for g(u)(x) < 0.
Finally, if ū(x) = b(x), g(ū)(x) < 0, then b(x) − u(x) < u(x) − a(x) and d(u)(x) =
min {|g(u)(x)|, c(x)} requires g(u)(x) > 0.

The pointwise estimates in Lemmas 5.1 and 5.2 can be converted into norm es-
timates by invoking Assumption (A2). As a consequence of Lemma 5.2 we get the
Lipschitz continuity of d at ū.

Lemma 5.3. If (O1), (O2) hold at ū and Assumptions (A1) and (A2) are satisfied,
then for all u ∈ B

‖d(u)− d(ū)‖r ≤
(
mr,s + Lg +

2κmr,s
ν

)
‖u− ū‖s def

= Ld‖u− ū‖s

with mr,s defined as in Lemma 2.1.
Proof. OnB

def
= {x ∈ Ω : |u(x)− ū(x)| < ν/2} Lemma 5.2 is applicable and yields

with (A2) and Lemma 2.1

‖d(u)− d(ū)‖r,B ≤ ‖max {|u− ū|, |g(u)− g(ū)|} ‖r ≤ (mr,s + Lg)‖u− ū‖s.

Since |d(u)(x)− d(ū)(x)| ≤ κ, we get on Bc

‖d(u)− d(ū)‖r,Bc ≤ ‖κ‖r,Bc ≤
∥∥∥∥κ2|u− ū|

ν

∥∥∥∥
r,Bc

≤ 2κ

ν
‖u− ū‖r ≤

2κmr,s
ν

‖u− ū‖s.

The triangle inequality completes the proof.
In the finite-dimensional case the existence and uniform boundedness of G(u)−1

in a neighborhood of ū can be ensured if ū satisfies sufficient second-order conditions
with strict complementarity; see [7]. The following considerations show that the
requirement of uniform boundedness of G(u)−1 close to ū is unacceptably strong in
the infinite-dimensional setting. Since

g(ū)(x) = 0 a.e. on Ī , d(ū)(x) = 0 a.e. on Ā,(21)

and by (A2) and Lemma 5.3

‖d(u)− d(ū)‖r + ‖g(u)− g(ū)‖r ≤ (Ld + Lg)‖u− ū‖s,

the set

Nε(u)
def
= {x ∈ Ω : |g(u)(x)|+ d(u)(x) ≤ ε}(22)

may have nonzero measure for arbitrarily small ε > 0 if ‖u− ū‖s is small enough.
Typically, an open neighborhood of a part of ∂Ā is contained in Nε(u).

Let 1 ≤ q2 ≤ q1 ≤ ∞ and assume that ‖∇2f(u)‖q1,q2 is uniformly bounded on
an Ls-neighborhood of ū. The following lemma shows that in the above scenario
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‖G(u)‖q1,q2 is uniformly bounded, but ‖G(u)−1‖q2,q1 is not. This is caused by the
fact that the operator

H(u) = W (u)G(u) with W (u) =
1

|g(u)|+ d(u)
I , u ∈ B,(23)

is still uniformly bounded in L(Lq1 , Lq2) although ‖W (u)‖q2,q2 →∞ as ‖u− ū‖s tends
to zero. More precisely, we have the following lemma.

Lemma 5.4. Let u ∈ B◦, 1 ≤ q2 ≤ q1 ≤ ∞, and ∇2f(u) ∈ L(Lq1 , Lq2). Then
(i) G(u) ∈ L(Lq1 , Lq2), ‖G(u)‖q1,q2 ≤ mq2,q1‖g(u)‖∞ + κ‖∇2f(u)‖q1,q2 ,
(ii) H(u) ∈ L(Lq1 , Lq2), ‖H(u)‖q1,q2 ≤ mq2,q1 + ‖∇2f(u)‖q1,q2 ,
(iii) if G(u) is invertible in L(Lq1 , Lq2), then

‖G(u)−1‖q2,q1 ≥ ε−1‖H(u)‖−1
q1,q2

for all ε > 0 with µ(Nε(u)) > 0.
Here mq2,q1 is as in Lemma 2.1.

Proof. Assertion (i) follows immediately from the definition of G(u). The estimate

‖H(u)v‖q2 ≤
∥∥∥∥χ{d(u)<c}|g(u)|
|g(u)|+ d(u)

v

∥∥∥∥
q2

+

∥∥∥∥ d(u)

|g(u)|+ d(u)
∇2f(u)v

∥∥∥∥
q2

≤ mq2,q1‖v‖q1 + ‖∇2f(u)‖q1,q2‖v‖q1
yields (ii). To prove (iii) let G(u) ∈ L(Lq1 , Lq2) be invertible and ε > 0 such that
µ(Nε(u)) > 0. Then ‖wε‖q2 > 0 for wε

def
= χNε(u), and, setting vε = G(u)−1wε,

‖H(u)vε‖q2 ≤ ‖H(u)‖q1,q2‖G(u)−1‖q2,q1‖wε‖q2 .
On the other hand, the definition of Nε(u) yields

‖H(u)vε‖q2 =
∥∥∥∥ wε
|g(u)|+ d(u)

∥∥∥∥
q2

≥ ‖wε‖q2
ε

.

Combining both estimates gives (iii).
The identity

H(u) =
χ{d(u)<c}|g(u)|
|g(u)|+ d(u)

I +
d(u)

|g(u)|+ d(u)
∇2f(u)

shows that the operator H(u) is “almost” a pointwise convex combination of the
identity and the Hessian ∇2f(u). If (A2) and the strict complementarity condition
(C) hold, then using (21) and Lemma 5.3, one can show with the same techniques as
in the proof of Lemma 8.3 that

χ{d(u)<c}|g(u)|
|g(u)|+ d(u)

Lq

−→ χĀ and
d(u)

|g(u)|+ d(u)

Lq

−→ χĪ a.e. as u ∈ B◦ Ls

−→ ū.

Thus, they converge in all spaces Lt, 1 ≤ t < ∞, by (A1) and the interpolation
inequality of Lemma 2.2.

Hence, we impose the following assumption on G(u) which, as we will see, is
implied by the assumptions in the paper of Kelley and Sachs [17] on the projected
Newton method (cf. Lemma 8.3) and in important cases by a sufficient second-order
condition of Dunn and Tian [9] (see Theorem 9.5).
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Assumption.
(A3) There is 0 < ρH ≤ 1 such that the operator H(u) defined in (23) satisfies H(u) ∈

L(Lq, Lq) and is invertible for all u ∈ B◦, ‖u− ū‖s < ρH , with uniformly
bounded inverse, more precisely, ‖H(u)−1‖q,q < CH .

We now return to the analysis of (8). Since for u ∈ B◦ there is δ > 0 with d(u) > δ,
the multiplication operator W (u) defined in (23) is a linear continuous automorphism
of Lt, 1 ≤ t ≤ ∞. Applying W (uc) from the left to (8) yields the equivalent equation

H(uc)(un − ū) = W (uc)R(uc).(24)

Since H(uc) ∈ L(Lq, Lq) is invertible by (A3) if ‖uc − ū‖s < ρH , we derive an
upper bound for the Lq-norm of the right-hand side, as follows.

Lemma 5.5. Let (O1), (O2) hold at ū. Moreover, let (A1) and (A2) be satisfied.
Then for all u ∈ B◦ holds

‖W (u)R(u)‖q ≤ Lg′‖u− ū‖2s + (mr,s + Lg)‖Q(u)‖q̃‖u− ū‖s
+max {‖g(ū)‖∞, ‖b− a‖∞} ν−

s
q ‖u− ū‖

s
q

s ,
(25)

where q̃
def
= qr
r−q (= q if r =∞),

Q(u) =
min {max{d(u), |g(u)|}, |g(u)− g(ū)|}

|g(u)|+ d(u)
,(26)

and the last term has to be interpreted as zero in the case s =∞ for ‖u− ū‖∞ < ν.
Proof. For J

def
= {x ∈ Ω : |u(x)− ū(x)| < ν} we may apply Lemma 5.1 and obtain

with (26), (A2), and the mean value theorem

‖W (u)R(u)‖q ≤
∥∥∥∥ d(u)

|g(u)|+ d(u)

∥∥∥∥
∞
‖g(ū)− g(u)−∇2f(u)(ū− u)‖q

+ ‖Q(u)max {|u− ū|, |g(u)− g(ū)|} ‖q,J +
∥∥∥∥ |g(ū)|d(u) + |g(u)||u− ū|

|g(u)|+ d(u)

∥∥∥∥
q,Jc

≤ sup
τ∈[0,1]

‖∇2f(u+ τ(ū− u))−∇2f(u)‖s,q‖u− ū‖s
+ ‖Q(u)‖ qr

r−q ,J
‖max {|u− ū|, |g(u)− g(ū)|} ‖r

+max {‖g(ū)‖∞, ‖b− a‖∞}µ(Jc)1/q,

(27)

where we have applied Lemma 2.3 with q0 = q and q1 = r/q in the last step. Now
(A2) immediately yields the first two terms on the right-hand side of (25). To finish
the proof, we first observe that µ(Jc) = 0 for ‖u− ū‖∞ < ν. Hence, we have (25)
with the mentioned interpretation for s =∞. If finally s <∞, we have

µ(Jc) = ‖1‖ss,Jc ≤ ‖(u− ū)/ν‖ss,Jc ≤ ν−s‖u− ū‖ss.
Using this in the last term of the above inequality, we get (25).

It is important to notice that the term Q(u) is crucial for our analysis since

|Q(u)(x)| =
∣∣∣∣min {max{d(u)(x), |g(u)(x)|}, |g(u)(x)− g(ū)(x)|}

|g(u)(x)|+ d(u)(x)

∣∣∣∣ = O(1)

on {max{d(u), |g(u)|} ≤ const|g(u)− g(ū)|}. In contrast to the finite-dimensional
case, these sets may have nonzero measure under any reasonable strict complemen-
tarity condition even if ‖u− ū‖∞ is arbitrarily small. On the other hand, under
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Assumption (A2) we get the following estimate on the complement of the set Nε(u)
defined in (22):

|Q(u)(x)| ≤ |g(u)(x)− g(ū)(x)|
ε

for all x ∈ Nε(u)
c.

Remark 5.6. Since the estimate (25) is sharp and usually ‖Q(u)‖∞ = O(1) for

u ∈ B◦ L∞
−→ ū, an estimate of the form

‖un − ū‖∞ = o(‖uc − ū‖∞) (uc ∈ B◦ L∞
−→ ū)

for the solution un of the affine-scaling Newton equation (7) does not, in general, hold
even if (A2), (A3) are satisfied with q =∞.

The following lemma estimates the Lebesgue measure of the residual sets Nε(u).
Lemma 5.7. Let (A1), (A2) hold. If ū satisfies (O1), (O2), and (C), then the

following is true:
(i) ω : [0,∞) −→ [0,∞), ω(ε)

def
= µ(Nε(ū)) is monotone increasing and satisfies

lim
ε→0+

ω(ε) = ω(0) = 0.(28)

(ii) For all u ∈ B holds

µ(Nε(u)) ≤ ω(2ε) + ε−r(Lg + Ld)
r‖u− ū‖rs

with the obvious interpretation for r = s =∞ by setting α∞ = 0 for α ∈ [0, 1).
Proof. ω is nonnegative and increasing, since Nε̃(ū) ⊂ Nε(ū) for 0 < ε̃ ≤ ε.

Hence, limε→0+ ω(ε) exists and

lim
ε→0+

ω(ε) = µ

(⋂
ε>0

Nε(ū)

)
.

By (C) and the definition of d there is a set N of measure zero with

|g(ū)(x)|+ d(ū)(x) > 0 for all x ∈ N c.

Hence, N0(ū) ⊂ N and thus ω(0) = µ(N0(ū)) = 0. Moreover, for all x ∈ N c there is
ε0 > 0 with x /∈ Nε(ū) for all 0 < ε < ε0. This shows

⋂
ε>0

Nε(ū) ⊂ N,

which implies (28). To prove (ii), we use the triangle inequality and get

Nε(u) = {|g(u)|+ d(u) ≤ ε}
⊂ {|g(ū)|+ d(ū) ≤ ε+ |g(u)− g(ū)|+ |d(u)− d(ū)|}
⊂ N2ε(ū) ∪ {|g(u)− g(ū)|+ |d(u)− d(ū)| ≥ ε} .

In the case r =∞, we have by (A2) and Lemma 5.3

∥∥|g(u)− g(ū)|+ |d(u)− d(ū)|∥∥∞ ≤ (Lg + Ld)‖u− ū‖∞.
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Hence, Nε(u) ⊂ N2ε(ū) for (Lg+Ld)‖u− ū‖∞ < ε, which is the obvious interpretation
of (ii) for r = s =∞. For r <∞ we have by (A2) and Lemmas 2.4 and 5.3

µ ({|g(u)− g(ū)|+ |d(u)− d(ū)| ≥ ε}) ≤ ε−r
∥∥|g(u)− g(ū)|+ |d(u)− d(ū)|∥∥r

r

≤ ε−r(Lg + Ld)
r‖u− ū‖rs.

This proves (ii).
The following stronger strict complementarity condition will enable us to prove

convergence with Q-rate > 1, since we get additional control on the growth of ω(ε).
Assumption (strong strict complementarity condition).

(CS) There are q̄ > 0, CC > 0, and ε0 > 0 such that

ω(ε) = µ({|g(ū)|+ d(ū) ≤ ε}) ≤ CCε
q̄ for all 0 < ε < ε0.

Remark 5.8. It is easy to see that condition (CS) is satisfied if the following regu-
larity assumptions on ū and the active set Ā hold. They are relaxations of Assumption
2.4 in [17] as follows.

There is c0 > 0 such that for all sufficiently small δ > 0

µ
({

x ∈ Ω : dist(x, ∂Ā) ≤ δ
}) ≤ c0δ

and for suitable c1 > 0 the following growth estimates hold true:

|g(ū)(x)| ≥ c1(dist(x, ∂Ā))
1/q̄ for all x ∈ Ā,

min {ū(x)− a(x), b(x)− ū(x)} ≥ c1(dist(x, ∂Ā))
1/q̄ for all x ∈ Ī = Āc.

The previous lemma enables us to estimate the norm of Q(u). Together with
Lemma 5.5 we get the following.

Lemma 5.9. Let (O1), (O2), and (C) hold at ū. Assume that (A1) and (A2) are
satisfied. Let p̄ ∈ (0, 1) and ρ ∈ (0, 1] be arbitrary such that (Lg +Ld)ρ

1−p̄ ≤ 1. Then
there is CWR > 0 depending only on µ(Ω), ‖b− a‖∞, ‖g(ū)‖∞, Lg, and Lg′ but not on
q, r, s such that for all u ∈ B◦, ‖u− ū‖s < ρ,

‖W (u)R(u)‖q ≤ CWRΦp̄(‖u− ū‖s)‖u− ū‖s ,(29)

Φp̄(z) = ω(2zp̄)1/q̃ + z(1−p̄) min{1,r/q̃} +
( z
ν

) s−q
q

,(30)

where q̃ = qr/(r − q) and ω is as in Lemma 5.7.
Proof. Let u ∈ B◦ be arbitrary with ‖u− ū‖s < ρ. According to Lemma 5.5 we

have to estimate ‖Q(u)‖q̃ with q̃ = qr/(r − q) and Q given by (26). Let p̄ ∈ (0, 1) be
arbitrary. We decompose Ω into the set

N(u)
def
= N‖u−ū‖p̄

s
(u) =

{
x ∈ Ω : |g(u)(x)|+ d(u)(x) ≤ ‖u− ū‖p̄s

}
and its complement N(u)c. Assumption (A2) yields with the definition of N(u)c

‖Q(u)‖r,N(u)c ≤
∥∥∥∥ |g(u)− g(ū)|
|g(u)|+ d(u)

∥∥∥∥
r,N(u)c

≤ ‖g(u)− g(ū)‖r
‖u− ū‖p̄s

≤ Lg‖u− ū‖1−p̄s ≤ 1.

(31)

If q̃ ≤ r, i.e., r ≥ 2q, one has

‖Q(u)‖q̃,N(u)c ≤ mq̃,r‖Q(u)‖r,N(u)c ,
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and for q̃ > r, i.e., q < r < 2q, application of Lemma 2.2 with q0 = q̃, q1 = r, q2 =∞
yields by using ‖Q(u)‖∞ ≤ 1

‖Q(u)‖q̃,N(u)c ≤ ‖Q(u)‖r/q̃r,N(u)c .

Combining this and (31) gives

‖Q(u)‖q̃,N(u)c ≤ C1‖u− ū‖(1−p̄) min{1,r/q̃}
s(32)

with C1 = Lmin{1,r/q̃}
g max {mq̃,r, 1}. Since ‖Q(u)‖∞ ≤ 1, we get, on the other hand,

from Lemma 5.7 and Minkowski’s inequality

‖Q(u)‖q̃,N(u) ≤ µ(N(u))1/q̃ ≤
(
ω(2‖u− ū‖p̄s) +

(
(Lg + Ld)‖u− ū‖s

‖u− ū‖p̄s

)r)1/q̃

≤ ω(2‖u− ū‖p̄s)1/q̃ + (Lg + Ld)
r/q̃‖u− ū‖(1−p̄)r/q̃s .

(33)

Combining (25), (32), (33), and ‖Q(u)‖q̃ ≤ ‖Q(u)‖q̃,N(u)c + ‖Q(u)‖q̃,N(u) gives (29).

Since mq1,q2 ≤ max {1, µ(Ω)}, it is easy to see that CWR depends only on the quan-
tities listed above.

Our first main result is the following.

Theorem 5.10. Let (O1), (O2), and (C) hold at ū. If Assumptions (A1), (A2),
and (A3) are satisfied, then for all uc ∈ B◦ with ‖uc − ū‖s < ρH (7) has a unique
solution un ∈ Lq. In addition, for every p̄ ∈ (0, 1) and 0 < ρ ≤ ρH satisfying
(Lg+Ld)ρ

1−p̄ ≤ 1 there is C > 0 depending only on µ(Ω), ‖b− a‖∞, ‖g(ū)‖∞, Lg, Lg′ ,
and CH , but not on q, r, s such that for all uc ∈ B◦ with ‖uc − ū‖s < ρ

‖un − ū‖q ≤ CΦp̄(‖uc − ū‖s)‖uc − ū‖s(34)

with Φp̄ given by (30).

Proof. For uc ∈ B◦, ‖uc − ū‖s < ρH , the unique solvability of (7) is obvious by
the assumptions. In addition now let ‖uc − ū‖s < ρ hold. Since ū satisfies (O1), (O2),
the equations (7) and (24) are equivalent. By the choice of ρ > 0 we may apply (A3)
to obtain

‖un − ū‖q ≤ ‖H(uc)−1‖q,q‖W (uc)R(uc)‖q ≤ CH‖W (uc)R(uc)‖q.

Lemma 5.9 completes the proof with C = CHCWR.

For the important case r = s = ∞ the proof of Theorem 5.10 can be obtained
without the careful analysis of residual sets in Lemmas 5.3, 5.7, and 5.5 since these
sets have measure zero for ‖u− ū‖∞ small. We have the following corollary.

Corollary 5.11. Under the additional assumptions r = s = ∞ and ρ ≤ ν,
Theorem 5.10 holds with (34) replaced by

‖un − ū‖q ≤ C (ω(2‖uc − ū‖p̄∞)1/q + ‖uc − ū‖1−p̄∞ )‖uc − ū‖∞.(35)

In the very likely case that in addition to the assumptions of Theorem 5.10, the
strong strict complementarity condition (CS) holds, we get the following even stronger
result.
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Corollary 5.12. In addition to the assumptions of Theorem 5.10 let condition
(CS) hold. Then with the choice p̄ = min {r/(r + q̄), q̃/(q̃ + q̄)} the estimate (34)
implies that for all uc ∈ B◦ with ‖uc − ū‖s < ρ

‖un − ū‖q ≤ C̄


‖uc − ū‖

q̄
q̃+max{1,q̃/r}q̄
s +

(‖uc − ū‖s
ν

) s−q
q


 ‖uc − ū‖s,

where q̃ = qr/(r − q) and C̄ depends on µ(Ω), ‖b− a‖∞, ‖g(ū)‖∞, Lg, Lg′ , CH , CC , q̄,
and ε0, but not on q, r, s. For ρ ≤ (ε0/2)

1/p̄ the constant C̄ can be chosen indepen-
dently of CC , ε0, and q̄.

Proof. From (CS) we have ω(ε) ≤ CCε
q̄ for a fixed q̄ > 0 and all ε ∈]0, ε0[.

Obviously, if we choose CC ≥ µ(Ω)ε−q̄0 and remember ω(0) = 0, the bound for ω(ε)
holds for all ε ≥ 0. We determine the optimal choice of p̄ in (34) from

p̄q̄

q̃
= (1− p̄)min {1, r/q̃} .

If r ≤ q̃, this gives p̄ = r
r+q̄ ≤ q̃

q̃+q̄ and the common exponent p̄q̄q̃ = q̄
q̃+q̄(q̃/r) . If r > q̃,

we get p̄ = q̃
q̃+q̄ < r

r+q̄ and p̄q̄
q̃ = q̄

q̃+q̄ .
Remark 5.13. It is possible to prove an even higher convergence speed by splitting

Ω in the proof of Lemma 5.9 not only in N‖u−ū‖p̄
s
(u) and its complement but in

N0(u), N1(u) \N0(u), . . . , N l(u) \N l−1(u), N l(u)c, where Nk(u)
def
= N‖u−ū‖p̄k

s
(u) and

1 > p̄0 > p̄1 > · · · > p̄l > 0. Now the p̄k can be chosen in such a way that the smallest
exponent is maximized. In favor of the clarity of the presentation we have not applied
this more sophisticated technique.

For r = s =∞ we state the more handy result below.
Corollary 5.14. If in Corollary 5.11 the condition (C) is replaced by the strong

strict complementarity condition (CS), then for all uc ∈ B◦ with ‖uc − ū‖∞ < ρ

‖un − ū‖q ≤ C̄‖uc − ū‖1+q̄/(q+q̄)∞ .

Remark 5.15. The analysis can also be carried out for the Coleman–Li affine-
scaling function dI with d′I

def
= sgn (g). Hereby one can proceed as follows:

(1) The estimate (16) holds and a simplified version of (17) can be established
on J = {g(u)g(ū) > 0 ∨ g(ū) = 0}.

(2) An analogue of Lemma 5.5 can be established if J is chosen as in (1). The
last term in the second line of (27) can be estimated similar to the second
one by

‖1‖ qr
r−q ,J

c‖|g(u)− g(ū)|+ |u− ū|‖r ≤ (Lg +mr,s)µ(J
c)

r−q
qr ‖u− ū‖s.

(3) Part (i) of Lemma 5.7 remains true and instead of (ii) one can prove

µ(Nε(u) ∩ J) ≤ ω(2ε) + ε−r(Lg +mr,s)
r‖u− ū‖rs,

since Nε(u)∩ J ⊂ {|g(u)|+ d(ū)− |u− ū| ≤ ε}. Moreover, for all ε > 0 Jc ⊂
Nε(ū) ∩ {|g(u)− g(ū)| > ε} holds and thus µ(Jc) ≤ ω(ε) + ε−rLrg‖u− ū‖rs,
which shows that µ(Jc)→ 0 as u→ ū in Ls if the strict complementarity (C)
holds.

(4) Now, one can proceed along the lines of Lemma 5.9.
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Assume for a moment that the iteration u0 ∈ B◦, G(uk)(uk+1−uk) = −d(uk)g(uk),
is well-defined, i.e., (uk) ⊂ B◦ in particular. We have already observed that the se-
quence (uk) may fail to converge superlinearly in L∞ even if (A2), (A3) hold with
q = ∞. As pointed out in [17] and [18] the same is true for directly applied pro-
jected Newton methods because the active set cannot be identified on a residual set
of nonzero measure. In these papers a smoothing step is used to achieve fast L∞-
convergence. Theorem 5.10 will enable us to add such a modification if an appropriate
smoothing step is available. The same problems arise also in the case s <∞, since a
result of the form (34) requires s > q.

Moreover, as we will see in Example 6.3, the case uk+1 /∈ B◦ occurs very likely
for some k. Hence, a back-transport into B◦ is necessary. Therefore, we will use the
following ingredients to design a superlinearly convergent algorithm (cf. the outline
in section 4).

Smoothing step: uk ∈ B◦ �−→ usk = S◦
k(uk) ∈ B◦ with ‖usk − ū‖s ≤ CS‖uk − ū‖q.

Newton step: unk+1 ∈ Lq solves G(usk)(u
n
k+1 − usk) = −d(usk)g(usk).

Back-transport: unk+1 ∈ Lq �−→ uk+1 = P [usk](u
n
k+1) ∈ B◦

with ‖uk+1 − ū‖q ≤ CP ‖unk+1 − ū‖
q
+ C ′

P ‖usk − ū‖2s.
Here CS , CP , and C ′

P are positive constants.

5.1. An affine-scaling Newton algorithm. Provided that smoothing step
and back-transport with the above properties are available, the previous considera-
tions and the abstract convergence theory in section 4 suggest the following algorithm.

Algorithm 5.16 (affine-scaling interior-point Newton algorithm).
1. Choose u0 ∈ B◦.
2. For k = 0, 1, 2, . . .

2.1. If d(uk)g(uk) = 0, STOP.
2.2. Select and perform a smoothing step: usk = S◦

k(uk).
2.3. Compute unk+1 ∈ Lq from

G(usk)(u
n
k+1 − usk) = −d(usk)g(usk) (affine-scaling Newton step).

2.4. Transport unk+1 back to B◦: uk+1 = P [usk](u
n
k+1).

6. Back-transport and smoothing-step.

6.1. The back-transport. Since the solution unk+1 of the affine-scaling Newton
equation in step 2.3 is not necessarily an interior point of B, a back-transport into
B◦ is needed. In [7] a stepsize rule is used for this purpose. A reflection technique
was proposed in [4] and [6]. We will see that in our function space, setting very small
stepsizes σk may be necessary to achieve usk + σk(u

n
k+1 − usk) ∈ B◦. Thus, a stepsize

rule fails to provide superlinear convergence; cf. Example 6.3. Therefore, we will
propose and analyze a projection technique which is also an attractive alternative to
reflection techniques in the finite-dimensional case.

6.1.1. Back-transport by projection. Since ū ∈ B, the pointwise projection
P (u) of u onto B with P : L1 −→ B defined by

P (u) = max {a,min {b, u}}(36)
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obviously satisfies |P (u)− v| ≤ |u− v| on Ω for all v ∈ B. Hence,

‖P (u)− v‖t ≤ ‖u− v‖t(37)

for all t ∈ [1,∞], v ∈ B, and u ∈ Lt.
As mentioned earlier, an interior-point modification P [v], v ∈ B◦, of P can be

used to obtain a back-transport satisfying the required property

‖P [v](u)− ū‖q ≤ CP ‖u− ū‖q + C ′
P ‖v − ū‖2s.(38)

In fact, for ξ ∈ (0, 1), typically ξ > 0.9, and v ∈ B◦ choose

P [v] : Lq −→ B◦, P [v](u) = v +max{ξ, 1− ‖P (u)− v‖q}(P (u)− v).(39)

Then obviously

P [v](u)− P (u) = min{1− ξ, ‖P (u)− v‖q}(v − P (u)),

and hence

‖P [v](u)− P (u)‖q ≤ ‖P (u)− v‖2q,
‖P [v](u)− P (u)‖t ≤ ‖b− a‖t‖P (u)− v‖q , 1 ≤ t ≤ ∞.

(40)

Using this, we can derive (38).
Lemma 6.1. Let P and P [v], v ∈ B◦, be defined according to (36) and (39). Then

condition (38) holds with CP = (2‖b− a‖q + 1), C ′
P = 2m2

q,s.
Proof. Let v ∈ B◦ and u ∈ Lq. Using the properties of P [v] yields

‖P [v](u)− ū‖q ≤ ‖P [v](u)− P (u)‖q + ‖P (u)− ū‖q ≤ ‖P (u)− v‖2q + ‖u− ū‖q
≤ 2 (‖P (u)− ū‖2q + ‖v − ū‖2q) + ‖u− ū‖q
≤ (2‖b− a‖q + 1)‖u− ū‖q + 2‖v − ū‖2q
≤ (2‖b− a‖q + 1)‖u− ū‖q + 2m2

q,s‖v − ū‖2s.

6.1.2. Projection vs. stepsize rule for back-transport. The following ar-
guments and Example 6.3 below show that even if (A2), (A3) hold for q = ∞ and
‖usk − ū‖∞ is arbitrarily small, stepsizes σk ≤ ε � 1 may be necessary to ensure
usk + σk(u

n
k+1 − usk) ∈ B◦. Let usk ∈ B◦ be arbitrary. From step 2.3 in Algorithm 5.16

we deduce for x with d(usk)(x) < c(x) and g(usk)(x) �= 0

usk(x)− unk+1(x) =

(
sgn (g(usk)(x)) +

(∇2f(usk)(u
n
k+1 − usk))(x)

|g(usk)(x)|
)
d(usk)(x).(41)

If we look at those x ∈ Ω where in addition ū(x) = a(x) and |g(usk)(x)| is small, say,
|g(usk)(x)| ≤ usk(x)− a(x), then

d(usk)(x) = usk(x)− a(x).

Thus, we need stepsize σk ≤ ε if

(∇2f(usk)(u
n
k+1 − usk)

)
(x) ≥ (1 + ε−1

) |g(usk)(x)|,
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since (41), the equality for d(usk)(x), and the last inequality imply

usk(x)− unk+1(x) ≥ ε−1(usk(x)− a(x)).

But even for ‖usk − ū‖∞ arbitrarily small the set

{
x ∈ Ω : ū(x) = a(x),

(∇2f(usk)(u
n
k+1 − usk)

)
(x) ≥ (1 + ε−1

) |g(usk)(x)|}
may have nonzero measure, because |g(usk)| is typically very small on a neighborhood
of ∂Ā.

Since superlinear convergence can be guaranteed only if the sequence of stepsizes
converges to one, a stepsize rule for the Newton-like step is unsuitable for the infinite-
dimensional case although it was proven to give quadratic convergence in the finite-
dimensional case (see [7]).

Remark 6.2. In the finite-dimensional case one can easily show by using a com-
ponentwise version of (41) that σk = 1 − O(‖uk+1 − uk‖) if second-order sufficiency
conditions with strict complementarity hold at ū. See [6], [7].

The following example illustrates that in the infinite-dimensional case the above
scenario of small stepsizes can really occur.

Example 6.3. We consider problem (P) with quadratic objective function

f : u ∈ L2([0, 1]) �−→ 1

2
‖u‖22 −

1

4

(∫ 1

0

u(x) dx

)2

and feasible set B def
= {u ∈ L2([0, 1]) : a(x)

def
= x − 1

2 ≤ u(x) ≤ 10
def
= b(x) a.e.}. f is

smooth with

g(u) = u− 1

2

∫ 1

0

u(x) dx , ∇2f(u) v = g(v),

and strictly convex, since by Jensen’s inequality (v,∇2f(u)v)2 ≥ 1
2‖v‖22 for all v ∈

L2. The unique global minimum of f on B is given by ū(x) = max {y, a(x)} with
y = 3/2 − √2, because f is strictly convex, g(ū) = ū − y = 0 on the inactive set
Ī = [0, x̂), x̂ = y + 1/2, and g(ū) = ū− y ≥ 0 on the active set Ā = [x̂, 1] = {ū = a}.
It is easy to check that (A1)–(A3), (C), and (CS) hold for p = q = 2, r = s =∞. For
0 < ε < 1 the function uε ∈ B◦, uε(x)

def
= ū(x) + ε|x − x̂| + ε2/10, is strictly feasible

with ‖uε − ū‖∞ = x̂ε + ε2/10 < ε. Moreover, the gradient g(uε) is negative in a
neighborhood of the boundary point x̂ of Ā which leads to the above scenario of small
stepsizes:

g(uε)(x̂) =
ε

20
(−45 + 30

√
2 + ε) < − ε

20
, 0 < ε < 1.

Now we analyze what happens if we take uε as starting point for an affine-scaling
Newton step sε, i.e., G(uε)sε = −d(uε)g(uε), or, in detail,

sε − 1

2

d(uε)

d′(uε)g(uε) + d(uε)

∫ 1

0

1 · sε(x) dx = − d(uε)g(uε)

d′(uε)g(uε) + d(uε)
.(42)

Since the operator (d′(uε)g(uε) + d(uε))
−1G(uε) on the left (which coincides with

H(uε) for ε small enough) is a “rank-one modification” of the identity, its inverse
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Table 1

ε σmax
‖(uε+sε)−P (uε+sε)‖2

‖sε‖2

1.0E−2 1.77E−2 4.88E−3

1.0E−3 1.78E−3 1.41E−3

1.0E−4 1.78E−4 4.43E−4

1.0E−10 1.78E−10 4.42E−6

1.0E−14 1.78E−14 4.42E−8

0.58 0.6 0.62 0.64
0

0.2

0.4

0.6

0.8

1

Fig. 1.

can be explicitly determined by applying the Sherman–Morrison–Woodbury lemma in
L2([0, 1]). It is possible to derive an explicit closed formula for the function sε. Table 1
shows the maximum stepsize σmax

def
= max {σ ∈ [0, 1] : uε + σsε ∈ B} for c

def
= 2, and

the relative L2-norm of the part of sε that would be cut off by a pointwise projection.
All values were obtained using the closed formula for sε. Figure 1 depicts for ε = 1/100
a plot of the pointwise allowed maximum stepsize. We see that the severe restriction
on the stepsize stems from points in a small neighborhood of x̂ ≈ 0.5857. This
neighborhood contains a zero of gε located in the active set which leads exactly to
the scenario discussed above. Outside of the neighborhood depicted in Figure 1 the
pointwise allowed maximum stepsize is ≥ 0.99.

Thus, uε is a sequence tending to ū in L∞ as ε → 0+ for which the correspond-
ing maximum stepsizes σmax tend to zero whereas the relative L2-difference between
the affine-scaling Newton step sε and the projected step P (uε + sε)− uε approaches
zero.

The previous example shows that a stepsize rule may lead to arbitrarily small
stepsizes for iterates that are arbitrarily close to the solution ū. Thus, it has to
be replaced by another back-transport to achieve fast local convergence. On the
other hand, the example motivates the back-transport by projection introduced in
section 6.1.1, since it leads only to a tiny change of the step in the L2-norm.

After the introduction of a smoothing step in the next section, this example will
be continued in Example 6.5. There we will illustrate (among other things) that
the use of a stepsize rule may lead to almost a stagnation of the iteration whereas
the proposed projection technique in conjunction with a smoothing step yields fast
convergence.

6.2. The smoothing step. We have already observed that a smoothing step
is necessary because the strongest available estimate after one iteration of (7) is (34)
with q < s. In the further analysis we assume that in each iteration k of Algorithm
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5.16 a—possibly noninterior—smoothing step

uk ∈ B �−→ Sk(uk) ∈ Ls(43)

is available. Let ū ∈ B satisfy (O1) and (O2). Analogously to the Abstract Assump-
tion 1 in section 4 we make the following assumption.

Assumption (smoothing property).
(S) There are ρS > 0 and LS > 0 such that the smoothing steps Sk defined in (43)

possess the following property:

‖Sk(uk)− ū‖s ≤ LS‖uk − ū‖q for all k with ‖uk − ū‖q < ρS .

This assumption allows us to choose Sk(uk) = uk if uk ∈ {u : ‖u− ū‖s ≤
LS‖u− ū‖q}. As already outlined in Remark 4.3, the smoothing step

uk �−→ S◦
k(uk)

def
= P [uk](Sk(uk))(44)

is an interior-point modification of Sk as follows.
Lemma 6.4. Let ū satisfy (O1), (O2) and let (S) hold. If P [v] is defined by (39),

then S◦
k as defined in (44) satisfies S◦

k(uk) ∈ B◦. Moreover,

‖S◦
k(uk)− ū‖s ≤ CS‖uk − ū‖q

holds for all k with ‖uk − ū‖q < ρS, where CS = (mq,s‖b− a‖s + 1)LS + ‖b− a‖s.
Proof. P [uk](Sk(uk)) ∈ B◦ does obviously hold for all k ≥ 0, since uk ∈ B◦. Now

let k ≥ 0 be arbitrary with ‖uk − ū‖q < ρS . Using the properties (37), (40) of P and
P [uk], we get

‖P [uk](Sk(uk))− ū‖s ≤ ‖P [uk](Sk(uk))− P (Sk(uk))‖s + ‖P (Sk(uk))− ū‖s
≤ ‖b− a‖s‖P (Sk(uk))− uk‖q + ‖Sk(uk)− ū‖s
≤ ‖b− a‖s(‖P (Sk(uk))− ū‖q + ‖uk − ū‖q) + ‖Sk(uk)− ū‖s
≤ (mq,s‖b− a‖s + 1)‖Sk(uk)− ū‖s + ‖b− a‖s‖uk − ū‖q
≤ CS‖uk − ū‖q,

where we have used (S) in the last step.
We will show in section 8 how a smoothing step can be constructed for a class of

regularized problems by using a fixed point formulation of the KKT-conditions (O1),
(O2).

In the following example we will demonstrate that our proof-driven modifications
of the basic interior-point Newton method—to replace the stepsize rule by a projection
based procedure and to augment the iteration with a smoothing step—are actually
necessary to achieve mesh-independence after discretization.

Example 6.5. We return to Example 6.3 to compare the performance of three
variants of the affine-scaling interior-point Newton method:

(I) Algorithm 5.16.
(II) Algorithm 5.16 with 2.4 replaced by a stepsize rule:

2.4′ Transport unk+1 back to B◦ by the following stepsize rule:

snk = unk+1 − usk, σk,max = max{σ ∈ [0, 1] : usk + σsnk ∈ B},
uk+1 = usk +max {ξ, 1− ‖snk‖2}σk,maxs

n
k , ξ as in (39).

(III) Algorithm 5.16 without smoothing step 2.2.
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In Algorithms (I) and (II) we apply smoothing to uk only if the L2- and L∞-norm of
uk − usk−1 differ too much:

S◦
k(uk)

def
=

{
P [uk](uk − g(uk)) if k ≥ 1 and ‖uk − usk−1‖∞ ≥ 3‖uk − usk−1‖2,

uk else.

The interior-point modification of the projected gradient step is indeed a smoothing
step. This follows from Lemma 6.4 and the discussion in section 8. For the numerical
realization of the methods we have discretized the problem by approximating L2([0, 1])
with piecewise linear functions on a uniform grid with N+1 points for N = 200, 2000,
and 200000, respectively. To check the decrease properties of the new iterates, we use
the fact that unk+1 solves the affine-scaling Newton equation in step 2.3 if and only
if unk+1 is a stationary point of the quadratic function ψ[usk](u) defined by (62); cf.
section 10. This function is used as quadratic model in the interior-point trust-region
methods recently analyzed in [26]. Since ψ[usk] is strictly convex in our context, it
attains its global minimum at snk . We start the iterations with u0 = uε, ε = 0.5, and
ξ = 0.999995. We begin with a comparison of Algorithms (I) and (II) for N = 200.

Table 2

Alg. (I) (Projection) Alg. (II) (Stepsize rule)

k ‖uk+1 − ū‖2 ‖usk+1 − ū‖∞ rk
† ‖uk+1 − ū‖2 ‖usk+1 − ū‖∞ rk

† σk,max

0 4.2275E−2 8.1290E−2 0.9999 7.6898E−2 1.4443E−1 0.9288 0.7332

1 4.2356E−3 8.5289E−3 0.9998 7.6053E−2 1.4287E−1 0.0255 0.0128

2 1.8431E−4 1.5081E−3 1.0000 7.4395E−2 1.3981E−1 0.0502 0.0254

3 4.3224E−5 3.1222E−6∗ 1.0000 7.1203E−2 1.3391E−1 0.0973 0.0499

4 6.3244E−10 8.7489E−9 1.0000 6.5276E−2 1.2295E−1 0.1833 0.0963

† rk = ψ[usk](uk+1)/ψ[usk](u
n
k+1).

∗ Smoothing occurred, i.e., usk+1 �= uk+1.
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The distances ‖uk+1 − ū‖2, ‖usk+1 − ū‖∞ from the solution ū of the discrete prob-
lem and the decrease ratio ψ[usk](uk+1)/ψ[u

s
k](u

n
k+1) are shown in Table 2. For method

(II) we have also added σk,max. Figure 2 depicts −sn0 and the distance to the lower
bound u0−a (dashed). Figures 3 and 4 show the same quantities, i.e., −sn1 and u1−a,
after one step of Algorithms (I) and (II), respectively. We see that the stepsize rule
in (II) leads to an iterate u1 and a new search direction sn1 that requires a very small
stepsize of 0.0128 yielding almost no progress. The reason is depicted in Figure 4:
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sn1 has a small peak on the set where the distance to the lower bound is small. On
the other hand, the part of snk = unk+1 − usk that is cut off by a projection is very
small. Hence, the projection leads to a nearly optimal decrease of ψ[usk] in every step.
Figures 5 and 6 show the first iterates for both iterations. While our Algorithm (I)
converges in 5 steps to high accuracy, method (II) needs 28 iterations to enter the re-
gion of quadratic convergence which exists according to the finite-dimensional theory.
Then it converges in two more steps to high accuracy. Using the starting points of
Example 6.3 for sufficiently fine discretizations leads to approximately the same small
stepsizes as in Example 6.3. Thus, Algorithm (II) is not mesh-independent and its
region of quadratic convergence shrinks with the grid-size. Since for the starting point
uε, ε = 0.5, also in this example the performance of Algorithm (II) is worse for finer
grids—it needs 270 iterations for N = 2000—we compare only the mesh-dependence
of Algorithms (I) and (III). Table 3 contains the distances ‖uk+1 − ū‖2, ‖usk+1 − ū‖∞
from the solution ū of the discrete problems for N = 2000 and N = 200000. As
indicated by our results we observe mesh-independent superlinear convergence of Al-
gorithm (I). On the other hand, we see that Algorithm (III) is not mesh-independent
and that the region of fast local convergence obviously shrinks.
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Table 3

N = 2000 N = 200000

Alg. (I) Alg. (III) Alg. (I) Alg. (III)

k ‖ek+1‖2† ‖esk+1‖∞
† ‖ek+1‖2 ‖ek+1‖∞ ‖ek+1‖2 ‖esk+1‖∞ ‖ek+1‖2 ‖ek+1‖∞

0 4.2E−02 8.1E−02 4.2E−02 8.1E−02 4.2E−02 8.1E−02 4.2E−02 8.1E−02
1 4.2E−03 8.5E−03 4.2E−03 8.5E−03 4.2E−03 8.5E−03 4.2E−03 8.5E−03
2 1.8E−04 1.6E−03 1.8E−04 1.6E−03 1.8E−04 1.6E−03 1.8E−04 1.6E−03
3 3.8E−05 2.9E−06∗ 3.8E−05 7.2E−04 3.8E−05 2.9E−06∗ 3.8E−05 8.1E−04
4 5.2E−10 2.0E−08 1.2E−05 3.1E−04 2.8E−09 9.2E−07 1.2E−05 4.1E−04
5 3.2E−14 4.4E−16∗ 3.5E−06 1.2E−04 5.9E−10 1.2E−12∗ 4.0E−06 2.0E−04
6 1.2E−16 1.5E−16 8.2E−07 3.0E−05 5.0E−14 6.5E−14 1.4E−06 1.0E−04
7 8.0E−08 3.3E−06 4.8E−07 5.0E−05
8 1.1E−09 5.0E−08 1.7E−07 2.5E−05
9 2.7E−13 1.2E−11 6.0E−08 1.2E−05

10 2.0E−16 2.6E−16 2.1E−08 5.6E−06
11 7.3E−09 2.5E−06
12 2.4E−09 9.7E−07
13 6.3E−10 2.8E−07
14 8.8E−11 3.9E−08
15 2.3E−12 1.0E−09
16 1.3E−14 7.3E−13

† ek+1 = uk+1 − ū, esk+1 = usk+1 − ū. ∗ Smoothing occurred, i.e., usk+1 �= uk+1.
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The above example shows that both of our algorithmic modifications, the pro-
jection as back-transport and the smoothing step, are necessary to obtain mesh-
independent superlinear convergence. This demonstrates that the finite-dimensional
convergence theory for Algorithm (II), which guarantees local quadratic convergence,
is not sufficient to ensure mesh-independent behavior.

7. The convergence result. In the following we will always work with the
smoothing steps

uk ∈ B◦ �−→ S◦
k(uk)

def
= P [uk](Sk(uk)) ∈ B◦, Sk as in (43).

We will now prove that Algorithm 5.16 converges superlinearly (respectively, with
Q-order 1 + q̄/(q̃ + max {1, q̃/r} q̄)) in Ls to ū if ū satisfies the first-order necessary
conditions with strict complementarity (C) (respectively, (CS)) as well as (A3), a
smoothing step exists, and ‖u0 − ū‖q is small enough. More precisely, we have the
following theorem.

Theorem 7.1. Let ū satisfy (O1), (O2), and (C). If (A1)–(A3) and (S) hold,
then for p̄ ∈ (0, 1) there is ρ > 0 such that for all u0 ∈ B◦ with ‖u0 − ū‖q < ρ
Algorithm 5.16 is well-defined and produces iterates with

‖uk+1 − ū‖q ≤ C̄1Φp̄(CS‖uk+1 − ū‖q)‖uk+1 − ū‖q,(45)

‖usk+1 − ū‖
s
≤ C̄2Φp̄(‖usk+1 − ū‖

s
)‖usk+1 − ū‖

s
,(46)

where C̄1, C̄2 > 0 depend on µ(Ω), ‖b− a‖∞, ‖g(ū)‖∞, Lg, Lg′ , CH , LS, but not on
q, r, s and Φp̄ is given by (30), i.e.,

Φp̄(z) = ω(2zp̄)1/q̃ + z(1−p̄) min{1, rq̃} +
( z
ν

) s−q
q

.

In the case r = s =∞ the function Φp̄ simplifies to Φp̄(z) = ω(2zp̄)1/q + z1−p̄.
Proof. Choose 0 < ρ ≤ ρS . We will reduce ρ as the proof proceeds. From Lemma

6.4 we deduce

‖usk − ū‖s ≤ CS‖uk − ū‖q.(47)

By choosing ρ > 0 appropriately we can apply Theorem 5.10 with ρ replaced by CSρ
and uc = usk. We obtain that for all uk ∈ B◦, ‖uk − ū‖q < ρ,

‖unk+1 − ū‖
q
≤ CΦp̄(‖usk − ū‖s)‖usk − ū‖s ≤ CCSΦp̄(CS‖uk − ū‖q)‖uk − ū‖q,(48)

where Φp̄ is given by (30). Lemma 6.1 yields

‖uk+1 − ū‖q = ‖P [usk](unk+1)− ū‖
q
≤ CP ‖unk+1 − ū‖

q
+ C ′

P ‖usk − ū‖2s
≤ CS (CCPΦp̄(CS‖uk − ū‖q) + CSC

′
P ‖uk − ū‖q) ‖uk − ū‖q.

(49)

This proves (45), since the Φp̄-term is of lowest order. By the properties of ω (see
Lemma 5.7), Φp̄(z) tends to zero as z → 0. Hence, possibly after a further reduction
of ρ, the algorithm is well-defined, since u0 ∈ B◦, ‖u0 − ū‖q < ρ implies uk ∈ B◦,



AFFINE-SCALING INTERIOR-POINT NEWTON METHODS 1965

‖uk − ū‖q < ρ for all k. Now (46) is obtained by combining (47) with k replaced by
k + 1, and the first inequalities in (48) and (49):

‖usk+1 − ū‖
s
≤ CS‖uk+1 − ū‖q
≤ CS(CP ‖unk+1 − ū‖

q
+ C ′

P ‖usk − ū‖2s)
≤ CS (CCPΦp̄(‖usk − ū‖s) + C ′

P ‖usk − ū‖s) ‖usk − ū‖s.
If, in addition, (CS) holds, we get convergence with Q-order > 1 as follows.
Corollary 7.2. In addition to the assumptions of Theorem 7.1 let condition

(CS) hold at ū. Then with the choice p̄ = min {r/(r + q̄), q̃/(q̃ + q̄)} Theorem 7.1
yields

‖uk+1 − ū‖q ≤ C̄1ΦCS (CS‖uk − ū‖q)‖uk − ū‖q,
‖usk+1 − ū‖

s
≤ C̄2ΦCS (‖usk − ū‖s)‖usk − ū‖s

with C̄1, C̄2 > 0 as in Theorem 7.1, q̃ = qr
r−q , and

ΦCS (z) = z
q̄

q̃+max{1,q̃/r}q̄ +
( z
ν

) s−q
q

.

In the case r = s =∞ the function ΦCS assumes the simple form ΦCS (z) = z
q̄
q+q̄ .

Proof. This follows immediately from Theorem 7.1 and Corollary 5.12.

8. Application to a class of regularized problems. In this section we apply
our convergence theory to the following class of regularized problems which contains
the one considered in the analysis of projected Newton methods by Kelley and Sachs
[17]: We investigate problem (P) with the L2-regularized objective function

f : u ∈ D ⊂ Lp �−→ k(u) +
1

2
‖√α(u− u0)‖22,

where α, u0 ∈ L∞ and k : D �−→ R such that (A1) holds. The gradient is given by

g(u) = αu− αu0 +∇k(u)
def
= αu+K(u).

We make the following assumption.
Assumption.

(A2′) g(u) = αu+K(u) with α ∈ L∞, α(x) ≥ α0 > 0 for a.a. x ∈ Ω. Furthermore,
there are 2 ≤ q < s ≤ ∞ such that g : B ⊂ Ls −→ Lq is Lipschitz continuously
Fréchet differentiable and K has the following smoothing property:

K : B ⊂ Lq −→ Ls

is Lipschitz continuous with Lipschitz constant LK .
Obviously, (A2′) implies the Lipschitz continuity of g : B ⊂ Ls −→ Ls with Lipschitz
constant Lg = ‖α‖∞ +mq,sLK . Hence, (A2

′) implies (A2) with r = s.
To perform a smoothing step we use a technique proposed in [17]. The following

fixed point formulation of the optimality conditions (O1), (O2) is essential.
Lemma 8.1. Let (A1) hold. Then (O1), (O2) are satisfied at ū if and only if

ū = P (ū− σg(ū)),(50)

where σ ∈ L∞, σ > 0 a.e., is arbitrary.
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If in addition (A2′) holds, then ū satisfies (O1), (O2) if and only if

ū = P (−α−1K(ū)) (= P (ū− α−1g(ū))).

Furthermore, for all u, v ∈ B the following holds true:
∥∥P (−α−1K(u))− P (−α−1K(v))

∥∥
s
≤ ∥∥α−1(K(u)−K(v))

∥∥
s
≤ LK

α0
‖u− v‖q,(51)

i.e., the step uk ∈ B �−→ Sk(uk)
def
= P (−α−1K(uk)) has the smoothing property (S) for

all uk ∈ B.
Proof. Let ū ∈ D be arbitrary. Then (50) is satisfied if and only if (O1) holds

(since the right-hand side of (50) is in B) and

σ(x)g(ū)(x)



≥ 0 if ū(x) = a(x),
≤ 0 if ū(x) = b(x),
= 0 else

a.e. on Ω.

Since σ(x) > 0 for a.a. x ∈ Ω, this is nothing else but (O2). If in addition (A2′)
holds, then ū − σg(ū) = (1 − σα)ū − σK(ū) and the choice σ = α−1 establishes the
second assertion. (51) is easily obtained by using the smoothing property in (A2′)
and the fact that ‖P (v)− P (w)‖s ≤ ‖v − w‖s for all v, w ∈ Ls, since P is a pointwise
projection.

Remark 8.2. The smoothing step is a scaled projected gradient step obtained by
making a scaled gradient step −α−1g(uk) and projecting the result pointwise onto B.
Moreover, P (−α−1K(uk))−uk is a descent direction for f at uk ∈ B (cf. [13]): Since
P is also the projection onto B in the scaled Hilbert space (L2, (α · . . . , . . . )2) we get
by using well-known properties of projections on closed convex sets in Hilbert space

0 ≥ (α(uk − P (uk − α−1g(uk))), uk − α−1g(uk)− P (uk − α−1g(uk))
)
2

and hence (note that we use the L2 inner product as dual pairing)

〈
P (uk − α−1g(uk))− uk, g(uk)

〉 ≤ −∥∥√α(P (uk − α−1g(uk))− uk)
∥∥2

2
.

The preceding lemma shows that the convergence results of the previous section
hold for the considered class of regularized problems if uk �−→ Sk(uk) = P (−α−1K(uk))
is used as smoothing step.

We have already mentioned that (CS) is weaker than the corresponding assump-
tion in [17] for the analysis of the projected Newton method. To allow a further
comparison with the results in [17] we will show that (A3) is implied by Assumptions
2.1 and 2.3 in [17] which are stronger than (A2′) and the requirement that

H̃(u)
def
= I + α−1χĪK

′(u)χĪ , Ī = Ω \ Ā,(52)

has an inverse for all u ∈ B, ‖u− ū‖s < ρ̃ with ‖H̃(u)−1‖q,q ≤ CH̃ (in [17] only s =∞
is considered).

We use the following analogue of Assumption 2.2 in [17] which implies the local
Lipschitz continuity of K : B ⊂ Lq −→ Ls in ū.

Assumption.
(A4) There is ρK > 0 such that for all u ∈ B with ‖u− ū‖s < ρK

‖K ′(u)‖q,s ≤ CK′ .

Here K ′(u) ∈ L(Lp, Lp′) denotes the Fréchet derivative of K at u.
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The following lemma shows that (A3) is satisfied if (A3) holds for H̃(u) defined
in (52) instead of H(u). Hence, (A3) is implied by Assumptions 2.2 and 2.3 in [17]
for the choice s =∞.

Lemma 8.3. Let (O1), (O2), and (C) hold at ū, Ā denote the active set, and
Ī = Āc. If Assumptions (A1), (A2′), and (A4) are satisfied, then the following is
true: If there is ρ̄ > 0 such that for all u ∈ B, ‖u− ū‖s < ρ̄,

H̄(u)
def
= I + α−1χĪK

′(u) : Lq −→ Lq

is invertible with ‖H̄(u)−1‖q,q ≤ CH̄ , then (A3) holds for ρH > 0 sufficiently small.

The lemma remains true if H̄(u) is replaced by H̃(u) defined in (52) since the
uniformly bounded invertibility of H̃(u) implies that of H̄(u):

H̄(u)−1 = H̃(u)−1 · (I − α−1χĪK
′(u)χĀI

)
.(53)

Proof. We note that H(u) in Assumption (A3) can be equivalently replaced by

Ĥ(u)
def
=

χ{d(u)<c}|g(u)|
χ{d(u)<c}|g(u)|+ αd(u)

I +
d(u)

χ{d(u)<c}|g(u)|+ αd(u)
∇2f(u)

if (A1) and (A2′) are satisfied. This follows from the identity

Ĥ(u) =
|g(u)|+ d(u)

χ{d(u)<c}|g(u)|+ αd(u)
H(u)

and the fact that the first factor is continuously invertible, since

|g(u)|+ d(u)

χ{d(u)<c}|g(u)|+ αd(u)
∈
{

[min{‖α‖−1
∞ , 1},max{α−1

0 , 1}] on {d(u) < c} ,
[‖α‖−1

∞ , α−1
0 (1 + ν−1Cg)] on {d(u) ≥ c} .

In particular, there exists a constant CĤH with

‖H(u)−1‖q,q ≤ CĤH‖Ĥ(u)−1‖q,q.
According to a standard result of operator theory we can establish (A3) with CH =
2CĤHCH̄ by finding ρH > 0 such that ‖H̄(u)− Ĥ(u)‖q,q ≤ 1/(2CH̄) for all u ∈ B◦,
‖u− ū‖s < ρH . To this end, let ρ ≤ min{1, ρ̄, ρK} and u ∈ B◦, ‖u− ū‖s < ρ, be
arbitrary. We will adjust ρ as the proof proceeds. We observe that

H̄(u)− Ĥ(u) =

(
χĪ
α
− d(u)

χ{d(u)<c}|g(u)|+ αd(u)

)
K ′(u),(54)

apply Lemma 2.3 with q0 = q, q1 = s/q, q′1 = s/(s− q), use (A4), and obtain

‖H̄(u)− Ĥ(u)‖q,q ≤
∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
qs
s−q

‖K ′(u)‖q,s

≤
∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
qs
s−q

CK′ .

We notice that q ≤ q̂
def
= qs/(s− q) <∞ (q̂ = q if s =∞) and split Ω to estimate the

first factor in the last expression. For

B(u)
def
=
{
x ∈ Ω : χ{d(u)<c}(x)|g(u)(x)|+ α(x)d(u)(x) ≤ √ρ

}
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and ρ < ν2α2
0 we have B(u) ⊂ {d(u) < c}, and thus with α1 = min {α0, 1}

B(u) ⊂ {x ∈ Ω : α1|g(u)(x)|+ α1d(u)(x) ≤ √ρ} = N√
ρ/α1

(u).

Denote the complement of B(u) by Bc(u). The key observation is that the parenthesis
in (54) is small on Bc(u) and the measure of the residual set B(u) is small as well.
We get by Lemma 5.7 and Minkowski’s inequality

∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
q̂,B(u)

≤ 1

α0
µ(B(u))1/q̂ ≤ 1

α0
µ(N√

ρ/α1
(u))1/q̂

≤ 1

α0

(
ω

(
2

√
ρ

α1

)
+ ((Lg + Ld)α1

√
ρ)
s

)1/q̂

≤ 1

α0

(
ω

(
2

√
ρ

α1

)1/q̂

+ ((Lg + Ld)α1
√
ρ)
s/q̂

)
.

Moreover, we obtain as in the proof of Theorem 5.10

∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
q̂,Bc(u)

≤ C1

∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
min{1,s/q̂}

s,Bc(u)

by applying Lemma 2.2 in the case s < q̂ (note that the function under the norm is
nonnegative and pointwise bounded by 1/α0). We can choose C1 = mq̂,s if q̂ ≤ s and

C1 = α
−1+s/q̂
0 if s < q̂. Since g(ū) = 0 a.e. on Ī by (O2) we get with (A2)

∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
s,Bc(u)∩Ī

=

∥∥∥∥∥
χ{d(u)<c}|g(u)− g(ū)|

α
(
χ{d(u)<c}|g(u)|+ αd(u)

)
∥∥∥∥∥
s,Bc(u)∩Ī

≤
∥∥∥∥g(u)− g(ū)

α0
√
ρ

∥∥∥∥
s

≤ Lg
α0

√
ρ.

The fact that d(ū) = 0 a.e. on Ā yields together with Lemma 5.3

∥∥∥∥χĪα − d(u)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
s,Bc(u)\Ī

=

∥∥∥∥ d(u)− d(ū)

χ{d(u)<c}|g(u)|+ αd(u)

∥∥∥∥
s,Bc(u)\Ī

≤
∥∥∥∥d(u)− d(ū)√

ρ

∥∥∥∥
s

≤ Ld
√
ρ.

Hence, there are constants C1, C2 > 0 such that

‖H̄(u)− Ĥ(u)‖q,q ≤
(
C1ω

(
2

√
ρ

α1

)1/q̂

+ C2
√
ρ
min{1, sq̂}

)
CK′ .

Due to Lemma 5.7, after a possible reduction of ρ > 0 the right-hand side is≤ 1/(2CH̄)
and the choice ρH = ρ completes the first part of the proof.

Now assume that the assumptions hold for H̃(u) instead of H̄(u). We only have
to verify the explicit formula (53) for H̄(u)−1. For v ∈ Lq we look at the equation

v = H̄(u)h = H̃(u)h+ α−1χĪK
′(u)χĀh.(55)
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Premultiplication by χĀ shows hĀ = vĀ, and hence

h = H̃(u)−1
(
v − α−1χĪK

′(u)vĀ
)
.

Therefore, the operator given in (53) is a left inverse of H̄(u). It is also a right inverse;
to see this we note that χĀH̃(u) = χĀI, hence χĀH̃(u)−1 = χĀI, and, consequently,

(H̃(u) + α−1χĪK
′(u)χĀI)H̃(u)−1(I − α−1χĪK

′(u)χĀI) = I,

where we have used the fact that χĀα
−1χĪ = 0.

Remark 8.4. The results of Lemma 8.3 remain true if α also depends on u.

9. Second-order sufficient conditions. We will now study how Algorithm
5.16 behaves in the neighborhood of a point ū satisfying the second-order sufficient
condition given by Dunn and Tian in [9]. We will show that it implies (A3) in the
case q = 2 under the additional assumptions of the previous section and also for q > 2
if the range of H̃(u) is dense in Lq. In section 10 we will use this sufficiency condition
to show that the developed affine-scaling Newton method produces acceptable steps
for the trust-region globalization considered in [26] if the iterates uk are close enough
to ū. In our notation, the second-order sufficiency conditions by Dunn and Tian [9]
read as follows.

Assumption (second-order sufficient conditions by Dunn and Tian).
(OS) Condition (A1) holds and there are t ∈ [1,∞], cr > 0 such that

|〈v,∇2f(u)w〉| ≤ cr‖v‖2‖w‖2 for all u ∈ B, v, w ∈ L∞,(56)

lim
u∈B

‖u−ū‖t→0

sup
w∈L∞
‖w‖2=1

〈w, (∇2f(u)−∇2f(ū))w〉 = 0.(57)

Moreover, (O1), (O2) are satisfied at ū and there are sets A ⊂ Ā, I = Ac and
constants c1, c2 > 0 with

g(ū) ≥ c1 on A, 〈χIw,∇2f(ū)χIw〉 ≥ c2‖χIw‖22 for all w ∈ L∞.(58)

Remark 9.1. Dunn and Tian [9] deduce (58) from the second-order necessary
conditions (see also [26]), if in addition a pointwise strict complementarity condition
similar to (C), the standard L2 coercivity analogue of the necessary conditions (i.e., the
second condition in (58) only for Ī = Āc instead of I), and certain structure/continuity
conditions hold that are typically satisfied by Bolza ODE optimal control problems. In
such cases, the gap between the sufficient condition (OS) and the necessary conditions
is therefore narrower than it might appear. Extensions of these results to the case
of general pointwise affine constraints are established in [10], [11]. In particular, the
application of the theory in [10] to nonnegativity constraints improves the sufficiency
result in [9].

Remark 9.2. Condition (OS) is weaker (stronger) than the sufficient second-order
condition of Maurer in [23] if ‖ · ‖2 (respectively, ‖ · ‖1) is chosen as the weak norm.

Since we prefer a result of the form f(u) − f(ū) ≥ C‖u− ū‖2l for l = 2 rather than
for l = 1, condition (OS) better meets our requirements. Moreover, it is obvious that
in view of Lemma 2.2 the requirement t ∈ [1,∞) could be equivalently replaced by
t ∈ {2,∞} since the relative topology of Lt on B is the same for all t ∈ [1,∞).
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9.1. L∞-optimality. The following theorem shows that (OS) implies the L∞-
optimality of ū for (P) (cf. [9]).

Theorem 9.3. Let the formal second-order sufficiency condition (OS) hold. Then
ū is a strict L∞-optimizer for (P), more precisely: There are ρ > 0 and C > 0 such
that

u ∈ B, ‖u− ū‖∞ < ρ =⇒ f(u)− f(ū) ≥ C‖u− ū‖22.
Proof. The proof is a variant of the one given for Lemma 1 in [9]. Let u ∈ B.

With v = u− ū we get from (OS)

f(u)− f(ū) = 〈v, g(ū)〉 + 1

2

(〈vI ,∇2f(u)vI〉 + 〈vA,∇2f(u)(vA + 2vI)〉
)
+ o(‖v‖22)

≥ c1‖vA‖1 +
c2
2
‖vI‖22 −

cr
2

(‖vA‖22 + 2‖vA‖2‖vI‖2) + o(‖v‖22)

≥ c1
‖vA‖22
‖vA‖∞

+
c2
2
‖vI‖22 −

cr
2

(
1 +

2cr
c2

)
‖vA‖22 −

c2
4
‖vI‖22 + o(‖v‖22)

≥
(

c1
‖vA‖∞

− cr(2cr + c2)

2c2

)
‖vA‖22 +

c2
4
‖vI‖22 + o(‖v‖22),

where we have used 2αβ ≤ cα2 + β2/c with c = c2/(2cr). Note that o(‖v‖22) is meant
for ‖v‖∞ → 0. We see that the assertion follows for all u ∈ B with ‖u− ū‖∞ < ρ if
ρ > 0 is small enough.

9.2. L2-optimality. We make now additional assumptions on the structure of
the second derivative which are met by the class of regularized problems considered
in the previous section and are similar to those in [25].

Assumption.
(A5) ∇2f(u) = β(u)I + K ′(u), where β : B ⊂ L2 −→ L∞ is continuous and K ′

satisfies (A4) for suitable 2 ≤ q < s ≤ ∞.
We have the following variant of Theorem 4 in [9].
Theorem 9.4. Let the formal second-order sufficiency condition (OS) with t <∞

(i.e., also for t = 2) and (A5) hold. If, in addition, β(ū)(x) ≥ β0 > 0 a.e. on Ω, then
ū is a strict L2-optimizer (and hence Lt-optimizer, t ∈ [1,∞]) for (P) in the following
sense: There are ρ > 0 and C > 0 such that

u ∈ B, ‖u− ū‖2 < ρ =⇒ f(u)− f(ū) ≥ C‖u− ū‖22.
Proof. We compute as in the proof of Theorem 9.3

f(u)− f(ū) ≥ c1‖vA‖1 +
c2
2
‖vI‖22 +

β0

2
‖vA‖22 +

1

2
〈vA,K ′(u)(vA + 2vI)〉 + o(‖v‖22)

≥ c1‖vA‖1 +
c2
2
‖vI‖22 +

β0

2
‖vA‖22 − ‖K ′(u)‖q,s‖vA‖s′‖v‖q + o(‖v‖22),

where v = u−ū and 1/s+1/s′ = 1. Then 1 ≤ s′ < 2 ≤ q < s and 1/q+1/s′ def
= 1+δ > 1

because of s > q. Now by Lemma 2.2

‖vA‖s′ ≤ ‖vA‖1/s
′

1 ‖vA‖1−1/s′

∞ , ‖v‖q ≤ ‖v‖2/q2 ‖v‖1−2/q
∞ .

Since ‖vA‖∞ ≤ ‖v‖∞ ≤ ‖b− a‖∞, we find C1 > 0 with

‖vA‖s′‖v‖q ≤ C1‖vA‖1/s
′

1 ‖v‖2/q2 ≤ C1

(
1

p′1
‖vA‖p

′
1/s

′

1 +
1

p1
‖v‖2p1/q2

)
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for all p1, p
′
1 ∈ (1,∞), 1/p1 + 1/p′1 = 1, according to Young’s inequality. We choose

p1 = q(1 + ε) and get

1

p′1
= 1− 1

q(1 + ε)
=

1

s′
+

1

q
− 1

q(1 + ε)
− δ <

1

s′(1 + ε′)

for ε, ε′ > 0 small enough. Hence, for ‖v‖2 small

‖K ′(u)‖q,s‖vA‖s′‖v‖q ≤ CKC1(‖vA‖1+ε
′

1 + ‖vA‖2+2ε
2 ),

which completes the proof.
We shall now study in which cases condition (A3) is implied by the formal second-

order sufficiency condition (OS). We will thereby restrict ourselves to problems which
satisfy the structural assumptions of section 8.

Theorem 9.5. Let (OS), (A2′) with t < ∞, and (A4) hold. Then the following
is true:

(1) If q = 2, then (A3) is satisfied.
(2) For q > 2 there are ρ > 0 and CH̃ > 0 such that for all u ∈ B◦, ‖u− ū‖s < ρ,

the operator H̃(u) in (52) has the properties
(i) H̃(u) ∈ L(Lq, Lq) and ‖H̃(u)v‖q ≥ CH̃‖v‖q for all v ∈ Lq;

(ii) the range of H̃(u) : Lq −→ Lq is closed in Lq.
Hence, if K ′ : B ⊂ Ls −→ L(Lq, Lq) is continuous at ū and if the range of
H̃(ū) is dense in Lq, then (A3) is satisfied.

Proof. Let 0 < ρ ≤ ρK and u ∈ B, ‖u− ū‖s < ρ. We will adjust ρ in what

follows. By (A4) and the definition of H̃(u) we have H̃(u) ∈ L(Lq, Lq) and
〈αv, H̃(u)w〉 ≤ (m2

2,q‖α‖∞ +mq′,sCK′)‖v‖q‖w‖q for all v, w ∈ Lq.(59)

From t < ∞, Lemmas 2.1 and 2.2 we deduce that u ∈ B, ‖u− ū‖s → 0 implies

‖u− ū‖t → 0. Using α(H̃(u) − H̃(ū)) = χĪ(∇2f(u) − ∇2f(ū))χĪ we obtain from
(A2′) and (57) by a density argument in Lq

lim
u∈B

‖u−ū‖s→0

sup
w∈Lq

‖w‖2=1

〈w, (H̃(u)− H̃(ū))w〉 = 0.(60)

For arbitrary w ∈ Lq we have with (OS)

〈αw, H̃(ū)w〉 = 〈αw,w〉 + 〈αwĪ , α−1K ′(ū)wĪ〉
= 〈αwĀ, wĀ〉 + 〈αwĪ , wĪ〉 + 〈wĪ ,K ′(ū)wĪ〉
= 〈αwĀ, wĀ〉 + 〈wĪ ,∇2f(ū)wĪ〉
≥ α0‖wĀ‖22 + c2‖wĪ‖22 ≥ min {α0, c2} ‖w‖22 def

= C1‖w‖22.
Together with (60) this shows that for sufficiently small ρ > 0 we have

〈αw, H̃(u)w〉 ≥ C1

2
‖w‖22 for all w ∈ Lq.(61)

Hence, in the case q = 2 the symmetric operator αH̃(u) ∈ L(L2, L2) is bounded by
(59) and positive by (61). We therefore may apply the Lax–Milgram theorem (which
in our symmetric case is an immediate consequence of Riesz’s representation theo-
rem), yielding that H̃(u) is continuously invertible in L(L2, L2) with ‖H̃(u)−1‖2,2 ≤
2‖α‖∞/C1. By Lemma 8.3 this implies (A3) for sufficiently small ρH > 0.
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Next we assume q > 2 and establish the second part of (2i). Let w ∈ Lq be
arbitrary. For c > 0 which will be adjusted later we consider two cases: If ‖w‖2 ≥
c‖w‖q, then by (61)

cC1

2
‖w‖2‖w‖q ≤

C1

2
‖w‖22 ≤ 〈αw, H̃(u)w〉 ≤ ‖α‖∞mq′,2‖w‖2‖H̃(u)w‖q,

from which

‖H̃(u)w‖q ≥
cC1

2‖α‖∞mq′,2
‖w‖q.

In the case ‖w‖2 < c‖w‖q we compute

‖H̃(u)w‖q ≥ ‖w‖q −
1

α0
‖χĪK ′(u)wĪ‖q ≥ ‖w‖q −

1

α0
‖K ′(u)wĪ‖q.

Applying Lemma 2.2 we obtain with (A4) and suitable θ ∈ (0, 1)

‖K ′(u)wĪ‖q ≤ ‖K ′(u)wĪ‖θ2‖K ′(u)wĪ‖1−θs ≤ ‖K ′(u)wĪ‖θ2(CK′‖w‖q)1−θ.
Obviously, (59) also holds with the left side replaced by |〈v,∇2f(u)w〉|. Therefore,
(56) implies by a density argument together with (A2′) and (A4) that

‖K ′(u)v‖2 = ‖∇2f(u)v − αv‖2 ≤ (cr + ‖α‖∞)‖v‖2 def
= Cr‖v‖2 for all v ∈ Lq.

This gives

‖K ′(u)wĪ‖q ≤ (Cr‖w‖2)θ(CK′‖w‖q)1−θ ≤ (Crc)
θC1−θ
K′ ‖w‖q,

and choosing c > 0 small enough we achieve

‖H̃(u)w‖q ≥
1

2
‖w‖q,

as long as ‖w‖2 < c‖w‖q. Since c > 0 can be adjusted independently of w, (i) is
shown.

To prove (ii), let (wk) ⊂ Lq be arbitrary. Then

H̃(u)wk
Lq

→ v ∈ Lq (k →∞)

(i)
=⇒ ‖wk − wl‖q ≤ C−1

H̃
‖H̃(u)wk − H̃(u)wl‖q → 0 (k, l→∞)

=⇒ wk
Lq

→ w ∈ Lq (k →∞)
(i)
=⇒ H̃(u)wk

Lq

→ H̃(u)w (k →∞).

If the range of H̃(ū) : Lq −→ Lq is dense, then H̃(ū) is injective by (i) and surjective
by (ii). Thus, it has a continuous inverse by the open mapping theorem and (i) shows
‖H̃(ū)−1‖q,q ≤ C−1

H̃
. If, in addition, K ′ : B ⊂ Ls −→ L(Lq, Lq) is continuous at ū,

then for ‖u− ū‖s small enough H̃(u)−1 ∈ L(Lq, Lq) exists and (A3) is satisfied for
sufficiently small ρH > 0.

The previous result shows that—at least in the case q = 2—the application of
Algorithm 5.16 to the class of problems considered in section 8 leads to superlinear
convergence in a neighborhood of a point ū satisfying (OS). This is especially impor-
tant since formal sufficiency conditions of type (OS) are the usual starting point for
proving that a rapidly convergent local method meets the trial step requirements of
a globally convergent algorithm in a neighborhood of a local optimizer. Hence, it is
important that the local convergence theory can be established under a sufficiency
condition that is as weak as possible.
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10. Trust-region globalization. The aim of this section is to show that near a
local optimizer satisfying (OS) Algorithm 5.16 produces admissible trial steps for the
globally convergent affine-scaling interior-point trust-region algorithm that we pro-
posed and analyzed in [26]. The trust-region globalization extends ideas of Coleman
and Li in [7] and uses the fact that un ∈ Lq solves (7) for given uc ∈ B◦ if and only if
un is a stationary point of the quadratic function ψ[uc] : Lq −→ R,

ψ[uc](u)
def
= 〈u− uc, g(uc)〉 + 1

2
〈u− uc,M(uc)(u− uc)〉,(62)

where M(u)
def
= d(u)−1G(u) = χ{d(u)<c}|g(u)|d(u)−1I +∇2f(u).

Here and in the following we use the standard notation s for the trial steps
although it collides with the norm index occurring in (A2). There is no danger of
ambiguity. As shown in [26], a globally convergent algorithm can be obtained as
follows: Denote by uk ∈ B◦ the current iterate. We compute a trial step sk as an
approximate solution to the trust-region subproblem

minimize ψ[uk](uk + s) subject to uk + s ∈ B, ‖s‖q ≤ ∆k.(63)

This trial step is required to satisfy the following.
Fraction of Cauchy decrease condition.

(D) uk + sk ∈ B◦, ‖sk‖q ≤ β0∆k , and ψ[uk](uk + sk) ≤ βψ[uk]
c, where

ψ[uk]
c def
= βmin{ψ[uk](uk + s)s = −τdϑkgk, τ ≥ 0, uk + s ∈ B, ‖s‖q ≤ ∆k}

with fixed constants β0 > 0, 0 < β < 1, ϑ ≥ 1. The step sk is accepted, i.e.,
uk+1 = uk + sk, if rk > η1, where 0 < η1 < 1 is fixed and the decrease ratio
rk = r(uk, sk) is given by

r(uk, sk)
def
=

f(uk + sk)− f(uk)

〈sk, g(uk)〉 + 〈sk,∇2f(uk)sk〉/2 .

Otherwise, i.e., if rk ≤ η1, the step is rejected: uk+1 = uk. For our presentation it is
convenient to use an update rule for the trust-region radius ∆k that is slightly different
from the one given in [26]. However, it is not hard to verify that all the convergence
results stated therein remain valid. In our update rule we fix 0 < η1 < η2 < η3 < 1,
0 < β0γ0 ≤ γ1 < 1 < γ2 ≤ γ3, ∆min > 0, and choose

∆+ ∈




[γ0‖sk‖q, γ1∆k] if rk ≤ η1,

[γ1∆k,∆k] if η1 < rk < η2,
[∆k, γ2∆k] if η2 < rk < η3,
[γ2∆k, γ3∆k] else,

∆k+1 :=

{
∆+ if rk ≤ η1,
max{∆min,∆

+} else.

For a detailed formulation of the algorithm and its convergence properties we refer
to [26]. The theory developed therein (adapted to our update rule) states that under
Assumption (A1) each accumulation point of the sequence (uk) satisfies the first-
order necessary optimality conditions (O1), (O2), and, moreover, the second-order
necessary condition [26, Thm. 3.3, (O3)] if (D) is replaced by a fraction of optimal
decrease condition.

Keeping in mind that trust-region methods for unconstrained problems inherit
their local convergence behavior from Newton’s method, it is natural to try to accel-
erate the above trust-region method by means of Algorithm 5.16. We combine both
methods as follows.
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Algorithm 10.1 (trust-region interior-point Newton method).

1. Choose ∆k ≥ ∆min, u0 ∈ B◦.
2. For k = 0, 1, 2, . . .

2.1. If d(uk)g(uk) = 0, STOP.
2.2. Select and perform a smoothing step: usk = S◦

k(uk).
2.3. Compute a trial step by Algorithm 5.16: sk = min{1,∆k/‖sNk ‖q}sNk ,

where

sNk = uNk+1 − usk, u
N
k+1 = P [usk](u

n
k+1), u

n
k+1 = usk −G(usk)

−1d(usk)g(u
s
k).

If sk satisfies (D) for ψ[usk] then goto step 2.5.
2.4. Compute a trial step that satisfies (D) for ψ[usk], e.g., by a descent

method that starts with a line search along −d(usk)ϑg(usk).
2.5. Compute the decrease ratio rk = r(usk, sk) and the new trust-region

radius ∆k+1. If rk > η1 then set uk+1 = usk + sk. Otherwise set uk+1 =
usk and go to step 2.2.

Now suppose that one of the accumulation points ū ∈ B of (uk) satisfies the
second-order sufficiency condition (OS). The question is: Does this globally conver-
gent method eventually turn into Algorithm 5.16 and thus inherit its superlinear
convergence?

It is beyond the scope of this paper to answer this question in full generality,
since this would require us to analyze the effect of the smoothing step on the global
convergence behavior of the trust-region algorithm. We try to find a reasonable com-
promise by developing results that are rigorously applicable whenever the smoothing
steps do not affect the global convergence. This is certainly the case if the smoothing
steps decrease the objective function f ; see Remark 8.2 in this context. Moreover, we
require the following.

Assumption.

(A6) ū ∈ B is an accumulation point of (uk) at which (OS) holds. Moreover, condition
(A2) is satisfied with r = s =∞.

As a first result we show that the quadratic model ψ[usk] has a unique minimizer
if ‖usk − ū‖∞ is sufficiently small. To show this, we first prove the following lemma.

Lemma 10.2. Let (A6) hold. Then there are ρ > 0, CM > 0 such that

〈v,M(u)v〉 ≥ CM‖v‖22 for all v ∈ Lq

for all u ∈ B◦, ‖u− ū‖∞ < ρ.

Proof. We know that (O1), (O2) hold at ū. Let I and A be defined as in (OS).
Since |g(ū)| ≥ c1 a.e. on A, we get by (O2) that d(ū) = 0 a.e. on A and hence for
sufficiently small ρ > 0 and all u ∈ B◦, ‖u− ū‖∞ < ρ

|g(u)| ≥ c1/2 and c > d(u) ≤ Ldρ a.e. on A

by (A2) and Lemma 5.3, respectively. (A2) yields with a density argument in Lq that
(56)–(58) hold also for L∞ replaced by Lq and thus, possibly after reducing ρ, we
have

〈vI ,∇2f(u)vI〉 ≥ c2
2
‖vI‖22 for all v ∈ Lq



AFFINE-SCALING INTERIOR-POINT NEWTON METHODS 1975

as long as u ∈ B◦, ‖u− ū‖∞ < ρ. Hence, for all v ∈ Lq

〈v,M(u)v〉 =
〈
vA,

|g(u)|
d(u)

vA

〉
+

〈
vI ,

χ{d(u)<c}|g(u)|
d(u)

vI

〉

+ 〈vI ,∇2f(u)vI〉 + 〈vA,∇2f(u)(2vI + vA)〉
≥ c1

2Ldρ
‖vA‖22 +

c2
2
‖vI‖22 − cr‖vA‖22 − 2cr‖vA‖2‖vI‖2.

With the standard estimate

2cr‖vA‖2‖vI‖2 ≤
c2
4
‖vI‖22 +

4c2r
c2
‖vA‖22

we arrive at

〈v,M(u)v〉 ≥
(

c1
2Ldρ

− cr − 4c2r
c2

)
‖vA‖22 +

c2
4
‖vI‖22.

Now for ρ > 0 sufficiently small the assertion follows.
Theorem 10.3. Let (A3) and (A6) hold and (uk), (u

s
k), (u

n
k ), (u

N
k ) be generated

by Algorithm 10.1. If ρ is sufficiently small and ‖usk − ū‖∞ < ρ, then unk+1 ∈ Lq is a
global minimizer of ψ[usk] and

ψ[usk](u
n
k+1) = −

1

2
〈unk+1 − usk,M(usk)(u

n
k+1 − usk)〉 ≤ −

CM
2

(‖se‖22 + ‖si‖
2

2),(64)

ψ[usk](P (u
n
k+1)) ≤ ψ[usk](u

n
k+1)−

CM
2
‖se‖22 + (cr + ν−1Lgρ)‖se‖2‖si‖2(65)

with se = unk+1 − P (unk+1), s
i = P (unk+1)− usk. Moreover,

ψ[usk](u
N
k+1) ≤ max{ξ, 1− ‖si‖q}ψ[usk](P (unk+1)),(66)

and hence

ψ[usk](u
N
k+1)

ψ[usk](u
n
k+1)

≥ max{ξ, 1− ‖si‖q}
(
1−O

(‖se‖2
‖si‖2

))
.(67)

Proof. Setting s = unk+1 − usk we have s = se + si and sesi ≥ 0 a.e. on Ω. We
use the abbreviations dk = d(usk), gk = g(usk), Mk = M(usk). According to step (3) in
Algorithm 5.16, we have Mks = −gk. Hence, unk+1 is a stationary point of ψ[usk] and,
therefore, its global minimum by Lemma 10.2. Moreover,

ψ[usk](u
n
k+1) = −

1

2
〈s,Mks〉 ≤ −CM

2
‖se + si‖22 ≤ −

CM
2

(‖se‖22 + ‖si‖
2

2).

To prove the second inequality we observe that for all x ∈ Ω with s(x)gk(x) < 0 and
dk(x) < c(x) we have

se(x) = 0 or |si(x)| ≥ dk(x).

In fact, if se(x) �= 0, then either si(x) = b(x) − usk(x) > 0 or si(x) = a(x) − usk(x) <
0. In the first case we have gk(x) < 0 and thus dk(x) = b(x) − usk(x) = si(x) or
dk(x) < c(x) < b(x) − usk(x) = si(x). The second case enforces gk(x) > 0 which
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implies dk(x) = usk(x) − a(x) = |si(x)| or dk(x) < c(x) < usk(x) − a(x) = |si(x)|.
Hence, we get with N = {x ∈ Ω : s(x)gk(x) < 0} and J = {x ∈ Ω : dk(x) < c(x)}

〈
seN ,

|gk|J
dk

si
〉
≥ −〈seN∩J , gk〉.

Using this, we obtain

ψ[usk](u
n
k+1) = 〈se + si, gk〉 + 1

2

〈
se + si,Mk(s

e + si)
〉

= ψ[usk](P (u
n
k+1)) + 〈seNc , gk〉 + 〈seN\J , gk〉 + 〈seN∩J , gk〉 +

〈
seN ,

|gk|J
dk

si
〉

+

〈
seNc ,

|gk|J
dk

si
〉
+

1

2
〈se,Mks

e〉 + 〈se,∇2f(usk)s
i〉

≥ ψ[usk](P (u
n
k+1)) + 〈seN\J , gk〉 +

1

2
〈se,Mks

e〉 + 〈se,∇2f(usk)s
i〉.

We still need an estimate for 〈seN\J , gk〉. To this end, we use the inclusion N \J ⊂ Jc.

Since |dk(x)−d(ū)(x)| ≤ Ldρ and dk(x) ≥ c(x) ≥ ν on Jc we have d(ū)(x) > 0 a.e. on
Jc for ρ > 0 small enough. (O2) yields g(ū)(x) = 0 on Jc and thus

|〈seN\J , gk〉| ≤ ‖se‖1,Jc‖gk − g(ū)‖∞ ≤ Lgρµ(J
c)1/2‖se‖2.

Furthermore, |gk(x)| ≤ Lgρ < ν on Jc for small ρ, which, since dk(x) ≥ ν, requires

ν ≤ dk(x) ≤ min {b(x)− usk(x), u
s
k(x)− a(x)} ≤ |si(x)|.

Hence, by Lemma 2.4

µ(Jc) ≤ µ{x ∈ Ω : |si(x)| ≥ ν} ≤ ν−2‖si‖22.
We conclude |〈seN\J , gk〉| ≤ ν−1Lgρ‖se‖2‖si‖2. Therefore, (65) holds. Now

uNk+1 − usk = P [usk](u
n
k+1)− usk = max{ξ, 1− ‖si‖q}(P (unk+1)− usk)

def
= τ(P (unk+1)− usk).

This implies (66), for

ψ[usk](P [u
s
k](u

n
k+1)) = τ〈si, gk〉 + τ2

2
〈si,Mks

i〉

≤ τ

(
〈si, gk〉 + 1

2
〈si,Mks

i〉
)
= τψ[usk](P (u

n
k+1)),

where the inequality follows from 0 ≤ τ < 1 and 〈si,Mks
i〉 ≥ 0; see Lemma 10.2.

Now (64)–(66) and a straightforward calculation give (67).
Let the assumptions of Theorem 5.10 hold. Using (34) we have for ‖usk − ū‖∞

small enough

‖unk+1 − usk‖q ≤ ‖unk+1 − ū‖
q
+ ‖usk − ū‖q ≤ (CΦp̄(‖usk − ū‖∞) +mq,∞)‖usk − ū‖∞

≤ C∆‖usk − ū‖∞
with C∆ appropriately chosen. Now

‖uNk+1 − usk‖q = ‖P [usk](unk+1)− usk‖q ≤ ‖P (unk+1)− usk‖q ≤ C∆‖usk − ū‖∞.(68)
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Hence, for ‖usk − ū‖∞ small enough we have (cf. (D))

uNk+1 ∈ B◦, ‖uNk+1 − usk‖q ≤ β0∆min.

Using this in Theorem 10.3 we can show that if ‖se‖2/‖si‖2 eventually remains small
enough, then Algorithm 10.1 turns into the superlinearly convergent Algorithm 5.16.
In particular, this happens if no smoothing steps are required.

Theorem 10.4. Let the assumptions of Theorem 10.3 as well as (C) and (S) hold.
Then there are ρ > 0, ε > 0 such that if step k − 1 was accepted and ‖uk − ū‖q < ρ,

then sk = sNk and step k is accepted whenever

‖unk+1 − P (unk+1)‖2
‖P (unk+1)− usk‖2

< ε(69)

holds. If there is C1 > 0 with ‖usk − ū‖∞ ≤ C1‖usk − ū‖q, then (69) is automatically
satisfied for ‖uk − ū‖q small enough.

Proof. Assume that step k − 1 was accepted and ‖uk − ū‖q < ρ with ρ > 0

sufficiently small. We use se and si as defined in Theorem 10.3. Since ‖usk − ū‖∞ ≤
CS‖uk − ū‖q by (S), we get with (68)

‖uNk+1 − usk‖q ≤ ‖si‖q ≤ C∆CS‖uk − ū‖q ≤ C∆CSρ.

Hence, uNk+1 = usk + sNk+1 ∈ B◦ with ‖sNk ‖q ≤ ∆min ≤ ∆k for ρ small enough. Choose

0 < ε̃ < 1 such that (1 − ε̃)2 > β with β given in (D). Possibly after reducing ρ we
achieve ‖si‖q ≤ ε̃. For 0 < ε < 1 sufficiently small we have by (67) and (69)

ψ[usk](uk+1)

ψ[usk](u
n
k+1)

≥ (1− ε̃)2 > β.

Since unk+1 is the global minimizer of ψ[usk] by Theorem 10.3, sk = sNk obviously
satisfies (D) for ψ[usk].

Now assume ‖usk − ū‖∞ ≤ C1‖usk − ū‖q. Then Lemma 2.2 yields with θ = 2/q

‖usk − ū‖q ≤ ‖usk − ū‖θ2‖usk − ū‖1−θ∞ ≤ C1−θ
1 ‖usk − ū‖θ2‖usk − ū‖1−θq

and thus

‖usk − ū‖2 ≥ C
1− 1

θ
1 ‖usk − ū‖q def

= C3‖usk − ū‖q.
To show (69) for ρ small enough we use ‖unk+1 − P (unk+1)‖2 ≤ ‖unk+1 − ū‖

2
and get

‖P (unk+1)− usk‖2 ≥ ‖usk − ū‖2 − ‖P (unk+1)− unk+1‖2 − ‖unk+1 − ū‖
2

≥ ‖usk − ū‖2 − 2‖unk+1 − ū‖
2
≥ C3

C1
‖usk − ū‖∞ − 2‖unk+1 − ū‖

2
.

Moreover, Theorem 5.10 yields

‖unk+1 − ū‖
2
≤ m2,q‖unk+1 − ū‖

q
≤ m2,qCΦp̄(‖usk − ū‖∞)‖usk − ū‖∞.

Hence, for ‖usk − ū‖∞ sufficiently small we get

‖unk+1 − P (unk+1)‖2
‖P (unk+1)− usk‖2

≤
(

C3‖usk − ū‖∞
C1‖unk+1 − ū‖

2

− 2

)−1

≤
(

C3

C1m2,qCΦp̄(‖usk − ū‖∞)
− 2

)−1

and the last term is < ε for small ρ, since Φp̄(‖usk − ū‖∞) ≤ Φp̄(Csρ) tends to zero as
ρ→ 0.
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11. Application to a control problem. In this section we present numerical
results for the application of Algorithm 5.16 to a boundary control problem governed
by a nonlinear heat equation which is a simplified model for the heating of a probe
in a kiln. Let Q

def
= (0, 1) denote the spatial domain with x = 0 at the boundary and

x = 1 at the inside of the probe. The temperature y(x, t), (x, t) ∈ Q× (0, T )
def
= QT of

the probe satisfies the nonlinear heat equation

τ(y)yt − (κ(y)yx)x = h on QT ,

κ(y(0, t))yx(0, t) = ζ(y(0, t)− u(t)), t ∈ (0, T ),

κ(y(1, t))yx(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ Q,

(70)

where y0 : Q −→ R is the initial temperature, τ, κ : R −→ R denote the specific heat
capacity and the heat conduction, respectively, h : QT −→ R is a source term, ζ ∈ R

a given scalar, and u : (0, T ) −→ R the control. For consistency with our notations
let Ω

def
= (0, T ).

The control u shall be determined in such a way that the temperature y(1, t)
inside the probe follows a given temperature profile yd(t). Since it is well known that
this nonlinear inverse heat conduction problem is ill-posed, we add a regularization
in the control space and choose as objective function

J(y, u) =
1

2

∫ T
0

(
(y(1, t)− yd(t))

2 + αu(t)2
)
dt

with yd ∈ L∞((0, T )). The problem was considered in [5]. We define the space

W (0, T )
def
=
{
y ∈ L2(0, T ;H1(Q)) : yt ∈ L2(0, T ;H1(Q)′)

}
with norm ‖y‖W (0,T )

def
= ‖y‖L2(0,T ;H1)+‖yt‖L2(0,T ;(H1)′). It is well known thatW (0, T )

is a Hilbert space and that the embedding W (0, T ) ↪→ C(0, T ;L2(Q)) is continuous.
Under the assumption that κ, τ ∈ C(R) with

0 < κ1 ≤ κ(s) ≤ κ2, 0 < τ1 ≤ τ(s) ≤ τ2 for all s ∈ R

it is shown in [5] that for all h ∈ L2(0, T ;L2(Q)), y0 ∈ L2(Q), and u ∈ L2(Ω) there
exists a solution y ∈ W (0, T ) of the state equation (70) which satisfies the stability
estimate

‖y‖W (0,T ) ≤ C (‖h‖L2(0,T ;L2) + ‖u‖2 + ‖y0‖2).(71)

Uniqueness is proven under the additional assumption yx ∈ L∞(0, T ;Lr(Q)), r > 2,
and κ, τ ∈ C1(R). Furthermore, it was shown that for α > 0 there exists an optimal
solution ū ∈ L2(Ω) of the control problem

minimize J(y, u) subject to y ∈W (0, T ), u ∈ L2(Ω) satisfy (70).(72)

With the lower and upper bounds a, b ∈ L∞(Ω), b − a ≥ ν > 0, we introduce the
additional box constraints

u ∈ B def
=
{
u ∈ L2(Ω) : a ≤ u ≤ b

}
.(73)

Since B is a closed bounded convex subset of L2(Ω), exactly the same arguments as
in [5] can be used to prove the existence of an optimal control ū ∈ B for α ≥ 0.
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Assuming that for u ∈ B the solution y = y(u) to (70) is unique, we can define the
reduced objective function f(u)

def
= J(y(u), u) for which (72), (73) is equivalent to (P).

This way of eliminating y is called the black-box approach.
For the rest of this paragraph assume that κ and τ are constant. Then the

existence and stability result (71) is well known. As will be shown now, it implies
that the affine linear mapping u ∈ L2(Ω) �−→ y(1, .) ∈ Lq(Ω) is (even completely)
continuous for 2 ≤ q < 4 and therefore smooth. Thus, the objective f : L2(Ω) −→ R

is a well-defined and smooth quadratic function. The case 2 < q < 4 will be used
below to derive a regularity result for the gradient. In the proof of the assertion
on u �−→ y(1, .) we use the symbol “↪→” for continuous and “↪→↪→” for compact
embeddings. (71) shows the continuity of u ∈ L2(Ω) �−→ y ∈ W (0, T ). To complete
the argument we show that y ∈W (0, T ) �−→ y(1, .) ∈ Lq(Ω) is compact for 1 ≤ q < 4.
Let 1/2 < θ < Θ < 1. Since H1(Q)↪→↪→HΘ(Q)↪→H1(Q)′, we have by a Lions
lemma that W (0, T )↪→↪→L2(0, T ;HΘ(Q)) (see [21, Thm. 5.1]). Moreover, from the
interpolation result Hθ(Q) = [L2(Q), HΘ(Q)]θ/Θ it can be deduced that

‖ · ‖L2Θ/θ(0,T ;Hθ) ≤ C ‖ · ‖1−θ/ΘL∞(0,T ;L2)‖ · ‖θ/ΘL2(0,T ;HΘ)
.

Hence, W (0, T )↪→L∞(0, T ;L2(Q)) and W (0, T )↪→↪→L2(0, T ;HΘ(Q)) yield the com-
pact embedding W (0, T )↪→↪→L2Θ/θ(0, T ;Hθ(Q)). Finally, since Hθ(Q)↪→C([0, 1]),
we conclude that y ∈W (0, T ) �−→ y(1, .) ∈ L2Θ/θ(Ω) is compact. Now (71) shows the
complete continuity of u ∈ L2(Ω) �−→ y(1, .) ∈ Lq(Ω) for 1 ≤ q < 4.

In particular, the regularization in J is necessary, since (72) is ill-posed for α = 0.
By standard results (see [22]) the gradient representation g of u �−→ J(y(u), u)

with respect to the inner product on L2(Ω) is given by g(u) = αu + K(u), where
K(u) = ζp(0, .) and the adjoint state p satisfies

τpt + κpxx = 0, on QT ,

κpx(0, t) = ζp(0, t), t ∈ (0, T ),

κpx(1, t) = y(1, t)− yd(t), t ∈ (0, T ),

p(x, T ) = 0, x ∈ Q

(74)

in the weak sense. Using Green’s function, p is given by an integral equation of
Volterra type with weakly singular kernel from which one can deduce that (74) defines
a completely continuous affine linear mapping y(1, .) ∈ Lq(Ω) �−→ p ∈ C(QT ) for all
q > 2 (see, e.g., [24]). Combining this with the previous considerations we obtain the
complete continuity of the affine linear mapping u ∈ L2(Ω) �−→ K(u) = ζp(0, .) ∈
C(Ω). Hence, the Fréchet-derivative K ′ of K : L2(Ω) −→ C(Ω) exists and is given by
the compact linear operatorK ′(u) : v ∈ L2(Ω) �−→ K(v)−K(0) ∈ C(Ω). We conclude
that the assumptions (A1), (A2′), and (A4) are satisfied for q = 2, s = r = ∞ and
the results of section 8 can be applied.

While similar results can be shown for nonlinear boundary conditions (cf. [24],
[17], [19]), a differentiability result for the nonlinear problem (72) seems not to be
available. Since (72) is of importance in applications, e.g., the sterilization of canned
food, we nevertheless present numerical results for the nonlinear problems and content
ourselves with the complete justification of our assumptions for the case of constant
κ and τ .

11.1. Discretization. As in [14], [20] we use the discretization of (72) proposed
in [5]. For the space discretization we approximate H1(Q) in the variational formu-
lation of (70) by the space V∆x of continuous functions that are piecewise linear on
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the intervals [i∆x, (i+1)∆x], ∆x
def
= 1/Nx, i = 0, . . . , Nx− 1. Since the time differen-

tiation in the variational form of (70) is linear with respect to the transformed state
φ(y)

def
=
∫ y
0
τ(ξ) dξ, a discontinuous Galerkin method with respect to φ is used where

L2(0, T ;H1(Q)) is approximated by the space Y∆ of V∆x-valued functions that are
piecewise constant on (k∆t, (k + 1)∆t], ∆t

def
= 1/Nt, k = 0, . . . , Nt − 1 (the same dis-

cretization is obtained by applying a backward Euler). This leads in a natural way to
the approximation of h and y0 by their L2-projection onto Y∆ and V∆x, respectively.
The discrete control space U∆t consists of piecewise constant functions on the same
partition of (0, T ] and yd is approximated by its L2 projection onto the same space.
For details we refer to [5], [14], [20].

It was shown in [5] that the resulting implicit scheme admits a unique solution
for ∆t/∆x2 ≤ λ < (τ2/κ1− τ1/κ2)

−1/6 that converges to a solution of (70) as ∆t,∆x
tend to zero.

11.2. Numerical tests. For the application of Algorithm 5.16 we use Example
1 of [20] (see also [14]): T = 0.5, ζ = 1, and

τ(y) = 4 + y, κ(y) = 4− y, yd(t) = 2− e−t, y0(x) = 2 + cosπx,

h(x, t) = (−6 + 2π2) e−t cosπx+ π2 e−2t − (1 + 2π2) e−2t cos2 πx.

Then the optimal control for α = 0 without bound constraints is u∗(t) = 2+ e−t with
associated state y∗(x, t) = 2 + e−t cosπx. The regularization parameter was set to
α = 10−4. The L2 gradient representation of f(u)

def
= J(y(u), u) in U∆ was computed

via the discrete adjoint equation; cf. [5]. Since—at least in the case of constant κ
and τ—∇2f(u) is a compact perturbation of αI, a quasi-Newton approximation of
∇2f(u) like BFGS or PSB is efficient also in the L2-Hilbert space setting; see [12],
[16]. Thus, we may expect that a BFGS- or PSB-approximation of the Hessian in
the discrete model performs nearly independent of the discretization; cf. [16] for the
mesh-independence of BFGS. For the numerical tests, Algorithm 5.16 was embedded
in the trust-region framework of [26] as described in Algorithm 10.1. We took a
L2-trust-region and used an extension of the Steihaug CG-iteration in the scaled
variables ŝ

def
= d−1

k s to compute an approximate solution to (63) satisfying the decrease
condition (D): Let usk be the current iterate and Bk the approximation of ∇2f(usk).
A CG-iteration in the scaled variable ŝ is started. If the process leaves the trust-
region or B, or if negative curvature1 is detected, Steihaug’s method yields sSHk and
s1
k = σsSHk is a candidate for step 2.4 in Algorithm 10.1. Here σ ∈ (0, 1] is chosen
maximal such that usk+1.0005 s1

k ∈ B. In contrast to Steihaug’s algorithm we continue
the CG-iteration as long as no negative curvature is detected even if it leaves the
trust-region or B until an inexact unconstrained minimizer snk of ψ[usk](u

s
k + .) with

‖dk∇ψ[usk](u
s
k + snk )‖2 ≤ 10−4‖dkgk‖2 is found. Then usk + snk is an approximation

for unk+1 in Algorithm 10.1 with ∇2f(usk) replaced by Bk. If the CG-iteration left

the trust-region or B, we take s2
k = min

(
∆k/‖sNk ‖2, 1

)
sNk with the projected step

sNk = P [usk](u
s
k + snk )− usk according to Algorithm 10.1 and s3

k = min(∆k/‖sSk ‖2, 1)sSk
with sSk obtained from snk by the stepsize rule 2.4′ as further candidates. In (39) and
2.4′ we took ξ = 0.99995. Now we set uk+1 = usk + sk, where sk = sik, i ∈ {1, 2, 3} is
the trial step that provides the best reduction of ψ[usk]. As the smoothing step in 2.2
of Algorithm 10.1 we use (cf. section 8)

S◦
k(uk)

def
=

{
P [uk](uk − α−1g(uk)) if k ≥ 1 and ‖uk − usk−1‖∞ ≥ 3‖uk − usk−1‖2,

uk else.

1This does not apply to BFGS-approximations.
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For our numerical results we used a BFGS-approximation of the Hessian with B0 =
αI. In Algorithm 10.1 we set ϑ = 2, ∆0 = 1, η1 = 0.1, η2 = 0.75, η3 = 0.9
and γ1 = 0.5, γ2 = γ3 = 2. The stopping criterion was ‖d(usk)g(usk)‖2 ≤ 10−10.
The upper and lower bounds for the control were a ≡ −1000, b ≡ 0.8 and we used
c

def
= 0.075min{b − a, 0.8} in the definition of the discrete scaling function d. The

optimization was started with u0 ≡ 0.05.

For Nt = 100, Nx = 20 Table 4 shows the norm of the step ‖usk+1 − usk‖∞ and
the norm ‖d(usk+1)g(u

s
k+1)‖2 of the scaled gradient for three different algorithms. The

first algorithm is as described above. It uses also the projection step s2
k as a candidate

for the trial step and performs a smoothing step if necessary (see above). The second
algorithm is the same but without smoothing. The third algorithm is the same as
the second but uses only the trial steps s1

k, s
3
k and not the projected step s2

k that is
suggested by our investigations.

There were no rejected trial steps in all three algorithms. Except for the first two
iterations the projected step s2

k was chosen by the first two algorithms. Obviously
the first algorithm provides the fastest convergence. But if the smoothing steps are
omitted also, the usage of the projected step s2

k leads to a significant acceleration
of the local convergence in comparison to a stepsize-based algorithm. To compare
the dependence of the methods on the mesh-size, we list also the number of gradient
evaluations and iterations for (Nt, Nx) = (400, 80), (3000, 200), and (6000, 400).

The first algorithm wins on all grids and the second needs at most one additional
gradient evaluation. Thus, smoothing is not very important for this example. Both

Table 4
Results for (Nt, Nx) = (100, 20), (400, 80), (3000, 200), and (6000, 400).

Proj. and smooth. Projection Stepsize rule

k ‖ssk‖†∞ ‖dsk+1gsk+1‖†2 ‖ssk‖†∞ ‖dsk+1gsk+1‖†2 ‖ssk‖†∞ ‖dsk+1gsk+1‖†2
Nt = 100 Nx = 20

grad-evals: 8 grad-evals: 8 grad-evals: 13

0 2.041E−01 3.128E−06 2.041E−01 3.128E−06 2.041E−01 3.128E−06
1 4.093E−01 1.752E−06 4.093E−01 1.752E−06 4.093E−01 1.752E−06
2 3.381E−01 1.304E−07 3.381E−01 1.304E−07 1.366E−01 1.146E−06
3 7.382E−02 4.110E−10∗ 7.381E−02 9.494E−09 6.285E−02 8.221E−07
4 2.821E−04 1.984E−12∗ 1.590E−02 1.931E−09 7.082E−02 5.951E−07
5 6.501E−03 3.038E−10 7.028E−02 4.029E−07
6 1.634E−03 1.908E−11 6.683E−02 2.379E−07
7 7.704E−02 6.209E−08
8 1.849E−02 1.211E−08
9 9.845E−03 1.640E−09
10 3.251E−03 2.489E−10
11 1.790E−03 4.387E−11

Nt = 400 Nx = 80
grad-evals: 8 grad-evals: 9 grad-evals: 14
iterations: 5 iterations: 8 iterations: 13

Nt = 3000 Nx = 200
grad-evals: 9 grad-evals: 10 grad-evals: 16
iterations: 7 iterations: 9 iterations: 15

Nt = 6000 Nx = 400
grad-evals: 10 grad-evals: 11 grad-evals: 16
iterations: 8 iterations: 10 iterations: 15

† ssk = usk+1 − usk, d
s
k = d(usk), g

s
k = g(usk).

∗ Smoothing occurred, i.e., usk+1 �= uk+1.
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algorithms are nearly mesh-independent and need significantly less iterations than the
third algorithm, which shows a weak mesh-dependence for the transition from coarse
to fine grids. Note, however, that the third algorithm shows strong mesh-dependence
for certain other problems; cf. Examples 6.3 and 6.5.

It is also possible to treat the state equation as an equality constraint by combining
the SQP-approach with our method. For the finite-dimensional case this was proposed
in [8] and [27]. The main advantage of these methods is that they only require the
solution of the linearized state equation, whereas in the black-box approach the state
equation has to be solved, which in the problem under consideration is about twice
as expensive as the solution of the linearized equation. We believe that the extension
of our theory to this class of SQP-methods is possible. For the case without box-
constraints, an SQP-method for the above problem was analyzed in [20]. Also in this
simpler case, an SQP-step requires the computation of the reduced gradient and the
solution of the linearized state equation.

Conclusions. We have developed an affine-scaling interior-point Newton algo-
rithm for bound-constrained minimization subject to pointwise bounds in Lp-space.
The method is an extension of the algorithms by Coleman and Li [6], [7] for finite-
dimensional problems. Our infinite-dimensional framework raised a couple of diffi-
culties which are not present in the finite-dimensional case. A careful analysis led to
several modifications of the original algorithm which enabled us to prove superlinear
convergence for the resulting method. Under a slightly stronger strict complemen-
tarity condition we proved convergence with Q-rate >1. Our main modifications are
the introduction of a smoothing step and the implementation of the back-transport
by a projection instead of the usual stepsize rule. The smoothing step takes care of
the fact that, in general, we can show that only for suitable q < s the affine-scaling
Newton step produces a point which is much closer to the solution in Lq (but not
necessarily in Ls) than the current iterate was in Ls. The necessity of a smoothing
step was also observed by Kelley and Sachs [17] in their study on projected Newton
methods. The back-transport is required because the solution of the affine-scaling
Newton equation may lie outside of the feasible set B. In the finite-dimensional case
one can prove that a stepsize rule to enforce strict feasibility generates stepsizes that
converge to one. In our infinite-dimensional setting, however, this is no longer true, as
we have demonstrated in Example 6.3. Therefore, we have defined a back-transport
on the basis of the pointwise projection onto B. We have discussed how smoothing
steps can be obtained for a class of regularized problems. Moreover, we have shown
that our theory is applicable under the assumptions used by Kelley and Sachs [17] as
well as those by Dunn and Tian [9]. We have demonstrated that our algorithm can be
used as an accelerator for the class of globally convergent trust-region interior-point
methods introduced in [26]. The good performance of this algorithm is documented
by our numerical results for the boundary control of a heating process.
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